

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 389 020

(51) Int. CI.:

B29C 45/00 (2006.01) **B29C 37/00** (2006.01) **B29C 44/04** (2006.01) **B29C 44/58** (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 08150820 .2
- 96 Fecha de presentación: **30.01.2008**
- Número de publicación de la solicitud: 1952964
 Fecha de publicación de la solicitud: 06.08.2008
- 54 Título: Procedimiento para la fabricación de un cuadro de instrumentos
- 30 Prioridad: 30.01.2007 EP 07101381

73 Titular/es:

SO.F.TER. TECNOPOLIMERI SRL Via Mastro Giorgio, 1 Zona Industriale Villa Selva 47122 Forli FC, IT

- 45 Fecha de publicación de la mención BOPI: 22.10.2012
- (72) Inventor/es:

Völkel, Mark; Eipper, Andreas; Fritzsche, Thomas y Pizzati, Gianluca

- Fecha de la publicación del folleto de la patente: **22.10.2012**
- 74) Agente/Representante:

Lehmann Novo, Isabel

ES 2 389 020 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento para la fabricación de un cuadro de instrumentos

5

20

25

35

40

45

La invención se refiere a un procedimiento para la fabricación de un cuadro de instrumentos para un automóvil de un plástico con una capa de soporte de plástico rígido y una capa superficial de plástico espumoso a través de fundición por inyección.

Plásticos adecuados para la capa de soporte de plástico rígido así como para la capa superficial de plástico espumoso se conocen y se describen en el documento EP 1 839 836 A1.

Los cuadros de instrumentos para automóviles presentan, en general, también una o varias secciones rebajadas.

Como zonas rebajadas se designan todas las zonas de piezas fundidas por inyección, en el presente caso cuadros de instrumentos para automóviles, que no son visibles desde la visión perpendicularmente al plano de separación del molde de fundición por inyección para la pieza fundida por inyección. A este respecto, es deseable que el material que forma la capa superficial de plástico espumoso sea acoplada también en la zona del receso sobre la capa de soporte de plástico rígido. No obstante, especialmente el canto visible, es decir, la transición entre la zona visible y la zona rebajada de la pieza fundida por inyección debe estar configurada de forma atractiva estéticamente, uniforme y con una capa superficial de plástico espumoso de espesor predeterminado.

Además, a los cuadros de instrumentos se plantean también el requerimiento de que durante el encendido de un airbag, que está dispuesto detrás del cuadro de instrumentos, el mismo atraviese el cuadro de instrumentos.

El documento DE-A 199 58 865 describe un dispositivo de cubierta de bolsa de aire con una capa de soporte, que presenta líneas teóricas de rotura en la zona de cubierta, en el que debe evitarse una configuración de piezas de rotura especialmente en el caso de capas de soporte rígidas, amenazadas de rotura.

El documento FR-A 2 784 050 describe un procedimiento para la fabricación de una pieza acabada, en el que sobre un soporte se aplica una capa flexible de un plástico, que se prefabrica en un primer molde de fundición por inyección.

Por lo tanto, el cometido de la invención es proporcionar un procedimiento para la fabricación de un cuadro de instrumentos constituido por una primera capa de soporte de plástico rígido y por una capa superficial de plástico espumoso a través de fundición por inyección, que garantiza de una manera técnicamente sencilla que todo el cuadro de instrumentos, incluidas una o varias secciones rebajadas, está provisto con el material que forma la capa superficial de plástico espumoso y presenta un canto visible uniforme y que, además, el cuadro de instrumentos está debilitado en la zona, en la que debe pasar un airbag en caso necesario.

30 La solución consiste en un procedimiento para la fabricación de un cuadro de instrumentos que está constituido por

- una capa de soporte de plástico rígido, y
- una capa superficial de plástico espumoso con una o varias zonas rebajadas a través de fundición por inyección en un molde de fundición por inyección, que comprende dos semi-moldes así como un núcleo deslizable, en el que en una cavidad del molde, entre los dos semi-moldes y el núcleo deslizable, se forma en primer lugar la capa de soporte de plástico rígido a través de fundición por inyección y a continuación se inyecta una colada de polímero que contiene agente propulsor y que forma la capa superficial de plástico espumoso, que se caracteriza porque
- la colada de polímero que forma la capa superficial de plástico espumoso se descomprime, siendo desplazado el primer semi-molde, alejado de la zona rebajada, junto con el núcleo deslizable en la misma dirección, de tal manera que se reduce la altura de la cavidad del molde en la zona rebajada y se incrementa en la zona restante, de manera que la colada de polímero, que forma la capa superficial de plástico espumoso, se comprime en la zona rebajada y se expande en la restante cavidad del molde y porque
- el molde de fundición por inyección se abre para el desmoldeo del cuadro de instrumentos, de manera que una pluralidad de cuchillas, que se deslizan en aberturas en el segundo semi-molde dirigido hacia la zona rebajada, atraviesan el cuadro de instrumentos durante el desplazamiento del núcleo deslizable durante la apertura del molde de fundición por inyección, y en el que las cuchillas están conectadas con el núcleo deslizable.

Se ha encontrado que es posible aplicar el material que forma la capa superficial de plástico espumoso también en una o varias zonas de rebajadas de un cuadro de instrumentos, modificando la altura de la cavidad del molde después de la introducción del material que forma la capa superficial de plástico espumoso, es decir, en la fase del procedimiento de la descompresión, a través de traslación común de un primer semi-molde y del núcleo deslizable,

de tal forma que se reduce la altura en la zona rebajada a través del desplazamiento del núcleo deslizable y se incrementa en la zona restante a través del desplazamiento del primer semi-molde, que está alejado de la zona rebajada.

En particular, la altura de la cavidad del molde se reduce en la zona rebajada desde un valor en el intervalo de 4,0 a 12,0 mm a un valor en el intervalo de 0,5 a 2,0 mm. Al mismo tiempo, se incrementa la altura de la cavidad del molde en la zona alejada del receso en el mismo valor, es decir, desde un valor en el intervalo de 0,5 y 2,0 mm a un valor en el intervalo entre 4,0 y 12,0 mm. De esta manera, el agente propulsor de la colada de polímero que forma la capa superficial de plástico espumoso, que se inyecta a alta presión, en particular a una presión por encima de 300 bares absolutos o también por encima de 350 bares absolutos a la cavidad del molde, cambia desde la forma líquido del estado supercrítico a la forma gaseosa y en este caso hace que se espume el polímero que forma la capa superficial de plástico espumoso.

En la zona de uno o de varios recesos, la cavidad del molde presenta en primer lugar una altura mayor, en articular en el intervalo entre 4,0 y 12,0 mm. Ésta se llena con la colada de polímero que forma la capa superficial de plástico espumoso. Ésta se comprime a través de la reducción de la altura de la cavidad del molde en la o las zonas rebajadas, de manera que el polímero comienza a espumarse más o menos fuertemente de acuerdo con las condiciones del procedimiento, en particular la temperatura y la presión.

Puesto que una pluralidad de cuchillas se deslizan durante el desplazamiento del núcleo deslizable durante la apertura del molde de fundición por inyección en el segundo semi-molde, alejado de la zona rebajada, del molde de fundición por inyección, con la aplicación de una capa superficial de plástico en la zona rebajada, a través del desplazamiento del núcleo deslizable del molde de fundición por inyección, se debilita el cuadro de instrumentos de una manera selectiva en la zona, a través de la cual debe pasar un airbag en caso necesario.

Las cuchillas pueden estar configuradas en una variante de realización de tal forma que se reduce su corte a un 0punto, y de tal manera que con ello las cuchillas están configuradas como agujas.

La pluralidad de cuchillas, que pueden estar configuradas también como agujas, están conectadas también fijamente con el núcleo deslizable.

El movimiento de las cuchillas durante la apertura del molde de fundición por inyección se puede controlar especialmente con medios hidráulicos o neumáticos.

A tal fin, una pluralidad, especialmente de 4 a 5 cuchillas por cm², están dispuestas sobre una superficie, a través de la cual debe pasar, en caso necesario, un airbag a través del cuadro de instrumentos y que presenta especialmente entre 100 y 5000 cm².

Dicha superficie no está limitada en lo que se refiere a su geometría, puede ser especialmente redonda o rectangular. Las cuchillas están conectadas con preferencia rígidas con el núcleo deslizable, y están configuradas en su longitud y orientación de tal manera que, durante el movimiento del núcleo deslizable, atraviesan la capa de soporte de plástico rígido y la capa superficial de plástico espumoso del cuadro de instrumentos y de esta manera las debilitan.

A continuación se explica en detalle la invención con la ayuda de un dibujo. En particular:

15

20

25

30

35

45

La figura 1 muestra una sección a través de un molde de fundición por inyección para la realización del procedimiento de acuerdo con la invención para la fabricación de un cuadro de instrumentos con una zona rebajada, y

Las figuras 2A, 2B, 2E y 2F muestran secciones a través de un molde de fundición por inyección, con representación de la zona de airbag en las figuras 2C, 2D y 2G.

En las figuras, los mismos signos de referencia designan las mismas o correspondientes características.

La figura 1 muestra una sección a través de un molde de fundición por inyección 4 para la realización del procedimiento de acuerdo con la invención para la fabricación de un cuadro de instrumentos con una capa de soporte de plástico rígido 1 y una capa superficial de plástico espumoso 2, con una zona rebajada 3, en el que el molde de fundición por inyección 4 presenta dos semi-moldes 5 y 6 así como un núcleo deslizable 7. Entre los dos semi-moldes 5 y 6 así como el núcleo deslizable 7 se configura una cavidad del molde 8. Con el núcleo deslizable 7 están conectadas rígidamente agujas 9, que atraviesan la capa de soporte de plástico 1 y la capa superficial de plástico espumoso 2 durante el movimiento del núcleo deslizable 7 en la zona rebajada 3.

Las figuras 2A y 2B muestran secciones giradas 90° entre sí de un molde de fundición por inyección 4 para la realización de una variante de realización no acorde con la invención con debilitamiento en la zona a través de la cual debe pasar un airbag en caso necesario. El molde de fundición por inyección 4 comprende dos semi-moldes 5 y 6 así como un núcleo deslizable 7. Con el núcleo deslizable 7 están conectadas unas cuchillas 9, que durante el

ES 2 389 020 T3

movimiento del núcleo deslizable 7, atraviesan el cuadro de instrumentos en la zona a través de la cual debe pasar un airbag en caso necesario. Las representaciones en sección en las figuras 2A y 2B ilustran la etapa del procedimiento, en la que se inyecta en primer lugar la capa de soporte de plástico 1, con representación de la zona, en la que debe pasar un airbag, en caso necesario, en las figuras 2C y 2D.

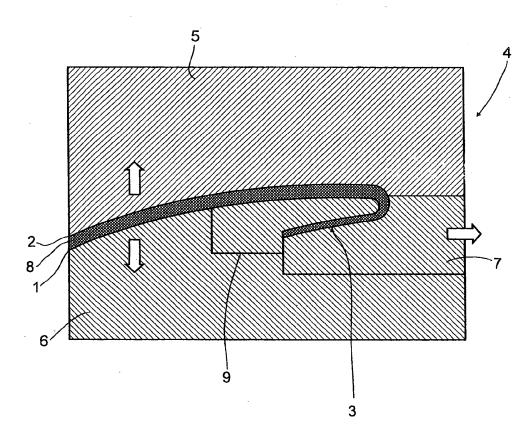
5 Las representaciones en sección en las figuras 2E y 2F ilustran la etapa del procedimiento, después de la cual se inyecta también la capa superficial de plástico espumoso 2.

10

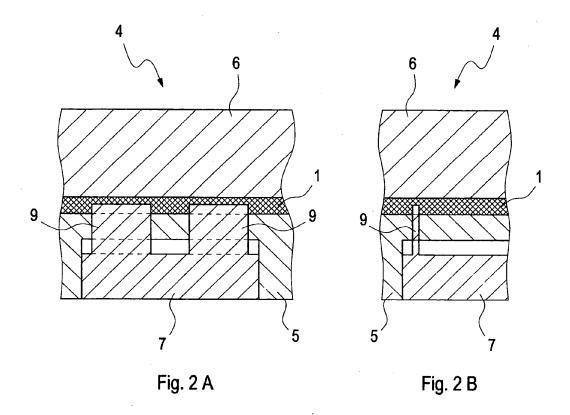
La representación en la figura 2G muestra la zona de airbag, con debilitamientos en los lugares marcados, así como con indicación de las dimensiones A, B y C para la zonas, que están debilitadas a través de las cuchillas 9, de manera que en función del plástico utilizado, A se encuentra con preferencia en el intervalo de aproximadamente 7 a 40 mm, B en el intervalo de aproximadamente 1 a 7 mm y C en el intervalo de aproximadamente 0,5 a 5 mm.

El movimiento del núcleo deslizable 7 con cuchillas integradas 9 se realiza con ventaja durante la fase de descompresión, con la consecuencia de que la capa superficial de plástico espumoso puede ser inyectada sin problemas con respecto a diferencias de espesores, inclusiones de aire o costuras de soldadura.

REIVINDICACIONES


- 1.- Procedimiento para la fabricación de un cuadro de instrumentos que está constituido por
 - una capa de soporte de plástico rígido (1), y

20


25

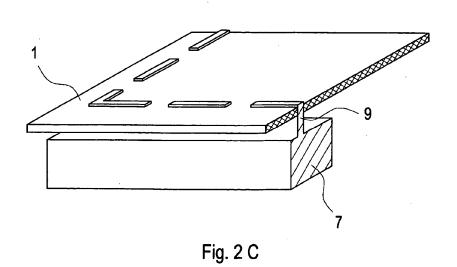

- una capa superficial de plástico espumoso (2) con una o varias zonas rebajadas (3) a través de fundición por inyección en un molde de fundición por inyección (4), que comprende dos semi-moldes (5, 6) así como un núcleo deslizable (7), en el que en una cavidad del molde (8), entre los dos semi-moldes (5, 6) y el núcleo deslizable (7), se forma en primer lugar la capa de soporte de plástico rígido (1) a través de fundición por inyección y a continuación se inyecta una colada de polímero que contiene agente propulsor y que forma la capa superficial de plástico espumoso (2), que se caracteriza porque
- la colada de polímero que forma la capa superficial de plástico espumoso se descomprime, siendo desplazado el primer semi-molde (5), alejado de la zona rebajada, junto con el núcleo deslizable (7) en la misma dirección, de tal manera que se reduce la altura de la cavidad del molde (8) en la zona rebajada (1) y se incrementa en la zona restante, de manera que la colada de polímero, que forma la capa superficial de plástico espumoso (2), se comprime en la zona rebajada (1) y se expande en la restante cavidad del molde
 (8) y porque
 - el molde de fundición por inyección se abre para el desmoldeo del cuadro de instrumentos, de manera que una pluralidad de cuchillas (9), que se deslizan en aberturas en el segundo semi-molde (6) dirigido hacia la zona rebajada, atraviesan el cuadro de instrumentos durante el desplazamiento del núcleo deslizable (7) durante la apertura del molde de fundición por inyección, y en el que las cuchillas (9) están conectadas con el núcleo deslizable (7).
 - 2.- Procedimiento de acuerdo con la reivindicación 1, caracterizado porque las cuchillas (9) están configuradas como agujas.
 - 3.- Procedimiento de acuerdo con una de las reivindicaciones 1 ó 2, caracterizado porque a través del desplazamiento del primer semi-molde (5) junto con el núcleo deslizable (7) se reduce la cavidad de moldeo en la zona rebajada (1) desde una altura en el intervalo de 4,0 a 12,0 mm asta una altura en el intervalo de 0,5 a 2,0 mm.
 - 4.- Procedimiento de acuerdo con una de las reivindicaciones 1 a 3, caracterizado porque la zona, en la que un airbag debe salir, en caso necesario, a través del cuadro de instrumentos, presenta una superficie en el intervalo de 100 a 5000 cm² y porque en esta zona se debilita el cuadro de instrumentos a través de la penetración de 4 a 5 cuchillas (9) por cm².

FIG.1

5

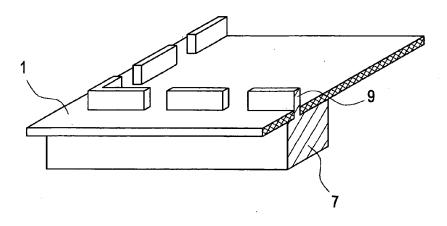
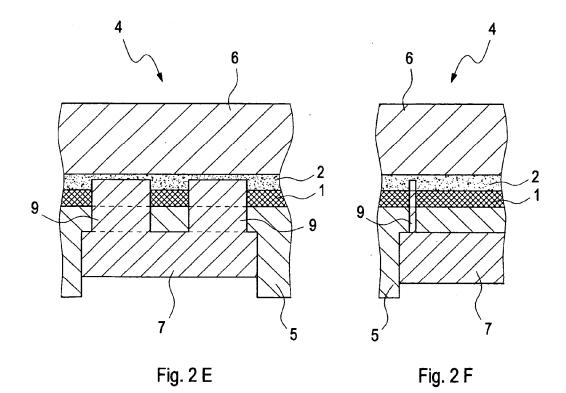



Fig. 2 D

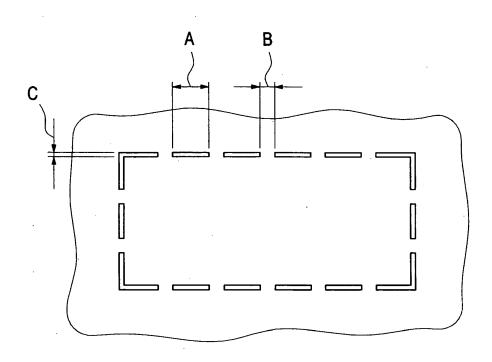


Fig. 2 G