

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 389 462

51 Int. Cl.: **B63B 35/79 A63C 5/07**

(2006.01) (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 09013549 .2
- 96) Fecha de presentación: 28.10.2009
- Número de publicación de la solicitud: 2316722
- 54 Título: Dispositivo de deporte de tabla deslizante
- Fecha de publicación de la mención BOPI: **26.10.2012**
- 45 Fecha de la publicación del folleto de la patente: 26.10.2012
- 73) Titular/es:

TECHNISCHE UNIVERSITÄT HAMBURG-HARBURG (50.0%) Schwarzenbergstrasse 95 21073 Hamburg, DE y TUTECH INNOVATION GMBH (50.0%)

72 Inventor/es:

GUMPINGER, THOMAS; GUMPINGER, RAINER; KRAUSE, DIETER y PLAUMANN, BENEDIKT

(74) Agente/Representante:

CARVAJAL Y URQUIJO, Isabel

ES 2 389 462 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Dispositivo de deporte de tabla deslizante

25

30

La invención se refiere a un dispositivo de deporte de tabla deslizante, particularmente un esquí, una tabla para nieve, un esquí acuático, una tablaestela o tabla de kitesurf.

- Se conoce fabricar dispositivos de deporte de tabla deslizante de manera estructural tipo sándwich. Las capas de cubierta son, a este respecto, en la mayoría de los casos de tejido de fibra de vidrio o fibra de carbono. El núcleo está compuesto por espuma o madera, a veces también de una estructura de panal. Para muchos conductores, las propiedades de conducción de tales dispositivos de deporte de tabla deslizante no son suficientemente buenas.
- Esto vale particularmente para el kitesurf. El kitesurf es un deporte acuático en el que el deportista puede arrastrarse sobre el agua por una cometa de dirección y a este respecto se encuentra sobre una tabla deslizante, la tabla de kitesurf. La cometa de dirección proporciona la fuerza de tracción, mientras que la tabla de kitesurf soporta al conductor mediante un empuje ascensional dinámico sobre el agua. El deporte de kitesurf se caracteriza junto a la conducción pura sobre el agua por saltos en el aire. Para los tres estados de funcionamiento que van a distinguirse a este respecto resultan los siguientes requisitos en la rigidez frente a la flexión de la tabla de kitesurf.
- En caso de conducción sobre el agua, la tabla de kitesurf debería ser lo más flexible posible, o sea debería tener una baja rigidez frente a la flexión para que se amortigüen los golpes inducidos por las olas. Para el salto, la tabla de kitesurf debería ser lo más rígida posible, o sea debería tener una alta resistencia a la flexión para que se produzca sólo una deformación baja. La energía debe introducirse en el proceso del salto, siendo no deseadas las pérdidas de la energía para el salto mediante el desplazamiento del agua. Un doblamiento hacia arriba de la tabla de kitesurf debería evitarse también. Para el aterrizaje se requiere una tabla de kitesurf estable que tenga una alta resistencia para que la tabla de kitesurf no se rompa.
 - En caso de tablas de kitesurf conocidas se halla a partir de estos requisitos un compromiso entre el confort de conducción y la deportividad mediante una tabla de kitesurf con un comportamiento acorde rápido, rígido en caso de salto y aterrizaje. A partir de este compromiso se obtienen, sin embargo, siempre también inconvenientes para el comportamiento de conducción de la tabla de kitesurf. Mediante una optimización del comportamiento de rigidez orientada al estilo de conducción preferente se intenta mantener bajos estos inconvenientes. La tabla de kitesurf debe hacerse atractiva así en sus propiedades de conducción para muchos conductores y sus exigencias.
 - Por el documento AT 008 686 U1 se conoce una tabla de kitesurf que está configurada en la cola o en los extremos con una superficie deslizante doblegable o flexible. Según una combadura definida de manera precisa por el constructor puede apoyarse esta superficie deslizante contra una parte del cuerpo rígida o sólo poco flexible y debido a ello a partir de esta combadura definida se vuelve claramente más dura o rígida. La tabla tiene, por tanto, un estado de conducción flexible y un estado rígido para el salto. Es desventajoso según esto la coordinación costosa en distintos conductores en cuanto a la capacidad, el peso y el estilo de conducción. Las propiedades de resorte de la tabla se pierden dado que la capa superior es demasiado rígida y la capa inferior es demasiado flexible para acumular energía. La energía de la compresión de resorte no puede acumularse y se pierde para el salto. Además el gasto de fabricación es alto.
- Por el documento DE 10 2007 023 863 A1 se conoce un dispositivo de corrección de asiento para una tabla deslizante para nieve, en el que se tensa una barra que se encuentra sobre la fibra neutral del esquí contra el esquí, para modificar la rigidez frente a la flexión de toda la disposición compuesta. Esto significa una modificación duradera de la rigidez que puede alterarse mediante un botón giratorio.
- Por el documento DE 197 18 860 A1 se conoce un refuerzo dirigible de un esquí que prevé una placa flexible, sin embargo que puede resistir al empuje, que está sujeta en un extremo posterior que apunta en la dirección trasera de manera fija al esquí en el esquí y por lo demás está guiada de manera desplazable sobre el lado superior de un esquí. La placa forma con su extremo delantero una parte deslizante en dirección longitudinal del esquí. Delante de la parte deslizante de la placa está dispuesta una disposición de tope que presenta en su superficie inferior una palanca reguladora. Tan pronto como se combe el esquí, se desliza el extremo de la placa dirigido a la disposición de tope con respecto al lado superior del esquí en dirección longitudinal. A este respecto se empuja o se desliza el mencionado extremo de la placa de manera creciente contra la disposición de tope. Entonces los extremos del esquí se comban con respecto a la zona central del esquí en dirección ascendente, mientras que la placa no se comba debido a su articulación unidireccional. Es desventajosa según esto la disposición asimétrica del refuerzo en dirección longitudinal del esquí que se distingue entre una dirección delantera y trasera en caso de conducción con un esquí.

El documento EP 0 574 652 A1 da a conocer un dispositivo regulador de esquís que deja sin modificar la rigidez básica del esquí e impide únicamente un doblamiento hacia arriba del esquí más allá de un valor máximo ajustable.

Por tanto, el objetivo de la invención es crear un dispositivo de deporte de tabla deslizante, en el que la rigidez frente a la flexión puede adaptarse a circunstancias variables, y concretamente de manera independiente de la dirección de la conducción.

Este objetivo se soluciona mediante las características de la reivindicación 1.

5

10

25

40

45

Mediante eso se crea un dispositivo de deporte de tabla deslizante que permite una adaptación dinámica independiente de la rigidez en diferentes estados de funcionamiento. La adaptación del comportamiento de rigidez del dispositivo de deporte de tabla deslizante se realiza mediante el acoplamiento de al menos dos momentos de inercia de superficie que preferentemente además son distintos. En caso de una deformación seleccionable se realiza la conexión de dos barras de flexión, de manera que el momento de inercia de superficie aumenta. El espesor del cuerpo base se refuerza de manera eficaz así en caso de una combadura determinada, de manera que se obtiene una rigidez frente a la flexión superior. Es posible una acumulación de energía de resorte para un salto. También es posible un comportamiento de conducción adaptado a las situaciones de conducción.

El acoplamiento se basa preferentemente en los momentos de inercia de superficie muy distintos de un sistema de al menos dos cuerpos de tipo barra dispuestos uno sobre otro, que se deslizan de manera suelta en el estado de funcionamiento "conducción", de manera que se determina el momento de inercia de superficie a través del cuerpo base (bajo momento de inercia de superficie). Por consiguiente, el dispositivo de deporte de tabla deslizante es preferentemente flexible. Si se desea un estado de funcionamiento en el que el dispositivo de deporte de tabla deslizante sea lo más rígido posible, o sea en caso de un "salto", se unen de manera condicionada por topes los dos cuerpos de tipo barra dispuestos uno sobre otro, de manera que se obtiene un momento de inercia de superficie alto. Es posible de ese modo una transición de flexible frente a la flexión a rígido frente a la flexión.

Las ventajas del dispositivo de deporte de tabla deslizante según la invención se encuentran en una individualización del usuario simple mediante el uso de componentes sencillos. La ajustabilidad de los límites de estado de funcionamiento puede realizarse de manera sencilla mediante una graduabilidad de las posiciones de tope. La posición de los topes puede graduarse para provocar la transición de flexible frente a la flexión a rígido frente a la flexión en caso de una deformación seleccionable del cuerpo base.

Preferentemente se acoplan los momentos de superficie de flexión distintos de dos cuerpos que se apoyan uno sobre otro.

Otras ventajas y configuraciones de la invención se deducen de la siguiente descripción y las reivindicaciones dependientes.

La invención se explica en más detalle a continuación por medio de los ejemplos de realización representados en las figuras adjuntas.

La figura 1 muestra esquemáticamente el principio de acción según la invención,

la figura 2 muestra esquemáticamente una vista en planta superior de un dispositivo de deporte de tabla deslizante sin capa de cubierta según un primer ejemplo de realización,

la figura 3 muestra esquemáticamente una vista en planta superior de un dispositivo de deporte de tabla deslizante sin capa de cubierta según un segundo ejemplo de realización,

la figura 4 muestra en representación ampliada un tope graduable según la figura 3.

La invención usa el acoplamiento de dos cuerpos que se encuentran uno sobre otro. La figura 1 muestra en la izquierda dos barras A, B, que están poco cargadas. La barra B se desliza libremente sobre la barra A, adicionándose las rigideces frente a la flexión de las barras A, B. Si aumenta la combadura, tal como muestra la figura 1 a la derecha, entonces la otra barra B se desliza en ambos lados hacia un tope. Otro deslizamiento de ambas barras A, B ya no es posible. La rigidez ch. La rigidez es por así decirlo tal como se determina en caso de una unión ideal de ambas barras mediante por ejemplo una adhesión mediante los momentos de inercia de superficie de ambas barras. La rigidez aumenta en consecuencia con respecto a la barra que se desliza libremente y se determina mediante el acoplamiento preferentemente de distintos momentos de superficie de flexión.

La aplicación de este principio de acción en dispositivos de deporte de tabla deslizante permite la adaptación dinámica de la rigidez, por ejemplo de una tabla de kitesurf, a la respectiva situación de conducción y carga. El acoplamiento variable de dos cuerpos planos aumenta el momento de inercia de superficie. En caso además de momentos de flexión distintos de ambos cuerpos planos puede realizarse la adaptación de la rigidez no sólo a través del momento de inercia de superficie (espesor total), sino además también a través de la respectiva rigidez frente a la flexión (espesor de las barras, módulo E) de ambas barras. Esto ofrece además de la estructura de la disposición sencilla y económica también la posibilidad de diseñar dispositivos de deporte de tabla deslizante según un principio de sistema modular para las necesidades individuales del usuario. La barra o las barras se guían preferentemente en toda su longitud sobre la tabla. No tiene lugar ningún desprendimiento de la barra de flexión del primer cuerpo (tabla). La superficie de sección transversal/distancia entre barras y tabla no se modifica en caso de deformación.

5

10

15

20

35

40

50

La figura 2 muestra un dispositivo de deporte de tabla deslizante, particularmente una tabla de kitesurf, con un cuerpo base 10 que presenta un primer cuerpo laminar 1 que corresponde a una forma de la respectiva tabla deslizante. En el lado cóncavo del cuerpo 1 en caso de esfuerzo de flexión se apoya al menos un segundo cuerpo laminar 2. Este segundo cuerpo 2 se apoya de manera que puede moverse deslizándose sobre el primer cuerpo 1 y tiene extremos libres 3, 4. En caso del ejemplo de realización representado en la figura 2 están previstos a modo de ejemplo dos segundos cuerpos 2.

El segundo cuerpo 2 está colocado de manera guiada con huelgo axial en dirección longitudinal del cuerpo laminar 1 sobre éste. En dirección longitudinal, el segundo cuerpo 2 está configurado de manera más corta, de manera que los extremos 3, 4 del segundo cuerpo 2, en caso de un esfuerzo de flexión seleccionable, pueden desplazarse en ambos lados contra los topes 5, 6 previstos en el cuerpo base 10 para formar una disposición compuesta de cuerpos de flexión acoplados. El huelgo axial se determina mediante las distancias 9 entre los extremos 3, 4 y los topes 5, 6.

Para la colocación guiada del segundo cuerpo 2 sobre el primer cuerpo 1 está colocado éste preferentemente en puntos de colocación dispuestos de manera distanciada uno con respecto a otro. Los puntos de colocación están dispuestos de manera distribuida para ello por toda la longitud del primer cuerpo 1.

Según el ejemplo de realización representado en la figura 2, sobre el lado deformable de manera cóncava 7, es decir el lado superior, del primer cuerpo 1 y en este caso inferior se coloca un segundo cuerpo laminar 2 en forma de dos barras de flexión. Mediante guías de orificios oblongos 8 con conexiones roscadas 11 (véase la figura 3) está unido el segundo cuerpo 2 con el primer cuerpo 1 inferior. Debido a ello puede deslizarse el segundo cuerpo 2 en dirección longitudinal con respecto al primer cuerpo 1 inferior. Con carga ligera, tal como en caso de conductores normales, se comba el cuerpo base 10, se desliza el cuerpo 2 superior (barras). En cuanto las cargas (por ejemplo salto) se vuelvan superiores y aumente la combadura, se mueven las barras hacia los topes 5, 6 que se encuentran adyacentes a los extremos 3, 4 de un segundo cuerpo 2.

Se realiza un acoplamiento simétrico entre el primer cuerpo 1 y el segundo cuerpo 2, produciéndose una disposición compuesta compacto condicionado temporalmente por la deformación. Las dos barras de flexión llegan simultáneamente contra los dos topes 5, 6. Debido a ello aumenta el momento de inercia de superficie del dispositivo de deporte de tabla deslizante de modo éste se vuelve más rígido. Puede preverse una cubierta no representada para revestir la construcción del primer y segundo cuerpo 1, 2 parcial o totalmente. Preferentemente están previstas, por ejemplo, las denominadas almohadillas de pies (foot-pads) en el lado superior.

El segundo cuerpo 2 comprende preferentemente al menos dos barras distanciadas una con respecto a la otra que se extienden longitudinalmente a un eje X del primer cuerpo 1. El segundo cuerpo 2 tiene en consecuencia preferentemente una anchura más pequeña que el primer cuerpo 1.

Los topes 5, 6 presentan salientes dispuestos preferentemente en el lado de borde del primer cuerpo 1, que además pueden portar elementos de amortiguación (no mostrados) dirigidos a los extremos 3, 4 del segundo cuerpo 2 como amortiguadores de tope.

El segundo cuerpo 2 se extiende preferentemente por más del 80% de la extensión longitudinal del primer cuerpo 1. Los extremos 3, 4 del segundo cuerpo 2 pueden estar configurados de manera reducida.

Las rigideces del primer cuerpo 1 y del segundo cuerpo 2 determinan en su interacción el comportamiento de rigidez total eficaz según en cada caso el estado de funcionamiento. Mediante el cambio de las barras de flexión que pueden fabricarse por ejemplo de manera sencilla pueden adaptarse las dos rigideces de manera flexible frente a la flexión y de manera rígida frente a la flexión a deseos de conducción especiales. El segundo cuerpo 2 está compuesto preferentemente de un material más rígido frente a la flexión que el primer cuerpo 1.

La deformación, con la que el segundo cuerpo 2 se desliza hacia los topes 5, 6, puede configurarse de manera ajustable a través de topes de extremo graduables, tal como muestra esto la figura 3. Así puede adaptarse la transición de flexible frente a la flexión a rígido frente a la flexión a los deseos y necesidades del conductor (capacidad, peso, estado corporal y dinámica de conducción deseada). Mediante el ajuste no se modifican las rigideces del sistema, sino que solo se desplaza el punto de transición entre las dos rigideces. La figura 3 muestra el tope 5 como tope de extremo graduable, mientras que el tope 6 está configurado como un tope de extremo fijo.

5

10

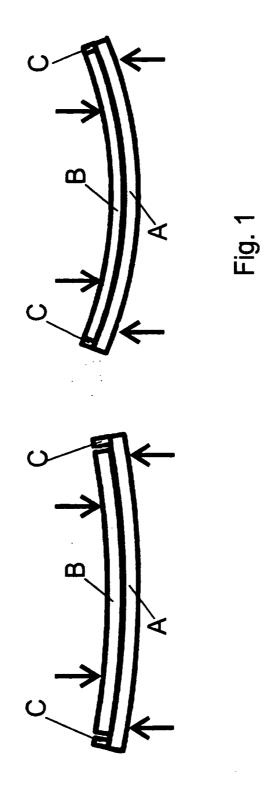
15

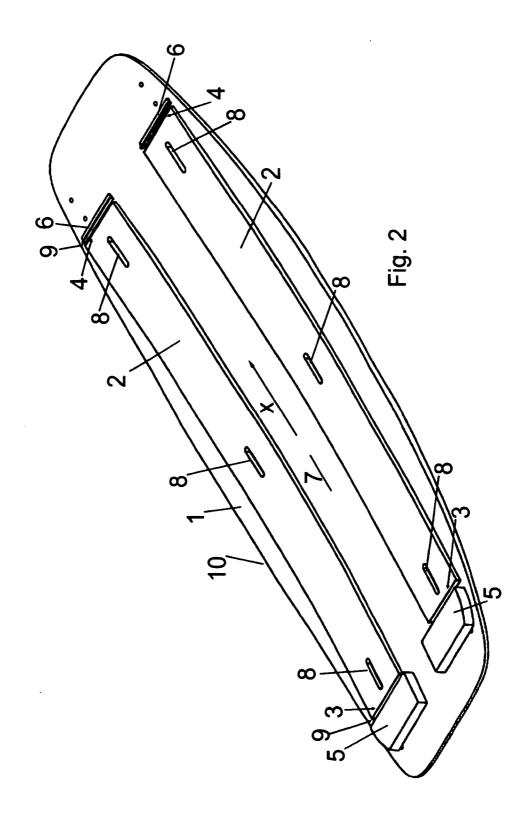
La figura 4 muestra el tope 5 como un tope de extremo graduable en representación aumentada. La graduación de la posición del tope 5 se realiza mediante un excéntrico 12 que está guiado sobre un perno 13 configurado de manera resistente al giro. Tras eliminar el excéntrico 12 del perno 13 puede girar éste y colocarse en una nueva posición. La retención se realiza mediante un tornillo de fijación 14. La fijación del tope 5 al primer cuerpo 1 del cuerpo base 10 puede realizarse a través de tornillos 15.

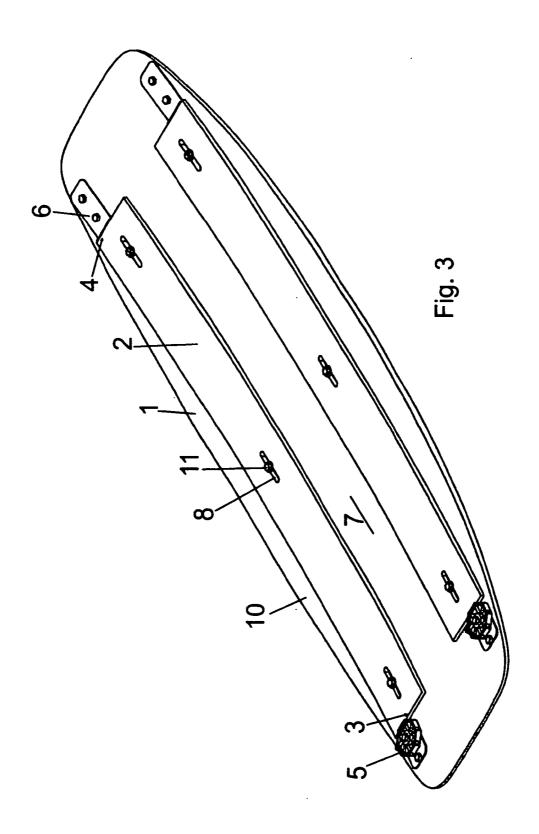
Mediante el tope de extremo graduable según la figura 4 puede conseguirse una ajustabilidad muy sencilla en diversas etapas. El usuario puede adaptar en el estado no cargado el punto de transición a sus necesidades. La construcción puede realizarse de modo que es posible un ajuste también aún en caso de ensuciamiento (por ejemplo por arena). La construcción puede enjuagarse fácilmente y puede configurarse de manera resistente al agua de mar.

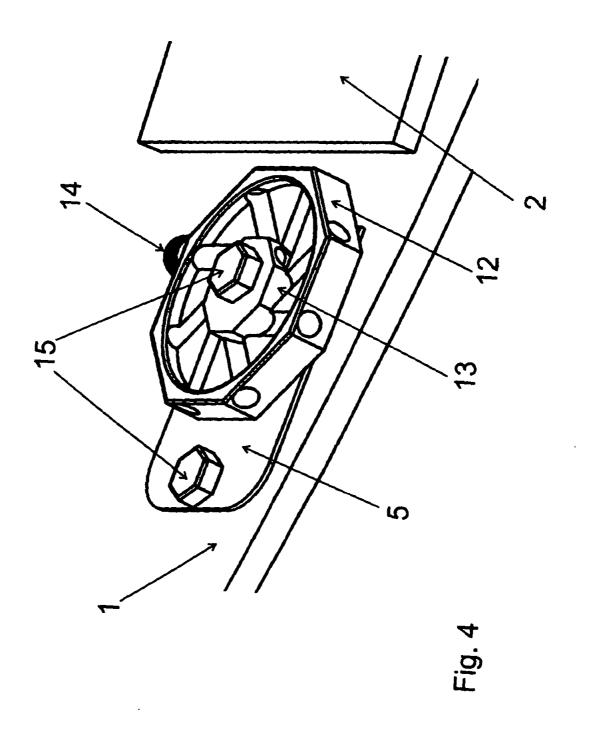
REIVINDICACIONES

1. Dispositivo de deporte de tabla deslizante con un cuerpo base (10) que presenta un primer cuerpo laminar (1) que corresponde a una forma de la respectiva tabla deslizante, en cuyo lado cóncavo (7) en caso de esfuerzo de flexión está apoyado al menos un segundo cuerpo laminar (2) con extremos libres (3, 4), que está colocado de manera guiada con huelgo axial en dirección longitudinal del cuerpo laminar (1) sobre éste y está configurado de manera más corta en dirección longitudinal, de manera que los extremos (3, 4) del segundo cuerpo (2) en caso de un esfuerzo de flexión seleccionable puede desplazarse contra topes (5, 6) previstos en el cuerpo base (10) para formar una disposición compuesta de cuerpos (1, 2) acoplados en una forma de flexión, **caracterizado porque** las rigideces frente a la flexión de los al menos dos cuerpos (1, 2) se adicionan, y en la disposición compuesta del al menos segundo cuerpo (2) se refuerza el espesor del cuerpo base (10) hasta un espesor total.


5


10


15


25

- 2. Dispositivo de deporte de tabla deslizante según la reivindicación 1, **caracterizado por que** el segundo cuerpo (2) comprende al menos dos barras distanciadas una con respecto a la otra que se extienden longitudinalmente a un eje X del primer cuerpo (1).
- 3. Dispositivo de deporte de tabla deslizante según la reivindicación 1 ó 2, **caracterizado por que** los topes (5, 6) presentan salientes dispuestos en el lado de borde del primer cuerpo laminar (1).
 - 4. Dispositivo de deporte de tabla deslizante según una de las reivindicaciones 1 a 3, **caracterizado por que** los topes (5, 6) presentan amortiguadores de tope.
 - 5. Dispositivo de deporte de tabla deslizante según una de las reivindicaciones 1 a 4, **caracterizado por que** el segundo cuerpo (2) está compuesto por un material más rígido frente a la flexión que el primer cuerpo (1).
- 20 6. Dispositivo de deporte de tabla deslizante según una de las reivindicaciones 1 a 5, **caracterizado por que** en el lado cóncavo (7) del primer cuerpo (1) están dispuestas dos barras de flexión como el segundo cuerpo (2), que pueden unirse mediante guías de orificios oblongos (8) con conexiones roscadas (11) con el primer cuerpo (1).
 - 7. Dispositivo de deporte de tabla deslizante según una de las reivindicaciones 1 a 6, **caracterizado por que** sobre el segundo cuerpo (2) se apoya al menos otro cuerpo que puede desplazarse con respecto al primer y segundo cuerpo (1, 2) y puede desplazarse hacia un tope en caso de una combadura del primer cuerpo (1) mayor que el cuerpo (2), que forma respectivamente un soporte para el otro cuerpo.
 - 8. Dispositivo de deporte de tabla deslizante según una de las reivindicaciones 1 a 7, caracterizado por que en el cuerpo base (10) está dispuesta al menos una cubierta.

