ESPAÑA

11 Número de publicación: 2 387 072

(51) Int. Cl.: C07K 16/30 (2006.01) C12N 5/00 (2006.01) A61K 39/00 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 08158547 .3
- (96) Fecha de presentación: **01.12.2003**
- Número de publicación de la solicitud: 1975183
 Fecha de publicación de la solicitud: 01.10.2008
- 54 Título: Moléculas de reconocimiento específicas de tumor
- 30 Prioridad: 29.11.2002 DE 10256900

73 Titular/es:

GLYCOTOPE GMBH ROBERT-RÖSSLE-STRASSE 10 13125 BERLIN, DE

45 Fecha de publicación de la mención BOPI: 12.09.2012

72 Inventor/es:

Goletz, Steffen; Danielczyk, Antje; Stahn, Renate; Karsten, Uwe; Ravn, Peter y Christensen, Peter Astrup

- 45 Fecha de la publicación del folleto de la patente: 12.09.2012
- (74) Agente/Representante:

Zea Checa, Bernabé

ES 2 387 072 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Moléculas de reconocimiento específicas de tumor

30

35

40

45

50

55

60

- 5 [0001] La invención se refiere a composiciones farmacéuticas o diagnósticas que comprenden moléculas de reconocimiento dirigidas contra tumores y que se pueden usar para el diagnóstico y la terapia de enfermedades tumorales.
- [0002] Las enfermedades tumorales o cancerosas son enfermedades de proliferación celular que describen un aumento circunscrito en el espacio del volumen tisular. En un sentido más amplio, cada hinchazón localizada por edemas, inflamaciones agudas y/o crónicas, una expansión aneurismática o incluso una hinchazón de órganos debido a inflamación es un tumor. En sentido más restringido se consideran enfermedades tumorales sobre todo neoformaciones tisulares como tumefacciones, blastomas y/o neoplasias en forma de un sobrecrecimiento espontáneo, desinhibido de diverso modo, autónomo e irreversible de tejido del propio cuerpo, que está asociado por norma a una pérdida de diferente modalidad de células específicas y funciones tisulares. Es posible sistematizar tumores de acuerdo con su comportamiento biológico, sin embargo, también de acuerdo con una sistemática histogenética o de acuerdo con hallazgos clínicos o anatomopatológicos.
- [0003] Particularmente en el ámbito clínico puede ser necesario detectar los tumores lo más tempranamente posible e incluso de forma selectiva, ya que una detección temprana y el tratamiento o la retirada posterior garantiza que la proliferación se pueda tratar de forma exitosa sin que se deformen las estructuras orgánicas o los segmentos génicos afectados, pudiéndose evitar adicionalmente la conformación de metástasis. Incluso en las consultas de seguimiento después de un tratamiento de cáncer se tienen que detectar de forma temprana las metástasis más pequeñas para optimizar el tratamiento posterior adicional. Además, para ámbitos amplios de la medicina del trabajo es necesario determinar si un tejido o un órgano muestra una potencial susceptibilidad a cáncer sin que el propio órgano o el tejido ya haya degenerado o se haya transformado.
 - [0004] El método más antiguo y al mismo tiempo más sencillo y en parte incluso todavía usado actualmente con éxito para detectar un tumor es la palpación y la inspección visual. De este modo, por ejemplo, el carcinoma de mama o el carcinoma de próstata se pueden palpar como nódulos. Se pueden detectar ópticamente indicios de cáncer de piel por lunares evidentes por el médico o por el propio paciente. Otros procedimientos ópticos son, por ejemplo, los métodos de formación de imágenes. En este caso se toman con ayuda de aparatos imágenes del cuerpo, en las que se puede reconocer un tumor. A estos métodos pertenecen, por ejemplo, la radiografía así como la tomografía computerizada (CT). En este procedimiento se examina el cuerpo con radiación de alta energía, donde las estructuras tisulares degeneradas, debido a la permeabilidad modificada para esta radiación se pueden detectar por comparación con el tejido sano. A menudo, en estos métodos se usan medios de contraste que se invectan en regiones correspondientes y que aumentan la absorción. Además, el diagnóstico de cáncer es posible mediante ultrasonidos así como por el uso de anticuerpos marcados radiactivamente, donde los antígenos típicos de tumor se unen a los órganos que se tienen que examinar y de este modo hacen detectables los tumores dentro del procedimiento de formación de imágenes. Además de los métodos de formación de imágenes, las pruebas de laboratorio son un medio importante adicional para la detección temprana de cáncer. Se examinan muestras de orina, sangre o incluso muestras tisulares en relación a anormalidades. Esto puede ser, por ejemplo, una composición modificada de estas muestras, sin embargo, también la presencia de sustancias que normalmente no están presentes o solamente en cantidades reducidas. Estas sustancias se denominan generalmente marcadores tumorales. Se producen por el propio tejido tumoral o se forman como reacción del cuerpo frente al tumor. Se denominan marcadores tumorales, además de las sustancias, también modificaciones celulares, cuyo análisis cualitativo o cuantitativo posibilita una afirmación sobre la presencia, la evolución o un pronóstico de enfermedades malignas. Los marcadores tumorales son la mayoría de las veces sustancias presentes fisiológicamente o modificadas que, frente a condiciones fisiológicas o la expresión normal genotípica/fenotípica en orina, suero u otros líquidos corporales, se pueden detectar con concentración aumentada o reducida o en o sobre células tumorales, donde estas sustancias se sintetizan y/o secretan por el tejido tumoral y se liberan después por la lísis del tumor o se forman como reacción del organismo frente a un tumor. Se ha descrito una pluralidad de marcadores tumorales, cuya utilización se considera razonable particularmente en el cáncer de colon, cáncer de mama, cáncer de ovarios, cáncer de próstata y testículos y en el carcinoma de pulmón de células pequeñas. A estos marcadores de cáncer pertenecen, por ejemplo el CEA, CA 15-3, CA 125, alfafetoproteína, HCG, el antígeno específico de próstata, la enolasa especifica de neuronas, CA 19-9 y SCC.
 - [0005] Los marcadores mencionados muestran por un aumento en suero o en tejidos o por su presencia como proteínas, lípidos y/o carbohidratos modificados por un lado, por ejemplo (i) enfermedades inflamatorias, pólipos intestinales, inflamaciones virales, sin embargo, particularmente también (ii) cirrosis, degeneraciones, tumores y metástasis. Una gran parte de estos marcadores consiste en moléculas que comprenden estructuras tanto proteicas como de carbohidratos, en un caso dado, lípidos. Cuanto menor sea el componente proteico y, por lo tanto, cuanto

mayor sea el componente de carbohidratos o lípidos de estos marcadores, más difíciles serán de detectar los mismos, por ejemplo, con moléculas de reconocimiento como, por ejemplo, anticuerpos. Hasta ahora, por la inmunización de ratones con ayuda de la tecnología de hibridoma se han producido diferentes anticuerpos contra estructuras de carbohidratos.

5

10

15

20

25

30

35

40

45

50

55

[0006] El diagnóstico de cáncer con moléculas de reconocimiento presenta varias desventajas. De este modo pueden presentarse determinados marcadores tumorales incluso en enfermedades no carcinógenas, por lo que las moléculas de reconocimiento utilizadas muestran una reacción positiva; además, una no interacción de las moléculas de reconocimiento no significa que no exista una enfermedad tumoral. Una desventaja adicional es que las sustancias de reconocimiento conocidas por norma son inespecíficas. Esto significa que una detección positiva solamente en pocos casos indica un tipo determinado de enfermedad tumoral. Una desventaja adicional muy decisiva de las moléculas de reconocimiento conocidas es, además, que solamente se pueden usar de forma limitada para el control de la evolución del desarrollo de tumores, por ejemplo, después de una cirugía. Esto quiere decir que los marcadores tumorales conocidos por norma no se pueden utilizar para la detección temprana o para el tratamiento posterior, particularmente para la profilaxis.

[0007] Además de estas desventajas generales, en moléculas de reconocimiento que se dirigen contra estructuras de carbohidratos se presentan desventajas especiales. La inmunización con antígenos de carbohidratos conduce la mayoría de las veces solamente a una respuesta de IqM primaria o la respuesta inmune no se produce en absoluto. ya que muchas estructuras de carbohidratos también son autoantígenos. Ya que los carbohidratos son antígenos independientes de células T que no son capaces de provocar un cambio de clase y la maduración asociada por mutaciones somáticas, la respuesta de anticuerpos queda limitada la mayoría de las veces a la clase de IgM. Debido a la interacción generalmente débil y la multivalencia necesaria es difícil, por lo tanto, producir anticuerpos con elevada afinidad. Un problema en anticuerpos contra estructuras de carbohidratos no es solamente la baja afinidad, sino también la especificidad. Es extremadamente difícil producir anticuerpos específicos particularmente contra estructuras de carbohidratos no cargados cortas, alcanzándose una determinada especificidad en muchos casos solamente si la estructura de carbohidratos se ubica sobre un soporte determinado. De este modo. Karsen et al. (1995) Hybridoma 14(1), 37-44, describen la especificidad de unión y de epítopo de un anticuerpo monoclonal que se une de forma específica al antígeno de Thomsen-Friedenreich (epítopo Galβ1-3GalNAc) y, entre otras cosas, es adecuado para la inmunohistoquímica. Frente a esto, por ejemplo el anticuerpo JAA/F11, que se dirige contra $Gal\beta1 \rightarrow 3GalNAc$, no solamente reconoce este propio antígeno, sino también $GlcNAc\beta1 \rightarrow 6Gal\beta1 \rightarrow 3-Gal\beta1 \rightarrow 3GalNAc$ (GlcNAcβ1→6)GalNAc así como, aunque con menor avidez, Galβ1-3GlcNAc. Tampoco las posibilidades más novedosas de la obtención de moléculas de reconocimiento por diferentes formas de técnicas combinatorias como. por ejemplo, la tecnología de presentación en fagos, resuelven las desventajas mencionadas. También en este caso se mantiene el problema de la interacción débil de molécula de reconocimiento-carbohidrato. Se tiene que tener en cuenta particularmente que los anticuerpos de la primarios obtenidos la mayoría de las veces por inmunización son demasiado grandes para el uso terapéutico. Una desventaja adicional de las moléculas de reconocimiento conocidas contra marcadores tumorales es que solamente hacen detectable el tumor cuando el mismo ya ha alcanzado un tamaño crítico. Es decir, estadios tempranos del crecimiento tumoral no se pueden determinar con las moléculas de reconocimiento conocidas, que se dirigen contra marcadores tumorales.

[0008] Una desventaja adicional de las sustancias de reconocimiento conocidas es que no se pueden utilizar de forma "funcional". Funcional significa que las moléculas de reconocimiento no solamente se unen de tal forma a los marcadores tumorales que los mismos se puedan detectar, sino que interaccionan sobre marcadores con la célula tumoral de tal forma que la célula tumoral se ve perjudicada en su crecimiento. Es posible que las moléculas de reconocimiento interaccionen de forma específica con determinados marcadores tumorales, que están inmovilizados, por ejemplo, sobre superficies de la célula tumoral, de tal manera que el tumor caracterizado por el marcador tumoral se trata terapéuticamente. Estas moléculas de reconocimiento funcionalmente activas, por un lado, son capaces de detectar marcadores tumorales asociados a células tumorales y, al mismo tiempo, por su unión a esta estructura específica de tumor, impedir un crecimiento adicional de la célula tumoral o una configuración de metástasis. Las moléculas de reconocimiento conocidas, de forma desventajosa, solamente en pocos casos son capaces de influir en el crecimiento tumoral. Por norma, por lo tanto, se tienen que acoplar al anticuerpo sustancias adicionales que limitan o inhiben el crecimiento tumoral, de tal forma que el mismo sea el "ferry" de esta sustancia, sin embargo, no el agente de tratamiento.

[0009] Por lo tanto, es objetivo de la invención proporcionar moléculas de reconocimiento con las que, por un lado, los tumores se puedan detectar de forma sencilla, segura y eficaz y que se puedan utilizar de forma adicional en la profilaxis, la terapia y/o el tratamiento posterior de tumores.

[0010] La invención resuelve este problema técnico por la proporción de composiciones diagnósticas o farmacéuticas que comprenden una molécula de reconocimiento, que se caracteriza porque comprenden una secuencia de aminoácidos, que tiene (i) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos SEC ID Nº 1; y (ii) una secuencia de aminoácidos que es al menos en un 80 % homóloga

ES 2 387 072 T3

a la secuencia de aminoácidos SEC ID Nº 2 ó 3; y (iii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos SEC ID Nº 4, 5 ó 6, donde las moléculas de reconocimiento se unen de forma específica al antígeno Core-1, donde las composiciones farmacéuticas pueden comprender un carrier y/o un medio diluente.

5

realización preferida, la molécula de reconocimiento se caracteriza porque además comprende una secuancia de aminoácidos que comprende (i) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos SEC ID Nº 7 u 8 ó 9; y (ii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos SEC ID Nº 10 ó 11; y (iii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos SEC ID Nº 12 ó 13, y que se une de forma específica al antígeno Core-1.

15

10

[0012] Las definiciones de los términos que se realizan a continuación se aplican cambiando lo que haya que cambiar a éstas, las anteriores y las siguientes explicaciones.

[0013] Por la expresión molécula de reconocimiento se entiende de acuerdo con la invención una molécula que, particularmente en condiciones rigurosas, se une de forma específica a la estructura de carbohidratos Core-1.

20

[0014] Por Core-1 se entiende de acuerdo con la invención la estructura de carbohidratos Gal\(\beta\)1-3Gal\(\Delta\)Ac, que puede estar presente como anómero α (Gal β 1-3GalNAc α) o anómero β (Gal β 1-3GalNAc β). Se prefiere en la presente memoria la variante α -anomérica. Las moléculas de reconocimiento de acuerdo con la invención, sin embargo, también pueden unirse solamente al anómero alfa Galβ1-3GalNAcα o a ambos anómeros Galβ1-3GalNAcα y Galβ1-3GalNAcβ del mismo modo.

25

[0015] Por una unión específica contra Core-1 se entiende de acuerdo con la invención una unión que reconoce solamente Core-1, preferiblemente el anómero α, o que reconoce los Core-1 y Core-2 (Galβ1-3(GIcNAcβ1-6)GaINAca) Las moléculas de reconocimiento en este caso no muestran ninguna reactividad cruzada con otros derivados y anómeros de estas estructuras de carbohidratos como se indican en el Ejemplo 7. Las moléculas de reconocimiento de acuerdo con la invención no interaccionan con Gala1-3GalNAca, Ga1α1-3GalNAcβ, GalNAcα, $Neu5Ac\alpha 2-3Gal\beta 1-3GalNAc\alpha, \quad Gal\beta 1-3(Neu5Ac\alpha 2-6)GalNAc\alpha, \quad GlcNAc\beta 1-2Gal\beta 1-3GalNAc\alpha, \quad GlcNAca1-3Gal\beta 1-3GalNAc\alpha, \quad GlcNAca1-3GalNAc\alpha, \quad GlcNAca1-3GalNAc\alpha, \quad GlcNAca1-3GalNAc\alpha, \quad GlcNAca1-3GalNAc\alpha, \quad GlcNAca1-3GalNAc\alpha, \quad GlcNAca1-3GalNAc\alpha, \quad GlcNAca1-3GalNAca, \quad GlcNAca1-3Ga$ $3GaINAc\alpha$, $GaINAc\alpha1-3GaI\beta$ y $3'-O-Su-Ga1\beta1-3GaINAc\alpha$ en las condiciones descritas en el Ejemplo 7. La determinación se realiza particularmente por ensayos de especificidad con estructuras de carbohidratos sintéticas definidas.

30

35

[0016] En una realización preferida, una molécula de reconocimiento de acuerdo con la invención, que se une de forma específica al antígeno Core-1, comprende:

a) una primera secuencia de aminoácidos, que contiene la secuencia de aminoácidos SEC ID Nº 1 y la secuencia de aminoácidos SEC ID Nº 2 ó 3 y la secuencia de aminoácidos SEC ID Nº 4 ó 5 ó 6; y

40

b) una segunda secuencia de aminoácidos, que contiene la secuencia de aminoácidos SEC ID Nº 7 u 8 ó 9 y la secuencia de aminoácidos SEC ID Nº 10 u 11 y la secuencia de aminoácidos SEC ID Nº 12 ó 13.

[0017] La primera y segunda secuencia de aminoácidos pueden presentarse sobre uno o varios, en ese caso preferiblemente dos polipéptidos.

50

45

[0018] Las moléculas de reconocimiento que se unen a Core-1 de acuerdo con la invención se caracterizan por que contienen un conjunto definido de secuencias individuales de aminoácidos. La secuencia de aminoácidos de estas moléculas de reconocimiento contiene uno o dos tripletes de secuencias definidas. Estas secuencias representan los dominios de unión y definen la especificidad de la molécula de reconocimiento. La molécula de reconocimiento de 1 triplete contiene la secuencia de aminoácidos SEC ID Nº 1, la secuencia de aminoácidos SEC ID Nº 2 ó 3 y la secuencia de aminoácidos SEC ID Nº 4 ó 5 ó 6. Las moléculas de reconocimiento específicas de Core-1 que se definen por dos tripletes contienen para el primer triplete la secuencia de aminoácidos SEC ID Nº 1, la secuencia de aminoácidos SEC ID Nº 2 ó 3 y la secuencia de aminoácidos SEC ID Nº 4 ó 5 ó 6 y para el segundo triplete la secuencia de aminoácidos SEC ID Nº 7 u 8 ó 9, la secuencia de aminoácidos SEC ID Nº 10 u 11 y la secuencia de aminoácidos SEC ID Nº 12 ó 13. El primer y el segundo triplete pueden presentarse sobre una o varias cadenas polipeptídicas, que forman en el último caso de forma conjunta la molécula de reconocimiento de unión. Por lo demás, estos tripletes se denominan en el sentido de la invención secuencia de triplete 1 para la primera secuencia de aminoácidos comprendida y secuencia de triplete 2 para la segunda secuencia de aminoácidos comprendida, véase la definición a) y b) de la anterior descripción. La molécula de reconocimiento puede ser de acuerdo con la invención un anticuerpo, particularmente una IgG o IgM murina, quimérica o humana, una estructura

60

scFv u otra.

55

[0019] Una realización adicional de la invención se refiere a moléculas de reconocimiento en las que al menos una secuencia de aminoácidos de las SEC ID Nº 1 a 13 está modificada por mutación, deleción y/o inserción, donde, sin embargo, sigue existiendo la propiedad de la especificidad de unión contra Core-1. Esto sirve de forma ventajosa para la mejora de las moléculas de reconocimiento, por ejemplo, con respecto a afinidad, solubilidad y/o capacidad de producción.

[0020] La modificación de una molécula de reconocimiento se produce por una o varias mutaciones en una o varias secuencias de aminoácidos seleccionadas de SEC ID Nº 1 a 13, donde aminoácidos individuales se sustituyen por aminoácidos con propiedades fisicoquímicas análogas, que no modifican de forma fundamental la estructura 3-dimensional ventajosa de los dominios de unión de la molécula de reconocimiento, de tal forma que se mantiene la especificidad para Core-1 de la molécula de reconocimiento. Los aminoácidos con propiedades fisicoquímicas análogas en el sentido de la invención se pueden agrupar en 6 grupos diferentes y se representan en la Tabla 1.

Tabla 1: Aminoácidos con propiedades fisicoquímicas análogas sin tener en cuenta el tamaño molecular.

Propiedad o grupo funcional de Aminoácido alifático glicina alanina valina leucina isoleucina grupo hidroxi serina treonina grupo carboxi ácido aspártico acido glutámico grupo amida asparagina glutamina lisina grupo amino arginina aromático fenilalanina tirosina triptófano

[0021] En una realización preferida adicional de las moléculas de reconocimiento de acuerdo con la invención que se unen de forma específica a Core-1, al menos una secuencia de aminoácidos de las secuencias de aminoácidos SEC ID Nº 1, 2, 3, 7, 8 y/o 9 están sustituida por variantes de estructura canónicas o estructuras equivalentes por las secuencias de aminoácidos SEC ID Nº 14 a 45, donde la SEC ID Nº 1 está sustituida por una secuencia de las secuencias SEC ID Nº 14 a 17 (CDRH1), la SEC ID Nº 2 ó 3, por una secuencia de las secuencias SEC ID Nº 18 a 27 (CDRH2) y la SEC ID Nº 7 u 8 ó 9, por una secuencia de las secuencias SEC ID Nº 28 a 45 (CDRL1).

[0022] La relación más general entre una secuencia de aminoácidos y la estructura terciaria de los bucles formados por estas secuencias se conoce por el especialista en la técnica y se estudió de forma extensa [Rooman *et al.*, 1989; Martin, Thronton, 1996]. Las inmunoglobulinas representan un ejemplo especial. Por el análisis de las conformaciones de bucle de las regiones hipervariables (regiones determinantes de complementariedad, CDR) en la cadena ligera y pesada de moléculas de anticuerpos se definieron las denominadas clases canónicas [Chothia, Lesk, 1987; Chothia *et al.*, 1986, 1989, 1992; Wu, Cygler, 1993]. Sobre esta base se obtuvieron las variantes de estructura canónica SEC ID Nº 14 a 45 de las SEC ID Nº 1, 2, 3, 7, 8, y 9.

[0023] Las secuencias de aminoácidos SEC ID Nº 1 a 13 o sus modificaciones en una molécula de reconocimiento específica para Core-1 en el sentido de la invención conforman estructuras espaciales, por ejemplo, los denominados bucles, que están caracterizados por que poseen una estructura terciaria y/o estructura cuaternaria definible. La región de unión de una molécula de reconocimiento con el antígeno Core-1 está formada por restos aminoacídicos que se proporcionan por hasta seis bucles variables en la superficie de la molécula y que interaccionan de forma específica con Core-1.

[0024] En una realización adicional de la invención se proporcionan moléculas de reconocimiento, que se unen de forma específica a Core-1, en las que se ha omitido al menos una secuencia de las secuencias del triplete, que no participa de forma directa en la interacción con el antígeno Core-1.

[0025] En una realización adicional, las moléculas de reconocimiento comprenden al menos una de las secuencias de aminoácidos de las SEC ID N° 1 a 13 o sus variantes que se han descrito anteriormente de forma doble o

5

35

30

5

10

15

40

45

múltiple, donde estas formas dobles también pueden presentarse como variantes de la misma secuencia de aminoácidos. Todas las moléculas de reconocimiento descritas en este apartado reconocen de forma ventajosa de manera específica el antígeno Core-1. En lo sucesivo, incluso estas moléculas de reconocimiento, que en sentido estricto no llevan secuencias de triplete debido a la omisión o la multiplicidad de secuencias, se denominan a pesar de esto secuencia de triplete 1 o secuencia de triplete 2 para simplificar la comprensión.

[0026] Las moléculas de reconocimiento en el sentido de la invención pueden comprender adicionalmente secuencias flanqueantes que separan las secuencias de aminoácidos que comprenden la secuencia de aminoácidos SEC ID Nº 1 y la secuencia de aminoácidos SEC ID Nº 2 ó 3, y la secuencia de aminoácidos SEC ID Nº 4 ó 5 ó 6, o sus variantes que se han descrito anteriormente, y secuencias flanqueantes que separan las secuencias de aminoácidos SEC ID Nº 7 u 8 ó 9 y la secuencia de aminoácidos SEC ID Nº 10 u 11 y la secuencia de aminoácidos SEC ID Nº 12 ó 13, o sus variantes que se han descrito anteriormente. La primera y la segunda secuencia de aminoácidos pueden presentarse sobre una o varias, preferiblemente dos cadenas polipeptídicas. Estas secuencias flanqueantes se denominan en el sentido de la invención espaciadores o secuencias framework y pueden tener diferentes longitudes y secuencias. También se incluyen de forma expresa tales moléculas de reconocimiento, en las que no todas las secuencias de aminoácidos de las SEC ID Nº 1 a 13 o sus variantes que se han descrito anteriormente están separadas por espaciadores. Por lo demás, las moléculas de reconocimiento tienen preferiblemente secuencias de aminoácidos flanqueantes adicionales que se denominan en el sentido de la invención también secuencias flanqueantes.

[0027] Las secuencias flanqueantes tienen particularmente el objetivo de llevar las secuencias de aminoácidos que se han descrito, que son responsables o participan de la unión específica para Core-1 de las moléculas de reconocimiento, hasta una disposición y estructura espacial adecuadas para que se pueda realizar la unión al Core-1. Se puede prever que la secuencias de aminoácidos SEC ID Nº 1 a Nº 13, sin al menos una secuencia de aminoácidos adicional como secuencia flanqueante, no se puedan unir de forma específica al antígeno Core-1 en el sentido de la invención. Por lo demás, las secuencias flanqueantes pueden proporcionar a las moléculas de reconocimiento, por ejemplo, la estabilidad biológica y química necesaria para que la estructura espacial se pueda establecer de forma eficaz y para que se pueda obtener la función y el uso en una forma funcional adecuada, que incluya la unión a Core-1.

[0028] Las secuencias de triplete se incluyen en proteínas existentes por sustitución y/o por añadido de secuencias de aminoácidos, donde las secuencias proteícas existentes sirven como secuencias flanqueantes en el sentido de la invención o las secuencias flanqueantes se obtienen de proteínas adecuadas. Estas secuencias flanqueantes se pueden modificar, por ejemplo, por mutaciones, deleciones o inserciones. Para esto, el especialista usa métodos conocidos de la biología molecular, la bioquímica y la producción por ingeniería genética de proteínas. Son proteínas preferidas para esto proteínas de la superfamilia de las inmunoglobulinas, inhibidores de proteasa, lectinas, proteínas de grupos de hélices y lipocalinas, como se describen, por ejemplo, en: Nygren y Uhlen, 1997; Nuttall SD et al., 1999 y Skerra, 2000.

[0029] En una realización preferida adicional, las secuencias flanqueantes son secuencias flanqueantes de anticuerpos de una o diferentes especies o secuencias de aminoácidos que imitan la secuencia consenso de las secuencias flanqueantes de anticuerpos murinos, humanos y/o de otros mamíferos. Una secuencia consenso es una secuencia idealizada en la que de forma representativa en cada posición está el aminoácido presente con mayor frecuencia cuando se comparan entre sí muchas secuencias existentes, por ejemplo, de bancos de datos de anticuerpos. Las moléculas de reconocimiento preferidas en la presente memoria están caracterizadas por que las secuencias flanqueantes para la primera secuencia de triplete 1 que comprende la secuencia de aminoácidos SEC ID Nº 1, la secuencia de aminoácidos SEC ID Nº 2 ó 3 y la secuencia de aminoácidos SEC ID Nº 4 ó 5 ó 6, o sus variantes que se han descrito anteriormente, son secuencias flanqueantes de anticuerpos de la cadena pesada variable VH, que se denominan en la bibliografía también secuencias framework y las secuencias flanqueantes para la secuencia de triplete 2 que comprende la secuencia de aminoácidos SEC ID Nº 7 u 8 ó 9, la secuencia de aminoácidos SEC ID Nº 7 u 8 ó 9, la secuencia de aminoácidos SEC ID Nº 10 u 11 y la secuencia de aminoácidos SEC ID 12 ó 13, o sus variantes que se han descrito anteriormente, son secuencias flanqueantes de anticuerpos de la cadena ligera variable VL.

[0030] Se prefieren además secuencias flanqueantes de anticuerpos de anticuerpos de mamíferos, se prefieren particularmente secuencias flanqueantes de anticuerpos de origen humano y/o murino. Las secuencias flanqueantes se pueden combinar a partir de secuencias flanqueantes de anticuerpos de diferentes especies. Estas secuencias flanqueantes de anticuerpos son conocidas por el especialista y están accesibles en diferentes bancos de datos como el banco de datos de Kabat (immuno.bme.nwu.edu) o el banco de datos del Centro Nacional para Información Biotecnológica (www.ncbi.nlm.nih.gov). Así mismo, estas estructuras flanqueantes de anticuerpo se pueden prolongar por aminoácidos adicionales y/o modificar por una o varias mutaciones, por ejemplo, deleciones y/o inserciones, manteniéndose la unión específica a Core-1.

[0031] Si en una variante preferida de la invención se combinan las secuencias de triplete con secuencias flanqueantes de anticuerpos, la molécula de reconocimiento representa una cadena variable de un anticuerpo o una estructura obtenida de la misma.

[0032] Son secuencias flanqueantes de anticuerpos particularmente preferidas como secuencias flanqueantes en el sentido de la invención para la cadena pesada variable las secuencias de aminoácidos correspondientes a FRH1, FRH2, FRH3 y FRH4 en la Tabla 2 y para la cadena ligera variable las secuencias de aminoácidos correspondientes a FRL1, FRL2, FRL3 y FRL4 en la Tabla 2, donde las secuencias de aminoácidos de las secuencias de triplete 1 y 2 con las SEC ID Nº 1 a 13 se corresponden a las regiones CDR correspondientes de los anticuerpos. Una cadena de anticuerpos variable pesada (VH) o ligera (VL) está compuesta del siguiente modo: la VH: FRH1-CDRH1-FRH2-CDRH2-FRH3-CDRH3-FRH4 y la VL: FRL1-CDRL1-FRL2-CDRL2-FRL3-CDRL3-FRL4. La Tabla 2 explica las posiciones de forma detallada. Las posiciones de los aminoácidos individuales o las secuencias de aminoácidos se corresponden a la numeración de aminoácidos en moléculas de anticuerpos de acuerdo con Kabat.

15 **Tabla 2**:

Tabla 2:			
Nombre	Intervalo de posición	Pos.	Aminoácido o secuencia de
EDI I4	do 4 o 20		aminoácidos
FRH1	de 1 a 30	1 2	Q o E V
		3	
			Q, K o T
		4	L
		5	KoV
		6	EoQ
		7	S
		8	G
		9	Α
		10	E
		11	LoV
		12	VoK
		13	RoK
		14	Р
		15	G
		16	ToA
		17	S
		18	V
		19	K
		20	IoV
		21	SoP
		22	C
		23	K
		24	A, V, S o T
		25	S
		26	G
		27	Y, F, S o D
		28	T
		29	F, L o I
		30	T
CDRH1	de 31 a 35	30	SEC ID Nº 1 y variantes
FRH2	de 36 a 49	36	W
ГКПZ	ue 30 a 49	37	V
		38	V KoR
		39	Q
		40	RoA
		41	Р
		42	G
		43	HoQ
		44	G
		45	L
		46	E
		47	WoR
		48	IoM

ES 2 387 072 T3

Nombre	Intervalo de posición	Pos.	Aminoácido o secuencia de aminoácidos
		49	G
CDRH2	de 50 a 65, incluyéndose adicionalmente la pos. 52 ^a		SEC ID N° 2 ó 3 y variantes
FRH3	de 66 a 94	66	KoR
		67	A o V
		68	Т
		69	LoM
		70	Т
		71	A, LoT
		72	D
		73	Т
		74	S
		75	SoT
		76	S
		77	T
		78	A
		79	Y
		80	M
			QoE
		81 82	
			L
		82a	S
		82b	SoR
		82c	L
		83	ToR
		84	S
		85	E
		86	D
		87	SoT
		88	A
		89	V
		90	Υ
		91	FoY
		92	С
		93	A
		94	Y, KoR
CDRH3	de 95 a 102, incluyéndose adicionalmente las pos. 100a y 100b		SEC ID Nº 4, 5 ó 6 y variantes
FRH4	de 103 a 113	103	W
		104	G
		105	Q
		106	G
		107	T
		108	T, S o L
		109	VoL
		110	T
		111	V
		112	S
EDI 1	1.4.00	113	SoA
FRL1	de 1 a 23	1	D
		2	I, V o L
		3	QoL
		4	M
		5	Т
		6	Q
		7	ToS
		8	P
		8	Р

ES 2 387 072 T3

Nombre	Intervalo de posición	Pos.	Aminoácido o secuencia de aminoácidos
		12	P
		13	V
		14	SoT
		15	LoP
		16	G
		17	DoE
		18	QoP
		19	A S
		20	
		21	1
		22	S
		23	С
CDRL1	de 22 a 34, incluyéndose adicionalmente las pos. 27a, 27b, 27c, 27d y 27e		SEC ID Nº 7, 8 ó 9 y variantes
FRL2	de 35 a 49	35	W
		36	Υ
		37	L
		38	Q
		39	K
		40	P
		41	G
		42	Q
		43	S
		44	P
		45	KoQ
		46	L
		47	L
		48	IoV
		49	Υ
CDRL2	de 50 a 56		SEC ID Nº 10 u 11 y variantes
FRL3	de 57 a 88	57	G
		58	V
		59	P
		60	D
		61	R
		62	F
		63	S
		64	G
		65	S
		66	G
		67	S
		68	G
		69	Т
		70	D
		71	F
		72	Т
		73	L
		74	K
-		75	I
		76	S
		77	R
		78	V
		79	E
		80	A
		81	E
		82	D
		83	LoV

Nombre	Intervalo de posición	Pos.	Aminoácido o secuencia de aminoácidos
		85	V
		86	Υ
		87	Υ
		88	С
CDRL3	de 89 a 97		SEC ID Nº 12 ó 13 y variantes
FRL4	de 98 a 108	98	F
		99	G
		100	GoQ
		101	G
		102	T
		103	K
		104	L
		105	E
		106	loL
		106a	K
		107	R
		108	Α

[0033] Las secuencias de aminoácidos SEC ID Nº 46 a 79 se corresponden a secuencias de aminoácidos con secuencias flanqueantes preferidas para la cadena pesada variable. Las secuencias de aminoácidos SEC ID Nº 80 a 94 se corresponden a secuencias de aminoácidos con secuencias flanqueantes preferidas para la cadena ligera variable.

5

10

15

20

25

30

35

40

[0034] Las técnicas y los métodos que se tienen que usar para la producción de estas secuencias se conocen por el especialista, del mismo modo, el especialista es capaz de seleccionar secuencias flanqueantes y/o mutaciones adecuadas.

[0035] En el sentido de la invención, las moléculas de reconocimiento específicas para Core-1 pueden estar presentes en diferentes formatos. La estructura fundamental de la molécula de reconocimiento son una o varias cadenas polipeptídicas que comprenden la secuencia triplete 1 o las secuencias triplete 1 y 2 de acuerdo con la invención que se han descrito anteriormente y secuencias flanqueantes secuencias de triplete 2 de forma no covalente o covalente y se pueden situar sobre una o varias cadenas polipeptídicas. Varias cadenas polipeptídicas pueden presentarse como molécula de reconocimiento unidas de forma covalente, por ejemplo, por puentes disulfuro, o de forma no covalente.

[0036] A los diferentes formatos de acuerdo con la invención de las moléculas de reconocimiento pertenecen particularmente la asociación de las secuencias de triplete con secuencias de aminoácidos que van más allá de las secuencias flanqueantes que se han descrito anteriormente. En una variante preferida, por lo tanto, las moléculas de reconocimiento de acuerdo con la invención comprenden, además de las secuencias de triplete y las secuencias flanqueantes, otras secuencias adicionales. Las secuencias adicionales son particularmente secuencias de aminoácidos que no sirven principalmente a la disposición espacial de las secuencias de triplete como en la forma de las secuencias flanqueantes, sin embargo, que pueden influir en las mismas de forma ventajosa por interacciones secundarias o terciarias. A modo de ejemplo, las secuencias adicionales estabilizan el anticuerpo en forma de dominios constantes de un anticuerpo y provocan una dimerización, por lo que se produce una unión mejorada del anticuerpo o, por ejemplo, una fusión de un scFv con un dominio de una proteína de envuelta de un bacteriófago provoca un aumento de actividad de la unión scFv como se describe, por ejemplo, en Jensen KB et. al., 2002.

[0037] En una realización preferida, las moléculas de reconocimiento comprenden secuencias de aminoácidos con secuencias flanqueantes basadas en anticuerpo y, además de las secuencias de triplete, otras secuencias adicionales.

[0038] Las secuencias adicionales tienen particularmente al menos uno de los siguientes objetivos:

- a) unión de una secuencia de triplete con sus correspondientes secuencias flanqueantes adecuadas con al menos una secuencia de triplete adicional con sus correspondientes secuencias flanqueantes adecuadas para generar o mejorar, por ejemplo, una capacidad de unión;
- b) la estabilización de los dominios, por ejemplo, por un enlazador entre dos dominios proteicos o secuencias de aminoácidos que interaccionan con otros de la misma o una segunda cadena;
- c) funciones efectoras para funciones inmunológicas, por ejemplo, por fusión con la parte Fc de anticuerpos, quimiocinas, citoquinas, factores de crecimiento o partes de los mismos o anticuerpos con otra especificidad o fragmentos de los mismos, para el reclutamiento de células del sistema inmune, por ejemplo, macrófagos o partes del sistema de complemento;

d) fusión con marcadores, por ejemplo, secuencias de multimerización, por ejemplo, secuencia de cola μ de IgM o dominios de asociación de p53 o MBL, para la multimerización de los componentes que se unen a Core-1 para una unión multivalente o para la purificación de las moléculas de reconocimiento, por ejemplo, marcador His o para la comprobación, por ejemplo, del marcador myc o para el marcado o la quelación de moléculas de reconocimiento, por ejemplo, por secuencias ricas en lisina.

[0039] El especialista conoce estructuras adecuadas o puede obtener las mismas por deducciones lógicas a partir del estado de la técnica.

10 **[0040]** Son realizaciones preferidas adicionales moléculas de reconocimiento de acuerdo con la invención, que comprenden los siguientes formatos: fragmento de anticuerpo de cadena única (scFv), fragmento Fv, fragmento Fab, fragmento F(ab)₂, multicuerpos (dia-, tria-, tetracuerpos), inmunoglobulina de los isotipos IgG, IgM, IgA, IgE, IgD o sus subclases, por ejemplo, IgG1 o moléculas de reconocimiento obtenidas de inmunoglobulinas que comprenden al menos un dominio constante.

5

15

35

40

45

60

- [0041] En una realización preferida, las moléculas de reconocimiento de acuerdo con la invención consisten en una cadena polipeptídica pesada y una ligera, donde las secuencias de aminoácidos de la cadena pesada y ligera comprenden respectivamente una de las estructuras de triplete que se han descrito anteriormente, que representan las regiones CDR del anticuerpo, las secuencias flanqueantes de anticuerpo correspondientes, que representan la 20 secuencias framework de los anticuerpos y secuencias adicionales que comprenden al menos uno de los dominios constantes del isotipo de anticuerpo. Las dos cadenas pueden establecer entre sí uniones covalentes. Las regiones constantes y las regiones variables pueden contener secuencias de anticuerpos de una o varias especies. Partes de dominios constantes o dominios constantes enteros pueden estar delecionados o mutados, por ejemplo, para modificar la función efectora de las secuencias adicionales, por ejemplo, para evitar o mejorar la unión a receptores 25 Fc. En una realización preferida, la molécula de reconocimiento es un anticuerpo o fragmento de anticuerpo murino, quimerizado, humanizado, parcialmente humano o humano. La quimerización se produce, por ejemplo, por asociación de los dominios variables de los anticuerpos con dominios constantes de anticuerpos o fragmentos de los dominios constantes de anticuerpos de diferentes especies. Se prefieren secuencias de los dominios constantes de anticuerpos humanos. 30
 - **[0042]** Las secuencias flanqueantes de anticuerpo se pueden seleccionar de tal forma que las secuencias sean esencialmente homólogas con respecto a secuencias de anticuerpos humanos. La selección del origen de especie de las secuencias flanqueantes también depende del uso. De este modo, para un uso terapéutico en determinados ámbitos se prefieren en la medida de lo posible grandes cantidades de secuencias flanqueantes humanas, sobre todo cuando se quiere evitar una respuesta de anticuerpos humanos anti-ratón (HAMA). En otros ámbitos terapéuticos es ventajoso un xeno-componente, ya que estimula el sistema inmune de forma adicional. Una combinación de ambos en algunos casos es particularmente adecuada, sobre todo cuando en una primoinmunización es ventajoso un xeno-componente y en usos posteriores, un componente conforme a especie y, por lo tanto, humano.
 - **[0043]** Se prefiere una homología con secuencias consenso humanas, donde para la cadena pesada variable se prefiere la HuHl y para la cadena ligera variable, la HuKll. Se prefiere particularmente una homología con secuencias de línea germinal humana que se conocen por el especialista y que están accesibles, por ejemplo, en el banco de datos V BASE (www.mrc-cpe.cam.ac.uk).
 - **[0044]** Las técnicas y los métodos que se tienen que usar para la producción de estas secuencias se conocen por el especialista, del mismo modo, el especialista es capaz de seleccionar secuencias humanas adecuadas y/o posiblemente realizar mutaciones necesarias de las secuencias.
- 50 [0045] En otra realización, de manera adicional, las secuencias de triplete, que se corresponde generalmente a los bucles de unión (regiones CDR) y que tienen preferiblemente fuertes homologías con las zonas de secuencia correspondientes en la secuencia de línea germinal humana, se igualan a las mismas gradualmente por mutaciones sencillas, sin perjudicar la unión específica a Core-1. Las moléculas de reconocimiento con estas secuencias se denominan en la presente memoria anticuerpos o fragmentos de anticuerpos parcialmente humanos. Las secuencias humanizadas preferidas se representan, por ejemplo, por las secuencias SEC ID Nº 56 a 79 o SEC ID Nº 85 a 94.
 - **[0046]** En una realización preferida adicional, determinados aminoácidos de las secuencias flanqueantes de anticuerpo de una especie se sustituyen por otros para generar normalmente menos regiones inmunógenas. Esto comprende para el especialista tecnologías en sí conocidas, por ejemplo, tecnologías de humanizado, por ejemplo, injerto de CDR, cambio de superficie (resurfacing), transposición de cadenas con mutaciones y desinmunización por mutación o deleción de epítopos de MHC humanos.

[0047] En una realización preferida se trata de una molécula de reconocimiento obtenida de IgM con los correspondientes dominios constantes de una IgM, preferiblemente secuencias humanas. En el sentido de la invención, las inmunoglobulinas consisten en la cadena pesada y la cadena ligera de un anticuerpo, donde preferiblemente 2 cadenas ligeras y 2 cadenas pesadas representan una unidad. Las inmunoglobulinas de tipo IgM consisten la mayoría de las veces en 5 de tales unidades, que adicionalmente a los puentes disulfuro, están asociadas por la cadena J.

5

10

15

20

25

30

35

40

45

50

55

60

[0048] En una realización particularmente preferida, la cadena J no está presente, produciéndose asimismo la multimerización de las subunidades, donde pueden estar presentes en este caso estructuras hexa- y pentaméricas.

100491 En una realización preferida de las moléculas de reconocimiento se trata de fragmentos de anticuerpos de cadena única que comprenden una estructura de triplete 1 con correspondientes secuencias flanqueantes de anticuerpos que se han descrito anteriormente, que representan las regiones CDR del anticuerpo y secuencias framework de dominio variable de la cadena pesada de anticuerpos, y una estructura de triplete 2 con las correspondientes secuencias flanqueantes de anticuerpo que se han descrito anteriormente, que representan las regiones CDR del anticuerpo y secuencias framework del dominio variable de la cadena ligera de anticuerpos, que están asociadas de forma covalente entre sí en forma de una proteína de fusión. Las secuencias están asociadas entre sí directamente o por un enlazador. Se prefieren en la presente memoria formatos de scFv sin enlazador o con un enlazador de 1 a 9 aminoácidos de longitud. Estos anticuerpos scFv forman estructuras multiméricas (por ejemplo, dia-, tria-, tetracuerpos), que en el sentido de la invención también se denominan multicuerpos y que muestran debido a la multivalencia mayor avidez con respecto al antígeno Core-1. Se construyeron moléculas de reconocimiento específicas para Core-1 en el formato scFv con diferentes longitudes de enlazador (SEC ID Nº 95 a 106) y se estudió su característica de unión en el ELISA. Un acortamiento de enlazador gradual condujo a un aumento de la unión a asialoglicoforina, una glicoproteína que lleva Core-1, como se representa en la Figura 3. Las mejores propiedades de unión mostraron en este caso las variantes con las SEC ID Nº 104 y 105. Estas construcciones multivalentes en el formato de dia/triacuerpo son realizaciones particularmente preferidas de la invención y son ventajosas debido a propiedades farmacocinéticas mejoradas para la terapia tumoral.

[0050] En una realización preferida adicional, las moléculas de reconocimiento se fusionan, acoplan químicamente, asocian de forma covalente o no covalente con (i) dominios de inmunoglobulinas de diferentes especies, (ii) moléculas enzimáticas, (iii) dominios de interacción, (iv) secuencias señal, (v) colorantes fluorescentes, (vi) toxinas, (vii) anticuerpos catalíticos, (viii) uno o varios anticuerpos o fragmentos de anticuerpos con otra especificidad, (ix) componentes citolíticos, (x) inmunomoduladores, (xi) inmunoefectores (xii) antígenos de MHC de clase I o clase II, (xiii) quelantes para el marcado radiactivo, (xiv) radioisótopos, (xv) liposomas, (xvi) dominios transmembrana, (xvii) virus y/o células. Además, las moléculas de reconocimiento pueden estar fusionadas particularmente con un marcador que posibilita la detección de la molécula de reconocimiento y su purificación, como por ejemplo, un marcador Myc o un marcador His. El especialista conoce tecnologías para la producción de estas construcciones, así mismo, el especialista es capaz de seleccionar secuencias y componentes adecuados y unir los mismos de forma adecuada con las moléculas de reconocimiento de acuerdo con la invención.

[0051] En una realización preferida adicional, las moléculas de reconocimiento descritas basadas en anticuerpos o fragmentos de anticuerpos se fusionan con péptidos o proteínas que no se obtienen de inmunoglobulinas. A modo de ejemplo, los dominios de multimerización de una molécula no inmunoglobulina se fusionan con un scFv, particularmente el extremo C-terminal de la cadena alfa de la proteína de unión C4, como se describe en Tonye Libyh M. *et al.*, 1997 y, de este modo, se construye una molécula de reconocimiento multivalente.

[0052] En una realización adicional se fusiona un scFv con un dominio transmembrana de una molécula no inmunoglobulina, por ejemplo, con el dominio transmembrana de c-erb B2, del h-PDGFR del receptor de transferrina humano o del receptor de asialoglicoproteína humana (Liäo, *et al.*, 2000) y, por lo tanto, se posibilita la expresión de moléculas de unión sobre la superficie de células.

[0053] Una realización preferida adicional de la invención comprende moléculas de reconocimiento de acuerdo con la invención que comprenden adicionalmente secuencias de aminoácidos que se unen de forma específica a macrófagos u otras células efectoras inmunes. A modo de ejemplo, las moléculas de reconocimiento de acuerdo con la invención comprenden de forma adicional un sitio de unión a anticuerpo contra CD64, por lo que se produce en forma de un anticuerpo o fragmento de anticuerpo biespecífico (diacuerpos) la unión de macrófagos a células tumorales positivas para Core-1, lo que conduce a su control y/o destrucción.

[0054] Una realización preferida de la invención se refiere a moléculas de reconocimiento específicas para Core-1 marcadas radiactivamente. Una forma preferida son moléculas de reconocimiento basadas en anticuerpos o fragmentos de anticuerpos. Una realización preferida adicional son moléculas de reconocimiento de acuerdo con la invención marcadas radiactivamente en el formato de cadena única (incluyendo dia-, tria-, tetracuerpos). Son formas preferidas adicionales fragmentos de anticuerpos de cadena única marcados radiactivamente e inmunoglobulinas

ES 2 387 072 T3

enteras, por ejemplo, anticuerpos IgG o IgM quiméricos o humanizados o fragmentos de anticuerpos humanizados de acuerdo con la invención. Evidentemente, la invención no se limita a estos anticuerpos, el marcado radiactivo y estos formatos de los anticuerpos.

5

10

15

20

25

30

35

45

50

55

60

[0055] Los fragmentos de anticuerpos como los fragmentos de scFv multivalentes preferidos, particularmente sin o con un enlazador muy corto, ofrecen una ventaja frente a anticuerpos monoclonales intactos al dirigirse contra tumores sólidos. En anticuerpos intactos que muestran en estudios de biodistribución una acumulación específica en el área tumoral, se observa en un estudio más detallado del tumor una distribución heterogénea de anticuerpos con una acumulación preferente en la zona del borde. Las partes de tumor situadas de forma central no son alcanzadas por estas construcciones de anticuerpos debido a necrosis tumoral, distribución heterogénea del antígeno, así como una presión tisular intersticial aumentada. Por el contrario, fragmentos de anticuerpos más pequeños muestran un marcado tumoral rápido, penetran más profundamente en el tumor y, al mismo tiempo, se retiran relativamente rápido de la circulación sanguínea. La constante de disociación de fragmentos de anticuerpos monovalentes como Fab o scFv. sin embargo, muchas veces es demasiado baja, lo que da como resultado un tiempo de permanencia corto en las células tumorales. Por lo tanto, construcciones de anticuerpos multivalentes como multicuerpos (diacuerpos, tria/tetracuerpos), F(ab')2 y otros minicuerpos (construcciones de anticuerpos multivalentes que consisten en el dominio de unión y una secuencia de multimerización, por ejemplo, scFv y dominio CH3 de una IgG) ofrecen muchas ventaias en la terapia tumoral. Las construcciones multivalentes en el formato dia/tricuerpo son realizaciones preferidas de la invención y, debido a propiedades farmacocinéticas mejoradas, son ventajosas para la terapia tumoral y se han continuado desarrollando para el uso en la terapia tumoral. Se pueden usar como vehículos para la acumulación específica de, por ejemplo, sustancias citotóxicas como quimioterápicos o radionúclidos en el tumor. Por la selección adecuada de radionúclidos se pueden inactivar células tumorales a lo largo de una distancia de varios diámetros celulares, por lo que también se pueden detectar células tumorales negativas a antígeno en un área de tumor y se puede equilibrar al menos parcialmente la mala penetración de los anticuerpos en tumores sólidos.

[0056] Una realización particularmente preferida de la invención son multicuerpos marcados radiactivamente, particularmente como se indica con más detalle en el Ejemplo 9, que en la combinación frente a inmunoglobulinas completas y scFv, aúnan propiedades farmacocinéticas particularmente ventajosas con una retención en el tumor mejorada, penetración en el tumor, vida media sérica y relación de distribución de suero a tumor. Son ventajas adicionales la elevada avidez y la expresión bacteriana que permite producir de forma económica estas moléculas de reconocimiento. Para esto, este formato particular de las moléculas de reconocimiento de acuerdo con la invención es ventajosamente adecuado para el tratamiento de tumores primarios pequeños, metástasis y enfermedades residuales mínimas.

[0057] Una realización preferida de la invención son moléculas de reconocimiento no marcadas radiactivamente. Una forma preferida son moléculas de reconocimiento basadas en anticuerpos o fragmentos de anticuerpos.

[0058] Una realización particularmente preferida son inmunoglobulinas quiméricas y humanizadas basadas en moléculas IgM para la inhibición de metástasis hepática y para controlar células tumorales residuales.

[0059] Son realizaciones preferidas adicionales moléculas de reconocimiento basadas en IgM e IgG quiméricas o humanizadas de acuerdo con la invención acopladas a toxinas o citostáticos y particularmente multicuerpos (dia-, tria-, tetracuerpos), con propiedades farmacocinéticas particularmente ventajosas como se ha indicado anteriormente.

[0060] Por lo demás, liposomas que están cargados, por ejemplo, con toxinas y citostáticos, pueden llevar sobre su superficie moléculas de reconocimiento de acuerdo con la invención. El especialista es capaz de seleccionar radioisótopos, toxinas y citostáticos adecuados. El especialista conoce técnicas, procedimientos, dosificaciones y formulaciones adecuadas.

[0061] Adicionalmente, células efectoras del sistema inmune, sobre cuya superficie se unen moléculas de reconocimiento de acuerdo con la invención, se pueden dirigir/consignar por esas moléculas hacia células tumorales que llevan Core-1 y, por lo tanto, pueden mediar su control y/o destrucción. Son células efectoras preferidas macrófagos, células dendríticas y células NK que se obtienen del paciente y se acoplan ex vivo a las moléculas de reconocimiento. Se prefieren adicionalmente líneas celulares de estos tipos celulares. El acoplamiento se realiza, por ejemplo, por moléculas de reconocimiento biespecíficas que, además de los componentes específicos para Core-1, comprenden adicionalmente aminoácidos que provocan una unión a las células efectoras. A modo de ejemplo, estos son anticuerpos biespecíficos, componentes del complemento o dominios constantes de anticuerpos.

[0062] Se prefieren macrófagos del paciente que, después de la obtención con un anticuerpo biespecífico, por ejemplo, en forma de anticuerpos completos, reconocen preferiblemente fragmentos Fab acoplados químicamente o más preferiblemente diacuerpos que reconocen por un lado CD64 y por otro lado son, de acuerdo con la invención,

específicos para8 Core-1. Estos macrófagos que llevan las moléculas de reconocimientos biespecíficas por la especificidad para CD64 se vuelven a suministrar al paciente en una formulación adecuada para controlar el tumor positivo para Core-1. Las técnicas usadas para esto y los procedimientos, las dosificaciones y las formulaciones adecuadas se conocen por el especialista. Una variante preferida adicional son macrófagos del paciente que después de la obtención con un anticuerpo o un fragmento de anticuerpo específico para Core-1 de acuerdo con la invención, comprenden la parte constante de un anticuerpo, que se une a macrófagos por los receptores Fc en sí conocidos. Las moléculas de reconocimiento, como anticuerpos enteros, preferiblemente IgG o IgM quiméricas o humanizadas, o como fragmento de anticuerpo, por ejemplo, scFv, Fab o multicuerpos en forma de una proteína de fusión o acoplado químicamente, se pueden unir a los macrófagos con la parte conocida por el especialista del dominio constante de anticuerpos. Estos macrófagos que llevan las moléculas de reconocimiento se vuelven a suministrar al paciente en una formulación adecuada para controlar el tumor positivo para Core-1. Las técnicas usadas para esto y los procedimientos, las dosificaciones y las formulaciones adecuadas se conocen por el especialista.

5

10

30

35

50

55

60

15 [0063] Las líneas celulares o las células del cuerpo como las células efectoras que se han descrito anteriormente que están transfectadas con moléculas pueden comprender las moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención y adicionalmente elementos que provocan una expresión y un anclaje en la membrana, por ejemplo, el dominio transmembrana, y median en la activación de las células efectoras durante el contacto con una célula tumoral que lleva Core-1. Los elementos correspondientes se conocen por el especialista. A modo de ejemplo, una línea celular dendrítica se transfecta con un vector que comprende una molécula de reconocimiento que comprende un scFv o multicuerpo de acuerdo con la invención y un dominio transmembrana y un dominio de activación. En otro ejemplo para esto, se transfectan viralmente macrófagos. Estas células efectoras que llevan las moléculas de reconocimiento se suministran a un paciente en una formulación adecuada para controlar el tumor positivo para Core-1. Las técnicas usadas para esto y los procedimientos, las dosificaciones y las formulaciones adecuadas se conocen por el especialista.

[0064] La invenció se refiere también a moléculas de ácido nucleico que comprenden una o varias secuencias genéticas que codifican al menos una de las moléculas de reconocimiento y/o construcciones de acuerdo con la invención que se han descrito anteriormente. Debido al código genético degenerado, estas moléculas de ácido nucleico pueden tener secuencias muy diversas. La selección de los codones también depende de la célula que se usa para la producción de la molécula de reconocimiento, ya que en diferentes células de diferentes organismos a menudo se prefieren codones diferentes y se puede influir en gran medida en la velocidad de expresión, por ejemplo, los codones AGA y AGG para arginina usados preferiblemente para genes eucariotas están presentes solamente de forma esporádica en bacterias. En este caso se presentan con claramente mayor frecuencia los codones CGC y CGU. La molécula de ácido nucleico es preferiblemente un ADN genómico, un ADNc y/o un ARN. Los criterios para la selección de codones adecuados y la producción de una molécula adecuada de ácido nucleico se conocen por el especialista.

[0065] Además la invención se refiere a vectores para la expresión de las moléculas de reconocimiento particularmente en células. Por un vector se entiende en el sentido de la invención una molécula de ácido nucleico que sirve para la expresión de la molécula de reconocimiento y que comprende una secuencia de ácido nucleico que comprende una o varias secuencias genéticas, que codifican al menos una de las moléculas de reconocimiento que se han descrito anteriormente, y particularmente comprende al menos un promotor que provoca la expresión de la molécula de reconocimiento. Los vectores pueden comprender evidentemente elementos adicionales que son conocidos por el especialista y que sirven, por ejemplo, para la multiplicación de vectores para la producción en células adecuadas y para la clonación.

[0066] Las secuencias de ácido nucleico pueden estar presentes sobre uno o varios vectores, por ejemplo, en una realización preferida, la cadena pesada de una inmunoglobulina de acuerdo con la invención está codificada por un vector y la cadena ligera por otro. Preferiblemente, el dominio variable de la cadena ligera y el dominio variable de la cadena pesada se sitúan sobre el mismo vector codificados con un promotor como proteína de fusión. Además, las secuencias de ácido nucleico que codifican partes de una molécula de reconocimiento se pueden expresar por promotores diferentes conocidos por el especialista. Por lo demás, las diferentes secuencias de ácido nucleico se pueden situar sobre un vector común. Cada secuencia se puede expresar por un promotor propio, igual o diferente, o las secuencias pueden estar presentes bajo un promotor en un vector bicistrónico. Preferiblemente, por los diferentes promotores se consiguen diferentes velocidades de expresión de las partes de las moléculas de reconocimiento que mejoran una unión de toda la molécula de reconocimiento frente a una velocidad de expresión igual de las diferentes partes. De forma adicionalmente preferida se usan promotores que son inducibles para mejorar una expresión de la molécula de reconocimiento. De forma particularmente preferida, los vectores comprenden adicionalmente otros elementos reguladores conocidos por el especialista, por ejemplo, potenciadores que aumentan la expresión de la molécula de reconocimiento o partes de la misma, por ejemplo, el potenciador del CMV o secuencias de potenciador de inmunoglobulina. Preferiblemente, las moléculas de ácido nucleico y los vectores comprenden adicionalmente secuencias de ácido nucleico que sirven como secuencias señal para la secreción de la molécula de reconocimiento o partes de la misma que se conocen por el especialista, por ejemplo, PelB, OmpA o MalE para sistemas celulares procariotas o el péptido señal del receptor de célula T, de las cadenas de inmunoglobulinas, de t-PA o EPO para sistemas celulares eucariotas [Boel et al., 2000; Herrera et al., 2000]. Esto simplifica ventajosamente la purificación y/o mejora la obtención de las moléculas de reconocimiento. Los procedimientos para la producción de los ácidos nucleicos que se han descrito anteriormente y vectores, promotores adecuados, potenciadores y construcciones de vectores así como los criterios para su selección se conocen por el especialista y se explican con más detalle en los ejemplos.

5

10

15

20

35

40

45

50

55

60

[0067] Particularmente, el vector comprende adicionalmente secuencias de ácido nucleico que codifican para proteínas virales. Como una forma particular de un vector se indica el propio virus, cuyo material genético comprende una secuencia de ácido nucleico que codifica para una molécula de reconocimiento de acuerdo con la invención. En una forma preferida, la molécula de reconocimiento es una proteína de fusión con una proteína de envuelta viral o parte de la misma que posibilita que no solamente el material genético comprenda la secuencia de ácido nucleico de la molécula de reconocimiento, sino también la propia molécula de reconocimiento esté presente sobre la superficie del virus con actividad de unión, por ejemplo, una molécula de reconocimiento scFv de acuerdo con la invención como proteína de fusión con una proteína de envuelta de adenovirus, poxvirus o virus vaccinia adecuados para usos de terapia génica. Esto proporciona la dirección del virus a una célula tumoral que expresa Core-1, por lo que se produce la expresión de la molécula de reconocimiento en la célula tumoral. Esto se puede usar para la expresión de la molécula de reconocimiento in vivo en el organismo o in vitro en el cultivo celular. Preferiblemente se usan sistemas conocidos que usan un virus auxiliar para la replicación para garantizar, por ejemplo, la seguridad de un procedimiento de terapia génica que comprende este vector. Los procedimientos para la producción de los vectores virales descritos, para la infección y la expresión de las moléculas de reconocimiento se conocen por el especialista.

25 [0068] En una realización más preferida, el vector puede comprender una proteína de fusión de una molécula de reconocimiento de acuerdo con la invención y una proteína o un péptido que se une de forma especifica a un virus. Las moléculas de reconocimiento obtenidas se pueden usar de este modo de manera ventajosa para la dirección del virus a una célula que expresa Core-1. De este modo, por ejemplo, la transferencia del material genético puede estar mediada por infecciones, por lo que se posibilita expresar moléculas específicas, que se codifican por el material genético del virus, en las células *in vivo* en el organismo en forma de una terapia génica o *in vitro* en el cultivo celular.

[0069] Adicionalmente, la invención se refiere a un procedimiento para la obtención de las moléculas de reconocimiento que comprende la introducción de uno o varios vectores según la invención, que contienen una o varias moléculas de ácido nucleico según la invención, en una célula hospedadora adecuada, el cultivo de esta célula hospedadora en condiciones adecuadas y la proporción de una o varias moléculas de reconocimiento a partir de las células o del medio de cultivo. Por la expresión "inclusión de vectores" se entienden en el sentido la invención tecnologías conocidas por el especialista con las que se introduce el vector en una célula hospedadora, por ejemplo, electroporación, transfección, usando lípidos catiónicos o infección y en las que permanecen de forma transitoria o estable. Por la expresión "proporcionar una o varias moléculas de reconocimiento" se entienden en el sentido de la invención tecnologías en sí conocidas por el especialista con las que las moléculas de reconocimiento expresadas durante el proceso de cultivo se obtienen del sobrenadante del cultivo y/o las células, por ejemplo, diferentes etapas de purificación de química de proteínas, por ejemplo, fraccionado, concentración, precipitaciones y/o cromatografía. Las técnicas y los métodos que se tienen que usar en el procedimiento se conocen por el especialista, así mismo, el especialista es capaz de seleccionar células hospedadoras y condiciones de cultivo adecuadas así como métodos para la proporción de las células y/o del sobrenadante del cultivo. Para esto, el especialista selecciona, por ejemplo, como ya se ha indicado anteriormente, secuencias de ácido nucleico con codones adecuados y secuencias de promotor ajustadas a la célula hospedadora para obtener la expresión más intensa posible de moléculas de reconocimiento activas. En una realización preferida, el especialista usa, por ejemplo etapas de cromatografía de afinidad, por ejemplo, cromatografía de proteína A o proteína G o proteína L o, por ejemplo, cromatografía de afinidad por iones metálicos por un marcador His incluido adicionalmente. En los ejemplos esto se explica de forma ilustrativa con más detalle.

[0070] El término "obtención" comprende, además de las etapas que se han mencionado de forma explícita anteriormente, también etapas adicionales como, por ejemplo, tratamientos previos del material de partida o tratamientos posteriores del producto final. El especialista conoce procedimientos de tratamiento previo. Los procedimientos de tratamiento posterior comprenden, además de los procedimientos de preparación que se han descrito anteriormente, también las composiciones finales y/o la formulación de la molécula de reconocimiento obtenida con el procedimiento de producción en formas de uso y/o administración adecuadas. El tipo de la forma de uso o administración, por ejemplo, solución, liofilizado o comprimido, depende en este caso del uso pretendido. El especialista conoce qué forma de administración es adecuada para según que propósito de uso. Dependiendo de la forma de administración, la molécula de reconocimiento producida por el procedimiento de acuerdo con la invención puede estar presente junto con excipientes, soportes u otros ingredientes activos. Los excipientes son en este caso

5

10

15

20

25

30

45

50

55

60

preferiblemente adyuvantes, ingredientes activos adicionales, preferiblemente moléculas inmunoestimulantes como interleucinas. La molécula de reconocimiento producida mediante el procedimiento de acuerdo con la invención también se puede modificar químicamente en etapas de tratamiento posterior. Preferiblemente, la molécula de reconocimiento se une en este caso con una o varias moléculas adicionales de forma adecuada, es decir, por interacción química o física. Como moléculas adicionales en el sentido de la invención sirven preferiblemente otras proteínas o péptidos que se asocian de forma covalente o no covalente con las moléculas de reconocimiento producidas por el procedimiento de acuerdo con la invención, por ejemplo, para producir moléculas de reconocimiento biespecíficas asociando una molécula de reconocimiento de acuerdo con la invención, que reconoce de forma específica el antígeno Core-1, con una segunda molécula que se une de forma específica, por ejemplo, a una célula efectora inmune (por ejemplo, macrófagos, células NK, células dendríticas) o, por ejemplo, una asociación con interleucinas (por ejemplo, IL-2, IL-7, IL-12, IL-15), quimiocinas o factores de crecimiento, por lo que por el efecto de estas moléculas por la unión de la molécula de reconocimiento de acuerdo con la invención se dirigen inmunoefectores a las células tumorales positivas para Core-1 y, por ejemplo, controlan y/o destruyen las mismas. Estas moléculas adicionales o partes de las mismas, como ya se he descrito anteriormente, también pueden ser parte de la propia molécula de reconocimiento y, en este caso, no se asocian por los métodos químicos o físicos que se han descrito en la presente memoria después de la expresión de la molécula de reconocimiento. Por "inmunoefectores" se entiende en el sentido de la invención los componentes de la invención que pueden provocar directamente o indirectamente un control y/o una destrucción de células tumorales positivas para Core-1, por ejemplo, células inmunoefectoras, por ejemplo, macrófagos, células NK, células dendríticas o moléculas efectoras como, por ejemplo, proteínas o péptidos del sistema de complemento. Como moléculas adicionales en el marco del procedimiento de acuerdo con la invención son adecuadas particularmente sustancias que desarrollan un efecto terapéutico o diagnóstico, por ejemplo, radioisótopos o toxinas. Estas sustancias se asocian con las moléculas de reconocimiento mediante procedimientos en sí conocidos, por ejemplo, los radioisótopos se incluyen directamente (por ejemplo, yodo) o se unen por un quelante acoplado de forma covalente (por ejemplo, itrio, indio, bismuto). El especialista conoce las etapas del procedimiento de tratamiento posterior.

[0071] Las células usadas de acuerdo con la invención para la expresión de las moléculas de reconocimiento pueden ser células procariotas o eucariotas, por ejemplo, células bacterianas, de levadura (preferiblemente *S. cerevisiae* o *P. pastoris*), de insecto (*D. melanogaster*), vegetales, de mamífero (preferiblemente líneas celulares de hámster, ratón o humanas) u organismos como animales y plantas transgénicas. Preferiblemente, para la expresión de las moléculas de reconocimiento de acuerdo con la invención en un sistema procariota se usa *E. coli* y para la expresión en un sistema eucariota, las líneas celulares de mamífero NSO SP2/0, CHO-K1, CHOdhfr-, COS-1, COS-7, HEK293, K562, Namalwa o Percy 6.

35 [0072] Con ayuda de células hospedadoras que se han producido mediante el procedimiento que se ha descrito anteriormente se pueden producir moléculas de reconocimiento de acuerdo con la invención. Evidentemente, las células hospedadoras pueden ser parte de un clon o representar el mismo. Los organismos comprenden a su vez estas células hospedadoras. Las técnicas y los métodos que se tienen que usar para la producción de estos organismos se conocen por el especialista.

[0073] La invención se refiere adicionalmente a composiciones que son adecuadas para propósitos terapéuticos, profilácticos o diagnósticos que comprenden al menos una molécula de reconocimiento de acuerdo con la invención en una forma o composición adecuada, particularmente farmacéuticamente adecuada. La composición farmacéutica comprende particularmente agentes y sustancias adicionales, por ejemplo, excipientes médicos y/o de técnica farmacéutica. En el sentido de la invención se consideran fármacos las composiciones farmacéuticas que se usan con propósitos terapéuticos y profilácticos así como las composiciones farmacéuticas que se utilizan *in vivo* como agentes de diagnóstico. Preferiblemente se trata de composiciones para el diagnóstico *ex vivo* que pueden contener agentes y sustancias adicionales. Esta realización se explica con más detalle bajo la descripción para los medios diagnósticos.

[0074] "Fármacos o composiciones farmacéuticas", que en la presente memoria se usan de forma sinónima, son, de acuerdo con la invención, agentes y preparaciones de agentes que tienen por objeto curar, mitigar o impedir por uso sobre o en el cuerpo humano enfermedades, afecciones, lesiones corporales o trastornos. Los excipientes médicos son de acuerdo con la invención los agentes que se utilizan para la producción como ingredientes activos de fármacos. Los excipientes farmacéutico-técnicos sirven para la formulación adecuada del fármaco o de la composición farmacéutica y si se necesitan solamente durante el proceso de producción, incluso se pueden retirar posteriormente y pueden ser parte de la composición farmacéutica como soportes farmacéuticamente compatibles. A continuación se indican ejemplos de vehículos farmacéuticamente compatibles. La formulación del fármaco o la formulación de la composición farmacéutica se realizan en un caso dado en combinación con un soporte y/o un diluyente farmacéuticamente compatible. El especialista conoce soportes farmacéuticamente compatibles adecuados y comprenden, por ejemplo, soluciones salinas tamponadas con fosfato, agua, emulsiones como por ejemplo emulsiones de aceite/agua, diferentes tipos de detergentes, soluciones estériles, etc. Los fármacos o las composiciones farmacéuticas que comprenden tales soportes se pueden formular mediante métodos convencionales conocidos. Estos fármacos o composiciones farmacéuticas se pueden administrar a un individuo en una dosis

adecuada, por ejemplo, en un intervalo de 1 μg a 10 g de moléculas de reconocimiento por día y paciente. Se prefieren dosis de 1 mg a 1 g. La administración se puede realizar por diferentes vías, por ejemplo, por vía intravenosa, intraperitoneal, intrarrectal, intragastrointestinal, intraganglionar, intramuscular, local, modo de ejemplo, en el tumor, sin embargo, también por vía subcutánea, intradérmica o sobre la piel o sobre las mucosas. La administración de ácidos nucleicos también puede suceder en forma de terapia génica, por ejemplo, por vectores virales que se han descrito anteriormente. El tipo de la dosificación y la vía de administración se puede determinar por el médico a cargo del caso de forma correspondiente a los factores clínicos. El especialista conoce que el tipo de la dosificación depende de diferentes factores, como por ejemplo, el tamaño, la superficie corporal, la edad, el sexo o la salud general del paciente, sin embargo, también del agente especial que se administra, de la duración y del tipo de la administración y de otros medicamentos que posiblemente se administran de forma paralela.

5

10

15

20

35

40

45

55

[0075] Las composiciones farmacéuticas o el fármaco comprenden particularmente una sustancia farmacológica que contiene una o varias moléculas de reconocimiento de acuerdo con la invención y/o las moléculas de ácido nucleico que codifican las mismas en una solución o forma de administración adecuada. Los mismos se pueden administrar bien solos con los excipientes correspondientes descritos en fármacos o composiciones farmacéuticas o en combinación con uno o varios adyuvantes, por ejemplo, QS-21, GPI-0100 u otras saponinas, emulsiones de agua-aceite, por ejemplo, adyuvantes Montanide, polilisina, compuestos de poliarginina, compuestos de ADN como, por ejemplo, CpG, Detox, vacunas bacterianas como, por ejemplo, vacunas de tifus o vacunas de BCG y/o un agente adecuado diferente para la amplificación del efecto; preferiblemente moléculas inmunoestimulantes como interleucinas, por ejemplo IL-2, IL-12, IL-4 y/o factores de crecimiento, por ejemplo GM-CSF. Los mismos se mezclan en métodos conocidos con las moléculas de reconocimiento de acuerdo con la invención y se administran en una formulación y dosificación adecuadas. El especialista conoce formulaciones, dosificaciones y componentes adecuados.

25 [0076] La composición farmacéutica o el fármaco pueden ser, evidentemente, incluso una combinación de 2 o varias de las composiciones farmacéuticas o los fármacos de acuerdo con la invención, así como una combinación con otros fármacos, vacunas tumorales o tratamientos de tumor como, por ejemplo, terapias con anticuerpos, quimioterapias o radioterapias que se usan de forma adecuada de manera común o separada en el tiempo. La producción de los fármacos o las composiciones farmacéuticas se realiza por métodos conocidos.

100771 Los fármacos o las composiciones farmacéuticas se pueden utilizar particularmente para el tratamiento de enfermedades tumorales positivas para Core-1 como, por ejemplo, carcinomas de mama, carcinomas de cuello uterino, carcinomas ováricos, carcinomas de colon, carcinomas gastrointestinales, carcinomas de páncreas, carcinomas de pulmón, y carcinomas de próstata. A estas enfermedades tumorales también pueden pertenecer enfermedades tumorales positivas para Core-1 y/o Core-2. El tratamiento se dirige, por ejemplo, contra tumores primarios, enfermedades tumorales residuales mínimas, recidivas y/o metástasis. El tratamiento de los tumores también se puede realizar como tratamiento advuvante. El uso de los fármacos también puede realizarse para la profilaxis de enfermedades tumorales positivas para Core-1. El uso profiláctico se dirige, por ejemplo, a una profilaxis del tumor así como de metástasis. Los agentes antitumorales se administran en una forma adecuada de acuerdo con métodos conocidos. Una variante preferida es la inyección o administración de los fármacos por vía intravenosa, local en cavidades corporales, por ejemplo por vía intraperitoneal, intrarrectal, intragastrointestinal, local, por ejemplo, directamente en el tumor, los órganos o vasos linfáticos (intraganglionar), sin embargo, también por vía subcutánea, intradérmica o sobre la piel, intramuscular. Las formas de administración también se pueden combinar de forma preferida, pudiéndose administrar en diferentes días de tratamiento o en un día de tratamiento. De acuerdo con la invención también se pueden combinar 2 o varios de los fármacos o las composiciones farmacéuticas de acuerdo con la invención o uno o varios fármacos de acuerdo con la invención con uno o varios fármacos o tratamientos de tumor como, por ejemplo, terapia con anticuerpos, quimioterapias o radioterapias, que se administran o usan de forma común o separada en el tiempo.

[0078] Además, se describe un procedimiento para la producción de un fármaco o una composición farmacéutica que comprende las etapas de la producción de

[0079] moléculas de reconocimiento y que comprende adicionalmente la etapa de la formulación de las moléculas de reconocimiento de acuerdo con la invención en una forma farmacéuticamente compatible. Las moléculas de reconocimiento de acuerdo con la invención preferidas para esto se han descrito anteriormente como realizaciones para el tratamiento de enfermedades tumorales y la profilaxis, asimismo se describirán con más detalle a continuación en Agentes de Diagnóstico *in vivo*.

[0080] Las moléculas de reconocimiento de acuerdo con la invención y los agentes y las composiciones producidos mediante el procedimiento, por lo tanto, se pueden usar preferiblemente para la profilaxis, el diagnóstico, el control de la evolución y/o el tratamiento de enfermedades tumorales. El uso de las moléculas de reconocimiento, de los vectores y/o del fármaco o de la composición farmacéutica para la profilaxis y/o el tratamiento de enfermedades cancerosas, incluyendo tumores y metástasis, también es preferido.

[0081] En una realización preferida, la enfermedad cancerosa o el tumor que se trata o se evita se selecciona del grupo de enfermedades cancerosas o enfermedades tumorales de la zona de oídos, nariz y laringe, del pulmón, del mediastino, de tracto gastrointestinal, del sistema urogenital, del sistema ginecológico, de la mama, del sistema endocrino, de piel, huesos y tejidos blandos, mesoteliomas, melanomas, neoplasias del sistema nervioso central, enfermedades cancerosas o enfermedades tumorales en la infancia, linfomas, leucemias, síndromes paraneoplásicos, metástasis sin tumor primario conocido (síndrome CUP), carcinomatosis peritoneales, neoplasias relacionadas con inmunosupresión y/o metástasis tumorales.

5

10

15

20

25

30

35

40

45

50

55

60

[0082] Particularmente, los tumores pueden ser los siguientes tipos de cáncer: adenocarcinoma de la mama, de la próstata y del intestino grueso; todas las formas de cáncer pulmonar que parte de los bronquios; cáncer de médula ósea, el melanoma, el hepatoma, el neuroblastoma; el papiloma; el apudoma, el coristoma, el branquioma; el síndrome carcinoide maligno; la cardiopatía carcinoide; el carcinoma (carcinoma de Walker, carcinoma de células basales, carcinoma basoescamoso, carcinoma de Brown-Pearce, carcinoma ductal, tumor de Ehrlich, carcinoma in situ, carcinoma de cáncer 2, carcinoma de células de Merkel, carcinoma de mucosas, el carcinoma bronquial de células no pequeñas, carcinoma de células de avena, carcinoma papilar, carcinoma cirrótico, carcinoma bronquioalveolar, carcinoma bronquial, carcinoma de células escamosas y carcinoma de células transicionales); alteración funcional histiocítica; leucemia (por ejemplo, en relación a leucemia de células B, leucemia de células mixtas, leucemia de células nulas, leucemia de células T, leucemia crónica de células T, leucemia asociada a HTLV II, leucemia linfocítica aguda, leucemia linfocítica crónica, leucemia mastocítica y leucemia mieloide), histiocitosis maligna, enfermedad de Hodking, linfoma no Hodking, tumor solitario de células plasmáticas; reticuloendoteliosis, condroblastoma; condroma, condrosarcoma; fibroma; fibrosarcoma; tumores de células gigantes; histiocitoma; lipoma, liposarcoma, leucosarcoma; mesotelioma; mixoma; mixosarcoma; osteoma; osteosarcoma; sarcoma de Ewing; sinovioma, adenofibroma; adenofinfoma; carcinosarcoma, cordoma, craneofaringioma, disgerminoma, hamartoma; mesenguimoma; mesonefroma, miosarcoma, ameloblastoma, cementoma; odontoma; teratoma; timoma; corioblastoma; adenocarcinoma, adenoma; colangioma; collesteatoma; cilindroma; cistadenocarcinoma, cistadenoma; tumor de células de la granulosa, ginandroblastoma; hidradenoma; tumor de células de islote; tumor de células de Levdig: papiloma: tumor de células de Sertoli, tumor de células de la teca, leiomioma: leiomiosarcoma: mioblastoma; mioma; miosarcoma; rabdomioma; rabdomiosarcoma; ependinoma; ganglioneuroma, glioma; meduloblastoma, meningioma; neurolemoma; neuroblastoma; neuroepitelioma, neurofibroma, neuroma, paraganglioma, paraganglioma no cromafín, angioqueratoma, hiperplasia angiolinfoide con eosinofilia; angioma angiomatosis; glomangioma; hemagioendotelioma; hemangioma; hemangiopericitoma. linfangioma; linfangiomioma, linfangiosarcoma; hemangiosarcoma. pinealoma; cistosarcoma hemangiosarcoma; linfangiosarcoma; mixosarcoma, carcinoma ovárico; sarcoma (por ejemplo, sarcoma de Ewing, experimental, sarcoma de Kaposi y sarcoma de mastocitos), neoplasias (por ejemplo, neoplasias óseas, neoplasias de mama, neoplasias de sistema digestivo, neoplasias colorrectales, neoplasias hepáticas, neoplasias de páncreas, neoplasias de hipófisis, neoplasias de testículos, neoplasias de orbita, neoplasias de la cabeza y el cuello, del sistema nervioso central, neoplasias del órgano auditivo, de la pelvis, del tracto respiratorio y del tracto urogenital): neurofibromatosis y displasia de epitelio escamoso del cuello uterino.

[0083] En una realización preferida adicional, la enfermedad cancerosa o del tumor que se trata o se evita se selecciona del grupo de enfermedades cancerosas o enfermedades tumorales que comprenden células que comprenden el Core-1 en la definición de acuerdo con la invención seleccionadas del grupo: tumores de la zona de oídos, nariz y laringe que comprenden tumores del interior de la nariz, de los senos paranasales, de la nasofaringe, de los labios, de la cavidad oral, de la orofaringe, de la laringe, de la hipofaringe, del oído, de las glándulas salivales y paragangliomas, tumores del pulmón que comprenden carcinomas bronquiales de células no pequeñas, carcinomas bronquiales de células pequeñas, tumores del mediastino, tumores del tracto gastrointestinal que comprenden tumores del esófago, del estómago, del páncreas, del hígado, de la vesícula biliar y de los conductos biliares, del intestino delgado, carcinomas de colon y de recto y carcinomas anales, tumores urogenitales que comprenden tumores de los riñones, de los uréteres, de la vejiga, de la próstata, del uréter, del pene y de los testículos, tumores ginecológicos que comprenden tumores de cuello del útero, de la vagina, de la vulva, carcinoma del útero, enfermedad trofoblástica maligna, carcinoma ovárico, tumores de los conductos ováricos (trompa de Falopio), tumores de la cavidad abdominal, carcinomas de mama, tumores de órganos endocrinos que comprenden tumores de la tiroides, de la paratiroides, de la corteza suprarrenal, tumores endocrinos pancreáticos, tumores carcinoides y síndrome carcinoide, neoplasias endocrinas múltiples, sarcomas óseos y de tejidos blandos, mesoteliomas, tumores cutáneos, melanomas que comprenden melanomas cutáneos e intraoculares, tumores del sistema nervioso central, tumores en la infancia que comprenden retinoblastoma, tumor de Wilms, neurofibromatosis, neuroblastoma, familia tumoral del sarcoma de Ewing, rabdomiosarcoma, linfomas que comprenden linfomas no Hodgkin, linfomas de células T cutáneos, linfomas primarios del sistema nervioso central, enfermedad de Hodgkin, leucemias que comprenden leucemias agudas, leucemia mieloides y linfáticas crónicas, neoplasias de células plasmáticas, síndromes mielodisplásicos, síndromes paraneoplásicos, metástasis sin tumor primario conocido (síndrome CUP), carcinomatosis peritoneal, neoplasia relacionadas con inmunosupresión que comprenden neoplasias relacionadas con SIDA como sarcoma de Kaposi, linfomas asociados a SIDA, linfomas asociados a SIDA del sistema nervioso central, enfermedad de Hodking asociada a SIDA y tumores anogenitales asociados a SIDA, neoplasias relacionadas con trasplantes, tumores metastatizantes que comprenden metástasis cerebrales, metástasis pulmonares, metástasis hepáticas, metástasis óseas, metástasis pleurales y pericárdicas y ascitis maligna.

[0084] En una realización preferida adicional, la enfermedad tumoral o el tumor que se trata o se evita se selecciona del grupo que comprende enfermedades cancerosas o enfermedades tumorales de los carcinomas de mama, de los tumores gastrointestinales, incluyendo carcinomas de colon, carcinomas de estómago, carcinoma de páncreas, cáncer de intestino grueso, cáncer de intestino delgado, de los carcinomas ováricos, de los carcinomas del cuello uterino, cáncer de pulmón, cáncer de próstata, carcinomas de células renales y/o metástasis hepáticas.

10

15

20

25

30

35

45

50

100851 Las moléculas de reconocimiento de acuerdo con la invención se pueden utilizar directamente durante el tratamiento o la profilaxis de enfermedades tumorales o se pueden acoplar a estructuras efectoras adicionales. Por "estructuras efectoras" se entiende de acuerdo con la invención los compuestos químicos o bioquímicos, las moléculas o los átomos que provocan directamente o indirectamente una inactivación o lesión, incluvendo, por ejemplo, ralentización del crecimiento o inhibición del crecimiento de células tumorales. A esto pertenecen, por ejemplo, radioisótopos, toxinas, citostáticos y otras moléculas efectoras como, por ejemplo, citoquinas y quimioquinas u otras estructuras que representan por sí mismas efectores o que se acoplan a las moléculas efectoras, por ejemplo, liposomas cargados con toxinas o citostáticos que llevan moléculas de reconocimiento de acuerdo con la invención. En el último ejemplo de los liposomas también se quiere decir particularmente las estructuras efectoras que, además de la molécula de reconocimiento para la especificidad de tumor, también llevan las moléculas que son responsables de una captación de las estructuras efectoras o partes de las mismas en las células como, por ejemplo, anticuerpos contra receptores que provocan una endocitosis mediada por receptor. Preferiblemente, las moléculas de reconocimiento comprenden en estos casos un dominio transmembrana que les permite una inserción en la membrana del liposoma o en otra realización preferida, las moléculas de reconocimiento se acoplan químicamente sobre la superficie del liposoma. Las técnicas usadas para esto son conocidas por el especialista, incluyendo la producción de los liposomas. También la unión de las moléculas de reconocimiento con otras estructuras efectoras se realiza de acuerdo con métodos conocidos. Los acoplamientos se pueden realizar. como ya se ha explicado anteriormente, por ejemplo de forma directa por carga covalente o no covalente, por acoplamiento químico, donde puede ser necesaria una molécula química o biológica adicional, por ejemplo, un quelante o un enlazador, o en forma de proteínas o péptidos de fusión por fusión. Las moléculas de reconocimiento se utilizan durante el tratamiento de enfermedades tumorales con tumores que llevan Core-1 y/o para un subgrupo de moléculas de reconocimiento de acuerdo con la invención, que se han descrito anteriormente por su especificidad para Core-1 y Core-2, células tumorales que llevan Core-1 y/o Core-2 o para la profilaxis que evita, por ejemplo, la configuración de tumores primarios o metástasis. Es objetivo preferido el tratamiento de la enfermedad residual mínima y de metástasis. Un uso preferido adicional es la inhibición de la metástasis hepática de células tumorales positivas para Core-1 y Core-2. Las moléculas de reconocimiento de acuerdo con la invención se administran en una formulación adecuada de una vez o de forma repetida en intervalos temporales y dosis adecuadas.

[0086] En lo sucesivo y anteriormente se entiende en el sentido de la invención por el antígeno Core-1 también Core-1 y/o Core-2 y por células o células y/o tejidos tumorales positivos para Core-1 también células o células y/o tejidos tumorales positivos para Core-1 y/o Core-2.

[0087] En una realización preferida, las moléculas de reconocimiento radiactivas que se han descrito anteriormente de acuerdo con la invención se combinan con una aplicación de moléculas de reconocimiento específicas para Core-1 no marcadas de acuerdo con la invención. Esto sirve para la mejora del fondo y, por tanto, para una unión más específica al tumor saturando potenciales moléculas que llevan Core-1 en la sangre. Se prefiere usar moléculas de reconocimiento obtenidas de IgM, por ejemplo, la cIgM descrita en los ejemplos o la forma humanizada de la misma, ya que las mismas se unen sobre todo al antígeno Core-1 en la sangre y, por tanto, disminuyen el fondo y la carga sérica con radiactividad y aumentan la dirección relativa hacia el tumor, mientras que debido al tamaño de las moléculas está limitada una penetración en tejidos y tumores. Los procedimientos y las tecnologías usadas para esto se conocen por el especialista, asimismo, el especialista puede establecer una dosis, formulaciones, vía de aplicación y momento de la administración adecuados de las moléculas de reconocimiento no marcadas.

55 **[0088]** Se pueden hacer servir vectores virales para el uso en terapia génica, los cuales particularmente llevan moléculas de reconocimiento de acuerdo con la invención de la superficie de los virus.

[0089] La invención se refiere además a un procedimiento para el uso de las moléculas de reconocimiento de acuerdo con la invención, con el que es posible identificar y/u obtener, a partir de un conjunto grande de diferentes moléculas que llevan Core-1, moléculas que se pueden usar de forma ventajosa para un uso en el tratamiento de tumor, profilaxis de tumor y diagnóstico de tumor. Por moléculas que llevan Core-1 se entiende de acuerdo con la invención moléculas que llevan Core-2 y que se unen específicamente a las moléculas de reconocimiento de acuerdo con la invención. De acuerdo con la invención, son moléculas que llevan Core-1 glicoproteínas,

glicopéptidos y/o glicolípidos así como células u otras sustancias de soporte como, por ejemplo, virus, bacterias, partes de células como, por ejemplo, exosomas o lisados celulares o liposomas que contienen una o varias estructuras Core-1. Las moléculas que llevan Core-1 se pueden acumular o aislar a partir de células o líneas celulares, de sobrenadantes de cultivos, de tejidos tumorales, células tumorales o líquidos corporales, como sangre, suero sanguíneo, linfa, orina, líquido cefalorraquídeo o esperma.

5

20

45

[0090] Las definiciones detalladas anteriormente de los términos se pueden usar cambiando lo que haya que cambiar para los términos en los procedimientos descritos a continuación.

10 [0091] Las moléculas que llevan Core-1 se identifican y/o aíslan y obtienen en un procedimiento por unión a las moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención que se han descrito anteriormente. De acuerdo con el procedimiento, las moléculas que llevan Core-1 que se han descrito anteriormente se pueden obtener a partir de líquidos corporales o de sobrenadantes de cultivos celulares por una cromatografía de afinidad. Se pueden combinar otras etapas de purificación y/o concentración de acuerdo con métodos en sí conocidos con una o varias etapas de cromatografía de afinidad. Así mismo, se pueden obtener moléculas que llevan Core-1 asociadas a tumor a partir de células tumorales, tejidos tumorales o líneas celulares tumorales anteponiendo una etapa adecuada, de acuerdo con métodos en sí conocidos, que permita hacer accesibles las moléculas que llevan Core-1 asociadas a células para la purificación por afinidad, por ejemplo, por solubilización con detergentes adecuados o por escisión por proteolisis o por lisis celular.

[0092] En un procedimiento adicional se obtienen moléculas que llevan Core-1 o células a partir de tejidos. Para esto, el tejido se digiere de acuerdo con métodos conocidos para hacer accesibles las moléculas o células que llevan Core-1, por ejemplo, mediante métodos proteolíticos o mecánicos. El especialista conoce estos procedimientos.

25 [0093] Como se ha indicado anteriormente también se aíslan o acumulan células o líneas celulares positivas para Core-1 usando las moléculas de reconocimiento específicas para Core-1 y se separan de las células que no llevan o que llevan cantidades pequeñas de estructuras Core-1. Por la expresión "aislamiento o acumulación de las células" se tienen que entender todas las medidas para la separación de células que han formado, por llevar estructuras Core-1, un complejo con las moléculas de reconocimiento de acuerdo con la invención. El especialista conoce estos 30 procedimientos. Preferiblemente, se utiliza para esto el método FACS o MACS. A modo de ejemplo, la acumulación sucede por unión de moléculas de reconocimiento de acuerdo con la invención a la estructura de Core-1 sobre la superficie celular y selección posterior de las células marcadas de este modo por unión a materiales de soporte, que interaccionan de forma específica con la molécula de reconocimiento, por ejemplo, anticuerpo IgM anti-ratón acoplado a perlas magnéticas (clasificación MACS). Además, las propias moléculas de reconocimiento específicas 35 para Core-1 pueden estar acopladas covalentemente a un soporte. Un ejemplo adicional es la obtención con ayuda de un clasificador FACS que clasifica las células que llevan las moléculas de reconocimiento, que se han marcado fluorescentemente. Ambos métodos se conocen por el especialista. Estas células positivas para Core-1 acumuladas de este modo se pueden usar para la producción de vacunas, por ejemplo, para la carga de células dendríticas o directamente como lisado de células tumorales en una composición de vacuna. La anterior acumulación de células 40 positivas para Core-1 debe conducir a una mayor especificidad de la vacuna para el tumor. El especialista conoce estos procedimientos.

[0094] La presente invención se refiere adicionalmente a procedimientos para la producción de un agente diagnóstico que comprende las etapas del procedimiento que se ha mencionado anteriormente para la producción de las moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención; y que comprende adicionalmente la etapa de la formulación de las moléculas de reconocimiento en una forma que se puedan usar de manera diagnóstica.

[0095] Por la expresión "agente de diagnóstico" se definen de acuerdo con la invención agentes y preparaciones de agentes que tienen por objeto reconocer enfermedades, afecciones, lesiones corporales o trastornos derivados de enfermedades, por uso sobre o en el cuerpo humano o partes del mismo. Como partes del cuerpo humano se tienen que entender preferiblemente líquidos corporales como sangre, suero sanguíneo, linfa, orina, líquido cefalorraquídeo o esperma o biopsias o muestras tisulares.

[0096] La formulación del agente de diagnóstico comprende, preferiblemente, la modificación de las moléculas de reconocimiento producidas con sustancias que permiten una identificación del antígeno Core-1, en determinadas realizaciones que dependen de la especificidad precisa de la molécula de reconocimiento de acuerdo con la invención, también de acuerdo con la definición del antígeno Core-2. En el estado de la técnica se conocen sustancias adecuadas. Partiendo de la selección de la sustancia, el especialista es capaz de utilizar medidas adecuadas para la formulación del agente de diagnóstico.

[0097] Para el diagnóstico se pueden acoplar, de acuerdo con la invención, a las moléculas de reconocimiento incluso sustancias de acuerdo con métodos en sí conocidos, que facilitan una identificación de los antígenos Core-1

ES 2 387 072 T3

y/o sus moléculas y/o células de soporte, por ejemplo, por biotinilación, marcado fluorescente, marcado radiactivo o acoplamiento enzimático de las moléculas de reconocimiento.

[0098] En un procedimiento adicional para el diagnóstico de tumor y el pronóstico se usan moléculas de reconocimiento de acuerdo con la invención que detectan antígenos Core-1 y/o sus moléculas de soporte en el suero de seres humanos. La determinación se realiza preferiblemente de forma cualitativa, cuantitativa y/o en cantidades relativas en el tiempo de acuerdo con métodos en sí conocidos. Los mismos procedimientos también se utilizan para el control de la evolución de enfermedades tumorales y para el control de evoluciones de tratamiento, incluyendo el control de respuestas inmunes y para el control y la dosificación de tratamientos tumorales. Los métodos usados en los procedimientos son en sí conocidos, por ejemplo ELISA, transferencia de Western, FACS (separación de células activadas por fluorescencia) MACS (separación de células mediadas por magnetismo), ADCC (citotoxicidad celular mediada por anticuerpos), CDC (citotoxicidad mediada por complemento), imunocitoquímica e inmunohistoquímica.

5

10

30

35

40

45

50

55

60

15 [0099] En los procedimientos preferidos para el diagnóstico de tumores y el pronóstico se utilizan moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención, en procedimientos en sí conocidos, para identificar el antígeno Core-1 en el suero o en preparaciones tisulares. El antígeno Core-1 se identifica sobre moléculas de soporte, en inmunocomplejos sobre Core-1 presente en moléculas de soporte y/o Core-1 unido sobre células, y la presencia del antígeno Core-1 y/o de las moléculas que llevan Core-1 se determina cualitativamente, cuantitativamente y/o en cantidades relativas de acuerdo con métodos en sí conocidos. Los mismos procedimientos también se utilizan para el control de la evolución de enfermedades tumorales y para el control de evoluciones de tratamiento. Los métodos usados en los procedimientos son en sí conocidos, por ejemplo, ELISA, transferencia de Western, FACS (separación de células activadas por fluorescencia) MACS (separación de células mediada por magnetismo), ADCC (citotoxicidad celular mediada por anticuerpos), CDC (citotoxicidad mediada por complemento), imunocitoquímica e inmunohistoquímica.

[0100] Se prefiere un ensayo rápido tisular, en el que en un procedimiento inmunohistológico, las muestras de tejido se tiñen con moléculas de reconocimiento de acuerdo con la invención marcadas fluorescentemente. En un procedimiento más preferido, la molécula de reconocimiento de acuerdo con la invención, preferiblemente un anticuerpo del isotipo IgM, se combina con un anticuerpo adicional que reconoce específicamente el antígeno MUC1, preferiblemente el isotipo IgG1. La ventaja es que, por ejemplo, para el diagnóstico de carcinomas gastrointestinales (por ejemplo, carcinomas colorrectales y carcinomas de estómago), los mismos se detectan en un estadio temprano y al mismo tiempo se puede producir un pronóstico con respecto a la evolución de la enfermedad y/o del riesgo de metástasis hepática, significando un mayor nivel de antígeno Core-1 un peor pronóstico de evolución y una probabilidad un múltiplo mayor de metástasis hepática.

[0101] Adicionalmente, los anticuerpos y las moléculas de reconocimiento pueden estar marcadas preferiblemente de forma directa con diferentes colorantes fluorescentes, por ejemplo, Cy3 y Cy5 o Cy3 y FITC. Cuando sea ventajosa una amplificación de señal, los anticuerpos y/o las moléculas de reconocimiento se amplifican por anticuerpos secundarios marcados o con la biotina-estreptavidina. Es ventajoso usar diferentes isotipos y/o secuencias de especie en la parte constante de los anticuerpos. Las tecnologías y los métodos usados en este caso, por ejemplo, del marcado y de la inmunohistología, así como la selección de los formatos adecuados de las moléculas de reconocimiento se conocen por el especialista. El procedimiento diagnóstico descrito no está limitado a tumores gastrointestinales, sino que se puede usar para toda las enfermedades tumorales que llevan el antígeno Core-1.

[0102] Puede tratarse de un test serológico, con el cual se emplea un Sándwich-ELISA como procedimiento. Éste consiste en un anticuerpo de captura que une moléculas de soporte del antígeno Core-1 del suero a una fase sólida y un anticuerpo de identificación, también entran dentro de esto otras moléculas de reconocimiento de acuerdo con la invención que detectan el antígeno Core-1. Con ello, se puede diferenciar qué molécula de soporte lleva el Core-1. En una forma preferida, de este modo, se pueden realizar deducciones con respecto al origen del tumor primario. Como anticuerpos de captura pueden servir diferentes anticuerpos, que reconocen glicoproteínas, que llevan O-glicosilaciones. Como anticuerpo de captura se usan preferiblemente anticuerpos contra la mucina epitelial MUC1, que es a menudo un soporte del Core-1 en caso de tumor. Alternativamente se determinan todo los antígenos en sangre que llevan el antígeno Core-1. Esto es posible porque el antígeno Core-1 por norma está presente en varias copias por molécula de soporte. Se usa una molécula de reconocimiento específica para Core-1 de acuerdo con la invención como anticuerpo de captura y una molécula de reconocimiento específica para Core-1 marcada, de acuerdo con la invención, como anticuerpo de identificación, donde las moléculas de reconocimiento no tienen que ser anticuerpos. Preferiblemente se usa una IgM como molécula de reconocimiento al menos como anticuerpo de captura o de identificación.

[0103] Más preferiblemente, el anticuerpo de identificación se marca con biotina y el sistema se comprueba mediante estreptavidina en combinación con un procedimiento de identificación adecuado. Procedimientos de identificación adecuados son, por ejemplo, marcados con POD o marcados fluorescentes de la estreptavidina.

[0104] Preferiblemente, para un ensayo tumoral serológico, la determinación del antígeno Core-1, como se ha descrito anteriormente, se combina con la determinación de otros marcadores tumorales serológicos, por ejemplo, PSA, CEA o AFP. Una realización preferida es la determinación de la MUC1 y del antígeno Core-1.

[0105] Preferiblemente, la MUC1 se inmoviliza con ayuda de un anticuerpo específico para MUC1 desde el suero a una fase sólida y se identifica con un segundo anticuerpo específico anti-MUC1, como anticuerpo de identificación, preferiblemente de los que reconocen de forma mejor la región DTR en una forma glicosilada, y el antígeno Core-1 sobre la MUC1 inmovilizada con ayuda de un anticuerpo de captura anti-MUC1 se identifica con una molécula de reconocimiento de acuerdo con la invención. Este ensayo diagnóstico aúna una detección temprana con una indicación de pronóstico con respecto a la evolución de la enfermedad y/o la probabilidad de metástasis hepática. Las tecnologías usadas en este caso, por ejemplo, del marcado y de la serología, incluyendo los métodos de comprobación, se conocen por el especialista. Los procedimientos de diagnóstico descritos no están limitados a tumores gastrointestinales, sino que se pueden usar para todos los tumores que llevan el antígeno Core-1. Los ensayos serológicos descritos sirven para el diagnóstico, el control de la evolución de la enfermedad tumoral y el pronóstico de tumores positivos para el antígeno Core-1.

[0106] En un procedimiento adicional, las moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención se usan para un diagnóstico *in vivo*. Para esto, las moléculas de reconocimiento se marcan con procedimientos en sí conocidos adecuados, y por lo tanto, se hacen accesibles para procedimientos de información de imágenes en sí conocidos en el ser humano, por ejemplo, radioinmunodiagnóstico, procedimientos de tomografía TEP o endoscopia de inmunofluorescencia, por ejemplo, por acoplamiento y/o

20

25

30

35

50

55

60

[0107] carga con moléculas correspondientes, por ejemplo, isótopos radiactivos, por ejemplo, indio, o colorantes fluorescentes, por ejemplo, el Cy3, Cy2, Cy5 o FITC. En una realización preferida se acoplan multicuerpos de acuerdo con la invención covalentemente con un quelante adecuado (por ejemplo, DOTA o DTPA) y se cargan con indio-111 y se utilizan para el diagnóstico *in vivo*. Los mismos se administran preferiblemente por vía intravenosa en una dosis adecuada para el individuo y se mide la localización del antígeno Core-1 y un tumor potencial de acuerdo con procedimientos en sí conocidos. Los procedimientos y las tecnologías usadas para esto, incluyendo los procedimientos de formación de imágenes, se conocen por el especialista, así mismo, el especialista puede establecer unas dosis y formulaciones adecuadas.

[0108] Adicionalmente se marcan radiactivamente preferiblemente inmunoglobulinas, preferiblemente IgM e IgG, como se ha descrito anteriormente y se explica con más detalle en los ejemplos, por ejemplo, con indio-111 y se administran de forma local en el tumor o a vasos sanguíneos que entran y salen del tumor. Esto sirve para la determinación del tamaño del tumor o la determinación de nódulos linfáticos afectados. Los procedimientos y las tecnologías usados para esto se conocen por el especialista, así mismo, el especialista puede establecer una dosis y formulaciones adecuadas.

[0109] Las moléculas de reconocimiento marcadas radiactivamente de acuerdo con la invención también se pueden administrar por otras vías de aplicación. Son vías preferidas la vía intraperitoneal, intraganglionar o intrarrectal o intragastrointestinal. Es particularmente ventajosa la vía intraperitoneal para la determinación de tumores que son accesibles por el peritoneo y/o metastatizan en el mismo, por ejemplo, carcinomas ováricos y determinados carcinomas gastrointestinales. La administración intrarrectal o intragastrointestinal es ventajosa para determinados tumores gastrointestinales y su localización y determinación del tamaño. La vía intraganglionar se puede usar en determinados casos para infiltrar directamente nódulos linfáticos individuales.

[0110] En una realización preferida, las moléculas de reconocimiento radiactivas que se han descrito anteriormente de acuerdo con la invención para agentes de diagnóstico *in vivo* se combinan con una aplicación de moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención no marcadas. Esto sirve para la mejora del fondo. Preferiblemente se usan moléculas de reconocimiento obtenidas de IgM ya que las mismas se unen sobre todo al antígeno Core-1 en sangre, y por tanto, disminuyen claramente el fondo, mientras que debido al tamaño de las moléculas está limitada una penetración en tejidos y tumores. Los procedimientos y las tecnologías usadas para esto se conocen por el especialista, así mismo, el especialista puede establecer una dosis, formulaciones, vías de aplicación y momento de la administración adecuados de las moléculas de reconocimiento no marcadas.

[0111] Más preferiblemente, moléculas de reconocimiento de acuerdo con la invención, preferiblemente inmunoglobulinas, multicuerpos o fragmentos de anticuerpos, más preferiblemente IgM, IgG y multicuerpos, se marcan con un colorante fluorescente y se administran *in vivo*. Son vías de aplicación preferidas la vía intrarectal, intragastrointestinal, intraperitoneal, intravenosa y en vasos sanguíneos de entrada y salida. Se prefiere particularmente la localización de carcinomas gastrointestinales, que se realiza por una endoscopia por fluorescencia después de la aplicación de las moléculas de reconocimiento marcadas fluorescentemente.

[0112] Más preferiblemente, una molécula de reconocimiento de acuerdo con la invención se combina con al menos un anticuerpo contra un antígeno tumoral adicional, preferiblemente anticuerpo anti-MUC1. Preferiblemente se usan diferentes colorantes fluorescentes que permiten una diferenciación de las moléculas de reconocimiento y anticuerpos, por lo que una indicación pronóstica se combina con una detección temprana y una mayor cantidad de casos. Son colorantes fluorescentes preferidos los que tienen una baja fluorescencia de fondo, que se conocen por el especialista. Los procedimientos y las tecnologías usadas para esto, incluyendo los procedimientos de formación de imágenes, por ejemplo, la endoscopia por fluorescencia, se conocen por el especialista, así mismo, el especialista puede establecer una dosis, formulaciones, vías de aplicación y momento de la administración adecuados de las moléculas de reconocimiento no marcadas.

10

15

20

25

30

5

La invención presenta varias ventajas: las moléculas de reconocimiento específicas para Core-1 de acuerdo con la invención reconocen de forma específica tipos de carcinomas, por lo que se pueden usar ventajosamente en muchos pacientes con tumores con diferentes indicaciones para un diagnóstico y/o una terapia. Por lo demás, las moléculas de reconocimiento ventajosamente prácticamente no se unen sobre tejidos normales. Esto es una ventaja particular frente a los marcadores tumorales conocidos y una propiedad excelente de las moléculas de reconocimiento de acuerdo con la invención. Adicionalmente es ventajoso que las moléculas de reconocimiento reconocen el antígeno Core-1 independientemente de soporte. Una ventaja particular de las moléculas de reconocimiento de acuerdo con la invención es la alta especificidad para el tejido tumoral. Esto se basa particularmente en la elevada especificidad para antígenos de carbohidratos definidos. En una detección inespecífica de otras estructuras de carbohidratos, de hecho, aumentaría el riesgo de una detección inespecífica de tejido no tumoral. Adicionalmente, las moléculas de reconocimiento de acuerdo con la invención presentan una alta afinidad. De este modo se produce particularmente la posibilidad de construir fragmentos de menor valencia como IgG y multicuerpos. La posibilidad de estos diversos formatos es ventajosa para el desarrollo de agentes terapéuticos. La estructura Core-1 y/o Core-2 en la superficie celular aumenta la probabilidad de la conformación de metástasis, por ejemplo, de metástasis hepáticas; por el bloqueo de la estructura Core-1 y/o Core-2 con moléculas de reconocimiento disminuye o se inhibe la formación de

[0114] A continuación se explicará con más detalle la invención mediante ejemplos, sin estar limitada a estos ejemplos.

Ejemplos

metástasis.

1. Producción de multicuerpos específicos para Core-1 con enlazadores cortos

35

40

[0115] Se formaron multicuerpos con las secuencias SEC ID N° 96 a 106 por acortamiento o deleción del enlazador entre la V_H y la V_L del anticuerpo de cadena única con la SEC ID N° 95 (Figura 1a). Para esto se amplificaron la V_H y la V_L con cebadores específicos de tal forma que 22 nucleótidos en el extremo 3' de la V_H y en el extremo 5' de la V_L conforman una zona complementaria (Figura 1b, PCR I y PCR II) y a continuación ambos fragmentos de PCR se asocian entre sí después de la purificación en una SOE-PCR (Figura 1b, PCR III). Al final, el fragmento PCR se clonó por Ncol/Notl en un vector de expresión procariota. Este vector contiene el promotor lacZ, un sitio de unión a ribosomas (RBS), el origen M13, la secuencia señal pelB para la secreción al periplasma, un gen de resistencia a ampicilina y un casete de clonación, para acoplar al extremo C-terminal de scFv con un marcador hexa-histidina para la purificación eficaz y un marcador c-myc (Figura 2).

45

2. Expresión bacteriana y purificación de los multicuerpos específicos para Core-1

55

60

50

Los fragmentos de anticuerpos del Ejemplo 1 se expresaron y purificaron en Escherichia coli. Para esto, el plásmido correspondiente se transformó por electroporación en E. coli electrocompetente y se cultivó durante una noche en medio 2xTY (10 g de extracto de levadura, 16 g de triptona, 5 g de NaCl por l) con 100 $\mu g/ml$ de ampicilina. Este cultivo se diluyó 1:100 con medio 2xTY, al que se añadieron 100 μg/ml de ampicilina y glucosa al 0,5%, se diluyó y se incubó a 37°C hasta que se obtuvo una DO_{600 nm} de aproximadamente 0,6. Después se añadió al cultivo IPTG 1 mM para la inducción y el mismo se incubó a 25°C durante 5 h adicionales. Las bacterias se recogieron por centrifugación a 4000 xg durante 20 min, el sedimento celular se resuspendió en tampón TES (Tris-HCl 30 mM, pH 8,0, sacarosa al 20%, EDTA 1 mM) y se incubó sobre hielo 20 min. A continuación se añadió MgSO₄ 5 mM y la suspensión se incubó sobre hielo durante 20 min adicionales. Por centrifugación a 4000 xg durante 60 min se obtuvo la fracción periplasmática y se dializó durante una noche a 4°C contra tampón de unión (tampón fosfato 50 mM, pH 8,0, NaCl 300 mM, imidazol 10 mM). Los fragmentos de anticuerpos contenidos en la fracción periplasmática se purificaron usando el marcador His C-terminal por cromatografía de afinidad de iones metálicos (Hi-Trap Chelating HP, Amersham Pharmacia Biotech). Para esto, la fracción dializada se puso sobre la columna equilibrada anteriormente con tampón de unión y las proteínas no unidas se lavaron de la columna con tampón de lavado (tampón fosfato 50 mM, pH 8,0, NaCl 300 mM, imidazol 30 mM). A continuación se eluyeron los fragmentos de anticuerpos con tampón de elución ((tampón fosfato 50 mM, pH 8,0, NaCl 300 mM, imidazol 300 mM). Este protocolo de purificación se usó para todos los fragmentos de anticuerpos específicos para Core-1 con marcador hexa-histidina, por ejemplo, los anticuerpos de cadena única humanizados del Ejemplo 6.

3. Análisis de los multicuerpos específicos para Core-1 en el formato scFv con diferente longitud de enlazador en el ELISA

5

10

15

20

25

30

35

40

45

50

55

60

[0117] Se expresaron multicuerpos con las secuencias de aminoácidos SEC ID Nº 95, 96, 97, 98, 99, 100, 101. 103, 104 y 105 como se ha descrito anteriormente en E. coli y se obtuvieron las fracciones periplasmáticas. Como antígeno para el ensayo ELISA se utilizó asialoglicoforina (Sigma), una glicoproteína que lleva Core-1. A partir de las soluciones madre (1 mg en 1 ml de H₂O bi-dest.), que se almacenan divididas a -20°C, se estableció una dilución de 5 μg/ml en PBS. De esto se pipetearon 50 μl/pocillo en una placa de microtitulación (NUNCLON-TC Microwell 96 F) y la placa de ensayo se incubó durante una noche a 4°C. Al día siguiente se lavó la placa de ensayo con PBS/Tween 3x al 0,2%. A continuación se bloquearon los sitios de unión inespecíficos con BSA al 2% en PBS y se aplicaron 50 μl de las respectivas fracciones diluidas en diferentes etapas de dilución con PBS/BSA al 1% y se incubaron durante 2 h a 37°C. Después de tres etapas de lavado con PBS/Tween al 0.2% se utilizaron para la identificación de las construcciones de anticuerpos unidos específicamente como anticuerpo secundario anticuerpo anti-marcador His acoplado a peroxidasa. Para la identificación del anticuerpo secundario unido se realizó una reacción de color con TMB (3,3',5'5-tetrametilbenzidina). Después de 15 minutos se detuvo la reacción por adición de H₂SO₄ 2,5 N. La medición se realizó con un fotómetro de placa de microtitulación con filtro de 450 nm en el modo dual frente a un filtro de referencia de 630 nm. El resultado se representa en la Figura 3. Un acortamiento gradual del enlazador conduce a un aumento de la unión de asiologlicoforina. Las mejores propiedades de unión muestran las variantes con las SEC ID Nº 104 y 105. Estas construcciones multivalentes en el formato dia/triacuerpo son realizaciones preferidas de la invención y son ventajosas debido a propiedades farmacocinéticas mejoradas para la terapia tumoral.

4. Clonación de los vectores para la expresión de anticuerpos IgG e IgM específicos para Core-1 quiméricos.

[0118] El fragmento de ADN Ncol/Xhol del vector scFv que codifica para la V_H (Figura 4) se clonó en el vector BS-Leader cortado por Ncol/Sall. El vector BS-Leader contiene un casete de clonación para la introducción de la secuencia de péptido señal de receptor de células T en el extremo 5', así como una secuencia de donación de escisión en el extremo 3' de las secuencias de los dominios variables (Figura 4). La secuencia V_L del anticuerpo correspondiente se amplificó con cebadores específicos para la introducción del sitio de corte Ncol en el extremo 5' y el sitio de corte Nhel en el extremo 3' en la PCR usando la secuencia scFv como molde y después de la digestión por Ncol/Nhel se clonó en el vector BS-Leader digerido del mismo modo. Después se clonó respectivamente el fragmento HindIII/BamHI del vector BS-Leader en el correspondiente vector de expresión eucariota. Estos vectores (pEFpuroC γ 1V_H, pEFpuroC μ V_H y pEFneoC κ V_L) contienen el promotor EF-1 α y el potenciador de HCMV, el origen SV40, la señal de poliadenilación BGH, el gen de resistencia a puromicina en el vector para la cadena pesada y el gen de resistencia a neomicina o el gen de deshidrofolatorreductasa en el vector para la cadena ligera, así como las secuencias genómicas de la región γ 1 constante humana o la región μ 2 para la cadena pesada o la región κ 3 constante humana para la cadena ligera (cebador para la amplificación del ADN humano genómico y mapa de vector, véase la Figura 4).

5. Expresión eucariota de anticuerpos IgG e IgM quiméricos específicos para Core-1 en células CHO y su purificación

[0119] Para la expresión de los anticuerpos quiméricos clgG-Karo4 que consisten en las secuencias SEC ID Nº 111 y 113 y clgM-Karo4 que consisten en las secuencias SEC ID Nº 112 y 113 se co-transfectaron células CHOdhfr (Nº de ATCC CRL-9096) con una mezcla de los vectores para la cadena pesada y la ligera (1:3) por electroporación (10 6 células/ml, 500 V, 50 μ s) y se cultivaron en medio de selección (medio CHO-S-SFM II (Life Technologies), suplemento HT (Biochrom), 400 μ g/ml de G418, 5 μ g/ml de puromicina) durante 2 semanas. Después de la clonación de células individuales en una placa de 96 pocillos se ensayaron los sobrenadantes en ELISA (asialoglicoforina como antígeno, anti Fcyl humano acoplado a POD o anti Fc5 μ humano acoplado a POD (Dianova) como anticuerpo secundario) y el clon se seleccionó con la mayor velocidad de producción de anticuerpos (aproximadamente 0,5 μ g/10 6 células/24 h).

[0120] Para la producción de anticuerpos, las células CHO transfectadas de forma estable, que expresan la IgG o IgM quimérica se cultivaron en matraces rotativos en medio CHO-S-SFM II, suplementado por suplemento HT, hasta que se alcanzó una densidad celular de aproximadamente 1 x 10⁶ células/ml. Después de la separación de las células del sobrenadante del cultivo celular por centrifugación (400 xg, 15 min), el anticuerpo quimérico, usando una columna de proteína A (HiTrap rProtein A FF, Amersham Pharmacia Biotech), se purificó para la IgG quimérica o una columna de afinidad para anticuerpo anti Fc5μ humano. La fracción de anticuerpos purificada eludía por salto de pH se tamponó y se concentró en PBS usando de tubos de centrífuga Centriprep (rango 50 kDa, Millipore).

6. Adaptación de la secuencia de las secuencias de anticuerpos específicos para Core-1 a secuencias de línea germinal humana

[0121] Para la adaptación de las secuencias de anticuerpos que se unen a Core-1 a secuencias humanas se buscó en el banco de datos de secuencias de línea germinal humana para secuencias homólogas y, usando las secuencias consenso humanas y los conocimientos de la estructura canónica de anticuerpos humanos, se desarrollaron secuencias de unión a Core-1 humanizadas. Para la cadena pesada variable sirvió la secuencia de línea germinal humana VH1-46 como molde, para la cadena ligera variable, la secuencia A18.

5

20

- 10 [0122] Las secuencias V_H o V_L humanizadas SEC ID Nº 56 a 79 u 85 a 94 se produjeron con ayuda de la PCR de ensamblado de genes (PCR de extensión por solapamiento simple). La reacción de PCR se realizó según el siguiente esquema: primera desnaturalización a 94°C durante 2 min, después 30 ciclos de desnaturalización a 94°C durante 45 s, hibridación a 55°C durante 45 s y prolongación a 73°C durante 1,5 min y al final una etapa de prolongación a 73°C durante 7 min.
 - **[0123]** Las cadenas V_H y V_L producidas de este modo se cortaron con las enzimas Ncol y Xhol o Notl y Xhol y se clonaron para el secuenciado en un vector de clonación (pLitmus 28 o pBluescript KS). A continuación, las cadenas correctas V_H y V_L se amplificaron de nuevo para incluir en el extremo 3' de la V_H y el extremo 5' de la V_L un sitio de corte Bbsl para asociar de este modo la V_H y la V_L solamente con una alanina como enlazador. Después del ligado, los scFv (los productos del ligamiento) se amplificaron usando los cebadores flanqueantes y se clonaron en un vector de expresión bacteriano.

7. Análisis de especificidad de las moléculas de reconocimiento especificas para Core-1 en el ELISA.

- 25 [0124] Como antígenos se usaron diferentes conjugados de carbohidrato-PAA (sintesomas) y glicoproteínas: asialoglicoforina (AGP), glicoforina (GP) y asialofetuína (Sigma); los conjugados de PAA (poli[N-(2-hidroxietil)acrilamida): Galβ1-3GalNAcα1-OC₃H₆NH-PAA y Galβ1-3GalNAcα1-p-OC₆H₄NH-PAA como conjugados de Core-1 (anómero alfa) con diferentes longitudes de enlazador, Galβ1-3GalNAcβ1-OC₃H₆NH-PAA como anómero beta del Core-1, Galα1-3GalNAcα1-OC₃H₆NH-PAA y Galα1-3GalNAcβ1-OC₃H₆NH-PAA como esteroanómeros adicionales del Core-1, la estructura Core-2 Galβ1-3(GlcNAcβ1-6)GalNAcα1-OC₃H₆NH-PAA y los derivados GalNAcal-OC₃H₆NH-PAA, Neu5Acα2-3Galβ1-3GalNAcα1-OC₃H₆NH-PAA; Galβ1-3(Neu5Acα2-6)GalNAcα1-OC₃H₆NH-PAA, GlcNAcβ1-2Galβ1-3GalNAcα1-OC₃H₆NH-PAA, GlcNAcα1-3Galβ1-3GalNAcα1-OC₃H₆NH-PAA, GalNAcα1-OC₃H₆NH-PAA
- 35 [0125] A partir de las respectivas soluciones madre (1 mg en 1 ml de H₂O bi-dest.) que se almacenan de forma dividida a -20°C se realizó una dilución de 5 μg/ml en PBS. De esto se pipetearon 50 μl/pocillo en una placa de microtitulación (NUNCLON-TC Microwell 96 F) y la placa de ensayo se incubó durante 1 h a 37°C y durante una noche a 4°C. Al día siguiente se lavó la placa de ensayo con PBS/Tween 3x al 0,2%. A continuación se bloquearon los sitios de unión inespecíficos con BSA al 2% en PBS y se aplicaron 50 μl del primer anticuerpo (IgG o IgM 40 quimérica: purificado 0,1 µg/ml en PBS/BSA al 0,1% o sobrenadante de cultivo sin diluir de células CHOdhfr productoras; multicuerpos (10 μg/ml en PBS/BSA al 0,1%). Después de tres etapas de lavado con PBS/Tween al 0.2% se utilizaron para la identificación de las construcciones de anticuerpos unidos específicamente los anticuerpos secundarios correspondientes acoplados a peroxidasa (un anticuerpo Fcγ1 o μ anti-ratón o anti-ser humano para los anticuerpos completos, un anticuerpo anti-marcador His para los multicuerpos). Para la identificación del anticuerpo 45 secundario unido se realizó una reacción de color con TMB (3,3',5,5'-tetrametilbenzidina). Después de 15 minutos se detuyo la reacción por adicción de H₂SO₄ 2.5N. La medición se realizó con un fotómetro de placa de microtitulación con filtro de 450 nm en el modo dual frente a un filtro de referencia de 630 nm.
- [0126] Se representan resultados representativos en las Figuras 5 y 6. En la Figura 5 se comparan dos moléculas 50 de reconocimiento con secuencias bucle variables en el formato IgM. Las construcciones de anticuerpo mIgM-Karo2 (SEC ID Nº 107 y SEC ID Nº 109) y mlgM-Karo4 (SEC ID Nº 108 y SEC ID Nº 110) se unen con alta especificidad al antígeno Core-1, preferiblemente al anómero alfa Galβ1-3GalNAcα y de forma más débil al anómero beta Galβ1-3GalNAc_B. Las moléculas de reconocimiento de acuerdo con la invención, sin embargo, también pueden unirse solamente al anómero alfa Gal β 1-3GalNAc α o a ambos anómeros Gal β 1-3GalNAc α y Gal β 1-3GalNAc β del mismo 55 modo. Adicionalmente, mlgM-Karo4 se une a la estructura Core-2 Galβ1-3(GlcNAcβ1-6)GalNAcα. Todas las demás estructuras de carbohidratos ensayadas, también estructuras estructuralmente muy relacionadas, no se reconocen por la proteínas de unión reivindicadas en la presente memoria. Como glicoproteína que lleva Core-1, AGP muestra una señal fuerte con ambas variantes, donde la glicoproteína asialofetuína que lleva asimismo Core-1 reacciona claramente de manera más intensa con la variante Karo2, lo que muy probablemente está relacionado con la 60 diferente densidad de Core-1 en ambas proteínas. La Figura 6 muestra el patrón de especificidad de las moléculas de reconocimiento humanizadas seleccionadas a modo de ejemplo Karo11 (SEC ID Nº 56 y SEC ID Nº 90), Karo21 (SEC ID nº 59 y SEC ID Nº 90) y Karo38 (SEC ID Nº 69 y SEC ID Nº 90) con secuencias flanqueantes variables en

el formato scFv con un aminoácido como enlazador. También en este caso se muestra el mismo patrón de especificidad como en la definición de la unión específica para Core-1 en el sentido de la invención (véase anteriormente).

[0127] La unión específica de los diferentes formatos y combinaciones preferidos en el ELISA, por ejemplo, en AGP, GP y/o $Galβ1-3GalNAcα1-OC_3H_6NH-PPA$, se representa en las Figuras 7 a a e.

8. Tinciones inmunohistológicas e inmunocitológicas

20

10 [0128] Para las tinciones inmunohistológicas se secaron al aire cortes congelados de muestras correspondientes de tejido y se fijaron con formaldehído al 10% en PBS durante 15 min. Para la disminución de la actividad de peroxidasa endógena, los cortes se trataron con peróxido de hidrógeno al 3% en PBS y después del bloqueo de sitios de unión inespecíficos con suero de conejo preabsorbido en eritrocitos tratados con neuraminidasa se incubaron con un anticuerpo primario específico para Core-1. A continuación se incubaron las preparaciones con un anticuerpo secundario correspondiente (IgG o IgM anti-ratón o anti-ser humano, acoplada a POD). La reacción de color se produjo usando el sustrato de peroxidasa diaminobenzidina y la tinción de contraste con hematoxilina.

[0129] La molécula de reconocimiento de acuerdo con la invención ilustrativa mlgM-Karo4 solamente reacciona con muy pocas estructuras en tejido normal. Las mismas, sin embargo, se encuentran en zonas no accesibles para un anticuerpo (Tabla 3).

Tabla 3: Reacción de tejido humano con el anticuerpo específico para Core-1 mlgM-Karo4

Tipo de Tejido epidermis - membrana basal estómago	Reactividad negativo
epitelio foveolar glándulas fúndicas glándulas del cuerpo	negativo negativo negativo
mucosa del colon bazo	negativo
trabéculas esplénicas reticulocitos linfocitos endotelio próstata hígado	negativo negativo negativo negativo negativo
hepatocitos	negativo
células de Kupffer conductos biliares	negativo Negativo
nódulos linfáticos linfocitos	Negativo
reticulocitos	Negativo
vesícula biliar	Negativo
glándula suprarrenal corteza suprarrenal	Negativo
médula suprarrenal	Negativo
vejiga corazón páncreas	Negativo Negativo
conductos pancreáticos acinos islotes de Langerhans	Positivo Negativo Negativo

25 [0130] Las moléculas de reconocimiento reivindicadas reaccionan de forma positiva con una pluralidad de carcinomas. Los datos en la Tabla 4 muestran que las moléculas de reconocimiento específicas para Core-1 reconocen un gran porcentaje de pacientes tumorales con una indicación que es diferente de indicación a indicación.

Tabla 4: Reacción de tejido tumoral humano con el anticuerpo específico para Core-1 mlgM-Karo4

Tipo de tejido	Reactividad
carcinoma de colon	
carcinoma primario	31/52
metástasis hepáticas	20/22
carcinoma pulmonar	
de células grandes	3/8
broncoalveolar	1/1
adenocarcinoma	6/6
carcinoma de vejiga	5/9
carcinoma de estómago	
tipo intestinal	8/8
tipo difuso	3/3
carcinoma de próstata	9/9
carcinoma de mama	
intraductal/ductal	8/10
débilmente diferenciado	2/5
mucinoso	1/1
carcinoma de tiroides	0/10
carcinoma de riñón	
de células claras	4/9
de células transicionales	2/5
carcinoma de cuello uterino	1/2
carcinoma ovárico	
adenocarcinoma	2/2
endometrioide	2/2
teratoma	2/2
glioblastoma	0/3

^[0131] Para el desarrollo de un modelo tumoral de ratón se ensayaron diferentes xenotrasplantes. Los xenotrasplantes son tejido de carcinoma de colon humano que se ha pasado varias veces en ratones desnudos. La Figura 8 muestra por ejemplo una tinción inmunohistoquímica de una preparación de xenotrasplante con el anticuerpo específico para Core-1 clgG-Karo4.

10

^[0132] Para las tinciones inmunocitológicas se utilizó la inmunofluorescencia. Para esto, las células correspondientes se secaron sobre el portaobjetos y se fijaron 10 min con formaldehído al 5%. Después del bloqueo de sitios de unión inespecíficos con BSA (al 1% en PBS) se incubaron las células con el anticuerpo primario. A

continuación se lavó 3 veces con PBS y se incubó con el correspondiente anticuerpo secundario marcado con fluorescencia (IgG o IgM anti-ratón o anti-ser humano para anticuerpos completos; anticuerpo anti-marcador Myc o anti-marcador His para los fragmentos de anticuerpo de cadena única). Después de varios lavados con PBS se incluyeron las células en Mowiol.

[0133] Se ensayaron diferentes líneas celulares con moléculas de reconocimiento específicas para Core-1 en la inmunofluorescencia. Una serie de líneas celulares tumorales y también algunas líneas celulares de leucemia reaccionan de forma positiva (Tabla 5 y Figura 9).

Tabla 5: Reactividad de diferentes líneas celulares con anticuerpos específicos para Core-1 mlgM-Karo1 o mlgM-Karo4

Líneas celulares	Reactividad	
KG-1	Positivo	
ZR-75-1	Positivo	
T47D	(positivo) pocas células	
U266	Negativo	
LN78	Positivo	
HT29	Positivo	
HCT116	Negativo	
HepG2	Negativo	
K562	Negativo	
NM-D4	Positivo	

[0134] La Figura 9 muestra a modo de ejemplo un marcado fluorescente de células KG-1, una línea celular de leucemia mieloide aguda con diferentes construcciones de anticuerpos, una IgM murina y dos anticuerpos scFv con diferente longitud de enlazador (SEC ID Nº 95 con 18 aminoácidos y SEC ID Nº 104 con un aminoácido como enlazador). Las tres construcciones muestran una tinción específica de la línea celular tumoral, mostrando el fragmento de anticuerpo monovalente SEC ID Nº 95 muestra la señal más débil.

9. Quelación y marcado radiactivo de anticuerpos y fragmentos de anticuerpos

5

25

30

35

40

45

[0135] Por conjugación se unió de forma covalente un quelante al anticuerpo clgG-Karo4 o el multicuerpo con la secuencia SEC ID Nº 104, que posibilita la unión de un radiometal. Como quelantes se utilizaron los productos Macrocyclics (Dallas, disponibles en el mercado de la empresa EE. UU.), isotiocianatobenzildietilentriaminopentacético (p-SCN-Bz-DTPA) ácido p-isotiocianatobenzil-1,4,7,10-У tetraazaciclododecano-1,4,7,10-tetracético (p-SCN-Bz-DOTA). Ambos quelantes son adecuados para acoplamiento a anticuerpos para su radiomarcado [Brechbiel et al., 1986; Kozak et al., 1989; Stimmel et al, 1995].

[0136] La conjugación se produjo por reacción del grupo isotiocianato del quelante con un grupo s-amino libre del aminoácido lisina en el anticuerpo. Se produce una unión covalente N-C entre el quelante y el anticuerpo.

[0137] El anticuerpo purificado o el fragmento de anticuerpo purificado en primer lugar se tiene que tamponar en tampón de acoplamiento pH 8,7. Para esto se realizó una ultrafiltración en un cartucho de filtración (Centriprep YM50 (Amicon)). Esto se realizó por dilución múltiple en un volumen de factor 10 y filtración por centrifugación por una membrana con un tamaño de poro definido. De este modo se sustituyó el PBS por el tampón de acoplamiento alcalino (carbonato sódico 0,05 M, cloruro sódico 0,15 M, pH 8,7).

[0138] La quelación se realizó con los quelantes bifuncionales p-SCN-Bz-DTPA o p-SCN-Bz-DOTA. Para la reacción de quelación se mezclaron proteína (1-10 mg/ml) en tampón de acoplamiento y una solución del quelante de 1 mg/ml en DMSO al 2%/agua de tal forma que se garantizó un exceso molar del quelante. Siguió una incubación de la mezcla de 1 h a 37°C. A continuación se separó el quelante no unido por ultrafiltración en el mismo recipiente (Centriprep YM50 (Amicon)) y se tamponó como se ha descrito anteriormente en el tampón de carga necesario para el marcado radiactivo hasta pH 4,2 (acetato sódico 0,15 M, cloruro sódico 0,15 M, pH 4,2). La concentración de proteína durante y después de esta etapa se ajustó de nuevo hasta 1-10 mg/ml con ayuda de una medición UV a 280 nm.

[0139] Se pudieron observar condiciones para la reacción de quelación que permiten un marcado radiactivo del anticuerpo sin disminuir considerablemente su bioactividad.

[0140] El anticuerpo quelado se cargó con un radiometal, por lo que se generó el radio-anticuerpo. Para la carga se usaron los isótopos ¹¹¹Indio y ⁹⁰Itrio. Ambos tienen propiedades químicamente y fisicoquímicamente comparables

y se unen por el quelante como iones trivalentes (111 In $^{3+}$, 90 Y $^{3+}$). El anticuerpo marcado con 111 Indio es un emisor γ y se usa en la clínica para encontrar la dosis individual para el paciente, mientras que el 90 Itrio es un emisor β que se usa terapéuticamente. Las semividas comprenden para 111 In 67 horas y para 90 Y 64 horas.

[0141] Para la carga se usó cloruro de ¹¹¹Indio de la empresa NEN (Perkin Elmer, Bélgica). El suministro del radiometal se realizó en solución de clorhídrico. Esta solución de ¹¹¹InCl₃ se llevó en primer lugar brevemente hasta una concentración de HCl de 1 M. A continuación se diluyó con HCl 0,05 M hasta una actividad específica de 80-320 mCi/ml y de esto se usó una alícuota para la inclusión en el anticuerpo quelado, donde el volumen añadido de solución de ¹¹¹InCl₃ de clorhídrico debe ser igual al volumen de la solución de anticuerpo presentada en el tampón de acoplamiento pH 4,2 para garantizar la estabilidad de pH. El tiempo de incubación fue de 1 h a 37°C con mezclado ocasional cuidadoso.

[0142] A continuación, el inserto de filtro se volvió a introducir en el cartucho de filtración y se tamponó como se ha descrito anteriormente en tampón fosfato pH 7,2 con contenido fisiológico de cloruro sódico. Se realizó una separación del anticuerpo marcado radiactivamente de alto peso molecular y ¹¹¹InCl₃ no unido. La cuantificación de la inclusión de ¹¹¹In en el anticuerpo quelado se realizó por cromatografía de capa fina. La velocidad de inclusión del radiometal se situó en el 70-99% de la radiactividad usada.

10. Identificación de la MUC1 secretora positiva para Core-1 en el ELISA tipo sándwich

[0143] Se puede identificar MUC1 secretora positiva para Core-1 en el ELISA de tipo sándwich. Para esto sirve un anticuerpo específico para MUC1 como anticuerpo de captura de MUC1 y un anticuerpo específico para Core-1 para la identificación del antígeno Core-1. Se tiene que utilizar un tercer anticuerpo acoplado a enzima o fluorescencia para la detección del anticuerpo secundario.

[0144] Como ejemplo se analizaron los sobrenadantes de dos líneas de células tumorales (K562 y T47D). Los resultados se representan en la Tabla 6. Se sembraron 10⁵ células por ml de medio de cultivo celular, se cultivaron durante 4 días sin cambio de medio, a continuación se tomó una alícuota y el sobrenadante del cultivo celular se separó por centrifugación del sedimento celular. Se incluyeron 50 μl de estos sobrenadantes sin diluir en el ELISA. Se realizó el ELISA de tipo sándwich anti-Core 1 anti-MUC1 recubriendo la placa de microtitulación con el anticuerpo de captura (1 µg/ml) en PBS durante una noche a 4°C. Se ensayaron tres concentraciones diferentes del anticuerpo para el recubrimiento (1 μg/ml, 2 μg/ml y 4 μl/ml). El recubrimiento con 1 μg/ml se observó en el ELISA de tipo sándwich como el más sensible. A continuación se lavaron las placas recubiertas dos veces con PBS y se bloquearon durante 1,5 h en BSA al 5%, Tween 20 al 0,05% en PBS a temperatura ambiente. Se retiró el tampón de bloqueo, las placas se lavaron de nuevo con Tween 20 al 0,1% en PBS (tampón de lavado), se añadieron las muestras y se incubaron durante 1,5 h a temperatura ambiente. Como controles negativos se usó el medio de cultivo celular o BSA al 2% en tampón de lavado (tampón de dilución para anticuerpo secundario). No estaba disponible ningún control positivo. Después de un lavado triple se realizó el tratamiento con neuraminidasa en los pocillos provistos para esto. Con este propósito se diluyó la solución de neuraminidasa (DADE Behring, Alemania) en tampón imidazol (0,68 g de imidazol, 0,19 g de CaCl₂ y 0,4 g de NaCl en 100 ml de H₂O, pH 6,8) 1:5 y se incubaron 50 ul/pocillo 30 min a 37°C. Como control se incubó el tampón imidazol sin solución de neuraminidasa en un pocillo correspondiente. A continuación se lavaron tres veces los pocillos y el anticuerpo mlgM-Karo4 se añadió para la comprobación del antígeno Core-1 con una dilución 1:500 en BSA al 2% en tampón de lavado y se incubó una hora adicional a temperatura ambiente. Después de un nuevo lavado triple se realizó la adición del anticuerpo IgM(μ) antiratón acoplado a peroxidasa (Dianova) 1:5000 en BSA al 2% en tampón de lavado y una incubación durante 1 h a temperatura ambiente. Finalmente se lavaron las placas dos veces en tampón de lavado y una vez en PBS. La reacción de tinción se realizó en ácido cítrico a 25 mM, tampón fosfato pH 5,0 con H₂O₂ al 0,04% y 0,4 mg/ml de ofenilendiamina (Sigma) en oscuridad a temperatura ambiente. La reacción de color se detuvo por adición de ácido sulfúrico 2,5 N (concentración final 0,07 N) y se midió en el lector ELISA a 492 nm con un filtro de referencia de 620

Tabla 6: Análisis de MUC1 positiva para Core-1 en sobrenadantes de cultivo de dos líneas celulares con y sin tratamiento con neuraminidasa en el ELISA de tipo sándwich

Línea celular	Señal	
	- NeuAcdasa	+NeuAcdasa
K562	-	+
T47D	+	+++

55

15

20

25

30

35

40

45

50

11. Unión eficaz de moléculas de reconocimiento específicas para Core-1 marcadas radiactivamente a células tumorales

5

10

15

20

25

30

35

40

45

[0145] La línea de células tumorales positiva para Core-1 NM-D4 [Depósito DSMZ N° DSM ACC2605] (compárese con la Tabla 5) se usaron para el ensayo de la capacidad de unión de las moléculas de reconocimiento radiomarcadas a células tumorales positivas para Core-1. Para esto se presentaron respectivamente en determinaciones dobles una cantidad determinada de células en un recipiente de 1,5 ml y se incubaron con cantidades crecientes de anticuerpos. Después del lavado se determinó mediante la velocidad de recuento cuánto anticuerpo se había unido. Por lote se usaron 2 x 10⁶ células. Después de preincubación de las células durante una hora sobre hielo se puso la cantidad necesaria de células en matraces de reacción, se centrifugaron (5 min 1000 xg, 25°C) y se retiró el sobrenadante. Después se rellenó con PBS/0.1% Tween20/1% BSA hasta el volumen de 200 ul sin tener en cuenta la cantidad todavía a añadir de molécula de reconocimiento. Después se añadió la molécula de reconocimiento correspondiente marcada con ¹¹¹In (véase el Ejemplo 9) hasta el volumen final de 200 µl (aproximadamente de 0,5 a 20 μg, dependiendo de la molécula de reconocimiento) y los lotes se incubaron durante una hora a 4-8°C. Después del centrifugado (4 min, 1000 xg, 25°C) se retiró el sobrenadante y se resuspendió cuidadosamente el sedimento celular en 400 µl de PBST/BSA al 1%. Después de un nuevo lavado, el sedimento celular se midió en el recipiente con el contador gamma. De las soluciones de partida con concentración definida se determinaron las velocidades de recuento específicas, el valor en cpm/ng se basó en la relativización de los valores de medición del anticuerpo unido. La unión libre se obtiene de la diferencia de la cantidad total y la cantidad unida de anticuerpos. Estos valores se representan como relación de unido/no unido frente a la cantidad de unido en un diagrama y en el intervalo lineal de la curva se determinó la pendiente y se determinó el punto de corte en la abscisa (análisis de Scatchard). El punto de corte con la abscisa indica la cantidad de sitios de unión/célula. A partir de la pendiente de la recta se obtiene la constante de asociación Kass en [M-1]. En la Figura 10 se representa a modo de ejemplo el análisis Scatchard de la unión de la molécula de reconocimiento marcada radiactivamente en el formato scFv con la secuencia SEC ID Nº 104 con un aminoácido como enlazador en células NM-D4 (dos preparaciones diferentes). En la Tabla 7 se resumen las constantes de asociación y la cantidad de los sitios de unión celular de diferentes multicuerpos específicos para Core-1 a células NM-D4.

Tabla 7: Ensayo de unión celular y análisis Scatchard con moléculas de reconocimiento marcadas con ¹¹¹In a células NM-D4

Anticuerpo	Kass [M-1]	Cantidad de sitios de unión/célula
SEC ID Nº 105	1,1 x 10 ⁷	4,8 x 10 ⁶
SEC ID Nº 104	2,1 x 10 ⁶	8,1 x 10 ⁶
SEC ID Nº 103	1,2 x 10 ⁶	9,2 x 10 ⁶

12. Acumulación de las moléculas de reconocimiento específicas para Core-1 marcadas radiactivamente en tumores positivos para Core-1 en un modelo tumoral *in vivo*

[0146] Como modelo de tumor se inyectaron células ZR-75-1 por vía subcutánea en ratones desnudos (Ncr. nu/nu, hembra). Después de aproximadamente 3-4 semanas, el tumor se puede palpar por debajo de la piel. A los ratones que llevan tumor (por momento n=4) se administraron respectivamente 5 μ g de multicuerpo marcado con 111 ln (SEC ID Nº 104 o SEC ID Nº 105) en 200 μ l i.v. en la vena de la cola. Después de 24 h se sacrificaron los ratones y se determinó la distribución de la radiactividad en el tumor, en el suero y en los órganos. La Tabla 8 muestra la acumulación elevada específica de los multicuerpos en el tumor (en % de Dl/g de tumor con respecto a la dosis inyectada y el peso del tumor) en comparación con el suero y los órganos.

Tabla 8: Biodistribución de moléculas de reconocimiento marcadas con ¹¹¹In en ratones que llevan tumor

	SEC ID Nº 104	SEC ID Nº 105	
suero (% de DI/ml)	$1,4 \pm 0,16$	1,0 ± 0,24	
tumor (% de DI/g)	10,8 ± 2,88	8,1 ± 1,45	
hígado (% de DI/g)	3.7 ± 0.15	5,3 ± 0,92	
pulmón (% de DI/g)	$1,7 \pm 0,11$	$1,9 \pm 0,19$	
corazón (% de DI/g)	$1,5 \pm 0,06$	1,9 ± 0,19	
bazo (% de DI/g)	$5,4 \pm 0,75$	6,7 ± 1,07	
cerebro (% de DI/g)	0.1 ± 0.01	$0,1 \pm 0,00$	
médula ósea (% de DI/g)	$1,0 \pm 0,16$	1,7 ± 0,90	·

30

- 13. Estudio de terapia para la disminución de tumores positivos para Core-1 con moléculas de reconocimiento específicas marcadas radiactivamente en un modelo tumoral *in vivo*
- [0147] Los estudios de terapia se realizan usando del mismo modelo tumoral establecido ZR-75-1, como se describe para los estudios de biodistribución (véase el Ejemplo 12). Las moléculas de reconocimiento queladas (véase el Ejemplo 9) se cargaron para esto con 90 ltrio (un emisor β para la destrucción de las células tumorales) (pH 4,5, 37°C, 30 min; compárese la inclusión de 111 lndio) y se controló la estabilidad en la cromatografía de capa fina. A los ratones que llevan tumor (aproximadamente tres semanas después de la inyección subcutánea de las células ZR-75-1) se administraron 200 μl i.v. en la vena de la cola. La solución de inyección contenía el multicuerpo marcado con 90 Y (hasta un máximo de 100 μCi por dosis) en Ca/Mg-PBS con suero fetal bovino del 0,2 al 4% para la protección contra radiolisis. Los grupos de control obtuvieron la misma inyección sin molécula de reconocimiento marcada radiactivamente. El peso corporal y el tamaño del tumor se midieron y se compararon dos veces por semana. El crecimiento relativo del tumor se determinó teniendo en cuenta el respectivo tamaño del tumor al comienzo del tratamiento. Se inyectó una segunda inyección tres semanas después del primer tratamiento. Por el tratamiento adecuado se pudo reducir el crecimiento tumoral de forma significativa con respecto al grupo de control.

Leyenda de los dibujos

[0148]

20

25

30

50

55

60

Figura 1a: Secuencias de los enlazadores en diferentes fragmentos de anticuerpo de cadena única de multicuerpo.

Figura 1b: Esquema de clonación para la producción de fragmentos de anticuerpo de cadena única con diferente longitud de enlazador.

Figura 2: Vector para la clonación y expresión bacteriana de fragmentos de anticuerpo de cadena única.

Figura 3: Análisis de multicuerpos en el formato scFv con diferente longitud de enlazador en el FI ISA.

- 35 [0149] Se expresaron multicuerpos con las secuencias de aminoácidos SEC ID Nº 95, 96, 97, 98, 99, 100, 101, 103, 104 y 105 como se ha descrito anteriormente en *E. coli* y se obtuvieron las fracciones periplasmáticas. Como antígeno para el ensayo ELISA se utilizó asialoglicoforina, una glicoproteína que lleva Core-1. Un acortamiento de enlazador gradual conduce a un aumento de la unión a asialoglicoforina. Las mejores propiedades de unión muestran las variantes con las SEC ID Nº 104 y 105. Estas construcciones multivalentes en el formato dia/triacuerpo son realizaciones preferidas de la invención.
 - Figura 4: Sistema de vector para la clonación y expresión eucariota de anticuerpos quiméricos en el formato IgG1 o IgM.
- 45 Figuras 5 y 6: Análisis de especificidad en el ELISA.

[0150] Como antígenos se usaron diferentes glicoproteínas y conjugados de carbohidrato-PAA. Asialoglicoforina [1] Glicoforina [2]; Asialofetuína [3]; Gal β 1-3GalNAc α 1-OC $_3$ H $_6$ NH-PAA [4]; Gal β 1-3GalNAc α 1- β 0-OC $_6$ H $_4$ NH-PAA [5]; Gal α 1-3GalNAc α 1-OC $_3$ H $_6$ NH-PAA [6]; Gal β 1-3GalNAc β 1-OC $_3$ H $_6$ NH-PAA [7]; Gal α 1-3GalNAc α 1-OC $_3$ H $_6$ NH-PAA [8]; Gal α 1-3GalNAc α 1-OC α 3H $_6$ NH-PAA [9]; GalNAc α 1-OC α 3H $_6$ NH-PAA [10]; Neu5Ac α 2-3Gal α 1-3GalNAc α 1-OC α 3H α 4-PAA [11]; Gal α 4-3GalNAc α 1-OC α 3H α 4-PAA [12]; GlcNAc α 1-2Gal α 1-3GalNAc α 1-OC α 3H α 4-PAA [13]; GlcNAc α 1-3GalNAc α 1-OC α 3H α 4-PAA [14]; GalNAc α 1-OC α 3H α 4-PAA [15]; y 3'-O-Su-Gal α 1-3GalNAc α 1-OC α 3H α 4-PAA [16]. Como control se usó BSA [17]. En la Figura 5 se utilizaron dos anticuerpos en el formato IgM con diferente composición de secuencia CDR. La Figura 6 muestra el patrón de especificidad de tres moléculas de reconocimiento humanizadas en el formato scFv con secuencias flanqueantes variables.

Figura 7: Unión específica de diferentes formatos y combinaciones preferidas de moléculas de reconocimiento de acuerdo con la invención en el ELISA, por ejemplo en los antígenos AGP, GP y/o Core-1-PAA (Galβ1-3GalNAcα1-OC₃H₆NH-PAA).

Figura 8 Tinción inmunohistoquímica de preparaciones de xenotrasplante

[0151] Se trasplantó tejido de carcinoma de colon humano a ratones desnudos y después de alcanzar un tamaño determinado se realizaron pases. El tejido tumoral se incluyó y se cortó y se utilizó para tinciones inmunohistoquímicas. En a) se marcó el tejido con clgG-Karo4 como anticuerpo primario y un anticuerpo Fc γ anti-ser humano acoplado a POD como anticuerpo secundario. La coloración marrón caracteriza las estructuras positivas para Core-1.

Figura 9: Marcado fluorescente de células de la línea de células tumorales KG-1 con diferentes

moléculas de reconocimiento específicas para Core-1.

Figura 10: Diagrama de Scatchard para el análisis de la unión celular de moléculas de reconocimiento

específicas para Core-1 marcadas radiactivamente. En este caso se representan a modo de ejemplo los datos de unión de los multicuerpos SEC ID Nº 104 con una longitud de enlazador de un aminoácido (Pr1 y Pr2 se corresponden a dos preparaciones diferentes): B: parte unida a las células [M], F: unión libre como diferencia de cantidad total y cantidad unida de anticuerpo [M]. Arriba se indica la ecuación de recta correspondiente, donde la pendiente de la recta reproduce la

constante de asociación.

Secuencias

[0152]

5

10

15

20

Secuencias CDR

SEC ID Nº 1 NYWLG

SEC ID № 2 DIYPGGGYTNYNEKFKG

SEC ID N° 3 DIYPGGSYTNYNEKFKG

SEC ID Nº 4 YDAAGPWFAY

SEC ID N° 5 YDAAGPGFAY

SEC ID Nº 6 YDNHYFDY

SEC ID N° 7 RSSQSIVHSNGNTYLE SEC ID N° 8 RSSQSLLHSNGNTYLH

SEC ID № 9 KSSQSLLHSDGKTYLY

SEC ID Nº 10 KVSNRFS

SEC ID Nº 11 EVSSRFS

SEC ID N° 12 FQGSHVPYT SEC ID N° 13 SQSTHVPYT

Secuencias CDR (variantes de estructura canónica)

SEC ID N° 14	NYWIG
SEC ID Nº 15	NYWMG
SEC ID Nº 16	NYWWG
SEC ID Nº 17	NYWVG
SEC ID Nº 18	DIYPGGDYTNYNEKFKG
SEC ID Nº 19	DIYPGGNYTNYNEKFKG
SEC ID Nº 20	DIYTGGGYTNYNEKFKG
SEC ID Nº 21	DIYTGGDYTNYNEKFKG
SEC ID Nº 22	DIYTGGNYTNYNEKFKG
SEC ID Nº 23	DIYTGGSYTNYNEKFKG
SEC ID Nº 24	DIYAGGGYTNYNEKFKG
SEC ID Nº 25	DIYAGGDYTNYNEKFKG
SEC ID Nº 26	DIYAGGNYTNYNEKFKG

Secuencias CDR (variantes de estructura canónica)		
SEC ID Nº 27	DIYAGGSYTNYNEKFKG	
SEC ID Nº 28	RPSQSIVHSNGNTYLE	
SEC ID Nº 29	RSSQSLVHSNGNTYLE	
SEC ID Nº 30	RSSQSIVHSNGNTYFE	
SEC ID Nº 31	RPSQSLVHSNGNTYLE	
SEC ID Nº 32	RPSQSIVHSNGNTYFE	
SEC ID Nº 33	RSSQSLVHSNGNTYFE	
SEC ID Nº 34	RPSQSLLHSNGNTYLH	
SEC ID Nº 35	RSSQSILHSNGNTYLH	
SEC ID Nº 36	RSSQSLLHSNGNTYFH	
SEC ID Nº 37	RPSQSILHSNGNTYLH	
SEC ID Nº 38	RPSQSLLHSNGNTYFH	
SEC ID Nº 39	RSSQSILHSNGNTYFH	
SEC ID Nº 40	KPSQSLLHSDGKTYLY	
SEC ID Nº 41	KSSQSILHSDGKTYLY	
SEC ID Nº 42	KSSQSLLHSDGKTYFY	
SEC ID Nº 43	KPSQSILHSDGKTYLY	
SEC ID Nº 44	KPSQSLLHSDGKTYFY	
SEC ID Nº 45	KSSQSILHSDGKTYFY	

cadenas pesadas variables VH

[0153]

SEC ID Nº 46

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSS

SEC ID Nº 47

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEW1GD1YPGGSYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCARYDNHYFDYWGQGTTLTVSS SEC ID N° 48

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTLTVSS SEC ID N° 49

EVKLVESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTSVTVSS SEC ID N° 50

QVOLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 51

EVKLVESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS

SEC ID Nº 52

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSA SEC $\dot{\text{ID}}$ N° 53

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 54

ES 2 387 072 T3

- QVTLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTSVTVSS SEC ID N° 55
- OVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKORPGHGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTSVTVSS SEC ID N° 56
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS
- SEC ID Nº 57
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- $\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTLVTVSS$
- SEC ID Nº 58
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- $\tt KFKGKATLTADTSSSTAYMQLSRLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS$
- SEC ID Nº 59
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSSSTAYMELSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS SEC ID N° 60
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLERIGDIYPGGGYTNYNE
- KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS SEC ID Nº 61
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSTSTAYMELSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 63
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSTSTAYMELSSLRSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS SEC ID Nº 64
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSTSTAYMELSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTLVTVSS
- OVOLVOSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKORPGOGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSTSTAYMELSSLRSEDTAVYFCAYYDAAGPWFAYWGQGTLVTVSS
- QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTTVTVSS
- QVQLVQSGAEVKKPGASVKVPCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE
- KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SEC ID N° 68

ES 2 387 072 T3

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SFC ID N° 69

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SFC ID N° 70

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE}$

KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 71

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSTSTAYMELSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 72

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSTSTAYMELSSLRSEDTAVYFCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 73

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 74

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSTSTAYMELSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS SEC ID N° 75

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE

KFKGRVTITADTSTSTAYMELSSLRSEDTAVYFCAYYDAAGPWFAYWGQGTLVTVSS SEC ID N° 76

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE}$

KFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SEC ID N° 77

OVOLVOSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKORPGOGLEWIGDIYPGGGYTNYNE

KFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SEC ID N° 78

QVOLVOSGAEVKKPGASVKVSCKASGYTFTNYWLGWVROAPGOGLEWMGDIYPGGGYTNYNE

KFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SEC ID N $^\circ$ 79

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWMGDIYPGGGYTNYNE} \\ {\tt KFKGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS}$

cadenas ligeras variables

[0154]

SEC ID Nº 80

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRA SEC ID N° 81 DIVITQTPLSLPVSLGDQASISCRSSQSLLHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIKRA

SEC ID Nº 82

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLELKRA

SEC ID Nº 83

DVLMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRA

SEC ID Nº 84

DVLMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLELKRA

SEC ID Nº 85

DIQMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

SEC ID Nº 86

DIQMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEC ID Nº 87

DIOMTOSPLSLPVTPGEPASISCRSSOSIVHSNGNTYLEWYLOKPGOSPOLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

SFC ID Nº 88

DIOMTOSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEC ID Nº 89

DIVMTOSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

SEC ID Nº 90

DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEC ID Nº 91

DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG

 ${\tt VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA}$

SEC ID Nº 92

DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEC ID Nº 93

DIVMTQTPLSLPVTPGQPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEC ID Nº 94

DIVMTQTPLSLSVTPGQPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

Apareamientos VH/VL

[0155]

Anticuerpo d	e ratón
Karo1	SEC ID Nº 46
	SEC ID Nº 80
Karo2	SEC ID Nº 47
	SEC ID Nº 81
Karo3	SEC ID Nº 48
	SEC ID Nº 80
Karo4	SEC ID N° 50
	SEC ID Nº 80
Karo5	SEC ID Nº 53
	SEC ID Nº 82
Karo6	SEC ID Nº 52
	SEC ID Nº 83
Karo7	SEC ID Nº 55
	SEC ID Nº 83
Karo8	SEC ID Nº 54
	SEC ID Nº 80
Karo9	SEC ID Nº 51
	SEC ID Nº 83
Karo10	SEC ID Nº 49
	SEC ID Nº 80
Secuenc	cias humanizadas
Karo11	
	SEC ID Nº 90
Karo12	SEC ID Nº 57
	SEC ID Nº 90
Karo13	SEC ID Nº 57
	SEC ID Nº 86
Karo14	SEC ID Nº 58
	SEC ID Nº 87
Karo15	SEC ID Nº 56
	SEC ID Nº 91

	sias humanizadas SEC ID Nº 59
	SEC ID Nº 91
Karo17	SEC ID Nº 60
	SEC ID Nº 87
Karo18	SEC ID Nº 61
	SEC ID Nº 90
Karo19	SEC ID Nº 56
	SEC ID Nº 88
Karo20	SEC ID Nº 56
	SEC ID Nº 85
Karo21	SEC ID Nº 59
	SEC ID Nº 90
Karo22	SEC ID Nº 62
	SEC ID Nº 90
Karo23	SEC ID Nº 59
	SEC ID Nº 86
Karo24	SEC ID Nº 74
	SEC ID Nº 92
Karo25	SEC ID Nº 63
	SEC ID Nº 87
Karo26	SEC ID Nº 74
	SEC ID Nº 87
Karo27	SEC ID Nº 74
	SEC ID Nº 89
Karo28	SEC ID Nº 74
	SEC ID Nº 85
Karo29	SEC ID Nº 64
	SEC ID Nº 86
Karo30	SEC ID Nº 74
	SEC ID Nº 86
Karo31	SEC ID Nº 63
	SEC ID Nº 86

Secuencias humanizadas

Karo32 SEC ID Nº 65

SEC ID Nº 85

Karo33 SEC ID Nº 65

SEC ID Nº 86

Karo34 SEC ID Nº 66

SEC ID Nº 85

Karo35 SEC ID Nº 67

SEC ID Nº 87

Karo36 SEC ID Nº 68

SEC ID Nº 86

Karo37 SEC ID Nº 72

SEC ID Nº 88

Karo38 SEC ID Nº 69

SEC ID Nº 90

Karo39 SEC ID Nº 70

SEC ID Nº 90

Karo40 SEC ID Nº 69

SEC ID Nº 92

Karo41 SEC ID Nº 73

SEC ID Nº 86

Karo42 SEC ID Nº 69

SEC ID Nº 89

Karo43 SEC ID Nº 71

SEC ID Nº 92

Karo44 SEC ID Nº 56

SEC ID Nº 86

Karo45 SEC ID Nº 65

SEC ID Nº 92

diferentes formatos de Fv de cadena única

[0156]

SEC ID Nº 95

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGG GGSGGGGSGGSARDIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSP KLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEI

SEC ID Nº 96

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGS GSSADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSN RFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHH

HHGAAEQKLISEEDLNGAA

KRAAAHHHHHGAAEQKLISEEDLNGAA

SEC ID Nº 97

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGG SSADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNR FSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHH

HGAAEQKLISEEDLNGAA

SEC ID Nº 98

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGS SADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRF SGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHH

GAAEQKLISEEDLNGAA

SEC ID Nº 99

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSS ADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHG

AAEQKLISEEDLNGAA

SEC ID Nº 100

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSSA DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGA

AEOKLISEEDLNGAA

SEC ID Nº 101

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSAD IQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGV PDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAA

SEC ID Nº 102

EOKLISEEDLNGAA

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASADI QMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVP DRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAE

OKLISEEDLNGAA

SEC ID Nº 103

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSAADIQ MTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPD RFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQ

KLISEEDLNGAA

SEC ID Nº 104

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSADIQM TQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDR FSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQK

LISEEDLNGAA

SEC ID Nº 105

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSDIQMT QTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDRF SGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQKL

ISEEDLNGAA

SEC ID Nº 106

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSDIQMTQ TPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDRFS GSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQKLI SEEDLNGAA

Anticuerpos murinos

[0157]

SEC ID Nº 107

 ${\tt DIVITQTPLSLPVSLGDQASISCRSSQSLLHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSG}$

VPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIKRADAAPTVSIFP

PSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTL

TKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

SEC ID Nº 108

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRADAAPTVSIFP

PSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTL

TKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

SEC ID Nº 109

OVOLKOSGAELVRPGTSVKISCKASGYTFTNYWLGWVKORPGHGLEWIGDIYPGGSYTNYNE

KFKGKATLTADTSSSTAYMOLSSLTSEDSAVYFCARYDNHYFDYWGOGTTLTVSESOSFPNV

FPLVSCESPLSDKNLVAMGCLARDFLPSTISFTWNYQNNTEVIQGIRTFPTLRTGGKYLATS

OVLLSPKSILEGSDEYLVCKIHYGGKNRDLHVPIPAVAEMNPNVNVFVPPRDGFSGPAPRKS

KLICEATNFTPKPITVSWLKDGKLVESGFTTDPVTIENKGSTPQTYKVISTLTISEIDWLNL

NVYTCRVDHRGLTFLKNVSSTCAASPSTDILTFTIPPSFADIFLSKSANLTCLVSNLATYET

LNISWASOSGEPLETKIKIMESHPNGTFSAKGVASVCVEDWNNRKEFVCTVTHRDLPSPOKK

FISKPNEVHKHPPAVYLLPPAREQLNLRESATVTCLVKGFSPADISVQWLQRGQLLPQEKYV

TSAPMPEPGAPGFYFTHSILTVTEEEWNSGETYTCVVGHEALPHLVTERTVDKSTGKPTLYN

VSLIMSDTGGTCY

SEC ID Nº 110

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

 $\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSESQSFP$

NVFPLVSCESPLSDKNLVAMGCLARDFLPSTISFTWNYONNTEVIQGIRTFPTLRTGGKYLA

TSQVLLSPKSILEGSDEYLVCKIHYGGKNRDLHVPIPAVAEMNPNVNVFVPPRDGFSGPAPR

 $\tt KSKLICEATNFTPKPITVSWLKDGKLVESGFTTDPVTIENKGSTPQTYKVISTLTISEIDWL$

NLNVYTCRVDHRGLTFLKNVSSTCAASPSTDILTFTIPPSFADIFLSKSANLTCLVSNLATY

ETLNISWASQSGEPLETKIKIMESHPNGTFSAKGVASVCVEDWNNRKEFVCTVTHRDLPSPQ

KKFISKPNEVHKHPPAVYLLPPAREQLNLRESATVTCLVKGFSPADISVQWLQRGQLLPQEK

 ${\tt YVTSAPMPEPGAPGFYFTHSILTVTEEEWNSGETYTCVVGHEALPHLVTERTVDKSTGKPTL}$

YNVSLIMSDTGGTCY

mlgM-Karo2 SEC ID Nº 109

SEC ID Nº 107

mlgM-Karo4 SEC ID N° 100

SEC ID Nº 108

Anticuerpos quiméricos (ratón/ser humano)

[0158]

SEC ID Nº 111

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE
KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSGSTKGP
SVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP
KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGK

SEC IN N° 112
QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE
KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSGSASAP
TLFPLVSCENSPSDTSSVAVGCLAQDFLPDSITLSWKYKNNSDISSTRGFPSVLRGGKYAAT
SQVLLPSKDVMQGTDEHVVCKVQHPNGNKEKNVPLPVIAELPPKVSVFVPPRDGFFGNPRKS
KLICQATGFSPRQIQVSWLREGKQVGSGVTTDQVQAEAKESGPTTYKVTSTLTIKESDWLGQ
SMFTCRVDHRGLTFQQNASSMCVPDQDTAIRVFAIPPSFASIFLTKSTKLTCLVTDLTTYDS
VTISWTRQNGEAVKTHTNISESHPNATFSAVGEASICEDDWNSGERFTCTVTHTDLPSPLKQ
TISRPKGVALHRPDVYLLPPAREQLNLRESATITCLVTGFSPADVFVQWMQRGQPLSPEKYV
TSAPMPEPQAPGRYFAHSILTVSEEEWNTGETYTCVVAHEALPNRVTERTVDKSTGKPTLYN

VSLVMSDTAGTCY

SEC ID Nº 113

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRTVAAPSVFIFP PSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHOGLSSPVTKSFNRGEC

Anticuerpos quiméricos

[0159]

clgG-Karo4 SEC ID Nº 111

SEC ID Nº 113

clgM-Karo4 SEC ID Nº 112

SEC ID Nº 113

LISTA DE SECUENCIAS

[0160]

5 <110> Nemod Biotherapeutics GmbH & Co. KG

<120> Moléculas de reconocimiento específicas de tumor

<130> P1778EP/1 S3

10

<140> Solicitud divisioal basada en EP 03 78 8853.4

<141> 01-12-2003

```
<150> DE 102 56 900.2
      <151> 29-11-2002
 5
      <160> 113
      <170> PatentIn ver. 2.1
      <210> 1
10
      <211> 5
      <212> PRT
      <213> Secuencia artificial
15
      <223> Descripción de la secuencia artificial: secuencia CDR
      <400> 1
          Asn Tyr Trp Leu Gly
      <210> 2
20
      <211> 17
      <212> PRT
      <213> Secuencia artificial
      <220>
25
      <223> Descripción de la secuencia artificial: secuencia CDR
      <400> 2
            Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                                                                                     15
                                   5
                                                            10
            Gly
      <210> 3
30
      <211> 17
      <212> PRT
      <213> Secuencia artificial
35
      <223> Descripción de la secuencia artificial: secuencia CDR
      <400> 3
           Asp Ile Tyr Pro Gly Gly Ser Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
             1
                                                           10
           Gly
      <210> 4
40
      <211> 10
      <212> PRT
      <213> Secuencia artificial
45
      <223> Descripción de la secuencia artificial: secuencia CDR
      <400> 4
```

```
Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr
                                   5
      <210> 5
      <211> 10
      <212> PRT
 5
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR
10
      <400> 5
           Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr
                                  5
                                                           10
      <210> 6
      <211>8
      <212> PRT
15
      <213> Secuencia artificial
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR
20
        Tyr Asp Asn His Tyr Phe Asp Tyr
                               5
      <210> 7
      <211> 16
      <212> PRT
25
      <213> Secuencia artificial
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR
30
      <400> 7
        Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
                                                                                 15
                               5
                                                       10
      <210>8
      <211> 16
      <212> PRT
35
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR
40
      <400> 8
         Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu His
                                5
                                                        10
                                                                                 15
      <210>9
      <211> 16
      <212> PRT
45
      <213> Secuencia artificial
```

```
<223> Descripción de la secuencia artificial: secuencia CDR
 5
      <400> 9
         Lys Ser Ser Gln Ser Leu Leu His Ser Asp Gly Lys Thr Tyr Leu Tyr
           1
                                 5
                                                         10
                                                                                    15
      <210> 10
      <211> 7
      <212> PRT
10
      <213> Secuencia artificial
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR
15
      <400> 10
            Lys Val Ser Asn Arg Phe Ser
      <210> 11
      <211>7
      <212> PRT
20
      <213> Secuencia artificial
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR
25
      <400> 11
            Glu Val Ser Ser Arg Phe Ser
                                    5
      <210> 12
      <211>9
      <212> PRT
30
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR
35
      <400> 12
             Phe Gln Gly Ser His Val Pro Tyr Thr
                                    5
               1
      <210> 13
      <211>9
      <212> PRT
40
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR
45
      <400> 13
```

```
Ser Gln Ser Thr His Val Pro Tyr Thr
                1
                                      5
      <210> 14
       <211> 5
      <212> PRT
 5
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
10
      <400> 14
            Asn Tyr Trp Ile Gly
      <210> 15
       <211>5
      <212> PRT
15
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
20
      <400> 15
              Asn Tyr Trp Met Gly
                1
      <210> 16
       <211>5
      <212> PRT
25
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
30
      <400> 16
             Asn Tyr Trp Trp Gly
                1
      <210> 17
       <211> 5
      <212> PRT
35
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
40
      <400> 17
           Asn Tyr Trp Val Gly
              1
      <210> 18
      <211> 17
      <212> PRT
45
      <213> Secuencia artificial
       <220>
```

```
<223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 18
           Asp Ile Tyr Pro Gly Gly Asp Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                                  5
                                                           10
             1
           Gly
 5
      <210> 19
      <211> 17
      <212> PRT
      <213> Secuencia artificial
10
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 19
          Asp Ile Tyr Pro Gly Gly Asn Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                                  5
                                                          10
                                                                                   15
             1
          Gly
15
      <210> 20
      <211> 17
      <212> PRT
      <213> Secuencia artificial
20
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 20
       Asp Ile Tyr Thr Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
          1
                               5
                                                        10
                                                                                  15
       Gly
25
      <210> 21
      <211> 17
      <212> PRT
      <213> Secuencia artificial
30
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 21
        Asp Ile Tyr Thr Gly Gly Asp Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
           1
                                5
                                                                                   15
                                                        10
        Gly
35
      <210> 22
      <211> 17
      <212> PRT
      <213> Secuencia artificial
```

```
<220>
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 22
       Asp Ile Tyr Thr Gly Gly Asn Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                               5
                                                                                 15
                                                       10
       Gly
 5
      <210> 23
      <211> 17
      <212> PRT
      <213> Secuencia artificial
10
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 23
         Asp Ile Tyr Thr Gly Gly Ser Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
            1
                                 5
                                                         10
                                                                                   15
         Gly
15
      <210> 24
      <211> 17
      <212> PRT
      <213> Secuencia artificial
20
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 24
         Asp Ile Tyr Ala Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                                                                                   15
         Gly
25
      <210> 25
      <211> 17
      <212> PRT
      <213> Secuencia artificial
30
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
         Asp Ile Tyr Ala Gly Gly Asp Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                                 5
            1
                                                         10
                                                                                   15
         Gly
35
      <210> 26
      <211> 17
```

```
<212> PRT
      <213> Secuencia artificial
 5
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 26
          Asp Ile Tyr Ala Gly Gly Asp Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
                                                          10
             1
                                 5
          Gly
      <210> 27
10
      <211> 17
      <212> PRT
      <213> Secuencia artificial
15
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 27
        Asp Ile Tyr Ala Gly Gly Ser Tyr Thr Asn Tyr Asn Glu Lys Phe Lys
        Gly
      <210> 28
20
      <211> 16
      <212> PRT
      <213> Secuencia artificial
25
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 28
         Arg Pro Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
            1
                                 5
                                                         10
                                                                                   15
      <210> 29
30
      <211> 16
      <212> PRT
      <213> Secuencia artificial
35
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 29
       Arg Pro Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu
                               5
                                                        10
                                                                                  15
          1
      <210> 30
40
      <211> 16
      <212> PRT
      <213> Secuencia artificial
```

```
<223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
 5
      <400> 30
       Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Phe Glu
                                                        10
                                                                                  15
          1
      <210> 31
      <211> 16
      <212> PRT
10
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
15
      <400> 31
         Arg Pro Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Leu Glu
           1
                                5
                                                         10
      <210> 32
      <211> 16
      <212> PRT
20
      <213> Secuencia artificial
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
25
      <400> 32
           Arg Pro Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Phe Glu
                                  5
                                                          10
                                                                                   15
      <210> 33
      <211> 16
      <212> PRT
30
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
35
      <400> 33
         Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr Phe Glu
                                                                                   15
                                 5
                                                         10
      <210> 34
      <211> 16
      <212> PRT
40
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
45
      <400> 34
           Arg Pro Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu His
                                                           10
                                                                                     15
             1
                                  5
```

```
<210> 35
      <211> 16
      <212> PRT
      <213> Secuencia artificial
 5
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 35
           Arg Ser Ser Gln Ser Ile Leu His Ser Asn Gly Asn Thr Tyr Leu His
                                                                                15
         1
                              5
                                                      10
10
      <210> 36
      <211> 16
      <212> PRT
      <213> Secuencia artificial
15
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 36
        Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Phe His
                                                        10
                                                                                  15
          1
                               5
20
      <210> 37
      <211> 16
      <212> PRT
      <213> Secuencia artificial
25
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
       Arg Pro Ser Gln Ser Ile Leu His Ser Asn Gly Asn Thr Tyr Leu His
          1
                               5
                                                                                  15
30
      <210> 38
      <211> 16
      <212> PRT
      <213> Secuencia artificial
35
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
      <400> 38
       Arg Pro Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Phe His
          1
                               5
                                                       10
                                                                                  15
40
      <210>39
      <211> 16
      <212> PRT
      <213> Secuencia artificial
```

```
<223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
 5
      <400> 39
       Arg Ser Ser Gln Ser Ile Leu His Ser Asn Gly Asn Thr Tyr Phe His
                                                                                   15
          1
                                5
                                                         10
      <210>40
      <211> 16
      <212> PRT
10
      <213> Secuencia artificial
      <220>
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
15
      <400> 40
        Lys Pro Ser Gln Ser Leu Leu His Ser Asp Gly Lys Thr Tyr Leu Tyr
           1
                                5
                                                         10
                                                                                   15
      <210>41
      <211> 16
      <212> PRT
20
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
25
      <400> 41
          Lys Ser Ser Gln Ser Ile Leu His Ser Asp Gly Lys Thr Tyr Leu Tyr
            1
                                 5
                                                          10
                                                                                    15
      <210> 42
      <211> 16
      <212> PRT
30
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
35
      <400> 42
        Lys Ser Ser Gln Ser Leu Leu His Ser Asp Gly Lys Thr Tyr Phe Tyr
                                                                                   15
                                5
                                                         10
      <210> 43
      <211> 16
      <212> PRT
40
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
45
      <400> 43
```

```
Lys Pro Ser Gln Ser Ile Leu His Ser Asp Gly Lys Thr Tyr Leu Tyr
          1
                                                       10
      <210> 44
      <211> 16
      <212> PRT
 5
     <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
10
      <400> 44
       Lys Pro Ser Gln Ser Ile Leu His Ser Asp Gly Lys Thr Tyr Leu Tyr
                              5
                                                      10
                                                                                15
         1
      <210> 45
      <211> 16
      <212> PRT
15
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: secuencia CDR (variante de estructura canónica)
20
      <400> 45
        Lys Ser Ser Gln Ser Ile Leu His Ser Asp Gly Lys Thr Tyr Phe Tyr
                                                                                  15
                                                        10
      <210>46
      <211> 119
      <212> PRT
25
      <213> Secuencia artificial
      <223> Descripción de la secuencia artificial: cadenas pesadas variables VH
30
      <400> 46
```

Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr

5 10 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 20 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 40 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 70 75 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 90 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr Trp Gly Gln Gly 100 105 Thr Thr Val Thr Val Ser Ser 115 <210> 47 <211> 117 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 47 Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 5 10 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr

5

			20				÷	25					30		
Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Туг	Pro	Gly	Gly 55	Ser	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Суз
Ala	Arg	Tyr	Asp 100	Asn	His	Tyr	Phe	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Thr
Leu	Thr	Val 115	Ser	Ser									.		
<210> <211> <212> <213>	119 PRT	encia a	artificia	al											
<220> <223>	Descr	ipción	de la	secue	encia a	artificia	al: cad	enas į	pesad	as vai	riables	s VH			
<400>	48														
Gln 1	Val	Gln	Leu	Lys 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr
Ser	Val	Lys	Ile 20	Ser	Cys	ГÀЗ	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Tyr
Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Phe 95	Cys

Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 110 100 Thr Thr Leu Thr Val Ser Ser 115 <210> 49 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400>49 Glu Val Lys Leu Val Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 10 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 75 70 80 65 .. Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 110 100 Thr Ser Val Thr Val Ser Ser 115 <210> 50 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 50

5

10

15

Gin Val Gin Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr

1

10

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 . 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 90 95 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Thr Val Thr Val Ser Ser 115 <210> 51 <211> 119 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH Glu Val Lys Leu Val Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 1 5 10 15 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 45

Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 · Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 75 65 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 110 100 Thr Thr Val Thr Val Ser Ser 115 <210> 52 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 52 Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 1. 10 15 5 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 30 20 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 70 75 65 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 90 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 110 Thr Leu Val Thr Val Ser Ala 115 <210> 53

10

<211> 119

<213> Secuencia artificial 5 <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 53 Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 1 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 75 70 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Thr Val Thr Val Ser Ser 115 <210> 54 10 <211> 119 <212> PRT <213> Secuencia artificial 15 <223> Descripción de la secuencia artificial: cadenas pesadas variables VH

<212> PRT

<400> 54

10

Gln Val Thr Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr

5

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 30 20 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 70 75 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Ser Val Thr Val Ser Ser 115 <210> 55 <211> 119 <212> PRT 5 <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH 10 <400> 55 Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 5 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 30 20 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 40 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 65 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 90 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 110 105 Thr Ser Val Thr Val Ser Ser 115 <210> 56 <211> 119 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 56 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 1 5 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 45 40 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 75 65 70 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 90 95 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 100 110 Thr Leu Val Thr Val Ser Ser 115 <210> 57 <211> 119 <212> PRT

5

10

15

<213> Secuencia artificial

<220>

	<223> Descripción de la secuencia artificial: cadenas pesadas variables VH															
	<400> 5	7														
	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
	1				5					10					15	
	Ser	Val	Lys		Ser	Сув	Lys	Ala		Gly	Tyr	Thr	Phe		Asn	Tyr
				20					25					30		
	Trp	Leu	Gly	Trp	Val	Arg	Gln		Pro	Gly	Gln	Gly		Glu	Trp	Ile
			35					40					45			
	Gly	Asp	Ile	Tyr	Pro	Gly	Gly	Gly	Tyr	Thr	Asn	Tyr	Asn	Glu	Lys	Phe
		50					55					60				
	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ala	Asp	Thr	Ser	Ser	Ser	Thr	Ala	Tyr
	65					70					75					80
	Met	Gln	Leu	Ser	Ser	Leu	Thr	Ser	Glu	_	Ser	Ala	Val	Tyr		Cys
					85					90					95	
	Ala	Tyr	Tyr	Asp	Ala	Ala	Gly	Pro	Trp	Phe	Ala	Tyr	Trp	Gly	Gln	Gly
				100					105					110		
	Thr	Leu	Val	Thr	Val	Ser	Ser									
5		_	115					•								
	<210> 5 <211> 1	-														
10	<212> F <213> S		ncia ar	tificial												
10	<220> <223> D)escrip	oción d	le la s	ecuen	cia arti	ificial:	cadena	as pes	sadas	variab	les VH	1			
	<400> 5	8														
	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
15	1				5					10					15	

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr

Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Arg Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 59 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 59 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys

90 95 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 Thr Leu Val Thr Val Ser Ser 115 <210> 60 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 60 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Arg Ile 35 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 60 50 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 100 110 Thr Leu Val Thr Val Ser Ser 115 <210>61 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH

5

10

15

20

<400> 61

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 50 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr . • 70 75 65 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 90 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 Thr Leu Val Thr Val Ser Ser 115 <210> 62 <211> 119 <212> PRT 5 <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH 10 <400> 62 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 30 20 Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile

		35					40					45			
Gly	Asp 50	lle	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Тут 80
Met	Glu	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Tyr	Tyr	Asp	Ala	Ala	Gly	Pro	Trp 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Ser									
<210> (211> (211> (212> (213>	119 PRT	ncia a	rtificia	I											
<220> <223>	Descri	pción	de la s	secuer	ncia ar	tificial:	cader	nas pe	sadas	s varia	bles V	Н			
<400>	63														

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1				5					10					15	

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30

Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser 115

<210> 64

<211> 119

<212> PRT

5 <213> Secuencia artificial

<220>

<223> Descripción de la secuencia artificial: cadenas pesadas variables VH

10 <400> 64

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr	Asn	Tyr
Trp	Leu	Gly 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Туг	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Ту г 95	Суз
Ala	туг	Tyr	Asp 100	Ala	Ala	Gly	Pro	Trp 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Leu	Val	Thr	Val	Ser	Ser									
210> 69 211> 1 212> P 213> S	19 RT	cia art	ificial												
220> 223> D	escrip	ción d	e la se	cuenc	ia artif	ficial: d	adena	as pes	adas v	/ariabl	es VH				
400> 6	5														

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

	1				5					10					15	
	Ser	Val	Lys	Val 20	Ser	Cys	Lys	: Ala	Ser		Tyr	Thr	Phe	Thr		Tyr
	Trp	Leu	Gly 35		Val	Lys	Gln	Arg	Pro	Gly	Gln	Gly	Leu 45		Trp	Ile
	Gly	Asp 50		Tyr	Pro	Gly	Gly 55		Tyr	Thr	Asn	Туг 60		Glu	Lys	Phe
	Lys 65	Gly	Lys	Ala	Thr	Leu 70		: Ala	Asp	Thr	Ser 75		Ser	Thr	Ala	Tyr 80
	Met	Glu	Leu	Ser	Ser 85		Arg	Ser	Glu	Asp 90		Ala	Val	Tyr	Phe 95	
	Ala	Tyr	туг	Asp 100	Ala	Ala	Gly	Pro	105		Ala	туг	Trp	Gly 110		Gly
	Thr	Leu	Val		Val	Ser	Ser	•								
<2 _ <2	210> (211> 212> (213> (119 PRT	encia a		I											
_	220> 223>	Descr	ipción	de la s	secue	ncia aı	rtificia	l: cade	enas pe	esadas	s varia	ıbles V	/H			
10 <4	100>	66														
G	1 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
S	er	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Tyr
T	,rp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
G	ly.	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Ĺys	Phe

Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 65 70 75 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 110 Thr Thr Val Thr Val Ser Ser 115 <210> 67 <211> 119 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 67 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 5 10 Ser Val Lys Val Pro Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 40 45 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 50 55· Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 70 75 80 65 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 95 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Leu Val Thr Val Ser Ser 115 <210> 68 <211> 119

5

10

<212> PRT

<213> Secuencia artificial

<220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 68 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 20 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 40 45 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 60 55 50 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 70 75 65 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 95 85 90 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 110 100 105 Thr Leu Val Thr Val Ser Ser 115 <210> 69 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 69 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 15 5 10

5

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr

Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile

Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 70 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 70 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe . Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 95 90 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 Thr Thr Val Thr Val Ser Ser 115 <210> 71 <211> 119 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 71 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 75 70 80 65 Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 90 95 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 110 Thr Thr Val Thr Val Ser Ser 115 <210> 72 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 72

5

10

15

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 5 . 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 60 50 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 70 75 80 65 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 Thr Thr Val Thr Val Ser Ser 115 <210> 73 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 73 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 30 20

5

Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 110 100 Thr Thr Val Thr Val Ser Ser 115 <210> 74 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 74

5

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Val 20	Ser	Суз	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30		Ту
Trp	Leu	Gly 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Ph
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Ту: 8
Met	Glu	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Суя
Ala	туг	Tyr	Asp	Ala	Ala	Gly	Pro	Trp	Phe	Ala	Tyr	Trp	Gly	Gln	Gl
			10	0				10	5				11	0	
Th	r Th	r Va 11		r Va	l Se	r Se	r								
<210> 75 <211> 17 <212> P <213> S	19 RT	cia art	ificial												
<220> <223> D	escrip	ción d	e la se	ecuenc	ia arti	ficial: d	cadena	as pes	adas v	/ariabl	es VH				
<400> 7	5														

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 1 5 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 75 70 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 110 100 105

Thr Leu Val Thr Val Ser Ser 115

<210> 76

<211> 119

<212> PRT

5 <213> Secuencia artificial

<220>

<223> Descripción de la secuencia artificial: cadenas pesadas variables VH

10 <400> 76

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 40 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 60 50 55 Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 100 105 Thr Leu Val Thr Val Ser Ser 115 <210> 77 <211> 119 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 77 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 25 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 45 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe

5

55 60 50 Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 75 70 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 Thr Leu Val Thr Val Ser Ser 115 <210> 78 <211> 119 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas pesadas variables VH <400> 78 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe 55 60 50 Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr 75 80 70 65 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 90 95 85 Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 105 100 110 Thr Leu Val Thr Val Ser Ser 115

5

10

<210> 79 <211> 119

```
<213> Secuencia artificial
 5
     <223> Descripción de la secuencia artificial: cadenas pesadas variables VH
     <400> 79
       Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
                                                 10
                            5
       Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
                                             25
       Trp Leu Gly Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
                                        40
       Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe
       Lys Gly Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser Thr Val Tyr
                                                      75
                                                                            80
                               70
       Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
                          85
                                                 90
                                                                        95
       Ala Tyr Tyr Asp Ala Ala Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly
                     100
                                            105
                                                                  110
       Thr Leu Val Thr Val Ser Ser
                115
     <210> 80
10
     <211> 114
     <212> PRT
     <213> Secuencia artificial
15
     <223> Descripción de la secuencia artificial: cadenas ligeras variables
     <400>80
```

Asp Ile Gln Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly

<212> PRT

1			•	5					10					15	
Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly
Ser	His	Val	Pro 100	Tyr	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
Arg	Ala														
<210> <211> <212> <213>	114 PRT	ncia a	rtificial	I											
<220> <223>	Descri	pción	de la s	secuer	ncia ar	tificial:	: cade	nas lig	jeras v	/ariabl	es				
<400>	81														
Asp 1	Ile	Val	Ile	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly
Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Leu 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75		Thr	Leu	Lys	Ile 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 95 85 Thr His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110 Arg Ala <210> 82 <211> 114 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas ligeras variables <400> 82 Asp Ile Gln Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly 10 Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 25 Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 80 65 75 Ser Arq Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 90 95 85 Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys 100 105 110 Arg Ala <210>83 <211> 114 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas ligeras variables <400>83

5

10

15

Asp 1	Val	ren	met	5	GLII		PLO	ьeu	10	Deu	PIO	Val	ser	15	GIY
Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	Gln	Lys	Pro		Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Туr	Суз	Phe	Gln 95	Gly
Ser	His	Val	Pro 100	Tyr	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
Arg	Ala														
<210> <211> <212> <213>	114 PRT	encia a	artificia	ıl											
<220> <223>	Descr	ipción	de la	secue	ncia a	rtificia	l: cade	enas I	igeras	varial	oles				
<400>	84														
Asp 1	Val	Leu	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly
Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 65 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 90 95 85 Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys 105 100 110 Arg Ala <210> 85 <211> 114 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas ligeras variables <400> 85 Asp Ile Gln Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 10 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 65 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 105 110 100

5

10

Arg Ala

<210> 86 <211> 114 <212> PRT <213> Secuencia artificial 5 <223> Descripción de la secuencia artificial: cadenas ligeras variables <400> 86 Asp Ile Gln Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 10 15 1 5 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 30 25 20 Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 40 Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly 95 90 Ser His Val Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 110 Arg Ala 10 <210>87 <211> 114 <212> PRT <213> Secuencia artificial 15 <223> Descripción de la secuencia artificial: cadenas ligeras variables <400> 87

Asp Ile Gln Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

	-	•			_	•					•					•
	Glu	ı Pro	Ala	Ser 20		e Ser	r Cys	arç	7 Se:		Gln	Ser	: Ile	a Val		s Se:
	Asr	ı Gly	/ Asn 35	Thr	Туг	Leu	ı Glu	Trp		r Lei	ı Glm	Lys	Pro		Glr	ı Se:
	Pro	50 50		Leu	. Ile	: Туз	. Lys 55		. Sei	c Ası	n Arg	Phe 60		c Gly	r Val	l Pr
	Asp 65		Phe	Ser	Gly	7 Sei		ser Ser	Gly	y Thi	c Asp 75		Th	c Lev	ı Lys	3 Ile 80
	Ser	: Arg	y Val	. Glu	. Ala 85		ı Asp	Val	. Gly	/ Val		туг	Cy:	3 Ph∈	95	
	Ser	His	s Val	Pro 100		Thi	r Phe	e Gly	r Gly 109		/ Thr	Lys	va]	110		≥ Ly:
	Arc	Ala	ì													
5	<210> <211> <212> <213>	88 114 PRT		artificia	al											
	<220> <223>		ripción	ı de la	secu	encia	artifici	al: ca	denas	ligera	as vari	ables				
10	<400> Asp 1		Gln	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
	Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
	Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser

Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 50 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 70 80 65 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95 Ser His Val Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 105 110 100 Arg Ala <210> 89 <211> 114 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas ligeras variables <400>89 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly -5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 25 Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 55 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 75 80 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly 85 95 Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 105 110 100 Arg Ala <210> 90

5

10

<211> 114 <212> PRT

<213> \$	Secue	ncia a	rtificial												
<220> <223> I	Descri	pción	de la s	secuer	ncia ar	tificial:	cader	nas lige	eras va	ariable	es				
<400> 9	90														
Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10		Pro	Val	Thr	Pro 15	Gly
Glu	Pro	Ala	Ser 20	Ile	Ser	Сув	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly
Ser	His	Val	Pro	Tyr	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
Arg	Ala														
<210> 9 <211> 9 <212> 1 <213> 9	114 PRT	ncia a	rtificial												
<220> <223> I	Descri	pción	de la s	secuer	ncia ar	tificial:	cader	nas lige	eras va	ariable	es				
<400> 9	91														

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Ala <210> 92 <211> 114 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: cadenas ligeras variables Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Ala <210> 93 <211> 114 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas ligeras variables <400> 93 Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Ala <210> 94 <211> 114 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: cadenas ligeras variables

<400> 9	4														
Asp 1	Ile	Val	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Ser	Val	Thr	Pro 15	Gly
Gln	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Gln 50		Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Туг	Cys	Phe	Gln 95	Gly
Ser	His	Val	Pro 100	Tyr	Thr	Phe	Gly	Gln 105	_	Thr	Lys	Val	Glu 110	Ile	Lys
Arg	Ala														
<210> 9 <211> 2 <212> P <213> S	76 PRT	ncia a	artificia	I											
<220> <223> D	escri)	pción	de la s	secue	ncia a	rtificia	ıl: forn	natos	de Fv	de ca	ıdena	única			
<400> 9	5														
Gln V	/al	Gln	Leu l	Lys (5	3lu 8	Ser (Gly A	Ala (Glu I 10	Leu V	/al /	Arg E	io e	ly T 15	'hr
Ser '	/al	Lys	Ile s	Ser (Cys I	Lys i	Ala S	Ser ·	Gly :	Fyr T	Chr I	Phe T	Chr A	Asn I	yr

			20					25					30		
Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Гуз	Phe
Lys 65	Gly	Lys	Aĺa	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Туг 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Tyr	Туг	Asp 100	Ala	Ala	Gly	Pro	Gly 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Ser	Gly	Gly	Gly 125	Gly	Ser	Gly
Gly	Gly 130	Gly	Ser	Gly	Gly	Ser 135	Ala	Arg	Asp	Ile	Gln 140	Met	Thr	Gln	Thr
Pro 145	Leu	Ser	Leu	Pro	Val 150	Ser	Leu	Gly	Asp	Gln 155	Ala	Ser	Ile	Ser	Cys 160
Arg	Ser	Ser	Gln	Ser 165	Ile	Val	His	Ser	Asn 170	Gly	Asn	Thr	Tyr	Leu 175	Glu
Trp	Туг	Leu	Gln 180	Lys	Pro	Gly	Gln	Ser 185	Pro	Lys	Leu	Leu	Ile 190	Tyr	Lys
		195	Arg				200					205			
	210		Asp			215					220				
225			Tyr		230					235					240
Gly	Gly	Gly	Thr	Lys 245	Leu	Glu	Ile	Lys	Arg 250	Ala	Ala	Ala	His	His 255	His
His	His	His	Gly 260		Ala	Glu	Gln	Lys 265		Ile	Ser	Glu	Glu 270	Asp	Leu
Asn	Gly	Ala 275	Ala											•	

<210><211><211><212><213>	267 PRT	encia a	artificia	al											
<220> <223>	Descr	ipción	de la	secue	encia a	rtificia	l: form	atos d	e Fv d	le cad	ena úr	nica			
<400>	96														
Gln 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr
Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Туг
Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gļy	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Суз
Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Gly 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Ser	Gly	Ser	Gly 125	Ser	Ser	Ala
Asp	Ile 130	Gln	Met	Thr	Gln	Thr 135	Pro	Leu	Ser	Leu	Pro 140	Val	Ser	Leu	Gly
Asp 145	Gln	Ala	Ser	Ile	Ser 150	Суз	Arg	Ser	Ser	Gln 155	Ser	Ile	Val	His	Ser 160
Asn	Gly	Asn	Thr	Tyr 165	Leu	Glu	Trp	Tyr	Leu 170	Gln	Lys	Pro	Gly	Gln 175	Ser
Pro	Lys	Leu	Leu 180	Ile	Tyr	Lys	Val	Ser 185	Asn	Arg	Phe	Ser	Gly 190	Val	Pro

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala <210> 97 <211> 266 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: formatos de Fv de cadena única <400> 97 Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Tyr Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr Trp Gly Gln Gly

Thr	Thr	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Ser	Gly	Gly	Ser 125	Ser	Ala	Asp
Ile	Gln 130	Met	Thr	Gln	Thr	Pro 135	Leu	Ser	Leu	Pro	Val 140	Ser	Leu	Gly	Asp
Gln 145	Alá	Ser	Ile	Ser	Cys 150	Arg	Ser	Ser	Gln	Ser 155	Ile	Val	His	Ser	Asn 160
Gly	Asn	Thr	Tyr	Leu 165	Glu	Trp	Tyr	Leu	Gln 170	Lys	Pro	Gly	Gln	Ser 175	Pro
Lys	Leu	Leu	Ile 180	Tyr	Lys	Val	Ser	Asn 185	Arg	Phe	Ser	Gly	Val 190	Pro	Asp
Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Lys	Ile	Ser
Arg	Val 210	Glu	Ala	Glu	Asp	Leu 215	Gly	Val	Туг	Tyr	Cys 220	Phe	Gln	Gly	Ser
His 225	Val	Pro	Tyr	Thr	Phe 230	Gly	Gly	Gly	Thr	Lys 235	Leu	Glu	Ile	Lys	Arg 240
Ala	Ala	Ala	His	His 245	His	His	His	His	Gly 250	Ala	Ala	Glu	Gln	Lys 255	Leu
Ile	Ser	Glu	Glu	Asp	Leu	Asn	Gly	Ala 265	Ala						
<210> <211> <212> <213>	265 PRT	encia :	260 artificia	al				203							
<220> <223>		ripción	de la	secue	encia a	artificia	al: forr	natos	de Fv	de ca	dena	única			
<400>	98														
Gln 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr
Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Tyr
Trp	Leu	Gly	Trp	Val	Lys	Gln	Arg	Pro	Gly	His	Gly	Leu	Glu	Trp	Ile

		35					40					45			
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lya 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Gly 105	Phe	Ala	Туг	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Ser	Gly	Ser	Ser 125	Ala	Asp	Ile
Gln	Met 130	Thr	Gln	Thr	Pro	Leu 135	Ser	Leu	Pro	Val	Ser 140	Leu	Gly	Asp	Gln
Ala 145	Ser	Ile	Ser	Сув	Arg 150	Ser	Ser	Gln	Ser	Ile 155	Val	His	Ser	Asn	Gly 160
Asn	Thr	Tyr	Leu	Glu 165	Trp	туг	Leu	Gln	Lys 170	Pro	Gly	Gln	Ser	Pro 175	Lys
Leu	Leu	Ile	Tyr 180	Lys	Val	Ser	Asn	Arg 185	Phe	Ser	Gly	Val	Pro 190	Asp	Arg
Phe	Ser	Gly 195	Ser	Gly	Ser	Gly	Thr 200	Asp	Phe	Thr	Leu	L уs 205	Ile	Ser	Arg
Val	Glu 210	Ala	Glu	qeA	Leu	Gly 215	Val	Туг	Tyr	Суз	Phe 220	Gln	Gly	Ser	His
Val 225	Pro	Tyr	Thr	Phe	Gly 230	Gly	Gly	Thr	Lys	Leu 235	Glu	Ile	Lys	Arg	Ala 240
Ala	Ala	His	His	His 245	His	His	His	Gly	Ala 250	Ala	Glu	Gln	Lys	Leu 255	Ile
Ser	Glu	Glu	Asp 260	Leu	Asn	Gly	Ala	Ala 265							
<210> 99	9														

<211> 264 <212> PRT

	<213>	Secue	ncia a	rtificial												
5	<220> <223>	Descri	ipción	de la s	secuei	ncia ar	tificial:	forma	itos de	e Fv d€	e cade	na úni	ica			
	<400>	99														
	Gln 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr
	Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Туг
	Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
	Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Туг 60	Asn	Glu	Lys	Phe
	Lys 65	Gly	ГÀЗ	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
	Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
	Ala	Tyr	Tyr	Asp 100	Ala	Ala	GJĀ	Pro	Gly 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
	Thr	Thr	Val	Thr	Val	Ser	Ser	Ala 120	Ser	Ser	Ser	Ser	Ala 125	Asp	Ile	Glr
	Met	Thr 130	Gln	Thr	Pro	Leu	Ser 135	Leu	Pro	Val	Ser	Leu 140	Gly	Asp	Gln	Ala
	Ser 145	Ile	Ser	Cys	Arg	Ser 150	Ser	Gln	Ser	Ile	Val 155	His	Ser	Asn	Gly	Asr
	Thr	Tyr	Leu	Glu	Trp 165	Tyr	Leu	Gln	Lys	Pro 170	Gly	Gln	Ser	Pro	Lys 175	Lev
	Leu	Ile	Tyr	Lys 180	Val	Ser	Asn	Arg	Phe 185	Ser	Gly	Val	Pro	Asp 190	Arg	Ph€
	Ser	Gly	Ser 195	Gly	Ser	Gly	Thr	Asp 200	Phe	Thr	Leu	Lys	Ile 205	Ser	Arg	Va]

Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val

Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala <210> 100 <211> 263 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: formatos de Fv de cadena única <400> 100 Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Tyr Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Ser Ser Ser Ala Asp Ile Gin Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser

Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr . Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala <210> 101 <211> 262 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: formatos de Fv de cadena única <400> 101 Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr

Met	Gln	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Phe	Cys
				85					90				-	95	-
		٠													
Ala	Tyr	Tyr	Asp	Ala	Ala	Gly	Pro	Gly	Phe	Ala	Tyr	Trp	Gly	Gln	Gly
	•	_	100					105				_	110		
						•									
Thr	Thr	Val	Thr	Val	Ser	Ser	Ala	Ser	Ser	Ala	Asp	Ile	Gln	Met	Thr
		115					120					125			
Gln	Thr	Pro	Leu	Ser	Leu	Pro	Val	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile
	130					135					140				
Ser	Cys	Arg	Ser	Ser	Gln	Ser	Ile	Val	His	Ser	Asn	Gly	Asn	Thr	Tyr
145					150					155					160
Leu	Glu	Trp	Tyr		Gln	Lys	Pro	Gly		Ser	Pro	Lys	Leu		Ile
				165					170					175	
_				_			_			_	_	_		_	~7
Tyr	Lys	Val		Asn	Arg	Pne	ser	_	vaı	Pro	Asp	Arg	Phe	ser	GIY
			180					185					190		
C 0 T	Clu	Cor	C1.	Thr	ħ an	Dhe	Th. w	Len	Tazes	Tla	Sar	Ara	Val	Gl n	7.1a
Ser	GIY	195	GIY	1111	wah	Line	200	Deu	пуз	116	267	205	Val	Gru	LT.C.
		133					200					200			
Glu	Asp	Leu	Glv	Val	Tvr	Tvr	Cvs	Phe	Gln	Gly	Ser	His	Val	Pro	Tvr
	210				/	215	-1-				220				
Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg	Ala	Ala	Ala	His
225		_	-	_	230	-				235					240
His	His	His	His	His	Gly	Ala	Ala	Glu	Gln	Lys	Leu	Ile	Ser	Glu	Glu
				245					250					255	
Asp	Leu	Asn	Gly	Ala	Ala										
			260												
<210>															
<211> <212>															
<213>		encia a	artificia	ıl											
<220>	Da	da a! 4 · ·	da !-		!-		. 	-4 ·	La (F !	اد = ما		.:			
<223>		ipcion	de la	secue	ricia ai	штісіа	: torm	atos d	ie rv c	ie cad	ena ur	ııca.			

Gln 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr
Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Tyr
Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	-	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Gly 105	Phe	Ăla	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Ala	Asp	Ile	Gln 125	Met	Thr	Gln
Thr	Pro 130	Leu	Ser	Leu	Pro	Val 135	Ser	Leu	Gly	Asp	Gln 140	Ala	Ser	Ile	Ser
Cys 145	Arg	Ser	Ser	Gln	Ser 150	Ile	Val	His	Ser	Asn 155	Gly	Asn	Thr	Tyr	Leu 160
Glu	Trp	Tyr	Leu	Gln 165	Lys	Pro	Gly	Gln	Ser 170	Pro	Lys	Leu	Leu	Ile 175	Tyr
Lys	Val	Ser	Asn 180	Arg	Phe	Ser	Gly	Val 185	Pro	Asp	Arg	Phe	Ser 190	Gly	Ser
Gly	Ser	Gly 195	Thr	Asp	Phe	Thr	Leu 200	Lys	Ile	Ser	Arg	Val 205	Glu	Ala	Glu
Asp	Leu 210	Gly	Val	Tyr	Tyr	Cys 215	Phe	Gln	Gly	Ser	His 220	Val	Pro	Tyr	Thr
Phe 225	Gly	Gly	Gly	Thr	Lys 230	Leu	Glu	Ile	Lys	Arg 235	Ala	Ala	Ala	His	His 240
His	His	His	His	Gly	Ala	Ala	Glu	Gln	Lys 250	Leu	Ile	Ser	Glu	Glu 255	Asp

Leu Asn Gly Ala Ala 260

<210> 103

<211> 260

<212> PRT

5 <213> Secuencia artificial

<220>

10

<223> Descripción de la secuencia artificial: formatos de Fv de cadena única

<400> 103

Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30

Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 45

Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Tyr Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser Ala Ala Asp Ile Gln Met Thr Gln Thr 115 120 125

Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys 130 135 140

Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu 145 150 155 160

Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys 165 170 175

```
Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly
                                  - 185
              180
 Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp
                               200
                                                     205
          195
 Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Tyr Thr Phe
                           215
     210
 Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Ala Ala His His His
                       230
                                            235
                                                                  240
 225
 His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
                                        250
                                                             255
                  245
 Asn Gly Ala Ala
              260
<210> 104
<211> 259
<212> PRT
<213> Secuencia artificial
<220>
<223> Descripción de la secuencia artificial: formatos de Fv de cadena única
 Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr
   1
                    5
                                         10
                                                              15
 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
                                                          30
               20
                                     25
 Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile
                                 40
                                                      45
           35
 Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe
                                                  60
       50
                            55
 Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr
                                             75
  65
                        70
 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
                   85
                                         90
                                                               95
 Ala Tyr Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr Trp Gly Gln Gly
```

			100					105					110		
Thr	Thr	Val 115	Thr	Val	Ser	Ser	Ala 120	Asp	Ile	Gln	Met	Thr 125	Gln	Thr	Pro
Leu	Ser 130	Leu	Pro	Val	Ser	Leu 135	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg
Ser 145	Ser	Gln	Ser	Ile	Val 150	His	Ser	Asn	Gly	Asn 155	Thr	Tyr	Leu	Glu	Trp 160
Tyr	Leu	Gln	Lys	Pro 165	Gly	Gln	Ser	Pro	Lys 170	Leu	Leu	Ile	Tyr	Lys 175	Val
Ser	Asn	Arg	Phe 180	Ser	Gly	Val	Pro	Asp 185	Arg	Phe	Ser	Gly	Ser 190	Gly	Ser
Gly	Thr	Asp 195	Phe	Thr	Leu	Lys	Ile 200	Ser	Arg	Val	Glu	Ala 205	Glu	Asp	Leu
Gly	Val 210	Tyr	Tyr	Суѕ	Phe	Gln 215	Gly	Ser	His	Val	Pro 220	Tyr	Thr	Phe	Gly
Gly 225	Gly	Thr	Lys	Leu	Glu 230	Ile	Lys	Arg	Ala	Ala 235	Ala	His	His	His	His 240
His	His	Gly	Ala	Ala 245	Glu	Gln	Lys	Leu	Ile 250	Ser	Glu	Glu	Asp	Leu 255	Asn
Gly	Ala	Ala													
<210> <211> <212> <213>	258 PRT	ncia a	rtificial	I											
<220> <223>	Descri	pción	de la s	secuer	ncia ar	tificial	: forma	atos de	e Fv de	e cade	na ún	ica			
<400>	105														
Gln 1	Val	Gln	Leu	Lys 5	Glu	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr
Ser	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr	Asn	Tyr

Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	GĴĄ	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	ser	Ser 85	Leu	Thr	Ser	Glu	Азр 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Gly 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Ser	Asp 120	Ile	Gln	Met	Thr	GÌn 125	Thr	Pro	Leu
Ser	Leu 130	Pro	Val	Ser	Leu	Gly 135	Asp	Gln	Ala	Ser	Ile 140	Ser	Суз	Arg	Ser
Ser 145	Gln	Ser	Ile	Val	His 150	Ser	Asn	Gly	Asn	Thr 155	Tyr	Leu	Glu	Trp	Tyr 160
Leu	Gln	Lys	Pro	Gly 165	Gln	Ser	Pro	Lys	Leu 170	Leu	Ile	Tyr	Lys	Val 175	Ser
Asn	Arg	Phe	Ser 180	Gly	Val	Pro	Asp	Arg 185	Phe	Ser	Gly	Ser	Gly 190	Ser	Gly
Thr	Asp	Phe 195	Thr	Leu	Lys	Ile	Ser 200	Arg	Val	Glu	Ala	Glu 205	Asp	Leu	Gly
Val	Tyr 210	Tyr	Суз	Phe	Gln	Gly 215	Ser	His	Val	Pro	Tyr 220	Thr	Phe	Gly	Gly
Gly 225	Thr	Lys	Leu	Glu	Ile 230	Lys	Arg	Ala	Ala	Ala 235	His	His	His	His	His 240
His	Gly	Ala	Ala	Glu 245	Gln	Lys	Leu	Ile	Ser 250	Glu	Glu	Asp	Leu	Asn 255	Gly
7.7.~	77-							•							

Ala Ala

<210> 106 <211> 257 <212> PRT

122	n	_
~//	u	-

5

<223> Descripción de la secuencia artificial: formatos de Fv de cadena única

<400> 106

- Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 1 5 10 15
- Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
 20 25 30
- Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile 35 40 45
- Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe
 50 55 60
- Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr
 65 70 75 80
- Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95
- Ala Tyr Tyr Asp Ala Ala Gly Pro Gly Phe Ala Tyr Trp Gly Gln Gly
 100 105 110
- Thr Thr Val Thr Val Ser Asp Ile Gln Met Thr Gln Thr Pro Leu Ser 115 120 125
- Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser 130 135 140
- Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu 145 150 155 160
- Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn 165 170 175
- Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 180 185 190
- Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val 195 200 205

Tyr	Tyr 210	Cys	Phe	Gln	Gly	Ser 215		Val	Pro	Tyr	Thr 220	Phe	Gly	Gly	Gly
Thr 225	-	Leu	Glu	Ile	Lys 230	Arg	Ala	Ala	Ala	His 235	His	His	His	His	His 240
Gly	Ala	Ala	Glu	Gln 245		Leu	lle	Ser	Glu 250	Glu	Asp	Leu	Asn	Gly 255	Ala
Ala															
<210> 107 <211> 219 <212> PRT <213> Secuencia artificial <220> <223> Descripción de la secuencia artificial: anticuerpo murino <400> 107															
Asp 1	Ile	Val	Ile	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly
Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Leu 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Phe	Cys	Ser	Gln 95	Ser
Thr	His	Val	Pro 100	Tyr	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
Arg	Ala	Asp 115	Ala	Ala	Pro	Thr	Val 120	Ser	Ile	Phe	Pro	Pro 125	Ser	Ser	Glu
Gln	Leu	Thr	Ser	Gly	Gly	Ala	Ser	Val	Val	Cys	Phe	Leu	Asn	Asn	Phe

	130					135					140				
Tyr 145	Pro	Lys	qeA	Ile	Asn 150	Val	Lys	Trp	Lys	Ile 155	Asp	Gly	Ser	Glu	Arg 160
Gln	Asn	Gly	Val	Leu 165	Asn	Ser	Trp	Thr	Asp 170	Gln	Asp	Ser	Lys	Asp 175	Ser
Thr	Tyr	Ser	Met 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Thr	Lys	Asp	Glu 190	Tyr	Glu
Arg	His	Asn 195	Ser	Tyr	Thr	Суз	Glu 200	Ala	Thr	His	Lys	Thr 205	Ser	Thr	Ser
Pro	Ile 210	Val	Lys	Ser	Phe	Asn 215	Arg	Asn	Glu	Cys	,			*	
<210><211><211><212><213><220>	219 PRT	encia a	ırtificia	ıl											
<223> <400>		ipción	de la	secue	ncia aı	rtificial	: antic	uerpo	murino	0					
Asp 1	Ile	Gln	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly
Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Ĺys	Pro 45	Gly	Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly
Ser	His	Val	Pro	Tyr	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys

Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu

Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys <210> 109 <211> 571 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: anticuerpo murino <400> 109 Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Ser Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr

Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Arg	Tyr	Asp 100	Asn	His	Tyr	Phe	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Thr
Leu	Thr	Val	Ser	Glu	Ser	Gln	Ser 120	Phe	Pro	Asn	Val	Phe 125	Pro	Leu	Val
Ser	Cys 130	Glu	Ser	Pro	Leu	Ser 135	Asp	Lys	Asn	Leu	Val 140	Ala	Met	Gly	Cys
Leu 145	Ala	Arg	Asp	Phe	Leu 150	Pro	Ser	Thr	Ile	Ser 155	Phe	Thr	Trp	Asn	Tyr 160
Gln	Asn	Asn	Thr	Glu 165	Val	Ile	Gln	Gly	Ile 170	Arg	Thr	Phe	Pro	Thr 175	Leu
Arg	Thr	Gly	Gly 180	Lys	Tyr	Leu	Ala	Thr 185	Ser	Gln	Val	Leu	Leu 190	Ser	Pro
Lys	Ser	Ile 195	Leu	Glu	Gly	Ser	Asp 200	Glu	Tyr	Leu	Val	Cys 205	Lys	Ile	His
Tyr	Gly 210	Gly	Lys	Asn	Arg	Asp 215	Leu	His	Val	Pro	Ile 220	Pro	Ala	Val	Ala
Glu 225	Met	Asn	Pro	Asn	Val 230	Asn	Val	Phe	Val	Pro 235	Pro	Arg	Asp	Gly	Phe 240
Ser	Gly	Pro	Ala	Pro 245	Arg	Lys	Ser	Lys	Leu 250	Ile	Cys	Glu	Ala	Thr 255	Asn
Phe	Thr	Pro	Lys 260	Pro	Ile	Thr	Val	Ser 265	Trp	Leu	Lys	Asp	Gly 270	Lys	Leu
Val	Glu	Ser 275	Gly	Phe	Thr	Thr	Asp 280	Pro	Val	Thr	Ile	Glu 285	Asn	Lys	Gly
Ser	Thr 290	Pro	Gln	Thr	Tyr	Lys 295	Val	Ile	Ser	Thr	Leu 300	Thr	Ile	Ser	Glu
Ile 305	Asp	Trp	Leu	Asn	Leu 310	Asn	Val	Tyr	Thr	Cys 315	Arg	Val	Asp	His	Arg 320
Gly	Leu	Thr	Phe	Leu 325	Lys	Asn	Val	Ser	Ser 330	Thr	Cys	Ala	Ala	Ser 335	Pro

Ser	Thr	Asp	Ile 340	Leu	Thr	Phe	Thr	Ile 345	Pro	Pro	Ser	Phe	Ala 350	Asp	Ile
Phe	Leu	Ser 355	Lys	Ser	Ala	Asn	Leu 360	Thr	Суз	Leu	Val	Ser 365	Asn	Leu	Ala
Thr	Tyr 370	Glu	Thr	Leu	Asn	Ile 375	Ser	Trp	Ala	Ser	Gln 380	Ser	Gly	Glu	Pro
Leu 385	Glu	Thr	Lys	Ile	Lys 390	Ile	Met	Glu	Ser	His 395	Pro	Asn	Gly	Thr	Phe 400
Ser	Ala	Lys	Gly	Val 405	Ala	Ser	Val	Cys	Val 410	Glu	Asp	Trp	Asn	Asn 415	Arg
Lys	Glu	Phe	Val 420	Cys	Thr	Val	Thr	His 425	Arg	Asp	Leu	Pro	Ser 430	Pro	Gln
Lys	ГЛЗ	Phe 435	Ile	Ser	Lys	Pro	Asn 440	Glu	Val	His	Lys	His 445	Pro	Pro	Ala
Val	Tyr 450	Leu	Leu	Pro	Pro	Ala 455	Arg	Glu	Gln	Leu	Asn 460	Leu	Arg	Glu	Ser
Ala 465	Thr	Val	Thr	Сув	Leu 470	Val	Lys	Gly	Phe	Ser 475	Pro	Ala	Asp	Ile	Ser 480
Val	Gln	Trp	Leu	Gln 485	Arg	Gly	Gln	Leu	Leu 490	Pro	Gln	Glu	Lys	Tyr 495	Val
Thr	Ser	Ala	Pro 500	Met	Pro	Glu	Pro	Gly 505		Pro	Gly	Phe	Tyr 510	Phe	Thr
His	Ser	Ile 515	Leu	Thr	Val	Thr	Glu 520	Glu	Glu	Trp	Asn	Ser 525	Gly	Glu	Thr
Tyr	Thr 530	Cys	Val	Val	Gly	His 535	Glu	Ala	Leu	Pro	His 540	Leu	Val	Thr	Glu
Arg 545	Thr	Val	Asp	Lys	Ser 550	Thr	Gly	Lys	Pro	Thr 555	Leu	Tyr	Asn	Val	Ser 560
Leu	Ile	Met	Ser	Asp 565	Thr	Gly	Gly	Thr	Cys 570	Tyr					

```
<210> 110
<211> 573
<212> PRT
<213> Secuencia artificial
5

<220>
<223> Descripción de la secuencia artificial: anticuerpo murino
<400> 110
```

Gln 1	Val	Gln	Leu	Lys 5	Glu	ser	GTÀ	Ala	10	Leu	Vai	Arg	Pro	15	Thr
Ser	Val	Lys	Ile 20	Ser	Суз	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asn	Туг
Trp	Leu	Gly 35	Trp	Val	Lys	Gln	Arg 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Tyr	Pro	Gly	Gly 55	Gly	Tyr	Thr	Asn	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Ala	Asp	Thr	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Phe 95	Cys
Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Trp 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Glu	Ser 120	Gln	Ser	Phe	Pro	Asn 125	Val	Phe	Pro
Leu	Val 130		Сув	Glu	Ser	Pro 135	Leu	Ser	Asp	Lys	Asn 140	Leu	Val	Ala	Met
Gly 145	Cys	Leu	Ala	Arg	Asp 150	Phe	Leu	Pro	Ser	Thr 155	Ile	Ser	Phe	Thr	Trp
Asn	Tyr	Gln	Asn	Asn 165	Thr	Glu	Val	Ile	Gln 170	Gly	Ile	Arg	Thr	Phe 175	Pro
Thr	Leu	Arg	Thr 180	Gly	Gly	Lys	Tyr	Leu 185	Ala	Thr	Ser	Gln	Val 190	Leu	Leu
Ser	Pro	Lys 195	Ser	Ile	Leu	Glu	Gly 200	Ser	Asp	Glu	Tyr	Leu 205	Val	Суз	Lys
Ile	His	Tyr	Gly	Gly	Lys	Asn	Arg	Asp	Leu	His	Val	Pro	Ile	Pro	Ala

	210					215					220	•			
Val 225	Ala	Glu	Met	Asn	Pro 230	Asn	Val	Asn	Val	Phe 235	Val	Pro	Pro	Arg	Asp 240
Gly	Phe	Ser	Gly	Pro 245	Ala	Pro	Arg	Lys	Ser 250	ГÀЗ	Leu	Ile	Cys	Glu 255	Ala
Thr	Asn	Phe			Lys	Pro	Ile			Ser	Trp	Leu			Gly
Lys	Leu	Val	260 Glu	Ser	Gly	Phe	Thr	265 Thr	Asp	Pro	Val	Thr	270 Ile	Glu	Asn
*	63-	275	(T) h	Desc	277 ws	mb	280		1701	T] ^	Sow.	285	Tou	mb ~	T] ^
гуз	290	ser	THE	PFO	Gln	295	īĀĽ	TAS	var	TIE	300	TILL	neu	1111	116
Ser 305	Glu	Ile	Asp	Trp	Leu 310	Asn	Leu	Asn	Val	Tyr 315	Thr	Cys	Arg	Val	Asp 320
His	Arg	Gly	Leu	Thr 325	Phe	Leu	Lys	Asn	Val 330	Ser	Ser	Thr	Cys	Ala 335	Ala
Ser	Pro	Ser	Thr 340	Asp	Ile	Leu	Thr	Phe	Thr	Ile	Pro	Pro	Ser 350	Phe	Ala
Asp	Ile	Phe 355	Leu	Ser	Lys	Ser	Ala 360	Asn	Leu	Thr	Cys	Leu 365	Val	Ser	Asn
Leu	Ala 370	Thr	Tyr	Glu	Thr	Leu 375	Asn	Ile	Ser	Trp	Ala 380	Ser	Gln	Ser	Gly
Glu 385	Pro	Leu	Glu	Thr	Lys 390	Ile	Lys	Ile	Met	Glu 395	Ser	His	Pro	Asn	Gly 400
Thr	Phe	Ser	Ala	Lys 405	Gly	Val	Ala	Ser	Val 410	Cys	Val	Glu	Asp	Trp 415	Asn
Asn	Arg	Lys	Glu 420	Phe	Val	Cys	Thr	Val 425	Thr	His	Arg	Asp	Leu 430	Pro	Ser
Pro	Gln	Lys 435	Lys	Phe	Ile	Ser	Lys 440	Pro	Asn	Glu	Val	His	Lys	His	Pro
Pro	Ala 450	Val	Tyr	Leu	Leu	Pro	Pro	Ala	Arg	Glu	Gln 460	Leu	Asn	Leu	Arg
Glu		Ala	Thr	Val	Thr		Leu	Val	Lys	Gly		Ser	Pro	Ala	Asp
						-				_					_

	403					4/0					475					400
	Ile	Ser	Val	Gln	Trp 485	Leu	Gln	Arg	Gly	Gln 490	Leu	Leu	Pro	Gln	Glu 495	Lys
	Tyr	Val	Thr	Ser 500	Ala	Pro	Met	Pro	Glu 505	Pro	Gly	Ala	Pro	Gly 510	Phe	Tyr
	Phe	Thr	His 515	Ser	Ile	Leu	Thr	Val 520	Thr	Glu	Glu	Glu	Trp 525	Asn	Ser	Gly
	Glu	Thr 530	Tyr	Thr	Cys	Val	Val 535	Gly	His	Glu	Ala	Leu 540	Pro	His	Leu	Val
	Thr 545	Glu	Arg	Thr	Val	Asp 550	Lys	Ser	Thr	Gly	Lys 555	Pro	Thr	Leu	Tyr	Asn 560
	Val	Ser	Leu	Ile	Met 565	Ser	Asp	Thr	Gly	Gly 570	Thr	Сув	Tyr			
	<210> <211> <212>	448 PRT														
5	<213>	Secue	ncia a	rtificial												
5	<213> <220> <223>					ncia ar	tificial:	anticu	uerpo	quimé	rico de	e ratón	ı/ser hı	umanc)	
10	<220>	Descri				ncia ar	tificial:	anticu	uerpo	quimé	rico de	e ratón	ı/ser hı	umano)	
	<220> <223> <400>	Descri	pción		secuer											Thr
	<220> <223> <400> Gln 1	Descri 111 Val	ipción Gln	de la s	Lys 5	Glu	Ser	Gly	Ala	Glu 10	Leu	Val	Arg	Pro	Gly 15	Thr Tyr
	<220> <223> <400> Gln 1	Descri 111 Val Val	Gln Lys	de la s Leu Ile	Lys 5 Ser	Glu Cys	Ser Lys	Gly Ala	Ala Ser 25	Glu 10	Leu Tyr	Val Thr	Arg Phe	Pro Thr	Gly 15 Asn	Tyr
	<220> <223> <400> Gln 1 Ser	Descri 111 Val Val Leu	Gln Lys Gly 35	de la s	Lys 5 Ser Val	Glu Cys Lys	Ser Lys Gln	Gly Ala Arg 40	Ala Ser 25	Glu 10 Gly	Leu Tyr His	Val Thr Gly	Arg Phe Leu 45	Pro Thr 30 Glu	Gly 15 Asn Trp	Tyr Ile
	<220> <223> <400> Gln 1 Ser Trp	Descri 111 Val Val Leu Asp 50	Gln Lys Gly 35	de la s Leu Ile 20	Lys 5 Ser Val	Glu Cys Lys Gly	Ser Lys Gln Gly 55	Gly Ala Arg 40 Gly	Ala Ser 25 Pro	Glu 10 Gly Gly	Leu Tyr His Asn	Val Thr Gly Tyr 60	Phe Leu 45 Asn	Pro Thr 30 Glu	Gly 15 Asn Trp Lys	Tyr Ile Phe

Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Trp 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Gly	Ser 120	Thr	Lys	Gly	Pro	Ser 125	Val	Phe	Pro
Leu	Ala 130	Pro	Ser	Ser	Lys	Ser 135	Thr	Ser	Gly	Gly	Thr 140	Ala	Ala	Leu	Gly
Cys 145	Leu	Val	Lys	Asp	Tyr 150	Phe	Pro	Glu	Pro	Val 155	Thr	Val	Ser	Trp	Asn 160
Ser	Gly	Ala	Leu	Th <i>r</i> 165	Ser	Gly	Val	His	Thr 170	Phe	Pro	Ala	.val	Leu 175	Gln
Ser	ser	Gly	Leu 180	Tyr	Ser	Leu	Ser	Ser 185		Val	Thr	Val	Pro 190	Ser	Ser
Ser	Leu	Gly 195	Thr	Gln	Thr	Tyr	Ile 200	Cys	Asn	Val	Asn	His 205	Lys	Pro	Ser
Asn	Thr 210	Lys	Val	Asp	Lys	Lys 215	Val	Glu	Pro	Lys	Ser 220	Суз	Asp	Lys	Thr
His 225	Thr	Cys	Pro	Pro	Cys 230	Pro	Ala	Pro	Glu	Leu 235	Leu	Gly	Gly	Pro	Ser 240
Val	Phe	Leu	Phe	Pro 245	Pro	Lys	Ъťо	Lys	Asp 250	Thr	Leu	Met	Ile	Ser 255	Arg
Thr	Pro	Glu	Val 260	Thr	Cys	Val	Val	Val 265	Asp	Val	Ser	His	Glu 270	Asp	Pro
G1u	Val	Lys 275	Phe	Asn	Trp	Туг	Val 280	Asp	Gly	Val	Glu	Val 285	Kis	Asn	Ala
Lys	Thr 290	Lys	Pro	Arg	Glu	Glu 295	Gln	Tyr	Asn	Ser	Thr 300	Tyr	Arg	Val	Val
Ser 305	Val	Leu	Thr	Val	Leu 310	His	Gln	Aśp	Trp	Leu 315	Asn	Gly	Lys	Glu	Tyr 320
Lys	Cys	Lys	Val	Ser 325	Àsn	ГЛа	Ala	Leu	Pro 330	Ala	Pro	Ile	Ġlu	Lys 335	Thr
Ile	Ser	Lys	Ala 340	_	Gly	Gln	Pro	Arg		Pro	Gln	Val	Tyr 350	Thr	Leu

Pro Pro Ser. Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys <210> 112 <211> 571 <212> PRT <213> Secuencia artificial <223> Descripción de la secuencia artificial: anticuerpo quimérico de ratón/ser humano <400> 112 Gln Val Gln Leu Lys Glu Ser Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp Ile . , Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr

Met	Gln	Leu	Ser	Ser 85	Leu	Thr	ser	GLu	90	ser	Ala	Val	Tyr	95	cys
Ala	Tyr	Tyr	Asp 100	Ala	Ala	Gly	Pro	Trp 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Thr	Val 115	Thr	Val	Ser	Gly	Ser 120	Ala	Ser	Ala	Pro	Thr 125	Leu	Phe	Pro
Leu	Val 130	Ser	Cys	Glu	Asn	Ser 135	Pro	Ser	Asp	Thr	Ser 140	Ser	Val	Ala	Val
Gly 145	Cys	Leu	Ala	Gln	Asp 150	Phe	Leu	Pro	Asp	Ser 155	Ile	Thr	Leu	Ser	Trp 160
Lys	Tyr	Lys	Asn	Asn 165	Ser	Asp	Ile	Ser	Ser 170	Thr	Arġ	Gly	Phe	Prò 175	Ser
Val	Leu	Arg	Gly 180	Gly	Lys	Tyr	Ala	Ala 185	Thr	Ser	Gln	Val	Leu 190	Leu	Pro
Ser	Lys	Asp 195	Val	Met	Gln	Gly	Thr 200	Asp	Glu	His	Val	Val 205	Сув	Lys	Val
Gln	His 210	Pro	Asn	Gly	Asn	Lys 215	Glu	Lys	Asn	Val	Pro 220	Leu	Pro	Val	Ile
Ala 225	Glu	Leu	Pro	Pro	Lys 230	Val	Ser	Val	Phe	Val 235	Pro	Pro	Arg	Asp	Gly 240
Phe	Phe	Gly	Asn	Pro 245	Arg	Lys	Ser	Lys	Leu 250	Ile	Суз	Gln	Ala	Thr 255	Gly
Phe	Ser	Pro	Arg 260	Gln	Ile	Gln	Val	Ser 265	Trp	Leu	Arg	Glu	Gly 270	Lys	Gln
Val	Gly	Ser 275	Gly	Val	Thr	Thr	Asp 280	Gln	Val	Gln	Ala	Glu 285	Ala	Lys	Glu
Ser	Gly 290	Pro	Thr	Thr	Tyr	Lys 295	Val	Thr	Ser	Thr	Leu 300	Thr	Ile	Lys	Glu
Ser 305	Asp	Trp	Leu	Gly	Gln 310	Ser	Met	Phe	Thr	Cys 315	Arg	Val	Asp	His	Arg 320
Gly	Leu	Thr	Phe	Gln 325	Gln	Asn	Ala	Ser	Ser 330	Met	Cys	Val	Pro	Asp 335	Gln

Asp	Thr	Ala	Ile 340	Arg	Val	Phe	Ala	Ile 345	Pro	Pro	Ser	Phe	Ala 350	Ser	Ile
Phe	Leu	Thr 355	Lys	Ser	Thr	Lys	Leu 360	Thr	Суз	Leu	Val	Thr 365	Asp	Leu	Thr
Thr	Tyr 370	Asp	Ser.	Val	Thr	Ile 375	Ser	Trp	Thr	Arg	Gln 380	Asn	Gly	Glu	Ala
Val 385	Lys	Thr	His	Thr	Asn 390	Ile	Ser	Glu	Ser	His 395	Pro	Asn	Ala	Thr	Phe 400
Ser	Ala	Val	Gly	Glu 405	Ala	Ser	Ile	Сув	Glu 410	Asp	Asp	Trp	Asn	Ser 415	Gly
Glu	Arg	Phe	Thr 420	Суз	Thr	Val	Thr	His 425	Thr	Asp	Leu	Pro	Ser 430	Pro	Leu
Lys	Gln	Thr 435	Ile	Ser	Arg	Pro	Lys 440	Gly	Val	Ala	Leu	His 445	Arg	Pro	Asp
Val	Tyr 450	Leu	Leu	Pro	Pro	Ala 455	Arg	Glu	Gln	Leu	Asn 460	Leu	Arg	Glu	Ser
Ala 465	Thr	Ile	Thr	Cys	Leu 470	Val	Thr	Gly	Phe	Ser 475	Pro	Ala	Asp	Val	Phe 480
Val	Gln	Trp	Met	Gln 485	Arg	Gly	Gln	Pro	Leu 490	Ser	Pro	Glu	Lys	Tyr 495	Val
Thr	Ser	Ala	Pro 500	Met	Pro	Glu	Pro	Gln 505		Pro	Gly	Arg	Tyr 510	Phe	Ala
His	Ser	Ile 515	Leu	Thr	Val	Ser	Glu 520	Glu	Glu	Trp	Asn	Thr 525	Gly	Glu	Thr
Туг	Thr 530	Cys	Val	Val	Ala	His 535	Glu	Ala	Leu	Pro	Asn 540	Arg	Val	Thr	Glu
Arğ 545	Thr	Val	Asp	Lys	Ser 550	Thr	Gly	Lys	Pro	Thr 555	Leu	Tyr	Asn	Val	Ser 560
Leu <210>	113	Met	Ser	Asp 565	Thr	Ala	Gly	Thr	Cys 570	Tyr					

<212> PRT

<213> Secuencia artificial

<220>

5

<223> Descripción de la secuencia artificial: anticuerpo quimérico de ratón/ser humano

<400> 113

Asp 1	Ile	Gln	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15	Gly
Asp	Gln	Ala	Ser 20	Ile	Ser	Суз	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
Asn	Gly	Asn 35	Thr	Туг	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
65	_		Ser		70	-				75					80
			Glu	85					90		-			95	
			Pro 100					105					110		
		115	Ala				120					125			
	130		Ser			135				_	140				
145			Glu		150				_	155	_				160
	_		Ser	165					170		_			175	
	-		180 Val					185			•		190	,	
-		195	Lys			_	200				GEN	205	nen	SEL	Ser
	AGIT		พรูธ	*** *****	* ***	rigii.	ere A	u.y	₩	cys					

REFERENCIAS CITADAS EN LA DESCRIPCIÓN

Esta lista de referencias citadas por el solicitante únicamente es para comodidad del lector. Dicha lista no forma parte del documento de patente europea. Aunque se ha tenido gran cuidado en la recopilación de las referencias, no se pueden excluir errores u omisiones y la EPO rechaza toda responsabilidad a este respecto.

Documentos de patentes citados en la descripción

• EP 03788853 [0160]

DE 10256900 [0160]

Bibliografía no relativa a patentes citada en la descripción

 KARSTEN et al. Hybridoma, 1995, vol. 14 (1), 37-44 [0007]

10

REIVINDICACIONES

- Composición farmacéutica o diagnóstica que comprende una molécula de reconocimiento caracterizada por que comprende una secuencia de aminoácidos que contiene
- (i) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos mostrada en SEC ID Nº 1 v
- (ii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos mostrada en SEC ID Nº 2 ó 3 y
 - (iii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos SEC ID Nº 4, 5 ó 6 v
- 15 que se une específicamente al antígeno Core-1, donde dicha composición farmacéutica comprende opcionalmente un carrier y/o diluente farmaceuticamente aceptable.
 - Composición farmacéutica o diagnóstica de acuerdo con la reivindicación 1. caracterizada por que la molécula de reconocimiento comprende adicionalmente una secuencia de aminoácidos que contiene
 - (i) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos mostrada en SEC ID Nº 7 u 8 ó 9 v
- (ii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos mostrada en SEC ID Nº 10 u 11 y
 - (iii) una secuencia de aminoácidos que es al menos en un 80 % homóloga a la secuencia de aminoácidos mostrada en SEC ID Nº 12 ó 13 y
- 30 que se une específicamente al antígeno Core-1.
 - Composición farmacéutica o diagnóstica de acuerdo con la reivindicación 1 o 2, caracterizada porque en la molécula de reconocimiento al menos un aminoácido de al menos una de las secuencias de SEC ID Nº 1 a 13 es sustituido por un aminoácido con propiedades físico-químicas análogas.
 - Composición farmacéutica o diagnóstica de acuerdo con una cualquiera de las reivindicaciones 1 a 3. caracterizada porque en la molécula de reconocimiento la secuencia de SEC ID Nº 1 se sustituye por una estructura canónica equivalente de SEC ID Nº 14 a 17 y/o al menos una secuencia de las secuencias SEC ID Nº 2 ó 3 se sustituye por una estructura canónica equivalente de SEC ID Nº 18 a 27 y/o al menos una secuencia de SEC ID Nº 7 a 9 se sustituye por una estructura canónica equivalente de SEC ID Nº 28 a 45 y la molécula de reconocimiento se une específicamente al antígeno Core-1.
 - 5. Composición farmacéutica o diagnóstica de acuerdo con una cualquiera de las reivindicaciones 1 a 4. caracterizada porque la cadena pesada variable VH y la cadena ligera variable VL de la molécula de reconocimiento están en cadenas polipeptídicas diferentes.
 - Composición farmacéutica o diagnóstica de acuerdo con una cualquiera de las reivindicaciones 1 a 4, caracterizada porque la cadena pesada variable VH y la cadena ligera variable VL de la molécula de reconocimiento están directamente unidas en una proteína de fusión.
 - Composición farmacéutica o diagnóstica de acuerdo con una cualquiera de las reivindicaciones 1 a 6, caracterizada porque la molécula de reconocimiento es un anticuerpo de cadena única, un multicuerpo, un fragmento Fab, una proteína de fusión de un fragmento de anticuerpo con péptidos o proteínas y/o una inmunoglobulina de los isotipos IgG, IgM, IgA, IgE, IgD y/o subclases de los mismos.
 - Composición farmacéutica o diagnóstica que comprende una construcción que comprende una molécula de reconocimiento de acuerdo con cualquiera de las reivindicaciones 1 a 7, caracterizada porque las moléculas de reconocimiento se fusionan, acoplan químicamente, asocian covalentemente o no covalentemente con secuencias adicionales y/o estructuras.
 - Composición farmacéutica o diagnóstica de acuerdo con la reivindicación 8. caracterizada por que las moléculas de reconocimiento se fusionan, acoplan químicamente, asocian covalentemente o no covalentemente con

124

5

10

20

25

35

40

45

50

55

- (i) dominios de inmunoglobulina de diferentes especies, (ii) moléculas enzimáticas, (iii) dominios de interacción (iv) dominios para la estabilización, (v) secuencias señal, (vi) colorantes fluorescentes, (vii) toxinas, (viii) anticuerpos catalíticos, (ix) uno o varios anticuerpos o fragmentos de anticuerpos con otra especificidad, (x) componentes citolíticos, (xi) imunomoduladores, (xii) inmunoefectores, (xiii) antígenos de MHC de clase I o clase II, (xiv) quelantes para el marcado radiactivo, (xv) radioisótopos, (xvi) liposomas, (xvii) dominios transmembrana, (xviii) virus y/o (xix) células.
- Composición farmacéutica o diagnóstica que comprende una molécula de ácido nucleico que comprende secuencias de ácido nucleico que codifican secuencias de amino ácidos de al menos una molécula de reconocimiento de acuerdo con cualquiera de las reivindicaciones 1 a 7 o una construcción de las reivindicaciones 8 o 9.
- Composición farmacéutica o diagnóstica de acuerdo con la reivindicación 10, donde un primer vector codifica la cadena pesada y un segundo vector codifica la cadena ligera de una molécula de reconocimiento acuerdo con cualquiera de las reivindicaciones 1 a 7 o una construcción de las reivindicaciones 8 o 9.
 - 12. Composición farmacéutica o diagnóstica que comprende un casete de expresión o un vector que comprende una molécula de ácido nucleico de acuerdo con la reivindicación 10 u 11 y un promotor que está unido operativamente al ácido nucleico.
 - 13. Composición farmacéutica o diagnóstica que comprende una célula huésped que comprende al menos un vector o casete de expresión de acuerdo con la reivindicación 12.
- 14. Composición farmacéutica o diagnóstica que comprende
 25 (i) al menos una molécula de reconocimiento de acuerdo con una cualquiera de las reivindicaciones 1 a 7;
 - (ii) al menos una construcción de acuerdo con las reivindicaciones 8 ó 9; y/o

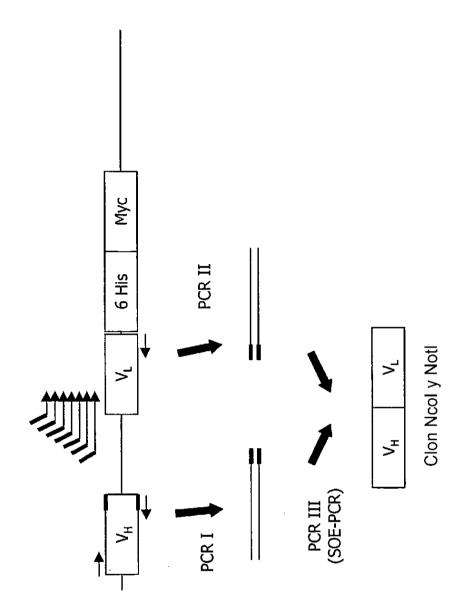
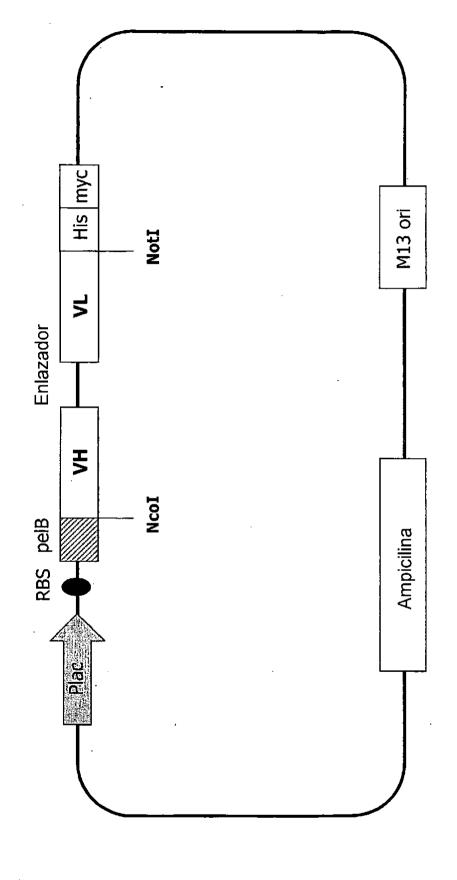
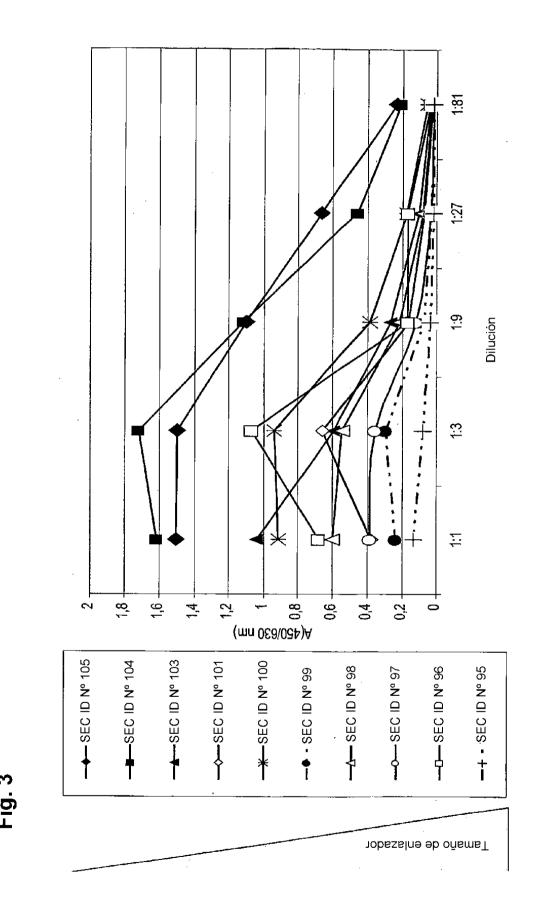
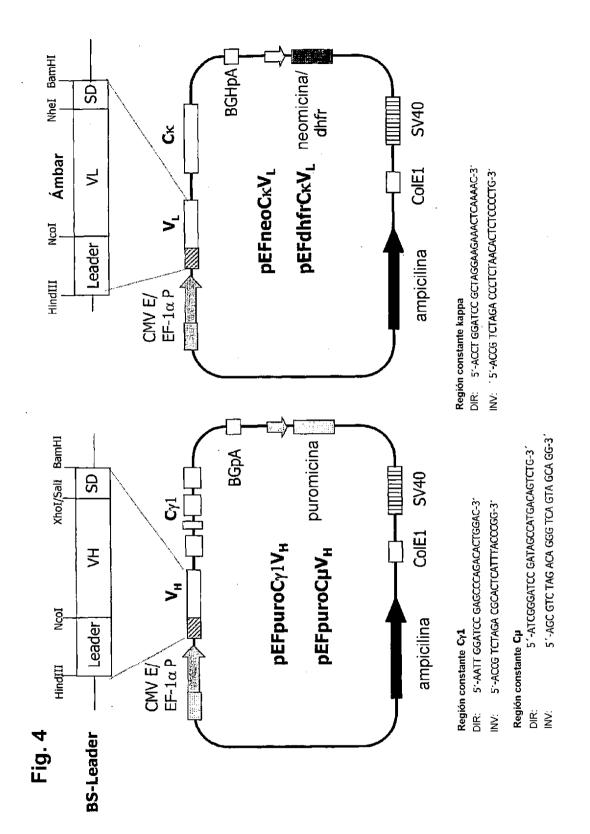
5

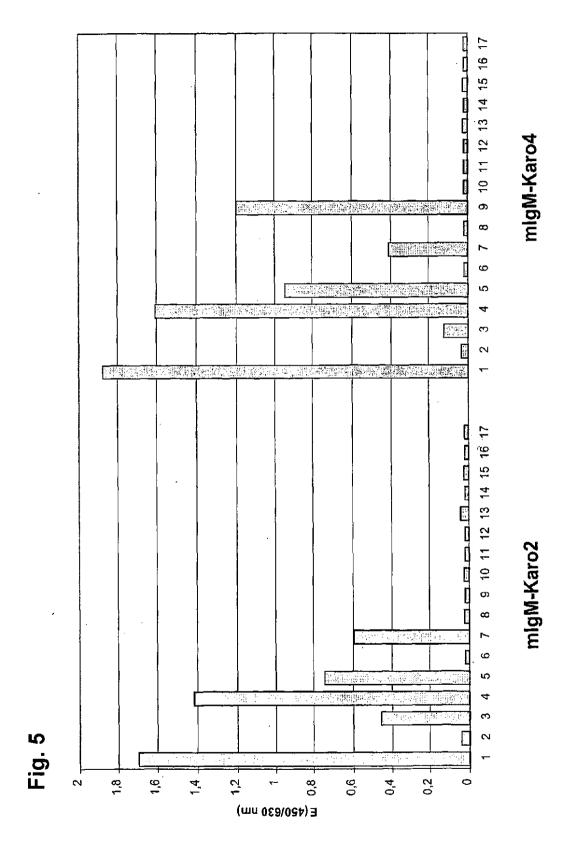
20

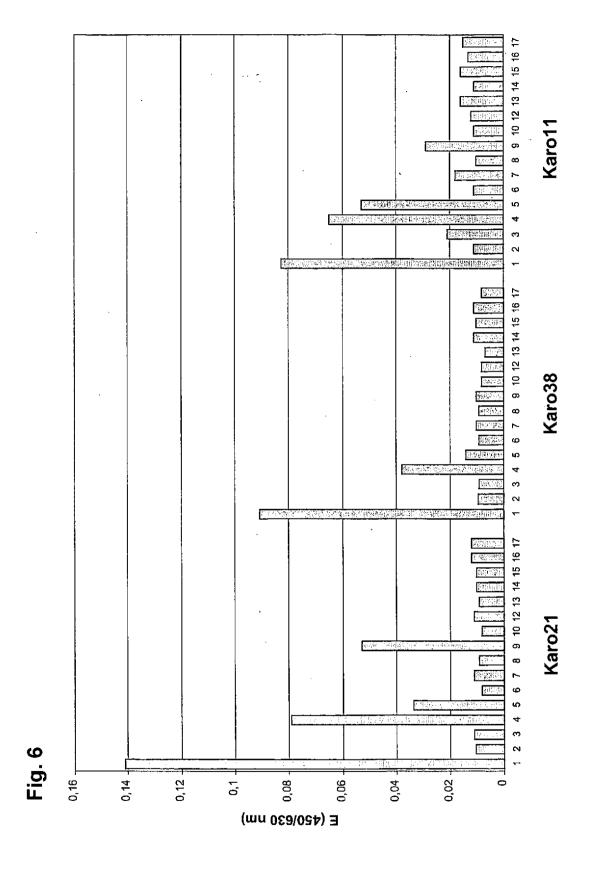
- (iii) al menos una molécula de ácido nucleico de acuerdo con las reivindicaciones 10 u 11.
- 15. Uso de una molécula de reconocimiento según se define en una cualquiera de las reivindicaciones 1 a14 para la identificación y/o obtención de moléculas que contienen Core-1.
 - 16. Uso de acuerdo con la reivindicación 15, donde las moléculas que contienen Core-1 contienen estructuras Core-1 y/o Core-2.
- 35 17. Uso de acuerdo con las reivindicaciones 15 o 16, donde las moléculas que contienen Core-1 son glicoproteínas, glicopéptidos o glicolípidos.
 - 18. Uso de acuerdo con una cualquiera de las reivindicaciones 15 a 17, donde células, partes de células, virus o bacterias contienen moléculas que contienen Core-1.
 - 19. Uso de acuerdo con una cualquiera de las reivindicaciones 15 a 18, donde las moléculas que contienen Core-1 están enriquecidas o se aíslan de células, líneas celulares, sobrenadantes de cultivos, tejidos tumorales, células tumorales o fluidos corporales.
- 45 20. Molécula de ácido nucleico que comprende secuencias de ácido nucleico que codifican la secuencia de amino ácidos de al menos una molécula de reconocimiento según se define en cualquiera de las reivindicaciones 1 a 7.
- 21. Molécula de ácido nucleico de acuerdo con la reivindicación 20, donde un primer vector codifica la cadena pesada y un segundo vector codifica la cadena ligera de una molécula de reconocimiento.
 - 22. Casete de expresión o un vector que comprende la molécula de ácido nucleico de la reivindicación 20 u 21 y un promotor que está unido operativamente al ácido nucleico.
- 55 23. Célula huésped que comprende al menos un vector o casete de expresión de acuerdo con la reivindicación 22.

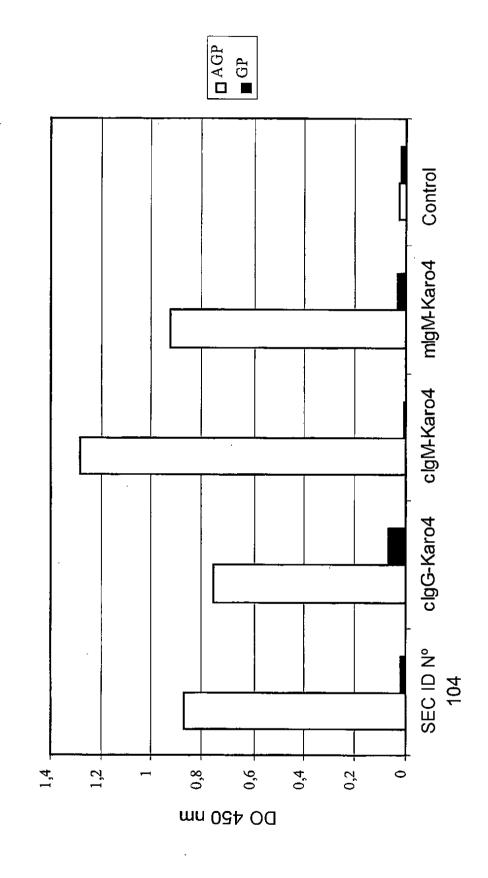
-ig. 1a

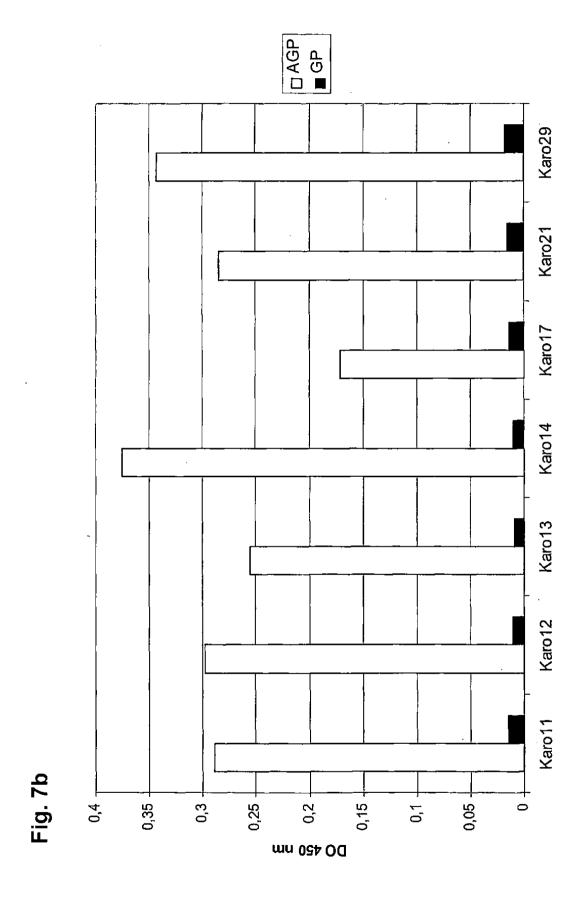
```
acggtcaccgtctcctcagcctcgagtggctcgggctcatctgcagatatccagatgacacag
                       acggtcaccgtctcctcagcctcgagtggcgtcatctgcagatatccagatgacacag
                Σ
                                                acggtcaccgtctcctcagcctcgagtggctcatctgcagatatccagatgacacag
                OI
                                                                      acggtcaccgtctcctcagcctcgagttcatctgcagatatccagatgacacag
                                      Σ
                                      ø
                                                                                            acggtcaccgtctcagcctcgagttctgcagatatccagatgacacag
                                                             Σ
               AD
                                                             O!
                                                                                    Σ
                                                                                                                     acggtcaccgtctcctcagectcgagtgcagatatccagatgacacag
                                     S S A D
                                                             Н
                                                                                    Ø
                                                                                                           Σ
                                                                                                                                           acggtcaccgtctcagcctcggccgatatccagatgacacag
                                                                                                                                  H
                                                                                 Н
               Ø
                                                            S
A
D
                                                                                                           Ø
                                                                                                                                  Σ
                                                                                                                                                                  acggtcaccgtctcctcaggecgatatccagatgacacag
            Š.
                                                                                   SAD
                                                                                                                                  O
                                                                                                                                                                                          acggtcaccgtctcctcagccgatatccagatgacaca
                                                                                                                                                         Σ
                                                                                                                                                                                ⊢
                                                                                                                                                                                                        O
              G S G
                                                                                                          SAD
                                                                                                                                                                                                                 acggtcaccgtctcctcagatatccagatgacacag
                                                                                                                                                         O
                                                                                                                                                                                Σ
                                                            ល
                                                                                                                                 Д
                                     U
                                                                                                                                                        н
                                                                                                                                                                                                                                        acggtcaccgtctccgatatccagatgacacag
                                                                                                                                                                                O
                                                                                                                                                                                                       Σ
                                     g
                                                                                   တ
                                                            Ö
                                                                                                                                S S W S S
                                                                                                                                                       SSAS
                                                                                                                                                                                                       ø
                                                                                                                                                                                H
                                                                                                                                                                                                                              Σ
                                     Ś
                                                                                                          A S S
                                                                                                                                                                               STABD
              A S S
                                                           SAS
                                                                                  SAS
                                                                                                                                                                                                      S A D I
                                                                                                                                                                                                                              Ø
                                                                                                                                                                                                                                                     Σ
                                    SAS
                                                                                                                                                                                                                              S
                                                                                                      ....o
              တ
                                                                                                                                                                                                      മ
                                                                                                                                                                                                                             <u>ග</u>
                                    ω.
                                                           ß
                                                                                                                                                                               Ø
              മ
                                                                                  വ
                                                                                                         Ŋ
                                   >
                                                                                 >
L
                                                                                                                                                                                                                             >
                                                                                                         )
T
                                                                                                                                                       T V
                                                                                                                                                                               T V
                                                                                                                                T V
                                   H
                                                           Ħ
            Н
                                                                                                         Ħ
```

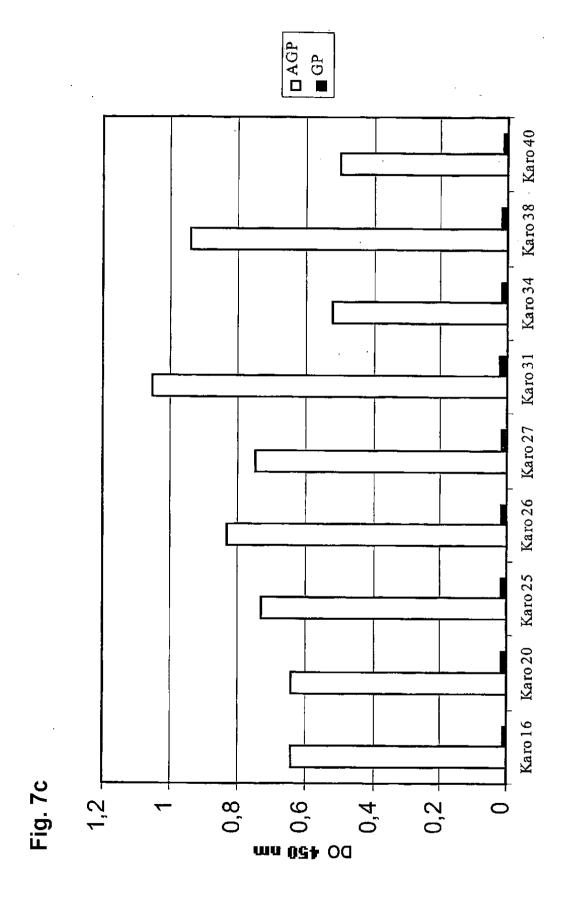





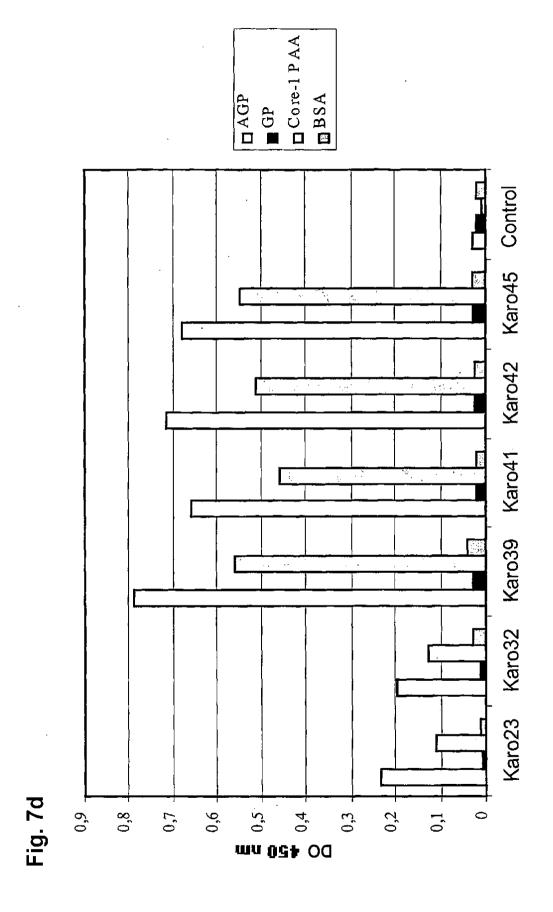

Fig. 1b

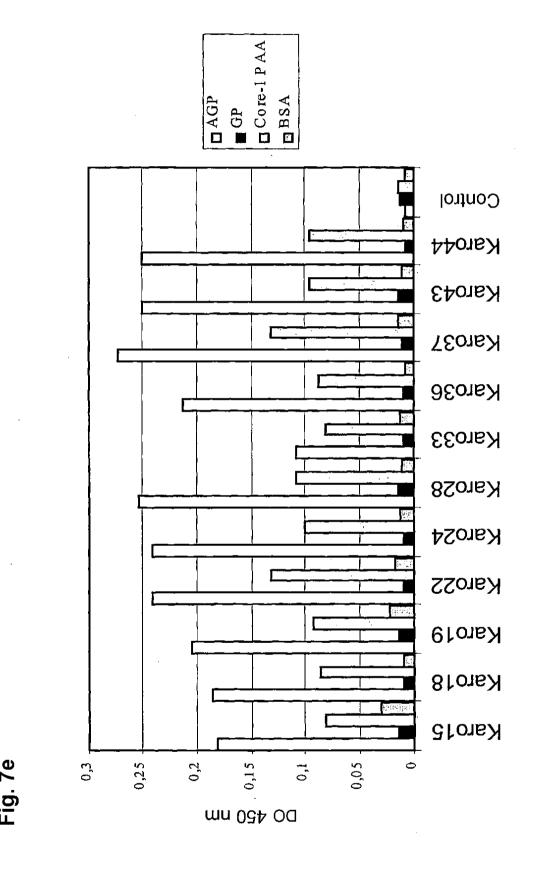



Fig









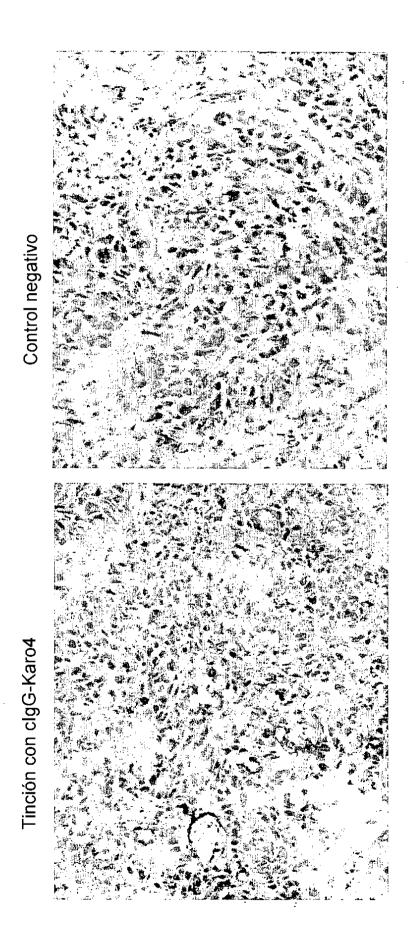


Fig. 8

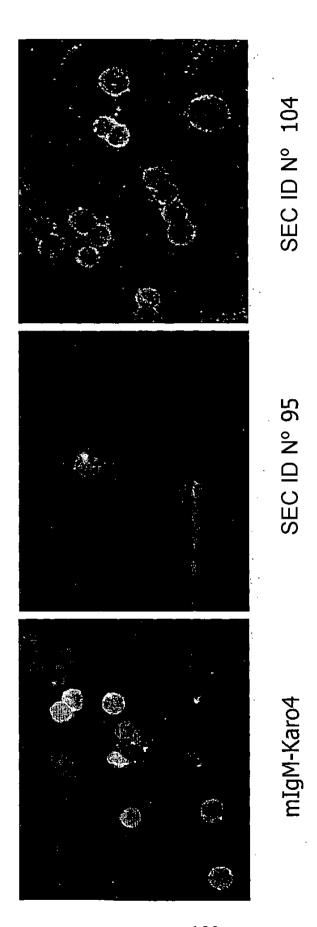
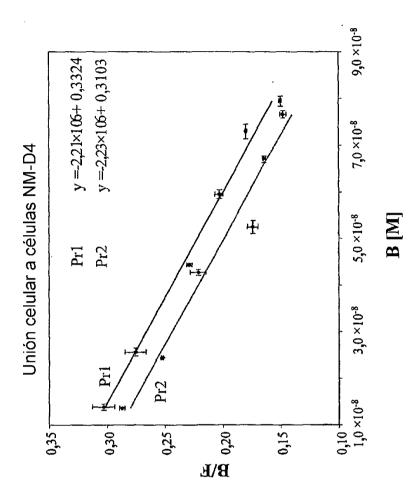



Fig. 9

