

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 388 465

(2006.01)

(51) Int. CI.: C09B 67/22 (2006.01) C09D 11/00 (2006.01) C09B 62/20 (2006.01) C09B 62/36 (2006.01) C09B 62/44

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Número de solicitud europea: **06793926 .4**
- (96) Fecha de presentación: **29.09.2006**
- (97) Número de publicación de la solicitud: 1934293 (97) Fecha de publicación de la solicitud: **25.06.2008**
- (54) Título: Colorantes azo reactivos y mezclas de colorantes azo reactivos para fibras, su preparación y su uso
- (30) Prioridad: 05.10.2005 DE 102005047391

(73) Titular/es:

DyStar Colours Distribution GmbH Industriepark Höchst, Gebäude B 598 65926 Frankfurt am Main, DE

(45) Fecha de publicación de la mención BOPI: 15.10.2012

(72) Inventor/es:

EICHHORN, Joachim; MEIER, Stefan y **RUSS**, Werner

(45) Fecha de la publicación del folleto de la patente: 15.10.2012

(74) Agente/Representante:

Ungría López, Javier

ES 2 388 465 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Colorantes azo reactivos y mezclas de colorantes azo reactivos para fibras, su preparación y su uso

5 La invención se sitúa en el campo técnico de los colorantes azo reactivos para fibras.

Los colorantes azo reactivos para fibras mixtos y su uso para teñir un material que contiene hidroxilo y carboxamida en tonos de color negro se conocen, por ejemplo, a partir de los documentos US 5.445.654, US 5.611.821, KR 94-2560, Sho 58-160362, EP 0 870 807 A1 y WO2004/069937. Sin embargo, estas mezclas de colorantes poseen ciertos defectos de rendimiento, tales como una dependencia demasiado grande del rendimiento del color en parámetros de tintura variables en la operación de tintura, por ejemplo, o una intensidad inadecuada o desnivel del color sobre el algodón (una intensidad del color eficaz se produce gracias a la capacidad de un colorante para producir una tintura proporcionalmente más fuerte a partir de una concentración superior en el baño de tintura). Las consecuencias de estas deficiencias pueden incluir, por ejemplo, escasa reproducibilidad de las tinturas que pueden obtenerse, lo que afecta por último al ahorro en la operación de tintura. Como resultado de esto, aún existe la necesidad de nuevos colorantes reactivos y mezclas de colorantes reactivos que tengan mejores propiedades, tales como alta sustantividad en tándem con la capacidad de que las fracciones no fijadas puedan lavarse fácilmente y una baja predisposición de la tinción del tejido adyacente, particularmente el tejido adyacente de poliamida. Además, los colorantes y mezclas de colorantes deben mostrar buenos rendimientos de tintura y tener una alta reactividad, siendo una intención particular para producir tintes que tengan altos grados de fijación.

Los documentos WO-A-02/098.989 y WO-A-2005/080.508 describen mezclas de colorantes de colorantes A20 reactivos para fibras.

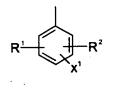
Con la presente invención, se han descubierto mezclas de colorantes que poseen en gran medida estas propiedades que se han descrito anteriormente. Las nuevas mezclas de colorantes son notables en particular para altos rendimientos de fijación y resistencia del color en combinación con fracciones no fijadas en la fibra que se lavan fácilmente, y con un bajo nivel de tinción de poliamida. Además, los tintes muestran buenas propiedades de solidez completa, tales como alta solidez del color a la luz y muy buenas propiedades solidez al frote en húmedo, por ejemplo.

Por consiguiente, la invención proporciona mezclas de colorantes que comprenden uno o más colorantes de fórmula (1),

35 uno o más colorantes de la fórmula (II)

10

15


20

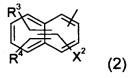
y opcionalmente uno o más colorantes de la fórmula (III)

y/o opcionalmente uno o más colorantes de la fórmula (IV)

$$\begin{bmatrix} O = S & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

en la que: D^1 , D^2 , D^3 , D^4 , D^5 , D^6 y D^7 son independientemente entre sí un grupo de la fórmula (1)

en la que

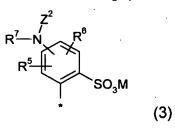

entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

(1)

es hidrógeno o un grupo de la fórmula -SO₂-Z, en la que es -CH=CH₂, -CH₂CH₂Z¹ o hidroxilo, en la que

es hidroxilo o un grupo que puede eliminarse por la acción de un álcali; o

D¹, D², D³, D⁴, D⁵, D⁶ y D⁷ son independientemente entre sí un grupo naftilo de la fórmula (2)



15 en la que

> independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

tiene una de las definiciones de X1; o 20

D¹, D², D³, D⁴, D⁵, D⁶ y D⁷ son independientemente entre sí un grupo de la fórmula (3)

25 independientemente entre sí tienen una de las definiciones de R^1 y R^2 ; es hidrógeno, alquilo (C_1 - C_4), o fenilo que está sin sustituir o sustituido con alquilo (C_1 - C_4), alcoxi (C_1 - C_4), sulfo, halógeno o carboxilo; y Z^2 es un grupo de la fórmula (4) ó (5) ó (6)

en las que

V es flúor o cloro;

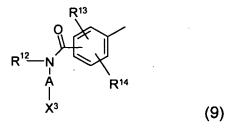
independientemente entre sí son flúor, cloro o hidrógeno; y

independientemente entre sí son cloro, flúor, cianamido, hidroxilo, alcoxi (C₁-C₆), fenoxi, sulfofenoxi, mercapto, alquilmercapto (C₁-C₆), piridino, carboxipiridino, carbamoilpiridino o un grupo de la fórmula (7) u (8)

$$-N_{W-SO_2Z}^{R^8}$$
 $-N_{R^{10}}^{R^9}$ (8)

10 en las que

20


R⁸ es hidrógeno o alquilo (C₁-C₆), sulfo-alquilo (C₁-C₆) o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido;

15 R^9 y R^{10} independientemente entre sí tienen una de las definiciones de R^8 , o forman un sistema de anillos cíclico de la fórmula -(CH₂)j- en la que j es 4 ó 5, o como alternativa -(CH₂)₂-E-(CH₂)₂-, en la que E es oxígeno, azufre, sulfonilo o -NR¹¹ con R¹¹ = alquilo (C₁-C₆);

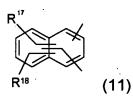
es fenileno que está sin sustituir o sustituido con 1 ó 2 sustituyentes, tales como alquilo (C₁-C₄), alcoxi (C₁-C₄), carboxilo, sulfo, cloro o bromo, o es alquileno (C₁-C₄)-arileno o alquileno (C₂-C₆) que está interrumpido con oxígeno, azufre, sulfonilo, amino, carbonilo o carboxamido, o es fenileno-CONH-fenileno que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, amido, ureido o halógeno, o es naftileno que está sin sustituir o sustituido con uno o dos grupos sulfo; y

25 Z es como se ha definido anteriormente; o

D¹, D², D³, D⁴, D⁵, D⁶ y D⁷ son independientemente entre sí un grupo de la fórmula (9)

en la que

30


R¹² es hidrógeno, alquilo (C₁-C₄), arilo o un radical arilo sustituido;

R¹³ y R¹⁴ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

A es un grupo fenileno de la fórmula (10)

35 en la que

R¹⁵ y R¹⁶ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o es un grupo naftileno de la fórmula (11)

5 en la que

en la que

R¹⁷ y R¹⁸ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o

A es un grupo polimetileno de la fórmula (12)

10 $-(CR^{19}R^{20})k-$ (12)

15 k es un número entero mayor de 1; y

R¹⁹ y R²⁰ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, ciano, amido, halógeno o arilo; y

20 X³ tiene una de las definiciones de X¹; y

R⁰ es un grupo de la fórmula (4) ó (5) o es un grupo de la fórmula (13)

$$\stackrel{\mathsf{O}}{\not\longrightarrow}_{\mathsf{R}^{21}}$$
(13)

en la que

25 p²

es alquilo (C_1-C_6) , sulfo-alquilo (C_1-C_6) , carboxi-alquilo (C_1-C_6) o fenilo que está sin sustituir o sustituido con alquilo (C_1-C_4) , alcoxi (C_1-C_4) , sulfo, halógeno, carboxilo, acetamido o ureido;

G es C-R²⁰⁰ o N, en la que

30 R²⁰⁰

35

es hidrógeno, alquilo C_1 - C_6 , que está sin sustituir o sustituido con amino, alquilamino (C_1 - C_4), hidroxilo, alcoxi (C_1 - C_4), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C_1 - C_4), alcoxi (C_1 - C_4), sulfo, halógeno, carboxilo, acetamido o ureido, o es carboxilo, ciano o halógeno, o es un grupo de la fórmula (100);

-N=N-D⁸ (100

en la que D⁸ tiene una de las definiciones de D¹ o es un grupo de la fórmula (101)

$$\begin{array}{c|c}
R^{02} & & \\
& & \\
D^{01} & N & \\
& & \\
R^{01} & \\
\end{array}$$
(101)

40 en la que D⁰¹ tiene una de las definiciones de D¹;

R⁰¹ y R⁰² independientemente entre sí son hidrógeno, alquilo C₁-C₆, amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), acetamido, ureido, sulfo o carboxilo;

5

10

15

20

25

30

35

40

 $^{\rm X}_{\rm R^{201}} \, {\rm y} \, {\rm R^{202}}$ independientemente entre sí son amino, hidroxilo, alquilamino (C₁-C₄), alcoxi (C₁-C₄) o mercapto; o uno de los radicales R²⁰¹ y R²⁰² es hidrógeno y el otro tiene una de las definiciones que se han mencionado anteriormente:

 R^{203} es hidrógeno, alquilo C₁-C₆, que está sin sustituir o sustituido con amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es amino, alquilamino (C_1 - C_4), hidroxilo, alcoxi (C_1 - C_4), sulfo, carboxilo, ciano, halógeno, nitro, amido o

independientemente entre sí son 0 ó 1; b, fyv

R* y R** independientemente entre sí son hidrógeno, alquilo (C₁-C₄) o un grupo de la fórmula (14)

-CH₂-SO₃M (14);

Т es hidroxilo o NH2, y si T es NH2 v es 0; y es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo; Μ

donde los colorantes de las fórmulas (I) a (IV) contienen al menos un grupo reactivo para fibras de la fórmula -SO2-Z o - Z^2 ; y donde se excluyen las mezclas que comprenden colorantes en los que R^{201} y R^{202} son ambos amino, R^{203} es carboxi, R^{203} es un radical de fórmula

colorantes en los que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es C- R^{200} y R^{200} es hidrógeno y D^6 y D^7 son ambos un radical de la fórmula (1-2) o uno de los radicales D^6 y D^7 es un radical de la fórmula (1-1) y el otro es un ambos un radical de la formula (1-2) o uno de los radicales D y D es un radical de la formula (1-2); o el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es $C-R^{200}$ y R^{200} es hidrógeno y los radicales D^6 y D^7 son ambos un radical de la fórmula (1-6); o el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es $C-R^{200}$ y R^{200} es hidrógeno y uno de los radicales D^6 y D^7 es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-6); o el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es $C-R^{200}$ y R^{200} es hidrógeno y uno de los radicales D^6 y D^7 es un radical de la fórmula (1-7) y el otro es un radical de la fórmula (1-8); o el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es hidrógeno, G es $C-R^{200}$ y R^{200} es hidrógeno y D^6 y D^7 son ambos un radical de la fórmula (1-1)

son ambos un radical de la fórmula (1-1)

En las fórmulas generales anteriores y a continuación, los miembros de la fórmula individual, tanto de diferente como de idéntica designación, pueden tener definiciones que son las mismas que o diferentes a los demás en los límites de su definición.

ES 2 388 465 T3

Los grupos alquilo (C_1-C_4) pueden ser de cadena lineal o ramificada y son en particular metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo y terc-butilo. Se prefieren metilo y etilo. Se emplean comentarios similares para los grupos alcoxi (C_1-C_4) .

Los grupos arilo son en particular el grupo fenilo. Un grupo arilo sustituido R⁸ a R¹⁰, R¹² o R²¹ es en particular un grupo fenilo sustituido con uno, dos o tres grupos independientes de la serie alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, amido o halógeno.

Halógeno es en particular flúor, cloro y bromo, dando preferencia a flúor y cloro.

10

25

30

35

50

55

60

Los sustituyentes álcali-eliminables Z^1 en la posición β del grupo etilo de Z son, por ejemplo, átomos de halógeno, tales como cloro y bromo, grupos éster de ácidos carboxílicos y sulfónicos orgánicos, tales como ácidos alquilcarboxílicos, ácidos bencenocarboxílicos sin sustituir o sustituidos y ácidos bencenosulfónicos sin sustituir o sustituidos, tales como los grupos alcanoiloxi de 2 a 5 átomos de carbono, más particularmente acetiloxi, benzoiloxi, sulfobenzoiloxi, fenilsulfoniloxi y tolilsulfoniloxi, y adicionalmente grupos de ésteres de ácidos inorgánicos, tales como de ácido fosfórico, ácido sulfúrico y ácido tiosulfúrico (grupos fosfato, sulfato y tiosulfato), y también grupos dialquilamino que tienen grupos alquilo, cada uno de 1 a 4 átomos de carbono, tales como dimetilamino y dietilamino.

Z es preferiblemente vinilo o β -cloroetilo y con particular preferencia es β -sulfatoetilo.

Los grupos "sulfo", "carboxilo", "tiosulfato", "fosfato" y "sulfato" incluyen no sólo su forma ácida, sino también su forma de sal. Por consiguiente, los grupos sulfo son grupos de la fórmula -SO₃M, los grupos tiosulfato son grupos de la fórmula -COOM, los grupos fosfato son grupos de la fórmula -OPO₃M₂, y los grupos sulfato son grupos de la fórmula -OSO₃M, cada uno con M en la definición que se ha mencionado anteriormente.

En la definición de Z, los colorantes de la fórmula (I) a (IV) pueden poseer diferentes grupos reactivos para fibras - SO₂Z. En particular, los grupos reactivos para fibras -SO₂Z pueden ser, por un lado, grupos vinilsulfonilo y, por el otro, los demás grupos -CH₂CH₂Z¹, preferiblemente grupos β-sulfatoetilsulfonilo. Cuando los colorantes de la fórmula (I) a (IV) contienen en parte grupos vinilsulfonilo, la fracción del colorante respectivo con el grupo vinilsulfonilo es de hasta aproximadamente el 30% en mol, en base a la cantidad respectiva del colorante total.

El metal alcalino M es, en particular, litio, sodio y potasio. Preferiblemente, M es hidrógeno o sodio.

En la fórmula (II), si G representa C-R²⁰⁰, el radical R²⁰⁰ es preferiblemente hidrógeno, metilo, carboxilo o es un radical de la fórmula (100), dando preferencia particular a hidrógeno y un radical de la fórmula (100) en la que D⁸ tiene una de las definiciones de D¹.

40 El radical R²⁰³ es preferiblemente hidrógeno, metilo, hidroximetilo, amino, hidroxilo, metoxi, sulfo o carboxilo, dando preferencia particular a hidrógeno, hidroxilo o carboxilo.

Los radicales R²⁰¹ y R²⁰² independientemente entre sí son preferiblemente amino y hidroxilo, más preferiblemente amino. Preferiblemente, además, ninguno de los radicales R²⁰¹ y R²⁰² es hidrógeno. Aún preferiblemente, los radicales R²⁰¹ y R²⁰² no son ninguno hidroxi. En una realización de la presente invención, en el caso R²⁰¹ y R²⁰² son ambos amino, R²⁰³ no es preferiblemente carboxi y especialmente no es preferiblemente carboxi si además G representa C-R²⁰⁰ y R²⁰⁰ es un radical de la fórmula (100) o si además G representa C-R²⁰⁰ y R²⁰⁰ es hidrógeno y D⁶ y D⁷ se representan ambos un grupo de la fórmula (1), (2) ó (3) que contiene un grupo reactivo para fibras de la fórmula -SO₂-Z o -Z².

En una realización más de la presente invención, en el caso de R^{201} y R^{202} son ambos amino y G representa C- R^{200} y R^{200} es hidrógeno, R^{203} no es preferiblemente hidrógeno y especialmente no es preferiblemente hidrógeno si además D^6 y D^7 representan ambos un grupo de la fórmula (1), que contiene un grupo reactivo para fibras de la fórmula -SO₂-Z.

Los radicales R* y R** en la formula (III) son, independientemente entre sí, preferiblemente hidrógeno, metil o un grupo de la fórmula (14), dando preferencia particular a hidrógeno o un grupo de la fórmula (14).

Los radicales R¹ a R⁶, R¹³, R¹⁴, R¹⁷ y R¹⁸ son preferiblemente distintos de nitro.

Los radicales R^1 y R^2 son preferiblemente hidrógeno, grupos alquilo (C_1 - C_4), grupos alcoxi (C_1 - C_4), sulfo o carboxilo y más preferiblemente hidrógeno, metilo, metoxi o sulfo. Los radicales R^3 a R^6 y R^{12} a R^{20} son preferiblemente hidrógeno, y además R^3 a R^6 , R^{17} y R^{18} son preferiblemente sulfo.

65 Los radicales R⁷ a R¹⁰ son preferiblemente hidrógeno o metilo, R⁷ y R⁸ son también preferiblemente fenilo, y R⁹ y R¹⁰ son preferiblemente 2-sulfoetilo o 2-, 3- o 4-sulfofenilo, o R⁹ y R¹⁰ forman un sistema de anillos cíclico que

corresponde preferiblemente a la fórmula

-(CH₂)₂-O-(CH₂)₂-.

Ejemplos de grupos D¹ a D² de la fórmula (1) y (2) son 2-(β-sulfatoetilsulfonil)-fenilo, 3-(β-sulfatoetil-sulfonil)fenilo, 4-(β-sulfatoetilsulfonil)fenilo, 2-carboxi-5-(β-sulfatoetilsulfonil)fenilo, 2-cloro-4-(β-sulfatoetilsulfonil)fenilo, 2-sulfo-5-(β-sulfatoetilsulfonil)fenilo, 2-sulfo-5-(β-sulfatoetilsulfonil)fenilo, 2-sulfo-5-(β-sulfatoetilsulfonil)fenilo, 2-metoxi-5-(β-sulfatoetilsulfonil)fenilo, 2-metoxi-5-(β-sulfatoetilsulfonil)fenilo, 2-metil-4-(β-sulfatoetilsulfonil)fenilo, 2-metil-4-(β-sulfatoetilsulfonil)fenilo, 2-metil-4-(β-sulfatoetilsulfonil)fenilo, 2- ó 3- ó 4-vinilsulfonil-fenilo, 2-sulfo-4-vinilsulfonilfenilo, 2-cloro-4-(β-cloroetilsulfonil)fenilo, 2-cloro-5-(β-cloroetilsulfonil)fenilo, 3- ó 4-(β-acetoxietilsulfonil)fenilo, 6- ó 8-(β-sulfatoetilsulfonil)naft-2-ilo, 6-(β-sulfatoetilsulfonil)-1-sulfonaft-2-ilo y 8-(β-sulfatoetilsulfonil)fenilo, 2-sulfo-4-(β-sulfatoetilsulfonil)fenilo, 2-sulfo-4-(β-sulfatoetilsulfonil)fenilo, 2-sulfonil)fenilo, 2-sulfonilo, 2-sulf

Cuando D¹ a D⁸ son un grupo de la fórmula (1) y X¹ es -SO₂Z, el grupo SO₂Z se sitúa preferiblemente en la posición meta o para con respecto al grupo diazo, y cuando cada uno de D¹ a D⁸ es un grupo de la fórmula (2), el enlace que conduce al grupo diazo se fija preferiblemente en la posición β en el núcleo naftaleno.

Cuando A es fenileno y X^3 es $-SO_2Z$, el grupo SO_2Z se sitúa preferiblemente en la posición meta o para con respecto al átomo de nitrógeno. En el grupo de la fórmula (9) el grupo carboxamida se sitúa preferiblemente en la posición para o meta con respecto al grupo diazo. Cuando A es naftileno, el enlace que conduce al átomo de nitrógeno se fija preferiblemente en la posición β en el núcleo naftaleno.

Ejemplos de sustituyentes A son, en particular, 1,2-fenileno, 1,3-fenileno, 1,4-fenileno, 2-cloro-1,5-fenileno, 2-bromo-1,4-fenileno, 2-sulfo-1,4-fenileno, 2-sulfo-1,5-fenileno, 2-metoxi-1,5-fenileno, 2-metoxi-1,5-fenileno, 2-metoxi-1,4-fenileno, 2-metoxi-1,5-fenileno, 2-metoxi-1,4-fenileno, 2-metoxi-1,5-fenileno, 2-met

Más preferiblemente, A es 1,3-fenileno, 1,4-fenileno, 2-sulfo-1,4-fenileno, 2-metoxi-1,5-fenileno, 2,5-dimetoxi-1,4-fenileno, 2-metoxi-5-metil-1,4-fenileno o 1,2-etileno y 1,3-propileno, y en el caso de los dos grupos alquileno que se han mencionado en último lugar, el radical R¹² es preferiblemente fenilo y 2-sulfofenilo.

k es preferiblemente 2 ó 3,

25

30

35

40

65

W es preferiblemente 1,3-fenileno, 1,4-fenileno, 2-sulfo-1,4-fenileno, 2-metoxi-1,5-fenileno, 2,5-dimetoxi-1,4-fenileno, 2-metoxi-5-metil-1,4-fenileno, 1,2-etileno o 1,3-propileno.

Ejemplos de los grupos Q¹ y Q² en la fórmula (5) son, independientemente entre sí, flúor, cloro, hidroxilo, metoxi, etoxi, fenoxi, 3-sulfofenoxi, 4-sulfofenoxi, metilmercapto, cianamido, amino, metilamino, etilamino, morfolino, piperidino, fenilamino, metilfenilamino, 2-sulfofenilamino, 3-sulfofenilamino, 4-sulfofenilamino, 2,4-disulfofenilamino, 2,5-disulfofenilamino, 2-sulfoetilamino, N-metil-2-sulfoetilamino, piridino, 3-carboxipiridino, 4-carboxipiridino, 3carbamoilpiridino, 4-carbamoilpiridino, 2-(2-sulfatoetilsulfonil)fenilamino, 3-(2-sulfatoetilsulfonil)fenilamino, 4-(2-sulfatoetilsulfonil)fenilamino, 4-(2-sulfatoetilsulfonilamino)fenilamino, 4-(2-sulfatoetil 45 N-etil-3-(2-sulfatoetilsulfonil)fenilamino, N-etil-4-(2-sulfatoetilsulfonil)fenilamino, sulfatoetilsulfonil)fenilamino. carboxi-5-(2-sulfatoetilsulfonil)fenilamino), 2-cloro-4-(2-sulfatoetilsulfonil)fenilamino, 2-cloro-5-(2-sulfatoetilsulfonil) 2-bromo-4-(2-sulfa-toetilsulfonil)fenilamino, fenilamino. 2-sulfo-4-(2-sulfatoetilsulfonil)fenilamino, 2-metoxi-5-(2-sulfatoetilsulfonil)fenilamino. sulfatoetilsulfonil)fenilamino. 2.5-dimetoxi-4-(2-sulfatoetilsulfonil)-2-metil-4-(2-sulfatoetilsulfonil)fenilamino, 50 2-metoxi-5-metil-4-(2-sulfatoetilsulfonil)fenilamino,

fenilamino, 2-metoxi-5-metil-4-(2-sulfatoetilsulfonil)fenilamino, 2-metil-4-(2-sulfatoetilsulfonil)fenilamino, 2- (vinilsulfonil)fenilamino, 3-(vinilsulfonil)-fenilamino, 4-(vinilsulfonil)fenilamino, N-etil-3-(vinilsulfonil)fenilamino, N-etil-4- (vinilsulfonil)fenilamino, 6-(2-sulfatoetilsulfonil)naft-2-ilamino, 8-(2-sulfatoetilsulfonil)-6-sulfonaft-2-ilamino, 3-(2-(2-sulfatoetilsulfonil)etilcarbamoil)fenilamino, 4-(2-(2-sulfatoetilsulfonil)etilcarbamoil)fenilamino, 3-(2-(vinilsulfonil)etilcarbamoil)fenilamino, 4-(2-(2-sulfatoetilsulfonil)etilcarbamoil)fenilamino, 4-(2-(2-sulfatoetilsulfonil)etilcarbamoil

vinilsulfonil)etilcarbamoil)fenilamino, 4-(N-metil-2-(2-sulfatoetilsulfonil)etilcarbamoil)fenilamino, 4-(N-fenil-2-(2-55 sulfatoetilsulfonil)-etilcarbamoil)fenilamino, 4-(3-(2-sulfatoetilsulfonil)fenilcarbamoil)fenilamino, 4-(4-(2sulfatoetilsulfonil)fenilcarbamoil)fenilamino, 3-(3-(2-sulfatoetilsulfonil)fenilcarbamoil) fenilamino, 3-(4-(2-3-(2-sulfatoetilsulfonil)propilamino, sulfatoetilsulfonil)fenilcarbamoil)fenilamino, N-metil-N-(2-(2sulfatoetilsulfonil)etil)amino. N-fenil-N-(2-(2-sulfatoetilsulfonil)etil)amino N-fenil-N-(2-(2-60 sulfatoetilsulfonil)propil)amino.

sulfatoetilsulfonil)fenilcarbamoil)fenilamino, 4-(4-(2-sulfatoetilsulfonil)fenilcarbamoil)fenilamino, 3-(3-(2-sulfatoetilsulfonil)fenilcarbamoil)fenilamino, N-metil-N-(2-(2-sulfatoetilsulfonil)fenilcarbamoil)fenilamino, N-metil-N-(2-(2-sulfatoetilsulfonil)etil)amino o N-fenil-N-(2-(2-sulfatoetilsulfonil)etil)amino.

- Más preferiblemente, los grupos Q¹ y Q² en la fórmula (5) independientemente entre sí son flúor, cloro, cianamido, morfolino, 2-sulfofenilamino, 3-sulfofenilamino, 4-sulfofenilamino, 3-(2-sulfatoetilsulfonil)fenilamino, 4-(2-sulfatoetilsulfonil)fenilamino, 3-(vinilsulfonil)fenilamino, 4-(vinilsulfonil)-fenilamino), N-metil-N-(2-(2-sulfatoetilsulfonil)etil)amino o N-fenil-N-(2-(2-sulfatoetilsulfonil)etil)amino.
- Ejemplos del grupo Z² son 2,4-difluoropirimidin-6-ilo, 4,6-difluoropirimidin-2-ilo, 5-cloro-2,4-difluoropirimidin-6-ilo, 5-cloro-4,6-difluoropirimidin-2-ilo, 4,5-difluoropirimidin-6-ilo, 5-cloro-4-fluoropirimidin-6-ilo, 2,4,5-tricloropirimidin-6-ilo, 4,5-dicloropirimidin-6-ilo, 2,4-dicloropirimidin-6-ilo, 4-cloro-pirimidin-6-ilo, o un grupo de la fórmula (5) que tiene los ejemplos que se han indicado anteriormente de Q¹ y Q², o un grupo de la fórmula (6).
- Preferiblemente, Z² es 2,4-difluoropirimidin-6-ilo, 4,6-difluoropirimidin-2-ilo, 5-cloro-2,4-difluoropirimidin-6-ilo, 5-cloro-4,6-difluoropirimidin-2-ilo o un grupo de la fórmula (5) que tiene los grupos preferidos que se han indicado anteriormente Q¹ y Q².
- Más preferiblemente, Z^2 es 2,4-difluoropirimidin-6-ilo, 5-cloro-2,4-difluoropirimidin-6-ilo o un grupo de la fórmula (5) que tiene los grupos preferidos que se han indicado anteriormente Q^1 y Q^2 .

En la fórmula (IV), T es preferiblemente hidroxilo o amino, fijado en la posición α en el núcleo naftaleno, dando preferencia particular a hidroxilo.

25 b y v son preferiblemente 1 y f es 0.

R⁰ es más preferiblemente acetilo, 2,4-dicloro-1,3,5-triazin-6-ilo o 2,4-difluoropirimidin-6-ilo.

Las mezclas de colorantes preferidas comprenden al menos un colorante de la fórmula (I)

$$D^{1} - N = N$$

$$O = S$$

$$MO O$$

$$O O$$

y al menos un colorante de la fórmula (II)

30

35

en la que D^1 , D^2 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} y M son como se han definido anteriormente, pero no colorantes de la fórmula (III) y (IV).

Las mezclas de colorantes preferidas adicionalmente comprenden al menos un colorante de la fórmula (I)

al menos un colorante de la fórmula (II)

y al menos un colorante de la fórmula (III-a)

en la que D^1 , D^2 , D^3 , D^4 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} , R^* y M son como se han definido anteriormente.

Las mezclas preferidas son adicionalmente aquellas que comprenden uno o más colorantes de la fórmula (I)

$$D^{1} - N = N$$

$$O = N$$

$$O = N$$

$$MO = N$$

$$O =$$

uno o más colorantes de la fórmula (II)

$$\begin{array}{c|c}
D^{6} & & & & & \\
N & & & & & & \\
N & & & & & & \\
R^{201} & & & & & & \\
R^{202} & & & & & & \\
\end{array}$$
(II)

10 y uno o más colorantes de la fórmula (IV-a)

en la que D^1 , D^2 , D^5 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} , R^* , f y M son como se han definido anteriormente.

Las mezclas de colorantes adicionalmente preferidas comprenden uno o más colorantes de la fórmula (I)

$$D^{1} - N = N$$

$$O =$$

uno o más, tales como dos o tres, preferiblemente 1 ó 2, colorantes de la fórmula (II)

$$\begin{array}{c|c}
D^{6} & R^{203} & D^{7} \\
 & R^{201} & G & R^{202}
\end{array}$$
(II)

y uno o más, tales como dos o tres, preferiblemente 1 ó 2, colorantes de la fórmula (III-b)

en la que D^1 , D^2 , D^3 , D^4 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} y M son como se han definido anteriormente.

Con preferencia particular, D^1 , D^2 , D^3 , D^4 , D^6 y D^7 independientemente entre sí son 3-(β -sulfatoetilsulfonil)fenilo, 4-(β -sulfatoetilsulfonil)fenilo, 2-sulfatoetilsulfonil)fenilo, 2-metoxi-5-(β -sulfatoetilsulfonil) fenilo, 2-sulfatoetilsulfonil)fenilo, 3- ó 4-vinilsulfonilfenilo, 2-sulfatoetilsulfonil)fenilo, 2-sulfatoetilsulfonilo, 2-sulfatoetilsulfonilo, 3- ó 4-vinilsulfonilo, 2-sulfatoetilsulfonilo, 3- ó 4-vinilsulfonilo, 3- ó

Las mezclas de colorantes reactivos particularmente preferidas de la invención comprenden al menos un colorante de la fórmula (I-a)

y al menos un colorante de la fórmula (II-a)

5

10

15

$$ZO_2S$$
 R^{105} R^{107} R^{107} R^{108} R^{108} (II-a)

y opcionalmente un colorante de la fórmula (III-c)

en la que

5

20

R¹⁰¹ a R¹¹² independientemente entre sí son hidrógeno, alquilo C₁-C₄, alcoxi C₁-C₄-, sulfo, carboxilo o halógeno;

R²⁰¹ y R²⁰² independientemente entre sí son amino o hidroxilo;

Z es vinilo, β-sulfatoetilo o hidroxilo; y

10 M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo.

Además, las mezclas de colorantes adicionales particularmente preferidas son aquellas que comprenden al menos un colorante de la fórmula (I-a),

15 y al menos un colorante de la fórmula (II-b)

y opcionalmente un colorante de la fórmula (III-c), en la que

R¹⁰¹ a R¹¹⁰ independientemente entre sí son hidrógeno, alquilo C₁-C₄, alcoxi C₁-C₄, sulfo, carboxilo o halógeno;

R²⁰¹ y R²⁰² independientemente entre sí son amino o hidroxilo;

R²⁰³ es hidrógeno, amino o hidroxilo;

- Z es vinilo, β-sulfatoetilo o hidroxilo; y
- M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo.
- 5 Las mezclas de colorantes particularmente preferidas son adicionalmente aquellas que comprenden al menos un colorante de la fórmula (I-a),

y al menos un colorante de la fórmula (II-c)

10 en la que

15

 R^{101} a R^{108} independientemente entre sí son hidrógeno, alquilo C_1 - C_4 , alcoxi C_1 - C_4 , sulfo, carboxilo o halógeno;

 R^{203} , R^{300} y R^{301} independientemente entre sí son hidrógeno, alquilo (C_1 - C_4), alquilo o arilo (C_1 - C_4) sustituido con

hidroxilo, alcoxi, amino, alquilamino, sulfo, sulfato o carboxilo;

Z es vinilo, β-sulfatoetilo o hidroxilo; y
M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo.

Las mezclas de colorantes de la invención contienen preferiblemente al menos un colorante de la fórmula (I) en una cantidad del 30% al 95% en peso, más preferiblemente del 50% al 90% en peso, al menos un colorante de la fórmula (II) en una cantidad del 70% al 5% en peso, más preferiblemente del 50% al 10% en peso, y colorantes de la fórmula (III) y (IV) independientemente entre sí preferiblemente en cada caso en una cantidad del 0 al 65% en peso, más preferiblemente del 5% al 40% en peso.

Así como los colorantes de las fórmulas (I) a (IV), las mezclas de colorantes de la invención pueden comprender uno o más colorantes monoazo de las fórmulas (15) a (18) en una cantidad de hasta el 10% en peso, preferiblemente hasta el 5% en peso,

$$MO_3S$$
 NH_2
 NH_2
 NH_2
 NH_3
 NH_4
 NH_5
 NH_5
 NH_5
 NH_6
 NH_6
 NH_6
 NH_6
 NH_7
 NH_7
 NH_8
 NH_8

donde D^2 , D^3 , M, R* y R** son como se han definido anteriormente.

Preferiblemente, D² y D³ independientemente entre sí son 3-(β-sulfatoetilsulfonil)-fenilo, 4-(β-sulfatoetilsulfonil)fenilo, 2-sulfo-4-(β-sulfatoetilsulfonil)fenilo, 2-metoxi-5-(β-sulfatoetilsulfonil)fenilo, 2-metoxi-4-(β-sulfatoetilsulfonil)fenilo, 2-metoxi-5-metil-4-(γ-sulfatoetilsulfonil)fenilo, 3- ó 4-vinilsulfonilfenilo, 2-sulfo-4-(vinilsulfonil)fenilo, 2-metoxi-5-(vinilsulfonil)fenilo, 2,5-dimetoxi-4-(vinilsulfonil)fenilo o 2-metoxi-5-metil-4-(vinilsulfonil)fenilo.

Además, las mezclas de colorantes de la invención también pueden incluir uno o más colorantes adicionales como co-componentes adicionales y/o como componentes de sombreado. Los ejemplos incluyen los colorantes de las fórmulas (Ga)-(Gf)

en las que

 D^9 , D^{10} , D^{11} , D^{12} , D^{13} y D^{14}

tienen una de las definiciones de D^1 , y D^9 , si R^{31} no es un grupo de la fórmula (4) ó (5), y también D^{10} o D^{11} y D^{13} contienen al menos un grupo reactivo para fibras de la fórmula -SO₂Z o Z^2 ;

 R^{31}

5

10

es hidrógeno, acetilo, carbamoílo o sulfometilo o es un grupo de la fórmula (4-1) ó (5-1),

$$V^{1}$$
 V^{1}
 V^{1

en las que

es flúor o cloro:

independientemente entre sí son flúor, cloro o hidrógeno;

independientemente entre sí son cloro, flúor, cianamido, hidroxilo, alcoxi (C₁-C₆), fenoxi, sulfofenoxi, mercapto, alquilmercapto (C₁-C₆), piridino, carboxipiridino, carbamoilpiridino o un grupo de la fórmula (7-1) u (8-1)

$$-N_{W^{1}-SO_{2}Z}^{R^{81}}$$
 $-N_{R^{100}}^{R^{91}}$ (8-1)

en las que

 R^{81}

20

es hidrógeno, alquilo (C₁-C₆), sulfo-alquilo (C₁-C₆) o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido;

 $R^{91} y R^{100}$ 25

independientemente entre sí tienen una de las definiciones de R^{81} o forman un sistema de anillos cíclico de la fórmula -(CH_2)j-, en la que j es 4 ó 5, o -(CH_2)₂-E-(CH_2)₂-, en la que E es oxígeno, azufre, sulfonilo o -NR¹¹ y R¹¹ es alquilo (C_1 - C_6);

 W^1

30

es fenileno; fenileno sustituido con 1 ó 2 sustituyentes, tales como alquilo (C₁-C₄), alcoxi (C₁-C₄), carboxilo, sulfo, cloro o bromo; alquileno (C₁-C₄)arileno; alquileno (C₂-C₆); alquileno (C₂-C₆) que está interrumpido con oxígeno, azufre, sulfonilo, amino, carbonilo o carboxamido; fenileno-CONH-fenileno; fenileno-CONH-fenileno sustituido con alquilo (C1-C4), alcoxi (C1-C4), hidroxilo, sulfo, carboxilo, amido, ureido o halógeno; naftileno; o naftileno sustituido con uno o dos grupos sulfo;

Ζ es como se ha definido anteriormente, y

35

es hidrógeno o sulfometilo;

es metilo, carboxilo o carboxi-alquilo (C₁-C₄);

 R^{34} 40

es hidrógeno o metilo;

 R^{35}

es hidrógeno, ciano, carbamoílo, carboxilo o sulfometilo;

 R^{36}

es metilo, etilo o β-sulfoetilo;

es metilo, carboxilo o carboxi-alquilo (C₁-C₄);

 ${\rm R}^{\rm 38}$

 R^{37}

es acetamido, ureido o metilo;

 R^{39} 50

es hidrógeno, metilo o metoxi;

 Z^3

tiene una de las definiciones de Z2; y

M y Z tienen una de las definiciones que se han mencionado anteriormente.

Las mezclas de colorantes de la invención pueden prepararse mediante métodos que son convencionales *per se* y se conocen por los expertos.

Un método de preparación preferido comprende mezclar mecánicamente los colorantes individuales de las fórmulas (I) y (II), y además, si se desea, de las fórmulas (III), (IV), (15) a (18), y (Ga) a (Gf) en la proporción de mezcla deseada.

Estos colorantes pueden usarse en forma de polvos de colorante o gránulos de colorante, de soluciones de síntesis o de soluciones acuosas en general, que pueden incluir adicionalmente auxiliares típicos.

En otro método de preparación preferido para mezclas de colorantes de la invención, se hacen reaccionar mezclas de componentes diazo adecuadas y componentes de acoplamiento en las proporciones deseadas en reacciones de diazotización y acoplamiento conocidas por el experto.

Los colorantes de la fórmula (I) se describen en mayor número en la bibliografía y se conocen, por ejemplo, a partir de los documentos US 2.657.205, JP Sho-58-160 362, y también a partir del documento US 4.257.770 y las referencias proporcionadas en el mismo.

Los colorantes de la fórmula (III) se describen por ejemplo en los documentos JP 8060017 y DE 196 00 765 A1.

Los colorantes de la fórmula (IV) se describen asimismo en mayor número y están disponibles a través de métodos de síntesis convencionales.

Los colorantes de las fórmulas (15) a (18) se forman en algunos casos durante la síntesis de colorantes de la fórmula (I) y (III), y están disponibles asimismo a través de métodos de síntesis convencionales.

Los colorantes de la fórmula (Ga)-(Gf) se conocen a partir de la bibliografía y están disponibles mediante procesos convencionales.

Los colorantes similares a los colorantes de la fórmula (II) se conocen a partir de los documentos EP 1 035 171 A1, WO 2004/069937 y EP 1 669 415 A1. Sin embargo, los propios colorantes de la fórmula (II) son nuevos y se proporcionan asimismo en la presente memoria descriptiva. Por consiguiente, la presente memoria descriptiva proporciona los colorantes de la fórmula (II)

$$\begin{array}{c|c}
D^{6} & & & & \\
N & & & & \\
N & & & & \\
R^{201} & & & & \\
R^{202} & & & & \\
\end{array}$$
(II)

en la que

5

15

20

25

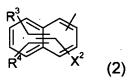
35

D⁶ y D⁷ independientemente entre sí son un grupo de la fórmula (1)

$$R^{\frac{1}{2}}$$
 R^2 (1)

40 en la que

50


R¹ y R² independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno;

45 X¹ es hidrógeno o un grupo de la fórmula -SO₂-Z, en la que

Z es -CH=CH₂, -CH₂CH₂Z¹ o hidroxilo, en la que

z¹ es hidroxilo o un grupo que puede eliminarse por la acción de un álcali; o

D⁶ y D⁷ independientemente entre sí son un grupo naftilo de la fórmula (2)

en la que

5

R³ y R⁴ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

X² tiene una de las definiciones de X¹; o

D⁶ y D⁷ independientemente entre sí son un grupo de la fórmula (3)

$$R^7 - N$$
 R^5
 R^5
 SO_3M
(3)

10 en la que

R⁵ y R⁶ independientemente entre sí tienen una de las definiciones de R¹ y R²;

15 R^7 es hidrógeno, alquilo (C₁-C₄), o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno o carboxilo; y

Z² es un grupo de la fórmula (4) ó (5) ó (6)

20 en las que

V es flúor o cloro;

J¹ y U² independientemente entre sí son flúor, cloro o hidrógeno;

Q¹ y Q² independientemente entre sí son cloro, flúor, cianamido, hidroxilo, alcoxi (C₁-C₆), fenoxi, sulfofenoxi, mercapto, alquilmercapto (C₁-C₆), piridino, carboxipiridino, carbamoilpiridino o un grupo de la fórmula (7) u (8)

$$-N_{W-SO_2Z}^{R^8}$$
 $-N_{R^{10}}^{R^9}$ (8)

en las que

30 R^8 es hidrógeno o alquilo (C₁-C₆), sulfo-alquilo (C₁-C₆) o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido;

independientemente entre sí tienen una de las definiciones de R^8 , o forman un sistema de anillos cíclico de la fórmula -(CH₂)j- en la que j es 4 ó 5, o como alternativa -(CH₂)₂-E-(CH₂)₂-, en la que E es oxígeno, azufre, sulfonilo o -NR¹¹ con R¹¹ = alquilo (C₁-C₆);

35 W es fenileno que está sin sustituir o sustituido con 1 ó 2 sustituyentes, tales como alquilo (C₁-C₄), alcoxi (C₁-C₄), carboxilo, sulfo, cloro o bromo, o es alquileno (C₁-C₄)-arileno o alquileno (C₂-C₆) que está interrumpido con oxígeno, azufre, sulfonilo, amino, carbonilo o carboxamido, o es fenileno-CONH-

fenileno que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, amido, ureido o halógeno, o es naftileno que está sin sustituir o sustituido con uno o dos grupos sulfo; y es como se ha definido anteriormente; o

5 D⁶ y D⁷ independientemente entre sí son un grupo de la fórmula (9)

en la que

10

Ζ

R¹² es hidrógeno, alquilo (C₁-C₄), arilo o un radical arilo sustituido;

R¹³ y R¹⁴ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

A es un grupo fenileno de la fórmula (10)

15 en la que

20

R¹⁵ y R¹⁶ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o

A es un grupo naftileno de la fórmula (11)

en la que

25 R¹⁷ y R¹⁸ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o

A es un grupo polimetileno de la fórmula (12)

 $-(CR^{19}R^{20})k-$ (12)

en la que

k es un número entero mayor de 1; y

R¹⁹ y R²⁰ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, ciano, amido, halógeno o arilo; y

X³ tiene una de las definiciones de X¹;

40 G es C-R 200 o N, en la que

 R^{200}

es hidrógeno, alquilo C₁-C₆, que está sin sustituir o sustituido con amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C1-C4), alcoxi (C1-C4), sulfo, halógeno, carboxilo, acetamido o ureido, o es carboxilo, ciano o halógeno, o es un grupo de la fórmula (100);

5

$$-N=N-D^8$$
 (100)

en la que D⁸ tiene una de las definiciones de D¹ o es un grupo de la fórmula (101)

10 en la que

> D^{01} tiene una de las definiciones de D1;

 $R^{01} v R^{02}$ independientemente entre sí son hidrógeno, alquilo C1-C6, amino, alquilamino (C1-C4), hidroxilo, alcoxi (C₁-C₄), acetamido, ureido, sulfo o carboxilo; 15

es 0 ó 1; Х

independientemente entre sí son amino, alquilamino (C_1-C_4) , alcoxi (C_1-C_4) o mercapto; o uno de los radicales R^{201} y R^{202} es hidrógeno y el otro tiene una de las definiciones que se han mencionado anteriormente:

 R^{203}

20

25

35

es hidrógeno, alquilo C₁-C₆, que está sin sustituir o sustituido con amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C1-C4), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C_1-C_4) , alcoxi (C_1-C_4) , sulfo, halógeno, carboxilo, acetamido o ureido, o es amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, carboxilo, ciano, halógeno, nitro, amido o ureido:

donde el colorante de la fórmula (II) contiene al menos un grupo reactivo para fibras de la fórmula -SO₂-Z o -Z²; y donde se excluyen los colorantes en los que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es un radical formula (100), y los colorantes en los que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y D⁶ y D⁷ son ambos un radical de la fórmula (1-2) o uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-2); y el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y los radicales D⁶ y D⁷ son ambos un radical de la fórmula (1-6); y el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-1); y 30

otro es un radical de la fórmula (1-6); y el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-7) y el otro es un radical de la fórmula (1-8); y el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es hidrógeno, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y D⁶ y D⁷

40 son ambos un radical de la fórmula (1-1)

Los colorantes preferidos de la fórmula (II) tienen las definiciones de D^6 , D^7 , R^{201} a R^{203} y G y/o C- R^{200} que se han identificado anteriormente como preferidas o particularmente preferidas.

Los colorantes de la fórmula (II) de la invención pueden prepararse, por ejemplo, mediante la diazotización de una amina de la fórmula (19)

en la que D⁷ se define como se ha indicado anteriormente, y posteriormente el acoplamiento del compuesto diazonio resultante sobre un compuesto de la fórmula (24)

en la que D⁶, R²⁰¹ a R²⁰³ y G se definen como se ha indicado anteriormente.

5

10

15

20

25

Se conocen la diazotización y reacciones de acoplamiento por los expertos y se describen en detalle en la bibliografía.

El compuesto de la fórmula (24) puede obtenerse mediante la diazotización de una amina de la fórmula (25),

$$D^6$$
-NH₂ (25)

en la que D^6 se define como se ha indicado anteriormente, y el acoplamiento posterior del producto sobre un compuesto de la fórmula (26)

en la que R²⁰¹, R²⁰², R²⁰³ y G son como se han definido anteriormente.

Los compuestos de la fórmula (26) pueden prepararse mediante métodos comunes de la química preparativa.

30 Los colorantes y mezclas de colorantes de fórmula (II) de la invención pueden estar presentes como una preparación en forma sólida o en forma líquida (disuelta). En la forma sólida incluye, cuando sea necesario, las sales de electrolitos que son convencionales en el caso de que sean solubles en agua y, en particular, colorantes reactivos

ES 2 388 465 T3

para fibras, tales como cloruro sódico, cloruro potásico y sulfato sódico, y pueden incluir adicionalmente los auxiliares que son convencionales en los colorantes comerciales, tales como sustancias tampón capaces de ajustar un pH en la solución acuosa de entre 3 y 7, tales como acetato sódico, citrato sódico, borato sódico, hidrogenocarbonato sódico, dihidrogenofosfato sódico y hidrogenofosfato disódico, y también auxiliares de tintura, agentes desempolvantes y pequeñas cantidades de secativos; si están presentes en una solución acuosa líquida (incluyendo la presencia de espesante del tiempo habitual en pastas de impresión) también pueden incluir sustancias que garanticen las propiedades de mantenimiento de estas preparaciones, tales como conservantes del molde, por ejemplo.

En la forma sólida los colorantes y mezclas de colorantes de fórmula (II) de la invención están generalmente en forma de polvos o gránulos (a los que se hace referencia en general a continuación como preparaciones) que contienen una sal de electrolitos y, cuando sea apropiado, con uno o más de los auxiliares que se han mencionado anteriormente. Las preparaciones contienen la mezcla de colorante del 20% al 90% en peso, en base a la preparación que la comprende. Las sustancias tampón están generalmente presentes en una cantidad total de hasta el 5% en peso, en base a la preparación.

Cuando los colorantes y mezclas de colorantes de fórmula (II) de la invención están en una solución acuosa, el contenido de colorante total de estas soluciones acuosas es hasta aproximadamente el 50% en peso, tal como entre el 5% y el 50% en peso, por ejemplo, estando el contenido de sal de electrolitos de estas soluciones acuosas preferiblemente por debajo del 10% en peso, en base a la solución acuosa; las soluciones acuosas (preparaciones líquidas) pueden contener las sustancias tampón que se han mencionado anteriormente generalmente en una cantidad de hasta el 5% en peso, preferiblemente hasta el 2% en peso.

Los colorantes y mezclas de colorantes de fórmula (II) de la invención poseen valiosas propiedades de rendimiento.

Se usan para la tinción o impresión de materiales que contienen hidroxilo y/o carboxamido, en forma de, por ejemplo, estructuras con forma de lámina, tales como papel y cuero, o de películas, tales como de poliamida, por ejemplo, o en la masa, tales como de poliamida y poliuretano, por ejemplo, pero en particular para la tinción o impresión de estos materiales en forma de fibra. Las soluciones de los colorantes y mezclas de colorantes de la invención que se obtienen en el transcurso de la síntesis también pueden usarse directamente como una preparación líquida para la tinción, cuando sea apropiado, tras la adición de una sustancia tampón y, cuando sea apropiado, después de una concentración o dilución.

Por lo tanto, la presente invención también proporciona el uso de los colorantes y mezclas de colorantes de la invención para la tinción o impresión de estos materiales, y proporciona métodos de tinción o impresión de dichos materiales de formas convencionales, en las que una mezcla de colorante de la invención o sus componentes individuales (colorantes) están individualmente o se usan en conjunto como colorantes. Los materiales se emplean preferiblemente en forma de materiales de fibras, particularmente en forma de fibras textiles, tales como telas o hilos tejidos, como en forma de madejas o bobinas.

40 Los materiales que contienen hidroxilo son aquellos de origen natural o sintético, tales como materiales de fibra de celulosa o sus productos regenerados y alcoholes polivinílicos, por ejemplo. Los materiales de fibra de celulosa son preferiblemente algodón, pero también otras fibras de plantas, tales como fibras de lino, cáñamo, yute y ramio; fibras de celulosa regenerada son, por ejemplo, fibra discontinua de viscosa y viscosa de filamento, y también fibras de celulosa químicamente modificada, tales como fibras de celulosa aminada o fibras que se describen, por ejemplo, en los documentos WO 96/37641 y WO 96/37642 y también en los documentos EP-A-0 538 785 y EP-A-0 692 559.

Materiales que contienen carboxamido son, por ejemplo, poliamidas y poliuretanos sintéticos y naturales, particularmente en forma de fibras, siendo ejemplos lanas y otros pelajes de animales, seda, piel, nylon-6,6, nylon-6, nylon-11 y nylon-4.

Los colorantes y mezclas de colorantes de la invención pueden aplicarse a y fijarse sobre los sustratos indicados, en particular los materiales de fibras indicados, mediante técnicas de aplicación que se conocen para colorantes solubles en agua y especialmente para colorantes reactivos para fibras. Por ejemplo, en fibras de celulosa mediante los métodos de agotamiento de una tinción de corriente longitudinal y también una tintura en baño corto, en una proporción de baño con respecto a productos de 5:1 a 100:1, por ejemplo, preferiblemente de 6:1 a 30:1, usando cualquiera de una gran diversidad de agentes de unión a ácidos y, cuando sea apropiado, cuantas sales neutras sean necesarias, tales como cloruro sódico o sulfato sódico, producen tinturas que tienen muy buenos rendimientos del color. La tinción tiene lugar preferiblemente en un baño acuoso a temperaturas de entre 40 y 105 °C, cuando sea apropiado a una temperatura de hasta 130 °C a presión superatmosférica, pero preferiblemente de 30 a 95 °C, especialmente de 45 a 65 °C, y en presencia, cuando sea apropiado, de auxiliares de tintura convencionales. Aquí, un procedimiento posible es introducir el material en el baño caliente y calentar gradualmente el baño a la temperatura de tintura deseada, y completar la operación de tintura a esa temperatura. Las sales neutras que aceleran el agotamiento de los colorantes pueden añadirse además, si se desea, al baño únicamente después de que se haya alcanzado la temperatura de tintura real.

65

20

35

50

55

Asimismo, los procesos de fulardado proporcionan excelentes rendimientos del color y muy buena intensidad del color sobre fibras de celulosa, fijándose los colorantes de manera convencional mediante dosificación a temperatura ambiente o temperatura elevada, a hasta aproximadamente 60 °C por ejemplo, o en un procedimiento de tintura continuo, por medio de, por ejemplo, un proceso de fulardado-secado-fulardado y vaporizado, mediante vaporización o usando calor seco.

De forma análoga, los procesos de impresión convencionales para fibras de celulosa, que pueden realizarse en una etapa, por medio de impresión, por ejemplo, con una pasta de impresión que contiene bicarbonato sódico u otro agente de unión a ácido, y mediante la vaporación posterior de 100 a 103 °C, o en dos etapas, mediante la impresión con, por ejemplo, una tinta de impresión neutra a débilmente ácida y después mediante la fijación pasando el material impreso a través de un baño alcalino caliente que contiene un electrolito, o mediante el sobrefulardado de éste con un baño alcalino de fulardado que contiene un electrolito y posteriormente mediante dosificación o evaporación o tratamiento de calor seco del material sobrefulardado alcalinamente, producen impresiones de colores intensos con contornos bien definidos y una base de color blanco claro. La medida en la que el resultado de las impresiones depende de las fluctuaciones en las condiciones de fijación es baja.

En la fijación por medio de calor seco de acuerdo con los procesos de termofijación convencionales se usa aire caliente de 120 °C a 200 °C. Además del vapor convencional de 101 a 103 °C, también es posible usar vapor supercalentado y vapor presurizado con temperaturas de hasta 160 °C.

Los agentes de unión a ácido que realizan la fijación de los colorantes en las mezclas de colorantes de la invención sobre las fibras de celulosa son, por ejemplo, sales básicas solubles en agua de metales alcalinos y, asimismo, sales de metales alcalinotérreos de ácidos orgánicos o inorgánicos o compuestos que liberan álcali cuando se calienta, y también silicatos de metales alcalinos. Puede hacerse mención, en particular, a los hidróxidos de metales alcalinos y sales de metales alcalinos de ácidos orgánicos o inorgánicos débiles a moderadamente fuertes, refiriéndose preferiblemente como los compuestos de metales alcalinos a los compuestos sódicos y potásicos. Ejemplos de dichos agentes de unión a ácido son hidróxido sódico, hidróxido potásico, carbonato sódico, bicarbonato sódico, carbonato potásico, formiato sódico, dihidrogenofosfato sódico, hidrogenofosfato disódico, tricloroacetato sódico, fosfato trisódico y silicato sódico o mezclas de los mismos, tales como mezclas de una solución de hidróxido sódico y silicato sódico, por ejemplo.

La presente invención también proporciona el uso de los colorantes y mezclas de colorantes de la invención en tintas de impresión para impresión textil digital mediante el proceso de inyección de tinta.

Las tintas de impresión de la presente invención comprenden uno o más de los colorantes reactivos o mezclas reactivas de los colorantes indicadas, por ejemplo en cantidades del 0,1% en peso al 50% en peso, preferiblemente en cantidades del 1% en peso al 30% en peso y más preferiblemente en cantidades del 1% en peso al 15% en peso en base al peso total de la tinta. También pueden incluir combinaciones de los colorantes reactivos que se han mencionado anteriormente con otros colorantes reactivos usados en impresión textil. Para las tintas que se van a usar en el proceso de flujo continuo puede ajustarse una conductividad de 0,5 a 25 mS/m añadiendo un electrolito.

Los electrolitos útiles incluyen, por ejemplo, nitrato de litio y nitrato potásico.

10

15

20

25

30

50

55

60

Las tintas de colorantes de la presente invención pueden incluir disolventes orgánicos a un nivel total del 1-50% y preferiblemente al 5-30% en peso.

Disolventes orgánicos adecuados son, por ejemplo, alcoholes, por ejemplo metanol, etanol, 1-propanol, isopropanol, 1-butanol, terc-butanol, alcohol pentílico, alcoholes polihídricos, por ejemplo: 1,2-etanodiol, 1,2,3-propanotriol, butanodiol, 1,3-butanodiol, 1,4-butanodiol, 1,2-propanodiol, 1,3-propanodiol, pentanodiol, 1,4-pentanodiol, 1,5-pentanodiol, hexanodiol, D,L-1,2-hexanodiol, 1,6-hexanodiol, 1,2,6-hexanotriol, 1,2-octanodiol, polialquilenglicoles, por ejemplo: polietilenglicol, polipropilenglicol, alquilenglicoles que tienen de 2 a 8 grupos alquileno, por ejemplo monoetilenglicol, dietilenglicol, trietilenglicol, tetraetilenglicol, tioglicol, tioglicol, butiltriglicol, hexileneglicol, propilenglicol, dipropilenglicol, tripropilenglicol, éteres de alguilo inferior de alcoholes polihídricos, por ejemplo: etilenglicol monometil éter, etilenglicol monoetil éter, etilenglicol monobutil éter, dietilenglicol monometil éter, dietilenglicol monoetil éter, dietilenglicol monobutil éter, dietilenglicol monohexil éter, trietilenglicol monometil éter, trietilenglicol monobutil éter, tripropilenglicol monometil éter, tetraetilenglicol monometil éter, tetraetilenglicol monobutil éter, tetraetilenglicol dimetil éter, propilenglicol monometil éter, propilenglicol monoetil éter, propilenglicol monobutil éter, tripropilenglicol isopropil éter, polialquilenglicol éteres, tales como por ejemplo: polietilenglicol monometil éter, polipropilenglicol glicerol éter, polietilenglicol tridecil éter, polietilenglicol nonilfenilo éter, aminas, tales como, por ejemplo: metilamina, etilamina, dietilamina, trietilamina, dimetilamina, trimetilamina, dibutilamina, dietanolamina, trietanolamina, N-acetiletanolamina, N-formiletanolamina, etilendiamina, derivados de urea, tales como, por ejemplo: urea, tiourea, N-metilurea, N,N'-dimetil-urea, etilenourea, 1,1,3,3-tetrametilurea, amidas, tales como, por ejemplo: dimetilformamida, dimetilacetamida, acetamida, cetonas o ceto alcoholes, tales como, por ejemplo: acetona, alcohol diacetona, éteres cíclicos, tales como, por ejemplo; tetrahidrofurano, dioxano, trimetiloletano, trimetilolpropano, 2-butoxietanol, alcohol bencílico, gamma-butirolactona, epsilon-caprolactama, adicionalmente, sulfolano, dimetilsulfolano, metilsulfolano, dimetil sulfona, butadien sulfona, dimetilsulfóxido, dibutilsulfóxido, N-ciclohexilpirrolidona, N-metil-2-pirrolidona, N-etilpirrolidona, 2-pirrolidona, 1-(2-hidroxietil)-2-pirrolidona, 1-(3-hidroxipropil)-2-pirrolidona, 1,3-dimetil-2-imidazolidinona, 1,3-dimetil-2-imidazolidinona, 1,3-bismetoximetilimidazolidina, 2-(2-metoxietoxi) etanol, 2-(2-etoxietoxi)etanol, 2-(2-butoxietoxi)etanol, 2-(2-propoxietoxi)etanol, piridina, piperidina, trimetoxipropano, 1,2-dimetoxipropano, acetato de etilo, tetraacetato de etilendiamina, etil pentil éter.

Las tintas de impresión de la invención pueden incluir adicionalmente aditivos convencionales, por ejemplo, moderadores de la viscosidad para ajustar la viscosidad en el intervalo de 1,5 a 40,0 mPas en un intervalo de temperatura de 20 °C a 50 °C. Las tintas preferidas tienen una viscosidad de 1,5 a 20 mPas y las tintas particularmente preferidas tienen una viscosidad de 1,5 a 15 mPas.

Los moderadores de la viscosidad útiles incluyen aditivos reológicos, por ejemplo: polivinilcaprolactama, polivinilpirrolidona y sus copolímeros, polieterpoliol, espesores asociativos, poliurea, poliuretano, alginatos sódicos, galactomananos modificados, polieterurea, poliuretano, éteres de celulosa no iónicos.

Como aditivos adicionales, las tintas de la invención pueden incluir sustancias de superficie activa para ajustar las tensiones superficiales de 20 a 65 mN/m, que se adaptan si es necesario según la función del proceso usado (tecnología térmica o piezo eléctrica).

20 Las sustancias de superficie activa útiles incluyen, por ejemplo: todos los tensioactivos, preferiblemente tensioactivos no iónicos, butildiglicol, 1,2-hexanodiol.

Las tintas pueden incluir adicionalmente aditivos convencionales, por ejemplo sustancias para inhibir el crecimiento fúngico o bacteriano en cantidades del 0,01% al 1% en peso en base al peso total de la tinta.

Las tintas pueden prepararse de manera convencional mezclando los componentes en agua.

10

15

25

30

35

50

65

Las tintas de colorantes de la invención son útiles en procesos de impresión de inyección de tinta para imprimir una gran diversidad de materiales pretratados, tales como seda, piel, lana, fibras de poliamida y poliuretanos, y especialmente materiales de fibras celulósicas de cualquier tipo. Dichos materiales de fibras son, por ejemplo, las fibras de celulosa natural, tales como algodón, lino y cáñamo, y también pulpa y celulosa regenerada. Las tintas de impresión de la invención también son útiles para imprimir fibras pretratadas que contienen hidroxilo o amino presentes en tejidos mixtos, por ejemplo mezclas de algodón, seda, lana con fibras de poliéster o fibras de poliamida.

A diferencia de la impresión textil convencional, en la que la tinta de impresión ya contiene todos los productos químicos de fijación y espesantes para un colorante reactivo, en la impresión por inyección de tinta los auxiliares han de aplicarse al sustrato textil en una etapa de pretratamiento por separado.

El pretratamiento del sustrato textil, por ejemplo fibras de celulosa y celulosa regenerada, y también seda y lana, se realiza con un lavado alcalino acuoso anterior a la impresión. Para fijar los colorantes reactivos existe la necesidad de un álcali, por ejemplo carbonato sódico, bicarbonato sódico, acetato sódico, fosfato trisódico, silicato sódico, hidróxido sódico, donantes alcalinos, tales como, por ejemplo, cloroacetato sódico, formiato sódico, sustancias hidrotrópicas, tales como, por ejemplo, urea, inhibidores de reducción, por ejemplo nitrobencenosulfonatos sódicos, y también espesantes para evitar el escurrimiento de los motivos cuando se aplica la tinta de impresión, por ejemplo, alginatos sódicos, poliacrilatos modificados o galactomananos altamente eterificados.

Estos reactivos de pretratamiento se aplican de forma uniforme al sustrato textil en una cantidad definida usando unos aplicadores adecuados, por ejemplo, usando una almohadilla de 2 ó 3 rollos, usando tecnologías de pulverización sin contacto, por medio de aplicación de espuma o usando tecnologías de inyección de tinta adaptadas de forma apropiada, y posteriormente secado.

Después de la impresión, el material de fibra textil se seca de 120 a 150 °C y posteriormente se fija.

La fijación de las impresiones de inyección de tinta preparadas con colorantes reactivos puede realizarse a temperatura ambiente o con vapor saturado, con vapor supercalentado, con aire caliente, con microondas, con radiación de infrarrojos, con láser o haces de electrones o con otras técnicas de transferencia de energía adecuadas.

Se hace una distinción entre procesos de fijación de una fase y de dos fases: En la fijación de una fase, los productos químicos de fijación necesarios ya están en el sustrato textil.

En la fijación de dos fases, este pretratamiento es innecesario. La fijación únicamente requiere un álcali, que, tras la impresión por inyección de tinta, se aplica antes del proceso de fijación, sin el secado intermedio. No hay necesidad de aditivos adicionales, tales como urea o un espesante. La fijación se sigue de la impresión postratamiento, que es el requisito previo para obtener buenas propiedades de solidez, un alto brillo y una base impecable de color blanco.

ES 2 388 465 T3

Los colorantes y mezclas de colorantes de acuerdo con la invención son notables para destacar la intensidad del color cuando se aplican a la fibra de celulosa mediante tintura o impresión, pudiéndose conseguir dicha intensidad en algunos casos incluso en presencia de nada o muy pequeñas cantidades de compuestos de metales alcalinos o alcalinotérreos. En estos casos especiales, por ejemplo, no se requiere ninguna sal de electrolito para obtener una profundidad superficial de sombra, no se requieren más de 5 g/l de sal de electrolito para obtener una profundidad media de sombra y no se requieren más de 10 g/l de sal de electrolito para obtener sombras profundas.

En este contexto, una profundidad superficial de sombra se refiere al uso del 2% en peso de colorante en base al sustrato que se va a teñir, una profundidad media de sombra se refiere al uso del 2% al 4% en peso del colorante en base al sustrato que se va a teñir, y una sombra profunda se refiere al uso del 4% al 10% en peso del colorante en base al sustrato que se va a teñir.

Las tinturas e impresiones que pueden obtenerse con los colorantes y mezclas de colorantes de acuerdo con la invención poseen sombras brillantes; más particularmente, las tinturas e impresiones sobre materiales de fibra de celulosa poseen buena solidez del color a la luz y especialmente buenas propiedades de solidez al frote en húmedo, tales como solidez al lavado, molturación, agua, agua de mar, tintado transversal y perspiración ácida y alcalina, y también buena solidez al plisado, presión en caliente y fricción. Además, las tinturas de celulosa obtenidas tras el postratamiento convencional de aclarado para retirar las porciones de colorante no fijadas muestran excelentes propiedades de solidez al frote en húmedo, en particular, ya que las porciones de colorante no fijadas se retiran mediante lavado fácilmente debido a su buena solubilidad en agua fría.

Los colorantes o mezclas de colorantes de la invención también pueden usarse, además, para la tinción reactiva para fibras de lana. Esto incluye lana que con un acabado no enfieltrado o de bajo enfieltrado (consúltese, por ejemplo, H. Rath, Lehrbuch der Textilchemie, Springer-Verlag, 3ª edición (1972), págs. 295-9, particularmente lana acabada por el proceso Hercosett (pág. 298); J. Soc. Dyers y Colourists 1972, 93-9, y 1975, 33-44) con muy buenas propiedades de solidez. La tinción sobre lana tiene lugar de manera convencional a partir de un medio ácido. Por ejemplo, pueden añadirse ácido acético y/o sulfato de amonio o ácido acético y acetato amónico o acetato sódico al baño de tintura con el fin de obtener el pH deseado. Para conseguir una nivelación practicable en la tintura es aconsejable añadir auxiliares de nivelado habituales, tales como los basados en, por ejemplo, un producto de reacción de cloruro cianúrico con tres veces la cantidad molar de un ácido aminobencenosulfónico y/o un ácido aminonaftalenosulfónico o basado en un producto de reacción de, por ejemplo, estearilamina con óxido de etileno. Por lo tanto, por ejemplo, la mezcla de colorante de la invención se somete preferiblemente en primer lugar a la operación de agotamiento de un baño de tinte ácido que tiene un pH de aproximadamente 3,5 a 5,5, bajo control del pH, y después, hacia el final del tiempo de tintura, el pH se desplaza al intervalo neutro y, cuando sea apropiado, débilmente alcalino hasta un pH de 8,5, con el fin de conseguir aproximadamente, especialmente para tinturas muy profundas, el enlace reactivo completo entre los colorantes de las mezclas de colorantes de la invención y la fibra. Al mismo tiempo, la fracción del colorante no unido reactivamente se separa.

El procedimiento descrito aquí también se aplica a la producción de tinturas sobre materiales de fibras compuestos por otras poliamidas naturales o de poliamidas sintéticas y poliuretanos. En general, el material que se va a teñir se introduce en el baño a una temperatura de aproximadamente 40 °C, se agita en el mismo durante cierto tiempo, y después el baño de tintura se ajusta al pH deseado débilmente ácido, preferiblemente débilmente ácido acético, y la tinción real se realiza a una temperatura entre 60 y 98 °C. Como alternativa, las tinciones pueden realizarse a temperatura de ebullición o, en aparatos de tintura cerrados, a temperaturas de hasta 106 °C. Ya que la solubilidad en agua de las mezclas de colorantes de la invención es muy buena, también pueden usarse con ventaja en procesos de tinción continua convencionales. La intensidad del color de las mezclas de colorantes de la invención es muy alta.

En los materiales indicados, preferiblemente materiales de fibras, las mezclas de colorantes de la invención producen tinturas de color azul marino a negro intenso que tienen muy buenas propiedades de solidez.

En los materiales indicados, los colorantes de la fórmula (II) de la invención producen tinturas de color naranjaamarillo a pardo que tienen asimismo buenas propiedades de solidez.

Los ejemplos que se indican a continuación sirven para ilustrar la invención. Las partes y porcentajes son en peso a menos que se indique otra cosa. La relación de las partes en peso con respecto a las partes en volumen es la del kilogramo con respecto al litro. Los compuestos descritos por la fórmula en los ejemplos se escriben en forma de las sales sódicas, ya que generalmente se preparan y se aíslan en forma de sus sales, preferiblemente sales sódicas o potásicas, y se usan en forma de sus sales para la coloración. Los compuestos de partida especificados en los ejemplos que se indican a continuación, especialmente los ejemplos de las tablas, pueden usarse en la síntesis en forma del ácido libre o, asimismo, en la forma de sus sales, preferiblemente sales de metales alcalinos, tales como sales sódicas o potásicas.

A. Ejemplos de compuestos de la fórmula (II)

65

10

15

20

25

30

Ejemplo 1

5

Se diazotizan 12,7 partes de ácido 2-aminobenceno-1,4-disulfónico con 8,8 partes de una solución de nitrito sódico a una concentración del 40% en un medio que contiene ácido sulfúrico y después el producto se acopla sobre 5,4 partes de 1,3-diaminobenceno en un medio acuoso a 5-10 °C y un pH de 1,5-2,5.

Esto proporciona una solución acuosa de 20,8 partes del colorante monoazo de color amarillo de la fórmula (24-1)

En un recipiente de reacción separado se suspenden 28,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 70 partes de hielo-agua y 18,5 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 17,9 partes de una solución de nitrito sódico a una concentración del 40%. Tras la retirada del exceso de nitrito con ácido amidosulfónico, esta suspensión de hielo-agua se añade a la primera fase de acoplamiento (24-1) de a) y, usando carbonato sódico, se ajusta un pH de 5-5, que se mantiene constante mediante la adición de más cantidad de carbonato sódico hasta el final del segundo y tercer acoplamiento a 15-20 °C durante 1-2 horas. El colorante trisazo resultante de la fórmula (II-1) se aísla por evaporación al vacío o mediante secado por pulverización. Esto proporciona 88 partes de un sólido de color pardo oscuro que contiene sal, que contiene el colorante de la fórmula (II-1)

en una fracción de aproximadamente el 60% (máx. abs. 416 nm).

Como alternativa, la solución de colorante obtenida cuando el acoplamiento está en un extremo también puede tamponarse mediante la adición de un tampón fosfato a un pH de 5,5-6, y puede ajustarse mediante dilución o concentración adicional para proporcionar un marca de líquido de una concentración definida.

25 El colorante de la fórmula (II-1) de la invención tiñe el algodón en tonos de color pardo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 2

20

30 Se suspenden 56 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 120 partes de hielo-agua y 30 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 28,5 partes de una solución de nitrito sódico a una concentración del 40%. Tras la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 5-10 °C a una solución de 5,4 partes de 1,3-diaminobenceno en agua, manteniéndose el pH a 1,7-2,5 durante la adición, usando carbonato sódico sólido. Tras la adición completa de la solución de diazo, se ajusta lentamente un pH de 5,5-6,5 por debajo de 25 °C usando carbonato sódico, y el sistema se agita a este pH y a 15-20 °C durante 1-2 horas, después de lo cual el colorante trisazo de la fórmula (II-2) que se forma cuando la reacción de acoplamiento ha terminado se aísla por evaporación al vacío. Esto proporciona 98 partes de un sólido de color pardo oscuro que contiene sal, que contiene el colorante (II-2)

en una fracción de aproximadamente el 70% (máx. abs. = 433 nm).

El colorante de la fórmula (II-2) de la invención tiñe el algodón en tonos de color pardo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 3

Se suspenden 14,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 40 partes de hielo-agua y 9,5 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Tras la retirada del exceso de nitrito con ácido amidosulfónico, la suspensión diazo se añade gota a gota a una solución de 5,4 partes de 1,3-diaminobenceno en agua, manteniéndose el pH a 1,5-2,5 usando carbonato sódico sólido. Después del final del primer acoplamiento se obtiene una suspensión acuosa de 21,1 partes del colorante monoazo de color amarillo de la fórmula (24-2)

15

20

25

En un recipiente de reacción separado se suspenden 28 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico en 90 partes de hielo-agua y 21 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 19 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 10-15 °C a la primera fase de acoplamiento acuosa (24-2), ajustándose y manteniéndose el pH a 2-3 durante la adición, usando carbonato sódico sólido. Tras la adición completa de la solución de diazo, se ajusta lentamente un pH de 5,5-6,5 por debajo de 25 °C usando carbonato sódico, y se mantiene constante mediante la adición de más cantidad de carbonato sódico hasta el final del segundo y tercer acoplamiento durante 1-2 horas a 15-20 °C. El colorante trisazo resultante de la fórmula (II-3) se aísla por evaporación al vacío o secado por pulverización. Esto proporciona 94 partes de un sólido de color pardo oscuro que contiene sal, que contiene el colorante de la fórmula (II-3)

en una fracción de aproximadamente el 66% (máx. abs. = 434 nm).

El colorante de la fórmula (II-3) de la invención tiñe el algodón en tonos de color pardo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 4

15

20

Se diazotizan 10,2 partes de ácido 2-amino-5-metoxibencenosulfónico con 8,7 partes de una solución de nitrito sódico a una concentración del 40% en un medio que contiene ácido sulfúrico y después el producto se acopla sobre 5,4 partes de 1,3-diaminobenceno en un medio acuoso a 5-10 °C y un pH de 1,5-2,5. Esto proporciona una suspensión acuosa de 17,2 partes del colorante monoazo de color amarillo de la fórmula (24-3).

38 partes recipiente de reacción separado se suspenden de ácido 2-amino-3-5-(βsulfatoetilsulfonil)bencenosulfónico en 90 partes de hielo-agua y 21 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 19 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 10-15 °C a la primera fase de acoplamiento acuosa (24-3), ajustándose y manteniéndose el pH a 2-3 durante la adición, usando carbonato sódico sólido. Tras la adición completa de la solución de diazo, se ajusta lentamente un pH de 5,5-6,5 por debajo de 25 ºC usando carbonato sódico, y se mantiene constante mediante la adición de más cantidad de carbonato sódico hasta el final del segundo y tercer acoplamiento durante 1-2 horas a 15-20 °C. El colorante trisazo resultante de la fórmula (II-6) se aísla por evaporación al vacío o secado por pulverización. Esto proporciona 89 partes de un sólido de color pardo oscuro que contiene sal, que contiene el colorante de la fórmula (II-6)

en una fracción de aproximadamente el 66%. (máx. abs. = 437 nm)

El colorante de la fórmula (II-6) de la invención tiñe el algodón en tonos de color pardo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 5

a) Se suspenden 37 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 90 partes de hielo-agua y
 21 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 5-10 °C a una solución de 5,4 partes de 1,3-diaminobenceno en agua, manteniéndose el pH a 1,7-2,5 durante la adición, usando hidrogenocarbonato sódico. Tras la adición completa de la solución de diazo, se ajusta un pH de 3-4 usando carbonato sódico y se mantiene constante mediante una adición de más cantidad de carbonato sódico hasta el final del segundo acoplamiento durante 1-2 horas a 10-15 °C.

Esto proporciona una solución acuosa cuyo componente principal es aproximadamente 47 partes del colorante disazo de color pardo de la fórmula (II-54)

(máx. abs. = 456 nm).

20

25

30

b) En un recipiente de reacción separado se suspenden 14,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 40 partes de hielo-agua y 10 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, esta suspensión diazo se añade a la solución de la segunda fase de acoplamiento de la fórmula (II-54) de a) y, usando carbonato sódico, se ajusta un pH de 5-6 que se mantiene constante mediante la adición de más cantidad de carbonato sódico hasta el final del tercer acoplamiento durante 1-2 horas a 15-20 °C. La evaporación al vacío o el secado por pulverización proporcionan 96 partes de un sólido de color pardo oscuro que contiene sal, que contiene como su producto principal el colorante de la fórmula (II-20)

$$NaO_3SO$$
 SO_3Na
 NH_2
 NH

en una fracción de aproximadamente el 65% (máx. abs. = 429 nm).

El colorante de la fórmula (II-20) de la invención tiñe el algodón en tonos de color pardo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 6

- a) Se diazotizan 15,2 partes de ácido 3-aminonaftaleno-1,5-disulfónico con 8,7 partes de una solución de nitrito
 sódico a una concentración del 40% en un medio que contiene ácido sulfúrico y después este producto se acopla sobre 6,3 partes de floroglucinol en un medio acuoso a 5-10 °C y un pH de 1-2.
- b) En un recipiente de reacción separado se suspenden 14,1 partes de 4-(β-sulfatoetilsulfonil)anilina en 40 partes de hielo-agua y 9,5 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, esta suspensión diazo se añade a la primera fase de acoplamiento de a) y, usando carbonato sódico, se ajusta un pH de 2,5-3,5 que se mantiene constante mediante la adición de más cantidad de carbonato sódico hasta el final del segundo acoplamiento durante 1-2 horas a 10-15 °C.
- c) Posteriormente, se suspenden 18,3 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 40 partes de hielo-agua y 10 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo se añade gota a gota a la segunda fase de acoplamiento de b) y, usando carbonato sódico, se ajusta un pH de 5-6 que se mantiene constante hasta el final del tercer acoplamiento durante 1-2 horas a 10-15 °C. La evaporación al vacío o el secado por pulverización proporcionan 102 partes de un sólido de color naranja-pardo que contiene sal, que contiene como su producto principal el colorante de la fórmula (II-48)

$$NaO_3SO$$
 NaO_3S
 NaO_3S

en una fracción de aproximadamente el 60%. (máx. abs. 480 nm)

Como alternativa, la solución de colorante obtenida después del final del acoplamiento también puede tamponarse a un pH de 5,5-6 mediante la adición de un tampón fosfato y puede ajustarse mediante dilución o concentración adicional para proporcionar una marca de líquido de una concentración definida.

5 El colorante de la fórmula (II-48) de la invención tiñe el algodón en tonos de color naranja mediante el método de tintura típico para los colorantes reactivos.

Ejemplo 7

20

Se suspenden 14,1 partes de 4-(β-sulfatoetilsulfonil)anilina y 18,2 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 90 partes de hielo-agua y 21 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la mezcla diazo resultante se añade gota a gota a 10-15 °C y un pH de entre 2 y 3, que se mantiene usando carbonato sódico sólido, a una solución acuosa de 20,8 partes del colorante monoazo de color amarillo de la fórmula (24-1), que se preparó mediante la diazotización de 12,7 partes de ácido 2-aminobenceno-1,4-disulfónico con 9 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y después acoplando el producto sobre 5,4 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5. Después del final de la adición de la mezcla diazo, el pH se ajusta usando carbonato sódico a 5,5-6,5 y se mantiene hasta el final de la reacción de acoplamiento.

La mezcla 22,8:25:25:27/2 resultante de los cuatro colorantes (II-1), (II-8), (II-116) y (II-10)

puede aislarse por evaporación al vacío o mediante secado por pulverización y tiñe el algodón en tonos de color pardo mediante los métodos de tintura típicos para colorantes reactivos. (máx. abs. = 427 nm)

Eiemplo 8

25

30

Se suspenden 18,2 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 40 partes de hielo-agua y 10 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo se añade gota a gota a una solución de 5,4 partes de 1,3-diaminobenceno en agua a 5-10 °C, manteniéndose el pH a 1,5-2,5 usando hidrogenocarbonato sódico. Después del final del primer acoplamiento se obtiene una suspensión acuosa de 26,2 partes del colorante monoazo de color amarillo de la fórmula (24-6).

NaO₃S O S O OSO₃Na
$$H_2N$$
 (24-6)

En un recipiente de reacción separado se suspenden 16 partes de 2-metoxi-5-(β-sulfatoetilsulfonil)anilina en 45 partes de hielo-agua y 10 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la suspensión diazo resultante se añade gota a gota a 10-15 °C a la primera fase de acoplamiento acuosa (24-6), ajustándose un pH de 3-4 mediante la adición simultanea de carbonato sódico sólido y manteniéndose hasta el final del segundo acoplamiento durante 2-3 horas a 15-20 °C. Posteriormente, se usa carbonato sódico para ajustar el pH a 5,5-6,5. El colorante disazo resultante de la fórmula (II-56) se aísla por evaporación al vacío o secado por pulverización. Esto proporciona 62 partes de un sólido de color pardo oscuro que contiene sal, que contiene el colorante de la fórmula (II-56)

en una fracción de aproximadamente el 70%. (máx. abs. = 448 nm)

El colorante de la fórmula (II-56) de la invención tiñe el algodón en tonos de color naranja-pardo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 9

10

Se suspenden 36,5 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 80 partes de hielo-agua y 20 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añade una solución acuosa de 7,6 partes de ácido 3,5-diaminobenzoico, después de lo cual se ajusta un pH de 1-1,5 por debajo de 20 °C añadiendo hidrogenocarbonato sódico sólido, mintiéndose constante este intervalo de pH hasta el final del acoplamiento durante 2-3 horas a 10-15 °C. Posteriormente, se usa carbonato sódico para ajustar el pH a 5,5-6,5. El colorante disazo resultante de la fórmula (II-77) puede aislarse por evaporación al vacío o secado por pulverización. Esto proporciona 72 partes de un sólido de color naranja-pardo que contiene sal, que contiene el colorante de la fórmula (II-77)

en una fracción de aproximadamente el 70%. (máx. abs. = 478 nm)

30

20

El colorante de la fórmula (II-77) de la invención tiñe el algodón en tonos de color naranja mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 10

5

10

15

20

Se suspenden 18,3 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 40 partes de hielo-agua y 10 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo se añade gota a gota a una solución de 5,5 partes de 3-aminofenol en agua a 5-10 °C, manteniéndose el pH a 1,5-2,5 usando carbonato sódico sólido. Después del final del primer acoplamiento se obtiene una suspensión acuosa de 26,3 partes del colorante monoazo de color amarillo de la fórmula (24-7)

En un recipiente de reacción separado se suspenden 14,1 partes de 4-(β-sulfatoetilsulfonil)anilina en 35 partes de hielo-agua y 10 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 9 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la suspensión diazo resultante se añade gota a gota a 10-15 °C a la primera fase de acoplamiento acuosa (24-7) y el pH se ajusta a 5,5-6,5 usando carbonato sódico sólido y se mantiene constante mediante la adición de más cantidad de carbonato sódico hasta la finalización del segundo acoplamiento durante 1-2 horas a 15-20 °C. El colorante disazo resultante de la fórmula (II-81) puede aislarse por evaporación al vacío o secado por pulverización. Esto proporciona 65 partes de un sólido de color pardo que contiene sal, que contiene el colorante de la fórmula (II-81)

en una fracción de aproximadamente el 65% (máx. abs. = 430 nm).

El colorante de la fórmula (II-81) de la invención tiñe el algodón en tonos de color naranja mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 11

Se suspenden 36,5 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico en 80 partes de hielo-agua y 20 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 5,5 partes de resorcinol, después se ajusta un pH de 5,5-6,5 por debajo de 20 °C mediante la adición lenta de carbonato sódico sólido, y este intervalo de pH se mantiene constante hasta el final del acoplamiento, mediante la adición de más cantidad de carbonato sódico. El colorante disazo resultante de la fórmula (II-92) puede aislarse por evaporación al vacío o secado por pulverización. Esto proporciona 78 partes de un sólido de color naranja-pardo que contiene sal, que contiene el colorante de la fórmula (II-92)

$$NaO_3SO$$
 SO_3Na
 NO_3SO
 SO_3Na
 NO_3SO
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na

en una fracción de aproximadamente el 60%. (máx. abs. = 423 nm)

El colorante de la fórmula (II-92) de la invención tiñe el algodón en tonos de color naranja-amarillo mediante los métodos de tintura típicos para colorantes reactivos.

Ejemplo 12

Siguiendo el procedimiento del Ejemplo 10, pero usando 5,5 partes de 2,6-diaminopiridina en lugar de 3-aminofenol como componente de acoplamiento, proporciona 65 partes de un sólido de color pardo que contiene sal, que contiene el colorante de la fórmula (II-106)

en una fracción de aproximadamente el 65%. (máx. abs. = 497 nm)

El colorante de la fórmula (II-106) de la invención tiñe el algodón en tonos de color rojo-pardo mediante los métodos de tintura típicos para los colorantes reactivos.

Ejemplos 13 a 119

20 Los ejemplos que se muestran a continuación describen colorantes adicionales de la fórmula (II) de la invención, proporcionado cada uno en forma de las sales sódicas. Los colorantes proporcionan tinturas de color naranja-amarillo a pardo-rojo en el algodón, por ejemplo, mediante los métodos de tintura típicos para colorantes reactivos.

D'	NaO ₃ SO OS, "O	NaO ₃ SO CH ₃	Nao,SO CH,	OS O	Nao ₃ So	SO ₃ Na	OS. OS	NaO ₃ SO CH ₃
De	H ₃ C · · SO ₃ Na	SO ₃ Na	SO ₃ Na NaO ₃ S	SO ₃ Na	NaO ₃ S. SO ₃ Na	OS.OBN	SO ₃ Na	Scoen Scoen
R^{zo3}	I	I	н	н	Ι	Н	НО	но
$R^{^{202}}$	NH_2	2 NH 2	NH_2	NH_2	NH_2	NH ₂	Ю	Ю
$R^{^{207}}$	$^{ m NH}_{ m 2}$	NH_2	NH ₂	NH_2	NH_2	O-N H 3	Ю	Ю
9	NaO ₃ SO NaO	Nao,so	NaO ₂ SO CH ₃	OSCOBN OSCOBN	Nacyso Oscobn	Nao, so	OSTORN OSTORN	NaO ₂ SC _{CH} ,
Ejemplo (compuesto Nº)	13 (II-9)	14 (II-12)	15 (II-14)	16 (11-15)	17 (11-17)	18 (11-26)	19 (11-35)	20 (11-44)

D'	NBO,50 S,0 OCH3	O, S, O OSLOBN	O, S, O OS, OBN	NaO ₃ SO	el Co., Co. Co., Nac. Co.,	1, NaO,SO NaO,SO	Na NaO ₃ SO SO ₃ Na	NaO ₃ SO O O O O O O O O O O O O O O O O O O
De	SO ₃ Na NaO ₃ S	SO ₃ Na NaO ₃ S	PN ₂ O ₃ N ₃ N ₃ O ₃ N ₃ N ₃ O	entos Ostoen	OS, CO.	OS, OCH,	enfos Osforn	tos os con
R^{203}	Ю	НО	НО	н	НО	н	Ŧ	Н
$R^{^{202}}$	Ю	Ю	ᆼ	NH ₂	ᆼ	NH ₂	NH ₂	NH ₂
$R^{^{207}}$	ОН	ОН	Ю	Z-O I I	Ю	NH ₂	NH_2	NH ₂
9	NaG,SO CH,	OS O	Nao, so os	entos Ostoen ostoen	SO ₂ Na O ₂ O ₃ Na O ₃ Na O ₃ Na O ₃ Na O ₃ Na O ₃ Na Na O ₃ Na Na O ₃ Na	NaO, SO, NaO, NaO, SO, Na	enfos O'S O OSFORN	NaO, SO, Na
Ejemplo (compuesto Nº)	21 (II-46)	22 (11-47)	23 (11-49)	24 (II-25)	25 (II-36)	26 * (II-4)	27 (11-23)	28 (II-24)

Ejemplo (compuesto Nº)		R ²⁰¹	R ²⁰²	R ²⁰³	De	D,
	Nao,so Na	O-N H	NH_2	т	NeO ₃ SO ₃ Na	NAO,50
	Nacyso Co. 10 Co. Nacyso Nacys	N-O H	NH ₂	I	SO, VO SO, NB NBO, SO, NB	entros NH Ostrona
	ostoen of the contract of the	ОН	Ю	НО	O, CO OSOBN	SO, NBO, SO, NB
	Nacyso Nacyso	ОН	Ю	НО	NaO,SO CH,	NaO ₃ SO Na
	Nao,so So,Na	ОН	Ю	ОН	NaO,SO SO,Na	eN ₂ O ₂ O ₃
	Neo,so So, Neo,so Neo,s	ОН	Ю	ОН	MADO, SO CONTRACTOR NA SO, ME HIM	OS, OO NAO, SO3, NA
	NaO ₃ SO ₃ Na	2	NH_2	I	SO ₃ Na	NaO ₃ SO SO ₃ Na
	NaO,SO CO,Na	Z H Z	NH_2	т	H ₃ C SO ₃ Na	NaO ₃ SO SO ₃ Na

Ejemplo (compuesto Nº)		R^{201}	$R^{^{202}}$	$R^{^{203}}$	۵	D/
37 (II-10)	Nacyso Scylla	NH ₂	NH_2	т	NaO ₃ S	OS, OO
38 (II-11)	NaO ₂ SO SO ₂ Na	NH_2	NH ₂	I	NaO ₃ S	SO, Na
39 (II-13)	OS, SO, NA	NH_2	^z HN	I	NaO ₃ S	eN _t OS ON OS OBN
40 (11-18)	Nac, So, Na	NH ₂	NH ₂	I	H ₃ C O H _N SO ₃ Na	SO ₂ Na NaO ₃ SO
41 (II-31)	NAOSSO OS.OBN	O-NH O-H ₃	NH ₂	I	SO, Na	CH3 O SO3Na
42 (11-39)	NAO ₃ SO ₃ Na	ОН	НО	ОН	SO ₃ Na	NaO ₃ SO SO ₃ Na
43 (11-40)	()	ОН	Ю	ОН	CH ₃ O SO ₃ Na	O, O O O O O O O O O O O O O O O O O O
44 (11-41)	Nacyso Nacyso	ОН	Ą	НО	H ₃ C SO ₃ Na	NaO ₃ SO SO ₃ Na

Ejemplo (compuesto No)	စ	R ^{zo1}	$R^{^{202}}$	R ²⁰³	De	D,
45 (11-43)	NaO ₃ SO ₃ Na	ОН	НО	НО	SO ₃ Na	NaO ₃ SO NaO ₃ Na
46 (11-45)	NaO ₃ SO O ₃ Na	ОН	НО	ОН	SO ₃ Na NaO ₃ S	en os
47 (11-50)	NaO ₃ SO ₃ Na	ОН	НО	ОН	H ₃ C O ₃ Na	OS _{OPN}
48 (II-21)	CH ₃ O O N N C	NH_2	NH ₂	I	SO, NO SO, NO NAO, SO, NA	OS, OS NAO. SO NA
49 (II-22)	Nao ₃ S	NH_2	NH_2	I	SQ, VO	NaO ₃ SO OS ₃ Na
50 (11-30)		O-N H ₃	2	I	SO, SO, NBO, SO, NB	SO, Na
51 (II-33)	So ₂ N _B	Z-O I I	Z H Z	I	O, , O SO, Na	encos O Scoen

Ejemplo (compuesto No)	ဖ	R ²⁰¹	R^{202}	$R^{z_{03}}$	De	D,
52 (II-8)	OS OBN	NH_2	NH ₂	Ŧ	SO ₃ Na	OSCORN
53 (II-16)	()	NH_2	NH_2	Ŧ	SO ₃ Na NaO ₃ S	OS, OO OS OBN
54 (II-19)	NaO ₃ SO, O O O O O O O O O O O O O O O O O O	NH_2	NH2	Ŧ	NaO ₃ S SO ₃ Na	SO ₃ Na
55 (II-42)	NBO, SO, NB	ОН	Ю	Ю	H ₃ C SO ₃ Na	Nao ₃ so os o
56 (11-51)	Nao ₃ so Nao	ОН	Ю	Ю	NaO ₃ S SO ₃ Na	SO ₃ Na
57 (II-116)	OSTORN	NH_2	NH ₂	Ŧ	NaO ₃ S	NaO ₃ SO O ₃ Na
58 (II-55)	СН	NH_2	Z T Z	I	Nao,so	eN ₂ O ₃ O ₃ Na NaO ₃ SO
59 (11-57)	СН	NH_2	2 NH 2	т	NaO,SO SO,Na	NaO ₃ SO ₃ Na
(85-11) 09	СН	NH ₂	NH ₂	I	so ₃ Na ₉ S ₀ S ₀ Na ₉ Na ₉	N N N N N N N N N N N N N N N N N N N

ပ
NH ₂
N N
\mathbf{N}
NH ₂
NH ₂
N N N
A-O H
Z-Ü
N-O

Ejemplo (compuesto Nº)	တ	R ²⁰¹	$R^{^{202}}$	R ²⁰³	Ο	D,
70 (II-78)	СН	NH_2	N N	CO ONa	SO, Na	
71 (II-119)	C-CH ₃	2	$\frac{N}{N}$	2	C, C SO, Na HO, SO	S, O, SO, Na
72 (II-65)	СН	A-O H	NH ₂	I	SO, SO ON OSOSNA	S, OS, OS, OS, OS, OS, OS, OS, OS, OS, O
73 (II-79)	СН	NH ₂	NH_2	CO ONa	OSCOBN	OS*OPN
74 (II-70)	C-CH ₃	NH_2	NH_2	I	NaO ₃ SO	SO ₃ Na NaO ₃ SO
75 (II-72)	C-CH ₃	NH_2	NH_2	НО	NEO,SO	NaO ₃ CO SO ₃ Na
76 (11-74)	C-CH ₃	SO ₃ Na	NH ₂	NH_2	NaO ₃ SO OSO OSO OSO OSO OSO OSO OSO OSO OSO	NaO,SO SO,Na
77 (11-75)	C-CH ₃	SO ₃ Na	$^{ m NH}_{ m 2}$	NH ₂	SO, SO OSO OSO OSO OSO OSO OSO OSO OSO O	OS OS N
78 (II-82)	СН	НО	NH_2	I	OS, OS OBN	Nao, ^{SO} CH,
79 (11-83)	СН	용	Z Z Z	I	NaO, SO, Na	Nao, so, ve

D,	SO ₃ Na	SOS NI	SO ₃ Na	SO, O O O O O O O O O O O O O O O O O O	Nao ₃ so O', ', O	**YOS - STORY	avios Andrew And	OS, OO NAO, SO, NA	SO ₃ Na Nao ₃ So
De	NaO ₃ S	entos Ostoen	entos S. C. Ostoen	SO ₃ Na	S _C OEN	SO, Na	OS _O ONa OS _O ONa	ENTOS NITH	OS'OFN OS'OFN
$R^{^{203}}$	Н	н	Т	Н	Н	н	Н	I	Ι
$R^{^{202}}$	NH_2	NH ₂	NH ₂	NH ₂	NH ₂	NH ₂	NH_2	NH_2	Ю
$R^{^{207}}$	ОН	Ю	Ą	HO	Ю	Ю	ОН	Ю	HO
9	СН	Ю	Н	СН	Ю	СН	СН	СН	СН
Ejemplo (compuesto Nº)	80 (11-84)	81 (11-85)	82 (11-86)	83 (11-87)	84 (II-88)	(1-89)	(06-11) 98	87 (11-91)	88 (11-93)

D,	OS, OS NBO, SO ,	NEO.50 OS.O.SNA	EN ₂ COS,Na	N N N N N N N N N N N N N N N N N N N	SO, OS	NaO ₃ SO OS _O SO NAO ₃ SO	and to so the sound of the soun	entos HN	NaO ₃ SO SO ₃ Na
De	Nao,so	OS O	SO ₃ Na	entos O'''o Ostoen	SO ₃ Na	S ^c oen sev ^c os	SKOBN ONFOS	en _t os o', so ostoen	antos o o o o o o o o o o o o o o o o o o
R^{203}	Н	Н	Н	Н	Н	Н	Н	н	Ι
$R^{^{202}}$	ОН	Ю	ОН	ОН	ОН	ОН	Ю	НО	НО
R ²⁰¹	ЮН	Ю	Ю	НО	Ю	НО	НО	НО	Ю
တ	СН	СН	СН	СН	СН	СН	Ю	Ю	СН
Ejemplo (compuesto Nº)	89 (11-94)	(36-11) 06	91 (11-96)	92 (11-97)	(86-11) 86	94 (II-99)	95 (II-100)	96 (II-101)	97 (II-102)

90	SO,	SO ₃ Ma NaO ₃ SO	OS,OBN SO,OBN	BN.COS NO.NO BN.COS NO.NO	OS*OPN	\langle	OSCOBN SOLOBN OSCOBN OSCOBN	OSCOBN OSCOBNOBIO OSCOBNOBI	OSCOBN SOSCOBN SNLOSSOSSOSSOSSOSSOSSOSSOSSOSSOSSOSSOSSOSS	OSCOEN BN COSCOEN BN C	OSCOBN SOSCOBN
, , ,	Nao _s so		\mathbb{H}	en fos	NaO ₅ SO Cost	Nao ₃ SO					
	Ι	Τ	Ю	NH ₂		Z H Z	Ĭ Z T	Σ _α τ τ	T I I	<u>Т</u> т т <u>Т</u> <u>Т</u>	CO ON A T T T CO ON A T T T T T T T T T T T T T T T T T T
צ	НО	$\frac{N}{N}$	NH ₂	\mathbf{N}_2		NH ₂	ZHZ ZHZ	NH2 PH2 OH	HO H	NH ₂ OH OH CO ONa	CO ONa OH OH OH OH
	HO	NH ₂	NH_2	SO ₃ Na		SO ₃ Na	SO ₃ Na OH	SO ₃ Na OH	SO ₃ Na OH OH	SO ₃ Na OH OH NH ₂	SO ₃ Na OH OH NH ₂ NH ₂ NH ₂
	C-COONa	C-CH ₃	C-CH ₃	C-CH ₃		C-CH ₃	C-CH ₃	C-CH ₃	C-COONa	C-COONa C-CCH ₃	C-COONa C-CCH ₃
Ejemplo (compuesto Nº)	98 (II-104)	(69-11) 66	100 (11-71)	101 (II-73)		102 (11-76)	102 (II-76)	102 (II-76) 103 (II-80) 104 (II-103)	102 (II-76) 103 (II-80) 104 (II-103) 105 (II-105)	102 (II-76) 103 (II-80) 104 (II-103) 105 (II-105)	102 (II-76) 103 (II-80) 104 (II-103) 105 (II-105) 106 (II-117)

D,	NaO,SO,Na	ew _c os N	SON NEW YORK	SO ₃ Na O ₃ O ₃ O ₃ O ₃ Na	NBO _S SO ON OS	Hacip Mill	NOSON HIT COOM	NaO ₃ SO O O O O O O O O O O O O O O O O O O	NaO,SO OS, ON OS
De	NaO ₅ SO, Na	NaO ₃ S	enfos Ostoen	SO ₃ Na	NaO ₃ S	entos O, , , o costoan	SO, VO O, VO ON NEO, SO, NE	NACASO	SO ₃ Na
$R^{^{203}}$	Н	Н	н	Н	Н	Н	Н	Н	Ι
$R^{^{202}}$	2	NH ₂	NH_2	NH_2	NH_2	NH_2	NH ₂	NH ₂	NH_2
$R^{^{201}}$	NH_2	NH ₂	NH ₂	NH_2	NH_2	NH_2	NH_2	NH_2	N-O F H
9	Z	Z	Z	Z	Z	Z	Z	Z	OS CORN
Ejemplo (compuesto Nº)	109 (II-108)	110 (II-109)	111 (11-110)	112 (II-111)	113 (II-112)	114 (II-113)	115 (II-114)	116 (II-115)	117 (II-27)

Ejemplo (compuesto Nº)	9	R^{201}	R^{202}	R^{203}	۵	D,
118 (II-29)	ewfos of the state	N-O H	^z HN	н	NaO ₃ SO OSO NAO ₃ SO	SO ₃ Na NaO ₃ SO
119 (II-32)	ostoen	N-O H H	^z HN	н	CH ₃	OSCOBN OSCOBN

B. Ejemplos de mezclas de la invención

Ejemplo 120

5 Se mezclan entre sí 70 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1)

en una fracción del 75% y 30 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-1)

10 en una fracción del 75%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 121

15

20

Se disuelven 67 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75% y 33 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-2)

$$NaO_3SO$$
 SO_3Na
 NH_2
 NH

en una fracción del 75% en 500 partes de agua y la solución de colorante obtenida se ajusta a pH 5-6. La evaporación de esta solución de colorante proporciona una mezcla de colorante que proporciona tinturas e impresiones de color negro en el algodón en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 122

5

10

Se mezclan mecánicamente entre sí 70 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1), 18 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-3)

NaO₃SO
$$\stackrel{\circ}{\underset{N}{\bigvee}}$$
 $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\circ}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\sim}{\underset{N}{\bigvee}}$ $\stackrel{\sim$

en una fracción del 70% y 12 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color escarlata de la fórmula (III-1)

$$NaO_3SO$$
 NaO_3SO
 NaO_3SO

en una fracción del 70%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro azabache, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 123

5

Se disuelven 67 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 15 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-5)

en una fracción del 70% y 15 partes de un polvo de colorante que contiene electrolito, que contiene el colorante azo de color naranja de la fórmula (IV-1)

en una fracción del 75% en 500 partes de agua y la solución de colorante obtenida se ajusta a pH 5-6. La evaporación de esta solución de colorante proporciona una mezcla de colorante que proporciona tinturas e impresiones de color negro azabache en el algodón en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 124

25

20 Se mezclan mecánicamente entre sí 67 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1), 23 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-6)

NaO₃SO
$$\stackrel{\circ}{>}$$
SO₃Na $\stackrel{\circ}{>}$ SO₃

en una fracción del 70% y 10 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color escarlata de la fórmula (III-2)

$$NaO_3SO$$
 NaO_3SO
 NaO_3SO

en una fracción del 70%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro azabache, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 125

15

25

Se suspenden 59 partes de 4-(β-sulfatoetilsulfonil)anilina en 145 partes de hielo-agua y 38 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 37 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 22,6 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico y el acoplamiento tiene lugar inicialmente, en una primera etapa, a un pH de 1 a 1,5 por debajo de 20 °C para dar un colorante monoazo de la fórmula (15-1)

El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido.

Después del final del primer acoplamiento, se añade una solución acuosa de 12,1 partes del colorante monoazo de color amarillo de la fórmula (24-1)

que se ha preparado mediante la diazotización de 7,4 partes de ácido 2-aminobenceno-1,4-disulfónico con 5,1 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y el acoplamiento posterior sobre 3,1 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5, y el pH se ajusta a 5,5-6,5 por debajo de 26 °C usando carbonato sódico. La mezcla 70:30 de los dos colorantes azo (I-1) y (II-1) que se produce después del final de la segunda reacción de acoplamiento se aísla por evaporación al vacío o secado por

pulverización.

Como alternativa, la solución de colorante obtenida, también puede tamponarse a un pH de 5,5-6 mediante la adición de un tampón fosfato y puede ajustarse mediante dilución o concentración adicional para dar un líquido de marca de una concentración definida.

La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

Ejemplo 126

10

5

a) Se suspenden 24 partes de 2,5-dimetoxi-4-(β-sulfatoetilsulfonil)anilina en 60 partes de hielo-agua y 13 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 12,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 21,5 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico y el acoplamiento se realiza en una primera etapa a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de color rojo de la fórmula (15-2)

El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido. Después del final del primer acoplamiento se añade una solución acuosa de 12,1 partes del colorante monoazo de color amarillo de la fórmula (24-1),

que se preparó mediante la diazotización de 7,4 partes de ácido 2-aminobenceno-1,4-disulfónico con 5,1 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y el acoplamiento posterior sobre 3,1 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5.

25

30

20

b) En un recipiente de reacción separado 37 partes de 4-(β-sulfatoetilsulfonil)anilina se suspenden en 91 partes de hielo-agua y 24 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 23,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico la suspensión diazo resultante se añade gota a gota a la mezcla acuosa de los dos colorantes monoazo de a) y el pH se ajusta a 5,5-6,5 por debajo de 25 °C usando carbonato sódico. La mezcla 70:30 de los dos colorantes (I-9)

$$O_3SO$$
 O_1S
 O_2SO
 O_3SO
 O_3SO

y (II-1), obtenida después del final de la reacción de acoplamiento, se aísla posteriormente por evaporación al vacío o mediante secado por pulverización. La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

5 Ejemplo 127

10

15

20

40

- a) Se suspenden 18,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 50 partes de hielo-agua y 12 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 12 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 20,5 partes de ácido 1-amino-8-hidroxi-naftaleno-3,6-disulfónico y el acoplamiento se realiza inicialmente, en una primera etapa, a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de la fórmula (15-1). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido. Después del final del primer acoplamiento se añade una solución acuosa de 2,4 partes de 1,3-diaminobenceno y el pH se ajusta a 2 usando una solución de carbonato sódico.
- b) En un recipiente de reacción separado 47 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico se suspenden en 100 partes de hielo-agua y 25 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 24 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 10-15 °C a la mezcla acuosa del acoplador de a), manteniéndose el pH durante la adición a 1,7-2,5 usando carbonato sódico sólido. Tras la adición completa de la solución de diazo, el pH se ajusta lentamente a 5,5-6,5 por debajo de 25 °C, usando carbonato sódico, y la mezcla 70:30 de los dos colorantes (I-7)

$$NaO_3SO$$
 SO_3Na
 NaO_3SO
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na

y (II-2), obtenida después del final de la reacción de acoplamiento, se aísla posteriormente por evaporación al vacío o mediante secado por pulverización. La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

Ejemplo 128

a) Se suspenden 26 partes de 4-(β-sulfatoetilsulfonil)anilina en 65 partes de hielo-agua y 17 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 16,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 20,4 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico, y 2,6 partes de 1,3-diaminobenceno en forma de una solución acuosa y el acoplamiento se realiza inicialmente, en una primera fase, a un pH de 1-1,7 por debajo de 20 °C para dar una mezcla de los dos colorantes monoazo de la fórmula (15-1) y (24-2)

El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido.

b) En un recipiente de reacción separado se suspenden 41 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico en 90 partes de hielo-agua y 22 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 21 partes de una solución de nitrito sódico a una concentración del

40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 10-15 °C a la mezcla acuosa del acoplador de a), manteniéndose el pH durante la adición a 2-3 usando carbonato sódico sólido. Tras la adición completa de la solución de diazo, el pH se ajusta lentamente a 5,5-6,5 por debajo de 25 °C, usando carbonato sódico, y la mezcla 70:30 de los dos colorantes (I-7) y (II-3) obtenida después del final de la reacción de acoplamiento, se aísla posteriormente por evaporación al vacío o mediante secado por pulverización. La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

Ejemplo 129

a) Se suspenden 18,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 45 partes de hielo-agua y 12 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 12 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 20,4 partes de ácido 1-amino-8-hidroxi-naftaleno-3,6-disulfónico y el acoplamiento se realiza inicialmente, en una primera fase, a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de la fórmula (15-1). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido. Después del final del primer acoplamiento se añade una solución acuosa de 9 partes del colorante monoazo de color amarillo de fórmula (24-3),

que se ha preparado mediante la diazotización de 5,3 partes de ácido 2-amino-5-metoxibencenosulfónico con 4,5 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y posteriormente mediante el acoplamiento del producto sobre 2,8 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5.

b) En un recipiente de reacción separado se suspenden 42 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico en 95 partes de hielo-agua y 23 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 21,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a la mezcla acuosa de los dos colorantes monoazo de a), y el pH se ajusta a 5,5-6,5 por debajo de 25 °C usando carbonato sódico. La mezcla 69:31 de los dos colorantes (I-7) y (II-6) obtenida después del final de la reacción de acoplamiento se aísla posteriormente por evaporación al vacío o mediante secado por pulverización.

La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

Ejemplo 130

20

25

30

a) Se suspenden 18 partes de 4-(β-sulfatoetilsulfonil)anilina en 45 partes de hielo-agua y 12 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 12 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 20,4 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico y el acoplamiento se realiza inicialmente, en una primera fase, a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de color rojo de la fórmula (15-1). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido. Después del final del primer acoplamiento una solución acuosa de una mezcla de 4,3 partes del colorante monoazo de color amarillo de fórmula (24-4) y 5,6 partes del colorante monoazo de color amarillo de la fórmula (24-5),

que se ha preparado mediante la diazotización de una mezcla de 2,5 partes de ácido 2-amino-5-metilbencenosulfónico y 3,6 partes de ácido 3-aminonaftaleno-1,5-disulfónico con 4,4 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y posteriormente el acoplamiento del producto sobre 2,7 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5.

b) En un recipiente de reacción separado se suspenden 42 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico en 95 partes de hielo-agua y 23 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 21,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a la mezcla acuosa de los tres colorantes monoazo de a), un pH de 2-2,5 que se mantiene constante mediante la adición simultanea de carbonato sódico sólido, y se ajusta a un pH final de 5,5-6,5 por debajo de 25 °C usando carbonato sódico. La mezcla 70:15:15 de los tres colorantes (I-7), (II-7) y (II-13) obtenida después del final de la reacción de acoplamiento se aísla posteriormente por evaporación al vacío o mediante secado por pulverización.

La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

20 Ejemplo 131

25

30

5

10

15

Se suspenden 10 partes de $4-(\beta$ -sulfatoetilsulfonil)anilina y 13 partes de ácido 2-amino-5-(β -sulfatoetilsulfonil)bencenosulfónico en 60 partes de hielo-agua y 14 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 13 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la mezcla diazo resultante se añade gota a gota de 10 a 15 °C y un pH de entre 2 y 3, que se mantiene con carbonato sódico sólido, a una solución acuosa de 14,6 partes del colorante monoazo de color amarillo de la fórmula (24-1), que se ha preparado mediante la diazotización de 8,9 partes de ácido 2-aminobenceno-1,4-disulfónico con 6,1 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y el acoplamiento posterior del producto sobre 3,8 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5. Después del final de la adición de la mezcla diazo, el pH se ajusta con carbonato sódico a 5,5-6,5, y se añaden 60 partes de el colorante disazo de color azul marino de la fórmula. La mezcla 60:9:10:10:11 resultante de los cinco colorantes (I-1), (II-1), (II-8), (II-116) y (II-10) puede aislarse por evaporación al vacío o mediante secado por pulverización, y tiñe el algodón en tonos de color negro.

Ejemplo 132

Se mezclan mecánicamente entre sí 68 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75% y 32 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color naranja-pardo de la fórmula (II-35)

en una fracción del 75%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 133

10

15

Se disuelven 67 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75% y 33 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color amarillo dorado de la fórmula (II-81)

en una fracción del 75% se disuelven en 500 partes de agua, y la solución de colorante obtenida se ajusta a un pH de 5-6.

5 La evaporación de esta solución produce una mezcla de colorante que proporciona tinturas e impresiones de color negro verdoso en el algodón en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 134

Se disuelven 66 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 22 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo-rojo de la fórmula (II-106)

en una fracción de aproximadamente 75%, y 12 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color naranja de la fórmula (Gb-2)

$$NaO_3SO$$
 SO_3Na
 NH_2
 NH

en una fracción del 70% se disuelven en 500 partes de agua, y la solución de colorante obtenida se ajusta a un pH de 5-6.

20 La evaporación de esta solución produce una mezcla de colorante que proporciona tinturas e impresiones de color negro rojizo en el algodón en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 135

25 Se mezclan mecánicamente entre sí 65 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75% y 35 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color naranja-pardo de la fórmula (II-117)

$$NaO_3SO$$
 SO_3Na
 NH_2
 N
 SO_3Na
 SO_3Na
 NAO_3SO
 SO_3Na
 NAO_3SO
 SO_3Na
 SO_3N

en una fracción del 70%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 136

5

a) Se suspenden 19,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 50 partes de hielo-agua y 13 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 12,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 22 partes de ácido 1-amino-8-hidroxi-naftaleno-3,6-disulfónico y el acoplamiento se realiza inicialmente, en una primera fase, a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de la fórmula (15-1). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido.

Después del final del primer acoplamiento una solución acuosa de 18,3 partes del colorante monoazo de color amarillo de fórmula (24-6),

20 que se ha preparado mediante la diazotización de una mezcla de 12,6 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)bencenosulfónico con 6,2 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y el acoplamiento posterior del producto sobre 3,8 partes de 1,3-diaminobenceno en un medio acuoso a un pH de 1,5-2,5 y el pH se ajusta a 3-4 usando carbonato sódico sólido.

b) En un recipiente de reacción separado se suspenden 32,5 partes de 2-metoxi-5-(β-sulfatoetilsulfonil)-anilina en 85 partes de hielo-agua y 20 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a la mezcla acuosa de los dos colorantes monoazo de a), un pH de 3-4 que se mantiene constante mediante la adición simultanea de carbonato sódico sólido, y se ajusta a un pH final de 5,5-6,5 por debajo de 25 °C usando carbonato sódico. La mezcla 70:30 de los dos colorantes (I-2) y (II-56) obtenida después del final de la reacción de acoplamiento se aísla por evaporación al vacío o mediante secado por pulverización.

La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro verduzco.

Ejemplo 137

5

10

Se suspenden 52 partes de 4-(β-sulfatoetilsulfonil)anilina en 130 partes de hielo-agua y 34 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 33 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido aminosulfónico, se añaden 22,6 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico y el acoplamiento se realiza inicialmente, en la primera etapa, a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de la fórmula (15-1). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido. Después del final del primer acoplamiento se añade una solución acuosa de 18,9 partes del colorante monoazo de color amarillo de la fórmula (24-7),

15

que preparado mediante la diazotización de 13 partes de ácido 2-amino-5-(βsulfatoetilsulfonil)bencenosulfónico con 6,3 partes de una solución de nitrito sódico a una concentración del 40% en un medio ácido y el acoplamiento posterior del producto sobre 3,9 partes de 3-aminofenol en un medio acuoso a un pH de 1,5-2,5, y el ajusta a un pH de 5,5-6,5 tiene lugar por debajo de 25 °C usando carbonato sódico. La mezcla 70:30 de los dos colorantes azo (I-1) y (II-81) que se produce en este caso después del final de la segunda reacción 20 de acoplamiento se aísla por evaporación al vacío o secado por pulverización.

La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro verduzco.

Ejemplo 138

5

10

15

Una mezcla acuosa preparada de acuerdo con el procedimiento descrito en el Ejemplo 137, usando 2,6-diaminopiridina en lugar de 3-aminofenol como componente de acoplamiento, y que contiene 67 partes de el colorante disazo de color azul marino de la fórmula (I-1) y 22 partes del colorante disazo de color pardo-rojo de la fórmula (II-106)

se mezcla adicionalmente con 11 partes del colorante monoazo de color amarillo de la fórmula (Ga-2)

y se ajusta con carbonato sódico a un pH de 6-6,5. La mezcla de la invención resultante de los tres colorantes azo (I-1), (II-106) y (Ga-2) puede aislarse por evaporación al vacío o secado por pulverización, y tiñe el algodón en tonos de color negro.

Ejemplo 139

a) Se suspenden 29 partes de 4-(β-sulfatoetilsulfonil)anilina en 75 partes de hielo-agua y 18,5 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 20,4 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico y 4 partes de resorcinol y el acoplamiento se realiza en una primera etapa a un pH de 1-1,7 por debajo de 20 °C para dar una mezcla de los dos colorantes monoazo de la fórmula (15-1) y (24-8). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido.

b) En un recipiente de reacción separado se suspenden 36,5 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico en 80 partes de hielo-agua y 20 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 18,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 10-15 °C a la mezcla acuosa del acoplador de a), el pH se ajusta a 5,5-6,5 por debajo de 25 °C, usando carbonato sódico, y la mezcla 70:30 de los dos colorantes (I-7) y (II-93) que se produce después del final de la reacción de acoplamiento se aísla posteriormente por evaporación al vacío o mediante secado por pulverización. La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

$$NaO_3SO$$
 NaO_3SO
 $NaO_$

Ejemplo 140

10

15

20

25

a) Se suspenden 18,5 partes de 4-(β-sulfatoetilsulfonil)anilina en 50 partes de hielo-agua y 12 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 12 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, se añaden 20,5 partes de ácido 1-amino-8-hidroxinaftaleno-3,6-disulfónico y el acoplamiento se realiza en una primera etapa a un pH de 1-1,5 por debajo de 20 °C para dar un colorante monoazo de la fórmula (15-1). El intervalo de pH indicado se ajusta, y se mantiene durante la reacción de acoplamiento, mediante la adición de hidrogenocarbonato sódico sólido. Después del final del primer acoplamiento se añade una solución acuosa de 4,8 partes de ácido 3,5-diamino-4-metilbenzoico.

b) En un recipiente de reacción separado se suspenden 46 partes de ácido 2-amino-5-(β-sulfatoetilsulfonil)-bencenosulfónico en 100 partes de hielo-agua y 25 partes de ácido clorhídrico a una concentración del 30% y se diazotizan mediante la adición gota a gota de 22,5 partes de una solución de nitrito sódico a una concentración del 40%. Después de la retirada del exceso de nitrito con ácido amidosulfónico, la solución diazo resultante se añade gota a gota a 10-15 °C a la mezcla acuosa del acoplador de a), el pH se ajusta a 5,5-6,5 por debajo de 25 °C, usando carbonato sódico, y la mezcla 70:30 de los dos colorantes (I-7) y (II-118) que se produce después del final de la reacción de acoplamiento se aísla posteriormente por evaporación al vacío. La mezcla de colorante resultante de la invención tiñe el algodón en tonos de color negro.

NaO₃SO
$$\stackrel{\circ}{\text{Na}}$$
 $\stackrel{\circ}{\text{Na}}$ $\stackrel{\circ}{$

30

Ejemplo 141

5

Se mezclan mecánicamente entre sí 65 partes de un polvo de colorante que contiene electrolito, que contiene un colorante disazo de color azul marino de la fórmula (I-2) en una fracción del 75%, 20 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color naranja de la fórmula (II-54)

en una fracción del 70% y 15 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color escarlata de la fórmula (III-3)

10 en una fracción del 65%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

15 Ejemplo 142

Se mezclan mecánicamente entre sí 67 partes de un polvo de colorante que contiene electrolito, que contiene un colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 18 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color naranja de la fórmula (II-77)

20

en una fracción del 65% y 15 partes de un polvo de colorante que contiene electrolito, que contiene el colorante monoazo de color naranja de la fórmula (IV-15)

en una fracción del 70%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 143

15

20

25

Se disuelven 45 partes de un polvo de colorante que contiene electrolito, que contiene el colorante diazo de color azul marino verduzco de la fórmula (I-4)

en una fracción del 70%, 25 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 15 partes de un polvo de colorante que contiene electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-2) en una fracción de aproximadamente el 75%, y 15 partes de un polvo de colorante que contiene electrolito, que contiene el colorante disazo de color escarlata de la fórmula (III-2) en una fracción del 80% en 500 partes de agua, y la solución de colorante resultante se ajusta a un pH de 5,5-6,5 y se tampona con tampón fosfato. La evaporación o el secado por pulverización de esta solución proporcionan una mezcla de colorante que en el algodón proporciona tinturas e impresiones de color negro azabache en las condiciones de tintura típicas para los colorantes reactivos. Como alternativa, mediante una dilución o concentración adicional, la solución de colorante obtenida puede modificarse para proporcionar un líquido de marca de una concentración definida.

Los ejemplos que se muestran a continuación describen mezclas de la invención adicionales de los colorantes de las fórmulas (I)-(IV), cada una enumerada en forma de las sales sódicas. Las proporciones de mezcla se expresan en porcentajes en peso. Las mezclas de colorantes proporcionan tinturas de color azul-gris a negro azabache, en el algodón, por ejemplo, mediante los métodos de tintura típicos para los colorantes reactivos.

Mezclas binarias de la invención

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
144	(I-1)	NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na NaO ₃ S	60:40

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
145	(I-1)	NaO ₃ SO SO ₃ Na SO ₃ Na OSO ₃ Na OSO ₃ Na NH ₂ N SO ₃ Na SO ₃ Na NaO ₃ SO OSO ₃ Na	72:28
146	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NSO ₃ Na OSO ₃ Na OSO ₃ Na NH ₂ NH	72:28
147	(I-1)	NaO ₃ SO	66:34
148	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ N SO ₃ Na OSO ₃ Na OSO ₃ Na SO ₃ Na	68:32

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
149	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na H ₃ C OSO ₃ Na	72:28
150	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NaO ₃ SO Na NaO ₃ SO Na Na Na Na Na Na Na Na Na N	65:35
151	(I-1)	NaO ₃ SO NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na NaO ₃ S	70:30
152	(I-1)	NaO ₃ SO NH ₂ NH ₃ SO ₃ Na	67:33

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
153	(I-1)	NaO ₃ SO NaO ₃ SO NH ₂ NH ₂ NH ₂ NSO ₃ Na NaO ₃ S NaO ₃ S	62:38
154	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ OSO ₃ Na NAO ₃ S CH ₃	68:32
155	(I-1)	NaO ₃ SO OSO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na NaO ₃ S	65:35
156	(I-1)	NaO ₃ SO Na	70:30

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
157	(I-1)	NaO ₃ SO O O O O O O O O O O O O	68:32
158	(I-1)	NaO ₃ SO	70:30
159	(I-1)	NaO ₃ SO	66:34
160	(I-1)	NaO ₃ SO	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
161	(I-1)	NaO ₃ SO SO SO NAO ₃ SO	60:40
162	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na NAO ₃ S SO ₃ Na	69:31
163	(I-1)	NaO ₃ SO SO ₃ Na NH ₂	70:30
164	(I-1)	NaO ₃ SO	67:33

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
165	(I-1)	NaO ₃ SO NaO ₃ SO	68:32
166	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ N SO ₃ Na OSO ₃ Na NH ₂ N SO ₃ Na NaO ₃ SO O O O O	73:27
167	(I-1)	NaO ₃ SO	70:30
168	(I-1)	NaO ₃ SO	70:30

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
169	(I-1)	NaO ₃ SO	67:33
170	(I-1)	NaO ₃ SO S	67:33
171	(I-1)	NaO ₃ SO NaO ₃ SO	68:32
172	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ N SO ₃ Na OSO ₃ Na OSO ₃ Na NAO ₃ SO NAO ₃ SO	68:32

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
173	(I-1)	NaO ₃ SO	68:32
174	(I-1)	CH ₃ O SO ₃ Na	65:35
175	(I-1)	NaO ₃ SO	65:35
176	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ N SO ₃ Na CH ₃ SO ₃ Na SO ₃ Na	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
177	(I-1)	NBO3SO SO3NB NBO3SO SO3NB NBO3SO SO3NB NBO3SO SO3NB	69:31
178	(I-1)	NaO ₃ SO O, S, O O, S, O O, S, O O, S, O OSO ₃ Na NaO ₃ S NaO ₃ S	75:25
179	(I-1)	NaO ₃ SO NaO ₃ SO	67:33
180	(I-1)	NaO ₃ SO	72:28

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
181	(I-1)	NaO ₃ SO CH ₃ O CH ₃	67:33
182	(I-1)	NaO ₃ SO	68:32
183	(I-1)	NaO ₃ SO SO ₃ Na OSO	72:28
184	(I-1)	NaO ₃ SO SO ₃ Na OSO ₃ Na	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
185	(I-1)	NaO ₃ SO ON SO ON	70:30
186	(I-1)	NaO ₃ SO SO ₃ Na OSO ₃ Na OSO ₃ Na OSO ₃ Na NaO ₃ S	62:38
187	(I-1)	NaO ₃ SO OSO ₃ Na (II-44) HO OH NaO ₃ S	65:35
188	(I-1)	NaO ₃ SO SO ₃ Na OSO ₃ Na OSO ₃ Na OSO ₃ Na OSO ₃ Na	70:30

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
189	(I-1)	NaO ₃ SO O O O O O O O O O O O O O O O O O O	68:32
190	(I-1)	NaO ₃ SO O, SO O, SO ON ON OSO ₃ Na NaO ₃ S NaO ₃ S	72:28
191	(I-1)	NaO ₃ SO O, SO O, SO ON ON ON ON ON ON ON ON ON	70:30
192	(I-1)	NaO ₃ SO OSO ₃ Na NaO ₃ SO OSO ₃ Na SO ₃ Na	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
193	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NaO ₃ Na NaO ₃ SO Na NaO ₃ SO Na Na Na Na Na Na Na Na Na N	64:36
194	(I-1)	F N N OH N SO ₃ Na OSO ₃ Na OSO ₃ Na OSO ₃ Na NaO ₃ S	69:31
195	(I-1)	NaO ₃ SO	73:27
196	(I-1)	NaO ₃ SO Na NaO ₃ SO	71:29

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
197	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ NH ₂ SO ₃ Na NaO ₃ SO O	65:35
198	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NaO ₃ SO	70:30
199	(I-1)	NaO ₃ SO	67:33
200	(I-1)	NaO ₃ SO $ \begin{array}{c} O, S, O \\ SO_3Na \end{array} $ $ \begin{array}{c} NH_2 \\ NN_2 \\ NN_3 \\ NAO_3SO \end{array} $ $ \begin{array}{c} NH_2 \\ NN_3 \\ NN_4 \\ NN_5 \\ NN_6 \\ NN_6 \\ NN_6 \\ NN_6 \\ NN_6 \\ NN_7 \\ NN_7 \\ NN_7 \\ NN_8 \\ N$	72:28

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
201	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₂ NSO ₃ Na NaO ₃ S	67:33
202	(I-1)	SO ₃ Na NH ₂ NH ₃ NH ₂ NH ₃ NH ₂ NH ₃	67:33
203	(I-1)	NaO ₃ SO	65:35
204	(I-1)	NaO ₃ SO NaO ₃ SO NH ₂ NH	68:32
205	(I-1)	NaO ₃ SO Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₂ NH ₃ SO ₃ Na NaO ₃ SO Na NaO ₃ SO Na	60:40

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
206	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₃ NH ₃ NAO ₃ SO SO ₃ Na	65:35
207	(I-1)	NaO ₃ SO NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ C NH ₃ C	68:32
208	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ CH ₃ NH SO ₃ Na	63:37
209	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ CH ₃ CH ₃ NaO ₃ SO SO ₀	67:33

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
210	(I-1)	NaO ₃ SO NH ₂ NH ₂ CH ₃ NH ₃ SO ₃ Na	67:33
211	(I-1)	NaO ₃ SO	70:30
212	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ CH ₃ NH ₂ CH ₃ NH ₂ SO ₃ Na	65:35
213	(I-1)	NaO ₃ SO	67:33

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
214	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ CH ₃ NH ₂ NH ₂ SO ₃ Na	72:28
215	(I-1)	NaO ₃ SO SO ₃ Na NH ₂	74:26
216	(I-1)	NaO ₃ SO	66:34
217	(I-1)	NaO ₃ SO	67:33
218	(I-1)	NaO ₃ SO SO ₃ Na OSO ₃ Na	67:33
219	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ S NaO	70:30

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
220	(I-1)	NaO ₃ SO SO ₃ Na SO ₃ Na OSO ₃ Na NH ₂ NH ₂ SO ₃ Na	70:30
221	(I-1)	SO ₃ Na O SO ₃ Na O SO ₃ Na O SO ₃ Na N COONa N N N N N N N N N N N N N N N N N N	73:27
222	(I-1)	NaO ₃ SO	75:25
223	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ NH ₂ SO ₃ Na NaO ₃ SO SO ₃ Na	65:35
224	(I-1)	NaO ₃ SO	60:40
225	(I-1)	NaO ₃ SO NaO ₃ SO	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
226	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₂ NAO ₃ SO NAO ₃ SO NAO ₃ SO	72:28
227	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₂ NAO ₃ S NAO ₃ S	67:33
228	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₂ NH ₃	70:30
229	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ SO ₃ Na	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
230	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ OH NN SO ₃ Na	65:35
231	(I-1)	NaO ₃ SO NH ₂ NH ₂ OH NNN SO ₃ Na	68:32
232	(I-1)	NaO ₃ SO Na NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₃ NH ₃ NH ₃ NH ₃ NAO ₃ SO Na Na	60:40
233	(I-1)	NaO ₃ SO	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
234	(I-1)	NaO ₃ SO	70:30
235	(I-1)	NaO ₃ SO SO ₃ Na NaO ₃ SO OH NN SO ₃ Na SO ₃ Na	65:35
236	(I-1)	NaO ₃ SO	70:30
237	(I-1)	NaO ₃ SO NaO ₃ SO	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
238	(I-1)	NaO ₃ SO	72:28
239	(I-1)	SO ₃ Na NaO ₃ S SO ₃ Na	67:33
240	(I-1)	SO ₃ Na OH NI OH NI SO ₃ Na SO ₃ Na	67:33
241	(I-1)	NaO ₃ SO SO ₃ Na OH N OH N N SO ₃ Na	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
242	(I-1)	NaO ₃ SO O SO O NAO ₃ S OH OH NAO ₃ S NaO ₃ S	68:32
243	(I-1)	NaO ₃ SO	60:40
244	(I-1)	SO,Na SO,Na (II-101) NaO,SO	65:35
245	(I-1)	NaO ₃ SO NaO ₃ SO	70:30

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
246	(I-1)	NaO ₃ SO	66:34
247	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NaO ₃ SO	67:33
248	(I-1)	0, SO ₃ Na NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₃	65:35
249	(I-1)	NaO ₃ SO	70:30

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
250	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NH ₂	65:35
251	(I-1)	NaO ₃ SO	72:28
252	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na	67:33
253	(I-1)	SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NO ₃ Na NaO ₃ SO	67:33

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
254	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ SO ₃ Na	65:35
255	(I-1)	NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na	68:32
256	(I-1)	NaO ₃ S Na NH ₂ N	60:40
257	(I-1)	NaO ₃ SO	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
258	(I-1)	NaO ₃ SO	70:30
259	(I-1)	NaO ₃ SO SO ₃ Na NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NSO ₃ Na SO ₃ Na	68:32
260	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO Na NaO ₃ SO Na Na Na Na Na Na Na Na Na N	64:36
261	(I-1)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NaO ₃ Na NaO ₃ SO Na NaO ₃ SO Na NaO ₃ SO Na NaO ₃ SO Na Na Na Na Na Na Na Na Na N	66:34
262	(I-1)	O SO ₃ Na NaO ₃ SO NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NO ₃ Na	70:30
263	(I-1)	(II-9)	67:33
264	(I-1)	(II-15)	65:35

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Proporción (I):(II)
265	(I-1)	(II-17)	66:34
266	(I-1)	(II-35)	68:32
267	(I-1)	(II-47)	65:35
268	(I-1)	(II-49)	60:40
269	(I-1)	(II-55)	68:32
270	(I-1)	(II-61)	65:35
271	(I-1)	(II-70)	70:30
272	(I-1)	(II-72)	67:33
273	(I-1)	(II-78)	66:34
274	(I-1)	(II-88)	62:38
275	(I-1)	(II-93)	67:33
276	(I-1)	(II-99)	60:40
277	(I-1)	(II-104)	68:32
278	(I-1)	(II-106)	66:34
279	(I-1)	(II-112)	65:35

Mezclas triméricas de la invención

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (III)	Proporción (I):(II):(III)
280	(I-1)	(II-1)	NaO ₃ SO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	66:22:12
281	(I-1)	(II-2)	NaO ₃ SO O O O O O O O O O O O O O O O O O O	65:23:12
282	(I-1)	(II-3)	NaO ₂ SO	67:21:12
283	(I-1)	(II-5)	SO,Na NaO,S NIN NaO,S NSO,Na NSO,Na NSO,Na	67:23:10

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (III)	Proporción (I):(II):(III)
284	(I-1)	(II-6)	NaO ₃ SO OH NaO ₃ SO NaO ₃ Na NaO ₃ SO SO Na	65:25:10
285	(I-1)	(II-13)	NaO,SO H,C N NaO,S Na Nao,S Nao Nao,S Nao	70:22:8
286	(I-1)	(II-24)	NeO,SO	72:20:8
287	(I-1)	(II-2)	NaO,500 H, C NaO,50 NaO	70:23:7
288	(I-1)	(II-25)	NaO ₃ SO CH ₃ OH NaO ₃ SO NaO ₃ S NH ₃ NaO ₃ SO S=O NaO ₃ SO O	67:22:11
289	(I-1)	(II-26)	NaO,SO SO,Na OH NaO,SO	65:20:15
290	(I-1)	(II-28)	NaO ₃ SO OH NaO ₃ SO OH NaO ₃ SO Na	69:23:8

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (III)	Proporción (I):(II):(III)
291	(I-1)	(II-31)	NaO,SO	66:24:10
292	(I-1)	(II-35)	NaO ₃ SO OH NaO ₃ SO NaO3	68:20:12
293	(I-1)	(II-36)	SO ₃ Na OH NaO ₃ S Na Na NaO ₃ SO Na	70:18:12
294	(I-1)	(II-37)	NaO ₃ SO O O O O O O O O O O O O O O O O O O	69:23:8
295	(I-1)	(II-40)	NaO,SO	66:22:12
296	(I-1)	(II-45)	OSO,Na (III-17) NaO,SO OSO,Na	66:22:12
297	(I-1)	(II-53)	OSO ₃ Na (III-18) NaO ₃ SO	70:20:10

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (III)	Proporción (I):(II):(III)
298	(I-1)	(II-1)	OSO3Na (III-19) NaO3SO Na	65:24:11
299	(I-1)	(II-6)	OSO,Ne (III-20) SO,Ne NeO,SO SO O	66:23:11
300	(I-1)	(II-13)	OSO,Na (III-21)	66:20:14
301	(I-1)	(II-54)	NaO ₃ S O ₃ Na OH NaO ₃ S NH ₂ NH ₂ SO ₃ Na NBO ₃ SO O	65:22:13
302	(I-1)	(II-55)	NaO ₃ SO OH NBO ₃ SO NB NBO ₃ SO NB SO ₃ NB	64:21:15
303	(I-1)	(II-64)	SO ₃ Na OH	68:18:14
304	(I-1)	(II-65)	CI SO ₃ Na OH	67:21:12

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (III)	Proporción (I):(II):(III)
305	(I-1)	(II-66)	NaO,SO SO,Na OH N=N H SO,Na (III-26)	68:22:10
306	(I-1)	(II-69)	NaO ₃ SO	68:24:8
307	(I-1)	(II-71)	NaO,SO O N=N O H SO,NB	67:23:10
308	(I-1)	(II-73)	NaO,SO	64:23:13
309	(I-1)	(II-76)	O=S NaO,SO (III-30) NaO,SO O O	65:22:13
310	(I-1)	(II-77)	SO ₃ Na N=N NaO ₃ S NaO ₃ SO NaO ₃ SO NaO ₃ SO	67:22:11
311	(I-1)	(II-80)	NaO ₃ S Na OH NaO ₃ S NaO ₃ Na OH NaO ₃ S NaO	65:22:13

ES 2 388 465 T3

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (III)	Proporción (I):(II):(III)
312	(I-1)	(II-81)	SO,Na OH N=N N+, NH, NH, NH, NH, NH, NH, NH, NH, NH, NH	68:20:12
313	(I-1)	(II-91)	(III-6)	66:22:12
314	(I-1)	(II-92)	(III-2)	66:24:10
315	(I-1)	(II-93)	(III-5)	68:22:10
316	(I-1)	(II-103)	(III-8)	68:24:8
317	(I-1)	(II-104)	(III-32)	65:20:15
318	(I-1)	(II-105)	(III-2)	70:25:5
319	(I-1)	(II-106)	(III-5)	72:24:4
320	(I-1)	(II-108)	(III-3)	72:24:4
321	(I-1)	(II-115)	(III-31)	67:22:11
322	(I-1)	(II-119)	(III-2)	68:20:12
323	(I-1)	(II-1)	(III-2)	68:20:12
324	(I-1)	(II-2)	(III-5)	68:22:10
325	(I-1)	(II-3)	(III-6)	70:22:8
326	(I-1)	(II-5)	(III-31)	66:20:14
327 328	(I-1) (I-1)	(II-6) (II-13)	(III-2) (III-2)	66:24:10 67:20:13
329	(I-1)	(II-13) (II-24)	(III-2)	67:21:12
330	(I-1)	(II-25)	(III-5)	67:22:11
331	(I-1)	(II-26)	(III-2)	68:20:12
332	(I-1)	(II-28)	(III-15)	70:22:8
333	(I-1)	(II-31)	(III-3)	68:24:8
334	(I-1)	(II-35)	(III-5)	68:21:11
335	(I-1)	(II-36)	(III-2)	70:20:10
336	(I-1)	(II-37)	(III-8)	73:20:7
337	(I-1)	(II-40)	(III-5)	67:21:12
338	(I-1)	(II-45)	(III-2)	67:23:10
339	(I-1)	(II-53)	(III-2)	69:20:11
340	(I-1)	(II-54)	(III-5)	67:21:12
341 342	(I-1) (I-1)	(II-55) (II-64)	(III-2) (III-5)	66:22:12 67:23:10
343	(I-1)	(II-65)	(III-6)	73:20:7
344	(I-1)	(II-66)	(III-3)	67:22:11
345	(I-1)	(II-69)	(III-5)	72:20:8
346	(I-1)	(II-71)	(III-2)	70:20:10
347	(I-1)	(II-73)	(III-5)	68:22:10
348	(I-1)	(II-76)	(III-2)	70:18:12
349	(I-1)	(11-77)	(III-8)	68:20:12
350	(I-1)	(II-80)	(III-2)	70:10:20
351	(I-1)	(II-81)	(III-5)	70:10:20
352	(I-1)	(II-91)	(III-3)	70:15:15
353 354	(I-1) (I-1)	(II-92) (II-93)	(III-3) (III-32)	72:12:16 68:14:18
355	(I-1) (I-1)	(II-93) (II-103)	(III-32) (III-2)	67:16:17
356	(I-1)	(II-103) (II-104)	(III-5)	70:12:18
357	(I-1)	(II-105)	(III-3)	69:10:21
358	(I-1)	(II-106)	(III-2)	70:10:20
359	(I-1)	(II-108)	(III-15)	75:13:12
360	(I-1)	(II-115)	(III-5)	73:10:17
361	(I-1)	(II-117)	(III-2)	68:22:10
362	(I-1)	(II-118)	(III-5)	65:25:10
363	(I-1)	(II-119)	(III-3)	70:20:10

Mezclas triméricas adicionales de la invención

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (IV)	Proporción (I):(II):(IV)
364	(I-1)	(II-2)	NaO ₃ SO NaO ₃ S O NaO ₃ S	70:15:15
365	(I-1)	(II-1)	NaO ₃ SO NaO	66:14:20
366	(I-1)	(II-3)	NaO ₃ SO NaO ₃ SO NaO ₃ SO NaO ₃ SO (IV-3)	65:18:17
367	(I-1)	(II-6)	NaO ₃ SO O CH ₃ O NaO ₃ S O NaO ₃ S O CH ₃ O CH N N N N C N N C (IV-4)	67:18:15
368	(I-1)	(II-13)	NaO ₃ SO NaO ₃	70:20:10
369	(I-1)	(II-5)	CH ₃ O SO ₃ Na OH NaO ₃ S (IV-6)	70:18:12
370	(I-1)	(II-24)	NaO ₃ SO NaO ₃ S OH NA	70:20:10

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (IV)	Proporción (I):(II):(IV)
371	(I-1)	(II-35)	NaO ₃ SO OH OH NAO ₃ S (IV-8)	67:18:15
372	(I-1)	(II-37)	OSO ₃ Na . S=0 OSO ₃ Na OH N=N OH NBO ₃ S (IV-9)	67:23:10
373	(I-1)	(II-36)	NaO ₃ S OH F NaO ₃ S (IV-10)	68:19:13
374	(I-1)	(II-26)	NaO ₃ SO O SO NAO ₃ SO O NAO ₃ SO	65:20:15
375	(I-1)	(II-25)	NaO ₃ SO	65:18:17
376	(I-1)	(II-66)	NaO ₃ SO OH F N NaO ₃ S (IV-13)	67:18:15
377	(I-1)	(II-54)	NaO ₃ SO OH OH NAO ₃ S (IV-14)	70:18:12
378	(I-1)	(II-80)	NaO ₃ SO NH ₂ NH ₂ NH ₂ SO ₃ Na	66:20:14

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (IV)	Proporción (I):(II):(IV)
379	(I-1)	(II-69)	NaO ₃ SO NO OH NO	65:15:20
380	(I-1)	(II-71)	NaO ₃ SO N=N NH ₂ NH ₂ NaO ₃ S	65:20:15
381	(I-1)	(II-73)	SO ₃ Na N=N N=N SO ₃ Na	68:20:12
382	(I-1)	(II-76)	NaO ₃ SO ((V-19) N=N NH ₂ SO ₃ Na SO ₃ Na	66:17:17
383	(I-1)	(II-93)	NaO ₃ SO	68:16:16
384	(I-1)	(II-77)	NaO ₃ SO	67:20:13
385	(I-1)	(II-81)	NaO ₃ SO O O O O O O O O O O O O O O O O O O	68:17:15
386	(I-1)	(II-103)	NaO ₃ SO H ₂ C N=N SO ₃ Na (IV-23) H ₂ N SO ₃ Na	67:20:13
387	(I-1)	(II-92)	NaO ₃ SO	67:18:15
388	(I-1)	(II-104)	NaO ₃ SO (IV-25) N=N NH ₂	70:20:10
389	(I-1)	(II-108)	NaO ₃ SO	66:17:17

Ejemplo	Colorante de	Colorante de	Colorante de fórmula (IV)	Proporción
Бјеттріо	fórmula (I)	fórmula (II)	· · ·	(I):(II):(IV)
390	(I-1)	(II-106)	NaO ₃ SO (IV-27) N=N SO ₃ Ne	68:20:12
391	(I-1)	(II-105)	N ₈ O ₃ SO (IV-28) N=N SO ₃ N ₈	65:20:15
392	(I-1)	(II-113)	O SO, Na HN SO, Na NH, N=N HI (IV-29) SO, Na	67:20:13
393	(I-1)	(II-119)	(IV-1)	70:22:8
394	(I-1)	(II-1)	(IV-27)	67:23:10
395	(I-1)	(II-2)	(IV-15)	70:20:10
396	(I-1)	(II-3)	(IV-15)	68:22:10
397	(I-1)	(II-5)	(IV-27)	66:17:17
398	(I-1)	(II-6)	(IV-15)	70:19:11
399	(I-1)	(II-13)	(IV-15)	70:20:10
400	(I-1)	(II-24)	(IV-27)	67:22:11
401	(I-1)	(II-25)	(IV-25)	70:20:10
402	(I-1)	(II-26)	(IV-24)	67:20:13
403	(I-1)	(II-28)	(IV-2)	66:22:12
404 405	(I-1) (I-1)	(II-31) (II-35)	(IV-1) (IV-15)	65:18:17 70:20:10
406	(I-1)	(II-36)	(IV-13) (IV-27)	70:20:10
407	(I-1)	(II-30) (II-37)	(IV-21)	67:21:12
408	(I-1)	(II-40)	(IV-1)	68:16:16
409	(I-1)	(II-45)	(IV-15)	69:19:12
410	(I-1)	(II-53)	(IV-1)	68:22:10
411	(I-1)	(II-54)	(IV-15)	67:22:11
412	(I-1)	(II-55)	(IV-2)	67:18:15
413	(I-1)	(II-64)	(IV-27)	68:20:12
414	(I-1)	(II-65)	(IV-1)	70:15:15
415	(I-1)	(II-66)	(IV-27)	64:22:14
416	(I-1)	(II-69)	(IV-1)	68:20:12
417	(I-1)	(II-71)	(IV-1)	67:21:12
418	(I-1)	(II-73)	(IV-1)	66:22:12
419	(I-1)	(II-76)	(IV-2)	70:18:12
420	(I-1)	(II-77)	(IV-1)	67:23:10
421	(I-1)	(II-80)	(IV-1)	67:19:14
422	(I-1)	(II-81)	(IV-2)	68:19:13
423	(I-1)	(II-91)	(IV-15)	68:20:12
424	(I-1)	(II-92)	(IV-2)	67:16:17
425	(I-1)	(II-93)	(IV-1)	70:10:20
426	(I-1)	(II-103)	(IV-1)	67:13:20
427	(I-1)	(II-104)	(IV-2) (IV-1)	68:15:17
428 429	(I-1) (I-1)	(II-105) (II-106)	(IV-1) (IV-2)	70:20:10 68:20:12
429	(I-1) (I-1)	(II-106) (II-108)	(IV-2) (IV-1)	68:20:12
430	(I-1) (I-1)	(II-108) (II-115)	(IV-1) (IV-15)	67:19:14
431	(I-1) (I-1)	(II-115) (II-117)	(IV-15) (IV-1)	68:16:16
432	(I-1) (I-1)	(II-117) (II-118)	(IV-1) (IV-15)	67:18:15
434	(I-1) (I-1)	(II-119)	(IV-13) (IV-27)	70:20:10
+34	(1-1)	(11-113)	(14-21)	10.20.10

Mezclas triméricas adicionales de la invención

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (G)	Proporción (I):(II):(G)
435	(I-1)	(II-106)	NaO ₃ SO SO ₃ Na NaO ₃ SO NaO	66:20:14
436	(I-1)	(II-105)	NaO ₃ SO NH ₂ NH ₂ NH ₂ (Ga-2) SO ₃ Na	67:22:11
437	(I-1)	(II-108)	NaO,50 (Ga-3) SO,Na	66:17:17
438 no se refiere a la materia objeto reivindicada	(I-1)	(II-107)	NaO ₃ SO NH ₂ NH ₂ NSO ₃ Na OSO ₃ Na (Gb-1) SO ₃ Na	68:22:10
439 no se refiere a la materia objeto reivindicada	(I-1)	(II-119)	NaO ₃ SO SO ₃ Na NH ₂ NSO ₃ Na OSO ₃ Na (Gb-2) SO ₃ Na	67:20:13
440	(I-1)	(II-115)	SO ₃ Na N=N CH ₃ SO ₃ Na HO N NBO ₃ SO	68:14:18
441	(I-1)	(II-113)	NaO ₃ SO CH ₃ COONa HO N SO ₃ Na	67:18:15
442	(I-1)	(II-106)	SO ₃ Na NH ₂ HO OSO ₃ Na (Gd-1)	65:20:15

Ejemplo	Colorante de fórmula (I)	Colorante de fórmula (II)	Colorante de fórmula (G)	Proporción (I):(II):(G)
443	(I-1)	(II-105)	LaO ₂ SO SO SO NE (Ge-1)	70:15:15
444	(I-1)	(II-105)	NaO ₃ S SO ₃ Na HN NH ₂ CI (GF1)	68:18:14
445	(I-1)	(II-106)	NaO ₃ S SO ₃ Na Na NaO ₃ S Na Na NaO ₃ S Na Na NaO ₃ S Na NaO ₃ S Na NaO ₃ S Na	67:20:13
446	(I-1)	(II-108)	NaO ₃ S NaO ₃ Na NaO ₃ S NaO ₃	67:18:15
447	(I-1)	(II-119)	(Ga-1)	70:20:10
448	(I-1)	(II-119)	(Ga-2)	68:18:14
449	(I-1)	(II-119)	(Ge-1)	72:20:8
450	(I-1)	(II-119)	(Gf-2)	70:15:15

Ejemplo 451

Se mezclan mecánicamente entre sí 67 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75% y 33 partes de un polvo de colorante de color pardo que contiene un electrolito preparado como en el Ejemplo 4.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro azabache, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 452

10

20

Se disuelven 70 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75% y 30 partes de un polvo de colorante de color pardo que contiene un electrolito que consiste en 26 partes del colorante trisazo de la fórmula (II-6) y 4 partes del colorante disazo de la fórmula (II-200)

$$NaO_3SO$$
 SO_3Na
 NH_2
 NH_2
 NH_3
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na
 SO_3Na

en 500 partes de agua y la solución de colorante resultante se ajusta a un pH de 5,5-6,5. La evaporación de esta solución de colorante produce una mezcla de colorante que en el algodón proporciona tinturas e impresiones de color negro azabache en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 453

Se disuelven 65 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 29 partes de un polvo de colorante de color pardo que contiene un electrolito preparado como en el Ejemplo 4, y 6 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante monoazo de color rojo de la fórmula (15-1)

en una fracción del 75% en 500 partes de agua y la solución de colorante resultante se ajusta a un pH de 5,5-6,5. La evaporación de esta solución de colorante produce una mezcla de colorante que en el algodón proporciona tinturas e impresiones de color negro azabache en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 454

10

Se mezclan mecánicamente entre sí 66 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 29 partes de un polvo de colorante de color pardo que contiene un electrolito que consiste en 26 partes del colorante trisazo de la fórmula (II-6) y 3 partes del colorante disazo de la fórmula (II-200) y 5 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante monoazo de color rojo de la fórmula (15-1) en una fracción del 75%.

20 La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro azabache, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Ejemplo 455

Se mezclan mecánicamente entre sí 65 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 26 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante trisazo de color pardo de la fórmula (II-5) en una fracción del 70%, 5 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color amarillo-pardo de la fórmula (II-54) en una fracción del 70%, y 4 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante monoazo de color rojo de la fórmula (15-1) en una fracción del 75%.

La mezcla de colorante resultante proporciona tinturas e impresiones de color negro azabache, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

35 Ejemplo 456

Se disuelven 65 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 29 partes de un polvo de colorante de color pardo que contiene un electrolito preparado como en el Ejemplo 4, y 6 partes de un polvo de colorante que contiene un electrolito que contiene el colorante disazo de color escarlata de la fórmula (III-2) en una fracción del 75% en 500 partes de agua y la solución de colorante resultante se ajusta a un pH de 5,5-6,5. La evaporación de esta solución de colorante produce una mezcla de colorante que en el algodón proporciona tinturas e impresiones de color negro azabache en las condiciones de tintura típicas para los colorantes reactivos.

45 Ejemplo 457

40

50

Se mezclan mecánicamente entre sí 64 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color azul marino de la fórmula (I-1) en una fracción del 75%, 29 partes de un polvo de colorante de color pardo que contiene un electrolito que consiste en 26 partes del colorante trisazo de la fórmula (II-6) y 3 partes del colorante disazo de la fórmula (II-200), 4 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante disazo de color rojo de la fórmula (III-5) en una fracción del 75% y 3 partes de un polvo de colorante que contiene un electrolito, que contiene el colorante monoazo de color rojo de la fórmula (15-1) en una fracción del 75%.

La mezcla de colorante resultante de la invención proporciona tinturas e impresiones de color negro azabache, en el algodón, por ejemplo, en las condiciones de tintura típicas para los colorantes reactivos.

Las mezclas similares de la invención, en las que el compuesto se reemplaza por, por ejemplo, al menos uno de los compuestos (I-2) a (I-20) que se muestran a continuación, conducen a un resultado relativamente bueno.

Compuesto (I)	Fórmula estructural
I-1	N80,50 CH ₃ OSO,Na N80,5 OSO,Na (I-2)
I-2	NaO ₃ SO CH ₃ OH NH ₃ N OSO ₃ Na (I-3)
I-3	NaO ₃ SO CH ₃ OH NH ₂ NH ₂ OSO ₃ Na (I-4)
1-4	NeO,SO
I-5	SO ₃ Na NaO ₃ S NaO ₃ Na (I-6)
I-6	NaO,SO SO,Na OSO,Na NaO,S (i-7)
1-7	NaO ₃ SO COONa OSO ₃ Na OSO ₃ Na (I-8)
I-8	NaO ₃ SO
I-9	OSO,NB (I-10)

Compuesto (I)	Fórmula estructural
I-10	OSO,Na NBO,S (I-11)
I-11	OSO,Na NaO,S (I-12)
I-12	NBO_3SO_NB NBO_3SO_NB (I-13)
I-13	60,Na (I-14)
I-14	SO,NB OSO,NB NBO,S (I-15)
I-15	SO ₃ Na SO ₃ Na OSO ₃ Na
I-16	NaO ₃ S
I-17	SO,Na NaO,S SO,Na
I-18	NaO,SO H,C O CH, NaO,S O SO,Na NaO,S O CH, NAO,S O SO,Na (I-19)

Compuesto (I)	Fórmula estructural
I-19	OSO,Na NaO,S OSO,Na OSO,Na OSO,Na (1-20)

Ejemplo de uso 1

Se disuelven 2 partes de una mezcla de colorante obtenida como en el ejemplo 1-119 y 50 partes de cloruro sódico en 999 partes de agua y se añaden 5 partes de carbonato sódico, 0,7 partes de hidróxido sódico (en forma de una solución acuosa de concentración al 32,5%) y, cuando sea apropiado, 1 parte de un agente humectante. Este baño de tinte se introduce con 100 g de una tela de algodón tejido. La temperatura del baño de tinte se mantiene inicialmente a 25 °C durante 10 minutos, después se eleva a la temperatura final (40-80 °C) durante 30 minutos y se mantiene a esta temperatura durante 60-90 minutos más. Después de esto, la tela teñida se aclara inicialmente con agua del grifo durante 2 minutos y después con agua desionizada durante 5 minutos. La tela teñida se neutraliza a 40 °C en 1000 partes de una solución acuosa que contiene 1 parte de ácido acético al 50% de concentración durante 10 minutos. Se aclara de nuevo con agua desionizada a 70 °C, después se quita el jabón en ebullición con un detergente de lavado durante 15 minutos, se aclara una vez más y se seca. Esto da un tinte de color naranja fuerte-amarillo a rojo-pardo que tiene buenas propiedades de solidez.

Ejemplo de uso 2

10

15

20

35

40

50

55

Se disuelven 2 partes de una mezcla de colorante obtenida como en el ejemplo 120-457 y 50 partes de cloruro sódico en 999 partes de agua y se añaden 5 partes de carbonato sódico, 0,7 partes de hidróxido sódico (en forma de una solución acuosa con una concentración del 32,5%) y, cuando sea apropiado, 1 parte de un agente humectante. Este baño de tinte se introduce con 100 g de una tela de algodón tejido. La temperatura del baño de tinte se mantiene inicialmente a 25 °C durante 10 minutos, después se eleva hasta la temperatura final (40-80 °C) durante 30 minutos y se mantiene a esta temperatura durante 60-90 minutos más. Después de esto, la tela teñida se aclara inicialmente con agua del grifo durante 2 minutos y después con agua desionizada durante 5 minutos. La tela teñida se neutraliza a 40 °C en 1000 partes de una solución acuosa que contiene 1 parte de ácido acético con una concentración del 50% durante 10 minutos. Se aclara de nuevo con agua desionizada a 70 °C, después se quita el jabón en ebullición con un detergente de lavado durante 15 minutos, se aclara una vez más y se seca. Esto da un tinte de color azul marino fuerte a gris que tiene propiedades de solidez muy buenas.

30 Ejemplo de uso 3

Se disuelven 6 partes de una mezcla de colorante obtenida como en el ejemplo 120-457 y 50 partes de cloruro sódico en 998 partes de agua y se añaden 7 partes de carbonato sódico, 2 partes de hidróxido sódico (en forma de una solución acosa con una concentración del 32,5%) y, cuando sea apropiado, 1 parte de un agente humectante. Este baño de tinte se introduce con 100 g de una tela de algodón tejido. El procesamiento posterior se realiza como se ha indicado en el ejemplo de uso 1. Esto proporciona un tinte de color negro oscuro que tiene propiedades de solidez muy buenas.

Ejemplo de uso 4

Una materia textil que consiste en algodón mercerizado está acolchada con una disolución que contiene 35 g/l de carbonato sódico calcinado, 100 g/l de urea y 150 g/l de una solución de alginato sódico de baja viscosidad (6%) y después se seca. La disolución recogida es del 70%.

45 El tejido pretratado de esta manera se imprime con una tinta acuosa que contiene

el 2% de colorante de uno de los ejemplos 1 a 119

el 20% de sulfolano

el 0,01% de Mergal K9N y

el 77,99% de agua

usando un cabezal de impresión de chorro de tinta de goteo por demanda (inyección de burbujas). La impresión se seca completamente. Se fija por medio de vapor saturado a 102 °C durante 8 minutos. Posteriormente, la impresión se aclara en caliente, se somete a un lavado de solidez con agua caliente a 95 °C, se aclara en caliente y después se secó. Esto proporciona una impresión de color naranja-amarillo a rojo-pardo que tiene buenas propiedades de solidez de servicio.

ES 2 388 465 T3

Ejemplo de uso 5

5

10

25

Una materia textil que consiste en algodón mercerizado está acolchada con una disolución que contiene 35 g/l de carbonato sódico calcinado, 50 g/l de urea y 150 g/l de una solución de alginato sódico de baja viscosidad (6%) y después se seca. La disolución recogida es del 70%. El tejido pretratado de esta manera se imprime con una tinta acuosa que contiene

el 8% del colorante de uno de los ejemplos 20 a 457

el 20% de 1,2-propanodiol

el 0,01% de Mergal K9N y

el 71,99% de agua

usando un cabezal de impresión de chorro de tinta de goteo por demanda (inyección de burbujas). La impresión se seca completamente. Se fija por medio de vapor saturado a 102 °C durante 8 minutos. Posteriormente, la impresión se aclara en caliente, se somete a un lavado de solidez con agua caliente a 95 °C, se aclara en caliente y después se seca. Esto da una impresión de color negro que tiene propiedades de solidez de servicio sobresalientes.

Ejemplo de uso 6

20 Una materia textil que consiste en algodón mercerizado está acolchada con una disolución que contiene 35 g/l de carbonato sódico calcinado, 100 g/l de urea y 150 g/l de una solución de alginato sódico de baja viscosidad (6%) y después se seca. La disolución recogida es del 70%. El tejido pretratado de esta manera se imprime con una tinta acuosa que contiene

el 8% del colorante de uno de los ejemplos 120 a 457

el 15% de N-metilpirrolidona

el 0,01% de Mergal K9N y

el 76,99% de agua

usando un cabezal de impresión de chorro de tinta de goteo por demanda (inyección de burbujas). La impresión se seca completamente. Se fija por medio de vapor saturado a 102 °C durante 8 minutos. Posteriormente, la impresión se aclara en caliente, se somete a un lavado de solidez con agua caliente a 95 °C, se aclara en caliente y después se seca. Esto da una impresión de color negro que tiene propiedades de solidez de servicio excelentes.

REIVINDICACIONES

1. Una mezcla de colorante que comprende al menos un colorante de la fórmula (I),

$$D^{1} - N = N$$
 $O = S$
 $O =$

al menos un colorante de la fórmula (II)

$$\begin{array}{c|c}
D^{6} & R^{203} \\
N & R^{201} & R^{202}
\end{array}$$
(II)

y opcionalmente al menos un colorante de la fórmula (III)

y/o opcionalmente al menos un colorante de la fórmula (IV)

10

en la que: D^1 , D^2 , D^3 , D^4 , D^5 , D^6 y D^7 son independientemente entre sí un grupo de la fórmula (1)

(1)

en la que

15

20

R¹ y R² independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

 X^1 es hidrógeno o un grupo de la fórmula -SO₂-Z, en la que Z es -CH=CH₂, -CH₂CH₂Z¹ o hidroxilo, en la que Z¹ es hidroxilo o un grupo que puede eliminarse por la acción de un álcali; o

D¹, D², D³, D⁴, D⁵, D⁶ y D⁷ son independientemente entre sí un grupo naftilo de la fórmula (2)

$$\bigcap_{\mathbf{R}^3} \bigcap_{\mathbf{X}^2} \bigcap_{\mathbf{Z}^2}$$

en la que

R³ y R⁴ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y X² tiene una de las definiciones de X¹; o

D¹, D², D³, D⁴, D⁵, D⁶ y D⁷ son independientemente entre sí un grupo de la fórmula (3)

$$R^7 - N$$
 R^5
 R^5
 SO_3M
(3)

10 en la que

15

R⁵ y R⁶ independientemente entre sí tienen una de las definiciones de R¹ y R²;

 R^7 es hidrógeno, alquilo (C₁-C₄), o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno o carboxilo; y

Z² es un grupo de la fórmula (4) ó (5) ó (6)

en la que

20 V es flúor o cloro;

U¹ y U² independientemente entre sí son flúor, cloro o hidrógeno; y

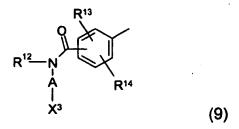
Q¹ y Q² independientemente entre sí son cloro, flúor, cianamido, hidroxilo, alcoxi (C₁-C₆), fenoxi, sulfofenoxi, mercapto, alquilmercapto (C₁-C₆), piridino, carboxipiridino, carbamoilpiridino o un grupo de la fórmula (7) u (8)

$$-N_{W-SO_2Z}^{R^8}$$
 $-N_{R^{10}}^{R^9}$ (8)

25 en la que

30

35


R⁸ es hidrógeno o alquilo (C₁-C₆), sulfo-alquilo (C₁-C₆) o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₁), alcovi (C₁-C₂), sulfo halágeno carbovilo acetamido o ureido:

 (C_1-C_4) , alcoxi (C_1-C_4) , sulfo, halógeno, carboxilo, acetamido o ureido; R^9 y R^{10} independientemente entre sí tienen una de las definiciones de R^8 , o forman un sistema de anillos cíclico de la fórmula -(CH₂)j- en la que j es 4 ó 5, o como alternativa-(CH₂)₂-E-(CH₂)₂-, en la que E es oxígeno, azufre, sulfonilo o -NR¹¹ con R^{11} = alquilo R^{11} = alquilo

W es fenileno que está sin sustituir o sustituido con 1 ó 2 sustituyentes, tales como alquilo (C_1-C_4) , alcoxi (C_1-C_4) , carboxilo, sulfo, cloro o bromo, o es alquileno (C_1-C_4) -arileno o alquileno (C_2-C_6) que está interrumpido con oxígeno, azufre, sulfonilo, amino, carbonilo o carboxamido, o es fenileno-CONH-fenileno que está sin sustituir o sustituido con alquilo (C_1-C_4) , alcoxi (C_1-C_4) , hidroxilo, sulfo, carboxilo, amido, ureido o halógeno, o es naftileno que está sin sustituir o sustituido con uno o dos grupos sulfo; y

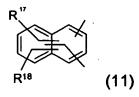
Z es como se ha definido anteriormente; o

D¹, D², D³, D⁴, D⁵, D⁶ y D⁷ son independientemente entre sí un grupo de la fórmula (9)

5 en la que

10

15


 R^{12} es hidrógeno, alquilo (C_1 - C_4), arilo o un radical arilo sustituido; R^{13} y R^{14} independientemente entre sí son hidrógeno, alquilo (C_1 - C_4), alcoxi (C_1 - C_4), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

A es un grupo fenileno de la fórmula (10)

en la que

R¹⁵ y R¹⁶ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o

A es un grupo naftileno de la fórmula (11)

en la que

R¹⁷ y R¹⁸ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, 20 ciano, nitro, amido, ureido o halógeno; o

A es un grupo polimetileno de la fórmula (12)

$$-(CR^{19}R^{20})k-$$
 (12)

25 en la que

30

35

k es un número entero mayor de 1; y

R¹⁹ y R²⁰ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, ciano, amido, halógeno o arilo; y

X³ tiene una de las definiciones de X¹; y

R⁰ es un grupo de la fórmula (4) ó (5) o es un grupo de la fórmula (13)

en la que

 R^{21} es alquilo (C_1 - C_6), sulfo-alquilo (C_1 - C_6), carboxi-alquilo (C_1 - C_6) o fenilo que está sin sustituir o sustituido con alquilo (C_1 - C_4), alcoxi (C_1 - C_4), sulfo, halógeno, carboxilo, acetamido o ureido; G es C- \mathbb{R}^{200} o N, en la que

R²⁰⁰ es hidrógeno, alquilo C₁-C₆, que está sin sustituir o sustituido con amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C

1-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es carboxilo, ciano o halógeno, o es un grupo de la fórmula (100);

> -N=N-D⁸ (100)

en la que D⁸ tiene una de las definiciones de D¹ o es un grupo de la fórmula (101)

$$R^{02}$$
 D^{01}
 N
 R^{01}
(101)

en la que D⁰¹ 10 tiene una de las definiciones de D1;

> R⁰¹ y R⁰² independientemente entre sí son hidrógeno, alquilo C₁-C₆, amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), acetamido, ureido, sulfo o carboxilo;

5

15

20

30

35

40

x es 0 ó 1; R^{201} y R^{202} independientemente entre sí son amino, hidroxilo, alquilamino (C_1 - C_4), alcoxi (C_1 - C_4) o mercapto; o uno de los radicales R^{201} y R^{202} es hidrógeno y el otro tiene una de las definiciones que se han mencionado anteriormente:

R²⁰³ es hidrógeno, alquilo C₁-C₆, que está sin sustituir o sustituido con amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, carboxilo, ciano, halógeno, nitro, amido o ureido; b, f y v independientemente entre sí son 0 ó 1;

25 R* y R** independientemente entre sí son hidrógeno, alquilo (C1-C4) o un grupo de la fórmula (14)

-CH₂-SO₃M

T es hidroxilo o NH2, y si T es NH2 v es 0; y

M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo;

donde los colorantes de las fórmulas (I) a (IV) contienen al menos un grupo reactivo para fibras de la fórmula -SO₂-Z o -Z²; y donde se excluyen las mezclas que comprenden colorantes en los que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxi, G es C-R²⁰⁰ y R²⁰⁰ es un radical de la fórmula (100); o colorantes en los que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y D⁶ y D⁷ son ambos un radical de la fórmula (1-2) o uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-2); o el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y los radicales D⁶ y D⁷ son ambos un radical de la fórmula (1-6); o el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-6); o el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-6); o el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-6); o el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es carboxilo, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-7) y el otro es un radical de la fórmula (1-8); o el colorante en el que R²⁰¹ y R²⁰² son ambos amino, R²⁰³ es hidrógeno, G es C-R²⁰⁰ y R²⁰⁰ es hidrógeno y D⁶ y D⁷ son ambos un radical de la fórmula (1-1)

$$HO_3S$$
 $N = N$
 $N = N$
 $SO_2CH_2CH_2OSO_3H$
 OSO_3H
 O

2. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende al menos un colorante de la fórmula (I)

5 y al menos un colorante de la fórmula (II)

en la que D^1 , D^2 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} y M son como se han definido en la reivindicación 1, pero no colorantes de la fórmula (III) y (IV).

10 3. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende uno o más colorantes de la fórmula (I)

$$D^{1} - N = N$$

$$O = S$$

$$MO \longrightarrow O$$

$$O \longrightarrow S$$

$$O \longrightarrow O$$

$$O \longrightarrow$$

uno o más colorantes de la fórmula (II)

$$\begin{array}{c|c}
D^{6} & & & & \\
N & & & & \\
N & & & & \\
R^{201} & & & & \\
G & & & & \\
R^{202} & & & & \\
\end{array}$$
(II)

y uno o más colorantes de la fórmula (III-a)

en la que D^1 , D^2 , D^3 D^4 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} , R^* y M son como se han definido en la reivindicación 1.

4. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende uno o más colorantes de la fórmula (I)

$$D^{1} - N = N$$

$$O = S$$

$$MO \stackrel{\circ}{O} O \qquad O$$

$$O \stackrel{\circ}{O} O \qquad O$$

uno o más colorantes de la fórmula (II)

10 y uno o más colorantes de la fórmula (IV-a)

en la que D^1 , D^2 , D^5 , D^6 , D^7 , G, R^{201} , R^{202} , R^{203} , R^* , f y M son como se han definido en la reivindicación 1.

5. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende uno o más colorantes de la fórmula (I)

uno o más, tales como dos o tres, preferiblemente 1 ó 2, colorantes de la fórmula (II)

$$\begin{array}{c|c}
D^{\theta} & R^{203} \\
N & R^{201} & R^{202}
\end{array}$$
(II)

y uno o más, tales como dos o tres, preferiblemente 1 ó 2, colorantes de la fórmula (III-b)

en la que 5 D¹, D², D³, D⁴, D⁶, D⁷, G, R²⁰¹, R²⁰², R²⁰³ y M son como se han definido en la reivindicación 1.

6. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende uno o más colorantes de la fórmula (l-a)

10 y al menos un colorante de la fórmula (II-a)

y opcionalmente un colorante de la fórmula (III-c)

en la que

 $R^{101} \ a \ R^{112} \ independientemente entre sí son hidrógeno, alquilo \ C_1\text{-}C_4, \ alcoxi \ C_1\text{-}C_4, \ sulfo, \ carboxilo o \ con la coxi \ C_1\text{-}C_4, \ alcoxi \ C_2\text{-}C_4, \ alcoxi \ C_2\text{-}$ halógeno; R^{201} y R^{202} independientemente entre sí son amino o hidroxilo;

Z es vinilo, β-sulfatoetilo o hidroxilo; y

5

15

M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo.

7. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende al menos un colorante de la fórmula (I-

y al menos un colorante de la fórmula (II-b) 10

y opcionalmente un colorante de la fórmula (III-c), en la que

R¹⁰¹ a R¹¹⁰ independientemente entre sí son hidrógeno, alquilo C₁-C₄, alcoxi C₁-C₄, sulfo, carboxilo o halógeno; R^{201} y R^{202} independientemente entre sí son amino o hidroxilo; R^{203} es hidrógeno, amino o hidroxilo;

Z es vinilo, β-sulfatoetilo o hidroxilo; y

M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo.

20 8. La mezcla de colorante de acuerdo con la reivindicación 1, que comprende al menos un colorante de la fórmula (Ia),

y al menos un colorante de la fórmula (II-c)

5

10

15

20

 R^{101} a R^{108} independientemente entre sí son hidrógeno, alquilo C_1 - C_4 , alcoxi C_1 - C_4 , sulfo, carboxilo o halógeno:

halógeno; R^{203} , R^{300} y R^{301} independientemente entre sí son hidrógeno, alquilo (C_1 - C_4), alquilo o arilo (C_1 - C_4) sustituido con hidroxilo, alcoxi, amino, alquilamino, sulfo, sulfato o carboxilo;

Z es vinilo, β -sulfatoetilo o hidroxilo; y

M es hidrógeno, un metal alcalino o un equivalente de un metal alcalinotérreo.

9. La mezcla de colorante que se ha indicado en una o más de las reivindicaciones 1 a 8, que contiene al menos un colorante de la fórmula (I) en una cantidad del 30% al 95% en peso, al menos un colorante de la fórmula (II) en una cantidad del 70% al 5% en peso, y colorantes de la fórmula (III) y (IV) independientemente entre sí en cada caso en una cantidad del 0 al 65% en peso.

10. La mezcla de colorante que se ha indicado en una o más de las reivindicaciones 1 a 9, que contiene uno o más colorantes monoazo de las fórmulas (15) a (18)

$$MO_3S$$
 NH_2
 $N=N$
 NH_2
 $N=N$
 $N=N$

en las que D², D³, M, R* y R** son como se han definido en la reivindicación 1 en una cantidad de hasta el 10% en peso, preferiblemente hasta el 5% en peso.

11. La mezcla de colorante que se ha indicado en una o más de las reivindicaciones 1 a 10, que comprende uno o más colorantes de las fórmulas (Ga)-(Gg)

5

 D^9 , D^{10} , D^{11} , D^{12} , D^{13} y D^{14} tienen una de las definiciones de D^1 , y D^9 , si R^{31} no es un grupo de la fórmula (4) ó (5), y además D^{10} o D^{11} y D^{13} contienen al menos un grupo reactivo para fibras de la fórmula -SO₂Z o Z^2 ; R^{31} es hidrógeno, acetilo, carbamoílo o sulfometilo o es un grupo de la fórmula (4-1) ó (5-1),

$$V^{1}$$
 V^{1}
 V^{1

en las que

10

V¹ es flúor o cloro; U¹¹ y U²¹ independientemente entre sí son flúor, cloro o hidrógeno; Q¹¹ y Q²¹ independientemente entre sí son cloro, flúor, cianamido, hidroxilo, alcoxi (C₁-C₆), fenoxi, sulfofenoxi, mercapto, alquilmercapto (C₁-C₆), piridino, carboxipiridino, carbamoilpiridino o un grupo de la fórmula (7-1) u (8-1)

$$-N_{W^{-}SO_{2}Z}^{R^{81}}$$
 $-N_{R^{100}}^{R^{91}}$ (8-1)

5

10

25

30

 R^{81} es hidrógeno, alquilo (C_1 - C_6), sulfo-alquilo (C_1 - C_6) o fenilo que está sin sustituir o sustituido con alquilo (C_1-C_4) , alcoxi (C_1-C_4) , sulfo, halógeno, carboxilo, acetamido o ureido; R^{91} y R^{100} independientemente entre sí tienen una de las definiciones de R^{81} o forman un sistema de anillos

cíclico de la fórmula -(CH₂)j-, en la que j es 4 ó 5, o -(CH₂)₂-E-(CH₂)₂-, en la que E es oxígeno, azufre, sulfonilo o -NR¹¹ y R¹¹ es alquilo (C₁-C₆);

W¹ es fenileno; fenileno sustituido con 1 ó 2 sustituyentes, tales como alquilo (C₁-C₄), alcoxi (C₁-C₄), carboxilo, sulfo, cloro o bromo; alquileno (C_1-C_4) arileno; alquileno (C_2-C_6) ; alquileno (C_2-C_6) que está interrumpido con oxígeno, azufre, sulfonilo, amino, carbonilo o carboxamido; fenileno-CONH-fenileno; fenileno-CONH-fenileno sustituido con alguilo (C_1-C_4) , alcoxi (C_1-C_4) , hidroxilo, sulfo, carboxilo, amido, ureido o halógeno; naftileno; o naftileno sustituido con uno o dos grupos sulfo;

R³² es hidrógeno o sulfometilo;

R³³ es metilo, carboxilo o carboxi-alquilo (C₁-C₄);

R³⁴ es hidrógeno o metilo; 15

R³⁵ es hidrógeno, ciano, carbamoílo, carboxilo o sulfometilo;

 R^{36} es metilo, etilo o β -sulfoetilo; R^{37} es metilo, carboxilo o carboxi-alquilo (C_1-C_4) ;

R³⁸ es acetamido, ureido o metilo;

R³⁹ es hidrógeno, metilo o metoxi; 20

Z³ tiene una de las definiciones de Z²; y

M y Z tienen una de las definiciones que se han indicado en la reivindicación 1,

como co-componentes y/o componentes de sombreado adicionales.

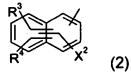
12. Un proceso para preparar una mezcla de colorante como se ha reivindicado en una o más de las reivindicaciones 1 a 11, que comprende mezclar mecánicamente los colorantes individuales de las fórmulas (I) y (II), y además, si se desea, de las fórmulas (III), (IV), (15) a (18), y (Ga) a (Gf) en la relación de mezcla deseada.

13. Un colorante de la fórmula (II)

en la que

D⁶ y D⁷ independientemente entre sí son un grupo de la fórmula (1)

35 en la que


> R¹ y R² independientemente entres sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno;

X1 es hidrógeno o un grupo de la fórmula -SO2-Z, en la que

Z es -CH=CH₂, -CH₂CH₂Z¹ o hidroxilo, en la que

Z¹ es hidroxilo o un grupo que puede eliminarse por la acción de un álcali; o

D⁶ y D⁷ independientemente entre sí son un grupo naftilo de la fórmula (2)

45

5

10

 R^3 y R^4 independientemente entre sí son hidrógeno, alquilo (C_1 - C_4), alcoxi (C_1 - C_4), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y

X² tiene una de las definiciones de X¹; o D⁶ y D⁷ independientemente entre sí son un grupo de la fórmula (3)

$$R^7 - N$$
 R^6
 R^5
 SO_3M
(3)

en la que

R⁵ y R⁶ independientemente entre sí tienen una de las definiciones de R¹ y R²;

R⁷ es hidrógeno, alquilo (C₁-C₄), o fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno o carboxilo; y

 Z^2 es un grupo de la fórmula (4) ó (5) ó (6)

15 en la que

20

25

30

35

V es flúor o cloro;

U¹ y U² independientemente entre sí son flúor, cloro o hidrógeno;

Q¹ y Q² independientemente entre sí son cloro, flúor, cianamido, hidroxilo, alcoxi (C₁-C₆), fenoxi, sulfofenoxi, mercapto, alquilmercapto (C₁-C₆), piridino, carboxipiridino, carbamoilpiridino o un grupo de la fórmula (7) u (8)

$$-N_{W-SO_2Z}^{R^8}$$
 $-N_{R^{10}}^{R^9}$ (8)

en la que

R⁸ es hidrógeno o alquilo (C₁-C₆), sulfo-alquilo (C₁-C₆) o fenilo que está sin sustituir o sustituido con alquilo

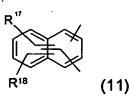
 (C_1-C_4) , alcoxi (C_1-C_4) , sulfo, halógeno, carboxilo, acetamido o ureido; R^9 y R^{10} independientemente entre sí tienen una de las definiciones de R^8 , o forman un sistema de anillos cíclico de la fórmula -(CH_2)j-, en la que j es 4 ó 5, o como alternativa-(CH_2)₂-E-(CH_2)₂-, en la que E es oxígeno, azufre, sulfonilo o -NR¹¹ con R¹¹ = alquilo (C_1 - C_6); W es fenileno que está sin sustituir o sustituido con 1 ó 2 sustituyentes, tales como alquilo (C_1 - C_4), alcoxi (C_1 -

C₄), carboxilo, sulfo, cloro o bromo, o es alquileno (C₁-C₄)-arileno o alquileno (C₂-C₆) que está interrumpido con oxígeno, azufre, sulfonilo, amino, carbonilo o carboxamido, o es fenileno-CONH-fenileno que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, amido, ureido o halógeno, o es naftileno que está sin sustituir o sustituido con uno o dos grupos sulfo; y

Z es como se ha definido anteriormente; o

D⁶ y D⁷ independientemente entre sí son un grupo de la fórmula (9)

 R^{12} es hidrógeno, alquilo (C_1 - C_4), arilo o un radical arilo sustituido; R^{13} y R^{14} independientemente entre sí son hidrógeno, alquilo (C_1 - C_4), alcoxi (C_1 - C_4), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; y


A es un grupo fenileno de la fórmula (10)

en la que

10

5

R¹⁵ y R¹⁶ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o A es un grupo naftileno de la fórmula (11)

15 en la que

20

R¹⁷ y R¹⁸ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, sulfo, carboxilo, ciano, nitro, amido, ureido o halógeno; o

A es un grupo polimetileno de la fórmula (12)

-(CR19R20)k-(12)

en la que

k es un número entero mayor de 1; y 25

R¹⁹ y R²⁰ independientemente entre sí son hidrógeno, alquilo (C₁-C₄), alcoxi (C₁-C₄), hidroxilo, ciano, amido, halógeno o arilo; y

X³ tiene una de las definiciones de X¹; G es C-R²00 o N, en la que R²00 es hidrógeno, alquilo C₁-C6, que está sin sustituir o sustituido con amino, alquilamino (C₁-C4), hidroxilo, 30 alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, ores carboxilo, ciano o halógeno, o es un grupo de la fórmula (100);

-N=N-D⁸ 35 (100)

en la que D⁸ tiene una de las definiciones de D¹ o es un grupo de la fórmula (101)

$$R^{02}$$
 R^{01}
 R^{01}
 R^{01}
(101)

 D^{01} tiene una de las definiciones de $D^1;$ R^{01} y R^{02} independientemente entre sí son hidrógeno, alquilo $C_1\text{-}C_6,$ amino, alquilamino $(C_1\text{-}C_4),$ hidroxilo, alcoxi $(C_1\text{-}C_4),$ acetamido, ureido, sulfo o carboxilo; x es 0 ó 1; R^{201} y R^{202} independientemente entre sí son amino, alquilamino $(C_1\text{-}C_4),$ alcoxi $(C_1\text{-}C_4)$ o mercapto; o uno de los radicales R^{201} y R^{202} es hidrógeno y el otro tiene una de las definiciones que se han mencionado 5

anteriormente; R²⁰³ es hidróge

³ es hidrógeno, alquilo C₁-C₆, que está sin sustituir o sustituido con amino, alquilamino (C₁-C₄), hidroxilo, 10 alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es fenilo que está sin sustituir o sustituido con alquilo (C₁-C₄), alcoxi (C₁-C₄), sulfo, halógeno, carboxilo, acetamido o ureido, o es amino, alquilamino (C₁-C₄), hidroxilo, alcoxi (C₁-C₄), sulfo, carboxilo, ciano, halógeno, nitro, amido o ureido;

donde el colorante de la fórmula (II) contiene al menos un grupo reactivo para fibras de la fórmula - SO_2 -Z o - Z^2 ; y donde se excluyen los colorantes en los que R^{201} y R^{202} son ambos amino, R^{203} es carboxi, G es C- R^{200} y R^{200} es un 15

radical de la fórmula (100); y los colorantes en los que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es C- R^{200} y R^{200} es hidrógeno y D^6 y D^7 son ambos un radical de la fórmula (1-2) o uno de los radicales D⁶ y D⁷ es un radical de la fórmula (1-1) y el otro es

un radical de la fórmula (1-2); y el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es C- R^{200} y R^{200} es hidrógeno y los radicales D^6 y D^7 son ambos un radical de la fórmula (1-6); y el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es C- R^{200} y R^{200} es hidrógeno y uno de los radicales D^6 y D^7 es un radical de la fórmula (1-1) y el otro es un radical de la fórmula (1-6); y el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es C- R^{200} y R^{200} es hidrógeno y uno de los radicales D^6 y D^7 es un radical de la fórmula (1-7) y el otro es un radical de la fórmula (1-8); y el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es carboxilo, G es C- R^{200} y R^{200} es hidrógeno y uno de los radicales D^6 y D^7 es un radical de la fórmula (1-7) y el otro es un radical de la fórmula (1-8); y

25 radicales D^6 y D^7 es un radical de la fórmula (1-7) y el otro es un radical de la fórmula (1-8); y el colorante en el que R^{201} y R^{202} son ambos amino, R^{203} es hidrógeno, G es $C-R^{200}$ y R^{200} es hidrógeno y D^6 y D^7 son ambos un radical de la fórmula (1-1)

14. Un proceso para preparar un colorante de la fórmula (II), de acuerdo con la reivindicación 13, que comprende diazotizar una amina de la fórmula (19)

 D^7 -NH₂ (19),

en la que D⁷ se define como se ha indicado en la reivindicación 13, y acoplar el compuesto de diazonio resultante en un compuesto de la fórmula (24)

en la que D⁶, R²⁰¹ a R²⁰³ y G se definen como se ha indicado en la reivindicación 13.

- 15. El uso de una mezcla de colorante que se ha indicado en una o más de las reivindicaciones 1 a 11 o de un colorante de la fórmula (II) de acuerdo con la reivindicación 13 para teñir o imprimir un material que contiene hidroxilo y/o carboxamido.
- 16. Una tinta para la impresión digital textil mediante el proceso de inyección de tinta, que comprende una mezcla de colorante que se ha indicado en una o más de las reivindicaciones 1 a 11 o un colorante de la fórmula (II) de acuerdo con la reivindicación 13.

5

10