



11 Número de publicación: 2 389 931

21) Número de solicitud: 201100405

51 Int. Cl.: A01N 63/02

(2006.01)

(12)

#### SOLICITUD DE ADICIÓN A LA PATENTE

Α1

- 22 Fecha de presentación: 07.04.2011
- 43 Fecha de publicación de la solicitud: 05.11.2012
- (43) Fecha de publicación del folleto de la solicitud: **05.11.2012**
- 61) Número de solicitud de la patente principal: P 201000499

(71) Solicitante/s:

IDEN BIOTECHNOLOGY, S.L. (100.0%) CONDE OLIVETO, 2 - 3º IZDA. 31002 PAMPLONA, Navarra, ES

72 Inventor/es:

BAROJA FERNÁNDEZ, Miren Edurne; LI, Jun; MUÑOZ PÉREZ, Francisco José; OVECKA, Miroslav; POZUETA ROMERO, Javier; EZQUER GARÍN, Ignacio y ABDELLATIF, Bahaji

4 Agente/Representante:

**BUCETA FACORRO, Luis** 

(54) Título: PROCEDIMIENTO PARA ALTERAR EL PATRÓN DE DESARROLLO, AUMENTAR EL CRECIMIENTO Y LA ACUMULACIÓN DE ALMIDÓN Y ALTERAR LA ESTRUCTURA DEL ALMIDÓN EN PLANTAS MEJORADO

(57) Resumen:

Procedimiento para incrementar la resistencia al estrés hídrico de las plantas. Se demuestra que el procedimiento de crecer las plantas en presencia de volátiles microbianos, especialmente producidos por cultivos crecidos en medio mínimo, puede servir también para aumentar su resistencia al estrés hídrico.

#### DESCRIPCIÓN

# 5 NUEVAS MEJORAS INTRODUCIDAS EN EL OBJETO DE LA PATENTE PRINCIPAL Nº P201000499 POR "PROCEDIMIENTO PARA INCREMENTAR LA RESISTENCIA AL ESTRÉS HÍDRICO DE LAS PLANTAS

#### 10 CAMPO TÉCNICO

La presente solicitud de adición a la patente principal introduce mejoras en el procedimiento de la invención descrito en la solicitud de patente principal P201000499.

15

Se demuestra que el crecimiento de plantas en presencia de volátiles microbianos tiene un efecto adicional a los anteriormente identificados, que es el incremento de la resistencia a condiciones estresantes tales como el estrés hídrico.

20

25

30

#### ANTECEDENTES DE LA TÉCNICA

Hasta la divulgación de las enseñanzas de la solicitud de patente principal P201000499, se conocía poco sobre cómo pueden afectar las emisiones de volátiles microbianos a la fisiología de las plantas en ausencia de contacto físico. Se conocía, por una parte, que microorganismos tales como *Pseudomonas* spp., *Streptomyces* spp., *Botrytis cinerea* y distintas trufas producen etileno (Splivallo et al., 2007b), una hormona gaseosa de plantas que juega importantes papeles en múltiples aspectos del crecimiento y desarrollo de las plantas, incluidos la germinación de semillas,

5

10

15

20

25

30

alargamiento del hipocótilo, iniciación de las pilosidades radiculares, la senescencia de hojas y flores y la maduración de los frutos. Además, recientemente, Splivallo et al. (Splivallo et al. 2009) aportaron evidencias de que el etileno producido por las trufas induce alteraciones en el desarrollo de plantas de *Arabidopsis*..

En lo que se refiere a las bacterias, los escasos trabajos en los que se describía el efecto de volátiles microbianos sobre el crecimiento de plantas giran en torno a un número limitado de cepas especializadas de rizobacterias promotoras del crecimiento de plantas (PGPR: plant growth promoting rhizobacteria). Se denomina rizobacterias a ciertas bacterias simbiontes que existen en el suelo y que colonizan las raíces de las plantas. La mayor parte de las cepas cuyo cultivo da lugar a un efecto positivo sobre el crecimiento de las plantas cultivadas en su presencia, sin necesidad de contacto físico, pertenecen al género Bacillus o un género estrechamente relacionado con éste, Paenibacillus, al cual pertenecen bacterias que en el pasado fueron clasificadas como pertenecientes al género Bacillus. Así, por ejemplo, se ha demostrado que volátiles emitidos por rizobacterias de cepas pertenecientes a las especies Bacillus subtilis, Bacillus amyloliquefaciens o Bacillus cepacia promueven el crecimiento de plantas de Arabidopsis, facilitando la toma de nutrientes, la fotosíntesis y la respuesta de defensa, y disminuyendo la sensibilidad a la glucosa y los niveles de ácido abscísico (Ryu et al. 2003; Ryu et al. 2004; Vespermann et al. 2007; Xie et al. 2009). En concreto, Ryu et al. (Ryu et al. 2003) describen que los volátiles orgánicos liberados por cepas específicas de PGPR, concretamente Bacillus subtilis GB03 y Bacillus amyloliquefaciens IN937a, son capaces de provocar un incremento del crecimiento de plántulas de Arabidopsis thaliana. El efecto se observa cuando las citadas cepas de bacterias son cultivadas en el medio rico en aminoácidos agar con tripticasa de soja. En esas condiciones, ambas bacterias liberan 3-hidroxi-2-butanona (acetoína) y 2,3-butanediol. Dichos compuestos parecen ser los responsables del efecto observado, porque no son emitidos por las otras PGPR ensayadas que no mostraban efectos sobre el crecimiento de las plantas, pero, sin embargo, sí son liberados por otras cepas bacterianas con capacidad de incrementar la germinación y el crecimiento de plantas. Tal es el caso de la cepa de Bacillus subtilis WG6-14, objeto de la solicitud de patente US 2008/0152684 A1, que produce los mismos volátiles y es capaz de incrementar el crecimiento y la germinación de plantas como Brassica oleracea sin existir contacto físico entre planta y bacteria. Sin embargo,

5

10

15

20

25

30

existen muchas bacterias liberadoras de estas mismas sustancias (algunas pertenecientes al género Bacillus) que no promueven el crecimiento de la planta.

Se han descrito también otras cepas de los géneros *Bacillus* o *Paenibacillus* que emiten volátiles capaces de promover el crecimiento de distintas plantas pero, en estos casos, el efecto parece estar ligado principalmente a la capacidad de controlar el crecimiento de patógenos que están afectando a la planta. Tal es el caso, por ejemplo, del bacilo Kyu-W63 descrito en la patente japonesa JP10033064, cuyos volátiles son capaces de controlar la patopoyesis debida a la presencia de hongos del género *Cercospora* en hojas de pepino, facilitando con ello el crecimiento de la planta. La descripción sugiere que el efecto podría ser similar utilizando otras bacterias filamentosas, siempre y cuando el cultivo se produzca en un medio rico en azúcares tal como el agar PDA, medio que no se define con más detalle; tampoco se dan pruebas que demuestren la influencia del medio sugerido o la aplicabilidad del método para cualquier otra bacteria filamentosa.

También el método para incrementar el crecimiento de plantas, basado en composiciones que comprenden un metabolito volátil producido por una bacteria, que se reivindica en la solicitud de patente coreana KR20090066412, alude de forma combinada a la inducción de protección contra enfermedades y el ataque de insectos y a la promoción del crecimiento de distintas plantas, monocotiledóneas y dicotiledóneas. Como ejemplos de posibles metabolitos útiles se citan 3-acetil-1-propanol, 3-metil-1-butanol, indol, acetato de isoamilo y acetato de butilo. El resumen menciona que los posibles microorganismos que dan lugar a un metabolito volátil con el efecto buscado comprenden bacterias pertenecientes a los géneros *Bacillus* o *Paenibacillus*, siendo una cepa de la especie *Paenibacillus polymyxa* el microorganismo preferido.

En la solicitud de patente principal P201000499, se divulgaba el descubrimiento de que, al crecer plantas en presencia de cualquier tipo de microorganismo (bacterias Gram-positivas o Gram-negativas, levaduras u hongos), los volátiles emitidos por el microorganismo dan lugar a que se produzca una alteración el patrón de desarrollo y un aumento en el crecimiento, la fertilidad y el peso seco de las plantas, que iba acompañado de un incremento en la acumulación de almidón en las mismas. Estos efectos se observan tanto en plantas monocotiledóneas como dicotiledóneas (*Arabidopsis*, maíz, cebada, tabaco, patata...), y son independientes de que el microorganismo sea o no patógeno para la planta y de que pertenezca o no a una especie

5

10

15

20

25

30

que no convive con la planta en condiciones naturales. Estos efectos se observan tanto si las plantas se cultivan *in vitro* como en tierra, siempre y cuando la planta se cultive en presencia de un cultivo de un microorganismo que emita volátiles o bien en presencia de los volátiles microbianos emitidos por el microorganismo y, preferiblemente, cuando el microorganismo se hacía crecer en un medio que carezca de compuestos orgánicos que presenten grupos amino, especialmente si el medio carece de aminoácidos, tal como los medios mínimos suplementados con al menos un compuesto orgánico como fuente de carbono. Dado que la aparición de los efectos descritos no requería de contacto físico entre la planta y el microorganismo, se concluía que los volátiles eran los responsables de los efectos observados.

En la solicitud P210100499 se comentaba que la alteración en el patrón de desarrollo de la planta se manifiesta por un aumento del número de hojas, el número de ramas, el número de flores y semillas e induciendo la floración. En el caso concreto del crecimiento de plantas en presencia de un cultivo del hongo *Alternaria alternata*, cultivada en medio MS sólidos suplementado con 90 mM sacarosa, y la presencia de los volátiles fúngicos emitidos por este hongo daba lugar no sólo a un aumento del crecimiento general de la planta, sino también a la alteración de distintos aspectos del patrón de desarrollo. Se aportaban datos para varias plantas:

- Arabidopsis thaliana: incremento de peso seco, número de flores, número de vainas, longitud del brote y número de ramas.
- Tabaco (*Nicotiana tabacum*): incremento del tamaño general, del número de hojas, del tamaño de la raíz
- Maíz: incremento del tamaño general

También se mostraban, entre otros, datos sobre el incremento del almidón en plantas sometidas al efecto de los volátiles fúngicos producidos por *Alternaria alternata*, aportándose como ejemplo datos obtenidos de *Arabidopsis thaliana*, maíz, patata, cebada y tabaco. Se demostraba también que otros hongos y bacterias, particularmente cuando se hacían crecer en un medio carente de aminoácidos y/o proteínas, eran capaces de producir efectos similares.

Por ello, entre otros aspectos, la solicitud P201000499 divulgaba un método para incrementar el crecimiento de una planta y/o alterar su patrón de desarrollo caracterizado porque la planta se cultiva en una atmósfera en la que están presentes los compuestos volátiles emitidos por un microorganismo, microorganismo que podía haber

10

15

20

25

30

sido cultivado en un lugar diferente al lugar de cultivo de la planta, recogiéndose la mezcla de volátiles emitidos por el mismo y cultivándose la planta en una atmósfera en la que estuvieran presentes esos volátiles. Se decía que la planta podía ser una angiosperma, una monocotiledónea o una dicotiledónea, y se comentaba que el incremento del crecimiento se podía manifestar en un aumento de la longitud de la planta y/o en un aumento del tamaño de las hojas, mientras que la alteración del patrón de crecimiento se podía manifestar en incremento del número de hojas, incremento del número de ramas y/o del número de flores y semillas de plantas angiospermas, inducción de la floración, o en combinaciones de las anteriores.

La solicitud P201000499, además, divulgaba cuáles eran las modificaciones en el metabolismo de las plantas mediante las cuales los volátiles microbianos provocan el incremento de la acumulación de almidón. Aprovechando ese conocimiento, la solicitud P201000499 divulga un método alternativo para incrementar la acumulación de almidón en plantas, consistente en provocar la acumulación mediante el uso de plantas transgénicas, en las que el transgén o transgenes expresado(s) en sentido da(n) lugar a la sobreexpresión de alguna de las enzimas reguladas al alza por la exposición a los volátiles o en las que el transgén o transgenes expresado(s) en antisentido da(n) lugar a la reducción de la expresión de alguna de las enzimas reguladas a la baja por la exposición de los volátiles o en las que el transgén o trangenes consiste(n) en uno o más inhibidores de la actividad o de la expresión de alguna de las enzimas reguladas a la baja. Así, otro aspecto alternativo de la invención expuesta en la solicitud P201000499 es un método para incrementar la producción de almidón de una planta, caracterizado porque la planta es una planta transgénica en la que está presente al menos un transgén cuya expresión da lugar a un producto seleccionado del grupo de: un inhibidor de proteasas de plantas (tal como, por ejemplo, el que presenta el número de acceso en GenBank DQ16832), la enzima ramificante del almidón, un inhibidor de la invertasa ácida (tal como por ejemplo, el que presenta el número de acceso en GenBank FN691928), un RNA antisentido dirigido contra la cisteína sintasa (que puede deducirse, por ejemplo, a partir de la secuencia correspondiente a la cisteína sintasa de la planta de patata, con número de acceso en GenBank AB029512), un RNA antisentido dirigido contra la gliceraldehido-3-fosfato deshidrogenasa plastidial (tal como por ejemplo, el que presenta el número de acceso en GenBank FN691929), un RNA antisentido dirigido contra la glucosa-6-fosfato deshidrogenasa plastidial (que puede

10

15

20

25

30

deducirse, por ejemplo, a partir de la secuencia correspondiente a la glucosa-6-fosfato deshidrogenasa de patata, con número de acceso en GenBank X83923) o un RNA antisentido dirigido contra la nitrito reductasa (tal como por ejemplo, el que presenta el número de acceso en GenBank FN691930).

El conocimiento respecto a las modificaciones en el metabolismo de las plantas implicados en la acumulación de almidón se complementaron en la solicitud P201001068 (solicitud de adición a la patente principal, P201000499), en la que se aportaron datos que demuestran que la relación 3-PGA/Pi (relación de ácido 3-fosfoglicérico respecto al ortofosfato) se incrementa en el caso de plantas cultivadas en presencia de luz con volátiles fúngicos en la atmósfera de cultivo, pareciendo existir, además, una relación entre el incremento del almidón y el incremento con el tiempo del valor obtenido en esa relación. Estos resultados parecían indicar una implicación de la activación alostérica de la ADPglucosa pirofosforilasa, resultados que se ven reforzados por los que se presentan en la presente solicitud de adición.

El contenido de la presente solicitud de adición aporta datos que corroboran que el efecto de los volátiles microbianos, en especial los referidos al patrón de crecimiento, son extensibles a muy diversas plantas, aportando datos adicionales sobre los efectos en maíz y pimiento. También demuestra otros efectos debidos a la exposición a los volátiles microbianos, tales como el incremento en la acumulación de clorofila, el incremento de la cantidad de proteínas asociadas a los gránulos de almidón y el aumento de la resistencia al estrés hídrico. Además, se aportan ensayos que suponen un paso más en el conocimiento de los mecanismos por los cuales se producen los efectos que se observan en las plantas cuando las mismas se crecen en presencia de volátiles microbianos, así como de los factores que lo controlan, delimitando las plantas más adecuadas para llevar a cabo el procedimiento de la invención, y el tipo de luz más idónea para ello.

#### DESCRIPCIÓN DE LAS MEJORAS DE LA INVENCIÓN

La presente solicitud de adición a la patente principal P201000499 proporciona datos que corroboran que el efecto de los volátiles microbianos, particularmente los volátiles fúngicos, sobre el patrón de crecimiento son extensibles a muy diversas plantas, aportando datos sobre el efecto en la altura, el grosor del tallo, número de hojas y la cantidad de clorofila, de plantas de maíz y pimiento, así como del número de brotes

5

10

15

20

25

30

florales en esta última planta, el pimiento. Los ensayos en pimiento corroboran también que el efecto de incremento del tamaño de la raíz observado por los presentes inventores, por ejemplo, en plantas de tabaco, es también extensible a otras especies.

Así, en un primer aspecto, las mejoras de la presente solicitud de adición se refieren a un método para incrementar el crecimiento de una planta y/o alterar su patrón de desarrollo caracterizado por que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo, en el que el microorganismo es distinto de los aislados *Bacillus subtilis* GB03 y *Bacillus amyloliquefaciens* IN937 y la planta se selecciona entre plantas de maíz (*Zea mays*) y plantas de pimiento (*Capsicum annuum*).

En las realizaciones de la invención en las que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, se prefiere que el crecimiento del microorganismo se produzca en un medio que carezca de compuestos orgánicos que presente grupos amino, que puede ser un medio que carezca de aminoácidos y/o proteínas, Se prefiere particularmente que el crecimiento del microorganismo se produzca en un medio mínimo suplementado con un compuesto orgánico como fuente de carbono, que es el tipo de medio utilizado en los ensayos de soporte del procedimiento descritos en la solicitud de patente principal P201000499, así como en los ensayos presentados en la presente solicitud de adición a dicha solicitud de patente principal, donde se ha recurrido al medio MS sólido suplementado con sacarosa 90 mM para el cultivo del hongo *Alternaria alternata* productor de los volátiles fúngicos que dan lugar a los efectos observados.

Se prefiere también que el microorganismo utilizado sea un hongo perteneciente al género *Penicillium* o *Alternaria*. Tanto en uno como en otro caso, se prefiere que el crecimiento del hongo se produzca en un medio mínimo suplementado con un compuesto orgánico como fuente de carbono.

El incremento del crecimiento puede manifestarse en un aumento de la longitud de la planta, en un aumento del tamaño de las hojas, en aumento del grosor del tallo y/o en un aumento del tamaño de las raíces. Merece destacarse, tal como puede observarse más adelante en los Ejemplos de la presente solicitud de adición, que el efecto de la presencia de volátiles fúngicos sobre el desarrollo radicular de plantas de pimiento es espectacular.

5

10

15

20

25

30

La alteración del patrón de crecimiento se puede manifestar en incremento del número de hojas, incremento del número de ramas, incremento del número de brotes florales, flores y semillas de plantas angiospermas, inducción de la floración o combinaciones de los anteriores.

Tal como se demuestra más adelante en los Ejemplos de la presente solicitud de adición, el incremento del crecimiento y la alteración del patrón de desarrollo observados cuando las plantas se crecen en presencia de volátiles microbianos van acompañados de un aumento en la cantidad de clorofila.

Por ello, en un segundo aspecto, las mejoras de la presente solicitud de adición se refieren a un método para incrementar la cantidad de clorofila acumulada por una planta, caracterizado por que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo.

Además, los ensayos realizados con la proteína verde fluorescente (GFP) unida a la sintasa que se une al gránulo de almidón (GBSS) corroboran que las plantas que crecen en presencia de volátiles microbianos no sólo acumulan más cantidad de almidón, sino que este aumento se ve acompañado por un incremento en la cantidad de proteínas unidas a los gránulos de almidón en dichas plantas.

Así, en un tercer aspecto, las mejoras de la presente solicitud de adición se refieren a un método para incrementar la cantidad de proteínas asociadas al almidón en una planta, caracterizado por que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo. Este aspecto tiene un especial interés en que las plantas son plantas genéticamente modificadas que expresan proteínas que se unen al gránulo de almidón (tal como la GBSS) fusionadas con otras proteínas de interés, especialmente si es la proteína que se une al gránulo de almidón la que se encuentra en la parte de la proteína de interés que contiene el grupo amino pues, como se describe en la solicitud de patente española P201001115, la totalidad de la proteína de fusión quedará también ligada al gránulo de almidón. Esto, por una parte, facilita el aislamiento de la proteína de fusión. Si, además, la parte que corresponde a una proteína que se asocia al gránulo de almidón (tal como, por ejemplo, la GBSS) está unida a la parte correspondiente a la proteína de

5

10

15

20

25

30

interés por una secuencia de aminoácidos que contiene la secuencia de reconocimiento de una proteasa, el tratamiento de los gránulos de almidón con la proteasa permitiría liberar la proteína de interés. Es por ello que una realización preferida de este aspecto de la invención es aquella en la que las plantas son plantas genéticamente modificadas, que expresan una proteína de fusión en cuyo extremo amino se encuentra una proteína que se une al gránulo de almidón (que puede ser la GBSS) y, dentro de dicha realización, aquella realización específica en la que la proteína que se une al gránulo de almidón y la otra proteína están unidas por una secuencia de aminoácidos que comprende la secuencia de reconocimiento de una proteasa, que puede ser, por ejemplo, la tripsina (que corta detrás de los aminoácidos lisina o arginina).

Adicionalmente, los datos aportados en esta solicitud de adición a la solicitud de patente principal P201000499, demuestran que el crecimiento de las plantas en presencia de volátiles microbianos tiene un efecto más, no mencionado explícitamente en la solicitud P201000499: el incremento de la resistencia de las plantas al estrés hídrico. Se observa que, si se hace crecer plantas de *Arabidopsis thaliana* en un medio de cultivo en el que la cantidad de agua es inferior a la que sería adecuada para un óptimo crecimiento, las plantas que crecen en presencia de volátiles microbianos (concretamente, volátiles fúngicos producidos por *Alternaria alternata*) se ven afectadas en su crecimiento en menor medida que las plantas control, que crecen en ausencia de tales volátiles microbianos.

El estrés hídrico es la situación que se da en las plantas cuando hay sequía, es decir, cuando el agua que hay en la tierra es insuficiente y determina que la planta tenga dificultades para absorber agua del suelo. La capacidad de la planta para absorber agua viene determinada por el llamado potencial hídrico,  $\Psi_{\rm w}$ , que viene determinado por el potencial osmótico, el potencial de pared, el potencial de matriz y la fuerza de la gravedad. El potencial hídrico define la dificultad de la planta para obtener agua. Un mecanismo de resistencia al estrés por déficit hídrico es la disminución de la presión osmótica y mantener constante la presión de pared, es decir, la turgencia de las células, con lo cual disminuye el potencial hídrico que, si es menor que el del suelo con sequía, permitirá a la planta captar agua.

Es conocido que uno de los principales efectos del estrés hídrico es la disminución del crecimiento celular. El crecimiento en el tejido vegetal se origina por la

5

10

15

20

25

30

división y alargamiento de los componentes celulares, dando como resultado las formas adaptativas de las plantas. En este contexto, la perdida de presión de turgencia como una consecuencia del desbalance del contenido de agua, puede resultar en crecimiento reducido o ausencia total de crecimiento bajo condiciones secas en el suelo. Además, las plantas bajo estrés hídrico tienen una menor capacidad de transpiración, porque cierran los estomas, impidiendo pérdidas de agua a través de los mismos, pero dificultando también el paso del CO<sub>2</sub>, lo cual es una de las razones de que disminuya la fotosíntesis.

Puesto que, en condiciones de estrés hídrico, las plantas que crecen en presencia de volátiles microbianos ven menos reducido su crecimiento respecto a las plantas control que en los casos en los que los volátiles microbianos no están presentes, el procedimiento de la invención de cultivo de plantas en presencia de volátiles microbianos puede también describirse como un procedimiento para incrementar en las plantas la resistencia al estrés hídrico.

Así, un aspecto adicional de la invención es un método para incrementar en una planta la resistencia al estrés hídrico en el que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo.

Como sucede con el primer aspecto de las mejoras de la presente solicitud de adición, tanto en las realizaciones del método para incrementar la cantidad de clorofila en las que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, como en las realizaciones del método para incrementar en una planta la resistencia al estrés hídrico en el que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, así como en las realizaciones del método para incrementar la acumulación de proteínas asociadas al almidón, se prefiere que el crecimiento del microorganismo se produzca en un medio que carezca de compuestos orgánicos que presenten grupos amino, que puede ser un medio que carezca de aminoácidos y/o proteínas. Se prefiere particularmente que el crecimiento del microorganismo se produzca en un medio mínimo suplementado con un compuesto orgánico como fuente de carbono.

En una posible realización, el microorganismo utilizado es un hongo perteneciente al género *Penicillium* o *Alternaria*. Tanto en uno como en otro caso, se

mantiene la preferencia por que el crecimiento del hongo se produzca en un medio mínimo suplementado con un compuesto orgánico como fuente de carbono.

La planta puede ser una angiosperma, una monocotiledónea o una dicotiledónea. Ejemplos concretos de las mismas pueden ser los de las plantas utilizados en los ensayos de la presente solicitud de adición, maíz y pimiento, *Arabidopsis thaliana*, u otras plantas, por ejemplo de interés agrícola o industrial, como pueden ser las plantas utilizadas en los ensayos expuestos en la solicitud de patente principal P201000499, entre las que destacan las plantas de patata.

Así, una posible realización del segundo aspecto de las mejoras de la invención es el método para incrementar la cantidad de clorofila acumulada por una planta, caracterizado por que la planta es una planta de maíz o una planta de pimiento, que se cultiva en presencia de un hongo perteneciente al género *Alternaria* o *Penicillium*, que se deja crecer en medio mínimo suplementado con una fuente de carbono orgánico, sin que exista contacto entre la planta y el hongo.

15

20

25

30

10

5

Finalmente, el contenido de la presente solicitud de adición supone un paso más en el conocimiento de los mecanismos por los cuales se producen los efectos que se observan en las plantas cuando las mismas se crecen en presencia de volátiles microbianos, así como de los factores que lo controlan, delimitando las plantas más adecuadas para llevar a cabo el procedimiento de la invención, así como el tipo de luz más idónea para ello. Particularmente, los ensayos presentados más adelante en los Ejemplos 3-8 de la presente solicitud de adición están relacionados con el aspecto de la invención que se refiere al procedimiento para incrementar la acumulación de almidón haciendo crecer las plantas en una atmósfera en la que estén presentes volátiles microbianos, que está basado en el fenómeno identificado por los autores de la presente invención, el MIVOISAP (microbial volatiles induced starch accumulation process: proceso de acumulación de almidón inducido por volátiles microbianos). Así, por una parte, se demuestra que el incremento en la acumulación de almidón que muestran las plantas que crecen en presencia de volátiles microbianos está controlado por la luz, pues los mutantes deficientes en fitocromos activos y criptocromos acumulan menos almidón que las plantas tipo silvestre, por lo que los mutantes deficientes en fitocromos activos y criptocromos pueden considerarse menos eficientes para aplicar el procedimiento de la invención de incremento de la acumulación de almidón en plantas. Las deficiencias en otros genes influyen también en la acumulación de almidón: así, las plantas deficientes

en NTRC, así como las plantas deficientes en las almidón sintasas solubles SSIV y/o SSIII, acumulan menos almidón, en presencia de volátiles microbianos, que las plantas de tipo silvestre, lo que demuestra el papel relevante de estos genes en el incremento de acumulación de almidón cuando las plantas crecen en presencia de volátiles microbianos en la atmósfera. Además, se confirman la implicación de la β-amilasa en controlar la acumulación de almidón, pues (a) los mutantes deficientes en BAM4 y en SEX1 acumulan más almidón que las plantas tipo silvestre crecidas igualmente en presencia de volátiles microbianos y (b) las plantas silvestres acumulan maltosa cuando son sometidas a la acción de volátiles microbianos. Adicionalmente, se confirma también la implicación del incremento del contenido de la relación 3-PGA/Pi en el incremento de la acumulación de almidón cuando las plantas crecen en condiciones de iluminación y en presencia de volátiles microbianos. Por último, se aporta un mayor conocimiento sobre la influencia de la luz, pues se demuestra que la acumulación de almidón bajo luz azul, o del rojo lejano, es menor que bajo luz blanca o roja, lo que indica que, si se desea obtener mayores rendimientos en el procedimiento de la invención de acumulación de almidón, conviene utilizar luz blanca o roja, siendo aconsejable la luz de longitud de onda correspondiente a la región de azul o del rojo lejano si se desea que la acumulación de almidón sea superior a la de las plantas que crecen en ausencia de volátiles microbianos, pero de menor que la observada bajo la acción de luz blanca.

Las mejoras de la invención mencionadas se describen ahora con mayor detalle por medio de las figuras y ejemplos que figuran a continuación.

#### BREVE DESCRIPCIÓN DE LAS FIGURAS

5

10

15

20

30

La Fig. 1 muestra fotografías de plantas de maíz crecidas junto con un cultivo de Alternaria alternata, sin que exista contacto entre la planta y el hongo (planta de la derecha en todas las fotografías) y plantas de maíz crecidas en condiciones control, en ausencia de volátiles fúngicos. Los números junto a cada fotografía indican los días transcurridos desde el inicio del cultivo.

La Fig. 2 muestra el efecto de la presencia (+FV) o ausencia (-FV) de los volátiles fúngicos sobre la altura (panel A), el número de hojas (panel B), la cantidad de clorofila acumulada respecto al peso fresco (miligramos por gramo de peso fresco)

5

10

15

20

25

30

(panel C) y el grosor del tallo (panel D) en plantas de maíz cultivadas trascurrido el tiempo de cultivo que se indica, en días, en el eje de abscisas, cuando las plantas se cultivan en presencia de un cultivo del hongo *Alternaria alternata* (barras con relleno gris) o en ausencia del mismo (barras blancas, sin relleno)..

La Fig. 3 muestra fotografías de plantas de pimiento crecidas junto con un cultivo de *Alternaria alternata*, sin que exista contacto físico con dicho cultivo (planta de la derecha en todas las fotografías) y plantas de pimiento crecidas en condiciones control, en ausencia de volátiles fúngicos. Los números junto a cada fotografía indican los días transcurridos desde el inicio del cultivo.

La Fig. 4 muestra el efecto de la presencia (+FV) o ausencia (-FV) de los volátiles fúngicos sobre la altura (panel A), la cantidad de clorofila acumulada respecto al peso fresco (miligramos por gramo de peso fresco) (panel B), el grosor del tallo (panel C), el número de hojas (panel D) y el número de brotes florales (panel E) presentes en plantas de pimiento cultivadas trascurrido el tiempo de cultivo que se indica, en días, en el eje de abscisas, cuando las plantas se cultivan en presencia de un cultivo del hongo *Alternaria alternata* (barras con relleno gris) o en ausencia del mismo (barras blancas, sin relleno)..

La Fig. 5 muestra fotografías de raíces de plantas de pimiento crecidas junto con un cultivo de *Alternaria alternata*, sin que exista contacto físico con dicho cultivo (par de raíces situado más a la izquierda, marcado como "+FV") y de plantas de pimiento crecidas en condiciones control, en ausencia de volátiles fúngicos emitidos por *Alternaria alternata* (par de raíces situado más la derecha, marcado como "-FV"), transcurridos 40 días de cultivo.

La Fig. 6 muestra fotografías que demuestran el incremento de resistencia al estrés hídrico de las plantas que crecen en una atmósfera en la que están presentes volátiles microbianos, con respecto a las que crecen en ausencia de dichos volátiles. En el día 0 de cultivo, las plantas que están creciendo en ausencia de volátiles fúngicos producidos por el hongo *Alternaria alternata* (-FV) muestran un tamaño similar al de las plantas que están creciendo en presencia de volátiles fúngicos; en el día 7 (momento en el que el agua del medio de cultivo se ha reducido muy notablemente), las plantas tratadas con volátiles fúngicos (+FV) muestran mayor tamaño que las plantas que crecen en ausencia de los mismos (-FV), lo que indica mayor resistencia al estrés hídrico.

La Fig. 7 muestra gráficos que demuestran el control de los fotorreceptores en la acumulación de almidón en plantas de *Arabiodpsis thaliana*. El panel A muestra la relación entre el contenido de almidón encontrado en plantas cultivadas en presencia de volátiles fúngicos producidos por *Alternaria alternata* (+FV) o en ausencia de los mismos (-FV), para plantas de tipo silvestre (WT) o mutantes *hy1/cry2*, *hy1/cry1* y *hy1/cry1/cry2*, cultivadas en medio sólido MS durante 16 horas bajo luz blanca. El panel B muestra también la relación entre el contenido de almidón encontrado en plantas silvestres cultivadas en presencia de volátiles fúngicos producidos por *Alternaria alternata* (+FV) o en ausencia de los mismos (-FV), dependiendo del tipo de luz bajo el cual crecieron las plantas (roja, del rojo lejano, azul o blanca).

La Fig. 8 se refiere al impacto de las enzimas de degradación del almidón en la acumulación de almidón promovida por volátiles microbianos en plantas de *Arabidopsis thaliana*. El panel A muestra el contenido de almidón (expresado como micromoles de glucosa por gramo de peso fresco) de hojas crecidas en ausencia (-FV) o en presencia (+FV) de volátiles fúngicos producidos por *Alternaria alternata*, de plantas de tipo silvestre (WT) o mutantes de inserción de T-DNA en los genes de enzimas implicadas en la degradación del almidón: BAM5, AMY3, SEX1, BAM4, tras 16 horas de iluminación con luz blanca. El panel B muestra el contenido de maltosa, (expresado como micromoles de la misma por gramo de peso fresco) observado en plantas de tipo silvestre, cultivadas en presencia (circunferencias sin relleno) o en ausencia (circunferencias con relleno) de volátiles fúngicos producidos por *Alternaria alternata*, así como en el mutante *BAM4* de inserción de T-DNA (cuadrados sin relleno y con relleno en plantas crecidas en presencia o ausencia de volátiles fúngicos, respectivamente), durante 16 horas de iluminación; los resultados representados son la media ± desviación estándar de tres experimentos independientes).

La Fig. 9 muestra la relación entre el contenido de almidón detectado en plantas cultivadas durante 16 horas en medio sólido MS bajo luz blanca, en presencia (+FV) de volátiles fúngicos producidos por *Alternaria alternata* con respecto a los obtenidos en ausencia de dichos volátiles. Se muestran los incrementos en el contenido de almidón detectados en plantas tipo silvestre (WT) y mutantes de inserción de T-DNA *SSII*, *SSIV*, *SSII/SSIV*, *SSII/SSIV*, *SSII/SSIV*, *SSII/SSIV*, *SSII/SSIV*, *SSII/SSIV*, *SSII/SSIV*, spresados como la media ± desviación estándar de tres experimentos independientes.

La Fig. 10 muestra una fotografía correspondiente al análisis de la presencia de GFP (green fluorescent protein: proteína verde fluorescente) en transferencias tipo Western en hojas de plantas de Arabidopsis thaliana que expresaban una proteína de fusión GBSS-GFP cultivadas durante 16 horas en presencia (FV+) o ausencia (FV-) de volátiles fúngicos emitidos por A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. En ambos carriles se cargó proteína extraída a partir del almidón existente en una misma cantidad de extracto vegetal (30 microgramos de proteína total).

La Fig. 11 se refiere a la cinética de los niveles de 3-fosfoglicerato (3-PGA) (panel A), ortofosfato (Pi) (panel B) y de la relación 3-PGA/Pi en hojas de plantas tipo silvestre de *Arabidopsis thaliana* sometidas a 16 horas de iluminación bajo luz blanca, y 8 horas de oscuridad, para plantas crecidas en atmósfera con presencia (curvas con circunferencias sin relleno) o en ausencia (curvas con circunferencias con relleno) de volátiles fúngicos emitidos por por *A. alternata* crecido en medio MS sólido suplementado con 90 mM sacarosa.

15

10

5

#### **EJEMPLOS**

Los ensayos descritos en los siguientes Ejemplos se llevaron a cabo con los siguientes materiales y metodologías:

20

25

- <u>Plantas, cultivos microbianos, condiciones de crecimiento y obtención de</u> muestras

Como plantas de tipo silvestre, se utilizaron plantas de *Arabidopsis thaliana* (cv. Columbia), maíz (Zea mays, cv. HiII) y pimiento (*Capsicum annumm*, cv. Dulce italiano).

En cuanto a los mutantes de *Arabidopsis thaliana*, se utilizaron los que se muestran en la siguiente Tabla, en los que las siglas NASC hacen referencia al European Arabidopsis Stock Center (<a href="http://arabidopsis.info/">http://arabidopsis.info/</a>) como fuente de procedencia de los mutantes:

Tabla 1: Mutantes de Arabidopsis thaliana utilizados

| Mutante       | Locus                           | Descripción                                                   | Referencia          | Fuente            |
|---------------|---------------------------------|---------------------------------------------------------------|---------------------|-------------------|
| hy1/cry2      | At26670/At1g04400               | Deficiente en PHY fotoactivo y en CRY                         |                     | NASC<br>(N9856)   |
| hy1/cry1      | At26670/At4g08920               | Deficiente en PHY fotoactivo y en CRY                         |                     | NASC<br>(N9855)   |
| hy1/cry1/cry2 | At26670/At4g08920/<br>At1g04400 | Deficiente en PHY fotoactivo y en CRY                         |                     | NASC<br>(N3732)   |
| bam4          | At5g55700                       | Carece de la isoforma<br>4 de la β-amilasa<br>plastidial      |                     | NASC<br>(N660386) |
| bam5          | At4g15210                       | Carece de la isoforma<br>5 de la β-amilasa<br>extraplastidial | _                   | NASC<br>(N532057) |
| ату3          | At1g69830                       | Carece de la β-amilasa plastidial                             | Yu et al.<br>(2005) | NASC<br>(N65602)  |
| sex1          | At1g10760                       | Carece de la diquinasa de α-glucanos y agua                   | Yano et al. (2005)  | NASC<br>(N3093)   |
| ntrc          | At2g41680                       | Deficiente en NADP-<br>tiorredoxina reductasa<br>C plastidial |                     | Dr. Cejudo        |

Para proceder a su cultivo, las plantas se cultivaron inicialmente en placas Petri que contenían medio MS sólido con sacarosa 90 mM. En general, las plantas se hicieron crecer en cámaras de crecimiento con un fotoperíodo de 16 h de luz blanca (90 μmol fotones s<sup>-1</sup> m<sup>-2</sup>) y a una temperatura constante de 24°C.

5

10

15

En el caso concreto de las plantas en las que se comprobó su respuesta a luz continua monocromática roja (600-700 nm), del rojo lejano (680-740 nm) o azul (400-520 nm), las plantas se hicieron crecer durante 16 horas en una cámara de crecimiento equipada con una lámpara halógena de 400 W Son-T Agro (Royal Philips Electronics) filtrada a través de una capa de uno de los siguientes filtros de policarbonato: Supergel 19 para la luz roja, Supergel 27 para la luz del rojo lejano y Superfel 69 para la luz azul (Rosco Ibérica SA, Madrid, España). La lámpara halógena proporcionaba una radiación fotosintéticamente activa de 560 μE.m<sup>-2</sup>.s<sup>-1</sup>. La radiación fotosintéticamente activa bajo las diferentes luces monocromáticas fue de 283, 80 y 76 μE.m<sup>-2</sup>.s<sup>-1</sup> para los filtros que daban lugar a luz roja, del rojo lejano y azul, respectivamente.

Las placas Petri que contenían plantas completamente desarrolladas se colocaron en cajas de cultivo de 500 centímetro cúbicos idénticas a las utilizadas en la solicitud de patente principal. En los casos en los que se deseaba comprobar el efecto de los volátiles

fúngicos, se colocaron en las mismas cajas de cultivo placas Petri destapadas que contenían medio sólido MS suplementado con sacarosa 90 mM, en las que se había inoculado el hongo *Alternaria alternata*, tras lo cual se sellaron las cajas. Como control negativo se utilizaron placas Petri que contenían plantas cultivadas en cajas de plástico junto con placas Petri con medio de cultivo microbiano estéril.

Una vez transcurridos los períodos de incubación indicados, en aquellos casos en que fue necesario, se extrajeron las hojas para realizar los análisis bioquímicos correspondientes. Las hojas recolectadas se congelaron de inmediato y se molieron en nitrógeno líquido para dar lugar a un polvo fino.

10

15

5

#### - Ensayos enzimáticos

Todas las reacciones enzimáticas se llevaron a cabo a 37°C. 1 g de polvo congelado de hoja se resuspendió a 4°C en 5 ml de HEPES 100 mM (pH 7,5) y EDTA 2 mM. Cuando se indicó así, se añadió DTT 5 mM al tampón de extracción. La suspensión se desaló y se ensayaron en ella las actividades enzimáticas. El ensayo de la β-amilasa se realizó como ha sido descrito por Liu et al. (Liu et al., 2005).

Una unidad (U) se define como la cantidad de enzima que cataliza la producción de 1  $\mu$ mol de producto por minuto.

#### 20 - Procedimientos analíticos

El almidón se midió utilizando un kit de ensayo basado en la amiloglucosidasa (Sigma-Aldrich Chemical Co, St Louis, MO, EE.UU.).

La maltosa se midió tal como ha sido descrito por Ezquer et al. (2010).

La clorofila se midió tal como ha sido descrito en Wintermans and De Mots (1965)

Los niveles de 3-PGA y Pi se determinaron tal como ha sido descrito por Lytovchenko et al. (2002).

En todos los casos, los resultados mostrados corresponden a la media  $\pm$  desviación estándar de 3 experimentos independientes.

30

#### - Microarrays

El RNA total se extrajo de hojas congeladas utilizando el método del Trizol siguiendo el procedimiento del fabricante (Invitrogen), seguido por la purificación con el kit RNeasy (Qiagen). La amplificación, marcado y análisis de datos estadísticos relativos al RNA se llevaron a cabo básicamente como ha sido descrito por Adie et al. Para la hibridación se utilizaron portaobjetos con microarrays Agilent POCI 4 x 44K (G2519, Agilent Technologies). Las condiciones de marcaje e hibridación fueron las descritas en "The manual two color microarray based gene expression Analysis" ("El manual del análisis de la expresión de genes basado en microarrays de dos colores") de Agilent Technologies. Para las hojas de las plantas tratadas con microorganismos y de las plantas control se hibridaron tres réplicas biológicas independientes. Las imágenes de los canales Cy3 e Hyper5 se equilibraron con respecto a las diferencias en la intensidad y se capturaron con un escáner GenePix 4000B (Axon). Los puntos se cuantificaron utilizando el software GenPix (Axon) y se normalizaron utilizando el método de Lowess. Se calcularon las medias de los logaritmos de las relaciones de intensidades para las tres réplicas y sus desviaciones estándar y los datos de expresión se analizaron estadísticamente utilizando el paquete informático LIMMA (Smyth and Speed, 2003). La caracterización funcional de los genes diferencialmente expresados se hizo utilizando la herramienta Mapman (http://gabi.rzpd.de/projects/MapMan/).

#### 20 - Transferencias tipo Western

5

10

15

25

30

Para los análisis de la proteína de fusión GBSS-GFP, se obtuvieron como extractos los sedimentos obtenidos a partir de un homogeneizado de plangta (10 mg de peso fresco) trasn un paso de centrifugación a 10000xg. Tales extractos contienen almidón, al que se une la GBSS y, con ello, la proteína de fusión GBSS. Los extractos se separaron en PAGE con SDS al 10% y se transfirieron a filtros de nitrocelulosa. La detección de la proteína GBSS asociada a GFP se llevó acabo haciendo uso de un anticuerpo comercial específico anti-GFP, obtenido en conejos (ab290, de AbCam), siguiendo la metodología de Western Blot descrita por Towbin et. al (Towbin et al., 1979). El complejo antígeno-anticuerpo se detectó mediante incubación con un anticuerpo secundario IgG de cabra anti-conejo conjugada con fosfatasa alcalina (Sigma) como anticuerpo secundario.

10

15

20

25

30

## - Ejemplo 1: Patrón de crecimiento de plantas de maíz y pimiento crecidas en presencia de volátiles microbianos.

Para comprobar el efecto sobre el patrón de crecimiento de plantas de maíz y pimiento de los volátiles microbianas, se cultivaron plantas de maíz (Zea mays, cv. HiII) y pimiento (*Capsicum annumm*, cv. Dulce italiano) simultáneamente con un cultivo de *Alternaria alternata*, iniciando el cultivo de la forma descrita en el apartado de "Plantas, cultivos microbianos, condiciones de crecimiento y obtención de muestras". En este caso, para comprobar si los efectos de los volátiles microbianos seguían siendo detectables a lo largo de un tiempo prolongado de cultivo, las plantas se cultivaron durante 54 días (caso del maíz) y 68 días (caso del pimiento).

Durante este tiempo, se tomaron cada semana datos de las plantas crecidas en presencia de volátiles fúngicos, así como de las plantas control crecidas en ausencia de cultivo de *Alternaria alternata*, controlando la altura de las mismas y el grosor del tallo, así como del número de hojas e, incluso, en el caso de pimiento, se hizo un recuento de brotes florales. También se tomaron muestras de hojas de las plantas para comprobar el contenido de clorofila de las mismas.

Las Fig. 1 y 3 muestras, respectivamente, las fotografías obtenidas de las plantas de maíz y pimiento transcurridos distinto número de días desde el comienzo del cultivo. Se observa que, desde los primeros días de cultivo, las plantas crecidas junto con un cultivo de *Alternaria alternata*, sin que exista contacto entre ellos (planta de la derecha en todas las fotografías) presentan un mayor tamaño que las plantas crecidas en condiciones control, en ausencia de volátiles fúngicos. Los números junto a cada fotografía indican los días transcurridos desde el inicio del cultivo. También el número de hojas es superior en las plantas sometidas al efecto de los volátiles fúngicos.

Las Figs. 2 y 4 muestran los gráficos correspondientes a los parámetros de cuya evolución se tomó registro para comparar las plantas sometidas al efecto de volátiles fúngicos (+FV) y las plantas control (-FV): altura (en centímetros), número de hojas, clorofila (en miligramos por g de peso fresco) y grosor del tallo (en centímetros) para el caso del maíz (Fig. 2) y altura (en centímetros), clorofila (en miligramos por g de peso fresco), grosor del tallo (en centímetros), número de hojas y número de brotes florales para el caso del pimiento (Fig. 4). Los números que aparecen en abscisas corresponden al tiempo transcurrido, en días, desde el comienzo del cultivo cuando se tomó el correspondiente valor.

5

10

15

20

25

30

Se observa que, en general, el valor de todos los parámetros controlados es superior en las plantas sometidas al efecto de volátiles fúngicos respecto al encontrado en las plantas control: sólo en el caso de la altura de las plantas de maíz se observa levemente superior para la altura de las plantas control en la medida tomada a los 14 días. Salvo en ese caso, la altura de las plantas sometidas al efecto de volátiles fúngicos es siempre claramente superior a la altura de las plantas control, diferencia que se va incrementando con el aumento de los días de cultivo, especialmente en el caso de las plantas de maíz.

El caso de la acumulación de clorofila en plantas de maíz es especialmente llamativo: mientras que en las plantas control la cantidad de clorofila relativa al peso fresco disminuye con los días de cultivo, en las plantas sometidas al efecto de volátiles fúngicos el descenso es mucho menos acusado, llegando incluso a obtenerse una elevación de la cantidad de clorofila tras 28 días de cultivo, respecto a la medida anterior, aunque posteriormente continúa su pauta de descenso. En el caso del pimiento, la cantidad parece descender hasta el día 19, momento en que comienza a ascender de nuevo, alcanzando a los 40-47 valores próximos a los de las plantas tras 12 días de tratamiento con volátiles fúngicos.

Merece comentarse también el caso de los botones florales en plantas de pimiento, que demuestra la influencia sobre los patrones de crecimiento y floración que tienen los volátiles microbianos. Tras 26 días de cultivo, pueden detectarse botones florales en las plantas tratadas con volátiles fúngicos, que son aún indetectables en el caso de las plantas control. Posteriormente, el número de botones florales es siempre mayor en las plantas sometidas al efecto de volátiles fúngicos, llegando a valores medios cercanos a 9 tras 40 días de cultivo.

Especialmente llamativas son las fotografías mostradas en la Fig. 5, en la que se muestra que las raíces de las plantas sometidas al efecto de volátiles fúngicos presentan un crecimiento espectacular, muy superior al de las raíces de las plantas control.

Todo ello corrobora que los efectos de los volátiles microbianos sobre el incremento del crecimiento y la alteración del patrón del mismo (incremento del número de hojas, del número de flores, adelantamiento de la floración...) se dan en distintas especies.

10

15

20

25

30

# .- Ejemplo 2: El tratamiento de las plantas con volátiles microbianos aumenta la resistencia de las mismas al estrés hídrico

Para investigar si la presencia de volátiles microbianos en la atmósfera de crecimiento podía tener además efecto sobre alguno de los factores que influye en el crecimiento de las plantas, como puede ser el cultivo en condiciones de estrés hídrico, se comparó el crecimiento de plantas de tipo silvestre de *Arabidopsis thaliana* crecidas en presencia de volátiles fúngicos producidos por un cultivo del hongo *Alternaria alternata* con el de plantas crecidas en ausencia de dichos volátiles, transcurrido un tiempo de cultivo en el que el agua comienza a escasear en el medio.

Para ello, se llevaron a cabo ensayos de cultivo plantas de *Arabidopsis thaliana* cv. Columbia en condiciones similares a los que se llevaron a cabo en la solicitud de patente principal, tal como se describió anteriormente en la sección de "Plantas, cultivos microbianos, condiciones de crecimiento y obtención de muestras". Una porción de las plantas (+FV) se hicieron crecer en placas Petri que contenían medio MS sólido con sacarosa 90 mM, en cajas estériles en las que se había colocado una placa Petri destapada con un cultivo del hongo *Alternaria alternata*, sin existir contacto físico entre la planta y el cultivo fúngico, pero estando las plantas expuestas a una atmósfera en la que estaban presentes los volátiles fúngicos producidos por dicho hongo. La otra porción de las plantas se hicieron crecer en las mismas condiciones, salvo porque la placa Petri adicional contenía sólo medio de cultivo estéril (-FV).

La Fig. 6 muestra los resultados obtenidos al fotografiar las plantas al comenzar el proceso (día 0) y tras 7 días de cultivo (fila inferior), momento en que el agua del medio de cultivo se ha reducido muy notablemente. Se observa que, al comenzar el ensayo (día 0), el tamaño de las plantas crecidas en ausencia de volátiles fúngicos era similar al de las plantas crecidas en presencia de los mismos; sin embargo, en el día 7, las plantas que han crecido en ausencia de volátiles microbianos presentan un tamaño muy inferior al de las plantas crecidas en presencia de volátiles fúngicos, tamaño que es, incluso, inferior al que tenían en el día 0. Las plantas crecidas en presencia de volátiles fúngicos, en cambio, presentan un tamaño superior al que tenían en el día 0.

Estos datos indican que el tratamiento con volátiles microbianos emitidos por organismos crecidos en medios mínimos promueve en las plantas un incremento de la resistencia a condiciones estresantes como el estrés hídrico.

10

15

20

25

30

# - Ejemplo 3: La acumulación de almidón promovida por volátiles microbianos está sometida a control mediado por fotorreceptores

Además de proporcionar la fuente primaria de energía para el desarrollo de la fotosíntesis, la luz es uno de las señales medioambientales más importantes que controla muchos aspectos fisiológicos y del desarrollo de las plantas. La luz actúa a través de fotorreceptores, regulando diversas respuestas tales como la germinación de semillas, establecimiento de plántulas, ajuste de los ritmos circadianos, tiempo de floración, degradación de la reserva de almidón inducida por la luz, flujo de partición del carbono, etc. Las principales familias es fotorreceptores que se dan en las plantas son las fototropinas y criptocromos (CRY), que absorben luz azul, y los fitocromos (PHY) que absorben luz roja o del rojo lejano. Ambos dirigen los cambios adaptativos en la expresión de genes en respuesta a señales luminosas medioambientales; por ejemplo, l expresión de genes que codifican enzimas relacionadas con el almidón y el metabolismo del nitrógeno están sometidos a fotocontrol mediado por fitocromos. Los fotorreceptores también dirigen respuestas citoplásmicas muy rápidas tales como la acidificación apoplástica mediante la ATPasa de bombeo de protones presente en la membrana plasmática, que es necesaria para la expansión celular, y la apertura de estomas, el movimiento de cloroplastos, las corrientes citoplásmicas dependientes de actina, el gravitropismo y la elongación del hipocótilo, que no son consecuencia de cambios en la expresión génica. La percepción de la luz roja y del rojo lejano mediante los PHY requiere la presencia de la fitocromobilina, que está covalentemente unida a la porción apoproteica de los PHY. En Arabidopsis, este cromóforo está sintetizado por los productos de los genes HY1 y HY2. Al recibir luz roja o infrarroja, el fitocromo sufre un cambio conformacional cis-trans, que da lugar al intercambio entre la llamada forma activa (forma Pfr, que absorbe en el rojo lejano) y la forma inactiva (Pr, que absorbe en la zona del rojo)

Para investigar la posible implicación de la señalización luminosa en MIVOISAP, se comparó el incrementó de contenido de almidón promovido por volátiles fúngicos entre plantas tipo silvestre (WT) y los mutantes deficientes en PHY fotoactivos y en CRY hy1/cry1/cry2, hy1/cry2 y hy1/cry1. Para ello, se recurrió a plantas de Arabidopsis thaliana y se llevaron a cabo ensayos de cultivos de las mismas similares a los que se llevaron a cabo en la solicitud de patente principal, tal como se describió anteriormente en la sección de "Plantas, cultivos microbianos, condiciones de

5

10

15

20

25

30

crecimiento y obtención de muestras". Para ello se utilizaron plantas de *Arabidopsis* thaliana cv. Columbia y como plantas silvestres, y los mutantes deficientes en PHY fotoactivos y en CRY hy1/cry2 y hy1/cry1. Tanto unas como otras se hicieron crecer en presencia de volátiles fúngicos producidos por un cultivo de *Alternaria alternata* con el que compartían caja de cultivo, sin existir contacto físico entre la planta y el cultivo fúngico.

Tal como se puede ver en la Fig. 7A, el incremento del contenido de almidón en los mutantes *hy1/cry1/cry2*, *hy1/cry2* y *hy1/cry1*, tras 16 horas de tratamiento con los volátiles fúngicos (+FV), era marcadamente menor que el de las plantas tipo silvestre (WT). El conjunto de estos datos es una indicación clara de que MIVOISAP está sometido a control mediado por fotorreceptores.

El experimento se repitió de nuevo con plantas de tipo silvestre, pero cultivadas durante 16 horas con luz continua roja, del rojo lejano o azul. Tal como se puede ver en la Fig. 7B, estos análisis revelaron que los volátiles fúngicos (FV) indujeron un incremento del contenido de almidón en las plantas cultivas bajo luz roja continua que era comparable al observado en las plantas cultivadas bajo luz blanca (aproximadamente 25 veces más almidón en presencia de FV que en ausencia de FV), mientras que la iluminación durante 16 horas con luz azul o del rojo lejano provocó un incremento de sólo 3 veces respecto al contenido normal de almidón. Estos datos parecen indicar que MIVOISAP está promovido, principalmente, por la forma Pfr activa.

### - <u>Ejemplo 4: Impacto de las enzimas implicadas en la degradación del almidón en</u> <u>el MIVOISAP de *Arabidopsis thaliana*</u>

De las nueve proteínas similares a β-amilasas codificadas en el genoma de *Arabidopsis thaliana* (BAM1-9), sólo BAM1-4 son plastidiales y tienen acceso directo al almidón. BAM1 es una enzima regulada por tiorredoxinas que degrada el almidón durante el día tanto en células mesófilas como en células guarda sometidas a choque térmico y a estrés osmótico. BAM3 es el principal determinante de la degradación del almidón de las hojas durante la noche, y juega también un papel importante en la degradación el almidón durante el día en el caso de un choque frío. BAM4 no tiene actividad catalítica pero tiene una importante función reguladora sobre BAM1-3, modulando la degradación del almidón. Al contrario que las β-amilasas plastidiales, el

papel preciso de las β-amilasas extraplastidiales y de la α-amilasa AMY3 en el metabolismo del almidón es todavía desconocido. Aunque algunos estudios han mostrado que los mutantes con alteraciones en BAM5 (que cataliza el 80-90% de la actividad β-amilasa total) acumulan niveles normales de almidón, estudios más recientes han demostrado que los mutantes *bam5* que carecen de la enzima pueden mostrar un fenotipo de exceso de almidón. Además, aunque se han proporcionado también evidencias de que AMY3 no se requiere para la degradación transitoria del almidón, otros autores han demostrado que los mutantes *amy3* carentes de dicha enzima acumulan más almidón que las plantas tipo silvestre.

La isoamilasa 3 (ISA3) es una enzima desramificante que participa en la degradación del almidón liberando maltodextrinas al estroma, que a continuación son sometidas a la acción de las  $\beta$ -amilasas plastidiales y la fosforilasa plastidial del almidón (PHS1). Los análisis del transcriptoma revelaron que los volátiles fúngicos promueven la expresión de *ISA3* (incremento de 1,72 veces). Estos análisis también revelaron un marcado incremento en la expresión de *BAM5* tras el tratamiento con volátiles fúngicos (incremento de 4,81 veces), que estuvo acompañado por un incremento de 3,1 veces de la actividad total  $\beta$ -amilasa (11,8  $\pm$  2,1 U/g de peso fresco y 37,0  $\pm$  3,2 U/g de peso fresco en ausencia y presencia de volátiles fúngicos durante 16 horas, respectivamente). Por ello, el incremento de la actividad  $\beta$  -amilasa total inducida por volátiles fúngicos se puede adscribir a la regulación al alza de *BAM5*.

Se investigó si las enzimas plastidiales de la degradación del almidón y/o BAM5 eran determinantes en MIVOISAP, midiendo el contenido de almidón en hojas de mutantes de inserción de T-DNA BAM1, BAM4, BAM5 y AMY3, ISA3 y PHS1, cultivados durante 16 horas bajo luz blanca. También se midió el almidón en el mutante de inserción de T-DNA SEX1 que carece de una enzima que catalizar la fosforilación del almidón para que éste pueda ser hidrolizado por la β-amilasa (Edner et al. 2007). Las hojas bam5 y amy3 no tratadas con volátiles fúngicos acumularon almidón en niveles similares a las de las plantas silvestres, mientras que las hojas bam4 y sex1 no tratadas acumularon más almidón que las hojas de plantas silvestres (Fig. 8A). Al contrario que las hojas amy3 y bam5, que acumularon niveles de almidón similares a los de las plantas tipo silvestre tras 16 horas de tratamiento con volátiles fúngicos (aproximadamente 25 veces más almidón en presencia que en ausencia de volátiles

fúngicos, las hojas *bam4 y sex1* acumularon 30-35 veces más almidón en presencia de FVs que las hojas de las plantas silvestres en ausencia de tratamiento con volátiles fúngicos.

Los datos globales indican que: a) la biosíntesis del almidón y la degradación del almidón mediada por β-amilasa ocurren simultánemante durante MIVOISAP, y b) las rutas de degradación del almidón dependientes de β-amilasa se activan con el tratamiento con volátiles fúngicos. Para confirmar esta hipótesis, los análisis de la medida de maltosa (el producto de la reacción de la β-amilasa) en plantas tipo silvestre y mutantes de inserción de T-DNA *BAM4* revelaron que, mientras que las hojas de plantas tipo silvestre tratadas con volátiles fúngicos acumulaban niveles de maltosa claramente mayores que las hojas de plantas tipo silvestre no tratadas con volátiles fúngicos, las hojas de mutantes *BAM1* y *BAM4* obtenidos por inserción de T-DNA, tanto tratadas con volátiles fúngicos como no tratadas con ellos, acumularon un contenido de maltosa similar (Fig. 8B).

15

20

25

30

10

5

#### - Ejemplo 5: Impacto de las enzimas redox en MIVOISAP en Arabidopsis

La regulación de la función de las proteínas mediante cambios en el estatus redox juega un papel importante en múltiples aspectos de la vida de la planta tales como el crecimiento, el desarrollo y la respuesta a limitaciones en el medio ambiente. La iluminación da lugar a una activación muy rápida, mediada por PHY, de las ATP-asas de la membrana plasmática que bombean protones, lo que a su vez da lugar a cambios en los potenciales de membrana, flujo de iones y estatus redox celular interno. En los cloroplastos, la actividad de numerosas enzimas está ligada al estatus redox de la cadena de transporte de electrones fotosintética. Los cloroplastos poseen dos sistemas redox importantes que regulan independientemente el metabolismo plastidial aportando equivalentes reductores a enzimas diana. Uno está basado en tiorredoxinas (Trxs) y la otra ruta está basada en un tipo peculiar de NADPH Trx reductasa denominada NTRC. Mientras que la ruta dependiente de Trx obtiene poder reductor de la ferredoxina (Fdx) reducida por la cadena de electrones fotosintética y mediada por la Trx reductasa dependiente de Fdx (FTR), NTRC utiliza NADPH como fuente de poder reductor, que se puede producir en la oscuridad a partir de G6P vía la ruta oxidativa de las pentosas fosfato (OPPP), u obtenerse en condiciones de luz a partir de Fdx reducida por medio de

la Fdx-NADP reductasa. Las enzimas del ciclo de Calvin, la síntesis de ATP y la exportación de NADPH desde los cloroplastos se activan mediante la reducción de residuos de cisteína mediada por Trx, mientras que la G6P deshidrogenasa de los cloroplastos se inactiva. Las Trxs también regulan el metabolismo del almidón a través de la activación redox postraduccional de AGP y enzimas implicadas en la degradación del almidón como SEX1 y BAM1. NTRC juega un papel importante en aportar poder reductor para destoxificar el peróxido de hidrógeno en la oscuridad, y en la regulación del estatus redox de la AGP.

Una de las alteraciones más llamativas en el transcriptoma de hojas de Arabidopsis tratadas con volátiles fúngicos emitidos por Alternaria alternata implica la activación de protón ATPasas del tipo de las localizadas en la membrana plasmática, así como la represión de las FTR y Trxs plastidiales. El primer efecto da como resultado cambios en los potenciales e membrana, flujo de iones y estatus redox celular interno, que a su vez dan lugar a una rápida acidificación del apoplasto, producción de peróxido de hidrógeno y activación de genes implicados en las respuestas defensivas. El segundo efecto da como resultado un bloqueo parcial de la conexión principal entre la luz absorbida por las clorofilas y la actividad metabólica en el plástido (el sistema Fdx/Trx), que a su vez favorece la ruta de NTRC como sistema alternativo para transferir equivalentes reductores a enzimas diana probablemente implicadas en MIVOISAP. Para comprobar esta hipótesis se midió el contenido de almidón en mutantes ntrc cultivados en ausencia o presencia durante 16 horas de volátiles fúngicos. Es llamativo que sólo se observó un incremento de 6 veces en el contenido de almidón en los mutantes ntrc tratados con FVs (Fig. 8), lo que indica que NTRC es un determinante importante de MIVOISAP en Arabidopsis thaliana.

25

30

20

5

10

15

#### -Ejemplo 6: El impacto de las almidón sintasas en el MIVOISAP de Arabidopsis

Se conocen cinco clases distintas de almidón sintasas (SS) en plantas: la almidón sintasa unida al gránulo (GBSS), que es responsable de la síntesis de amilosa, y las almidón sintasas solubles de clases I, II, III y IV (SSI, SSII, SSIII y SSIV, respectivamente), que son responsables de la síntesis de amilopectina. Se ha demostrado que la eliminación de SSIV da como resultado la acumulación de un único gránulo de almidón, de gran tamaño, en los cloroplastos de *Arabidopsis*. Además, utilizando diferentes combinaciones de mutaciones de SS en entornos de mutantes en SSIII y

10

15

20

25

30

SSIV, se ha demostrado también que los mutantes de *Arabidopsis* de inserción de T-DNA dobles *SSIII/SIV* o triples *SSI/SSII/SSIII* crecidos de forma autotrófica acumulan niveles nulos o muy reducidos de almidón. Estos datos a) indican que tanto SSIII como SSIV juegan un papel clave en la acumulación de almidón, aunque SSIV es necesario para que se obtenga el número regular de gránulos de almidón de las plantas tipo silvestre y b) sugiere que SSIV juega un papel crucial en el proceso de iniciación del gránulo de almidón.

Los análisis de microarray de hojas de plantas de *Arabidopsis thaliana* tratadas con volátiles fúngicos no revelaron cambios en la expresión de *SSI*, *SSII*, *SSIII* y *SSIV*.

Se investigó si las SS están implicadas en MIVOSAO midiendo el contenido de almidón en hojas de mutantes homozigóticos de inserción de T-DNA en *GBSS, SSI, SSII, SSIII, SSIV, SSII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, cultivados durante 16 horas en presencia o en ausencia de volátiles fúngicos emitidos por <i>A. Alternata*. Estos análisis revelaron que el incremento del contenido de almidón inducido por los volátiles fúngicos en hojas de mutantes de inserción de T-DNA *GBSS, SSI y SSII* era normal cuando se comparaba con el de las hojas de tipo silvestre (20-25 veces más almidón en presencia que en ausencia de volátiles fúngicos). En contrastre, el incremento de almidón en las hojas tratadas con volátiles fúngicos de mutantes de inserción de T-DNA *SSIII, SSIV, SSII/SSIV, SSIII/SSIV, SSIII/SSIV, SSIII/SSIV, SSII/SSIII* y *SSII/SSIII* fue marcadamente menor que en las hojas de plantas tipo silvestre tratadas con volátiles fúngicos (Fig. 9).

Los cambios muestran que a) los cambios en la expresión de los genes que codifican las SS juegan un papel menor (de jugar alguno), en MIVOISAP y b) MIVOISAP está determinado, de forma clara, por SSIII y SSIV. Se puede inferior que ciertos mecanismos postranscripcionales aún sin identificar de la regulación de SSIII y SSIV deben jugar un papel principal en MIVOISAP. A este respecto, es significativo que la SSIII contiene un motivo consenso de las proteínas 14-3-3 de unión de fosfoserina/treonina que participan en funciones reguladoras de la respuesta al medio ambiente regulada por fosforilación y que la actividad de las SS depende del estatus redox.

10

15

20

25

30

#### -Ejemplo 7: Influencia en la acumulación de proteínas en el gránulo de almidón

Los ensayos de microscopía descritos en la solicitud de patente principal P201000499, realizados sobre plantas de *Arabidopsis thaliana* que expresaban la sintasa de almidón unida al gránulo (GBSS) de *Arabidopsis* fusionada con la proteína de fluorescencia verde (GFP) (Szydlowski et al., 2009) cultivadas en presencia y en ausencia de FVs (volátiles fúngicos) emitidos por *Alternaria alternata*, demuestran que el incremento del contenido de almidón no es debido al incremento del número de gránulos por plastidio, sino a un espectacular incremento de tamaño de los gránulos de almidón.

La solicitud de patente española P201001115 describe y reivindica un procedimiento para la producción y purificación de proteínas recombinantes en plantas. Este procedimiento se basa en la producción de plantas (o células vegetales) genéticamente modificadas que expresen proteínas que se unen al gránulo de almidón fusionadas con proteínas de interés a través de una secuencia aminoacídica reconocida específicamente por una proteasa. Una vez aislados los gránulos de almidón (fácilmente aislables y purificables), éstos son tratados con la proteasa, de modo que la proteína de interés se libera. Recientemente se han publicado también unos trabajos en los que se muestra que plantas que expresan proteínas unidas al gránulo de almidón fusionadas con antígenos son capaces de inducir una respuesta inmunitaria en ratones que se alimentan con el almidón de esas plantas.

Con estos antecedentes, se ve que el incremento de la cantidad total de proteína asociada al almidón puede constituir una ventaja de por sí o, además, puede suponer una manera potencial de incrementar los rendimientos y eficiencia de los procedimientos de purificación de proteínas recombinantes asociadas a gránulos de almidón. También constituye una manera de incrementar la cantidad de antígeno en plantas que actúan como vacunas orales, de modo que, presumiblemente, la respuesta del sistema inmune será más fuerte cuando el individuo consuma almidón-vacuna de plantas tratadas con volátiles microbianos que cuando consuma almidón-vacuna de plantas no tratadas con volátiles microbianos.

Por ello, se comprobó si el aumento del tamaño de los gránulos de almidón iba acompañado de un incremento de la cantidad total de proteína asociada al almidón, utilizando para ello plantas de *Arabidopsis thaliana* transformadas con la sintasa de almidón unida al gránulo (GBSS) de *Arabidopsis* fusionada con la proteína de

fluorescencia verde (GFP) (Szydlowski et al., 2009) cultivadas en presencia y en ausencia de FVs (volátiles fúngicos) emitidos por *Alternaria alternata*. Las plantas se cultivaron durante 16 horas bajo luz blanca, se extrajeron las proteínas totales de las plantas y se comprobó la presencia de GFP, asociada a GBSS mediante inmunoensayos sobre transferencias tipo Western.

Los resultados, que se muestran en la Fig. 10, confirman que existe un aumento de la cantidad de proteínas asociadas a los gránulos de almidón cuando las plantas se cultivan en presencia de volátiles microbianos: el extracto de almidón procedente de plantas tratadas con volátiles fúngicos acumula más GBSS-GFP que el extracto procedente de una misma cantidad de plantas no tratadas con volátiles fúngicos. De esta manera, el cultivo de plantas en presencia de volátiles microbianos puede servir para incrementar la producción de proteínas que formen proteínas de fusión con proteínas asociadas al gránulo de almidón, como GBSS, incrementando el rendimiento obtenido por planta.

15

20

25

30

10

5

### - Ejemplo 8: Cinética de la concentración de 3-PGA y Pi en MIVOISAP

Se llevó a cabo la incubación de las plantas de *Arabidopsis thaliana* tal como se ha descrito en el apartado de "Plantas, cultivos microbianos, condiciones de crecimiento y obtención de muestras", con 16 horas de luz y 8 horas de oscuridad, en presencia o en ausencia de cultivo *Alternaria alternata* y, por tanto, de presencia o ausencia de volátiles microbianos.

Los resultados de un ensayo similar, reflejados en la solicitud de adición P201001068, mostraban un creciente incremento del almidón acumulado en las plantas cultivadas en presencia de luz y volátiles microbianos, con respecto a las plantas incubadas en ausencia de luz y/o de volátiles microbianos, durante el período de crecimiento con luz (16 horas); concluidas las 16 horas de luz, la ausencia de la misma hacía disminuir el almidón acumulado. Dichos resultados demostraban la conexión existente entre los procesos metabólicos implicados en MIVOISAP y la luz. Adicionalmente, como ya se ha comentado, se aportaban ensayos que mostraban que la relación 3PGA/Pi se incrementa en el caso de plantas cultivadas en presencia de luz con volátiles fúngicos; la curva parece indicar, además, una relación entre el incremento de almidón y el incremento con el tiempo del valor obtenido de esta relación. En cambio, en ausencia de volátiles y presencia de luz, o en presencia de volátiles y ausencia de luz,

los valores obtenidos a lo largo de tiempo vienen a ser similares para los dos tipos de condiciones de cultivo, con pequeñas oscilaciones a lo largo del tiempo. Estos resultados parecían indicar que MIVOISAP es debido, al menos en parte, a mecanismos de regulación post-transcripcional tales como la activación alostérica de la ADPglucosa pirofosforilasa (AGP).

La AGP está implicada en la producción de ADPG ligada a la biosíntesis de almidón. Esta enzima se activa de forma alostérica mediante 3-fosfoglicerato (3-PGA) y resulta inhibida por el ortofosfato (Pi). Se considera que la modulación alostérica de la AGP representa un determinante importante de la tasa de biosíntesis de almidón en los tejidos fotosintéticos, aunque algunos estudios no han conseguido encontrar una correlación entre los niveles de 3-PGA en el estroma y el contenido de almidón.

En el presente ejemplo, sin embargo, se confirmaron los resultados previamente obtenidos por los presentes autores, determinando los niveles de 3-PGA y Pi según ha sido descrito por Lytovchenko et al. (2002). Tal como se puede ver en la Fig. 11, el análisis de la cinética de acumulación de 3-PGA y Pi en hojas de *Arabidopsis thaliana* tratadas y no tratadas con volátiles microbianos confirmó loa resultados previos, mostrando que la relación 3-PGA/Pi se incrementaba después de 6 horas de tratamiento con volátiles fúngicos producidos por *Alternaria alternata* (véase el panel C de la Fig. 11; este incremento se debe principalmente a la acumulación de 3-PGA (panel A de la Fig. 11), más que a las variaciones en el contenido de Pi (panel B de la Fig. 11).

Estos datos confirman que MIVOISAP implica una activación alostérica de la AGP por el incremento del 3-PGA.

25

20

5

10

15

#### REFERENCIAS BIBLIOGRAFÍCAS

Adie et al., 2007: Plant Cell 19: 1665-1681

Edner, C., et al. (2007). Plant Physiol. 145, 17-28

Ezquer et al. Plant Cell Physiol. 51:1674-1693

Fulton, et al. 2008. Plant Cell 20, 1040-1058

Kohchi et al.. Plant Cell 13, 425-436

Laby, et al. 2001. Plant Physiol. 127, 1798-1807

Liu et al., 2005: Chemosphere 61: 293-301

Lytovchenko, et al., 2002. Planta 215: 802-811

Michalska, et al. 2009. Proc. Natl. Acad. Sci. USA: 9908-9913.

Rao et al., 1981: Plant Cell Physiol, 22: 577-582

Ryu et al. 2003: Proc. Natl. Acad. Sci. USA 100, 4927-4932

Ryu et al. 2004: Plant Phylio 134, 1017-1026

Smyth and Speed, 2003: Methods 31: 265-273

Splivallo et al. 2009: Plant Physiol. 150, 2018-2029

Splivallo et al., 2007b; New Phytologist 175, 417-424

Szydlowski et al., 2009: Plant Cell 21, 2443-2457

Towbin et al., 1979. Proc. Natl. Acad. Sci USA 76: 4350-4354.

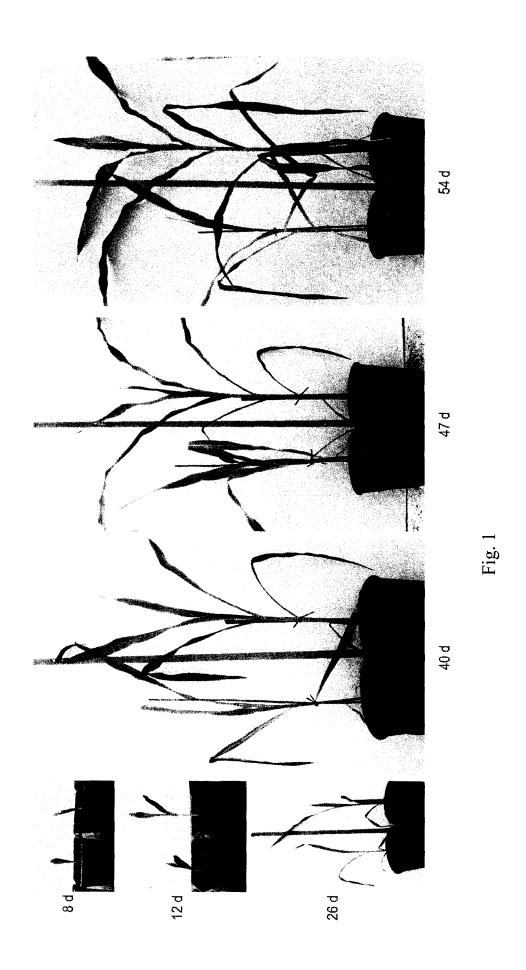
Valerio, et al. 2010 J. Exp. Bot.(doi:10.1093/jxb/erg288)

Vespermann et al. 2007; Appl. Environ. Microbiol. 73, 5639-5641

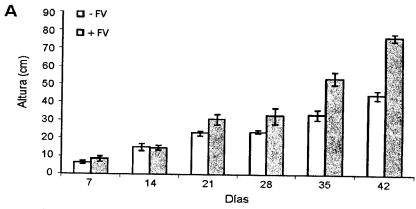
Wattebled, et al. 2005.. Plant Physiol. 138, 184-195

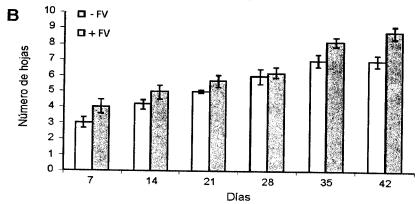
Wintermans, J.F.G.M. and de Mots. A. (1965). Biochim. Biophys. Acta 109: 448-453

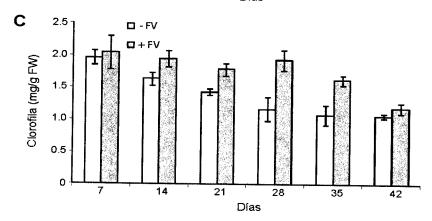
Xie et al. 2009: Plant Signal. Behav. 10, 948-953


Yano et al., 2005. Plant Phisiology

Yu, et al. 2001. J. Biol. Chem. 280, 9773-9779


Zeeman, et al. (2010) Annu. Rev. Plant Biol. 61, 209-234


#### REIVINDICACIONES


Un método para incrementar en una planta la resistencia al estrés hídrico en el que la planta se cultiva en presencia de un cultivo de un microorganismo que produce
 compuestos volátiles, sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo.











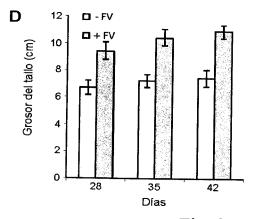
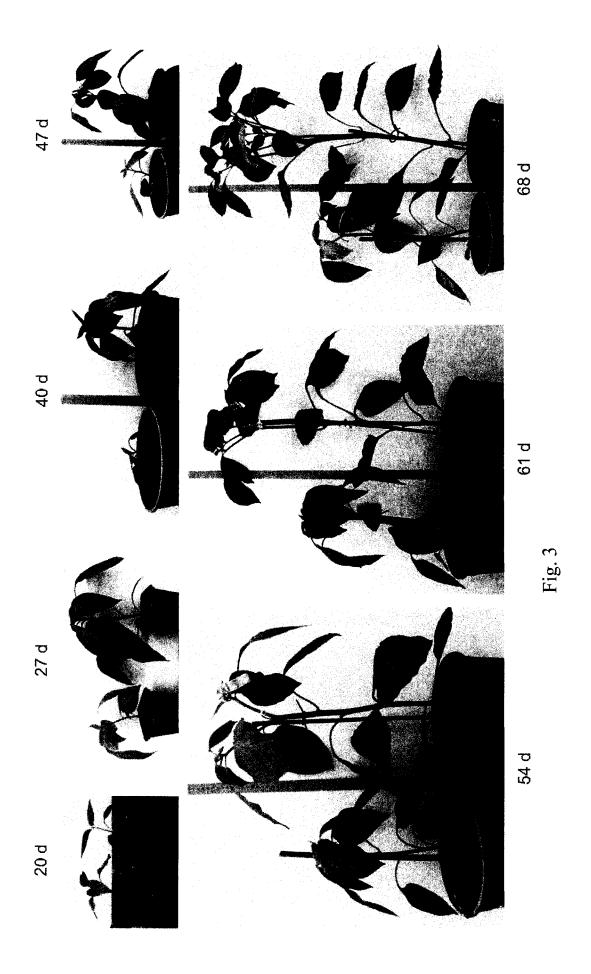
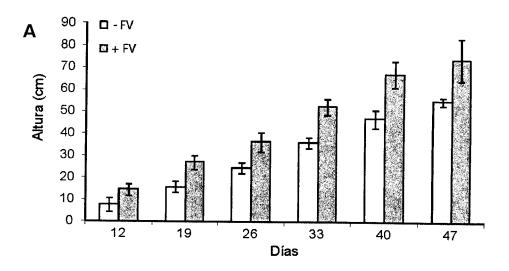
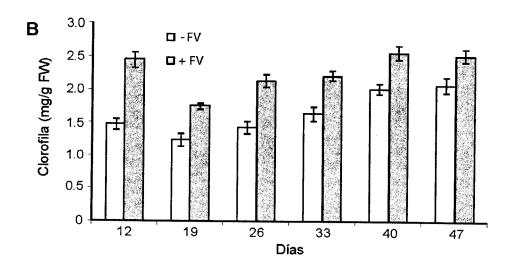






Fig. 2



# Pimiento





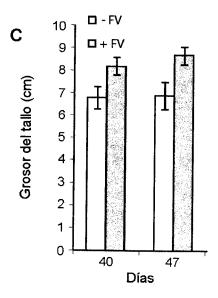
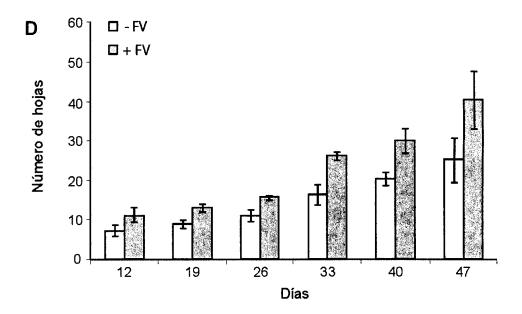
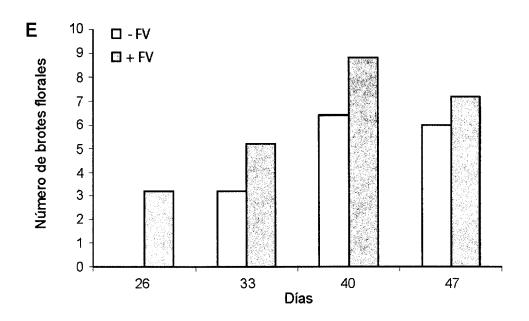
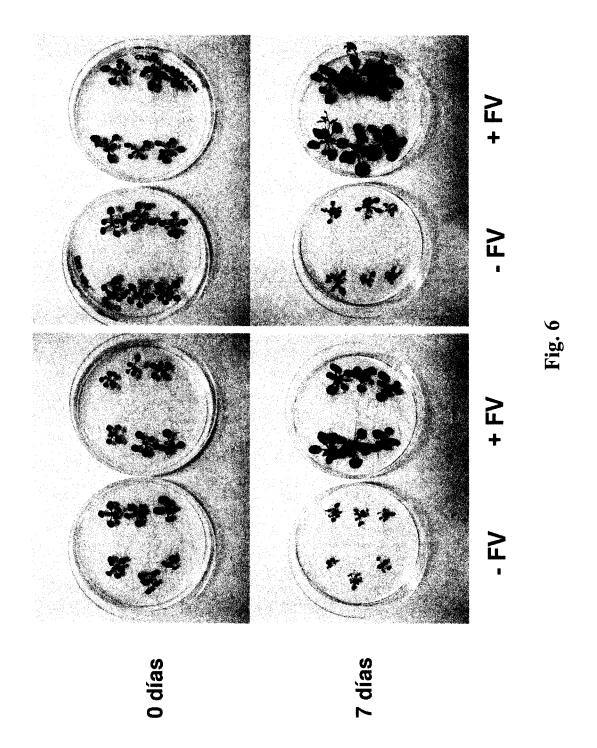
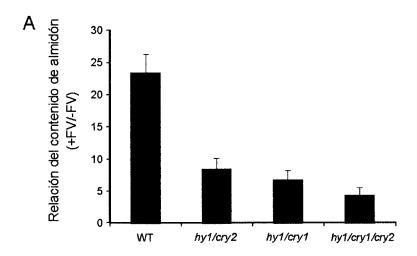




Fig. 4

# Pimiento





Fig. 4 (cont.)

+FV -FV



Fig. 5





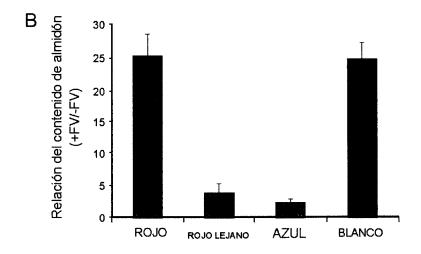
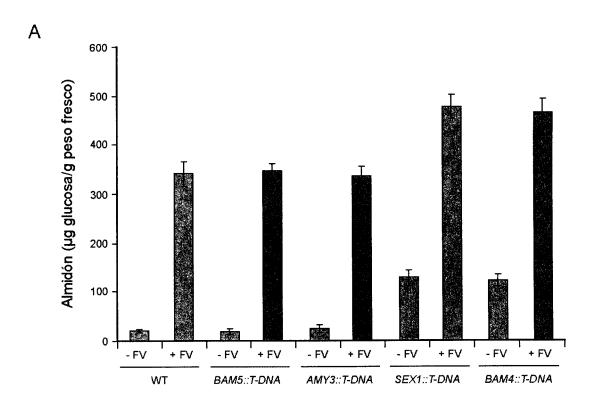




Fig. 7



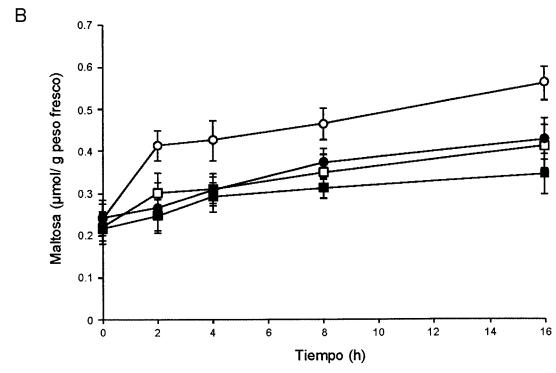



Fig. 8

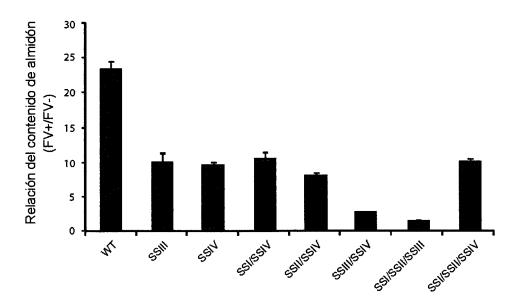



Fig. 9

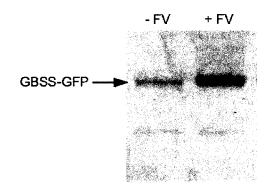



Fig. 10

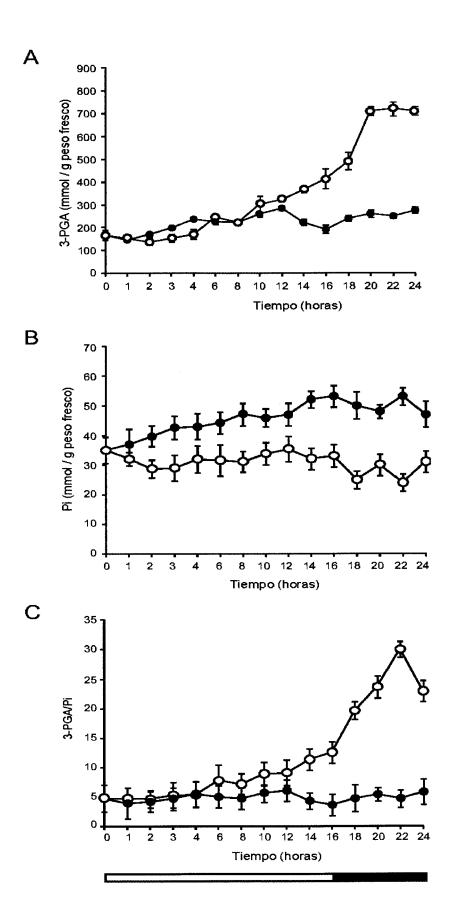



Fig. 11



(21) N.º solicitud: 201100405

22 Fecha de presentación de la solicitud: 07.04.2011

32 Fecha de prioridad:

## INFORME SOBRE EL ESTADO DE LA TECNICA

| (5) Int. Cl.: | <b>A01N63/02</b> (2006.01) |
|---------------|----------------------------|
|               |                            |

## **DOCUMENTOS RELEVANTES**

| Categoría                                                                                                                                                                                                                                                                                                                                                              | 66                                                                    | Documentos citados                                                                                                                                                                                                                                                                            | Reivindicaciones afectadas |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| X                                                                                                                                                                                                                                                                                                                                                                      | chlororaphis O6, is involved in ind                                   | ONG MI., et al. 2R, 3R-butanediol, a bacterial volatile produced by <i>Pseudomonas phis</i> O6, is involved in induction of systemic tolerance to drought in <i>Arabidopsis thaliana</i> . <i>olecular Plant-Microbe Interactions</i> . Vol. 21, no. 8, páginas 1067-1075. 1067, 1069 y 1070. |                            |  |
| Α                                                                                                                                                                                                                                                                                                                                                                      | JUNGWOOK, Y., et al. Rhizospher<br>Plant Science. Vol.14 (1), páginas | re bacteria help plants tolerate abiotic stress. 2009. <i>Trends in</i> 1-4.                                                                                                                                                                                                                  | 1                          |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
| Categoría de los documentos citados  X: de particular relevancia  Y: de particular relevancia combinado con otro/s de la misma categoría  A: refleja el estado de la técnica  C: referido a divulgación no escrita  P: publicado entre la fecha de prioridad y la de pr de la solicitud  E: documento anterior, pero publicado después de presentación de la solicitud |                                                                       |                                                                                                                                                                                                                                                                                               |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                        | para todas las reivindicaciones                                       | para las reivindicaciones nº:                                                                                                                                                                                                                                                                 |                            |  |
| Fecha de realización del informe<br>01.03.2012                                                                                                                                                                                                                                                                                                                         |                                                                       | <b>Examinador</b><br>I. Rueda Molíns                                                                                                                                                                                                                                                          | Página<br>1/4              |  |

# INFORME DEL ESTADO DE LA TÉCNICA Nº de solicitud: 201100405 Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) A01N Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI, TXT

**OPINIÓN ESCRITA** 

Nº de solicitud: 201100405

Fecha de Realización de la Opinión Escrita: 01.03.2012

Declaración

Novedad (Art. 6.1 LP 11/1986)

Reivindicaciones
SI
Reivindicaciones 1

Actividad inventiva (Art. 8.1 LP11/1986) Reivindicaciones SI

Reivindicaciones 1 NO

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

## Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

Nº de solicitud: 201100405

### 1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

| Documento | Número Publicación o Identificación                                                                                                                                                                                                                                                                                  | Fecha Publicación |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| D01       | CHO, SONG MI., et al. 2R, 3R-butanediol, a bacterial volatile produced by <i>Pseudomonas chlororaphis</i> O6, is involved in induction of systemic tolerance to drought in <i>Arabidopsis thaliana</i> . <i>Molecular Plant-Microbe Interactions</i> . Vol. 21, no. 8, páginas 1067-1075. Páginas 1067, 1069 y 1070. | 2008              |
| D02       | JUNGWOOK, Y., et al. Rhizosphere bacteria help plants tolerate abiotic stress. <i>Trends in Plant Science</i> . Vol.14 (1), páginas 1-4.                                                                                                                                                                             | 2009              |

# 2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

En la solicitud de patente se hace referencia a un método para incrementar en una planta la resistencia al estrés hídrico en el que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo.

El documento D01 muestra la relación entre el 2R,3R-butanodiol y la resistencia a la sequía.

El documento D02 divulga como ciertas bacterias incrementan la tolerancia a la sequía, de determinadas especies vegetales.

## 1. NOVEDAD Y ACTIVIDAD INVENTIVA (Artículos 6 y 8 LP11/1986)

En la reivindicación 1 se reivindica un método para incrementar en una planta la resistencia al estrés hídrico en el que la planta se cultiva en presencia de un cultivo de un microorganismo que produce compuestos volátiles, sin que exista contacto entre la planta y el microorganismo, o en presencia de los volátiles emitidos por el microorganismo.

El documento D01, que es el que refleja el estado de la técnica más cercano, divulga (en las páginas 1067, 1069 y 1070) como la aplicación directa de 2R,3R-butanodiol en la especie vegetal *Arabidopsis thaliana* incrementa su resistencia frente a la sequía. El citado documento también muestra como el 2R,3R-butanodiol es un compuesto volátil emitido por *Pseudomonas chlororaphis* O6. Por tanto, teniendo en cuenta la información que refleja el documento D01, la reivindicación 1 no presenta novedad ni actividad inventiva, según lo establecido en los Artículos 6 y 8 LP11/1986.