

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 388 147

51 Int. Cl.: G01N 33/80

(2006.01)

$\overline{}$,
12)	TRADUCCIÓN DE PATENTE EUROPEA
	INADOCCION DE FATENTE EUROFEA

T3

96 Número de solicitud europea: 07804300 .7

96 Fecha de presentación: 16.09.2007

Número de publicación de la solicitud: 2062055
 Fecha de publicación de la solicitud: 27.05.2009

54 Título: Determinación de grupos sanguíneos

30 Prioridad: 20.09.2006 GB 0618496

73 Titular/es:

ALBA BIOSCIENCE LIMITED ELLEN'S GLEN ROAD EDINBURGH EH17 7QT, GB

Fecha de publicación de la mención BOPI: 09.10.2012

72 Inventor/es:

ROBB, Janine S.; KNOWLES, Linda K. y PETRIK, Juraj

Fecha de la publicación del folleto de la patente: **09.10.2012**

(74) Agente/Representante:

Carpintero López, Mario

ES 2 388 147 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Determinación de grupos sanguíneos

La presente invención se refiere a la determinación de grupos sanguíneos y más específicamente a la detección de fenotipos específicos, caracterizados por anticuerpos específicos presentes en la superficie de los eritrocitos.

La prueba directa de Coombs (también conocida como prueba directa de antiglobulina o DAT o DAGT) se utiliza para detectar si los anticuerpos o los factores complementarios del sistema se han unido a antígenos en la superficie de eritrocitos o glóbulos rojos (RBC) *in vivo*. Dichos anticuerpos unidos están asociados a diversas enfermedades en las que un mecanismo inmunitario está atacando a los propios eritrocitos del paciente. Este mecanismo podría ser aloinmunidad, autoinmunidad o un mecanismo inmunomediado provocado por fármacos. Con más detalle dichas enfermedades comprenden:

Ejemplos de hemólisis aloinmunitaria

Enfermedad hemolítica del recién nacido (también conocida como EHRN o eritroblastosis fetal)

Enfermedad hemolítica por Rhesus D del recién nacido (también conocida como enfermedad de Rh)

Enfermedad hemolítica ABO del recién nacido (la prueba indirecta de Coombs puede ser sólo muy poco

15 positiva)

Enfermedad hemolítica anti-Kell del recién nacido

Enfermedad hemolítica por Rhesus C del recién nacido

Otro incompatibilidad de grupos sanguíneos (RhC, Rhe, RhE, Kid, Duffy, MN, P y otros)

Reacciones a la transfusión hemolítica aloinmunitaria

20 Ejemplos de hemólisis autoinmunitaria

Anemia autoinmunohemolítica por anticuerpos calientes

Idiopáticas

Lupus eritematoso diseminado

Síndrome de Evans (anticuerpos antiplaquetarios y anticuerpos hemolíticos)

25 Anemia autoinmunohemolítica por crioanticuerpos

Síndrome idiopático de criohemaglutinina

Mononucleosis infecciosa

Criohemoglobinuria paroxística (rara)

Hemólisis inmunomediada provocada por fármacos

30 Metildopa

40

45

50

55

Penicilina (dosis alta)

El sistema complementario se compone de una serie de pequeñas proteínas encontradas en la sangre, que cooperan con la interacción antígeno-anticuerpo para matar células diana. Más de 20 proteínas y fragmentos de proteínas conforman el sistema complementario.

Convencionalmente la prueba DAT se ha realizado como prueba de aglutinación en un tubo de ensayo. Más recientemente esta prueba también se ha realizado utilizando tecnología de microplacas y gel de aglutinación. La prueba sin embargo, todavía es algo engorrosa y la lectura automatizada de los resultados puede ser problemática.

Más recientemente se ha encontrado que la determinación de grupos sanguíneos ABO puede realizarse correctamente utilizando bio chips de proteínas no aglutinantes, en los que un anticuerpo inmovilizado se une a un antígeno en la superficie del RBC y se detecta la presencia de los RBC así inmovilizados (J. S. Robb *et al.* 2006). Se ha encontrado además que la tecnología de bio chips de anticuerpos puede utilizarse para eritrocitos de fenotipo mediante la detección de mezclas complejas de antígenos en las superficies celulares (C. J. Campbell *et al.* 2006). Los antígenos son tanto los antígenos de azúcar, que tienden a ser bien presentados y fácilmente accesibles como los antígenos de péptidos, que son epítopos de proteínas transmembranarias y por lo tanto, sepultados y sujetados más fijamente a la superficie de la célula y éstos se lograron diferenciar utilizando la elección correcta de anticuerpos.

La memoria de patente CA2, 365.178 da a conocer un bio chip con una variedad de sitios que contiene cada uno un reactivo. El reactivo es generalmente un anticuerpo. El objetivo es identificar anticuerpos en el suero o plasma de la sangre; o para detectar antígenos de superficie celular integral presentes, por ejemplo, en la superficie de los glóbulos rojos.

El documento WO 2006/100477 (un documento intermedio a tenor del artículo 54 (3) EPC) da a conocer un procedimiento para la determinación de un grupo sanguíneo de una muestra utilizando un sustrato con uno o más agentes de unión allí unidos a éste capaces de unir antígenos específicos del grupo RBC.

Los inventores han descubierto ahora sorprendentemente que los RBC recubiertos con anticuerpos o complemento (proteína) puede soportar el tratamiento requerido y permanecer "sensibilizados" (recubiertos) con dicho anticuerpo o complemento unido a dichos RBC, y que la tecnología de bio chips puede utilizarse para detectar anticuerpos y/o complemento presente en la superficie de los RBC, proporcionando de este modo una prueba que es mucho más eficaz y una alternativa eficaz a las pruebas convencionales de DAT, y que puede, además, integrarse fácilmente en

ES 2 388 147 T3

un único bio chip con otras pruebas importantes en el tratamiento de la sangre - incluyendo la determinación de grupos sanguíneos de varios antígenos en la superficie de los RBC.

Así en un primer aspecto de la presente invención se proporciona, un procedimiento de análisis de sangre adecuado para utilización en la detección de una enfermedad en la que al menos un anticuerpo y/o el factor del complemento característicos se unen a los glóbulos rojos de pacientes, cuyo procedimiento comprende las etapas consistentes en:

- proporcionar un bio chip en el que una variedad de agentes de unión que son capaces de unir específicamente a diferentes anticuerpos o factores del complemento característicos se inmovilizan sobre un sustrato en posiciones diferenciadas predefinidas;
- poner en contacto una muestra de sangre del paciente con dicho bio chip;

5

45

50

55

- eliminar algunos glóbulos rojos no unidos de al menos una zona de dicho sustrato en el que dichos agentes de unión están inmovilizados; y
 - detectar la presencia de glóbulos rojos unidos mediante dichos anticuerpos característicos a dicho bio chip, para determinar la presencia de cualquiera de dichos anticuerpos característicos y/o del factor de complemento unidos a los glóbulos rojos del paciente.
- Mientras que la utilización de bio chips de proteínas para anticuerpos de unión se ha conocido anteriormente, es muy sorprendente que los RBC unidos por los anticuerpos característicos, puede sobrevivir al tratamiento adicional necesario para la detección de dichos RBC y permanecer unidos a éstos y de este modo mantenidos secuestrados a los bio chips. El tratamiento adicional conlleva el lavado de los bio chips para retirar la materia no ligada y reducir la unión inespecífica, además del secado para permitir que se lleva a cabo la exploración.
- La presente invención además describe un bio chip de proteína para su utilización en la detección de una enfermedad en la que un mecanismo inmune está atacando a los propios RBC del paciente y se caracteriza por al menos un anticuerpo o factor de complemento característico unido a dichos RBC, cuyo bio chip de proteína ha inmovilizó sobre un sustrato en posiciones diferenciadas predefinidas, una variedad de agentes de unión que pueden unir específicamente a dichos anticuerpos característicos/factor de complemento diferentes.
- La nueva forma de pruebas DAGT de la presente invención con múltiples sondas diferenciadas en un sistema de una sola prueba y al mismo tiempo, que facilita la combinación de grupos sanguíneos, fenotipado y DAGT, mejorará la eficiencia y la eficacia de los procedimientos de análisis de sangre, permitiendo la identificación y la diferenciación de los diferentes recubrimientos de DAGT de diferentes anticuerpos y/o factores del complemento característicos. Esto minimizará también retrasos en la determinación de la significación clínica del recubrimiento de DAGT.
- 30 En general agentes de unión adecuados comprenden anticuerpos o fragmentos de anticuerpo específicos para los anticuerpos o factores del complemento característicos que se han de detectar. Sin embargo, pueden emplearse otros agentes de unión específicamente reactivos, tales como pequeñas moléculas de anticuerpos miméticos, ligandos de ácido nucleico o receptores de otras células que pueden unir dichos antígenos. Sin embargo, por sencillez en adelante se hará referencia a anticuerpos, pero esto no debe interpretarse limitación.
- Debe apreciarse que la elección de los agentes de unión proporcionados en el bio chip dependerá de la identidad de los anticuerpos diana característicos. En general los agentes de unión corresponderían a los utilizados en pruebas DAT convencionales, es decir, al menos anti-IgG₁, anti-IgG₃ y anti-complemento (C3). Preferentemente debería incluir también una anti-IgG de amplio espectro). Ventajosamente debería incluir también anti-IgG₂ e IgG₄. Si se desean otros anticuerpos podrían incluirse también, tales como por ejemplo, anti-cadena ligera λ o anti cadena ligera κ.

Los anticuerpos de agente de unión inmovilizados en el sustrato pueden ser policionales o monoclonales.

Los anticuerpos policionales son poblaciones heterogéneas de moléculas de anticuerpos procedentes de de los sueros de animales inmunizados con un antígeno o un derivado funcional antigénico del mismo. Para la producción de anticuerpos policionales, animales hospedadores como por ejemplo conejos, ovejas, cerdos, etc., pueden inmunizarse por inyección con un antígeno específico opcionalmente enriquecido con adyuvantes.

Los anticuerpos monoclonales, que son poblaciones homogéneas de anticuerpos contra un antígeno determinado, pueden obtenerse por cualquier técnica que proporcione la producción de moléculas de anticuerpo por estirpes celulares continuas en el cultivo. Éstas incluyen, pero no se limitan a, la técnica del hibridoma de Kohler y Milstein, (1975, Nature 256:495-497; y la Pat. De EE.UU. nº 4.376.110), la técnica del hibridoma de de linfocitos B humanos (Kosbor et al., 1983, Immunology Today 4:72; Cole et. al., 1983, 80:2026 Proc. Natl. Acad. Sci. U.S.A. 80:2026-2030) y la técnica del hibridoma EBV (Cole et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., págs.77-96). Dichos anticuerpos pueden ser de cualquier clase de inmunoglobulina incluyendo IgG, IgM, IgE, IgA, IgD y cualquier subclase de los mismos. El hibridoma que produce el mAb de esta invención puede cultivarse in vitro o in vivo. La producción de grandes valores de mAb in vivo hace a éste el procedimiento de producción preferido en la actualidad.

Además, pueden utilizarse técnicas para la producción de "anticuerpos híbridos" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454;

Pat. de EE.UU. nº 4.816.567) mediante corte y empalme de los genes de una molécula de anticuerpo de ratón de especificidad de antígeno apropiado junto con los genes de una molécula de anticuerpo humano molécula de actividad biológica adecuada. Un anticuerpo híbrido es una molécula en la que diferentes partes proceden de diferentes especies de animales, tales como las que tienen una región variable procedente de un mAb murino y una región constante de inmunoglobulina humana.

5

10

20

25

30

35

40

45

50

55

60

Alternativamente, pueden utilizarse las técnicas descritas para la producción de anticuerpos monocatenarios (Pat. de EE.UU. nº 4.946.778: Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:5879-5883; y Ward et al., 1989, Nature 334:544-546) y para la preparación de anticuerpos monoclonales humanizados (Pat. de EE.UU. nº 5.225.539). Fragmentos de anticuerpos que reconocen epítopos específicos pueden generarse por técnicas conocidas. Por ejemplo, dichos fragmentos incluyen, pero no se limitan a: los fragmentos F(ab')2 que pueden producirse por digestión con pepsina de la molécula de anticuerpo y los fragmentos Fab que pueden generarse por reducción de los puentes disulfuro de los fragmentos F(ab')2. Alternativamente, pueden construirse bancos de expresión de Fab (Huse et al., 1989, Science, 246:1275-1281) para permitir la identificación rápida y fácil de fragmentos Fab monoclonales con la especificidad deseada.

15 En el caso de la presente invención, se utilizaría convenientemente un anti-lgG₁ monoclonal, un anti-lgG₃ monoclonal y un anti-C3 monoclonal. Cuando se incluye anti-lgG, éste es convenientemente un anti-lgG (policlonal).

Los anticuerpos están unidos al sustrato en un biobio chip. Tal como se utiliza aquí el término "biobio chip" se refiere a una disposición generalmente ordenada de anticuerpos unidos, que se unen específicamente a antígenos de los eritrocitos, especialmente antígenos de superficie de células, en un substrato tal como vidrio. Normalmente, el biobio chip puede estar en forma de una serie de zonas espaciadas regularmente delimitadas aparte a las que se unen los anticuerpos. Dichas matrices de anticuerpos unidos al sustrato pueden describirse generalmente como un "bio chip de anticuerpo".

Los anticuerpos pueden estar dispuestos, por ejemplo, sobre un sustrato plano o esférico denominado en este documento "bio chip" de modo que hay preferiblemente por lo menos uno o más anticuerpos diferentes, más preferiblemente al menos aproximadamente 2 anticuerpos, aún más preferiblemente al menos aproximadamente 4 anticuerpos se unen a la superficie del sustrato. Además, cada anticuerpo específico puede suministrarse en una serie de diluciones y/o repetido un número de veces (p. ej., 3 - 10 veces), a fin de minimizar cualquier reacción de falsos positivos o negativos que se pueden producir, al llevar a cabo un procedimiento de detección.

El biobio chip puede ser de cualquier sustrato convencional, por ejemplo vidrio, silicio, óxido de silicio, metales y óxidos metálicos ya sea escueto o funcionalizado con polímeros funcionales tales como glicidoxipropiltrietoxisilano, poli-1-lisina, aminopropilsilano, carboxisilano, hidrogeles y cepillos de polímeros, monocapas autoensambladas p. ej., de alquil tioles funcionalizados.

Como se expone de aquí en adelante, un procedimiento particularmente conveniente de detección de los hematíes enlazados implica la utilización de la fluorescencia de los mismos. En este caso, puede ser ventajoso utilizar sustratos revestidos de oro. La fluorescencia de las células, especialmente de los glóbulos rojos puede aumentar en los sustratos revestidos de oro en comparación con los sustratos no revestidos de oro. Sin desear estar ligados por la teoría, esto puede explicarse en relación con las propiedades ópticas especiales que presentan las películas de oro. Dentro de 7 nm de la superficie de oro, la transferencia de energía no radiactiva se producirá entre el fluoróforo excitado y la superficie, y esta propiedad se ha utilizado con buenos resultados en el diseño de "balizas moleculares" (Du et al., J. Am., Chem., Soc., 2003, 125, 4012-4013). Esto dará lugar a una extinción de la luz emitida y una disminución concomitante de la señal fluorescente asociada con una mancha. Dado que los eritrocitos son aproximadamente de 6-8 micras de diámetro y 1 micra de profundidad, 99% del volumen celular está fuera de esta zona, lo que significa que la señal no se extingue. Sin embargo, cuando la fluorescencia de los eritrocitos manchó en las extensiones de oro en comparación con aquellos en las extensiones de epoxi silano, la fluorescencia de las células de la sangre en las extensiones de oro es mayor. Esto puede explicarse en cuanto a otra calidad óptica de las películas de metales nobles, la capacidad para formar un campo amortiguado en la superficie. La onda amortiguada es una onda de luz que no se propaga que se extiende desde la superficie por cientos de nanómetros. El posicionamiento de un fluoróforo en este campo aumentará la intensidad de la luz emitida desde la misma. Mientras que la potencia de la onda amortiguada dependerá del ángulo en el que el láser incide sobre la superficie de oro, todavía es probable de que haya alguna mejora aun cuando se utiliza un escáner no optimizado como se ha demostrado utilizando extensiones impresas con un patrón de rejilla (Neuschafer, D., Budach, W., Wanke, C, Chibout, S.-D, Biosens. Bioelectronics 2003, 18, 489-497). La fluorescencia mejorada producida por la excitación de las eritrocitos por una onda de luz confinada en la superficie es lo que hace que la señal de manchas de sangre sobre el oro para emitir una mayor intensidad de la luz que en las películas revestidas de epoxi silano. Esto es una ventaja significativa de la utilización del oro como una superficie de bio chips. Nuevamente, sin estar ligado por la teoría, los inventores consideran que puesto que la diferencia entre la extinción de fluorescencia y la mejora amortiguada de señal es producida por una dependencia de la distancia, el oro es una superficie preferida para trabajar con una serie de ensayos. El oro puede ser fácilmente funcionalizado utilizando técnicas bien establecidas para la formación de monocapa autoensamblada (Datwani, SS, Vijayendran, RA, Johnson, E., Biondi, SA, Langmuir 2004, 20, 4970-4976), lo que significa que la distancia entre un fluoróforo y la superficie de oro se puede poner a punto mediante, por ejemplo, la longitud de una cadena de alquilo (Imahori, H. Norieda, H.,

ES 2 388 147 T3

Nishimura, Y., Yamazaki, I., Higuchi, J., Kato, N., Motohiro, T., Yamada, H., Tamaki, K., Arimura, M., Sakata, Y., *J. Phys., Chem.*. B. 2000, 104, 1253-1260) y la química de superficie puede controlarse fácilmente por la elección del grupo terminal. Este enfoque implica que los anticuerpos utilizados en un ensayo pueden colocarse de tal manera que los eritrocitos se unen dentro del campo amortiguado sin que extinguirse. Para aprovecharse al máximo de este proceso, la rugosidad de la superficie del oro puede necesitar optimizarse ya que esto mejorará el aumento y la configuración del escáner de bio chips tendría que igualarse al ángulo de resonancia de plasmón.

El biobio chip puede estar en cualquier forma que se pueda leer, incluyendo plana y esferoidal. Los sustratos preferidos son cualquier soporte adecuado rígido o semi-rígido incluyendo membranas, filtro, bio chips, extensiones, obleas, fibras, perlas magnéticas o no magnéticas, geles, tubuladura, placas, polímeros, micropartículas y capilares. El sustrato puede tener una variedad de formas superficiales, tales como pozos, surcos, alfileres, canales y poros, a las que los anticuerpos se unen. La arquitectura preferida de la superficie del sustrato para mejorar la detección fluorescente se describe en los documentos WO 02/059583 y WO 03/023377. En determinadas realizaciones, los sustratos son con preferencia ópticamente transparentes.

10

40

45

50

55

Generalmente hablando, los "bio chips de anticuerpos" de la presente invención puede comprender pequeñas sustratos planos, tales como 50 – 100 mm, p. ej. 76 mm x 15 - 50 mm, por ejemplo 26 mm. c, con tamaño de mancha entre 50 y 1000 μm, y hasta 10000 manchas de anticuerpos por extensión. Convenientemente cada anticuerpo puede ser encontrado, impreso o sino unido al sustrato por técnicas conocidas, véase, por ejemplo, Michael J. Heller, *Annual Review of Biomedical Engineering*, 2002 vol. 4: 129-153. DNA Microarray Technology: Devices, Systems and Applications. Angenendt, P.; Glökler, J.; Murpy, D.; Lehrach, H.; Cahill, D.J. *Anal. Biochem*, 2002, 309, 252-260 Angendt, P.;. Glökler, J.; Sobek, J.; Lehrach, H.; Cahill, D.J. *Chromatogr*. A, 2003 100, 997-104. Las manchas típicas son menores de 1 mm de diámetro, tal como menores de 500 μm ó 100 μm de diámetro. De esta manera 10 s a 1000 s de manchas de anticuerpos puede proporcionarse en un solo biobio chip, si así se requiere.

Los "bio chips de anticuerpos" de la presente invención pueden utilizarse también para probar más de una muestra. De esta manera, cada bio chip puede comprender una variedad de matrices separadas sobre la superficie del sustrato, dispuestas en una forma para permitir a las muestras separadas ponerse en contacto con cada biobio chip de tal manera que las muestras no se mezclen. Por ejemplo, cada biobio chip puede estar unido por una pared, cresta, presa, una zona hidrófoba o similares diseñada para evitar que las diferentes muestras entren en contacto una con la otra.

Varios procedimientos son bien conocidos en la técnica para inmovilizar los anticuerpos sobre sustratos de bio chips. Convenientemente se utiliza unión electrostática para inmovilizar los anticuerpos. Otros procedimientos de fijación que podrían emplearse incluyen interacciones hidrófobas/hidrófilas, interacciones químicas, y acoplamiento de aminas. La adsorción puede ser directa sobre el substrato de oro mediante aminoácidos que contienen azufre (cisteína, metionina) como se prefiere en este documento, o la unión puede ser mediante alcanotioles previamente unidos al sustrato de oro, y que contiene varios grupos funcionales en el otro extremo para reaccionar con las proteínas.

Convenientemente cualquier zona de la superficie del sustrato no provista de agente de unión que podría proporcionar sitios de unión no específicos están convenientemente tratados con agentes bloqueadores a fin de evitar cualquier unión no específica de los glóbulos rojos y/o anticuerpos o del factor de complemento unido a dicho de glóbulos rojos. Varios agentes bloqueadores adecuados son bien conocidos en la técnica. En general comprenden una albúmina o suero (sin anticuerpos indeseables tales como anticuerpos de grupos sanguíneos, anticuerpos anti-IgG o aquellos que podrían interferir con las interacciones de la sonda de ensayo en el mismo bio chip), tales como proteína de leche sin grasa, caseína, albúmina de suero bovino (ASB), etc., presentadas convenientemente en un tampón. Un ejemplo conveniente que puede mencionarse es albúmina de suero bovino (ASB) al 1% p/v (ID Bio, Francia) en solución salina tamponada con fosfato (PBS, por sus siglas en inglés) (cloruro sódico 0,15 M, solución madre con tampón fosfato 2,632 M (Alba Bioscience, Escocia), pH 7,0).

Algunos glóbulos rojos presentes en la muestra de sangre que tienen dicho anticuerpo/factor de complemento característico unido al mismo, se dejó reaccionar específicamente con dichos anticuerpos unidos durante un período de tiempo, tal como 10 segundos a varias horas, por ejemplo 1 minuto a 60 minutos. Generalmente, esto puede llevarse a cabo a temperatura ambiente, pero también puede llevarse a cabo, por ejemplo, a 37°C.

La eliminación de material no unido se puede conseguir, por ejemplo, lavando la superficie del sustrato con una solución tal como acuosa o salina, soplando o succionando aire a través de la superficie del sustrato, o utilizando centrifugación, o agitando para disipar el material no unido de la superficie del sustrato. Además, las zonas del sustrato al margen de las zonas delimitadas a las que los anticuerpos están unidos, pueden ser porosas para las células de la muestra que se está analizando, de tal manera que las células que no entran en contacto con los anticuerpos pasan a través del sustrato y de este modo se retiran fácilmente.

La presencia de los glóbulos rojos mantenidos en cautividad puede detectarse mediante varias técnicas conocidas en esta materia, tales como la detección por marcaje secundaria (anticuerpos fluorescentes, quimioluminiscentes conjugados), ampliación del círculo rodante. Convenientemente se puede detectar por medio de la autofluorescencia

de los glóbulos rojos que se describen en C.J. Campbell *et al.* 2006, que tiene la ventaja particular de evitar la necesidad de que la utilización de cualquier marcaje y proporcionar una forma particularmente sencilla de tratamiento. Con más detalle los hematíes pueden irradiarse o excitarse con luz de longitud de onda de aproximadamente 420 nm, 488 nm, 543 nm o 580 nm, y detectarse la emisión fluorescente a una mayor longitud de onda tal como 530 nm si se excita a 488 nm o a 570-585 nm si excita a 543 nm.

Así, si se unen algunos eritrocitos al bio chip, éste puede detectarse por una señal fluorescente. Al conocer la posición de cada anticuerpo específico sobre el sustrato, es posible identificar qué antígenos están presentes en la superficie de las eritrocitos que se están probando y así identificar el grupo sanguíneo de la muestra de sangre se está analizando.

- Puede detectarse cualquier fluorescencia con cualquier fotodetector adecuado conocidos en la técnica, tal como un espectrofotómetro. Convenientemente se puede utilizar un escáner confocal con el láser de excitación, detectando el escáner la emisión fluorescente y la intensidad de la misma dado un valor numérico para interpretación e informática. Utilizando electrónica y programas informáticos adecuados, puede programarse cualquier dispositivo para conocer la identidad y la posición de anticuerpos específicos en la superficie del sustrato y correlacionar esto con señales fluorescentes generadas, de manera que un grupo sanguíneo particular se puede determinar e identificar con el analizador. Además, pueden incluirse programas estadísticos a fin de combinar y formular los resultados de varias repeticiones y/o diluciones de los anticuerpos proporcionados sobre el sustrato. De esta manera, las señales fluorescentes obtenidas a partir de una multitud de puntos de anticuerpos específicos se pueden tener en cuenta conjuntamente y presentar un resultado estadísticamente significativo al analizador.
- Otras características y ventajas preferidas de la invención aparecerán en los siguientes ejemplos detallados dados a modo de ilustración.

Ejemplo 1 - Purificación del agente de unión de anticuerpos IgG1

La columna ProSep Guard y ProSep A High Capacity (Millipore, Reino Unido) se lavaron con PBS pH 7,4, bombeado a 60 rpm utilizando una bomba Watson Marlow 505S. Se utilizó un tubo de borosilicato de 1 mm, con un caudal de 20 ml/minuto. Se cargó el material para la purificación seguido de 400 ml de tampón de lavado ProSep. Se eluyó el anticuerpo unido utilizando tampón de elución ProSep pH 3,0. El pH del producto se ajustó a pH 9,0 utilizando NaOH 1 M antes de la diálisis en PBS pH 7,4.

Ejemplo 2 - Purificación de otros agentes de unión

5

25

30

35

40

45

Se lavó ProSep G High Capacity (Millipore, Reino Unido) en PBS pH 7,4 y se utilizó para purificar otros agentes de unión indicados a continuación, utilizando esencialmente el mismo procedimiento descrito en el Ejemplo 1.

Especificidad e identidad en resultados	Estirpe celular/Identidad	Clase de anticuerpo	Concentración (mg/ml)
Anti-IgG ₃ monoclonal	LG3A	IgG	1,20
Anti-IgG de conejo	Policlonal de conejo	IgG	0,39
Anti-C ₃ monoclonal	3G8	IgG	1,00

Ejemplo 3 - Preparación de bio chips de proteínas

Se utilizaron como sustrato extensiones recubiertas en superficie de oro (Biogold) obtenidos de Erie Scientific. Las muestras de sondas de anticuerpos agentes de unión que han de mancharse se prepararon en PBS. Las extensiones se imprimieron utilizando una SpotBot (Telechem/Arrayit) o Biorobotics MicroGrid II Arrayer con pasadores sólidos entre 200 µm y 700 µm. Se imprimieron réplicas de cada muestra sobre cada extensión, y las extensiones se secaron al aire durante al menos una hora, antes de sellarse en una bolsa y se colocaron a 4°C hasta su utilización. Las extensiones se lavaron brevemente en PBS antes de tratarse en un recipiente de agente de bloqueo PBS-ASB durante una hora a temperatura ambiente, con agitación constante. Al retirar las extensiones se enjuagaron brevemente en PBS y se centrifugó a seguedad en una centrífuga a 1000 rpm durante un minuto.

Ejemplo 4 - Prueba DAT de sangre utilizando bio chips de proteínas

Se colocó una cámara sobre cada uno de los bio chips de proteínas preparados según el Ejemplo 3. Una muestra de sangre de un paciente se lavó por lo menos 4 veces en PBS. Se preparó una solución de glóbulos rojos para añadir al bio chip poniendo en suspensión la muestra de sangre a un hematocrito al 1% en PBS-ASB. Se pipetearon a continuación 450 µl de la solución de glóbulos rojos a través de una de las portillas de la cámara sobre las extensiones de bio chips. Se sellaron las portillas con los sellos de puerto proporcionados. Se colocaron las extensiones en una caja de extensiones y se mezclaron durante una hora a temperatura ambiente.

Las muestras de RBC de la sangre contenían células R1r del grupo O sensibilizadas con anti-D 'K' (LHM169/80). Se analizaron también las muestras de sangre con células R1r del grupo O insensibilizadas (naturales).

Se retiró la cámara y se sumergieron las extensiones brevemente en PBS para eliminar el exceso de solución de destino. Esto fue seguido por dos lavados en PBS durante 10 minutos. Después del lavado final, las extensiones se centrifugaron a seguedad y se almacenaron en un lugar oscuro sin polvo hasta la exploración.

Ejemplo 5 - Extracción de datos y análisis

5

10

15

20

25

30

35

50

55

Se escanearon las extensiones en un escáner Genepix personal 4100A o similar. Se utilizaron entornos de longitud de onda para detectar autofluorescencia de RBC como se ha descrito anteriormente. Todas las exploraciones de extensiones se realizaron a un tamaño de píxel de 10 micrómetros y se guardó tanto como un BMP como un archivo TIF

Los datos numéricos se extrajeron de los bio chips utilizando GenePix Pro 4.1 (Axon Instruments) o similar. El programa informático controla la exploración, la entrada de datos y la extracción de datos de los bio chips. Se autogeneró un archivo de entrada de texto utilizando una columna de bio chips y posiciones en fila para determinar la identidad y la situación de cada sonda. Esto se utilizó para generar una lista de bio chips que se cargó una vez se habían establecido los entornos de la cuadrícula de bio chips. Una vez se habían generado la red y la lista de matrices, se extrajeron los datos a un archivo de texto. Este proceso dio el valor medio de intensidad de fluorescencia del centro de cada mancha y un valor medio de la zona de fondo completa de la extensión. Esta información se recogió en una hoja de cálculo Excel.

Para cada mancha el valor de fluorescencia de fondo se resta del valor de la intensidad de fluorescencia. Para cada extensión los valores de intensidad de señal de cada configuración de escaneo diferente se recopilaron en una hoja de cálculo. Se preparó un gráfico de dispersión utilizando todos los valores para cada uno de los entornos fijados el uno contra el otro. La forma de la nube de datos resultante dio una indicación de las cualidades de exploración, y puede mostrar si los entornos eran demasiado bajos, o si los entornos eran demasiado altos dando manchas saturadas. El valor de R2 se aplicó a cada gráfica y los que dieron un valor más cercano a uno demostraba los mejores datos. Para el tratamiento de datos adicional se seleccionó una exploración de cada extensión.

Una vez seleccionada la mejor exploración de datos se procesó de la siguiente manera. Los datos no deseados se eliminaron de la hoja de cálculo para dejar sólo un valor por mancha en el bio chip (el valor de la intensidad de fluorescencia menos el valor de fluorescencia de fondo para cada punto). Se utilizaron valores de referencia negativos para calcular un valor "ruido", la media más dos desviaciones estándar de los negativos (media + 2 sd). Este valor representa la unión no específica (NSB, por sus siglas en inglés). El valor de cada mancha se dividió por la media + 2 sd de las referencias negativas para dar una relación señal-ruido (S/R). Los valores superiores a uno pueden considerarse significativos. Se calculó la media de la S/R para las replicas de las manchas de cada muestra.

Los datos procesados se analizaron según el caso utilizando Microsoft Excel. Se utilizaron diagramas de barras en todo el análisis de datos. El eje Y en los diagramas de barras representa la mediana de S/R para la muestra.

Cuando se incluían barras de error, el error estándar para cada muestra se calculó de la manera siguiente. Se calculó la desviación estándar de las réplicas de cada muestra (esto se realizó en relaciones S/R o en valores de fluorescencia reales). La desviación estándar se dividió por la raíz cuadrada del número de réplicas de la muestra para dar el error estándar.

Los resultados obtenidos se muestran en la Figura 1 de los dibujos. Las barras oscuras muestran cómo reaccionan las células naturales con la anti-D 'K', pero no con cualquiera de las demás sondas del agente de unión. Una vez sensibilizados con anti-D 'K' (barras claras), las células no reaccionan con a sonda anti-D 'K' I, pero dan una S/R muy alta frente a las sondas anti-IgG . El anti-C3 no da reactividad cruzada. Por eso puede verse que las pruebas DAT pueden lograrse utilizando una plataforma de bio chips de proteínas.

45 Ejemplo 6 - Prueba DAT de sangre utilizando bio chips de proteínas

Se colocó una cámara sobre cada uno de los bio chips de proteínas preparados según el Ejemplo 3. Una muestra de sangre de un paciente se lavó por lo menos 4 veces en PBS. Se preparó una solución de glóbulos rojos para añadir al bio chip poniendo en suspensión la muestra de sangre a un 1% de hematocrito en PBS-ASB. 450 1 de la solución de glóbulos rojos se pipetearon luego a través de una de las portillas de la cámara sobre las extensiones de bio chips. Se sellaron las portillas con los sellos para puertos proporcionados. Las extensiones se colocaron en una caja de extensiones y se mezclaron durante una hora a temperatura ambiente.

En este ejemplo, las muestras de sangre con RBC contenían células R₁r del grupo O sensibilizadas con anti-D 'K' (LHM169/80).

Se retiró la cámara y se sumergieron brevemente en PBS para eliminar el exceso de solución de destino. Esto fue seguido de dos lavados en PBS durante 10 minutos. Después del lavado final, las extensiones se centrifugaron a

ES 2 388 147 T3

sequedad y se almacenaron en un lugar oscuro sin polvo hasta la exploración. Los datos se obtuvieron como en el Ejemplo 5.

Los resultados obtenidos se muestran en la figura 2 de los dibujos. Las barras de colores diferentes demuestran el factor de dilución del anticuerpo sensibilizador. El anticuerpo utilizado en este ejemplo es LHM169/80, que es una IgG3. Los resultados demuestran unión específica tanto a anti-IgG3 (LG3A) como a la anti-IgG de conejo. Las sondas se manchan también a dos pH diferentes, demostrando que la alteración del pH del tampón de manchado puede ajustar la reactividad durante la incubación con muestras de la prueba. La dilución del anticuerpo sensibilizador es evidente en los datos. Sin embargo, cuando se sensibiliza con anti-D puro el S/R se reduce, debido probablemente a la sobrecarga en la muestra que produce el material al dejar la mancha. La S/R más alta se demuestra con anticuerpo sensibilizador a la dilución de 1 en 10.

Ejemplo 7 - Pruebas DAT de sangre utilizando bio chips de proteínas

Todos los protocolos fueron como se describió anteriormente. En este ejemplo, las muestras de sangre con RBC contenían células R₁ r del grupo O sensibilizadas con anti D 'H' (LHM77/64).

Los resultados obtenidos se muestran en la figura 3 de los dibujos. Las barras de colores diferentes demuestran el factor de dilución del anticuerpo sensibilizador. El anticuerpo utilizado en este ejemplo es LHM77/64, que es una IgG₁. Los resultados demuestran unión específica tanto a anti-IgG1(LG1A) como a anti-IgG de conejo, con casi ninguna unión a los anti-IgG₃. En este experimento, se utilizaron diferentes suspensiones para determinar si al alterar el hematocrito se altera la unión específica. En general el 1% de suspensión demuestra casi toda la consistencia. En este ejemplo, la unión de las células sensibilizadas está bloqueado para el anti D LHM77/64.

20 Referencias

Robb. J.S., Roy, D.J., Ghazal, P., Allan, J. y Petrik, J. (2006). "Development of non-agglutination bio chip blood grouping" *Transfusion Medicine*. 16, 119-129.

Campbell, C.J., O'Looney, N., Chong Kwan, M., Robb, J.S., Ross, A.J., Beattie, J.S., Petrik, J. y Ghazal, P. (2006). "Cell Interaction Microarray for Blood Phenotyping" *Analytical Chemistry*. 78, 1930-1938.

25

5

10

15

REIVINDICACIONES

- 1. Procedimiento de análisis de sangre para su utilización en la detección de una enfermedad en el que al menos un anticuerpo y/o factor de complemento característicos se unen a los glóbulos rojos del paciente, cuyo procedimiento que comprende las etapas consistentes en:
- proporcionar un bio chip en el que diversos agentes de unión que son capaces de unirse específicamente a diferentes anticuerpos o factores del complemento característicos están inmovilizados sobre un sustrato en posiciones diferenciadas predefinidas;
 - poner en contacto una muestra de sangre del paciente con dicho bio chip;

5

10

- eliminar algunos glóbulos rojos no unidos de al menos una zona de dicho sustrato en la que dichos agentes de unión están inmovilizados; y
- detectar la presencia de glóbulos rojos unidos mediante dichos anticuerpos característicos a dicho bio chip, a fin de determinar la presencia de cualquiera de dichos anticuerpos y/o factor de complemento característicos unido a los glóbulos rojos del paciente.
- 2. Procedimiento según la reivindicación anterior en el que el agente de unión es un anticuerpo monoclonal.
- 15 3. Procedimiento según la reivindicación 1 en el que el agente de unión es un anticuerpo policional.
 - 4. Procedimiento según la reivindicación 1 en el que el agente de unión es un anticuerpo quimérico.
 - 5. Procedimiento según la reivindicación 1 en el que el agente de unión es un anticuerpo monocatenario.
 - 6. Procedimiento según la reivindicación 1 en el que el agente de unión está seleccionado entre un anti-lgG₁ monoclonal, anti-lgG₃ monoclonal y anti-C3 monoclonal.
- 20 7. Procedimiento según la reivindicación 6 en el que se incluye agente de unión anti-IgG policlonal.
 - 8. Procedimiento según cualquiera de las reivindicaciones anteriores en el que al menos dos agentes de unión diferentes están inmovilizados en zonas diferenciadas del sustrato.
 - 9. Procedimiento según cualquiera de las reivindicaciones anteriores en la que cada agente de unión está proporcionado en un determinado número de diluciones diferentes.
- 25 10. Procedimiento según la reivindicación 9 en en el que cada agente de unión se repite un determinado número de veces a una dilución dada.
 - 11. Procedimiento según cualquiera de las reivindicaciones anteriores en el que el sustrato es de vidrio, silicio, óxido de silicio, metales y óxidos metálicos; ya sea sin polímero funcional o funcionalizado con el mismo.
 - 12. Procedimiento según reivindicación 11 en el que el sustrato es un sustrato recubierto de oro.
- 30 13. Procedimiento según la reivindicación 12 en en el que el oro está funcionalizado de manera que los agentes de unión pueden ser inmovilizados en el mismo.
 - 14. Procedimiento según la reivindicación 13, en el que la funcionalización es tal que puede controlarse la distancia entre la superficie de oro y un glóbulo rojo unido.
- 15. Procedimiento según cualquiera de las reivindicaciones anteriores, en el que el bio chip se forma sobre una superficie plana o esferoidal.
 - 16. Procedimiento según cualquiera de las reivindicaciones anteriores, en el que el sustrato es un soporte rígido o semirrígido incluyendo membranas, filtro, bio chips, portaobjetos, obleas, fibras, perlas magnéticas o no magnéticas, que les, tubuladura, placas, polímeros, micropartículas y capilares.
- 17. Procedimiento según cualquiera de las reivindicaciones anteriores, en el que el agente de unión está inmovilizado en puntos de menos de 1 mm de diámetro.
 - 18. Procedimiento según cualquiera de las reivindicaciones anteriores, en el cual el sustrato comprende una pluralidad de bio chips separados en el superficie del sustrato, dispuestos de manera que permita poner en contacto muestras separadas con cada biobio chip de tal manera de que las muestras no se mezclen.
- 19. Procedimiento según cualquiera de las reivindicaciones anteriores, en el que las zonas del sustrato no provistas
 45 de agente de unión se tratan con agentes de bloqueo a fin de minimizar cualquier unión no específica.
 - 20. Procedimiento según cualquiera de las reivindicaciones anteriores, en el que los glóbulos rojos unidos se detectan por detección secundaria por marcaje.

Figura 1

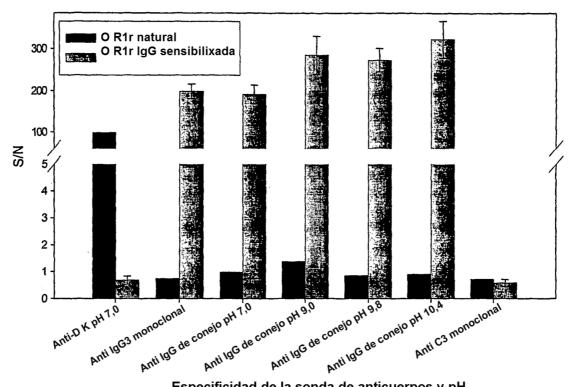


Figura 2

Una R1R2 sensibilizada con IgG3 anti-D (LHM 169/80)

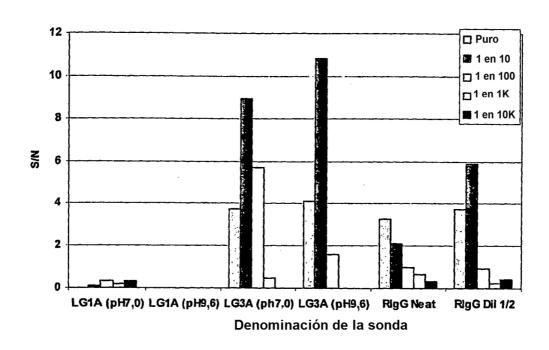
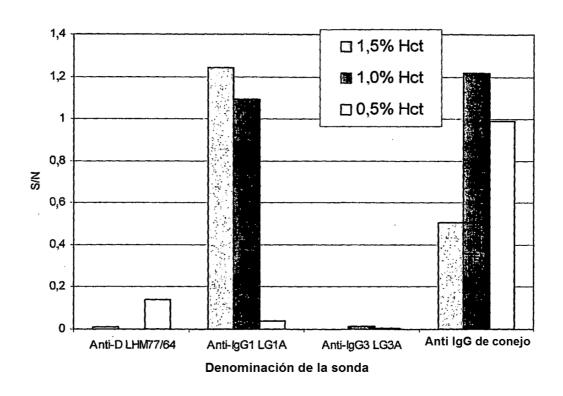



Figura 3

Células sensibilizadas con IgG1 anti-D (LHM77/64)

