

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 386 335

51 Int. Cl.: A61K 38/17

(2006.01)

12	TRADUCCIÓN DE PATENTE EUROPEA	Т3
	Número de solicitud europea: 09782523 .6	
	96 Fecha de presentación: 02.09.2009	
	97 Número de publicación de la solicitud: 2331114	
	97 Fecha de publicación de la solicitud: 15.06.2011	
	-	

- 54 Título: Receptor Fc-gamma para el tratamiento de la esclerosis múltiple mediada por los linfocitos B
- 30 Prioridad: 05.09.2008 EP 08163800

73 Titular/es:

SuppreMol GmbH
Am Klopferspitz 19
82152 Martinsried/München, DE

45 Fecha de publicación de la mención BOPI: 17.08.2012

72 Inventor/es:

BUCKEL, Peter y JACOB, Uwe

45 Fecha de la publicación del folleto de la patente: 17.08.2012

(74) Agente/Representante:

Curell Aquilá, Mireia

ES 2 386 335 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Receptor Fc-gamma para el tratamiento de la esclerosis múltiple mediada por los linfocitos B.

5 Campo de la invención

10

15

20

25

30

35

40

45

60

65

La invención se refiere al campo de la biotecnología y terapéutica. La invención se refiere al receptor Fcγ (receptor Fc-gamma) para su uso en el tratamiento de la esclerosis múltiple, en el que la esclerosis múltiple es una forma de esclerosis múltiple mediada por los linfocitos B y/o una forma de esclerosis múltiple activada por autoanticuerpos.

Antecedentes de la invención

Las hipótesis actuales favorecen la idea de que los linfocitos T desempeñan un papel fundamental en la patogénesis de la esclerosis múltiple (EM), que se basó inicialmente en la observación de que los linfocitos T son la clase linfocítica predominante presente en las lesiones de EM (Windhagen, *et al.*, Citokine, secretion of myelin basic protein reactive T cells in patients with multiple sclerosis. Journal of Neuroimmunology, 91:1-9, 7998; Hafler D.A., *et al.*, Oral administration of myelin induces antigen-specific TGF-beta 1 secreting cells in patients with multiple sclerosis. Annals of the New York Academy of Science, 835:120-131, 1997; Lovett-Racke, A.E., *et al.*, Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients, Journal of Clinical Investigation, 101:725-730, 1998). Esta observación continúa siendo una característica distintiva cardinal de la enfermedad, y está apoyada por un número de observaciones. Por ejemplo, los linfocitos auxiliares T CD4+ activos que poseen receptores de linfocitos T antimielina (TCR) están presentes en el fluido cerebroespinal (CSF) de pacientes con EM. Además, se han detectado niveles elevados de citocinas semejantes a Th1 en el CSF de pacientes con EM, y se han correlacionado con el empeoramiento de la enfermedad en algunos casos (Calabresi *et al*, Cytokine expression in cells derived from CSF of multiple sclerosis patients. Journal of Neuroimmunology, 89:198-205, 1998).

Sin embargo, también ha habido ciertos signos de que los linfocitos B pueden estar implicados en el desarrollo y la perpetuación de la EM incluyendo:

- (1) niveles inmunoglobulinicos elevados en el CSF de pacientes con EM (Link, H., et al., Immunoglobulins in multiple sclerosis and infections of the nervous system, Archives of Neurology, 25:326-344, 1971; Link, H., et al., Immunoglobulin class and light chain type of oligoclonal bands in CSF in multiple sclerosis determined by agarose gel electrophoresis and immunofixation. Ann Neurol, 6(2):107-110, 1979; Perez, L., et al., B cells capable of spontaneous IgG secretion in cerebrospinal fluid from patients with multiple sclerosis: dependancy on local IL-6 production. Clinical Experimental Immunology, 101:449-452, 1995),
- (2) formación de bandas de inmonuglobulinas en el CSF de pacientes con EM (Link, H., et al., Immunoglobulin class and light chain type of oligoclonal bands in CSF in multiple sclerosis determined by agarose gel electrophoresis and immunofixation. Ann Neurol, 6(2):107-110, 1979),
 - (3) distorsión de la relación κ:λ en el CSF de pacientes con EM (Hauser, S.L., et al., Clonally restricted B cells in peripheral blood of multiple sclerosis patients: kappa/lambda staining patterns. Annals of Neurology, 11:408-412,1982),
 - (4) la presencia de anticuerpos antimielina en el CSF de pacientes con EM (Sun, J. H., et al, B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. Journal of Immunology, 146:1490-1495, 1991), y
- (5) la demostración de que los anticuerpos procedentes del CSF de pacientes con EM pueden contribuir a la extensión global de la lesión tisular en estos pacientes (Lassmann, H., et al., Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathology, 75:566-576, 1988).
- Un número de publicaciones demuestra tal mediación de los linfocitos B: Bourquin, *et al.*, The journal of Immunology, 2003, 171: 455-461; Stromnes *et al.* Nature Protocols, Vol. 1, No. 4, 2006: 1810-1818; Stromnes *et al.* Nature Protocols, Vol. 1, No. 4, 2006: 1952-19160; Oliver, *et al.*, The Journal of Immunology, 2003, 171: 462-468.
 - El papel básico de los linfocitos B en el sistema inmunitario es mediar las respuestas inmunitarias humorales. Esto es, segregar proteínas denominadas anticuerpos (o inmunoglobulinas) que se unen a cuerpos extraños y los marcan para la eliminación del organismo por otras células inmunitarias, tales como células NK y macrófagos.
 - Se ha demostrado en múltiples ensayos clínicos dados a conocer en la bibliografía médica que la globulina inmunitaria intravenosa (IVIG) tiene un impacto sobre dos consideraciones importantes en la esclerosis múltiple recidivante-remitente. La IVIG reduce la frecuencia del empeoramiento agudo, y reduce la intensidad y duración del empeoramiento agudo. Aparentemente, un subconjunto de pacientes tiene una implicación destacada de linfocitos B en la esclerosis múltiple. Por tanto, seria ventajoso tener sustancias y métodos para el tratamiento de tales pacientes

con esclerosis múltiple mediada por los linfocitos B.

La IVIG representa la inmunoglobulina humana reunida de muchos donantes. El mecanismo exacto mediante el cual la IVIG mejora las enfermedades mediadas por autoanticuerpos es desconocido. Sin embargo, se podría demostrar que a) la eficacia de IVIG depende de la expresión del receptor Fc, b) la relación de autoanticuerpos a inmoglobulina normal (IVIG) está desviada, lo que conduce a una degradación potenciada de autoanticuerpos, y c) la IVIG contiene la red completa de anticuerpos humanos y anticuerpos antiidiotípicos (anticuerpos contra anticuerpos), lo que conduce a la neutralización de anticuerpos.

10 Sumario de la invención

5

15

20

35

40

45

50

55

60

65

Se ha descubierto sorprendentemente que la hipótesis actual de que los linfocitos las B desempeñan un papel fundamental en la patogénesis de la esclerosis múltiple (EM) no es al menos totalmente correcta. Los inventores se centraron en la forma de esclerosis múltiple mediada por los linfocitos B, y sorprendentemente son capaces de proporcionar un tratamiento especial.

La invención se refiere al receptor Fcy (receptor Fc-gamma) para su uso en el tratamiento de esclerosis múltiple, en el que la esclerosis múltiple es una forma de esclerosis múltiple mediada por los linfocitos B y/o una fórmula de esclerosis múltiple activada por autoanticuerpos. La invención se refiere a composiciones farmacéuticas que contienen el receptor Fcy (receptor Fc-gamma) para su uso en el tratamiento de esclerosis múltiple, en el que la esclerosis múltiple es una forma de esclerosis múltiple mediada por los linfocitos B y/o una forma de esclerosis múltiple activada por autoanticuerpos.

Los receptores Fc (FcR) desempeñan un papel clave a la hora de defender el organismo humano frente a infecciones. Después de que los patógenos obtienen acceso al torrente sanguíneo, son opsonizados por inmunoglobulinas (Igs). Los inmunocomplejos resultantes se unen, debido a su multivalencia, con gran avidez a células que poseen FcR, conduciendo al agrupamiento de los FcR, lo que dispara varias funciones efectoras (Metzger, H., 1992A). Estas incluyen, dependiendo del tipo de FcR expresado y de las proteínas asociadas, endocitosis con neutralización subsiguiente de los patógenos y presentación antigénica, citotoxicidad celular dependiente de anticuerpos (ADCC), secreción de mediadores o la regulación de producción de anticuerpos (Fridman, et al., 1992; van de Winkel y Capel, 1993).

Existen FcR específicos para todas las clases de Ig, siendo aquellos para IgG los más abundantes con la diversidad más amplia. Junto con el receptor de afinidad elevada para IgE (FcεRla), FcγRI (CD64), FcγRII (CD32) y FcγRIIIa (CD16) aparecen como proteínas transmembranarias de tipo I o en formas solubles (sFcR), pero también existe una forma del FcγRIII (FcγRIIIb) anclada a glucosilfosfatidilinositol. Además, los FcγRs aparecen en diversas isoformas (FcγRla, b1, b2, c; FcγRIIa1-2, b1-3, c) y alelos (FcγRIIa1-HR, -LR; FcγRIIIb-NA1, -NA2) (van de Winkel y Capel, 1993). En contraste con las partes extracelulares homologas globales, el cruzamiento transmembranario y los dominios citoplásmicos difieren. Pueden estar suprimidos completamente, o pueden tener un tamaño de 8 kDa. Pueden contener un motivo de activación de inmunorreceptor a base de tirosina (ITAM) de 26 aminoácidos, como en FcγRIIa, o un motivo inhibidor (ITIM) de 13 aminoácidos respectivo en FcγRIIb implicado en la transducción de señales (Amigorena, *et al.*, 1992).

En la presente memoria, EAE es la encefalomielitis autoinmunitaria experimental.

Descripción detallada de la invención

La invención se refiere al receptor Fcy (receptor Fc-gamma) para su uso en el tratamiento de esclerosis múltiple, en el que la esclerosis múltiple es una forma de esclerosis múltiple mediada por los linfocitos B y/o una forma de esclerosis múltiple activada por autoanticuerpos.

La mediación de la esclerosis múltiple por linfocitos B y/o la forma de esclerosis múltiple activada por autoanticuerpos se caracterizan por una o más de las siguientes características: (a) la esclerosis múltiple mejora si el paciente se somete a tratamiento con inmonuglobulina intravenosa (IVIG), y/o (b) la esclerosis múltiple mejora si el paciente se somete a tratamiento con anticuerpos anti-CD20, y/o (c) la esclerosis múltiple mejora si el paciente se somete a plasmaféresis, y/o (d) la esclerosis múltiple mejora si el paciente se somete a inmunoadsorción, (e) la presencia de autoanticuerpos frente al antígeno glucoproteína oligodendrocítica mielínica (MOG), y/o (f) la presencia de autoanticuerpos frente al antígeno proteína básica mielínica (MBP), y/o (g) la presencia de autoanticuerpos frente a acuaporina 4.

La enfermedad de Devic es similar a la EM por cuanto el sistema inmunitario del cuerpo ataca a la mielina que rodea a las células nerviosas. A diferencia de la EM estándar, no se cree que los ataques estén mediados por los linfocitos T del sistema inmunitario, sino más bien por anticuerpos denominados NMO-IgG. Estos anticuerpos se dirigen contra una proteína denominada acuaporina 4 en las membranas celulares de astrocitos, que actúa como una canal para el transporte de agua a través de la membrana celular.

En una forma de realización preferida, la mediación de la esclerosis múltiple por los linfocitos B y/o la forma de esclerosis múltiple activada por autoanticuerpos está determinada, antes del uso del receptor Fcγ, por medio de uno o más de los siguientes ensayos: (a) determinación de si la esclerosis múltiple mejora si el paciente se somete a tratamiento con inmonuglobulina intravenosa (IVIG), y/o (b) la esclerosis múltiple mejora si el paciente se somete a tratamiento con anticuerpos anti-CD20, y/o (c) la esclerosis múltiple mejora si el paciente se somete a plamaféresis, (d) la esclerosis múltiple mejora si el paciente se somete a inmunoadsorción, (e) determinación de si los autoanticuerpos frente al antígeno glucoproteína oligodendrocítica mielínica (MOG) están presentes en el paciente, y/o (f) determinación de si los autoanticuerpos frente al antígeno proteína básica mielínica (MBP) están presentes en el paciente, y/o (g) determinación de la presencia de autoanticuerpos frente a acuaporina 4. Preferentemente, se lleva a cabo una selección de dos de los ensayos, más preferentemente se lleva a cabo una selección de tres de los ensayos, más preferentemente se lleva a cabo una selección de tres de los ensayos, más preferentemente se lleva a cabo una selección de cuatro de los ensayos.

Un ejemplo de un tratamiento anti-CD20 es el Rituximab. Éste es un anticuerpo monoclonal. Lamentablemente, tiene efectos secundarios graves, que se podrían mejorar si se usase la presente proteína, es decir, polipéptidos, en lugar de Rituximab.

Durante la plasmaféresis, la sangre se extrae inicialmente del cuerpo a través de una aguja o un catéter previamente implantado. Entonces se elimina el plasma de la sangre mediante un separador celular. Habitualmente se usan tres procedimientos para separar el plasma de la sangre:

Centrifugación de flujo discontinuo:

Se necesita un tubo de catéter venoso. Típicamente, se elimina un lote de sangre de 300 ml de una sola vez y se centrifuga para separar el plasma de las células de la sangre.

Centrifugación de flujo continuo:

Se usan dos tubos venosos. Este método requiere que salga del cuerpo un volumen ligeramente menor de una sola vez, puesto que es capaz de eliminar continuamente el plasma por centrifugación.

Filtración del plasma:

5

10

15

20

25

30

35

Se usan dos tubos venosos. El plasma se filtra usando un equipo de hemodiálisis estándar. Este proceso continuo requiere extraer del cuerpo de una sola vez menos de 100 ml de sangre.

Durante la inmunoadsorción, la sangre de un paciente se aclara de inmunoglobulina mediante columna de cromatografía de afinidad extracorpórea.

Cada método tiene sus ventajas y sus desventajas. Después de la separación del plasma, las células de la sangre se devuelven a la persona sometida a tratamiento, mientras que el plasma que contiene los anticuerpos se trata en primer lugar y después se devuelve al paciente por plasmaféresis tradicional. (En el intercambio plasmático, el plasma eliminado se desecha y el paciente recibe plasma de donante de sustitución, o disolución salina con proteínas añadidas). Durante el procedimiento, generalmente se administra al paciente una medicación para evitar que la sangre se coagule (un anticoagulante). En enfermedades particulares, la plasmaféresis se usa como una terapia.

Un uso importante de la plasmaféresis es en la terapia de trastornos autoinmunitarios. Sin embargo, el método es extremadamente exigente para el paciente.

50 El documento WO 2008/017363 describe unos medios para estudiar la mediación de los linfocitos B. En particular, describe unos medios para detectar autoanticuerpos frente a MOG y acuaporina 4. El documento WO 2008/017363 se incorpora como referencia.

En una forma de realización preferida de la invención, el receptor FcR es de origen humano. El receptor Fcγ según la invención se selecciona preferentemente de entre el grupo de FcγRI (CD64), FcγRIIa (CD32), FcγRIIB1 (CD32), FcγRIIB2 (CD32), FcγRIIB4 (CD16) y FcγRIIB4 (CD16).

FcyRIIB1 (CD32) y FcyRIIB2 (CD32) también son denominadas isoformas, es decir, las isoformas 1 y 2.

Según la presente invención, la preparación de los receptores Fc solubles tienen lugar en células procariotas o eucariotas. También puede tener lugar en células eucariotas. Si tiene lugar en célula procariotas (véase el documento EP-B1 1 135 486), se forman cuerpos de inclusión insolubles que contienen la proteína recombinante, facilitando así la purificación mediante separación de los cuerpos de inclusión de otros componentes celulares antes de que tenga lugar la renaturalización de las proteínas contenidas en ellos. La renaturalización de los FcR según la presente invención, que están contenidos en los cuerpos de inclusión, puede tener lugar principalmente según métodos conocidos. La ventaja de la preparación en células procariotas, la preparación de cuerpos de inclusión y los

receptores Fc solubles recombinantes así obtenidos, hace posible obtener una preparación de FcR muy pura y, en particular, también muy homogénea. También, debido a la ausencia de glucosilación, el producto obtenido es de una gran homogeneidad. Sin embargo, en algunos casos, puede ser deseada la glucosilación.

- 5 Una célula hospedante se manipula mediante ingeniería genética con el polinucleótido o el vector que codifica o que posee el FcR. Las células hospedantes que se pueden usar para los fines de la invención incluyen, pero no se limitan a, células procariotas tales como bacterias (por ejemplo, E. coli y B. subtilis), que se pueden transformar con, por ejemplo, vectores de expresión recombinantes de ADN bacteriofágico, ADN plasmídico, o ADN cosmídico, que contienen las moléculas polinucleotídicas que codifican el FcR; células eucariotas simples, como levaduras (por ejemplo Saccharomyces y Pichia), que se pueden transformar con, por ejemplo, vectores de expresión de levaduras 10 recombinantes que contienen la molécula polinucleotídica de la invención, es decir, las moléculas polinucleotídicas que codifican el FcR; sistemas de células de insectos, como, por ejemplo, las células Sf9 o Hi5, que se pueden infectar con, por ejemplo, vectores de expresión víricos recombinantes (por ejemplo, baculovirus) que contienen las moléculas polinucleotídicas de la invención; Xenopus oocytes, que se puede invectar con, por ejemplo, plásmidos; 15 sistemas de células vegetales, que se pueden infectar con, por ejemplo, vectores de expresión víricos recombinantes (por ejemplo, virus del mosaico de la coliflor (CaMV) o virus del mosaico del tabaco (TMV)), o se pueden transformar con vectores de expresión plasmídicos recombinantes (por ejemplo, plásmido Ti) que contiene un FcR o una secuencia nucleotídica variable; o sistemas celulares de mamíferos, por ejemplo células COS, CHO, BH, HEK293, VERO, HeLa, MDCK, Wi38, Swiss 3T3 y NIH 3T3), que se pueden transformar con constructos de 20 expresión recombinantes que contienen, por ejemplo, promotores derivados de, por ejemplo, el genoma de células de mamíferos (por ejemplo, el promotor de metalotioneína), de virus de mamíferos (por ejemplo, el promotor tardío adenovírico, CMV IE y el promotor de 7,5K del virus de la vacuna), o de células bacterianas (por ejemplo, se emplea la unión del represor de tet en el sistema de tet-on y tet-off). También son útiles como células hospedantes las células primarias o secundarias obtenidas directamente de un mamífero y transfectadas con un vector plasmídico o 25 infectadas con un vector vírico. Dependiendo de la célula hospedante y del vector respectivo usado para introducir el polinucleótido de la invención, el polinucleótido se puede integrar, por ejemplo, en el cromosoma o en el ADN mitocondrial, o se puede mantener extracromosómicamente como, por ejemplo, episómicamente, o puede estar comprendido sólo transitoriamente en las células.
- 30 En la secuencia de FcγRIIb se encuentran tres sitios potenciales de N-glucosilación. Los tres sitios están sobre la superficie de la molécula, y son accesibles. Están situados en los bucles EIF (N61 y N142) de ambos dominios, y en la hebra E (N 135) del dominio C-terminal. Los FcR aislados de células de mamíferos están muy glucosilados. Puesto que FcR se glucosila *in vivo*, puede ser deseable escoger un sistema de expresión que proporcione una glucosilación fiable de la proteína. En consecuencia, se prefiere introducir los polinucleótidos que codifican el FcR de la presente invención en células eucariotas superiores, en particular en células de mamíferos, por ejemplo células COS, CHO, BHK, HEK293, VERO, HeLa, MDCK, Wi38, Swiss 3T3 o NIH 3T3.
- Preferentemente, el receptor Fcγ según la invención carece del dominio transmembranario y/o del péptido señal, y es soluble. Las formas solubles de los receptores Fc (sFcR) tales como FcγRIII median la regulación, específica del isotipo, del crecimiento de linfocitos B y la producción de inmonuglobulinas. En un modelo murino de mieloma, el sFcR suprime el crecimiento y la producción inmunoglobulínica de células tumorales (Muller, *et al.*, 1985; Roman, *et al.*, 1988; Teillaud, *et al.*, 1990). Además, el sFcR se une a IgG de superficie en cultivos de células de mieloma que segregan IgG humanas y efectúa la supresión del crecimiento de células tumorales y la secreción de IgG. La exposición prolongada de estas células a sFcR da como resultado citolisis de las células tumorales (Hoover, *et al.*, 1995).
 - Los polipéptidos del receptor Fcy pueden ser cualquiera de los descritos anteriormente, pero con no más de diez (por ejemplo, no más de: diez, nueve, ocho, siete, seis, cinco, cuatro, tres, dos, o una) sustituciones conservadoras. Las sustituciones conservadoras son conocidas en la técnica, e incluyen típicamente la sustitución de, por ejemplo, un aminoácido polar por otro aminoácido polar, y un aminoácido ácido por otro aminoácido ácido. En consecuencia, las sustituciones conservadoras incluyen preferentemente sustituciones con los siguientes grupos de aminoácidos: glicina, alanina, valina, prolina, isoleucina y leucina (cadena lateral alifática no polar); ácido aspártico y ácido glutámico (cadena lateral cargada negativamente); asparagina, glutamina, metionina, cisteína, serina y treonina (cadena lateral no cargada polar); lisina, histidina y arginina; y fenilalanina, triptófano y tirosina (cadena lateral aromática); y lisina, arginina e histidina (cadena lateral cargada positivamente). Es bien sabido en la técnica cómo determinar el efecto de una sustitución dada, por ejemplo sobre el pKI, etc. Todo lo que se necesita de un polipéptido que tenga una o más sustituciones conservadoras es que tenga al menos 50% (por ejemplo, al menos; 55%; 60%; 65%; 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 99,5%; o 100% o más) de la actividad del receptor Fcy inalterado según la invención.

50

55

60

65

Tanto los polipéptidos como los péptidos se pueden producir mediante técnicas de ADN recombinante *in vitro* estándares y transgénesis *in vivo*, usando secuencias nucleotídicas que codifican los polipéptidos o péptidos apropiados. Para construir vectores de expresión que contienen secuencias codificantes relevantes y señales de control transcripcionales/traduccionales apropiadas, se pueden usar métodos bien conocidos por los expertos en la técnica. Véanse, por ejemplo, las técnicas descritas en Sambrook, *et al.*, Molecular cloning; A Laboratory Manual (2ª Ed.) [Cold Spring Harbor Laboratory, N.Y., 1989], y Ausubel, *et al.*, Current Protocols in Molecular Biology [Green

Publishing Associates and Wiley Interscience, N.Y., 1989].

5

10

15

20

25

30

35

45

50

55

60

65

Los polipéptidos y fragmentos de la invención, es decir, polipéptidos aislados, también incluyen los descritos anteriormente, pero modificados para su uso *in vivo* mediante adición, en los extremos amino y/o carboxilo terminales, de agentes de bloqueo para facilitar la supervivencia del polipéptido relevante in vivo. Esto puede ser útil en las situaciones en las que los términos peptídicos tienden a ser degradados por proteasas antes de la absorción celular. Tales agentes de bloqueo pueden incluir, sin limitación, secuencias peptídicas relacionadas o no relacionadas adicionales que se pueden unir a los restos amino y/o carboxi terminales del péptido a administrar. Esto se puede hacer químicamente durante la síntesis del péptido, o mediante tecnología de ADN recombinante mediante métodos familiares para los expertos normales.

Como alternativa, se pueden unir agentes de bloqueo, tales como ácido piroglutámico u otras moléculas conocidas en la técnica, a los restos amino y/o carboxi terminales; o el grupo amino en el término amino, o el grupo carboxi en el término carboxi se puede sustituir por un resto diferente. Igualmente, los péptidos se pueden acoplar covalentemente o no covalentemente a proteínas "portadoras" farmacéuticamente aceptables, antes de la administración.

La expresión polipéptido "aislado" o fragmento peptídico, como se usa en la presente memoria, se refiere a un polipéptido o a un fragmento peptídico que no tiene contraparte de origen natural o se ha separado o purificado a partir de componentes que lo acompañan de forma natural, por ejemplo en tejidos tales como lengua, páncreas, hígado, bazo, ovario, testículos, músculo, tejido articular, tejido neuronal, tejido gastrointestinal o tejido tumoral, o fluidos corporales tales como sangre, suero, u orina. Típicamente, el polipéptido o fragmento peptídico se considera "aislado" cuando se encuentra en por lo menos 70%, en peso seco, libre de las proteínas y otras moléculas orgánicas de origen natural con las que está asociado de forma natural. Preferentemente, una preparación de un polipéptido (o fragmento peptídico del mismo) de la invención es al menos 80%, más preferentemente al menos 90%, y lo más preferido al menos 99%, en peso seco, el polipéptido (o el fragmento peptídico del mismo), respectivamente, de la invención. De este modo, por ejemplo, una preparación de polipéptido x es al menos 80%, más preferentemente al menos 90%, y lo más preferido al menos 99%, en peso seco, polipéptido x. Puesto que un polipéptido que se sintetiza químicamente se separa, por su naturaleza, de los otros componentes que lo acompañan de forma natural, el polipéptido sintético está "aislado".

Un polipéptido aislado (o fragmento peptídico) de la invención se puede obtener, por ejemplo, mediante extracción a partir de una fuente natural (por ejemplo, a partir de tejidos o fluidos corporales); mediante expresión de un ácido nucleico recombinante que codifica el polipéptido; o mediante síntesis química. Un polipéptido que se produce en un sistema celular diferente de la fuente a partir de la que se origina de forma natural está "aislado", debido a que estará necesariamente libre de componentes que lo acompañan de forma natural. El grado de aislamiento o pureza se puede medir mediante cualquier método apropiado, por ejemplo cromatografía en columna, electroforesis en gel de poliacrilamida, o análisis de HPLC.

40 El receptor Fcγ según la invención se puede modificar (mejorar) químicamente mediante PEGilación y/o manipulación mediante ingeniería genética.

Los enfoques conocidos implican la provisión de sitios de glucosilación adicionales (véanse, por ejemplo, los documentos WO 91/05867, WO 94/09257 y WO 01/81405). Tales análogos modificados pueden tener al menos una cadena de hidrato de carbono adicional enlazada mediante N y/o enlazada mediante O. Otros intentos para mejorar la semivida pueden implicar la adición de restos de polietilenglicol (PEG) de longitud variable a la cadena principal de aminoácidos (véanse, por ejemplo, los documentos WO 00/32772, WO 01/02017, WO 03/029291). Las moléculas se pueden modificar con al menos un oligosacárido enlazado mediante N y/o enlazado mediante O, que se modifica adicionalmente mediante oxidación, sulfatación, fosforilación, PEGilación o una combinación de los mismos (véase el documento WO 2005/025606). Todos estos enfoques se pueden emplear igualmente para prolongar la semivida de las variantes de la presente invención, y, en consecuencia, en una forma de realización preferida del receptor Fcy según la invención, la modificación se selecciona de entre el grupo constituido por oxidación, sulfatación, fosforilación, adición de oligosacáridos, o sus combinaciones. Si se desea la adición de otros oligonucleótidos enlazados mediante N o enlazados mediante O, es posible introducirlos introduciendo sitios de glucosilación adicionales. También se prefiere que la proteína sea modulada por afinidad.

En la práctica de un aspecto de la presente invención, una composición farmacéutica que comprende el receptor de la invención se puede administrar a un mamífero mediante cualquier vía que proporcione un nivel suficiente de actividad. Se puede administrar sistémicamente o localmente. Tal administración puede ser parenteralmente, transmucosalmente, por ejemplo oralmente, nasalmente, rectalmente, intravaginalmente, sublingualmente, submucosalmente o transdérmicamente. Preferentemente, la administración es parenteral, por ejemplo vía inyección intravenosa o intraperitoneal, y también incluye, pero no se limita a, la administración intraverterial, intramuscular, intradérmica y subcutánea. Si la composición farmacéutica de la invención se administra localmente, se puede inyectar directamente en el órgano o tejido a tratar. En casos de tratamiento del sistema nervioso, esta vía de administración incluye, pero no se limita a, las vías de administración intracerebral, intraventricular, intracerebroventricular, intracerebroventricular, intracerebral, intracerebral,

intracraneales e intravertebrales, y catéteres con o sin dispositivos de bombeo.

El receptor también puede estar glucosilado.

20

- 5 Lo más preferido, el receptor se selecciona de entre el grupo de FcγRIIA/B/C (CD32) y FcγRIIIA/B (CD16b). La invención también se refiere a las isoformas del mismo e isoformas de los FcR reivindicados en la presente memoria en general.
- En una forma de realización preferida, la composición farmacéutica comprende un polipéptido del receptor FcR en una forma de dosificación unitaria para tratar esclerosis múltiple, en la que la esclerosis múltiple es una forma de esclerosis múltiple mediada por los linfocitos B y/o una forma de esclerosis múltiple activada por autoanticuerpos, y la cantidad a administrar a un paciente en una única dosis está entre 1 y 20 mg/kg, preferentemente 2 y 10 mg/kg, más preferentemente entre 25 y 5 mg/kg, incluso más preferentemente entre 2,5 y 5 mg/kg.
- Una composición farmacéutica puede comprender adicionalmente una o más de las siguientes sustancias: un detergente y/o un azúcar. Un detergente preferido es el Tween 20. Un azúcar preferido es el manitol.
 - El receptor Fcγ según la invención tiene preferentemente las secuencias seleccionadas de entre el grupo de SEC ID nº 1, SEC ID nº 2, SEC ID nº 3, SEC ID nº 4, SEC ID nº 5, SEC ID nº 6, SEC ID nº 7, SEC ID nº 8, SEC ID nº 9, SEC ID nº 10, SEC ID nº 11, SEC ID nº 12 y SEC ID nº 13. Estás se esquematizan en la Tabla 1.
 - El receptor Fcγ según la invención comprende preferentemente sólo el dominio extracelular de dichas secuencias (forma soluble del receptor). Tal dominio es conocido a partir de alineamientos de secuencias, se caracteriza estructuralmente por cristalografía de rayos X, y comprende los primeros dos (CD16, CD32) o los primeros tres (CD64) dominios semejantes a IgG del receptor maduro (Sondermann P., Kaiser J., Jacob U., Molecular basis for immune complex recognition: a comparison of Fc- receptor structures. J. Mol. Biol. 2001, 309, 737-749).

Tabla 1

		In-ray and a second
FCgamma RIA humano (SEC ID nº 1)	MWFLTTLLLWVPVDGQVDTTKAVIT LQPPWVSVFQEETVTLHCEVLHLPG SSSTQWFLNGTATQTSTPSY RITSASVNDSGETVRCQRGLSGRSDP IQLEIHRGWLLLQVSSRVFTEGEPL ALRCHAWKDKLVYNVLYYRN GKAFKFFHWNSNLTILKTNISHNGT YHCSGMGKHRYTSAGISVTVKELFP APVLNASVTSPLLEGNLVTL SCETKLLLQRPGLQLYFSFYMGSKT LRGRNTSSEYQILTARREDSGLYWC EAATEDGNVLKRSPELELQV LGLQLPTPVWFHVLFYLAVGIMFLV NTVLWVTIRKELKRKKWDLEISLD SGHEKKVISSLQEDRHLEEE LKCQEQKEEQLQEGVHRKEPQGAT	SEC ID nº 14 ATGTGGTTCTTGACAACTCTGCTCCTTTGGGTTCCAGT TGATGGCAAGTGACACCACAAAGGCAGTGATCACTT TGCAGCCTCCATGGGTCAGCGTGTTCCAAGAGGAAACC GTAACCTTGCACTGTGAGGTGCTCCATCTGCCTGGAG CAGCTCTACACAGTGGTTTCCAATGGCACAGCCACTC AGACCTCGACCCCAGCTACAGAATCACCTCTGCCAGT GTCAATGACAGTGGTGAATCAGGTGCCAGAGAGTCT CTCAGGGCGAAGTGACCCCATACAGCTGGAAATCCACA GAGGCTGGCTACACTGACAGGTCCCAGCAGAGTCTT CACGGAAGGAACCTCTGGCCTTGAGGTGCATTCACCAC GAGGCTGGCTACTACTGCAGTTCCAGCAGAGTCTTC ACGGAAGGAACCTCTGGCCTTGAGGTGCATCCACA ATGGCAAAGCCTTTAAGTTTTTCCACTGGAATTCTAAC CTCACCATTCTGAAAACCACACATAAGTCACAATGGCAC CTACCATTGCTCAGGCATGGAAAGCACTCCTACACAT CAGCAGGAATATCTGTCACTGTGAAAGACTACTTCCA GCTCCAGTGCTGAATGCATCCCCACTCCT GGAGGGGAATCTTGGTCACCTTGAACATCCCCACTCCT TTCTACATTGGCAAGCCCTGGAGCCTGAAACAAAAGT TGCTCTTGCAGAGGCCTGGTTTACACTCCACACCCCTCCT TTCTACATGGCCAGCAGACCCTTGAAGAAAAAAAAAA
FCgamma RIB humano (SEC ID nº 2)	MWFLTTLLLWGWLLLQVSSRVFMEG EPLALRCHAWKDKLVYNVLYYRNGK AFKFFHWNSNLTILKTNISH NGTYHCSGMGKHRYTSAGISQYTVK GLQLPTPVWFHVLFYLAVGIMFLVN TVLWVTIRKELKRKKKWNLE ISLDSGHEKKVISSLQEDRHLEEEL KCQEQKEEQLQEGVHRKEPQGAT	SEC ID nº 15 ATGTGGTTCTTGACAACTCTGCTCCTTTGGGGCTGGCT ACTACTGCAGGTCTCCAGCAGAGTCTTCATGGAAGGAG AACCTCTGGCCTTGAGGTGTCATGCGTGGAAGGATAAG CTGGTGTACAATGTGCTTTACTATCGAAATGGCAAAGC CTTTAAGTTTTTCCACTGGAATTCTAACCTCACCATTC TGAAAACCAACATAAGTCACAATGGCACCTACCATTGC TCAGGCATGGGAAAGCATCGCTACACTACA

SEC ID nº 4	FCgamma RIB humano (SEC ID nº 3)	MWFLTTLLLWVPVDGQVDTTKAVIT LQPPWVSVFQEETVTLHCEVLHLPG SSSTQWFLNGTATQTSTPSY RITSASVNDSGEYRCQRGLSGRSDP IQLEIHRGWLLLQVSSRVFMEGEPL ALRCHAWKDKLVYNVLYYRN GKAFKFFHWNSNLTILKTNISHNGT YHCSGMGKHRYTSAGISQYTVKGLQ LPTPVWFHVLFYLAVGIMFL VNTVLWVTIRKELKRKKKWNLEISL DSGHEKKVISSLQEDRHLEEELKCQ EQKEEQLQEGVHRKEPQGAT	SEC ID nº 16 ATGTGGTTCTTGACAACTCTGCTCCTTTGGGTTCCAGT TGATGGGCAAGTGGACACCACAAAGGCAGTGATCACTT TGCAGCCTCCATGGGTCAGCGTGTTCCAAGAGGAAACC GTAACCTTGCACTGTGAGGTGCTCCATCTGCCTGGGAG CAGCTCCACAGATGGGTTTCCAATGGCACAGCCACTC AGACCTCGACCCCCAGCTACAGAATCACCTCTGCCAGT GTCAATGACAGTGGAATACAGGTGCCAGAGAGTCT CTCAGGGCGAAGTGACCCCATACAGCTGGAAATCCACA GAGGCTGGCTACTACTGCAGGTTCTCCAGCAGAGTCTTC ATGGAAGGAACCTCTGGCCTTGAGGTGCAGAGTCTTC ATGGAAAGCTGGTTACAAGTCTTTACTAAC GAAGGATAAGCTTTAAGTTTTTCCACTGGAATTCTAAC CTCACCATTCTGAAAACCAACATAAGTCACAATAGGCAC CTACCATTGCTCAGGCATGGGAAAGCCTCCAG TTACCAACTCCTTGGTTTTCATTCTACT TGGCAGGGAATACCACATTAGTCCTTTCTATCT GGCAGTGGGAATACCACTTTCATCTCTTC GGCTGGGAATACCATTTTCATCTCTTCTTCTTCTT TGGCAGTGGGAATACCTTTTAGTGAACACTTCTTCTT GGCAGTGGGAATAACTTTTTTTTTT
GHMLLWTAVLFLAPVAGTPAAPKA VLLEPQWINVLQEDSVTLT QPSYRFKANNNDSGEYTCQTGQTSL SDPVHLTVLSEWLVLQTPHL EFQBETTVLRCHSWKDKPLVKVTF FQNKKSKKFSRSDPNFSTPQANHSH SGDYHCTGNIGYTLYSSKPV CREMGETLPEK PANFTNPDE CREMGETLPEK PANFTNPDE DQNRI ALVAAVVALIYCRKKRISALPGYPE CREMGETLPEK PANFTNPDE DQNRI CAGGGCACCCAACAGCAACCCCCAAGGGACCCTCACAGCTCCCAA AGCACCAACAACAATGACAGCGGGACCCTCACAC CCTGACAGGGACACCCTCACAGCTCCCAATGGACACCCTCCCAA AGGCCAACAACAATGACAGCGGGGACTCCAATGCCAC CCTGACAGGCGCCCAACGCACCCCACACGCACCCCACCC		LLLASADSQAAPPKAVLKLEPPWIN VLQEDSVTLTCQGARSPESD SIQWFHNGNLIPTHTQPSYRFKANN NDSGEYTCQTGQTSLSDPVHLTVLS EWLVLQTPHLEFQEGETIML RCHSWKDKPLVKVTFFQNGKSQKFS HLDPTFSIPQANHSHSGDYHCTGNI GYTLFSSKPVTITVQVPSMG SSSPMGIIVAVVIATAVAAIVAAVV ALIYCRKKRISANSTDPVKAAQFEP PGRQMIAIRKRQLEETNNDY ETADGGYMTLNPRAPTDDDKNIYLT	SEC ID nº 17 ATGACTATGGAGACCCAAATGTCTCAGAATGTATGTCC CAGAAACCTGTGGCTTCTTCAACCATTGACAGTTTTGC TGCTGCTGGCTTCTTGCAGACCTCTCACCATTGACAGTTTTGC TGCTGCTGGCTTCTTGCAGACCTCAACGCTGCTCAACGT GCTCCAGGAGCACTTGAGCCCCCTGGATCAACGT GCTCCAGGAGGACTCCTGACATGCCAGGGGG CTCGCAGCCCTGAGAGCGACCCCACACGCAGCCCAGCTA CAGGTTCAAGGCCAACAACAATGACAGCGGGGGAGTACA CGTGCCAGACTGGCCAGACCACACCTCAGCGACCCTTGT CATCTGACTGTGCTTCCCACAGGAGGACAACCATCATGC TGAGGTGCCAGACTCCAGAGGAGAAACCATCATGC TGAGGTCCAAGCTGGAAGGACAACCATCATGC CCTCACCTGGAGTTCCAGGAGGAGAAACCATCATGC CCATTTGGATCCCACCTTCTCCATCCACAGAAATTCTC CCATTTGGATCCCACCTTCTCCATCCACAGAAACCATCACG GGCTACACGCTGTTCTCATCCAAGCCTGTGACCATCAC GGCTACACGTGTTCTCATCCAAGCCTTTCACCAATGG GGATCATTGTTGCTGCTTCATCCAAGCCTTTTACCAATGG GGATCATTGTTGCTGCTGTTGTCATCCACTGATCCTGTAACA AGGCTGCCCAATTTCAGCCAATTCCACTGATCCTGTGA AGGCTGCCCAATTTTAGCCCACTTCACCTGATCTACTTGCA CCATCAGAAAGAGACCACCATCAATGAT CCCATCAGAAAGAGACCACCATCAC CCATCAGAAAGAGACCACCATCAC CCATCAGAAAAGAGCACAACTGA
numano (SEC ID nº 6)	humano (SEC ID nº 5)	GHMLLWTAVLFLAPVAGTPAAPPKA VLKLEPQWINVLQEDSVTLT CRGTHSPESDSIQWFHNGNLIPTHT QPSYRFKANNNDSGEYTCQTGQTSL SDPVHLTVLSEWLVLQTPHL EFQEGETIVLRCHSWKDKPLVKVTF FQNGKSKKFSRSDPNFSIPQANHSH SGDYHCTGNIGYTLYSSKPV TITVQAPSSSPMGIIVAVVTGIAVA AIVAAVVALIYCRKKRISALPGYPE CREMGETLPEKPANPTNPDE ADKVGAENTITYSLLMHPDALEEPD DQNRI MGILSFLPVLATESDWADCKSPQPW	ATGGGATCCTGTCATTCTTACCTGTCCTTGCCACTGA GAGTGACTGGCTGACTGCAAGTCCCCCAGCCTTGGG GTCATATGCTTCTTGTGACAGCTGTGCTATTCCTGGCT CCTGTTGCTGGGACACCTGCAGCTCTCATTCCTGGCT CCTGTTGCTGGGACACCTGCAGCTCCCCCAAAGGCTGT GCTGAAACTCGAGCCCCAGTGGATCAACGTGCTCCAGG AGGACTCTGTGACTCCATCAGTGGTTCCACAATGGGAA TCTCATTCCCACCACACGCAGCCCAGCTACAGGTTCA AGGCCAACAACAATGACAGCGGGGAGTACACGTGCCAG ACTGGCCAGACACACAGCCTCAGCGACCCTGTGCATCTGAC TGTGCTTTCTGAGTGGCTGAGCCCTTGACCTCACC TGGAGTTCCAGGAGCACCTTGGTCAGACCCTCACC CACAGCTGGAAGACAACCATCGTGCTGAGGTGC CACAGCTGGAAGAAAATCCAAGAAATTTCCCGTTCGG ATCCCAACTTCTCCACAAGCAAACATAGGCTACAC GCTGTACTCTCCACAGCACCACAAGCAAACAACACAGTCAC GCTGTACTCATCCACAGGGAAACATAGGCTACAC GCTGTACTCTCCACAGGGGAACACATTGTGCTGTG AGTGGCCTTGATCCACAGGCACCATTGTTGCTGTG AGTGGCCTTGATCTCACGATGGGCCATTGTTGCTGTG AGTGGCCTTGATCTCACGAGGAAAAAACCACGGATTCAG CTCCCAGGATACCCTGAGTGCAGGGAAATGGGAGAG ACCCTCCCTGAGAAACCACCTGAGAAAAACCACATTCAC TGAGGCTGACAAAGTTGGGGCTGAGAACCAATCACCT TGAGGCTGACAAAGTTGGGGCTGAGAACCAATCACCT ATTCACTTCTCATGCACCCGGATGCTCTGGAAGAGCCCT GATGACCAGAAACCCCCGGATGCTCTGGAAGAGCCCT GATGACCAGAAACCCCCGGATGCTCTGGAAGAGCCCT GATGACCAGAAACCCCCGGATGCTCTGGAAGAGCCCT GATGACCTGCTCTTCATGCACCCGGATGCTCTGGAAGAGCCCT GATGACCTTCTCATGCACCCGGATGCTCTGGAAGAGCCCT GATGACCAGAAACCCGCCAATTCTCGGAAGAGCCCT GATGACCAGAAACCCGTATTTAG
	humano (SEC ID nº 6)	LKLEPQWINVLQEDSVTLTC	

		Lobourge tones
Isoforma 3 de FCgamma RIIB humano (SEC ID nº 7)	RGTHSPESDSIQWFHNGNLIPTHTQ PSYRFKANNNDSGEYTCQTGQTSLS DPVHLTVLSEWLVLQTPHLE FQEGETIVLRCHSWKDKPLVKVTFF QNGKSKKFSRSDPNFSIPQANHSHS GDYHCTGNIGYTLYSSKPVT ITVQAPSSSPMGIIVAVVTGIAVAA IVAAVVALIYCRKKRISANPTNPDE ADKVGAENTITYSLLMHPDA LEEPDDQNRI MGILSFLPVLATESDWADCKSPQPW GHMLLWTAVLFLAPVAGTPAAPPKA VLKLEPQWINVLQEDSVTLT CRGTHSPESDSIQWFHNGNLIPTHT QPSYRFKANNNDSGEYTCQTGQTSL	atttgtttgc cctctagggt agaaccagaga atttgtttgc cctctagggt agaatccgcc aagctttgag agaaggctgt gactgctgtg ctctgggcgc cagctcgctc cagggagtgg tgggaatcct gtcattctta cctgtccttg ccactgagag tgactgggct gactgcaagt ccccccagcc ttggggtcat atgcttctgt ggacagctgt gctattcctg gctcctgttg ctgggacacc tgcagctccc ccaaaggctg tgctgaaact cgagccccag tggatcaacg tgctgaaact cgagccccag tggatcaacg tgctccagga ggactctgtg actctgacat gccgggggac tcacagcct gagagcgact ccattcagtg gttccacaat gggaatctca ttcccaccca cacgcagccc agctacaggt ttccaaggcca gactggccag agctgggagt tcaaggcca cacacaatgac agcggggagt acacgtgcca gactggccag accagctca gggaccttgt gcatctgac gtgcttctg agtggctggt gctcagac cctcactgg agttccagga gggagaaacc atcgtgctga agttccagga gggagaaacc atcgtgctga ggtgccacag ctggaaagac atcgtgctga agtggctggt gctcagacc cctcactgg agttccagga gggagaaacc atcgtgctga ccaagaaatt ttcccgttcg gatcccaact tctccatccc acaagcaac cacagtccca gtgggtgat accactgcac aggaaaaaat agggctacac cctgtactca tccaagccct gtggaccatc actgttcaaa gctcccaact tctctcaccq atqqqqqa SEC ID no 20 ATGGGAATCCTGTCATTCTTACCTGTCCTTGCCACTGA GAGTGACTGGGCTGACTGCAAGTCCCCCAAAGGCTGTC
	SDPVHLTVLSEWLVLQTPHL EFQEGETIVLRCHSWKDKPLVKVTF FQNGKSKKFSRSDPNFSIPQANHSH SGDYHCTGNIGYTLYSSKPV TITVQAPSSSPMGIIVAVVTGIAVA AIVAAVVALIYCRKKRISANPTNPD EADKVGAENTITYSLLMHPD ALEEPDDQNRI	GCTGAAACTCGAGCCCCAGTGGATCAACGTGCTCCAGG AGGACTCTGTGACTCTGACATGCCGGGGGACTCACAGC CCTGAGAGCGACTCCATTCAGTGGTTCCACAATGGGAA TCTCATTCCACCACACGCAGCCCAGCTACAGGTTCA AGGCCAACAACAATGACAGCGGGGAGTACACGTTCAG ACTGGCCAGACCAGCCTCAGCGACCCTGTGCATCTGAC TGTGCTTTCTGAGTGGCTGGTGCTCCAGACCCCTCACC CACAGCTGGAAGGACAACCATCGTGCTAAGGTTCC CACAGCTGGAAGGAAAACCATCGTGCTAAGGTTCC CTCCAGAATGGAAAATCCAAGAAATTTTCCCGTTCGG ATCCCAACTTCTCCATCCACAAGCAAACCACAGTCAC AGTGGTGATTACCACTGCACAGGAAACATAGGCTACAC GCTGTACTCATCACAGCCTGTGACCATCACTGTCCAAG CTCCCAGCTCTTCACCGATGGGGATCATTGTCGTGTG GTCACTGGGATTGCTGTAGCGGCCATTGTTCGTGTACTCATGGCTGTGACTGTGACTGTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTGACTGTAGTGGCTGTGACTGTGACTGTACTCACGAGAAAAAAGCGGATTTCAGGCGCCTTGATCACTGTAGCGGCCTGACAAAGTTGGGGGCTGACAAAGTTGGGGGCTGACAAAGTTTGGGGGCTGAGAAAAACCCCCCCGGATGCTCTTGAACCCCCCGGATGCCCAATCCCACTAATCCTGATGACCACCAGAACCCCTATTTCACTGCACCCCGGATGCTCTTGGAAGACCCTATTTCACTCCACCCCGGATGCTCTTGGAAGACCCTGATGACCAGAACCGTATTTAAGGCTCTCTTGGAAGACCCCCCCGGATGCCAGAACCGTATTTTAAGGCCTGATGACCAGAACCGTATTTTAAGGCCTGATGACCAGAACCGTATTTTAAGGCTCTCTGGAAGACCCTATTTCACTCCACCCCGGATGCCCTATTTCACTCCACCCCCGGATGCCCTATTTCACTCCACCCCCGGATGCCCTATTTCACTCCACCCCCCGGATGCCCTATTTCACTCCACCCCCCGGATGCCCAATCCCCCCCC
Isoforma 4 de FCgamma RIIb humano (SEC ID nº 8)	mgilsflpvl atesdwadck spqpwghmll wtavlflapv agtpappkav lklepqwinv lqedsvtltc rgthspesds iqwfhngnli pthtqpsyrf kannndsgey tcqtgqtsls dpvhltvlse fqegetivlr kvtffcmaks kfsrsdonf sipqanhshs gdyhctgnig ytlysskpvt itvqapsssp mgiivavvtg itvqapsssp mgiivavvtg isalpgypec remgetlpek dkvgaentit eepddqnri	SEC ID nº 21 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tatgcttctg tggacagct tgctattcct ggctccccc agggcacac ctggtgccc aaaggctgtg ctcaggaga acctgtgac tctgacatgc ctgaaactcg agccccagtg gatcaacgtg ctccaggaga acctgtgac tctgacatgc cqqqqactc acagccctga gagcgactcc attcagtggt tccacaatgg gatcacatgc cacaccaca acaatgacag gagcgactcc aatgccagac ctggccagac cagcgtcagac acgtgccaga ctggccagac cagcgtctagc gaccctgtgc atctgactgt ccacacgg gaccctgtgc tccagaccc tcaccagg gaccctgtgc tccagaccc tcaccagg gaccctggg atctgactg tgccagagac gagaaaccat cagctctagc gaccctgtgc tccagaccc tcacctggag tgccagagg gagaaaccat ccaccagg tgccacagac ggaagacaa aggaaattc tcttccagaa tggaaaaccat tcttccagaa tggaaaaattc cccgtcgga accacactc tccacaccac aggaaaacca acgcacacac acgccacag accacaccac acgccacaccaccacaccacaccacaccaccaccaccacc

Isoforma 1 de FCgamma RIIc	MGILSFLPVLATESDWADCKSPQPW	SEC ID nº 22
humano (SEC ID nº 9)	GHMLLWTAVLFLAPVAGTP	atgggaatec tgteattett acctgteett
,	ANDREASE VI EDOMINE OFFICIAL	gccactgaga gtgactgggc tgactgcaag
	AAPPKAVLKLEPQWINVLQEDSVTL	tccccccagc cttggggtca tatgcttctg tggacagctg tgctattcct ggctcctgtt
	TCRGTHSPESDSIPWFHNGNLIPTH	gctgggacac ctgcagctcc cccaaaggct
	TQPSYRFK	gtgctgaaac tcgagcccca gtggatcaac
	ANNIDSGEYTCOTGOTSLSDPVHLT	gtgctccaag aggactctgt gactctgaca
		tgccggggga ctcacagccc tgagagcgac
	VLSEWLVLQTPHLEFQEGETIVLRC	tccattccgt ggttccacaa tgggaatctc
	HSWKDKPL	attcccaccc acacgcagcc cagctacagg
	VKVTFFONGKSKKFSRSDPNFSIPO	ttcaaggcca acaacaatga cagcggggag
	VKVTFFQNGKSKKFSKSDPNFSTPQ	tacacgtgcc agactggcca gaccagcctc agcgaccctg tgcatctgac tgtgctttct
	ANHSHSGDYHCTGNIGYTLYSSKPV	gagtggctgg tgctccagac ccctcacctg
	TITVQAPS	gagttccagg agggagaaac catcgtgctg
	_	aggtgccaca gctggaagga caagcctctg
	SSPMGIIVAVVTGIAVAAIVAAVVA	gtcaaggtca cattcttcca gaatggaaaa
	LIYCRKKRISANSTDPVKAAQFEPP	tccaagaaat tttcccgttc ggatcccaac
	GROMIAIR	ttctccatcc cacaagcaaa ccacagtcac
		agtggtgatt accactgcac aggaaacata
	KRQPEETNNDYETADGGYMTLNPRA	ggctacacgc tgtactcatc caagcctgtg
	PTDDDKNIYLTLPPNDHVNSNN	accatcactg tecaagetee cagetettea cegatgggga teattgtgge tgtggteact
		gggattgctg tagcggccat tgttgctgct
		gtagtggcct tgatctactg caggaaaaag
		cggatttcag ccaattccac tgatcctgtg
		aaggctgccc aatttgagcc acctggacgt
		caaatgattg ccatcagaaa gagacaacct
		gaagaaacca acaatgacta tgaaacagct
		gacggcggct acatgactct gaaccccagg
		gcacctactg acgatgataa aaacatctac ctgactcttc ctcccaacga ccatgtcaac
		agtaataact aa
Isoforma 2 de FCgamma RIIC	MGILSFLPVLATESDWADCKSPQPW	SEC ID nº 23
		atgggaatcc tgtcattctt acctgtcctt
humano (SEC ID nº 10)	GHMLLWTAVLFLAPVAGTP	gccactgaga gtgactgggc tgactgcaag
	AAPPKAVLKLEPQWINVLQEDSVTL	tececeage ettggggtea tatgettetg
	TCRGTHSPESDSIPWFHNGNLIPTH	tggacagetg tgctattcct ggctcctgtt
		gctgggacac ctgcagctcc cccaaaggct
	TQPSYRFK	gtgctgaaac tcgagcccca gtggatcaac
	ANNNDSGEYTCQTGQTSLSDPVHLT	gtgctccaag aggactctgt gactctgaca
	VLSEWLVLQTPHLEFQEGETIVLRC	tgccggggga ctcacagccc tgagagcgac
		tccattccgt ggttccacaa tgggaatctc
	HSWKDKPL	attcccaccc acacgcagcc cagctacagg
	VKVTFFQNGKSKKFSRSDPNFSIPQ	ttcaaggcca acaacaatga cagcggggag
		tacacgtgcc agactggcca gaccagcctc agcgaccctg tgcatctgac tgtgctttct
		gagtggctgg tgctccagac ccctcacctg
		gagttccagg agggagaaac catcgtgctq
		aggtgccaca gctggaagga caagcctctg
		gtcaaggtca cattcttcca gaatggaaaa
		tccaagaaat tttcccgttc ggatcccaac
		ttctccatcc cacaagcaaa ccacagtcac
		agtggtgatt accactgcac aggaaacata
		ggotacacgo tgtactcato caagootgtg accatcactg tocaagotoo cagotottca
		ccgatgggga tcattgtggc tgtggtcact
		gggattgctg tagcggccat tgttgctgct
		gtagtggcct tgatctactg caggaaaaag
		cggatttcag ccaattccac tgatcctgtg
		aaggetgeee aatttgagat gettteetge
	MOTI CEL DIA MEGNINA CUCACA	acceacetgg acgteaaatg a
Isoforma 3 de FCgamma RIIC	MGILSFLPVLATESDWADCKSPQPW	SEC ID nº 24
humano (SEC ID nº 11)	GHMLLWTAVLFLAPVAGTP	atgggaatcc tgtcattctt acctgtcctt
	AAPPKAVLKLEPOWINVLOEDSVTL	gccactgaga gtgactgggc tgactgcaag
		tcccccage cttggggtca tatgcttctg
	TCRGTHSPESDSIPWFHNGNLIPTH	tggacagctg tgctattcct ggctcctgtt gctgggacac ctgcagctcc cccaaaggct
	TQPSYRFK	gtgctgaaac tcgagcccca gtggatcaac
	ANNNDSGEYTCQTGQTSLSDPVHLT	gtgctccaag aggactctgt gactctgaca
		tgccggggga ctcacagccc tgagagcgac
	VLSEWLVLQTPHLEFQEGETIVLRC	tccattccgt ggttccacaa tgggaatctc
	HSWKDKPL	attcccaccc acacgcagcc cagctacagg
	VKVTFFQNGKSKKFSRSDPNFSIPO	ttcaaggcca acaacaatga cageggggag
	_	tacacgtgcc agactggcca gaccagcctc
	ANHSHSGDYHCTGNIGYTLYSSKPV	agcgaccctg tgcatctgac tgtgctttct
	TITVQAPS	gagtggctgg tgctccagac ccctcacctg
1		gagttccagg agggagaaac catcgtgctg
	SSPMGIIVAVVTCTAVAATVAAVVA	aggregate getteranges entertain
	SSPMGIIVAVVTGIAVAAIVAAVVA	aggtgccaca gctggaagga caagcctctg
	LIYCRKKRISATWTSNDCHQKETT	aggtgccaca gctggaagga caagcctctg gtcaaggtca cattcttcca gaatggaaaa tccaagaaat tttcccgttc ggatcccaac

		ttctccatcc cacaagcaaa ccacagtcac
		agtggtgatt accactgcac aggaaacata
		ggctacacgc tgtactcatc caagectgtg
		accatcactg tccaagctcc cagctcttca
		ccgatgggga tcattgtggc tgtggtcact
		gggattgctg tagcggccat tgttgctgct
		gtagtggcct tgatctactg caggaaaaag
		cggatttcag ccacctggac gtcaaatgat
		tgccatcaga aagagacaac ctga
FCgamma RIIIA humano	MGGGAGERLFTSSCLVGLVPLGLRI	SEC ID nº 25
	SLVTCPLQCGIMWQLLLPTALLLLV	ATGGGTGGAGGGCTGGGGAAAGGCTGTTTACTTCCTC
(SEC ID nº 12)	SAGMRTEDLPKAVVFLEPOW	CTGTCTAGTCGGTTTGGTCCCTTTAGGGCTCCGGATAT
	YRVLEKDSVTLKCQGAYSPEDNSTQ	CTTTGGTGACTTGTCCACTCCAGTGTGGCATCATGTGG
	WFHNESLISSOASSYFIDAATVDDS	CAGCTGCTCCTCCCAACTGCTCTGCTACTTCTAGTTTC
	GEYRCQTNLSTLSDPVQLEV	AGCTGGCATGCGGACTGAAGATCTCCCAAAGGCTGTGG
	HIGWLLLQAPRWVFKEEDPIHLRCH	
	SWKNTALHKVTYLQNGKGRKYFHHN	TGTTCCTGGAGCCTCAATGGTACAGGGTGCTCGAGAAG
	SDFYIPKATLKDSGSYFCRG	GACAGTGTGACTCTGAAGTGCCAGGGAGCCTACTCCCC
		TGAGGACAATTCCACACAGTGGTTTCACAATGAGAGCC
	LFGSKNVSSETVNITITQGLAVSTI	TCATCTCAAGCCAGGCCTCGAGCTACTTCATTGACGCT
	SSFFPPGYQVSFCLVMVLLFAVDTG	GCCACAGTCGACGACAGTGGAGAGTACAGGTGCCAGAC
	LYFSVKTNIRSSTRDWKDHK	AAACCTCTCCACCCTCAGTGACCCGGTGCAGCTAGAAG
	FKWRKDPQDK	TCCATATCGGCTGGCTGTTGCTCCAGGCCCCTCGGTGG
		GTGTTCAAGGAGGAAGACCCTATTCACCTGAGGTGTCA
		CAGCTGGAAGAACACTGCTCTGCATAAGGTCACATATT
		TACAGAATGGCAAAGGCAGGAAGTATTTTCATCATAAT
		TCTGACTTCTACATTCCAAAAGCCACACTCAAAGACAG
		CGGCTCCTACTTCTGCAGGGGGCTTTTTTGGGAGTAAAA
		ATGTGTCTTCAGAGACTGTGAACATCACCATCACTCAA
		GGTTTGGCAGTGTCAACCATCTCATCATTCTTTCCACC
		TGGGTACCAAGTCTCTTTCTGCTTGGTGATGGTACTCC
		TTTTTGCAGTGGACACAGGACTATATTTCTCTGTGAAG
		ACAAACATTCGAAGCTCAACAAGAGACTGGAAGGACCA
50 5005	MWOLLLPTALLLLVSAGMRTEDLPK	TAAATTTAAATGGAGAAAGGACCCTCAAGACAAATGA
FCgamma RIIIB humano	AVVFLEPQWYSVLEKDSVTLKCQGA	SEC ID nº 26
(SEC ID nº 13)	YSPEDNSTQWFHNENLISSO	ATGTGGCAGCTGCTCCTCCCAACTGCTCTGCTACTTCT
,	ASSYFIDAATVNDSGEYRCQTNLST	AGTTTCAGCTGGCATGCGGACTGAAGATCTCCCAAAGG
	LSDPVQLEVHIGWLLLQAPRWVFKE	CTGTGGTGTTCCTGGAGCCTCAATGGTACAGCGTGCTT
	EDPIHLRCHSWKNTALHKVT	CTCCCCTGAGGACAATTCCACACAGTGGTTTCACAATG
	YLQNGKDRKYFHHNSDFHIPKATLK	AGAACCTCATCTCAAGCCAGGCCTCGAGCTACTTCATT
	DSGSYFCRGLVGSKNVSSETVNITI	GACGCTGCCACAGTCAACGACAGTGGAGAGTACAGGTG
	TQGLAVSTISSFSPPGYQVS	CCAGACAAACCTCTCCACCCTCAGTGACCCGGTGCAGC
	FCLVMVLLFAVDTGLYFSVKTNI	TAGAAGTCCATATCGGCTGGCTGTTGCTCCAGGCCCCT
		CGGTGGGTGTTCAAGGAGGAAGACCCTATTCACCTGAG
		GTGTCACAGCTGGAAGAACACTGCTCTGCATAAGGTCA
		CATATTTACAGAATGGCAAAGACAGGAAGTATTTCAT
		CATAATTCTGACTTCCACATTCCAAAAGCCACACTCAA
		AGATAGCGGCTCCTACTTCTGCAGGGGGCTTGTTGGGA
		GTAAAAATGTGTCTTCAGAGACTGTGAACATCACCATC
		ACTCAAGGTTTGGCAGTGTCAACCATCTCATCATTCTC
		TCCACCTGGGTACCAAGTCTCTTTCTGCTTGGTGATGG
		TACTCCTTTTTGCAGTGGACACAGGACTATATTTCTCT
		GTGAAGACAAACATTTGA

Los FcR preferidos están codificados por los siguientes ácidos nucleicos:

5

15

FCgammaRIA humano (SEC ID nº 1) está codificado por la secuencia según SEC ID nº 14.

FCgammaRIB humano (SEC ID nº 2) está codificado por la secuencia según SEC ID nº 15.

FCgammaRIB humano (SEC ID nº 3) está codificado por la secuencia según SEC ID nº 16.

10 FCgammaRIIa humano (SEC ID nº 4) está codificado por la secuencia según SEC ID nº 17.

La isoforma 1 de FCgammaRIIB humano (SEC ID nº 5) está codificada por la secuencia según SEC ID nº 18.

La isoforma 2 de FCgammaRIIB humano (SEC ID nº 6) está codificada por la secuencia según SEC ID nº 19.

La isoforma 3 de FCgammaRIIB humano (SEC ID nº 7) está codificada por la secuencia según SEC ID nº 20.

La isoforma 4 de FCgammaRIIb humano (SEC ID nº 8) está codificada por la secuencia según SEC ID nº 21.

20 La isoforma 1 de FCgammaRIIc humano (SEC ID nº 9) está codificada por la secuencia según SEC ID nº 22.

La isoforma 2 de FCgammaRIIC humano (SEC ID nº 10) está codificada por la secuencia según SEC ID nº 23.

La isoforma 3 de FCgammaRIIC humano (SEC ID nº 11) está codificada por la secuencia según SEC ID nº 24.

FCgammaRIIIA humano (SEC ID nº 12) está codificado por la secuencia según SEC ID nº 25.

FCgammaRIIIB humano (SEC ID nº 13) está codificado por la secuencia según SEC ID nº 26.

Se prefiere que el FcyR sea un FcyRIIb soluble humano no glucosilado recombinante, seleccionado preferentemente de entre el grupo de SEC ID nº 5, SEC ID nº 6, SEC ID nº 7 y SEC ID nº 8.

Ejemplos

10

5

El compuesto biológicamente activo, la molécula de FcγRIIb soluble humano recombinante, es producido en cuerpos de inclusión mediante fermentación de *E. coli* manipulada mediante ingeniería genética.

El sFcγRIIb es producido mediante fermentación en la cepa BL21 (DE3) de *E. coli*, que se ha transformado con una secuencia de ADNc optimizada para la expresión de sFcγRIIb.

El sFcγRIIb contiene 4 cisteínas para formar 2 enlaces de disulfuro intramoleculares entre las posiciones Cys26-Cys68 y Cys107-Cys151. La secuencia N-terminal corresponde a la secuencia de consenso de la peptidasa señal eucariota. El término C se generó mediante introducción de un codón de parada tras el motivo SER-SER-PRO. No se introdujeron modificaciones adicionales.

El sFcγRIIb tiene una masa molecular de 19.668,9 en condiciones nativas, y de 19.692,9 en condiciones reductoras.

En la Tabla 2 se da un resumen del procedimiento de preparación de la sustancia farmacéutica:

25

15

20

Tabla 2

Un vial de WCB
Fermentación de sustrato celular de E. coli
Recolección de sustrato celular de E. coli
Aislamiento de cuerpos de inclusión
Replegamiento de sFcyRIIb a partir de cuerpos de inclusión
Purificación de sFcyRIIb para producir material a granel
Almacenamiento de la masa de sFcvRIIb a -80°C

Encabezamientos de las figuras

30

35

Figura 1

Se indujo EAE en el día cero en ratones hembra C57/Bl6j de 6-8 semanas mediante inyección subcutánea de 100 µg de MOG de rata en adyuvante completo de Freund (CFA). En el día 0 y en el día 2 se administraron intraperitonealmente 250 ng de toxina tosferínica. Los ratones se trataron intraperitonealmente con 200 µg de sFcR después de que aparecieron los primeros síntomas en el día 8, 11 y 14. El esquema de puntuación fue según el grado de parálisis: 0 = sin parálisis, 1 = parálisis de la cola, 2 = parálisis de las patas traseras, 3 = parálisis de las patas delanteras, 4 = parálisis completa, 5 = muerte.

40 Figura 2

Se indujo EAE en el día cero en ratones hembra SJL de 6-8 semanas mediante inyección subcutánea de 100 µg de MOG de rata en adyuvante completo de Freund (CFA). En el día 0 y en el día 2 se administraron intraperitonealmente 250 ng de toxina tosferínica. Los ratones se trataron intraperitonealmente con 200 µg de sFcR después de que aparecieron los primeros síntomas en el día 9, 12 y 15. El esquema de puntuación fue según el grado de parálisis: 0 = sin parálisis, 1 = parálisis de la cola, 2 = parálisis de las patas traseras, 3 = parálisis de las patas delanteras, 4 = parálisis completa, 5 = muerte.

Listado de secuencias

50

45

<110> SuppreMol GmbH

<120> SUSTANCIAS Y MÉTODOS PARA EL TRATAMIENTO DE LA ESCLEROSIS MÚLTIPLE MEDIADA POR LOS LINFOCITOS B

55

<130> P1673 PCT BLN

<160> 26

<212	> 37 !> PR	T	apien	ıs											
<400	> 1														
Met 1	Trp	Phe	Leu	Thr 5	Thr	Leu	Leu	Leu	Trp 10	Val	Pro	Val	Asp	Gly 15	Gln
Val	Asp	Thr	Thr 20	Lys	Ala	Val	Ile	Thr 25	Leu	Gln	Pro	Pro	Trp 30	Val	Ser
Val	Phe	Gln 35	Glu	Glu	Thr	Val	Thr 40	Leu	His	Суѕ	Glu	Val 45	Leu	His	Leu
Pro	Gly 50	Ser	Ser	Ser	Thr	Gln 55	Trp	Phe	Leu	Asn	Gly 60	Thr	Ala	Thr	Gln
Thr 65	Ser	Thr	Pro	Ser	Tyr 70	Arg	Ile	Thr	Ser	Ala 75	Ser	Val	Asn	Asp	Ser 80
Gly	Glu	Tyr	Arg	Суs 85	Gln	Arg	Gly	Leu	Ser 90	Gly	Arg	Ser	Asp	Pro 95	Ile
Gln	Leu	Glu	Ile 100	His	Arg	Gly	Trp	Leu 105	Leu	Leu	Gln	Val	Ser 110	Ser	Arg
Val	Phe	Thr 115	Glu	Gly	Glu	Pro	Leu 120	Ala	Leu	Arg	Cys	His 125	Ala	Trp	Lys
Asp	Lys 130	Leu	Val	Tyr	Asn	Val 135	Leu	Tyr	Tyr	Arg	Asn 140	Gly	Lys	Ala	Phe
Lys 145	Phe ·	Phe	His	Trp	Asn 150	Ser	Asn	Leu	Thr	Ile 155	Leu	Lys	Thr	Asn	Ile 160
Ser	His	Asn	Gly	Thr 165	Tyr	His	Суѕ	Ser	Gly 170	Met	Gly	Lys	His	Arg 175	Tyr
Thr	Ser	Ala	Gly 180	Ile	Ser	Val	Thr	Val 185	Lys	Glu	Leu	Phe	Pro 190	Ala	Pro
Val	Leu	Asn 195	Ala	Ser	Val	Thr	Ser 200	Pro	Leu	Leu	Glu	Gly 205	Asn	Leu	Val
Thr	Leu 210	Ser	Cys	Glu	Thr	Lys 215	Leu	Leu	Leu	Gln	Arg 220	Pro	Gly	Leu	Gln
Leu 225	Tyr	Phe	Ser	Phe	Tyr 230	Met	Gly	Ser	Lys	Thr 235	Leu	Arg	Gly	Arg	Asn 240

<170> PatentIn versión 3.3

5

Thr	Ser	Ser	Glu	Tyr 245	Gln	Ile	Leu	Thr	Ala 250	Arg	Arg	Glu	Asp	Ser 255	Gly
Leu	Tyr	Trp	Cys 260	Glu	Ala	Ala	Thr	Glu 265	Asp	Gly	Asn	Val	Leu 270	Lys	Arg
Ser	Pro	Glu 275	Leu	Glu	Leu	Gln	Val 280	Leu	Gly	Leu	Gln	Leu 285	Pro	Thr	Pro
Val	Trp 290	Phe	His	Val	Leu	Phe 295	туг	Leu	Ala	Val	Gly 300	Ile	Met	Phe	Leu
Val 305	Asn	Thr	Val	Leu	Trp 310	Val	Thr	Ile	Arg	Lys 315	Glu	Leu	Lys	Arg	Lys 320
Lys	Lys	Trp	Asp	Leu 325	Glu	Ile	Ser	Leu	Asp 330	Ser	Gly	His	Glu	Lys 335	Lys
Val	Ile	Ser	Ser 340	Leu	Gln	Glu	Asp	Arg 345	His	Leu	Glu	Glu	Glu 350	Leu	Lys
Суз	Gln	Glu 355	Gln	Lys	Glu	Glu	G1n 360	Leu	Gln	Glu	Gly	Val 365	His	Arg	Lys
Glu	Pro 370	Gln	Gly	Ala	Thr										
<210 <211 <212 <213	> 29 !> PR	Т	apien	ıs											
<400	> 2														
Met 1	Gly	Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
Ala	Asp	-	Lys 20				Pro	_	_				Leu 30	-	Thr
Ala	Val	Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Ala	Pro	Pro
Lys	Ala 50	Val	Leu	Lys	Leu	Glu 55	Pro	Gln	Trp	Ile	Asn 60	Val	Leu	Gln	Glu
Asp	Ser	Val	Thr	Leu		Cys	Arg	Gly	Thr	His 75	Ser	Pro	Glu	Ser	Asp 80
65	501				70										
		Gln	Trp	Phe 85		Asn	Gly	Asn	Leu 90	Ile	Pro	Thr	His	Thr 95	Gln

	Cys	Gln	Thr 115	Gly	Gln	Thr	Ser	Leu 120	Ser	Asp	Pro	Val	His 125	Leu	Thr	Val
	Leu	Ser 130	Glu	Trp	Leu	Val	Leu 135	Gln	Thr	Pro	His	Leu 140	Glu	Phe	Gln	Glu
	Gly 145	Glu	Thr	Ile	Val	Leu 150	Arg	Cys	His	Ser	Trp 155	Lys	Asp	Lys	Pro	Leu 160
	Val	Lys	Val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
	Ser	Asp	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	Ніs 190	Ser	Gly
	Asp	Tyr	His 195	Суз	Thr	Gly	Asn	Ile 200	Gly	Tyr	Thr	Leu	Tyr 205	Ser	Ser	Lys
	Pro	Val 210	Thr	Ile	Thr	Val	Gln 215	Ala	Pro	Ser	Ser	Ser 220	Pro	Met	Gly	Ile
	Ile 225	Val	Ala	Val	Val	Thr 230	Gly	Ile	Ala	Val	Ala 235	Ala	Ile	Val	Ala	Ala 240
		Val	Ala	Leu	11e 245		Cys	Arg	Lys	Lys 250		Ile	Ser	Ala	Asn 255	
	Thr	Asn	Pro	Asp 260	Glu	Ala	Asp	Lys	Val 265	Gly	Ala	Glu	Asn	Thr 270	Ile	Thr
	Туг	Ser	Leu 275	Leu	Met	His	Pro	Asp 280	Ala	Leu	Glu	Glu	Pro 285	Asp	Asp	Gln
	Asn	Arg 290	Ile													
5	<210 <211 <212 <213	> 280 > PR	Т	apien	s											
	<400	> 3														
10	Met 1	Trp	Phe	Leu	Thr 5	Thr	Leu	Leu	Leu	Trp 10	Val	Pro	Val	Asp	Gly 15	Gln
	Val	Asp	Thr	Thr 20	Lys	Ala	Val	Ile	Thr 25	Leu	Gln	Pro	Pro	Trp 30	Val	Ser
	Val	Phe	Gln 35	Glu	Glu	Thr	Val	Thr 40	Leu	His	Cys	Glu	Val 45	Leu	His	Leu
	Pro	Gly 50	Ser	Ser	Ser	Thr	Gln 55	Trp	Phe	Leu	Asn	Gly 60	Thr	Ala	Thr	Gln
	Thr 65	Ser	Thr	Pro	Ser	Tyr 70	Arg	Ile	Thr	Ser	Ala 75	Ser	Val	Asn	Asp	Ser 80
		Glu	Tyr	Arg	Cys 85		Arg	Gly	Leu	Ser 90		Arg	Ser	Asp	Pro 95	Ile

Gln	Leu	Glu	11e 100	His	Arg	Gly	Trp	Leu 105	Leu	Leu	G1n	Val	Ser 110	Ser	Arg
Val	Phe	Met 115	Glu	Gly	Glu	Pro	Leu 120	Ala	Leu	Arg	Cys	His 125	Ala	Trp	Lys
Asp	Lys 130	Leu	Val	Tyr	Asn	Val 135	Leu	Tyr	Tyr	Arg	Asn 140	Gly	Lys	Ala	Phe
Lys 145	Phe	Phe	His	Trp	Asn 150	Ser	Asn	Leu	Thr	Ile 155	Leu	Lys	Thr	Asn	Ile 160
	His	Asn	Gly	Thr 165		His	Cys	Ser	Gly 170		Gly	Lys	His	Arg 175	
Thr	Ser	Ala	Gly 180	Ile	Ser	Gln	Туг	Thr 185	Val	Lys	Gly	Leu	Gln 190	Leu	Pro
Thr	Pro	Val 195	Trp	Phe	His	Val	Leu 200	Phe	Tyr	Leu	Ala	Val 205	Gly	Ile	Met
Phe	Leu 210	Val	Asn	Thr	Val	Leu 215	Trp	Val	Thr	Ile	Arg 220	Lys	Glu	Leu	Lys
Arg 225	Lys	Lys	Lys	Trp	Asn 230	Leu	Glu	Ile	Ser	Leu 235	Asp	Ser	Gly	His	Glu 240
Lys	Lys	Val	Ile	Ser 245	Ser	Leu	Gln	Glu	Asp 250	Arg	His	Leu	Glu	Glu 255	Glu
Leu	Lys	Суз	Gln 260	Glu	G1n	Lys	Glu	Glu 265	Gln	Leu	Gln	Glu	Gly 270	Val	His
Arg	Lys	Glu 275	Pro	Gln	Gly	Ala	Thr 280								
<210 <211 <212 <213	> 310 > PR	Т	apier	ns											
<400	> 4														
Met 1	Thr	Met	Glu	Thr 5	Gln	Met	Ser	Gln	Asn 10	Val	Cys	Pro	Arg	Asn 15	Leu
Trp	Leu	Leu	Gln 20	Pro	Leu	Thr	Val	Leu 25	Leu	Leu	Leu	Ala	Ser 30	Ala	Asp
Ser	Gln	Ala 35	Ala	Pro	Pro	Lys	Ala 40	Val	Leu	Lys	Leu	Glu 45	Pro	Pro	Trp
Ile	Asn 50	Val	Leu	Gln	Glu	Asp 55	Ser	Val	Thr	Leu	Thr 60	Cys	Gln	Gly	Ala
Arg 65	Ser	Pro	Glu	Ser	Asp 70	Ser	Ile	Gln	Trp	Phe 75	His	Asn	Gly	Asn	Leu 80

Ile	Pro	Thr	His	Thr 85	Gln	Pro	Ser	Tyr	Arg 90	Phe	Lys	Ala	Asn	Asn 95	Asn
Asp	Ser	Gly	Glu 100	Tyr	Thr	Cys	Gln	Thr	Gly	Gln	Thr	Ser	Leu 110	Ser	Asp
Pro	Val	His 115		Thr	Val	Leu	Ser 120		Trp	Leu	Val	Leu 125		Thr	Pro
His	Leu 130	Glu	Phe	Gln	Glu	Gly 135	Glu	Thr	Ile	Met	Leu 140	Arg	Cys	His	Ser
Trp 145	Lys	Asp	Lys	Pro	Leu 150	Val	Lys	Val	Thr	Phe 155	Phe	Gln	Asn	Gly	Lys 160
Ser	Gln	Lys	Phe	Ser 165	His	Leu	Asp	Pro	Thr 170	Phe	Ser	Ile	Pro	Gln 175	Ala
Asn	His	Ser	His 180	Ser	Gly	Asp	Tyr	His 185	Cys	Thr	Gly	Asn	Ile 190	Gly	Tyr
Thr	Leu	Phe 195	Ser	Ser	Lys	Pro	Val 200	Thr	Ile	Thr	Val	Ġln 205	Val	Pro	Ser
Met	Gly 210	Ser	Ser	Ser	Pro	Met 215	Gly	Ile	Ile	Val	Ala 220	Val	Val	Ile	Ala
Thr 225	Ala	Val	Ala	Ala	Ile 230	Val	Ala	Ala	Val	Val 235	Ala	Leu	Ile	Tyr	Cys 240
Arg	Lys	Lys.	Arg	Ile 245	Ser	Ala	Asn	Ser	Thr 250	Asp	Pro	Val	Lys	Ala 255	Ala
Gln	Phe	Glu	Pro 260	Pro	Gly	Arg	Gln	Met 265	Ile	Ala	Ile	Arg	Lys 270	Arg	Gln
Leu	Glu	Glu 275	Thr	Asn	Asn	Asp	Tyr 280	Glu	Thr	Ala	Asp	Gly 285	Gly	Tyr	Met
Thr	Leu 290	Asn	Pro	Arg	Ala	Pro 295	Thr	Asp	Asp	Asp	Lys 300	Asn	Ile	Tyr	Leu
Thr 305	Leu	Pro	Pro	Asn	Asp 310	His	Val	Asn	Ser	Asn 315	Asn				
<212)> 5 l> 31 2> PR 3> Ho	RT.	apien	ıs											
<400)> 5														
Met 1	Gly	Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
Ala	Asp	Cys	Lys 20	Ser	Pro	Gln	Pro	Trp 25	Gly	His	Met	Leu	Leu 30	Trp	Thr

Ala	Val	Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Ala	Pro	Pro
Lys	Ala 50	Val	Leu	Lys	Leu	Glu 55	Pro	Gln	Trp	Ile	Asn 60	Val	Leu	Gln	Glu
Asp 65	Ser	Val	Thr	Leu	Thr 70	Cys	Arg	Gly	Thr	His 75	Ser	Pro	Glu	Ser	Asp 80
Ser	Ile	Gln	Trp	Phe 85	His	Asn	Gly	Asn	Leu 90	Ile	Pro	Thr	His	Thr 95	Gln
Pro	Ser	Туr	Arg 100	Phe	Lys	Ala	Asn	Asn 105	Asn	Asp	Ser	Gly	Glu 110	Tyr	Thr
Cys	Gln	Thr 115	Gly	Gln	Thr	Ser	Leu 120	Ser	Asp	Pro	Val	His 125	Leu	Thr	Val
Leu	Ser 130	Glu	Trp	Leu	Val	Leu 135	Gln	Thr	Pro	His	Leu 140	Glu	Phe	Gln	Glu
Gly 145	Glu	Thr	Ile	Val	Leu 150	Arg	Суз	His	Ser	Trp 155	Lys	Asp	Lys	Pro	Leu 160
Val	Lys	Val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
Ser	Asp	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	His 190	Ser	Gly
Asp	Tyr	His 195	Суз	Thr	Gly	Asn	Ile 200	Gly	Tyr	Thr	Leu	Tyr 205	Ser	Ser	Lys
Pro	Val 210	Thr	Ile	Thr	Val	Gln 215	Ala	Pro	Ser	Ser	Ser 220	Pro	Met	Gly	Ile
11e 225	Val	Ala	Val	Val	Thr 230		Ile	Ala	Val	Ala 235		Ile	Val	Ala	Ala 240
Val	Val	Ala	Leu	Ile 245	Tyr	Cys	Arg	Lys	Lys 250	Arg	Ile	Ser	Ala	Leu 255	Pro
Gly	Tyr	Pro	Glu 260	Суз	Arg	Glu	Met	Gly 265	Glu	Thr	Leu	Pro	Glu 270	Lys	Pro
Ala	Asn	Pro 275	Thr	Asn	Pro	Asp	Glu 280	Ala	Asp	Lys	Val	Gly 285	Ala	Glu	Asn
Thr	Ile 290	Thr	Tyr	Ser	Leu	Leu 295	Met	His	Pro	Asp	Ala 300	Leu	Glu	Glu	Pro
Asp 305	Asp	Gln	Asn	Arg	Ile 310										
<210	0> 6														
	1> 29														
	2> PR 3> Ho		apien	ıs											

	~	`	_
<4	U)>	6

Met Gly Ile Leu Ser Phe Leu Pro Val Leu Ala Thr Glu Ser Asp Trp 1 10 15

Ala Asp Cys Lys Ser Pro Gln Pro Trp Gly His Met Leu Leu Trp Thr 20 25 30

Ala Val Leu Phe Leu Ala Pro Val Ala Gly Thr Pro Ala Pro Pro Lys 35 40 45

Ala Val Leu Lys Leu Glu Pro Gln Trp Ile Asn Val Leu Gln Glu Asp 50 55 60

Ser Val Thr Leu Thr Cys Arg Gly Thr His Ser Pro Glu Ser Asp Ser 65 70 75 80

Ile Gln Trp Phe His Asn Gly Asn Leu Ile Pro Thr His Thr Gln Pro 85 90 95

Ser Tyr Arg Phe Lys Ala Asn Asn Asn Asp Ser Gly Glu Tyr Thr Cys 100 105 110

Gln Thr Gly Gln Thr Ser Leu Ser Asp Pro Val His Leu Thr Val Leu 115 120 125

Ser Glu Trp Leu Val Leu Gln Thr Pro His Leu Glu Phe Gln Glu Gly 130 135 140

Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu Val 145 150 155 160

Lys Val Thr Phe Phe Gln Asn Gly Lys Ser Lys Lys Phe Ser Arg Ser 165 170 175

Asp Pro Asn Phe Ser Ile Pro Gln Ala Asn His Ser His Ser Gly Asp 180 185 190

Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Tyr Ser Ser Lys Pro 195 200 205

Val Thr Ile Thr Val Gln Ala Pro Ser Ser Ser Pro Met Gly Ile Ile 210 215 220

Val Ala Val Val Thr Gly Ile Ala Val Ala Ala Ile Val Ala Ala Val 225 230 235 240

 Val Ala Leu Ile Tyr Cys Arg Lys Lys Arg Ile Ser Ala Asn Pro Thr
 245
 250
 255

 Asn Pro Asp Glu Ala Asp Lys Val Gly Ala Glu Asn Thr Ile Thr Tyr
 260
 265
 270

Ser Leu Leu Met His Pro Asp Ala Leu Glu Glu Pro Asp Asp Gln Asn

Arg Ile

5

290

<210> 7

<2	11> 2 12> P	RT													
<2	13> H	omo s	sapier	าร											
<4	00> 7														
Me 1	t Gly	/ Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
Al	a Asp	Cys	Lys 20	Ser	Pro	Gln	Pro	Trp 25	Gly	His	Met	Leu	Leu 30	Trp	Thr
A]	a Va	1 Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Ala	Pro	Pro
Lζ	s Al.	a Val	Leu	Lys	Leu	G1u 55	Pro	Gln	Trp	Ile	Asn 60	Val	Leu	Gln	Glu
As 65		r Val	Thr	Leu	Thr 70	Суз	Arg	Gly	Thr	His 75	Ser	Pro	Glu	Ser	Asp 80
Se	r Il	e Gln	Trp	Phe 85	His	Asn	Gly	Asn	Leu 90	Ile	Pro	Thr	His	Thr 95	Gln
Pr	o Se	r Tyr	Arg 100	Phe	Lys	Ala	Asn	Asn 105	Asn	Asp	Ser	Gly	Glu 110	Tyr	Thr
Су	s Gl	n Thr 115	-	Gln	Thr	Ser	Leu 120	Ser	Asp	Pro	Val	His 125	Leu	Thr	Val
Le	u Se:	r Glu	Trp	Leu	Val	Leu 135	Gln	Thr	Pro	His	Leu 140	Glu	Phe	Gln	Glu
G1 14	_	ı Thr	Ile	Val	Leu 150	Arg	Cys	His	Ser	Trp 155	Lys	Asp	Lys	Pro	Leu 160
Va	l Lys	s Val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
Se	r Ası	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	His 190	Ser	Gly
As	р Ту	His 195		Thr	Gly	Asn	11e 200	Gly	Tyr	Thr	Leu	Туг 205	Ser	Ser	Lys
Pr	o Vai	Thr	Ile	Thr	Val	Gln 215	Ala	Pro	Ser	Ser	Ser 220	Pro	Met	Gly	Ile
11 22		l Ala	Val	Val	Thr 230	Gly	Ile	Ala	Val	Ala 235	Ala	Ile	Val	Ala	Ala 240
Va	l Val	Ala	Leu	Ile 245	Tyr	Суѕ	Arg	Lys	Lys 250	Arg	Ile	Ser	Ala	Asn 255	Pro
Th	r Ası	n Pro	Asp 260	Glu	Ala	Asp	Lys	Val 265	Gly	Ala	Glu	Asn	Thr 270	Ile	Thr

	Tyr	Ser	Leu 275	Leu	Met	His	Pro	Asp 280	Ala	Leu	Glu	Glu	Pro 285	Asp	Asp	Gln
	Asn	Arg 290	Ile													
5	<210 <211 <212 <213	> 309 > PR		apien	s											
	<400	> 8														
	Met 1	Gly	Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
	Ala	Asp	Суз	Lys 20	Ser	Pro	Gln	Pro	Trp 25	Gly	His	Met	Leu	Leu 30	Trp	Thr
	Ala	Val	Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Pro	Pro	Lys
	Ala	Val 50	Leu	Lys	Leu	Glu	Pro 55	Gln	Trp	Ile	Asn	Val 60	Leu	Gln	Glu	Asp
	Ser 65	Val	Thr	Leu	Thr	Cys 70	Arg	Gly	Thr	His	Ser 75	Pro	Glu	Ser	Asp	Ser 80
	Ile	Gln	Trp	Phe	His 85	Asn	Gly	Asn	Leu	Ile 90	Pro	Thr	His	Thr	Gln 95	Pro
	Ser	Tyr	Arg	Phe 100	Lys	Ala	Asn	Asn	Asn 105	Asp	Ser	Gly	Glu	Tyr 110	Thr	Суѕ
	Gln	Thr	Gly 115	Gln	Thr	Ser	Leu	Ser 120	Asp	Pro	Val	His	Leu 125	Thr	Val	Leu
	Ser	Glu 130	Trp	Leu	Val	Leu	Gln 135	Thr	Pro	His	Leu	Glu 140	Phe	Gln	Glu	Gly
	Glu 145	Thr	Ile	Val	Leu	Arg 150	Суѕ	His	Ser	Trp	Lys 155	Asp	Lys	Pro	Leu	Val 160
	Lys	Val	Thr	Phe	Phe 165	Gln	Asn	Gly	Lys	Ser 170	Lys	Lys	Phe	Ser	Arg 175	Ser
	Asp	Pro	Asn		Ser	Ile	Pro	Gln		Asn	His	Ser	His		Gly	Asp
10	Tyr	His	Cys 195	180 Thr	Gly	Asn	Ile	Gly 200	185 Tyr	Thr	Leu	Tyr	Ser 205	190 Ser	Lys	Pro
	Val	Thr 210	Ile	Thr	Val	Gln	Ala 215	Pro	Ser	Ser	Ser	Pro 220	Met	Gly	Ile	Ile
	Val 225	Ala	Val	Val	Thr	Gly 230	Ile	Ala	Val	Ala	Ala 235	Ile	Val	Ala	Ala	Val 240

	Val	Ala	Leu	Ile	Tyr 245	Cys	Arg	Lys	Lys	Arg 250	Ile	Ser	Ala	Leu	Pro 255	Gly
	Туг	Pro	Glu	Cys 260	Arg	Glu	Met	Gly	Glu 265	Thr	Leu	Pro	Glu	Lys 270	Pro	Ala
	Asn	Pro	Thr 275	Asn	Pro	Asp	Glu	Ala 280	Asp	Lys	Val	Gly	Ala 285	Glu	Asn	Thr
	Ile	Thr 290	Туг	Ser	Leu	Leu	Met 295	His	Pro	Asp	Ala	Leu 300	Glu	Glu	Pro	Asp
	Asp 305	Gln	Asn	Arg	Ile											
5		> 32: !> PR	T	apien	ıs											
	<400)> 9														
	Met 1	Gly	Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
	Ala	Asp	Cys	Lys 20	Ser	Pro	Gln	Pro	Trp 25	Gly	His	Met	Leu	Leu 30	Trp	Thr
	Ala	Val	Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Ala	Pro	Pro
	Lys	Ala 50	Val	Leu	Lys	Leu	Glu 55	Pro	Gln	Trp	Ile	Asn 60	Val	Leu	Gln	Glu
10	Asp 65	Ser	Val	Thr	Leu	Thr	Cys	Arg	Gly	Thr	His 75	Ser	Pro	Glu	Ser	Asp 80
10		Ile	Pro	Trp	Phe 85		Asn	Gly	Asn	Leu 90		Pro	Thr	His	Thr 95	
	Pro	Ser	Tyr	Arg 100	Phe	Lys	Ala	Asn	Asn 105	Asn	Asp	Ser	Gly	Glu 110	Tyr	Thr
	Cys	Gln	Thr 115	Gly	Gln	Thr	Ser	Leu 120	Ser	Asp	Pro	Val	His 125	Leu	Thr	Val
	Leu	Ser 130	Glu	Trp	Leu	Val	Leu 135	Gln	Thr	Pro	His	Leu 140	Glu	Phe	Gln	Glu
	Gly 145	Glu	Thr	Ile	Val	Leu 150	Arg	Cys	His	Ser	Trp 155	Lys	Asp	Lys	Pro	Leu 160
	Val	Lys	Val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
	Ser	Asp	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	His 190	Ser	Gly

Asp Tyr His Cys Thr Gly Asn Ile Gly Tyr Thr Leu Tyr Ser Ser Lys $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm}$

	Pro	Val 210	Thr	Ile	Thr	Val	Gln 215	Ala	Pro	Ser	Ser	Ser 220	Pro	Met	Gly	Ile
	Ile 225	Val	Ala	Val	Val	Thr 230	Gly	Ile	Ala	Val	Ala 235	Ala	Ile	Val	Ala	Ala 240
	Val	Val	Ala	Leu	Ile 245	Tyr	Суз	Arg	Lys	Lys 250	Arg	Ile	Ser	Ala	Asn 255	Ser
	Thr	Asp	Pro	Val 260	Lys	Ala	Ala	Gln	Phe 265	Glu	Pro	Pro	Gly	Arg 270	Gln	Met
	Ile	Ala	Ile 275	Arg	Lys	Arg	Gln	Pro 280	Glu	Glu	Thr	Asn	Asn 285	Asp	Tyr	Glu
	Thr	Ala 290	Asp	Gly	Gly	Tyr	Met 295	Thr	Leu	Asn	Pro	Arg 300	Ala	Pro	Thr	Asp
	Asp 305	Asp	Lys	Asn	Ile	Туг 310	Leu	Thr	Leu	Pro	Pro 315	Asn	Asp	His	Val	Asn 320
	Ser	Asn	Asn													
5	<210 <211 <212 <213	> 270 > PR		apier	ıs											
	<400	> 10														
	Met 1	Gly	Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
	Ala	Asp	Cys	Lys 20	Ser	Pro	Gln	Pro	Trp 25	Gly	His	Met	Leu	Leu 30	Trp	Thr
	Ala	Val	Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Ala	Pro	Pro
	Lys	Ala 50	Val	Leu	Lys	Leu	Glu 55	Pro	Gln	Trp	Ile	Asn 60	Val	Leu	Gln	Glu
	Asp 65	Ser	Val	Thr	Leu	Thr 70	Cys	Arg	Gly	Thr	His 75	Ser	Pro	Glu	Ser	Asp 80
	Ser	Ile	Pro	Trp	Phe 85	His	Asn	Gly	Asn	Leu 90	Ile	Pro	Thr	His	Thr 95	Gln
10	Pro	Ser	Tyr	Arg 100	Phe	Lys	Ala	Asn	Asn 105	Asn	Asp	Ser	Gly	Glu 110	Туr	Thr
10	Cys	Gln	Thr 115		Gln	Thr	Ser	Leu 120		Asp	Pro	Val	His 125		Thr	Val
	Leu	Ser 130	Glu	Trp	Leu	Val	Leu 135	Gln	Thr	Pro	His	Leu 140	Glu	Phe	Gln	Glu

Val	Lys	Val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
Ser	Asp	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	His 190	Ser	Gly
Asp	Tyr		Суз	Thr	Gly	Asn	Ile	Gly	Tyr	Thr	Leu		Ser	Ser	Lys
Pro	Val 210	195 Thr	Ile	Thr	Val	Gln 215	200 Ala	Pro	Ser	Ser	Ser 220	205 Pro	Met	Gly	Ile
Ile 225	Val	Ala	Val	Val	Thr 230	Gly	Ile	Ala	Val	Ala 235	Ala	Ile	Val	Ala	Ala 240
Val	Val	Ala	Leu	Ile 245	Tyr	Cys	Arg	Lys	Lys 250	Arg	Ile	Ser	Ala	Asn 255	Ser
Thr	Asp	Pro	Val 260	Lys	Ala	Ala	Gln	Phe 265	Glu	Met	Leu	Ser	Cys 270	Thr	His
Leu	Asp	Val 275	Lys												
<212	> 267 !> PR	T	apien	S											
<400	> 11														
Met 1	Gly	Ile	Leu	Ser 5	Phe	Leu	Pro	Val	Leu 10	Ala	Thr	Glu	Ser	Asp 15	Trp
Ala	Asp	Cys	Lys 20	Ser	Pro	Gln	Pro	Trp 25	Gly	His	Met	Leu	Leu 30	Trp	Thr
Ala	Val	Leu 35	Phe	Leu	Ala	Pro	Val 40	Ala	Gly	Thr	Pro	Ala 45	Ala	Pro	Pro
Lys	Ala 50	Val	Leu	Lys	Leu	Glu 55	Pro	Gln	Trp	Ile	Asn 60	Val	Leu	Gln	Glu
Asp 65	Ser	Val	Thr	Leu	Thr 70	Cys	Arg	Gly	Thr	His 75	Ser	Pro	Glu	Ser	Asp 80
Ser	Ile	Pro	Trp	Phe 85	His	Asn	Gly	Asn	Leu 90	Ile	Pro	Thr	His	Thr 95	Gln
Pro	Ser	Tyr	Arg 100	Phe	Lys	Ala	Asn	Asn 105	Asn	Asp	Ser	Gly	Glu 110	Tyr	Thr
Cys	Gln	Thr 115	Gly	Gln	Thr	Ser	Leu 120	Ser	Asp	Pro	Val	His 125	Leu	Thr	Val
Leu	Ser	Glu	Trp	Leu	Val	Leu	Gln	Thr	Pro	His	Leu	Glu	Phe	Gln	Glu

5

10

Gly Glu Thr Ile Val Leu Arg Cys His Ser Trp Lys Asp Lys Pro Leu 145 150 155 160

	Gly 145		Thr	Ile	Val	Leu 150	Arg	Cys	His	Ser	Trp 155	Lys	Asp	Lys	Pro	Leu 160
	Val	Lys	Val	Thr	Phe 165	Phe	Gln	Asn	Gly	Lys 170	Ser	Lys	Lys	Phe	Ser 175	Arg
	Ser	Asp	Pro	Asn 180	Phe	Ser	Ile	Pro	Gln 185	Ala	Asn	His	Ser	His 190	Ser	Gly
	Asp	Tyr	His 195	Суѕ	Thr	Gly	Asn	Ile 200	Gly	Tyr	Thr	Leu	Tyr 205	Ser	Ser	Lys
	Pro	Val 210	Thr	Ile	Thr	Val	Gln 215	Ala	Pro	Ser	Ser	Ser 220	Pro	Met	Gly	Ile
	Ile 225	Val	Ala	Val	Val	Thr 230	Gly	Ile	Ala	Val	Ala 235	Ala	Ile	Val	Ala	Ala 240
	Val	Val	Ala	Leu	Ile 245	Tyr	Cys	Arg	Lys	Lys 250	Arg	Ile	Ser	Ala	Thr 255	Trp
	Thr	Ser	Asn	Asp 260	Cys	His	Gln	Lys	Glu 265	Thr	Thr					
5	<210 <211 <212															
J		> Ho	mo sa	apien	S											
ŭ			mo sa	apien	S											
3	<213 <400	> 12	mo sa Gln			Leu	Pro	Thr	Ala	Leu 10	Leu	Leu	Leu	Val	Ser 15	Ala
J	<213 <400 Met 1)> 12 Trp	Gln	Leu	Leu 5					10					15	Ala Pro
J	<213 <400 Met 1 Gly	> 12 Trp Met	Gln Arg	Leu Thr 20	Leu 5 Glu	Asp	Leu	Pro	Lys 25	10 Ala	Val	Val	Phe	Leu 30	15 Glu	
	<213 <400 Met 1 Gly Gln	Trp Met	Gln Arg Tyr 35	Leu Thr 20	Leu 5 Glu Val	Asp Leu	Leu Glu	Pro Lys 40	Lys 25 Asp	10 Ala Ser	Val Val	Val Thr	Phe Leu 45	Leu 30 Lys	15 Glu Cys	Pro
	<213 <400 Met 1 Gly Gln Gly Ser	N> 12 Trp Met Trp Ala 50	Gln Arg Tyr 35	Leu Thr 20 Arg	Leu 5 Glu Val Pro	Asp Leu Glu	Leu Glu Asp 55	Pro Lys 40	Lys 25 Asp	10 Ala Ser Thr	Val Val Gln Phe	Val Thr Trp 60	Phe Leu 45	Leu 30 Lys His	Glu Cys Asn	Pro Gln Glu Thr
10	<213 <400 Met 1 Gly Gln Gly Ser 65	> 12 Trp Met Trp Ala 50	Gln Arg Tyr 35	Thr 20 Arg Ser	Leu 5 Glu Val Pro	Asp Leu Glu Gln 70	Leu Glu Asp 55	Pro Lys 40 Asn	Lys 25 Asp Ser	10 Ala Ser Thr	Val Val Gln Phe 75	Val Thr Trp 60	Phe Leu 45 Phe	Leu 30 Lys His	Glu Cys Asn	Pro Gln Glu Thr 80
	<213 <400 Met 1 Gly Gln Gly Ser 65 Val	Trp Met Trp Ala 50 Leu Asp	Gln Arg Tyr 35	Thr 20 Arg Ser Ser	Leu 5 Glu Val Pro Ser Gly 85	Asp Leu Glu Gln 70 Glu	Leu Glu Asp 55 Ala Tyr	Pro Lys 40 Asn Ser	Lys 25 Asp Ser Cys	10 Ala Ser Thr Tyr Gln 90	Val Val Gln Phe 75 Thr	Val Thr Trp 60 Ile Asn	Phe Leu 45 Phe Asp Leu	Leu 30 Lys His Ala Ser	Glu Cys Asn Ala Thr 95	Pro Gln Glu Thr 80 Leu
	<213 <400 Met 1 Gly Gln Gly Ser 65 Val	> 12 Trp Met Trp Ala 50 Leu Asp	Gln Arg Tyr 35 Tyr Ile Asp	Leu Thr 20 Arg Ser Ser Val 100	Leu 5 Glu Val Pro Ser Gly 85 Gln	Asp Leu Glu Gln 70 Glu	Leu Glu Asp 55 Ala Tyr	Pro Lys 40 Asn Ser Arg	Lys 25 Asp Ser Cys	10 Ala Ser Thr Tyr Gln 90 Ile	Val Gln Phe 75 Thr	Val Thr Trp 60 Ile Asn	Phe Leu 45 Phe Asp Leu Leu	Leu 30 Lys His Ala Ser	Glu Cys Asn Ala Thr 95	Pro Gln Glu Thr 80 Leu

Gly Lys Gly Arg Lys Tyr Phe His His Asn Ser Asp Phe Tyr Ile Pro 145 150 155 160

Lys Ala Thr Leu Lys Asp Ser Gly Ser Tyr Phe Cys Arg Gly Leu Val

					165					170					175			
	Gly	Ser	Lys	Asn 180	Val	Ser	Ser	Glu	Thr 185	Val	Asn	Ile	Thr	Ile 190	Thr	Gln		
	Gly	Leu	Ser 195	Val	Ser	Thr	Ile	Ser 200	Ser	Phe	Phe	Pro	Pro 205	Gly	Туг	Gln		
	Val	Ser 210	Phe	Cys	Leu	Val	Met 215	Val	Leu	Leu	Phe	Ala 220	Val	Asp	Thr	Gly		
	Leu 225	Tyr	Phe	Ser	Val	Lys 230	Thr	Asn	Ile	Arg	Ser 235	Ser	Thr	Arg	Asp	Trp 240		
	Lys	Asp	His	Lys	Phe 245	Lys	Trp	Arg	Lys	Asp 250	Pro	Gln	Asp	Lys				
5	<210 <211 <212 <213	> 85 !> PR	-	apien	ıs													
	<400)> 13																
	Asp 1	Leu	Pro	Lys	Ala 5	Val	Val	Phe	Leu	Glu 10	Pro	Gln	Trp	Tyr	Ser 15	Val		
	Leu	Glu	Lys	Asp 20	Ser	Val	Thr	Leu	Lys 25	Суз	Gln	Gly	Ala	Tyr 30	Ser	Pro		
10	Glu	Asp	Asn 35	Ser	Thr	Gln	Trp	Phe 40	His	Asn	Glu	Ser	Leu 45	Ile	Ser	Ser		
	Gln	Ala 50	Ser	Ser	Tyr	Phe	Ile 55	Asp	Ala	Ala	Thr	Val 60	Asn	Asp	Ser	Gly		
	Glu 65	Tyr	Arg	Суз	Gln	Thr 70	Asn	Leu	Ser	Thr	Leu 75	Ser	Asp	Pro	Val	Gln 80		
	Leu	Glu	Val	His	11e 85													
15	<210 <211 <212 <213	2> AD	25 N	apien	ıs													
	<400	> 14																
	atgt	tggt	tct	tgac	aact	ct g	ctcc	tttg	g gt	tcca	gttg	, ato	ggca	aagt	gga	caccaca	60)
	aagg	gcagt	.ga	tcac	tttg	ca g	cctc	catg	g gt	cago	gtgt	tcc	aaga	agga	aac	cgtaacc	120)
	ttgo	cacto	gtg a	aggt	gctc	ca t	ctgc	ctgg	g ag	cago	tcta	cac	agto	gtt	tct	caatggc	180	ì
20	acaç	gcca	ctc a	agac	ctcg	ac c	ccca	gcta	c ag	aatc	acct	cto	ccaç	gtgt	caa	tgacagt	240	I

ggtgaataca	ggtgccagag	aggtctctca	gggcgaagtg	accccataca	gctggaaatc	300
cacagaggct	ggctactact	gcaggtctcc	agcagagtct	tcacggaagg	agaacctctg	360
gccttgaggt	gtcatgcgtg	gaaggataag	ctggtgtaca	atgtgcttta	ctatcgaaat	420
ggcaaagcct	ttaagttttt	ccactggaat	tctaacctca	ccattctgaa	aaccaacata	480
agtcacaatg	gcacctacca	ttgctcaggc	atgggaaagc	atcgctacac	atcagcagga	540
atatctgtca	ctgtgaaaga	gctatttcca	gctccagtgc	tgaatgcatc	tgtgacatcc	600
ccactcctgg	aggggaatct	ggtcaccctg	agctgtgaaa	caaagttgct	cttgcagagg	660
cctggtttgc	agctttactt	ctccttctac	atgggcagca	agaccctgcg	aggcaggaac	720
acatcctctg	aataccaaat	actaactgct	agaagagaag	actctgggtt	atactggtgc	780
gaggctgcca	cagaggatgg	aaatgtcctt	aagcgcagcc	ctgagttgga	gcttcaagtg	840
cttggcctcc	agttaccaac	tcctgtctgg	tttcatgtcc	ttttctatct	ggcagtggga	900
ataatgtttt	tagtgaacac	tgttctctgg	gtgacaatac	gtaaagaact	gaaaagaaag	960
aaaaagtggg	atttagaaat	ctctttggat	tctggtcatg	agaagaaggt	aatttccagc	1020
cttcaagaag	acagacattt	agaagaagag	ctgaaatgtc	aggaacaaaa	agaagaacag	1080
ctgcaggaag	gggtgcaccg	gaaggagccc	cagggggcca	cgtag		1125
<210> 15 <211> 567 <212> ADN <213> Homo	sapiens					
-100× 1E						
<400> 15						
	tgacaactct	gctcctttgg	ggctggctac	tactgcaggt	ctccagcaga	60
atgtggttct		gctcctttgg tctggccttg				60 120
atgtggttct gtcttcatgg	aaggagaacc		aggtgtcatg	cgtggaagga	taagctggtg	
atgtggttct gtcttcatgg tacaatgtgc	aaggagaacc	tctggccttg	aggtgtcatg gcctttaagt	cgtggaagga	taagctggtg gaattctaac	120
atgtggttct gtcttcatgg tacaatgtgc ctcaccattc	aaggagaacc tttactatcg tgaaaaccaa	tctggccttg	aggtgtcatg gcctttaagt aatggcacct	cgtggaagga ttttccactg accattgctc	taagctggtg gaattctaac aggcatggga	120 180
atgtggttct gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct	aaggagaacc tttactatcg tgaaaaccaa acacatcagc	tctggccttg aaatggcaaa cataagtcac	aggtgtcatg gcctttaagt aatggcacct caatacactg	cgtggaagga ttttccactg accattgctc tgaaaggcct	taagctggtg gaattctaac aggcatggga ccagttacca	120 180 240
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt	tctggccttg aaatggcaaa cataagtcac aggaatatca	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac	120 180 240 300
atgtggttet gtetteatgg tacaatgtge etcaceatte aageateget acteetgtet actgttetet	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa	120 180 240 300 360
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct actgttctct atctctttgg	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat attctggtca	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat acgtaaagaa	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa gtaatttcca	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg gccttcaaga	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa agacagacat	120 180 240 300 360 420
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct actgttctct atctctttgg ttagaagaag	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat attctggtca	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat acgtaaagaa tgagaagaag tcaggaacaa	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa gtaatttcca	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg gccttcaaga	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa agacagacat	120 180 240 300 360 420 480
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct actgttctct atctctttgg ttagaagaag	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat attctggtca agctgaaatg cccagggggc	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat acgtaaagaa tgagaagaag tcaggaacaa	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa gtaatttcca	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg gccttcaaga	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa agacagacat	120 180 240 300 360 420 480 540
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct actgttctct atctctttgg ttagaagaag cggaaggagc <210> 16 <211> 843 <212> ADN	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat attctggtca agctgaaatg cccagggggc	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat acgtaaagaa tgagaagaag tcaggaacaa	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa gtaatttcca	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg gccttcaaga	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa agacagacat	120 180 240 300 360 420 480 540
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct actgttctct atctctttgg ttagaagaag cggaaggagc <210> 16 <211> 843 <212> ADN <213> Homo s <400> 16	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat attctggtca agctgaaatg cccagggggc	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat acgtaaagaa tgagaagaag tcaggaacaa	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa gtaatttcca aaagaagaac	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg gccttcaaga agctgcagga	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa agacagacat aggggtgcac	120 180 240 300 360 420 480 540
atgtggttet gtcttcatgg tacaatgtgc ctcaccattc aagcatcgct actcctgtct actgttctct atctctttgg ttagaagaag cggaaggagc <210> 16 <211> 843 <212> ADN <213> Homo <400> 16 atgtggttct	aaggagaacc tttactatcg tgaaaaccaa acacatcagc ggtttcatgt gggtgacaat attctggtca agctgaaatg cccagggggc sapiens	tctggccttg aaatggcaaa cataagtcac aggaatatca ccttttctat acgtaaagaa tgagaagaag tcaggaacaa cacgtag	aggtgtcatg gcctttaagt aatggcacct caatacactg ctggcagtgg ctgaaaagaa gtaatttcca aaagaagaac	cgtggaagga ttttccactg accattgctc tgaaaggcct gaataatgtt agaaaaagtg gccttcaaga agctgcagga	taagctggtg gaattctaac aggcatggga ccagttacca tttagtgaac gaatttagaa agacagacat aggggtgcac	120 180 240 300 360 420 480 540 567

acagccactc	agacctcgac	ccccagctac	agaatcacct	ctgccagtgt	caatgacagt	240
ggtgaataca	ggtgccagag	aggtctctca	gggcgaagtg	accccataca	gctggaaatc	300
cacagaggct	ggctactact	gcaggtctcc	agcagagtct	tcatggaagg	agaacctctg	360
gccttgaggt	gtcatgcgtg	gaaggataag	ctggtgtaca	atgtgcttta	ctatcgaaat	420
ggcaaagcct	ttaagttttt	ccactggaat	tctaacctca	ccattctgaa	aaccaacata	480
agtcacaatg	gcacctacca	ttgctcaggc	atgggaaagc	atcgctacac	atcagcagga	540
atatcacaat	acactgtgaa	aggcctccag	ttaccaactc	ctgtctggtt	tcatgtcctt	600
ttctatctgg	cagtgggaat	aatgtttta	gtgaacactg	ttctctgggt	gacaatacgt	660
aaagaactga	aaagaaagaa	aaagtggaat	ttagaaatct	ctttggattc	tggtcatgag	720
aagaaggtaa	tttccagcct	tcaagaagac	agacatttag	aagaagagct	gaaatgtcag	780
gaacaaaaag	aagaacagct	gcaggaaggg	gtgcaccgga	aggagcccca	gggggccacg	840
tag						843
<210> 17 <211> 951 <212> ADN <213> Homo	sapiens					
<400> 17						
atgactatgg	agacccaaat	gtctcagaat	gtatgtccca	gaaacctgtg	gctgcttcaa	60
ccattgacag	ttttgctgct	gctggcttct	gcagacagtc	aagctgctcc	cccaaaggct	120
gtgctgaaac	ttgagccccc	gtggatcaac	gtgctccagg	aggactctgt	gactctgaca	180
tgccaggggg	ctcgcagccc	tgagagcgac	tccattcagt	ggttccacaa	tgggaatctc	240
attcccaccc	acacgcagcc	cagctacagg	ttcaaggcca	acaacaatga	cagcggggag	300

acacgcagcc cagctacagg ttcaaggcca tacacgtgcc agactggcca gaccagcctc agcgaccctg tgcatctgac tgtgctttcc 360 gaatggctgg tgctccagac ccctcacctg gagttccagg agggagaaac catcatgctg 420 aggtgccaca gctggaagga caagcctctg gtcaaggtca cattcttcca gaatggaaaa 480 tcccagaaat tctcccattt ggatcccacc ttctccatcc cacaagcaaa ccacagtcac 540 agtggtgatt accactgcac aggaaacata ggctacacgc tgttctcatc caagcctgtg 600 accatcactg tecaagtgee cageatggge agetetteac caatggggat cattgtgget 660 720 gtggtcattg cgactgctgt agcagccatt gttgctgctg tagtggcctt gatctactgc aggaaaaagc ggatttcagc caattccact gatcctgtga aggctgccca atttgagcca 780 840 cctggacgtc aaatgattgc catcagaaag agacaacttg aagaaaccaa caatgactat gaaacagctg acggcggcta catgactctg aaccccaggg cacctactga cgatgataaa 900 951 aacatctacc tgactcttcc tcccaacgac catgtcaaca gtaataacta a

<210> 18

10

5

<211> 933

<212> ADN

15 <213> Homo sapiens

<400> 18

<400> 20 60 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag 120 tecceccage ettggggtea tatgettetg tggacagetg tgetatteet ggeteetgtt gctgggacac ctgcagctcc cccaaaggct gtgctgaaac tcgagcccca gtggatcaac 180 gtgctccagg aggactctgt gactctgaca tgccggggga ctcacagccc tgagagcgac 240 tccattcagt ggttccacaa tgggaatctc attcccaccc acacgcagcc cagctacagg 300 ttcaaggcca acaacaatga cagcggggag tacacgtgcc agactggcca gaccagcctc 360 agcgaccetg tgcatetgae tgtgctttet gagtggetgg tgctccagae eccteacetg 420 480 gagttccagg agggagaaac catcgtgctg aggtgccaca gctggaagga caagcctctg 540 gtcaaggtca cattetteca gaatggaaaa tecaagaaat ttteeegtte ggateecaac 600 ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata 660 ggctacacgc tgtactcatc caagcctgtg accatcactg tccaagctcc cagctcttca 720 ccgatgggga tcattgtggc tgtggtcact gggattgctg tagcggccat tgttgctgct 780 gtagtggcct tgatctactg caggaaaaag cggatttcag ccaatcccac taatcctgat 840 gaggetgaca aagttgggge tgagaacaca atcacctatt cacttetcat geacceggat 876 gctctggaag agcctgatga ccagaaccgt atttag <210> 21 <211>930 <212> ADN <213> Homo sapiens <400> 21 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag 60 tececeage ettggggtea tatgettetg tggaeagetg tgetatteet ggeteetgtt 120 gctgggacac ctgctcccc aaaggctgtg ctgaaactcg agccccagtg gatcaacgtg 180 ctccaggagg actctgtgac tctgacatgc cgggggactc acagccctga gagcgactcc 240 attcagtggt tccacaatgg gaatctcatt cccacccaca cgcagcccag ctacaggttc 300 aaggocaaca acaatgacag cggggagtac acgtgccaga ctggccagac cagcctcagc 360 gaccetgtge atetgactgt getttetgag tggetggtge tecagacece teacetggag 420 ttccaggagg gagaaaccat cgtgctgagg tgccacagct ggaaggacaa gcctctggtc 480 aaggtcacat tettecagaa tggaaaatee aagaaatttt ceegttegga teecaactte 540 tocatoccac aagcaaacca cagtoacagt ggtgattacc actgcacagg aaacataggc 600 tacacgctgt actcatccaa gcctgtgacc atcactgtcc aagctcccag ctcttcaccg 660 atggggatca ttgtggctgt ggtcactggg attgctgtag cggccattgt tgctgctgta 720 gtggccttga tctactgcag gaaaaagcgg atttcagctc tcccaggata ccctgagtgc 780 agggaaatgg gagagacct ccctgagaaa ccagccaatc ccactaatcc tgatgaggct 840 gacaaagttg gggctgagaa cacaatcacc tattcacttc tcatgcaccc ggatgctctg 900

<210> 22 <211> 972 <212> ADN

15

gaagagcctg atgaccagaa ccgtatttag

5

10

<213> Homo sapiens <400> 22 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag 60 120 tecececage ettggggtea tatgettetg tggacagetg tgetatteet ggeteetgtt qctgggacac ctgcagctcc cccaaaggct gtgctgaaac tcgagccca gtggatcaac 180 gtgctccaag aggactctgt gactctgaca tgccggggga ctcacagccc tgagagcgac 240 tocattocgt ggttccacaa tgggaatoto attoccacco acacgcagoo cagotacagg 300 ttcaaggcca acaacaatga cagcggggag tacacgtgcc agactggcca gaccagcctc 360 agcgaccctg tgcatctgac tgtgctttct gagtggctgg tgctccagac ccctcacctg 420 gagttccagg agggagaaac catcgtgctg aggtgccaca gctggaagga caagcctctg gtcaaggtca cattetteca gaatggaaaa tecaagaaat ttteeegtte ggateecaae 540 ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata 600 ggctacacgc tgtactcatc caagcctgtg accatcactg tccaagctcc cagctcttca 660 720 ccgatgggga tcattgtggc tgtggtcact gggattgctg tagcggccat tgttgctgct gtagtggcct tgatctactg caggaaaaag cggatttcag ccaattccac tgatcctgtg 780 aaggetgeee aatttgagee acetggaegt caaatgattg ceatcagaaa gagacaacet 840 900 gaagaaacca acaatgacta tgaaacagct gacggcggct acatgactct gaaccccagg gcacctactg acgatgataa aaacatctac ctgactcttc ctcccaacga ccatgtcaac 960 agtaataact aa 972 5 <210> 23 <211>831 <212> ADN 10 <213> Homo sapiens <400> 23 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag 60 tcccccagc cttggggtca tatgcttctg tggacagctg tgctattcct ggctcctgtt 120 gctgggacac ctgcagctcc cccaaaggct gtgctgaaac tcgagcccca gtggatcaac gtgctccaag aggactctgt gactctgaca tgccggggga ctcacagccc tgagagcgac 180 240 tocattocqt qqttccacaa tqqqaatotc attoccacco acacqcaqco caqctacaqq ttcaaggcca acaacaatga cagcggggag tacacgtgcc agactggcca gaccagcctc 360 agcgaccetg tgcatctgac tgtgctttct gagtggctgg tgctccagac ccctcacctg 420 gagttccagg agggagaaac catcgtgctg aggtgccaca gctggaagga caagcctctg 480 540 qtcaaggtca cattcttcca gaatggaaaa tccaagaaat tttcccgttc ggatcccaac ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata 600 ggctacacgc tgtactcatc caagcctgtg accatcactg tccaagctcc cagctcttca 660

720

780 831

ccgatgggga tcattgtggc tgtggtcact gggattgctg tagcggccat tgttgctgct

gtagtggcct tgatctactg caggaaaaag cggatttcag ccaattccac tgatcctgtg

aaggctgccc aatttgagat gctttcctgc acccacctgg acgtcaaatg a

<210> 24 <211> 804

<212> ADN <213> Homo sapiens 5 <400> 24 atgggaatcc tgtcattctt acctgtcctt gccactgaga gtgactgggc tgactgcaag 60 tecceccage ettggggtea tatgettetg tggacagetg tgetatteet ggeteetgtt 120 gctgggacac ctgcagctcc cccaaaggct gtgctgaaac tcgagcccca gtggatcaac 180 240 gtgctccaag aggactctgt gactctgaca tgccggggga ctcacagccc tgagagcgac tocattocqt ggttccacaa tgggaatctc attcccaccc acacgcagcc cagctacagg 300 360 ttcaaggcca acaacaatga cagcggggag tacacgtgcc agactggcca gaccagcctc agcgaccetg tgcatetgae tgtgctttct gagtggctgg tgctccagae ccctcacctg 420 480 gagttccagg agggagaaac catcgtgctg aggtgccaca gctggaagga caagcctctg gtcaaggtca cattcttcca gaatggaaaa tccaagaaat tttcccgttc ggatcccaac 540 ttctccatcc cacaagcaaa ccacagtcac agtggtgatt accactgcac aggaaacata 600 ggctacacgc tgtactcatc caagcctgtg accatcactg tccaagctcc cagctcttca 660 ccgatgggga tcattgtggc tgtggtcact gggattgctg tagcggccat tgttgctgct 720 gtagtggcct tgatctactg caggaaaaag cggatttcag ccacctggac gtcaaatgat 780 tgccatcaga aagagacaac ctga 804 10 <210> 25 <211>873 <212> ADN <213> Homo sapiens 15 <400> 25 atgggtggag gggctgggga aaggctgttt acttcctcct gtctagtcgg tttggtccct 60 ttagggctcc ggatatcttt ggtgacttgt ccactccagt gtggcatcat gtggcagctg 120 ctcctcccaa ctgctctgct acttctagtt tcagctggca tgcggactga agatctccca 180 aaggotgtgg tgttcctgga gcctcaatgg tacagggtgc tcgagaagga cagtgtgact 240 ctgaagtgcc agggagccta ctcccctgag gacaattcca cacagtggtt tcacaatgag 300 agcctcatct caagccaggc ctcgagctac ttcattgacg ctgccacagt cgacgacagt 360 qqaqaqtaca qqtqccaqac aaacctctcc accctcaqtq acccqqtqca qctaqaaqtc 420 catatoggct ggctgttgct ccaggcccct cggtgggtgt tcaaggagga agaccctatt 480 cacctgaggt gtcacagctg gaagaacact gctctgcata aggtcacata tttacagaat 540 ggcaaaggca ggaagtattt tcatcataat tctgacttct acattccaaa agccacactc 600 aaagacagcg gctcctactt ctgcaggggg ctttttggga gtaaaaatgt gtcttcagag 660 720 actgtgaaca tcaccatcac tcaaggtttg gcagtgtcaa ccatctcatc attctttcca 780 cctgggtacc aagtctcttt ctgcttggtg atggtactcc tttttgcagt ggacacagga ctatatttct ctgtgaagac aaacattcga agctcaacaa gagactggaa ggaccataaa 840 873 tttaaatgga gaaaggaccc tcaagacaaa tga

<210> 26
<211> 702
<212> ADN
<213> Homo sapiens

<400> 26

atgtggcagc	tgctcctccc	aactgctctg	ctacttctag	tttcagctgg	catgcggact	60
gaagatetee	caaaggctgt	ggtgttcctg	gagcctcaat	ggtacagcgt	gcttgagaag	120
gacagtgtga	ctctgaagtg	ccagggagcc	tactcccctg	aggacaattc	cacacagtgg	180
tttcacaatg	agaacctcat	ctcaagccag	gcctcgagct	acttcattga	cgctgccaca	240
gtcaacgaca	gtggagagta	caggtgccag	acaaacctct	ccaccctcag	tgacccggtg	300
cagctagaag	tccatatcgg	ctggctgttg	ctccaggccc	ctcggtgggt	gttcaaggag	360
gaagacccta	ttcacctgag	gtgtcacagc	tggaagaaca	ctgctctgca	taaggtcaca	420
tatttacaga	atggcaaaga	caggaagtat	tttcatcata	attctgactt	ccacattcca	480
aaagccacac	tcaaagatag	cggctcctac	ttctgcaggg	ggcttgttgg	gagtaaaaat	540
gtgtcttcag	agactgtgaa	catcaccatc	actcaaggtt	tggcagtgtc	aaccatctca	600
		ccaagtctct			cctttttgca	660
giggacacag	gactatatt	ctctgtgaag	acaacactt	ga		702

REIVINDICACIONES

- 1. Receptor Fcy (receptor Fc-gamma) para su uso en el tratamiento de la esclerosis múltiple, en el que la esclerosis múltiple es una forma de esclerosis múltiple mediada por los linfocitos B y/o una forma de esclerosis múltiple activada por anticuerpos.
- 2. Receptor Fcy para su uso según la reivindicación 1, en el que la mediación por linfocitos B de la esclerosis múltiple y/o la forma de esclerosis múltiple accionada por autoanticuerpos está caracterizada porque presenta una o más de las siguientes características
- a. la esclerosis múltiple mejora si el paciente se somete a un tratamiento con inmonuglobulina intravenosa (IVIG),
 v/o
 - b. la esclerosis múltiple mejora si el paciente se somete a un tratamiento con anticuerpos anti-CD20, y/o
- 15 c. la esclerosis múltiple mejora si el paciente se somete a plasmaféresis, y/o
 - d. la esclerosis múltiple mejora si el paciente se somete a inmunoadsorción,
 - e. la presencia de autoanticuerpos frente al antígeno glucoproteína oligodendrocítica mielínica (MOG), y/o
 - f. la presencia de autoanticuerpos frente al antígeno proteína básica mielínica (MBP), y/o
 - g. la presencia de autoanticuerpos frente a la acuaporina 4.

5

20

35

40

45

55

60

- 3. Receptor Fcγ para su uso según la reivindicación 1 o 2, en el que la mediación por linfocitos B de la esclerosis múltiple y/o la forma de esclerosis múltiple activada por autoanticuerpos se determina antes del uso del receptor Fcγ por medio de uno o más de los siguientes ensayos
- a. determinar si la esclerosis múltiple mejora si el paciente se somete a un tratamiento con inmonuglobulina intravenosa (IVIG), y/o
 - b. la esclerosis múltiple mejora si el paciente se somete a un tratamiento con anticuerpos anti-CD20, y/o
 - c. la esclerosis múltiple mejora si el paciente se somete a plasmaféresis, y/o
 - d. la esclerosis múltiple mejora si el paciente se somete a inmunoadsorción,
 - e. determinar si los autoanticuerpos frente al antígeno glucoproteína oligodendrocítica mielínica (MOG) están presentes en el paciente, y/o
 - f. determinar si los autoanticuerpos frente al antígeno proteína básica mielínica (MBP) están presentes en el paciente, y/o
 - g. determinar si los autoanticuerpos frente a la acuaporina 4 están presentes en el paciente.
 - 4. Receptor Fcγ para su uso según las reivindicaciones 1 a 3, en el que el FcγR se selecciona de entre el grupo de FcγRI (CD64), FcγRIIA (CD32), FcγRIIB1 (CD32), FcγRIIB2 (CD32), FcγRIIC (CD32), FcγRIIIA (CD16) y FcγRIIB (CD16).
- 50 5. Receptor Fcγ para su uso según las reivindicaciones 1 a 4, en el que el receptor carece del dominio transmembranario y/o el péptido señal, y es soluble.
 - 6. Receptor Fcγ para su uso según las reivindicaciones 1 a 5, en el que el receptor es modificado químicamente mediante PEGilación y/o es modulado por afinidad.
 - 7. Receptor Fcy para su uso según las reivindicaciones 1 a 6, en el que el receptor no está glucosilado.
 - 8. Receptor Fcγ para su uso según las reivindicaciones 1 a 7, en el que el receptor es el FcγRIIB/C (CD32) o el FcγRIIIA/B (CD16/b)
 - 9. Receptor Fcγ para su uso según las reivindicaciones 1 a 8, en una disolución acuosa, en el que la cantidad que se debe administrar a un paciente en una dosis única se encuentra entre 1 y 20 mg/kg.

- 10. Receptor Fc γ para su uso según las reivindicaciones 1 a 9, en el que el receptor tiene una secuencia seleccionada de entre el grupo de SEC ID nº 1, SEC ID nº 2, SEC ID nº 3, SEC ID nº 4, SEC ID nº 5, SEC ID nº 6, SEC ID nº 7, SEC ID nº 8, SEC ID nº 9, SEC ID nº 10, SEC ID nº 11, SEC ID nº 12 y SEC ID nº 13.
- 5 11. Receptor Fcγ para su uso según las reivindicaciones 1 a 10, en el que el FcγR es un FcγRIIb soluble humano no glucosilado recombinante, seleccionado preferentemente de entre el grupo de SEC ID nº 5, SEC ID nº 6, SEC ID nº 7 y SEC ID nº 8.

Fig. 1

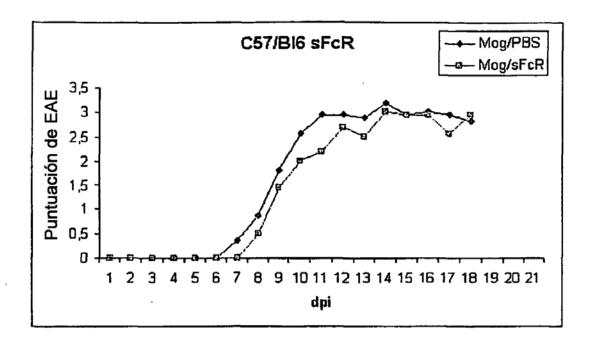
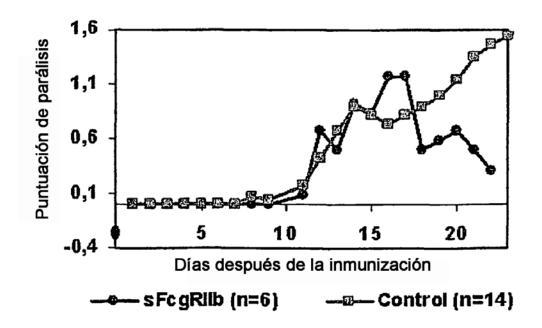



Fig. 2

