

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 389 309

(2006.01)

(51) Int. Cl.: F01N 3/20 (2006.01) B01D 53/94 (2006.01) F01N 3/08 (2006.01)

G01N 25/18

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 06732580 .3
- 96 Fecha de presentación: 12.05.2006
- 97 Número de publicación de la solicitud: 1900915
 97 Fecha de publicación de la solicitud: 19.03.2008
- 54 Título: Aparato para discriminar agente reductor líquido
- 30 Prioridad: 10.06.2005 JP 2005171391

73 Titular/es:

NISSAN DIESEL MOTOR CO., LTD. (100.0%)
1, OOAZA 1-CHOME AGEO-SHI
SAITAMA 362-8523, JP

- 45 Fecha de publicación de la mención BOPI: 25.10.2012
- (72) Inventor/es:

NISHINA, MITSUHIRO Y MATSUNAGA, HIDEKI

- Fecha de la publicación del folleto de la patente: **25.10.2012**
- (74) Agente/Representante: UNGRÍA LÓPEZ, Javier

ES 2 389 309 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Aparato para discriminar agente reductor líquido

Campo técnico

La presente invención se refiere generalmente a una tecnología para discriminar con alta precisión si el tanque de almacenaje está vacío, un agente reductor se llena normalmente en el tanque de almacenaje o el tanque de almacenaje almacena en el mismo cualquier solución acuosa disímil, utilizando un sensor de concentración que indirectamente mide la concentración del agente reductor líquido en base a las características de transferencia térmica entre dos posiciones cercanas entre sí.

Técnica anterior

15 Como un sistema de purificación catalítica para extraer óxidos de carbono (NOx) contenidos en la emisión de gases de combustión de un motor, se ha propuesto un aparato purificador de emisión de gases de combustión desvelado en la publicación de solicitud de patente japonesa abierta a inspección pública (Kokai) Nº 2000-27627 (documento de patente 1). En el aparato purificador de emisión de gases de combustión, un agente reductor de acuerdo con las condiciones operativas del motor se suministra por inyección a la corriente arriba de la corriente de gases de combustión con respecto al convertidor catalítico de reducción, que está dispuesto en un sistema de gases de combustión del motor, para que NOx en la emisión de gases de combustión y el agente reductor estén sometidos a la reacción de reducción catalítica para purificar NOx en componentes inocuos.

Documento de patente 1: Publicación de solicitud de patente japonesa abierta a inspección pública (Kokai) Nº 2000-

25

27627.

El documento EP1688598 desvela una tecnología para discriminar de manera muy precisa una sustancia líquida que se suministra a un convertidor catalítico de reducción de óxido de nitrógeno dispuesto en un sistema de gases de combustión del motor de un vehículo móvil, utilizando un sensor de concentración que detecta la concentración de agente reductor líquido en base a una característica de transferencia térmica entre dos posiciones separadas entre sí.

30 s

El documento EP1681443 desvela un aparato purificador de gases de combustión y un método purificador de gases de combustión para un motor, y más particularmente se refiere a una técnica de purga de óxidos de nitrógeno expulsados de un motor para un automóvil con el uso de amoniaco como un agente reductor.

35

50

60

Divulgación de la invención

Problemas a resolver por la invención

Sin embargo, de acuerdo con el aparato convencional purificador de la emisión de gases de combustión anteriormente descrito, cuando una eficiencia de purificación se cambia con un cambio en la concentración del agente reductor líquido, si el conductor continúa el funcionamiento del motor sin darse cuenta de este cambio, la probabilidad de que la actuación requerida de purificación de NOx no se manifieste satisfactoriamente, dando como resultado la incidencia de una condición no deseada de tal manera que tiene lugar una gran cantidad de descarga de NOx desde el motor. En particular, en el caso en el que el tanque de almacenaje esté vacío o que se use la solución acuosa disímil que no funciona como el agente reductor líquido, se provoca tal condición no deseada de manera significativa.

Por lo tanto, a una persona experta en la técnica le puede ocurrir que disponga de un sensor de concentración que indirectamente mida la concentración del agente reductor líquido en base a las características de transferencia térmica entre dos posiciones cercanas entre sí. Sin embargo, si tal sensor de concentración está montado sobre un vehículo móvil tal como un automóvil, pueden causarse los siguientes problemas. Concretamente, durante la conducción del vehículo móvil, ya que un cuerpo del vehículo está continuamente sometido a vibración debido a la irregularidad de las superficies de la carretera, la convección puede generarse en el agente reductor líquido en el tanque de almacenaje. Además, si el refrigerante del motor o similar circula en el tanque de almacenaje con el fin de impedir la congelación del agente reductor líquido, la distribución de la temperatura del agente reductor líquido puede volverse irregular, dado como resultado que, similar al caso de la vibración del vehículo, la convección puede generarse en el agente reductor líquido en el tanque de almacenaje. Entonces, si la convección se genera en el agente reductor líquido, las características de transferencia térmica que usan el agente reductor líquido como el medio de transferencia térmica pueden cambiarse, y por lo tanto, la precisión de medición de la concentración del agente reductor líquido puede descender significativamente.

Por lo tanto, a la vista de los problemas en la tecnología convencional como la descrita anteriormente, la presente invención tiene un objeto de proporcionar un aparato para discriminar agente reductor líquido que es capaz de discriminar con alta precisión si un tanque de almacenaje está vacío, un agente reductor líquido se llena normalmente o el líquido en el tanque de almacenaje es la solución acuosa disímil, utilizando un hecho de que, si el

agente reductor líquido se llena normalmente, es extremadamente raro que la concentración del agente reductor líquido se desvíe consecutivamente muchas veces de un intervalo predeterminado si la convección se genera en el agente reductor líquido.

Medios para resolver los problemas

Por lo tanto, de acuerdo con la presente invención, se toma un aparato en el que, para un tanque de almacenaje que almacena un agente reductor líquido, se dispone un sensor de concentración que incorpora en el mismo sensores de temperatura dispuestos en dos posiciones cercanas entre sí, y también, un calentador incorporado en uno de los sensores de temperatura. Una unidad de control que incorpora en la misma un ordenador opera el calentador del sensor de concentración en cada momento predeterminado después de un inicio de un funcionamiento del motor para medir indirectamente de ese modo la concentración del agente reductor líquido en base a una temperatura detectada por cada uno de los sensores de temperatura, y procesa la discriminación de tal manera que el tanque de almacenaje se llena con una solución acuosa disímil al agente reductor líquido cuando la concentración es inferior a un umbral inferior, que el tanque de almacenaje se llena normalmente con el agente reductor líquido cuando la concentración es igual o superior al umbral inferior y también igual o inferior a un umbral superior, y que el tanque de almacenaje está vacío cuando la concentración es superior al umbral superior. Además, cuando se discrimina que el líquido en el tanque de almacenaje es la solución acuosa disímil, la unidad de control juzga si la discriminación de solución acuosa disímil es adecuada o no, en base a la temperatura detectada por cada uno de los sensores de temperatura y la concentración medida, y cuando se juzga que la discriminación de solución acuosa disímil es adecuada, se calcula la frecuencia de la discriminación de solución acuosa disímil. Además, cuando se discrimina que el tanque de almacenaje está vacío, la unidad de control juzga si la discriminación vacía es adecuada o no, en base a la temperatura detectada por cada uno de los sensores de temperatura, y cuando se juzga que la discriminación vacía es adecuada, se calcula la frecuencia de la discriminación vacía, y además, cuando se discrimina que el agente reductor líquido se llena normalmente, la unidad de control vuelve a poner la frecuencia de la discriminación de la solución acuosa disímil y la frecuencia de la discriminación vacía. Además, la unidad de control mantiene la discriminación de la solución acuosa y la discriminación vacía cuando la frecuencia de la discriminación de la solución acuosa disímil y la frecuencia de la discriminación vacía se vuelven iguales o mayores que la primera frecuencia predeterminada.

Efectos de la invención

15

20

25

30

35

40

45

50

55

60

De acuerdo con la presente invención, el aparato para discriminar agente reductor líquido ejecuta la medición de la concentración del agente reductor líquido en cada momento predeterminado después de iniciar el funcionamiento del motor, y la discriminación de ejecuta de tal manera que el tanque de almacenaje se llena con cualquier solución acuosa disímil al agente reductor líquido cuando la concentración es inferior al umbral inferior, que el tanque de almacenaje se llena normalmente con el agente reductor líquido cuando la concentración es igual o superior al umbral inferior y también igual o inferior al umbral superior, y que el tanque de almacenaje está vacío cuando la concentración es superior al umbral superior. Además, cuando se discrimina que el líquido en el tanque de almacenaje es la solución acuosa disímil, se juzga si la discriminación de solución acuosa disímil es adecuada o no, y solamente cuando la discriminación de solución acuosa es adecuada, se calcula la frecuencia de la discriminación de solución acuosa disímil. Por otro lado, cuando se discrimina que el tanque de almacenaje está vacío, se juzga si la discriminación vacía es adecuada o no, y solamente cuando la discriminación vacía es adecuada, se calcula la frecuencia de la discriminación vacía. Entonces, cuando la frecuencia de la discriminación de la solución acuosa disímil y la frecuencia de la discriminación vacía se vuelven iguales a o mayores que la primera frecuencia predeterminada, la discriminación de la solución acuosa disímil y la discriminación vacía se mantienen respectivamente. Por lo tanto, ya que la contabilización no se realiza en un estado en el que la precisión de discriminación de tipo líquido es baja, es posible discriminar con alta precisión si el tanque de almacenaje está vacío, el agente reductor líquido se llena normalmente o el líquido en el tanque de almacenaie es la solución acuosa disímil, independientemente de los estados operativos del vehículo.

Breve descripción de los dibujos

La Fig. 1 es un diagrama completo de bloques de un aparato purificador de emisión de gases de combustión provisto de un aparato para discriminar agente reductor líquido, de acuerdo con una realización de la presente invención;

La Fig. 2 es un diagrama explicativo de una parte detectora de un sensor de concentración y un principio de detección de acuerdo con la realización de la presente invención;

La Fig. 3 es un diagrama de bloques de unidades que muestra varias funciones, que configuran el aparato para discriminar agente reductor líquido de acuerdo con la realización de la presente invención;

La Fig. 4 es un diagrama de flujo que muestra el proceso de salida de señal provocadora de la medición de acuerdo con la realización de la presente invención;

La Fig. 5 es un diagrama de flujo que muestra el proceso que mide la concentración y el proceso que discrimina el tipo de agente reductor ejecutados en la realización de la presente invención;

La Fig. 6 es un diagrama de flujo que muestra el proceso que juzga la conveniencia de la discriminación vacía ejecutado en la realización de la presente invención;

La Fig. 7 es un diagrama de flujo que muestra el proceso que contabiliza la frecuencia de discriminación vacía ejecutado en la realización de la presente invención;

La Fig. 8 es un diagrama de flujo que muestra el proceso que juzga la conveniencia de la discriminación de la solución acuosa disímil ejecutado en la realización de la presente invención;

- La Fig. 9 es un diagrama de flujo que muestra el proceso que juzga la conveniencia de la discriminación de la solución acuosa disímil ejecutado en la realización de la presente invención;
 - La Fig. 10 es un diagrama de flujo que muestra el proceso que contabiliza la frecuencia de la discriminación de la solución acuosa disímil ejecutado en la realización de la presente invención;
 - La Fig. 11 es un diagrama de flujo que muestra el proceso que mantiene el tipo de agente reductor; y
- La Fig. 12 es un diagrama característico que muestra un valor de medición de la concentración durante el funcionamiento del vehículo.

Explicación de los símbolos de referencia

5

25

45

50

55

60

15 10 ... motor, 18 ... tanque de almacenaje, 32 ... sensor de concentración, 32B ... parte detectora, 34 ... unidad de control, 34A ... parte de salida de señal provocadora de la medición, 34B ... parte que mide la concentración, 34C ... parte discriminadora del tipo de agente reductor, 34D ... parte que juzga la conveniencia de la discriminación vacía, 34E ... parte que contabiliza la frecuencia de la discriminación vacía, 34F ... parte que juzga la conveniencia de la discriminación de la solución acuosa disímil, 34G ... parte que contabiliza la frecuencia de discriminación de la solución acuosa disímil, 34H ... parte que mantiene el tipo de agente reductor, 36 ... unidad de control del motor.

Mejor modo de realizar la invención

Los detalles de la presente invención se describirán a continuación, en referencia a los dibujos acompañantes.

La Fig. 1 muestra una configuración completa de un aparato purificador de la emisión de gases de combustión provisto de un aparato para discriminar agente reductor líquido de acuerdo con la presente invención.

La emisión de gases de combustión de un motor 10 se descarga en la atmósfera desde un colector de gases de 30 combustión 12 por medio de un tubo de escape 16 en el que está dispuesto el convertidor catalítico de reducción NOx 14. Para ser específicos, en el tubo de escape 16, hay dispuestos tres convertidores catalíticos, concretamente, un convertidor catalítico de oxidación de monóxido de nitrógeno (NO), un convertidor catalítico de reducción de NOx 14 y un convertidor catalítico de oxidación de amoniaco en exceso, en este orden desde el lado corriente arriba del tubo de escape, y sensores, tales como un sensor de temperatura, un sensor de oxígeno y similares, están dispuestos sobre la corriente arriba del tubo de escape y corriente abajo de los tres convertidores catalíticos, de 35 modo que se configura un sistema de escape, pero los detalles del mismo no se muestran en la figura. Con relación a la corriente arriba del tubo de escape del convertidor catalítico de reducción de NOx 14, un agente reductor líquido almacenado en un tanque de almacenaje 18 pasa a través de un dispositivo de suministro del agente reductor 20 y una boquilla de inyección 22, y se suministra por inyección junto con el aire. Aquí, como el agente reductor líquido, 40 en la presente realización se usa una solución acuosa de urea. Sin embargo, puede usarse una solución acuosa de amoniaco, o aceite diesel, petróleo o gasolina, principalmente que contengan hidrocarburo, de acuerdo con la especificación del convertidor catalítico de reducción de NOx 14.

La solución acuosa de urea que es la solución acuosa en la que se disuelve urea en un estado sólido o en polvo, se absorbe por medio de un puerto de entrada 24 que se abre en una posición inferior en los alrededores de una parte inferior del tanque de almacenaje 18, y se suministra al dispositivo de suministro del agente reductor 20 a través de tuberías de suministro 26. Aquí, en la solución acuosa de urea suministrada al dispositivo de suministro del agente reductor 20, la solución acuosa de urea excedente que no contribuye a la inyección pasa a través de las tuberías de retorno 28 y vuelve al tanque de almacenaje 18 por medio de un puerto de retorno 30 que se abre en una posición superior del tanque de almacenaie 18.

La solución acuosa de urea suministrada por inyección a la corriente arriba del tubo de escape del convertidor catalítico de reducción de NOx 14 se hidroliza con el calor del tubo de escape y el vapor de agua en la emisión de gases de combustión, de modo que se genera amoniaco fácilmente. Se conoce que el amoniaco generado reacciona con NOx en la emisión de gases de combustión en el convertidor catalítico de reducción de NOx 14, para purificar NOx en el agua y el gas inocuo.

Además, un sensor de concentración 32 que produce una señal relacionada con la concentración de la solución acuosa de urea se une al tanque de almacenaje 18. Concretamente, una parte base 32A que incorpora en la misma un sustrato de circuito se fija sobre una pared superior del tanque de almacenaje 18, y también, una parte detectora 32B se suspende desde la parte base 32A hacia la parte inferior del tanque de almacenaje 18.

Aquí, como se muestra en la Fig. 2, la parte detectora 32B, los sensores de temperatura A y B están dispuestos sobre dos posiciones cercanas entre sí, y se incorpora un calentador en el sensor de temperatura A. Entonces, cuando el calentador incorporado en el sensor A se opera durante un periodo predeterminado de tiempo t₁, la temperatura del sensor de temperatura A asciende por sí mismo, y también, la temperatura del sensor de temperatura B asciende gradualmente con una característica de acuerdo con la conductividad térmica de la solución

acuosa de urea. Por lo tanto, inmediatamente después de que se haya parado el funcionamiento del calentador, la concentración de la solución acuosa de urea se mide indirectamente en base a una diferencia entre las temperaturas detectadas por los sensores A y B, es decir, las características de transferencia térmica que usan la solución acuosa de urea como un medio conductor térmico. Por otro lado, después de que se haya parado el funcionamiento del calentador, las temperaturas de los sensores de temperatura A y B descienden gradualmente, y pasan un tiempo t2 para volver a la temperatura antes del funcionamiento del calentador. Por lo tanto, la concentración de la solución acuosa de urea puede medirse en cada tiempo predeterminado (t₁ + t₂). A propósito, la Fig. 2 muestra solamente una correlación entre las temperaturas detectadas por los sensores de temperatura A y B. Como el sensor de concentración 32, es conocido el fabricado y distribuido por Mitsui Minin and Smelting Co., Ltd en Japón.

10

15

20

60

Una señal de salida desde el sensor de concentración 32, para ser específicos, las señales de temperatura detectadas por los sensores de temperatura A y B, se introduce en una unidad de control 34 que incorpora un ordenador en la misma. Además, la unidad de control 34 recibe una señal de velocidad rotativa del motor, una señal del interruptor de arranque, una señal de velocidad del vehículo y similar, desde una unidad de control del motor 36 que realiza varios controles del motor 10, por medio de CAN (Red de Área de Controlador) y similares. Entonces, en la unidad de control 34, de acuerdo con un programa de control almacenado en una ROM (Memoria de Sólo Lectura) de la misma, como se muestra en la Fig. 3, se realiza una parte de salida de señal provocadora de la medición 34A, una parte que mide la concentración 34B, una parte que discrimina el tipo de agente reductor 34C, una parte que juzga la conveniencia de la discriminación vacía 34D, una parte que contabiliza la frecuencia de la discriminación de la solución acuosa disímil 34F, una parte que contabiliza la frecuencia de la discriminación de la solución acuosa disímil 34G y una parte que mantiene el tipo de agente reductor 34H. En la presente realización, la unidad de control del motor 36 funciona como un sensor de velocidad rotativa y también como un sensor de velocidad del vehículo.

25 La parte de salida de señal provocadora de la medición 34A se activa cuando la señal del interruptor de arranque se sintoniza en ENCENDIDO, y produce una señal provocadora de la medición que indica que la concentración de la solución acuosa de urea va a comenzar a medirse, en cada tiempo predeterminado (t₁ + t₂) mostrado en la Fig. 2. La parte que mide la concentración 34B opera el calentador en el sensor de concentración 32 durante el tiempo predeterminado t1 cuando se produce la señal provocadora de la medición, para medir indirectamente la 30 concentración de la solución de urea en base a las señales de temperatura desde el sensor de concentración 32. La parte que discrimina el tipo de agente reductor 34 discrimina, en base a la concentración medida por la parte que mide la concentración 34B, si el tanque de almacenaje 18 está vacío, el agente reductor líquido se llena normalmente o el líquido en el tanque de almacenaje es la solución acuosa disímil, para producir una señal de discriminación vacía, una señal de discriminación normal o una señal de discriminación de solución acuosa disímil de acuerdo con el resultado de la discriminación. La parte que juzga la conveniencia de discriminación vacía 34D 35 juzga, en base a las señales de temperatura desde el sensor de concentración 32, si la discriminación vacía es adecuada o no, cuando se produce la señal de discriminación vacía, y también, produce, si es necesario, una señal que contabiliza la frecuencia de discriminación vacía que indica que se necesita contabilizar la frecuencia de discriminación vacía. La parte que contabiliza la frecuencia de discriminación vacía 34E contabiliza la frecuencia de 40 discriminación vacía, cuando se produce la señal que contabiliza la frecuencia de discriminación vacía. La parte que juzga la conveniencia de la discriminación de la solución acuosa disímil 34F juzga, en base a las señales de temperatura, la señal de concentración, la señal de velocidad rotativa del motor y la señal de velocidad del motor, si la discriminación de solución acuosa disímil es adecuada o no, cuando se produce la señal de discriminación de solución acuosa disímil, y también, produce, si es necesario, una señal que contabiliza la frecuencia de 45 discriminación de la solución acuosa disímil que indica que se necesita contabilizar la frecuencia de solución acuosa disímil. La parte que contabiliza la frecuencia de la solución acuosa disímil 34G contabiliza la frecuencia de discriminación de la solución acuosa disímil, cuando se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil. La parte que mantiene el tipo de agente reductor 34H mantiene la discriminación vacía o la discriminación de solución acuosa disímil cuando la frecuencia de discriminación vacía o la 50 frecuencia de discriminación de la solución acuosa disímil se vuelven iguales o mayores que la primera frecuencia predeterminada, para producir la señal que mantiene la discriminación vacía o la señal que mantiene la discriminación de la solución acuosa.

Después, se describirán varias funciones del aparato para discriminar agente reductor líquido, en referencia a los diagramas desde la Fig. 4 a la Fig. 11.

En la Fig. 4 que muestra el proceso de producir una señal provocadora de la medición ejecutado por la parte de salida de la señal provocadora de la medición 34A, en la etapa 1 (para abreviar como S1 en el dibujo, y se aplicará la misma norma a los pasos posteriores), se juzga si la señal del interruptor de arranque está en ENCENDIDO o no, en otras palabras, si el motor 10 empieza o no a funcionar. Después, si la señal del interruptor de arranque está en ENCENDIDO (Sí), la rutina avanza a la etapa 2, mientras que si la señal del interruptor de arranque está en APAGADO (No), la rutina está en un modo de espera.

En la etapa 2, se produce la señal provocadora de la medición.

En la etapa 3, se juzga si ha transcurrido el tiempo predeterminado $(t_1 + t_2)$ después de que se haya producido la señal provocadora de la medición. Entonces, si el tiempo predeterminado $(t_1 + t_2)$ ha transcurrido después de

haberse producido la señal provocadora de la medición (Sí), la rutina se termina, mientras que si el tiempo predeterminado ($t_1 + t_2$) no ha transcurrido (No), la rutina está en el modo de espera.

De acuerdo con este proceso de salida de señal provocadora de la medición, cuando el motor 10 comienza a funcionar, la señal provocadora de la medición se produce en cada tiempo predeterminado (t₁ + t₂). Por lo tanto, es posible reconocer si el sensor de concentración 32 es capaz de medir la concentración de la solución acuosa de urea, controlando si la señal que activa al medición se activa o no.

En la Fig. 5 que muestra el proceso de medición de concentración ejecutado por la parte que mide la concentración 34B y el proceso para discriminar un tipo de agente reductor ejecutado por la parte que discrimina el tipo de agente reductor 34C, en la etapa 11, se juzga si se produce o no la señal que provoca la medición. Entonces, si se produce la señal provocadora de la medición (Sí), la rutina avanza a la etapa 12, mientras que si no se produce la señal provocadora de la medición (No), la rutina está en el modo de espera.

En la etapa 12, se mide la concentración de la solución acuosa de urea. Concretamente, el calentador en el sensor de concentración 32 funciona durante el tiempo predeterminado t₁, de modo que la concentración de la solución acuosa de urea se mide indirectamente en base a la diferencia entre las temperaturas detectadas por los sensores de temperatura A y B.

15

30

35

40

45

50

55

En la etapa 13, se juzga si la concentración de la solución acuosa de urea es superior o no al umbral superior. Aquí, el umbral superior es un umbral para discriminar si el tanque de almacenaje está vacío o no, y se fija en un valor límite superior que normalmente es incapaz de medirse incluso si se genera alguna convección en el caso en el que la solución acuosa de urea se llene normalmente. Entonces, si la concentración de la solución acuosa de urea es superior al umbral superior (Sí), la rutina avanza a la etapa 14 donde se produce la señal de discriminación vacía. Por otro lado, si la concentración de la solución acuosa de urea es igual o inferior al límite superior (No), la rutina avanza a la etapa 15.

En la etapa 15, se juzga si la concentración de la solución acuosa de urea es inferior o no a un umbral inferior. Aquí, el umbral inferior es un umbral para discriminar si el líquido en el tanque de almacenaje es o no la solución acuosa disímil, y se fija en un valor límite inferior que normalmente es incapaz de medirse incluso si se genera alguna convección en el caso en el que la solución acuosa de urea se llene normalmente. Entonces, si la concentración de la solución acuosa de urea es inferior al umbral inferior (Sí), la rutina avanza a la etapa 16 donde se produce la señal de discriminación de la solución acuosa disímil. Por otro lado, si la concentración de la solución acuosa de urea es igual o superior al límite inferior (No), la rutina avanza a la etapa 17, donde se produce la señal de discriminación normal.

De acuerdo con el proceso de medición de concentración anteriormente descrito y el proceso que discrimina el tipo de agente reductor, la concentración de la solución acuosa de urea se mide en cada momento en el que se produce la señal provocadora de la medición. Entonces, si la concentración de la solución acuosa de urea es superior al umbral superior, se discrimina que el tanque de almacenaje esté vacío, y se produce la señal de discriminación vacía que indica el resultado de la discriminación. Si la concentración de la solución acuosa de urea es inferior al umbral inferior, se discrimina que el líquido en el tanque de almacenamiento sea la solución acuosa disímil, y se produce la señal de discriminación de la solución acuosa disímil que indica el resultado de la discriminación. Por otro lado, si la concentración de la solución acuosa de urea es igual o superior al límite inferior y también igual o inferior al límite superior, se discrimina que la solución acuosa de urea se llene normalmente en el tanque de almacenaje y se produce la señal de discriminación normal que indica el resultado de la discriminación.

En la Fig. 6 que muestra el proceso de juicio de una conveniencia de discriminación vacía ejecutado por la parte que juzga la conveniencia de discriminación vacía 34D, en la etapa 21, se juzga si se produce o no la señal de discriminación vacía. Entonces, si se produce la señal de discriminación vacía (Sí), la rutina avanza a la etapa 22, mientras que si no se produce la señal de discriminación vacía (No), la rutina se termina.

En la etapa 22, se juzga si la temperatura de la solución acuosa de urea es igual o superior a la temperatura predeterminada en base a las señales de temperatura del sensor de concentración 32 inmediatamente antes del funcionamiento del calentador. Aquí, la temperatura predeterminada es un umbral en base al cual se ejecuta el juicio si la precisión que mide la concentración se degrada o no como un resultado de que al menos una parte de la solución acuosa de urea está congelada, y se fija a una temperatura ligeramente más alta que un punto de congelación de disolvente de la solución acuosa de urea. Entonces, si la temperatura de la solución acuosa de urea es igual o superior a la temperatura predeterminada (Sí), la rutina procede a la etapa 23, mientras que si la temperatura de la solución acuosa de urea es inferior a la temperatura predeterminada (No), la rutina se termina.

En la etapa 23, se juzga si la diferencia entre las temperaturas detectadas por los sensores de temperatura A y B (referidas como "diferencia de temperatura inicial" a continuación) es igual a o menor que una diferencia de temperatura predeterminada, en base a las señales de temperatura del sensor de temperatura 32 inmediatamente antes del funcionamiento del calentador. Aquí, la diferencia de temperatura inicial es un límite en base al cual se ejecuta el juicio si la convección se genera en la solución acuosa de urea o no, por medio de la diferencia de temperatura entre las dos posiciones en las que están dispuestas los sensores de temperatura A y B, y se fija a una diferencia de temperatura que normalmente es incapaz de resultar incluso si se genera alguna convección.

Entonces, si la diferencia de temperatura inicial es igual o inferior a la diferencia de temperatura predeterminada (Sí), la rutina avanza a la etapa 24 donde se produce la contabilización de la frecuencia de discriminación vacía. Por otro lado, si la diferencia de temperatura es mayor que la diferencia de temperatura predeterminada (No), la rutina se termina.

5

De acuerdo con este proceso de juicio de conveniencia de discriminación vacía, cuando se produce la señal de discriminación vacía, si la temperatura de la solución acuosa de urea es igual o superior a la temperatura predeterminada y también la diferencia de temperatura inicial es igual o inferior a la diferencia de temperatura predeterminada, se juzga que la discriminación vacía es adecuada, y se produce la señal que contabiliza la frecuencia de discriminación. Por lo tanto, en un estado donde la temperatura de la solución acuosa de urea es baja y al menos una parte de la misma está congelada, y en un estado en el que se genera una fuerte convección en la solución acuosa de urea de modo que las características de transferencia térmica cambian, no se juzga que la discriminación vacía es adecuada, y por consiguiente, puede realizarse una muy fiable discriminación vacía.

En la Fig. 7, que muestra el proceso para contabilizar una frecuencia de discriminación vacía, que se ejecuta por la parte que contabiliza la frecuencia de discriminación vacía 34E, en la etapa 31, se juzga si se produce o no la señal que contabiliza la frecuencia de discriminación vacía. Entonces, si se produce la señal que contabiliza la frecuencia de discriminación vacía (Sí), la rutina avanza a la etapa 32 donde se suma 1 a la frecuencia de discriminación vacía. Por otro lado, si no se produce la señal que contabiliza la frecuencia de discriminación vacía (No), la rutina avanza a la etapa 33.

En la etapa 33, se juzga si se produce o no la señal de discriminación normal o la señal de discriminación de solución acuosa disímil. Entonces, si se produce la señal de discriminación normal o la señal de discriminación de solución acuosa disímil (Sí), la rutina avanza a la etapa 34 donde se vuelve a poner la frecuencia de discriminación vacía. Por otro lado, si no se produce ni la señal de discriminación normal ni la señal de discriminación de solución acuosa disímil (No), la rutina se termina.

De acuerdo con este proceso que contabiliza la frecuencia de discriminación vacía, se suma 1 a la frecuencia de discriminación vacía en cada momento en el que se produce la señal que contabiliza la frecuencia de discriminación vacía. Por otro lado, cuando se produce la señal de discriminación normal o la señal de discriminación de solución acuosa disímil, ya que hay una alta probabilidad de que la solución acuosa de urea se llene normalmente o que el líquido en el tanque de almacenaje sea la solución acuosa disímil, se vuelve a ejecutar otro proceso de contabilización de la frecuencia de discriminación vacía desde el principio con el fin de impedir cualquier incidencia del mantenimiento erróneo del agente reductor líquido lo máximo posible, se vuelve a poner la frecuencia de discriminación vacía.

En la Fig. 8 y la Fig. 9 que muestran el proceso de juicio de la conveniencia de la discriminación de la solución acuosa disímil, que se ejecuta por la parte que juzga la conveniencia de la discriminación de la solución acuosa disímil 34F, en la etapa 41, se juzga si se produce o no la señal de discriminación de la solución acuosa disímil. Entonces, si se produce la señal de discriminación de la solución acuosa disímil (Sí), la rutina avanza a la etapa 42, mientras que si no se produce la señal de discriminación de la solución acuosa disímil (No), la rutina se termina.

40

45

50

55

60

25

30

En la etapa 42, una bandera "Bandera" que indica si la discriminación disímil es adecuada o no se fija en 0 (conveniencia), y también, una variable "Recuento" que indica la frecuencia contabilizadora de la frecuencia de discriminación de la solución acuosa disímil se fija en 0. Aquí, como la variable "Recuento", se fija un valor positivo cuando se suma la frecuencia de discriminación de la solución acuosa disímil, mientras que se fija un valor negativo cuando se resta la frecuencia de discriminación de la solución acuosa disímil.

En la etapa 43, se juzga si la temperatura de la solución acuosa de urea es igual o superior a la temperatura predeterminada, en base a las señales de temperatura de los sensores de concentración 32. Entonces, si la temperatura de la solución acuosa de urea es igual o superior a la temperatura predeterminada (Sí), la rutina avanza a la etapa 45. Por otro lado, si la temperatura de la solución acuosa de urea es inferior a la temperatura predeterminada (No), la rutina avanza a la etapa 44 donde la bandera "Bandera" se fija en 21 (deficiencia) y también se resta un valor predeterminado m₁ de la variable "Recuento".

En la etapa 45, se juzga si el índice de cambio de temperatura de la solución acuosa de urea debido al funcionamiento del calentador, es decir, un cambio de temperatura por tiempo de unidad, es igual o inferior a un índice de cambio predeterminado, en base a la señal de temperatura del sensor de concentración 32. Aquí, el índice de cambio predeterminado es un umbral en base al cual se ejecuta el juicio si se genera convección fuerte, por medio del cambio de temperatura de la solución acuosa de urea, y se fija en un índice de cambio que es normalmente incapaz de adoptarse en un estado en el que la convección es relativamente débil. Entonces, si el índice de cambio de temperatura de la solución acuosa de urea es igual o inferior al índice de cambio predeterminado (Sí), la rutina avanza a la etapa 47. Por otro lado, si el índice de cambio de temperatura de la solución acuosa de urea es superior al índice de cambio predeterminado (No), la rutina avanza a la etapa 46 donde la bandera "Bandera" se fija en 1 y también se resta un valor predeterminado m₂ de la variable "Recuento".

En la etapa 47, si juzga si la concentración de la solución acuosa de urea es igual o superior a la concentración predeterminada, en base a la señal de concentración. Aquí, la concentración predeterminada es un umbral en base al cual se ejecuta el juicio si se genera convección fuerte en la solución acuosa de urea, por medio de un hecho de

que la concentración medida basada en las señales de temperatura del sensor de concentración 32 es significativamente baja, y se fija en la concentración baja que es incapaz de medirse incluso si se genera alguna convección. Entonces, si la concentración de la solución acuosa de urea es igual o superior a la concentración predeterminada (Sí), la rutina avanza a la etapa 49. Por otro lado, si la concentración de la solución acuosa de urea es inferior a la concentración predeterminada (No), la rutina avanza a la etapa 48 donde la bandera "Bandera" se fija en 1 y también se resta un valor predeterminado m₃ de la variable "Recuento".

En la etapa 49, se juzga si la desviación entre la concentración de solución acuosa de urea previamente medida y la concentración de solución acuosa de urea medida en el presente (referida como la desviación de concentración) es igual a o más pequeña que la desviación predeterminada. Aquí, la desviación predeterminada es un umbral en base al cual se ejecuta el juicio si se genera convección fuerte en la solución acuosa de urea, por medio de un hecho tal que la concentración de la solución acuosa de urea se cambia significativamente, y se fija en la desviación dentro de un intervalo en el que la desviación no cambia incluso si se genera alguna convección. Entonces, si la desviación de concentración es igual a o menor que la desviación predeterminada (Sí), la rutina avanza a la etapa 51. Por otro lado, si la desviación de concentración es mayor que la desviación predeterminada (No), la rutina avanza a la etapa 50 donde la bandera "Bandera" se fija en 1 y también se resta un valor predeterminado m₄ de la variable "Recuento".

15

20

25

30

35

40

45

50

55

60

En la etapa 51, se juzga si la diferencia de temperatura inicial es igual a o menor que la diferencia de temperatura predeterminada. Después, si la diferencia de temperatura es igual a o menor que la diferencia de temperatura predeterminada (Sí), la rutina avanza a la etapa 53. Por otro lado, si la diferencia de temperatura inicial es mayor que la diferencia de temperatura predeterminada (No), la rutina avanza a la etapa 52 donde la bandera "Bandera" se fija en 1 y también se resta un valor predeterminado m₅ de la variable "Recuento".

Én la etapa 53, se juzga si la bandera "Bandera" es 0, concretamente, si la discriminación de la solución acuosa disímil es adecuada. Entonces, si la bandera "Bandera" es 0 (Sí), la rutina avanza a la etapa 54, mientras que si la bandera "Bandera" es 1 (No), la rutina avanza a la etapa 58.

En la etapa 54, se juzga si la velocidad rotativa del motor es igual a o menor que un primer valor predeterminado. Aquí, el primer valor predeterminado es uno de los umbrales en base al cual se ejecuta el juicio si el vehículo está en un estado de parada, y se fija apropiadamente de acuerdo con la precisión detectora de la velocidad rotativa del motor. Entonces, si la velocidad rotativa del motor es igual a o menor que el primer valor predeterminado (Sí), la rutina avanza a la etapa 55, mientras que si la velocidad rotativa del motor es mayor que el primer valor predeterminado (No), la rutina avanza a la etapa 57.

En la etapa 55, se juzga si la velocidad del vehículo es igual a o menor que un segundo valor predeterminado. Aquí, el segundo valor predeterminado es el otro umbral en base al cual se ejecuta el juicio si el vehículo está en el estado de parada, y se fija apropiadamente de acuerdo con la precisión detectora de la velocidad rotativa del motor. Entonces, si la velocidad rotativa del motor es igual a o menor que el segundo valor predeterminado (Sí), la rutina avanza a la etapa 56, mientras que si la velocidad rotativa del motor es mayor que el segundo valor predeterminado (No), la rutina avanza a la etapa 57.

En la etapa 56, se juzga si el vehículo está en el estado de parada, y se fija el número natural n igual a o mayor que 2 como la variable "Recuento".

En la etapa 57, se juzga si el vehículo está en un estado en marcha, y se fija 1 a la variable "Recuento".

En la etapa 58, se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa de urea incluyendo la frecuencia contabilizadora fijada a la variable "Recuento".

De acuerdo con este proceso que juzga la conveniencia de discriminación de la solución acuosa disímil, cuando se produce la señal de discriminación de la solución acuosa disímil, se juzga que la discriminación de la solución acuosa disímil sea adecuada si se satisfacen las siguientes condiciones: la temperatura de la solución acuosa de urea sea igual o superior a la temperatura predeterminada; el índice de cambio de temperatura de la solución acuosa de urea sea igual a o menor que el índice de cambio predeterminado; la concentración de la solución acuosa de urea sea igual o superior a la concentración predeterminada; la desviación de concentración sea igual a o menor que la desviación predeterminada; y que la diferencia de temperatura inicial sea igual o menor que la diferencia de temperatura predeterminada. Por lo tanto, en el estado en el que la temperatura de la solución acuosa de urea es baja y al menos una parte de la misma está congelada, y en el estado en el que se genera fuerte convección en la solución acuosa de urea de modo que las características de transferencia térmica cambian, no se juzga que la discriminación de la solución acuosa disímil sea adecuada, y por consiguiente, puede realizarse una muy fiable discriminación de la solución acuosa disímil. En este momento, se juzga si el vehículo está en el estado de parada o en el estado de marcha, en base a la velocidad rotativa del motor y la velocidad del vehículo. Si el vehículo está en el estado de parada, con el fin de permitir en un corto periodo de tiempo mantener que el líquido en el tanque de almacenaje esté en la solución acuosa disímil, se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil en la que el numero natural n igual o mayor que 2 se fija como la frecuencia contabilizadora. Por otro lado, si el vehículo está en el estado de marcha, se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil en la que 1 se fija como la frecuencia contabilizadora.

Por otro lado, se juzga que la discriminación de la solución acuosa disímil se realice en el estado en el que se genera convección fuerte en la solución acuosa de urea si se satisfacen las siguientes condiciones: la temperatura de la solución acuosa de urea sea inferior a la temperatura predeterminada; el índice de cambio de temperatura de la solución acuosa de urea sea superior al índice de cambio predeterminado; la concentración de la solución acuosa de urea sea inferior a la concentración predeterminada; la desviación de concentración sea mayor que la desviación predeterminada; y que la diferencia de temperatura inicial sea mayor que la diferencia de temperatura predeterminada. A partir de entonces, con el fin de cancelar la frecuencia de discriminación de la solución acuosa disímil, se produce la señal que contabiliza la discriminación de la solución acuosa disímil en la que se fija el valor negativo como la frecuencia contabilizadora. En este momento, aunque los números naturales de m₁ a m₅ se restan como la frecuencia de contabilización en los pasos 44, 46, 48, 50 y 52, respectivamente, en el caso en el que la condición sustractiva no se use, puede fijarse apropiadamente 0 para los respectivos números naturales m₁ a m₅. A propósito, cuando se fija 0 a todos los números naturales m₁ a m₅, es posible mantener la frecuencia contabilizadora sin la necesidad de sustraer la frecuencia de discriminación de la solución acuosa disímil.

En la Fig. 10 que muestra el proceso que contabiliza la frecuencia de discriminación de la solución acuosa disímil por la parte que contabiliza la frecuencia de discriminación de la solución acuosa disímil 34G, en la etapa 61, se juzga si se produce o no la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil. Entonces, si se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil (Sí), la rutina sigue a la etapa 62, mientras que si no se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil (No), la rutina avanza a la etapa 64.

En la etapa 62, se contabiliza la frecuencia de discriminación de la solución acuosa disímil. Concretamente, cuando la discriminación de la solución acuosa disímil es adecuada, la frecuencia de discriminación de la solución acuosa disímil se suma de acuerdo con la frecuencia contabilizadora de un número entero positivo incluido en la señal que contabiliza la frecuencia de la discriminación de la solución acuosa disímil. Por otro lado, cuando la discriminación de la solución acuosa disímil es inadecuada, con el fin de cancelar la contabilización en el estado inadecuado, la frecuencia de la discriminación de la solución acuosa disímil se resta de acuerdo con la frecuencia contabilizadora del número entero negativo incluido en la señal que contabiliza la frecuencia de la discriminación de la solución acuosa disímil.

30 En la etapa 63, se suma 1 a un contador de apoyo que indica la frecuencia de discriminación de la solución acuosa disímil realizada consecutivamente.

En la etapa 64, se juzga si se produce o no la señal de discriminación normal o la señal que mantiene la discriminación vacía. Entonces, si se produce la señal de discriminación normal o la señal que mantiene la discriminación vacía (Sí), la rutina avanza a la etapa 65, mientras que si no se produce ni la señal de discriminación normal ni la señal que mantiene la discriminación vacía (No), la rutina se termina.

En la etapa 65, se vuelve a poner la frecuencia de discriminación de la solución acuosa disímil.

En la etapa 66, se vuelve a poner el contador de apoyo.

35

40

45

50

De acuerdo con este proceso que contabiliza la frecuencia de discriminación de la solución acuosa disímil, la frecuencia de discriminación de la solución acuosa disímil se contabiliza en cada momento en el que se produce la señal que contabiliza la frecuencia de discriminación de la solución acuosa disímil. En este momento, si la discriminación de la solución acuosa disímil es adecuada, ya que la frecuencia de discriminación de la solución acuosa disímil se suma de acuerdo con la frecuencia contabilizadora diferente dependiendo del estado del vehículo (el estado en parada o el estado en marcha), en particular, es posible mejorar la velocidad de contabilización en el estado de parada en el que la convección en la solución acuosa de urea es débil. Además, si la discriminación de la solución acuosa disímil es inadecuada, ya que la frecuencia de discriminación de la solución acuosa disímil se resta con el fin de cancelar la contabilización en el estado en el que la convección en la solución acuosa de urea es fuerte, en síntesis, la contabilización en el estado en el que la discriminación de tipo líquido es difícil de realizar, es posible mejorar la precisión de discriminación. Además, se suma 1 al contador de apoyo cada vez que se produce la señal que contabiliza la frecuencia de discriminación de solución acuosa disímil, con independencia de la conveniencia de la discriminación de la solución acuosa disímil.

Por otro lado, cuando se produce la señal de discriminación normal o la señal que mantiene la discriminación vacía, ya que hay una alta probabilidad de que la solución acuosa de urea se llene normalmente o el tanque de almacenaje esté vacío, se vuelve a ejecutar otro proceso de contabilización de la frecuencia de discriminación de la solución acuosa disímil desde el principio con el fin de impedir un mantenimiento erróneo del agente reductor líquido lo máximo posible, se vuelven a poner la frecuencia de discriminación de la solución acuosa disímil y el contador de apovo.

En la Fig. 11 que muestra el proceso que mantiene el tipo de agente reductor por la parte que mantiene el tipo de agente reductor 34H, en la etapa 71, se juzga si la frecuencia de discriminación vacía es igual a o mayor que la primera frecuencia predeterminada. Entonces, si la frecuencia de discriminación vacía es igual a o mayor que la primera frecuencia predeterminada (Sí), la rutina avanza a la etapa 72 donde se produce la señal que mantiene la discriminación vacía que indica que la discriminación vacía se mantiene. Por otro lado, si la frecuencia de discriminación vacía es menor que la primera frecuencia predeterminada (No), la rutina avanza a la etapa 73.

En la etapa 74, se juzga si la frecuencia de discriminación de la solución acuosa disímil es igual a o mayor que la primera frecuencia predeterminada. Entonces, si la frecuencia de discriminación de la solución acuosa disímil es igual a o mayor que la primera frecuencia predeterminada (Sí), la rutina avanza a la etapa 74 donde se produce la señal que mantiene la discriminación de la solución acuosa disímil que indica que la discriminación de la solución acuosa disímil se mantiene. Por otro lado, si la frecuencia de discriminación de la solución acuosa disímil es menor que la primera frecuencia predeterminada (No), la rutina avanza a la etapa 75.

En la etapa 75, se juzga si el contador de apoyo es igual o mayor que la segunda frecuencia predeterminada. Aquí, la segunda frecuencia predeterminada es un umbral para su uso en prohibir la incidencia de un estado en el que la discriminación de la solución acuosa disímil se excluye sin implementarse durante mucho tiempo, y se fija en un valor mayor que la primera frecuencia predeterminada, por ejemplo un valor diez veces mayor que la primera frecuencia predeterminada. Entonces, si el contador de apoyo es igual a o mayor que la segunda frecuencia predeterminada (Sí), la rutina avanza a la etapa 74 donde se produce la señal que mantiene la discriminación de la solución acuosa disímil. Por otro lado, si el contador de apoyo es menor que la segunda frecuencia predeterminada (No), la rutina se termina.

15

20

35

40

50

De acuerdo con este proceso que mantiene el tipo de agente reductor, cuando la frecuencia de discriminación vacía o la frecuencia de discriminación de la solución acuosa disímil se vuelve igual a o mayor que la primera frecuencia predeterminada, la discriminación vacía o la discriminación de la solución acuosa disímil se mantiene, de modo que se produce la señal de acuerdo con el resultado que se mantiene. Además, cuando el contador de apoyo que indica que la frecuencia de discriminación de la solución acuosa disímil realizada consecutivamente se vuelve igual o mayor que la segunda frecuencia predeterminada con independencia de que la discriminación de la solución acuosa disímil sea adecuada, la discriminación de la solución acuosa disímil se mantiene, de modo que se produce la señal que mantiene la discriminación de la solución acuosa disímil.

Concretamente, si la convención se genera en la solución acuosa de urea, ya que el calor generado por el calentador incorporado en el sensor de temperatura A del sensor de concentración 32 se produce en la convección, una cantidad de calor que se transferirá al sensor de temperatura B disminuye de modo que la precisión que mide la concentración se degrada. Sin embargo, de acuerdo con la medición práctica de la concentración de la solución acuosa de urea medida por el sensor de concentración 32, como se muestra en la Fig. 12, podía descubrirse que, si
 la solución acuosa de urea se llena normalmente, es extremadamente raro que la concentración se desvíe de un intervalo predeterminado consecutivamente durante muchas veces incluso si se genera la convección.

Por lo tanto, cuando la concentración de la solución acuosa de urea se vuelve mayor que el umbral superior o menor que el umbral inferior, se discrimina que el tanque de almacenaje esté vacío o que el líquido en el tanque de almacenaje sea la solución acuosa disímil, y la frecuencia de discriminación se contabiliza individualmente, y también, la discriminación se mantiene cuando la frecuencia de discriminación se vuelve igual o mayor que la primera frecuencia predeterminada, de modo que la discriminación puede realizarse con independencia de los estados del vehículo. En este momento, se juzga la conveniencia de la discriminación vacía o de la discriminación de la solución acuosa disímil y la frecuencia de discriminación se contabiliza solamente cuando la discriminación vacía o la discriminación de la solución acuosa disímil es adecuada, de modo que puede impedirse la contabilización en el estado en el que se genera fuerte convección en la solución acuosa de urea, permitiendo de ese modo la meiora de la precisión de discriminación.

A propósito, en el proceso que juzga la conveniencia de la discriminación de la solución acuosa disímil mostrada en la Fig. 8 y Fig. 9, con el fin de simplificar el programa de control, puede fijarse uniformemente 1 como la frecuencia contabilizadora de la frecuencia de discriminación de la solución acuosa disímil sin tomar en consideración los estados del vehículo.

Además, en el proceso que mantiene el tipo de agente reductor mostrado en la Fig. 11, cuando se mantiene la discriminación vacía o la discriminación de la solución acuosa disímil, este resultado de mantenimiento puede hacerse notar para un conductor del vehículo usando un dispositivo de alarma tal como un dispositivo de aviso. De este modo, ya que el conductor del vehículo puede reconocer en una fase temprana que la solución acuosa de urea no está llena normalmente, la función como la del aparato purificador de la emisión de gases de combustión puede mantenerse tomando la acción apropiada, tal como el intercambio o similar.

Además, la concentración puede ser tal que cada una de la frecuencia de discriminación de la solución acuosa disímil y la frecuencia de discriminación vacía se escriba en una EEPROM (Memoria programable y borrable eléctricamente de sólo lectura) como una memoria no volátil cuando el funcionamiento del motor 10 se para, mientras que cada una de la frecuencia de discriminación de la solución acuosa disímil y la frecuencia de discriminación vacía escrita en EEPROM se lee cuando el funcionamiento del motor 10 se inicia. De este modo, ya que la frecuencia de discriminación de la solución acuosa disímil y la frecuencia de discriminación vacía antes del arranque del motor 10 se asumen para el siguiente inicio del funcionamiento del motor 10, no es necesario realizar el proceso de contabilización desde el principio cada vez que se inicia el funcionamiento del motor 10, y por consiguiente, la discriminación de la solución acuosa de urea puede realizarse en un breve periodo de tiempo.

Consecuentemente, de acuerdo con el aparato para discriminar agente reductor líquido de la presente invención, es posible discriminar con alta precisión si el tanque de almacenaje está vacío, el agente reductor líquido se llena

ES 2 389 309 T3

normalmente o el líquido en el tanque de almacenaje es la solución acuosa disímil, en el caso en el que el sensor de concentración que indirectamente mide la concentración del agente reductor líquido en base a las características de transferencia térmica entre dos posiciones cercanas entre sí está montado en el vehículo móvil.

5

REIVINDICACIONES

1. Un aparato para discriminar agente reductor líquido, que comprende:

un sensor de concentración (32) que incorpora en el mismo sensores de temperatura (A, B) dispuestos en dos posiciones cercanas entre sí en un tanque de almacenaje (18) que almacena un agente reductor líquido y un calentador incorporado en uno de los sensores de temperatura; y una unidad de control (34) que incorpora en la misma un ordenador,

y caracterizado por que la unidad de control está configurada para:

10

5

operar el calentador del sensor de concentración (32) en cada tiempo predeterminado después de un inicio del funcionamiento de un motor (10) para medir de este modo indirectamente una concentración del agente reductor líquido en base a una temperatura detectada por cada uno de los sensores de temperatura (A. B): v procesar la discriminación de una manera que discrimina que el tanque de almacenaje (18) se llene con una solución acuosa disímil que es disímil del agente reductor líquido cuando la concentración es inferior a un umbral inferior, que el tanque de almacenaje se llene normalmente con el agente reductor líquido cuando la concentración es igual o superior al límite inferior y también igual o inferior a un límite superior, y que el tanque de almacenaje esté vacío cuando la concentración sea superior al límite superior;

20

15

juzgar, tras la discriminación del tanque de almacenaje (18) que se llena con la solución acuosa disímil, si la discriminación de solución acuosa disímil es adecuada o no, en base a la temperatura detectada por cada uno de los sensores de temperatura y la concentración medida por el sensor de concentración, y contabilizar, después de juzgar que la discriminación de la solución acuosa disímil es adecuada, una frecuencia de discriminación de la solución acuosa disímil:

25

juzgar, después de la discriminación de que el tanque de almacenaje (18) está vacío, si una discriminación vacía es adecuada o no, en base a la temperatura detectada por cada uno de los sensores de temperatura, y contabilizar, después de juzgar que la discriminación vacía es adecuada, una frecuencia de la discriminación

volver a poner, después de la discriminación de que el tanque de almacenaje (18) está vacío, la frecuencia de la discriminación de la solución acuosa disímil y la frecuencia de la discriminación vacía; y

30

mantener la discriminación de la solución acuosa disímil y la discriminación vacía cuando la frecuencia de la discriminación de solución acuosa disímil y la frecuencia de la discriminación vacía se vuelven iguales o mayores que una primera frecuencia predeterminada.

2. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está configurada para juzgar que 35

40

55

la discriminación de la solución acuosa disímil es adecuada, cuando una temperatura inmediatamente antes de un funcionamiento del calentador es igual o superior a una temperatura predeterminada, una diferencia de temperatura inmediatamente antes del funcionamiento del calentador es igual a o menor que una diferencia de temperatura predeterminada, un índice de cambio de la temperatura causado por el funcionamiento del calentador es igual o inferior a un índice de cambio predeterminado, la concentración es igual o superior a la concentración predeterminada que es inferior al umbral inferior, y una desviación entre una concentración previamente medida y la

concentración actualmente medida es igual a o menor que una desviación predeterminada.

3. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está configurada para juzgar que la discriminación vacía es adecuada, cuando una temperatura inmediatamente antes del funcionamiento de un 45 calentador es igual o superior a una temperatura predeterminada y una diferencia de temperatura antes del funcionamiento del calentador es igual a o menor que una diferencia de temperatura predeterminada.

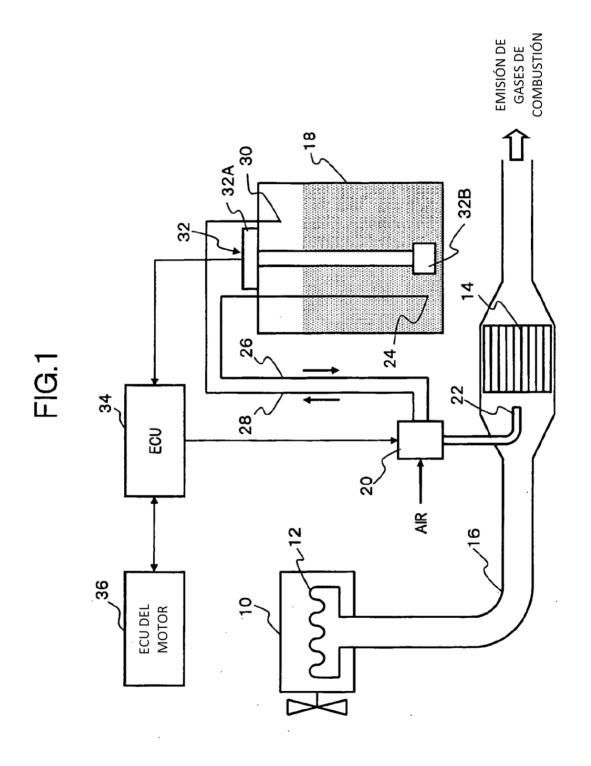
4. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está configurada para volver a poner la frecuencia de la discriminación de la solución acuosa disímil cuando la discriminación vacía se mantiene, v 50 también, volver a poner la frecuencia de la discriminación vacía cuando la discriminación de la solución acuosa disímil se mantiene.

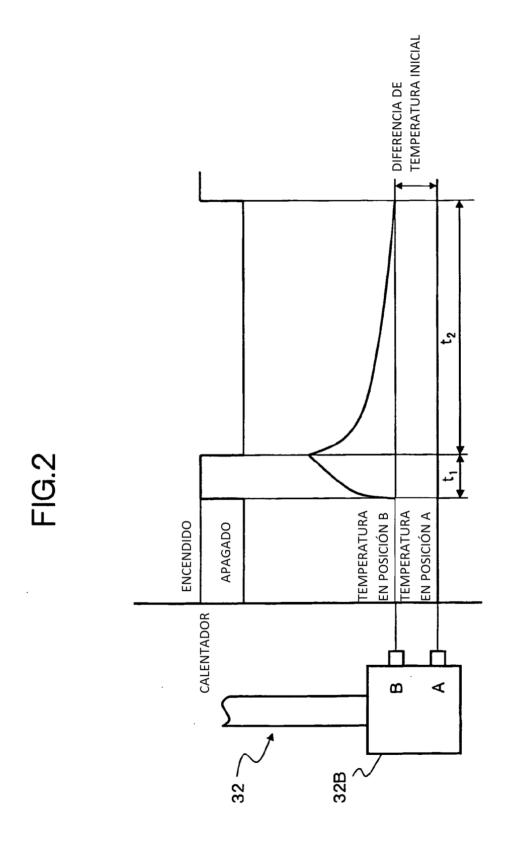
5. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está configurada para mantener la discriminación de la solución acuosa disímil, cuando la frecuencia de la discriminación realizada consecutivamente de que el líquido en el tanque de almacenaje es la solución acuosa disímil se vuelve igual a o mayor que una segunda frecuencia predeterminada que es mayor que la primera frecuencia predeterminada, sin considerar si la frecuencia de la discriminación de la solución acuosa disímil se vuelve igual a o mayor que la primera frecuencia predeterminada.

60 6. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está configurada para juzgar si un vehículo está en un estado en marcha o en un estado de parada, y cuando se juzga que el vehículo está en el estado de parada, se suma un número natural igual a o mayor que 2 a la frecuencia de la discriminación de la solución acuosa disímil.

7. El aparato de acuerdo con la reivindicación 6. que además comprende: un sensor de velocidad rotativa que 65 detecta una velocidad rotativa de un motor; y un sensor de velocidad del vehículo que detecta una velocidad del

ES 2 389 309 T3


vehículo, en el que la unidad de control (34) está configurada para:


5

juzgar si el vehículo está en el estado de parada bajo una condición en la que la velocidad rotativa detectada por el sensor de velocidad rotativa es igual o inferior a un primer valor predeterminado y también la velocidad del vehículo detectada por el sensor de velocidad del vehículo es igual o inferior a un segundo valor predeterminado; pero

juzgar que el vehículo está en el estado en marcha bajo otra condición excepto por la condición anteriormente mencionada.

- 8. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está configurada para restar una frecuencia predeterminada de la frecuencia de la discriminación de la solución acuosa disímil cuando se juzga que la discriminación de la solución acuosa disímil es inadecuada.
- 9. El aparato de acuerdo con la reivindicación 1, en el que la unidad de control (34) está además configurada para escribir, en una memoria no volátil incorporada en la misma, la frecuencia de la discriminación de la solución acuosa disímil y la frecuencia de la discriminación vacía cuando el funcionamiento del motor se para, y también, lee de la memoria la frecuencia de la discriminación de la solución acuosa disímil y la frecuencia de la discriminación vacía cuando el funcionamiento del motor se inicia.
- 20 10. El aparato de acuerdo con la reivindicación 1, en el que la discriminación vacía o la discriminación de la solución acuosa disímil se mantiene, la unidad de control (34) se configura para notificar el mantenimiento de la discriminación vacía o la discriminación de la solución acuosa disímil por medio de un dispositivo de alarma.

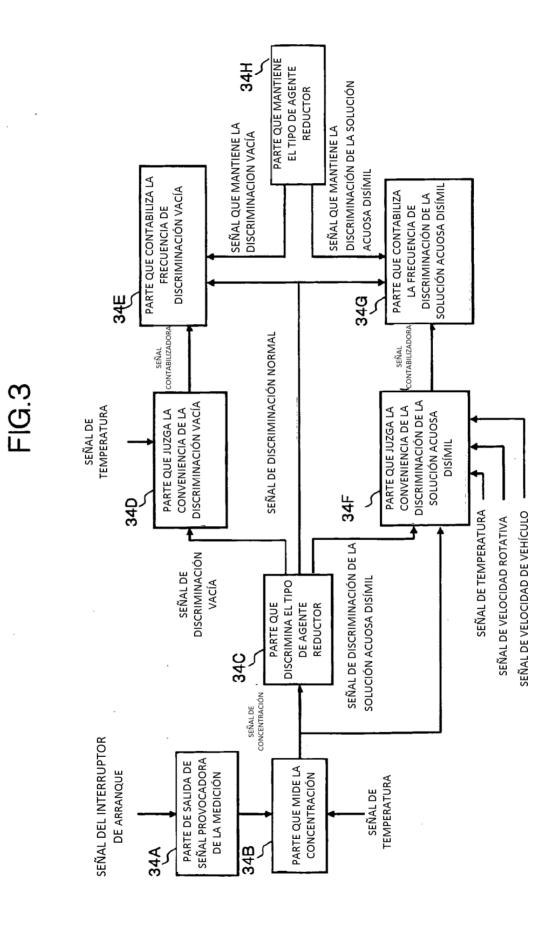


FIG.4

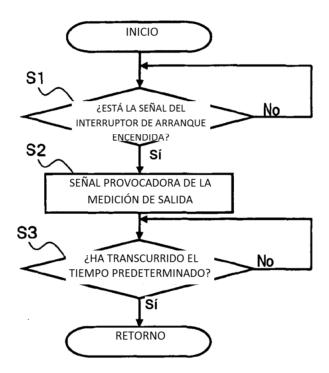


FIG.5

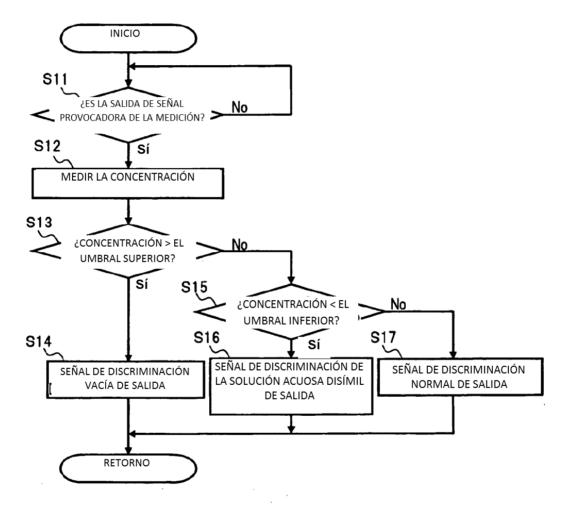


FIG.6

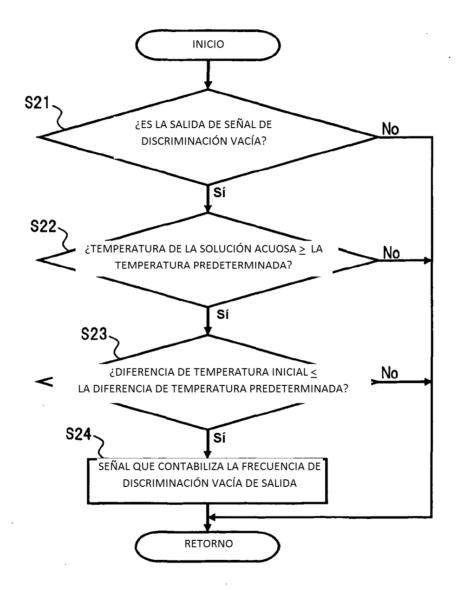


FIG.7

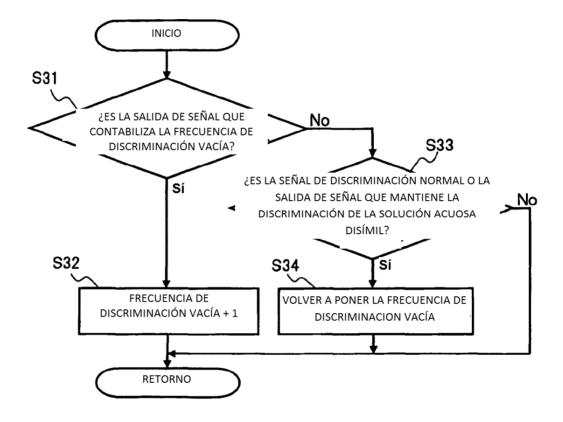


FIG.8

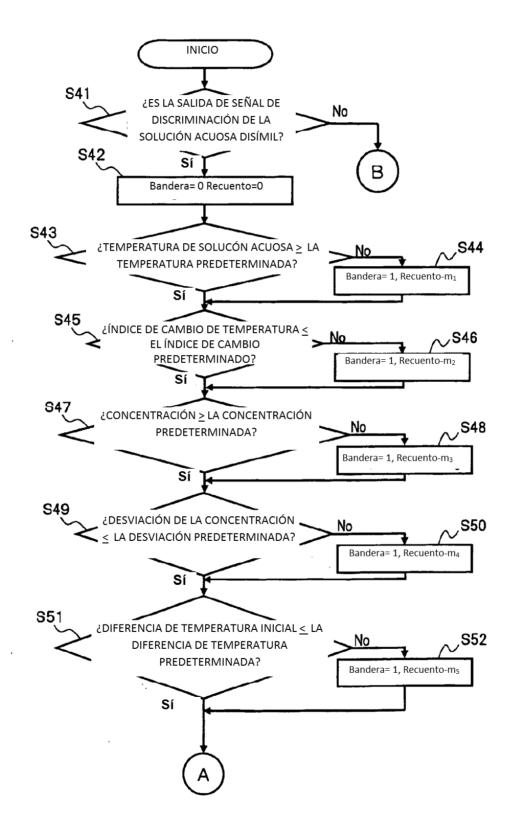
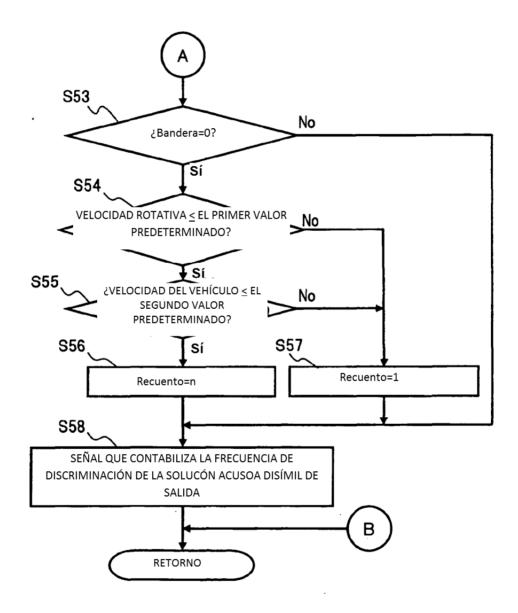



FIG.9

FIG.10

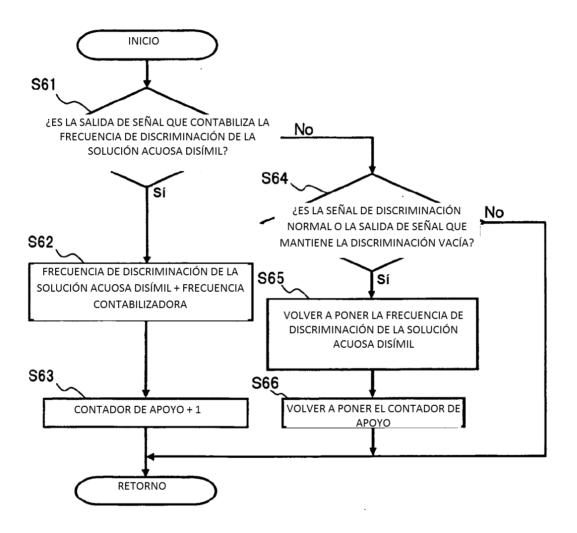
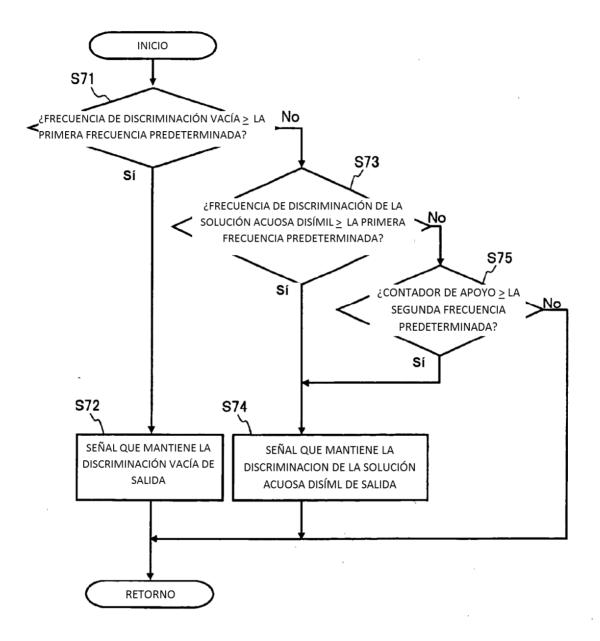



FIG.11

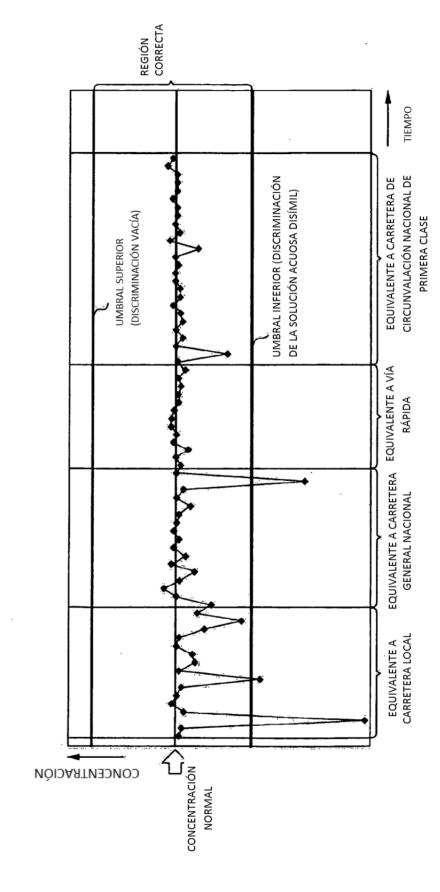


FIG.12