

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 390 514

51 Int. Cl.: **B01D 33/00**

B01D 33/00 (2006.01) **B01D 33/044** (2006.01) **B01D 33/048** (2006.01)

B01D 33/073 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Número de solicitud europea: 08734549 .2
- 96 Fecha de presentación: 25.04.2008
- 97 Número de publicación de la solicitud: 2152380
 97 Fecha de publicación de la solicitud: 17.02.2010
- (54) Título: Un procedimiento de filtración y un aparato que incluye un rodillo con poros
- 30 Prioridad: **25.04.2007 EP 07106918**

73) Titular/es:

DANMARKS TEKNISKE UNIVERSITET (DTU) (100.0%) ANKER ENGELUNDSVEJ 1 BYGNING 101A 2800 LYNGBY, DK

- Fecha de publicación de la mención BOPI: 13.11.2012
- (72) Inventor/es:

STUBBE, PETER y HANSEN, PREBEN BØJE

- 45 Fecha de la publicación del folleto de la patente: 13.11.2012
- (74) Agente/Representante:

POLO FLORES, Carlos

ES 2 390 514 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Un procedimiento de filtración y un aparato que incluye un rodillo con poros.

5 Campo técnico de la invención

10

15

20

35

40

45

50

55

60

65

La presente invención se refiere al campo de filtración, más precisamente, la presente invención se refiere a un procedimiento y un aparato para la separación de materia seca de un medio y el uso de dicho procedimiento y aparato.

Antecedentes de la invención

Se conoce en la técnica la separación de la materia seca del líquido. Se usan comúnmente procedimientos tales como precipitación, centrifugación y filtración con fines de separación en un gran número de industrias. El último procedimiento de separación es importante para la presente invención.

Existen varios problemas con respecto a la separación de materia seca de líquido. En la precipitación, las partículas del líquido precipitan. A menudo se añade un agente de precipitación al líquido. Después de la precipitación, la materia seca se sitúa en el fondo en forma de un lodo, en el que el lodo aún comprenderá una buena cantidad de líquido, particularmente en el área entre el lodo y el líquido.

La centrifugación es un tipo acelerado de precipitación, en el que también se añaden agentes que facilitan la separación. La centrifugación es un procedimiento de separación muy costoso.

Al filtrar líquidos que tienen un alto contenido de materia seca aparecen problemas significativos con respecto a la acumulación de materia seca en el filtro. Esta acumulación se conoce como la torta de filtración. En procedimientos convencionales, la torta de filtración crecerá hasta que se imposible una filtración adicional y después el filtro tendrá que limpiarse. Existen diversas técnicas para limitar la torta de filtración. Una técnica de este tipo es la filtración tangencial. Aquí, se hace que la suspensión (corriente de alimentación) se desplace a lo largo del filtro de tal manera que la torta de filtración se vea obligada a desplazarse a lo largo de la corriente. Otro procedimiento es un retrolavado. Aquí, el movimiento de la suspensión se invierte para levantar la torta de filtración del filtro.

Al usar los procedimientos de filtración tangencial o retrolavado, la torta de filtración no se acumula en el filtro pero se acumula en la suspensión. Esto requiere que el proceso de filtración se detenga, o la existencia de una salida para la materia seca acumulada. En la última situación, la materia seca extraída aún tendrá un contenido relativamente alto de líquido.

Un procedimiento de filtración adicional es el lavado. El proceso de filtración se detiene y el filtro de lava. Aquí, la materia seca está acompañada por mucho líquido.

En "Filtration and Separation", 1988 (mejora en la desecación de la torta) se describe un sistema para la extracción del agua del lodo. El lodo se lleva hasta una cinta transportadora para una deshidratación parcial. A continuación, el lodo se conduce entre 2 capas de filtros sintéticos, que en un proceso continuo se presenta mediante rodillos. La primera cinta transportadora no pasa a través de la suspensión de lodo.

El documento WO 03/055570 describe un procedimiento y un aparato para separar materia seca de líquido, que comprende proporcionar un entorno de separación cerrado capaz de regularse a presión, y en dicho entorno de separación cerrado poner en contacto al menos un filtro con una suspensión que acumula materia seca en el al menos un filtro y pasar el al menos un filtro a través de al menos un conjunto de rodillos impermeables sólidos.

El documento US20030146174A1 se refiere a un procedimiento y un aparato para separar materia seca de líquido, que comprende proporcionar un entorno de separación cerrado capaz de regularse a presión, y en dicho entorno de separación cerrado poner en contacto al menos un filtro con una suspensión que acumula materia seca en el al menos un filtro y pasar el al menos un filtro a través de al menos un conjunto de rodillos, por lo que el líquido se extrae del al menos un filtro, seguido de la extracción de la torta de filtración sustancialmente seca del al menos un filtro, en el que lo anterior se realiza en el mismo entorno de separación cerrado al vacío o con alta presión.

El documento WO06002638A1 se refiere a un aparato para la separación continua de materia seca de un líquido, que comprende un entorno cerrado capaz de estar al vacío o con presión positiva, en el que el entorno cerrado varios rodillos forman una cámara que está dividida en dos o más compartimentos por medios de filtración, en los que se colocan una o más cámaras de filtrado en el lado limpio de los medios de filtración. Con el fin de conseguir la limpieza y/o mantenimiento de las cámaras de filtrado, se proporcionan cámaras de filtrado adicionales, que se separan de las primeras cámaras de filtrado por una pared. Una de las cámaras de filtrado se coloca en cualquier momento bajo el filtro, mientras que las otras cámaras de filtrado se sitúan fuera del recinto para su mantenimiento/limpieza.

El documento JP58159820A2 describe un filtro continuo para realizar una filtración continua de líquido crudo y una limpieza automática de la tela del filtro, conduciendo la tela del filtro alrededor de los rodillos respectivos usados para presionar, filtrar el intermedio y transferir la torta del intermedio en secuencia, y cogiendo la torta que se pega en el rodillo de transferencia del intermedio en el interior de una espátula.

5

El documento JP56073514A2 describe un filtro continuo para mejorar la eficacia de la filtración haciendo posible que ésta filtre una solución residual de una lavadora para botellas, etc., de forma continua mientras que usa la superficie circunferencial exterior de un cilindro de filtración como área para la filtración.

10 Resumen de la invención

La presente invención se refiere a un procedimiento y sistema de filtración mejorados para su uso en una diversidad de aplicaciones. En un primer aspecto, la invención se refiere a un procedimiento para separar materia seca de un medio, que comprende las etapas de

15

- proporcionar una cámara de separación al menos parcialmente definida por una pluralidad de rodillos, en el que dicha cámara es capaz de regularse a presión, y en el que al menos uno de dichos rodillos es un rodillo poroso que tiene una superficie con poros que permiten la permeabilidad del medio y, además, que tiene al menos un canal para el guiado del filtrado a la salida del filtrado, estando dicho canal en contacto fluido con los poros de la superficie,

20

- disponer al menos un tren de filtración de manera que pase entre al menos un conjunto de rodillos que consiste en un rodillo poroso y otro rodillo más,
- establecer una diferencia de presión a través del al menos un medio de filtración,

25

- poner en contacto el al menos un tren de filtración con una suspensión de materia seca y un medio que acumula materia seca en el al menos un tren de filtración.
- obtener una torta de filtración en dicho tren de filtración, y

30

- pasar el al menos un tren de filtración y la torta de filtración a través de dicho al menos un conjunto de rodillos, por lo que el medio se separa de la torta de filtración,
- extraer opcionalmente la torta de filtración del al menos un tren de filtración.

35

65

En otro aspecto, la invención se refiere a un procedimiento para separar materia seca de un medio, que comprende las etapas de

40

- proporcionar una cámara de separación al menos parcialmente definida por una pluralidad de rodillos, en el que dicha cámara es capaz de regularse a presión, y en el que al menos uno de dichos rodillos es un rodillo poroso que tiene una superficie con poros que permiten la permeabilidad del medio y, además, que tiene al menos un canal para el guiado del filtrado a la salida del filtrado, estando dicho canal en contacto fluido con los poros de la superficie,
- disponer al menos un medio de filtración de manera que una torta de filtración pase entre al menos un conjunto de 45 rodillos, consistiendo dicho conjunto de rodillos en un rodillo poroso y otro rodillo más,
 - establecer una diferencia de presión a través del al menos un medio de filtración,
- poner en contacto el al menos un medio de filtración con una suspensión de materia seca y un medio que acumula 50 materia seca en el al menos un medio de filtración,
 - obtener una torta de filtración en dicho medio de filtración, v
- pasar el al menos un medio de filtración y la torta de filtración a través de dicho al menos un conjunto de rodillos, 55 por lo que el medio se separa de la torta de filtración,
 - extraer opcionalmente la torta de filtración.

En otro aspecto, la invención se refiere a un aparato para la separación de materia seca de un medio, que 60 comprende

- una cámara de separación al menos parcialmente definida por una pluralidad de rodillos, en el que dicha cámara es capaz de regularse a presión, y en el que al menos uno de dichos rodillos es un rodillo poroso que tiene una superficie con poros que permiten la permeabilidad del medio y, además, que tiene al menos un canal para el guiado del filtrado a la salida del filtrado, estando dicho canal en contacto fluido con los poros de la superficie,

- al menos un medio de filtración, tal como un tren de filtración, dispuesto de manera que pase entre al menos un conjunto de rodillos que consiste en un rodillo poroso y otro rodillo más,
- medios establecer una diferencia de presión a través del al menos un medio de filtración,
- medios para poner en contacto el al menos un medio de filtración, tal como un tren de filtración, con una suspensión de materia seca y un medio, y
- medios para pasar el al menos un medio de filtración y la torta de filtración a través de dicho al menos un conjunto
 de rodillos,

que acumula materia seca en el al menos un medio de filtración,

- opcionalmente medios para extraer la torta de filtración, por ejemplo, medios para extraer la torta de filtración del al menos un medio de filtración.

Usando el procedimiento y/o aparato de la invención se obtiene una torta de filtración sustancialmente seca. En un aspecto más de la invención, el uso de dicha torta de filtración sustancialmente seca o el medio está dentro del alcance de la invención.

La presente invención se centra adicionalmente en el uso del procedimiento y el aparato anteriores en una diversidad de propósitos de separación, véase a continuación.

Dibujos

25

20

30

35

- Figura 1: La cámara de presión 1 está formada por rodillos 2 y 7 unidos. La cámara de presión está cerrada en los extremos por una pared lateral. Entre los rodillos y la pared lateral hay una selladura. 7 es un rodillo con surcos, que están en conexión con la salida 5 a través de orificios 4. Los orificios pueden colocarse para conectar dos surcos adyacentes. 7 está cubierto con un filtro 3. El alimento se conduce a la cámara de presión 1. Por medio de presión excesiva, se filtra a través del filtro 3 y sale a través de la salida 4-5. La torta de filtración retenida en el filtro se prensa entre los rodillos 2 y 7, y después se retira mediante la espátula 6.
- Figura 2: La cámara de presión 1 está formada como en la figura 1. 7 es un rodillo con una superficie porosa y un filtro fino 3 en el interior, hacia la salida 5. El alimento se conduce a la cámara de presión 1. Por medio de presión excesiva, se filtra a través de la superficie porosa y el filtro fino 3 hasta la salida 5. La torta de filtrado atrapada en la superficie se prensa entre el rodillo 2 y 7 antes de extraerse mediante la espátula 6.
- Figura 3: La cámara de presión está formada como en la figura 1. 7 es un rodillo hecho de un material poroso con un filtro fino en la superficie. El alimento se conduce a la cámara de presión 1. Por medio de presión excesiva, se filtra a través del filtro fino y la estructura porosa hasta la salida 5. La torta de filtración se prensa y se extrae como en la figura 1.
- Figura 4: Las cámaras de presión 1, 8, 9 y 10 están formadas por los rodillos 2 y 7 como en la figura 1. La selladura 13 hacia la pared lateral se construye para que se use en la salida, y se suministra con uno o varios orificios para diferenciar a lo largo de la circunferencia del rodillo 7. 13 puede seguir al rodillo 7 o estar parado. Los orificios en 13 se corresponden con los orificios de la pared lateral. El rodillo 7 puede ser como se ha descrito en las figuras 1, 2 y 3. 14 puede ser una cámara en el rodillo o una estructura permeable como se ha descrito en la figura 2.
- Figura 5: Las cámaras de presión 1 y 8 están formadas como en la figura 1. El rodillo 7 puede ser como en las figuras 1-4. Además de la alimentación a la cámara de presión 1, la entrada o la salida también pueden ocurrir en la cámara 8. También es posible formar una torta de filtración en el rodillo 7 de la cámara 1, que después se aclara en la cámara 8. La torta de filtración se prensa y se extrae como en la figura 1.
- Figura 6: Como se ha descrito en la figura 5, pero con tres cámaras de presión 1, 8 y 9. La entrada y la salida pueden ocurrir en todas las cámaras 1, 8 y 9. La torta de filtración se prensa y se extrae como en la figura 1.
 - Figura 7: Como se ha descrito en la figura 5, pero con cuatro cámaras de presión 1, 8, 9 y 10. La entrada y la salida pueden ocurrir en todas las cámaras 1, 8, 9 y 10. La torta de filtración se raspa o se elimina.
- Figura 8: Como se ha descrito en la figura 7, pero con una banda de filtración 11 que entra y sale del sistema entre los rodillos 2 y 7. La espátula 6 elimina la torta de filtración del filtro. La entrada y la salida también es posible en la cámara 9 como se ha descrito en la figura 7.
- Figura 9: Como se ha descrito en la figura 7, pero con una banda de filtración 11 que entra y sale del sistema entre los rodillos 2-7 y 2. La torta de filtración se elimina mediante la espátula 6.

Figura 10: La cámara de presión 1 está formada como se ha descrito en la figura 1, pero con más rodillos 7 como se ha descrito en las figuras 1-4. La torta de filtración se prensa y se elimina mediante la espátula 6.

Figura 11: Como se ha descrito en la figura 10, pero con los filtros 11 que van sobre los rodillos 7 y 2. El filtrado se deja salir como se ha descrito en la figura 4. El rodillo 7 puede ser como se ha descrito en la figura 1-4. La torta de filtración se prensa y se elimina como en la figura 1.

Figura 12: Como se ha descrito en la figura 7, excepto que los rodillos pueden desplazarse durante la filtración por un dispositivo 12.

10

5

Figura 13: Como se ha descrito en la figura 8, pero con el filtro 11 saliendo por la cámara 10 en lugar de la cámara 1. Así, la torta de filtración atrapada en la cámara 1 se conduce hasta las cámaras 8 y 9, donde puede aclararse. También es posible constituir una torta de filtración para formar un filtro secundario. Después, se requiere un dispositivo para ajustar el espesor de la torta en la cámara 10.

15

- Figura 14: Como se ha descrito en la figura 13, pero sin la banda de filtración. Aquí, cada rodillo 2 se intercambia por un rodillo 7 como se ha descrito en las figuras 1-4. La espátula 6 como se ha descrito en la figura 12, ajusta el espesor de la torta de filtrado.
- Figura 15: El líquido se conduce hasta la cámara 1 y se filtra a través del filtro 3 en un patrón de surcos 14 en la superficie del rodillo 7. La circunferencia del rodillo 7 se divide en secciones con surcos 14 y secciones sin surcos 15. La longitud de los surcos 14 es más corta que la longitud de la superposición entre el rodillo 7 y el rodillo de prensado adyacente 2. Los surcos 14 están conectados a dos canales 16 y 17, que conducen el filtrado por una hendija 18 en la pared lateral. Durante el prensado de la torta de filtración, los surcos 14 se encerrarán completamente por el rodillo de prensado 2 y el intervalo sin surcos 15. En este momento, se lava con aire a través del canal 16 hacia el canal 17 para eliminar todo el líquido del surco 14. Así, se evita que la torta de filtración se vuelva a humedecer por el filtrado del surco 14, al dejar la zona de prensado.

Descripción detallada de la invención

30

Definiciones:

Por motivos de claridad del presente texto, el término "separación" se usa como sinónimo del término "filtración".

Por la expresión "torta de filtración" se refiere a una acumulación de materia seca antes de que el líquido se extraiga de acuerdo con la presente invención.

Por la expresión "tren de filtración" se refiere a un filtro físico sobre el que se obtiene una torta de filtración de un material diferente al del tren de filtración y que pasa entre dos rodillos. La expresión "tren de filtración" se usa de forma intercambiable con el término "filtro".

Por la expresión "rodillo poroso" se refiere a un rodillo que comprende poros que se extienden desde la superficie de dicho rodillo hasta al menos un canal que se extiende axialmente a través de dicho rodillo, en el que el canal puede proporcionar medios para guiar el filtrado hasta la salida del filtrado.

45

40

En el presente contexto, la expresión "torta de filtrado sustancialmente seca" incluye una acumulación de materia seca después de que el líquido se haya eliminado.

Por "partículas y/u objetos" se refiere a cualquier cosa que el filtro descrito por la invención retendrá.

50

Lo siguiente es una descripción común de tanto el procedimiento como del aparato de la invención.

Filtración de materia seca de un medio

Está dentro del alcance de la invención proporcionar un procedimiento y un aparato de separación usados en la filtración de materia seca de un medio.

Por lo tanto, en un aspecto, la invención se refiere a un procedimiento para separar materia seca de un medio, que comprende las etapas de

60

- proporcionar una cámara de separación al menos parcialmente definida por una pluralidad de rodillos, en el que dicha cámara es capaz de regularse a presión, y en el que al menos uno de dichos rodillos es un rodillo poroso que tiene una superficie con poros que permiten la permeabilidad del medio y, además, que tiene al menos un canal para el guiado del filtrado a la salida del filtrado, estando dicho canal en contacto fluido con los poros de la superficie,

65

- disponer al menos un tren de filtración de manera que pase entre al menos un conjunto de rodillos que consiste en

un rodillo poroso y otro rodillo más,

- establecer una diferencia de presión a través del al menos un medio de filtración,
- poner en contacto el al menos un tren de filtración con una suspensión de materia seca y un medio que acumula materia seca en el al menos un tren de filtración,
 - obtener una torta de filtración en dicho tren de filtración, y
- pasar el al menos un tren de filtración y la torta de filtración a través de dicho al menos un conjunto de rodillos, por lo que el medio se separa de la torta de filtración,
 - extraer opcionalmente la torta de filtración del al menos un tren de filtración.
- 15 Debido a los poros de al menos un rodillo en el sistema es posible obtener una filtración más eficaz que con los sistemas anteriores.

Rodillos

30

45

50

55

- Una pluralidad de rodillos definen una cámara de separación de acuerdo con la invención. Al menos algunos de los rodillos se disponen de manera que un tren de filtración pase entre un conjunto de rodillos, por lo que la torta de filtración en dicho tren de filtración se comprime por una presión ejercida por dichos rodillos entre sí.
- El sistema comprende al menos un rodillo poroso, en particular al menos uno de los rodillos que constituyen el conjunto de rodillos entre los que pasa el tren de filtración es un rodillo poroso.
 - Debido al rodillo poroso dispuesto en el sistema, es posible usar los poros para transportar el medio al filtro o desde el filtro durante el proceso de filtrado. Por lo tanto, en una realización, la suspensión a filtrar se dispone en la cámara de separación y el medio se transporta a los poroso del rodillo poroso durante la separación. En otra realización, la suspensión a filtrar se dispone en el rodillo poroso o fluye a través del rodillo poroso, y el medio se transporta a la cámara de separación durante la separación. En otra realización relacionada con cualquiera de los procedimientos que se han mencionado anteriormente, se proporciona una etapa adicional, en la que al menos un filtro se pone en contacto de nuevo con la suspensión.
- 35 El procedimiento y el sistema incluyen al menos dos rodillos, tal como al menos tres rodillos, tal como al menos cuatro rodillos, tal como al menos cinco rodillos, tal como al menos seis rodillos.
- Además, el procedimiento y el sistema pueden comprender más de un conjunto de rodillos, en los que un rodillo es un rodillo poroso. Por consiguiente, el procedimiento y el sistema pueden comprender al menos dos conjuntos de rodillos, tal como al menos tres conjuntos de rodillos, tal como al menos cuatro conjuntos de rodillos.
 - El rodillo puede fabricarse de cualquier material adecuado para el fin. Preferiblemente, los rodillos se fabrican de un material que sea insoluble en agua y lo suficientemente rígido para soportar la presión aplicada de los rodillos adyacentes sin sufrir daños importantes.

Rodillo poroso

- El al menos un rodillo poroso es un rodillo que comprende poros que se extienden desde la superficie hasta al menos un canal que se extiende en dicho rodillo, preferiblemente que se extiende axialmente en dicho rodillo. El tamaño de los poros se ajusta preferiblemente a un tamaño de partícula de la materia seca a separar, así como al tren de filtración usado en el procedimiento.
- Por lo tanto, en una realización, el rodillo poroso tiene un tamaño de poro de cómo mucho 5 mm, en particular como mucho 4 mm, en particular como mucho 3 mm, en particular como mucho 2 mm, en particular como mucho 75 μ m, en particular como mucho 50 μ m, en particular como mucho 25 μ m, en particular como mucho 10 μ m, en particular como mucho 1, μ m, en particular como mucho 0,5 μ m, en particular como mucho 0,01 μ m, en particular como mucho 0,01 μ m.
- El tamaño de los poros puede ser sustancialmente idéntico a lo largo del poro, o el poro puede extenderse a un surco más ancho cuando el poro alcanza la superficie exterior del rodillo o la superficie interna del rodillo en el canal, véanse, por ejemplo, las figuras 1 y 9.
- El rodillo poroso está fabricado de cualquier material adecuado, tal como metal, caucho, plástico, incluyendo nylon, cerámica y vidrio. En una realización preferida, el rodillo poroso está fabricado de un material cerámico o un material vítreo, o una combinación de los mismos.

En otra realización, la parte externa del rodillo poroso, tal como la parte que comprende los poros, está fabricada de un material, tal como metal, caucho, plástico, incluyendo nylon, cerámica y vidrio, y la parte interna del rodillo poroso está fabricada de otro material, tal material también puede seleccionarse entre metal, caucho, plástico, incluyendo nylon, cerámica y vidrio.

5

10

El rodillo poroso puede estar conectado a medios para presurizar el sistema, por ejemplo, de manera que se aplique presión o vacío al canal o los canales del rodillo poroso con el fin de presurizar el sistema de filtración. En una realización, la diferencia de presión a lo largo del tren de filtración se establece aplicando vacío o una presión excesiva al canal en el rodillo poroso. En una realización relacionada, se proporcionan medios para aplicar vacío o una presión excesiva al canal en el rodillo poroso.

Otro rodillo

15

Los demás rodillos del sistema pueden ser cualquier rodillo adecuado, incluyendo un rodillo poroso como se ha descrito anteriormente. En muchas realizaciones, los demás rodillos son un rodillo sin poros. Otros rodillos en el sistema comprenden adicionalmente rodillos que tienen el fin de definir la cámara de separación sin estar conectados por el tren de filtración, véanse, por ejemplo, las figuras 4, 5 y 6.

El al menos un conjunto de rodillos de la invención pueden estar fabricados de un material idéntico o pueden estar 20

fabricados de un material diferente. Los rodillos individuales pueden estar fabricados de un material o una diversidad de materiales.

25

30

35

La siguiente descripción del material del rodillo incluye tanto rodillos que están en contacto con la banda de filtración, así como cualquier otro rodillo del sistema.

En una realización, el al menos un rodillo del al menos un conjunto de rodillos está fabricado de un material seleccionado entre el grupo que consiste en metal, acero, acero inoxidable, caucho, plástico, incluyendo nylon, vidrio y cerámica, o combinaciones de los mismos, tal como fabricado parcialmente de caucho. Por "parcialmente" se refiere a que el al menos un rodillo del al menos un conjunto de rodillos puede estar fabricado de diversos materiales, por ejemplo, en una realización que tiene un núcleo de metal, tal como acero, y una capa exterior de caucho.

En otra realización, al menos un rodillo del al menos un conjunto de rodillos es uno que tiene un núcleo fabricado de

caucho duro y una capa exterior fabricada de caucho que es más blando que el caucho del núcleo. El valor de dureza del caucho puede estar entre 20 y 95, tal como entre 60 y 90.

Además, en otra realización, al menos un rodillo del al menos un conjunto de rodillos está fabricado de nylon.

En otra realización más, al menos un rodillo del al menos un conjunto de rodillos está fabricado de plástico.

40

En incluso una realización más, al menos un rodillo del al menos un conjunto de rodillos está fabricado de fieltro.

En una realización preferida, los rodillos individuales del al menos un conjunto de rodillos están fabricados de acero inoxidable y caucho.

45

50

55

En otra realización preferida, el al menos un rodillo quía está fabricado de caucho.

Además, está dentro del alcance de la invención proporcionar al menos un conjunto de rodillos en el que un rodillo sea inflable. Los rodillos inflables pueden imponer en una realización la firmeza con la que los rodillos abrazan el al menos un filtro. En una realización adicional, únicamente una parte del rodillo es inflable, tal como la porción final del rodillo individual.

La realización, en la que el al menos un conjunto de rodillos tiene surcos, también está dentro del alcance de la invención. Los surcos pueden perforarse haciendo posible que el medio pase a través de las perforaciones en los surcos. Los surcos pueden facilitar el desplazamiento de la materia seca a lo largo del filtro. Los surcos también pueden facilitar el desplazamiento del medio de la suspensión facilitando el movimiento del medio de los rodillos.

Regulación de la temperatura

- Cualquier de los rodillos del sistema, incluyendo los rodillos porosos, pueden regularse por temperatura si es 60 apropiado con respecto a la suspensión que se filtrará. Por lo tanto, en una realización, al menos un rodillo tiene una temperatura por debajo de 0 °C, tal como por debajo de -2 °C, por ejemplo, por debajo de -5 °C. En otra realización, la temperatura aumenta, por ejemplo, a la temperatura corporal.
- Además, el al menos un rodillo del al menos un conjunto de rodillos puede tener en una realización una temperatura 65 por debajo de 0 °C (cero grados Celsius) como se ha mencionado anteriormente, y al menos otro conjunto de

rodillos más puede estar fabricado de caucho u otro material que se ha descrito previamente.

De acuerdo con la invención, el al menos un conjunto de rodillos ejerce una fuerza simultánea sobre el al menos un filtro, de manera que el tren de filtración se prensa o se comprime entre dos rodillos del conjunto de rodillos, añadiéndose de este modo al efecto de filtración del sistema.

Adicionalmente, en una realización, los al menos dos o más conjuntos de rodillos se usan en el presente procedimiento, haciendo posible de este modo ejercer presión sobre el filtro con grados variables. Los al menos dos conjuntos de rodillos se colocan transpuestos en otra realización.

En el procedimiento de acuerdo con la invención, el al menos un conjunto de rodillos es capaz de ejercer preferiblemente una presión de 5 kg/cm² sobre el al menos un filtro, tal como al menos 10 kg/cm² sobre el al menos un filtro, por ejemplo, al menos 15 kg/cm² sobre el al menos un filtro, tal como al menos 20 kg/cm² sobre el al menos un filtro, por ejemplo, al menos 25 kg/cm² sobre el al menos un filtro, tal como al menos 30 kg/cm² sobre el al menos un filtro, por ejemplo, al menos 35 kg/cm² sobre el al menos un filtro, tal como al menos 40 kg/cm² sobre el al menos un filtro, por ejemplo, al menos 45 kg/cm² sobre el al menos un filtro, tal como al menos 50 kg/cm² sobre el al menos un filtro.

Cámara de separación

El sistema de acuerdo con la invención comprende al menos una cámara de separación al menos parcialmente definida por una pluralidad de rodillos. Como puede observarse en las figuras, se prefiere que se definan al menos cuatro rodillos en una cámara se separación, en particular si se disponen dos rodillos porosos, tal como se muestra en las figuras 2 y 3. Sin embargo, el sistema puede comprender más rodillos, tal como seis u ocho rodillos que definen una o más cámaras de separación.

La cámara de separación comprende la suspensión que se va a filtrar o el medio filtrado resultante. La suspensión puede proporcionarse a la cámara de separación continuamente o en lotes, según sea relevante para la aplicación particular.

En una realización, el sistema puede comprender al menos dos cámaras de separación, tal como al menos tres cámaras de separación, por ejemplo, al menos cuatro cámaras, tal como al menos cinco cámaras, por ejemplo, al menos seis cámaras, tal como al menos siete cámaras, tal como al menos ocho cámaras.

35 Cada cámara puede tener de acuerdo con la invención un fin particular. Una cámara puede tener la función de ser un receptivo para la suspensión que se va a filtrar. Otra cámara puede tener la función de ser un receptivo para un líquido o suspensión que se usará para lavar el al menos un filtro. Dicho líquido o suspensión pueden ser neutros, tal como agua.

40 Medios de filtración

De acuerdo con la invención, el al menos un medio de filtración, por ejemplo, un tren de filtración, se pone en contacto con la suspensión. Después del al menos un contacto del filtro con la suspensión, el al menos un filtro puede desplazarse, en una realización, a través de la suspensión. Este desplazamiento puede realizarse mecánicamente o puede realizarse de forma manual.

El medio de filtración puede ser un tren de filtración que cubre una parte del rodillo poroso o la circunferencia completa del rodillo poroso. Como alternativa, el medio de filtración puede ser un filtro fijado al rodillo poroso o integrado con la superficie del rodillo poroso, tal como el medio de filtración mostrado en la figura 15.

En una realización, se prevé que el al menos un filtro cubra el rodillo poroso de manera que el filtro se ponga en contacto con la cámara de separación debido al movimiento giratorio del rodillo poroso.

El presente procedimiento comprende al menos un filtro, tal como al menos dos filtros, por ejemplo, al menos tres filtros, tal como al menos cuatro filtros, por ejemplo, al menos cinco filtros. El número de filtros usados para los fines de la presente invención depende de factores tales como la naturaleza de la suspensión, el volumen de la suspensión que se va a filtrar. En una realización, puede usarse un primer filtro de poro grueso durante un proceso de pre-filtración seguido del uso de un segundo filtro de poro fino para aclarar la filtración. Por "naturaleza de la suspensión" se refiere a las propiedades físicas y/o químicas, tales como las propiedades tóxicas de la suspensión; el tipo de material, y el contenido de materia seca de la suspensión.

El al menos un filtro de la invención puede tener un tamaño de poro de acuerdo con, por ejemplo, el tipo de suspensión que se va a filtrar y las expectativas del nivel de contenido de materia seca de la suspensión después de la separación. Además, el tamaño de poro del filtro puede adaptarse al tamaño de poro del rodillo poroso.

En la filtración desde la cámara de separación hacia el canal del rodillo poroso, los poros del tren de filtración se

8

10

15

5

20

25

30

45

50

55

60

determinan principalmente por las partículas de la suspensión. En una realización el tamaño de poro del tren de filtración es más pequeño que el tamaño de poro del rodillo poroso, y en otra realización, el tamaño de poro del tren de filtración es más grande que el tamaño de poro del rodillo poroso. Por otro lado, en la filtración desde el rodillo poroso hacia la cámara de separación, se prefiere que las partículas de la suspensión se retengan únicamente por el tren de filtración y, por lo tanto, se prefiere que los poros del rodillo poroso sean más grande que los poros del tren de filtración.

En una realización de la invención, el filtro tiene un tamaño de poro de cómo mucho 5 mm, en particular como mucho 4 mm, en particular como mucho 3 mm, en particular como mucho 2 mm, en particular como mucho entre 1 mm, en particular como mucho 75 μ m, en particular como mucho 50 μ m, en particular como mucho 25 μ m, en particular como mucho 10 μm, en particular como mucho 1 μm, en particular como mucho 0,5 μm, en particular como mucho 0,1 μm, en particular como mucho 0,05 μm, en particular como mucho 0,01 μm, en particular como mucho $0,005 \mu m$, en particular como mucho $0,001 \mu m$.

La permeabilidad del filtro de acuerdo con la invención puede seleccionarse con respecto a la naturaleza de la 15 suspensión que se va a filtrar/separar, y del nivel objetivo de materia seca presente después de la separación. Sin embargo, en un aspecto de la invención, el filtro tiene una permeabilidad de agua de al menos 20.000 l/h/bar/m², en particular al menos 30.000 l/h/bar/m², en particular al menos 40.000 l/h/bar/m², en particular al menos 50.000 l/h/bar/m², en particular al menos 60.000 l/h/bar/m², en particular al menos 70.000 l/h/bar/m², en particular al menos 20 80.000 l/h/bar/m², en particular al menos 90.000 l/h/bar/m², en particular al menos 100.000 l/h/bar/m².

El presente procedimiento comprende en una realización, un tren de filtración, que es una banda, por ejemplo, el tren de filtración puede ser interminable y/o desechable. En esta realización, el filtro normalmente se usa únicamente una vez y después de esto se descarga, sin embargo, puede usarse en más de una cámara de separación antes de la descarga.

En otra realización, el tren de filtración es un tren de filtración circular, por lo que las diversas partes del filtro se introducen de nuevo más de una vez en una cámara de separación. Se muestra un ejemplo en la figura 8, en la que el tren de filtración cubre un rodillo de guía antes de introducirse de nuevo en la cámara de separación. Se muestra otra realización en las figuras 2 y 3, en las que el tren de filtración cubre al menos una parte de la superficie del rodillo poroso, en particular un tren de filtración que rodea la superficie del rodillo poroso.

En una realización, el filtro puede estar rodeado por un marco en al menos un lado del filtro con el fin de evitar que la suspensión se escape en el aparato del filtro y, así proporcionando un procedimiento que tenga fugas reducidas.

El filtro de la invención puede ser adecuado para ajustarse a la naturaleza de la suspensión que se va a separar. Este puede ser el caso cuando el filtro está cubierto. En una realización, el recubrimiento comprende partículas de gel. En otra realización, el filtro está cargado, por ejemplo, llevando partículas magnéticas sobre la superficie, y en una realización relacionada, el filtro es magnético. Recubriendo el filtro con moléculas selectivas es posible seleccionar partículas/sustancias particulares de la suspensión. Por ejemplo, el filtro puede estar cubierto con un catalizador, tal como una enzima, para convertir la suspensión que se va a filtrar. En otra realización, el filtro puede estar cubierto con receptores o anticuerpos capaces de unirse selectivamente a partículas en la suspensión. El recubrimiento, por ejemplo, puede comprender miembros de unión para una o más partículas de materia seca en la suspensión.

El filtro de la invención puede proporcionarse con un material de intercambio iónico, en el que el filtro tiene un área de regeneración tras el área de filtración. Esta realización puede usarse ventajosamente para separar el agua del nitrato, por ejemplo.

50 En una realización, el tren de filtración está ranurado, y en otra realización, el tren de filtración pasa sobre al menos un rodillo de guía.

En una realización de la invención, el filtro se define por una capa de pintura proporcionada a la superficie del rodillo.

55 En otra realización, están presentes bacterias u hongos en el filtro. La presencia de bacterias u hongos puede facilitar los procesos de fermentación. Por ejemplo, se prevé que la presente invención pueda aplicarse a la industria de los lácteos, tal como en la fabricación de productos hechos de leche cuajada.

Además, las bacterias o células mamíferas pueden cultivarse en la al menos una cámara cerrada del presente 60 aparato. Esta realización puede usarse en un entorno de laboratorio. La suspensión puede pulverizarse en la cámara, por lo que la humedad relativa del aire en la cámara puede controlarse.

El procedimiento de la presente invención puede comprender al menos un filtro fabricado de diversos materiales. El material del cual está fabricado el filtro puede adecuarse a las suspensiones individuales.

En una realización, el al menos un filtro está fabricado de junco, hierba o fibras vegetales. En una realización

9

45

5

10

25

30

35

40

adicional, el al menos un filtro está fabricado de metal, caucho o plástico.

En otra realización, el al menos un filtro está fabricado de fibra de carbono, papel tejido, o tejido artificial.

- De acuerdo con la invención, el filtro puede comprender al menos una cavidad. Por el término "cavidad" se refiere a un espacio físico dentro del material del filtro, en el que puede encontrarse, por ejemplo, una suspensión. La estructura de la cavidad del filtro puede compararse con la estructura de una esponja. La al menos una cavidad del al menos un filtro puede retener, en una realización, partículas/compuestos para su unión a partículas/compuestos particulares en la suspensión que se va a separar.
 - En una realización adicional, el al menos un filtro está fabricado de un material flexible. Por "material flexible" se refiere a un material capaz de desplazarse de forma vertical y horizontal cuando está expuesto a presión física. Por ejemplo, dicho material puede ser caucho o plástico.
- En otra realización, el al menos un filtro comprende al menos una cavidad y está fabricado de un material flexible. El material flexible puede facilitar el prensado del líquido de la torta de filtración cuando la torta de filtración en el filtro pasa a través de al menos un conjunto de rodillos.
- El filtro puede comprender una banda de soporte en una realización adicional. La banda de soporte tiene la ventaja de reforzar la banda de filtración, por ejemplo, en situaciones en las que el contenido de materia seca de la suspensión es alto, y/o en situaciones en las que el peso de la materia seca es grande. Además, el filtro puede ser frágil y, por lo tanto, necesitar una banda de soporte, o puede haber una caída de presión en el filtro, lo que hace frágil al filtro y, por lo tanto, que necesite una banda de soporte.
- En una realización de la invención, el al menos un filtro es estéril. Dicho filtro estéril puede usarse en la separación de suspensiones estériles, por ejemplo, composiciones farmacéuticas en las que la esterilidad es vital para la calidad de éxito de la invención, o al filtrar aire, por ejemplo, para quirófanos, o para el trabajo en laboratorio estéril.
- Para el fin del presente procedimiento, el al menos un filtro es capaz de filtrar al menos 500 l/m²/t, tal como al menos 550 l/m²/t, por ejemplo, al menos 600 l/m²/t, tal como al menos 650 l/m²/t, por ejemplo, al menos 700 l/m²/t, tal como al menos 750 l/m²/t, por ejemplo, al menos 800 l/m²/t. La capacidad de filtración es una estimación que incluye la capacidad antes del comienzo del proceso de filtración real.
- El tren de filtración se desplaza preferiblemente continuamente o por etapas. Por lo tanto, en otra realización, la velocidad del desplazamiento del filtro puede ser en etapas, comprendiendo una etapa de aún en reposo, es decir, 0 km/h, y al menos otra etapa de movimiento, es decir, una velocidad de más de 0 km/h. La duración de las etapas individuales depende de parámetros tales como las propiedades físicas del filtro y la naturaleza de la suspensión a filtrar.
- 40 En otra realización de la invención, el al menos un filtro se desplaza a una velocidad de entre 0,2-100 km/h, en particular entre 0,4-70 km/h, en particular entre 0,6-50 km/h, en particular entre 0,8-20 km/h, en particular entre 1-10 km/h, en particular entre 1,5-5 km/h. Sin embargo, en una realización preferida, la velocidad del desplazamiento del filtro está entre 1 y 10 km/h. En otra realización más, la velocidad del desplazamiento del filtro está entre 1,5 y 5 km/h.
 - En una realización adicional, la velocidad del desplazamiento del filtro está controlada a presión.
 - En todavía una realización adicional, la velocidad del desplazamiento del filtro está controlada por el caudal de la suspensión.
 - Diferencia de presión

10

45

50

55

- La separación de materia seca de líquido se realiza de acuerdo con la invención en la cámara de separación capaz de regularse a presión. Por la expresión "regulado a presión" se refiere a que se proporcionan medios para regular/controlar la presión en una cámara de separación cerrada.
- La presión puede regularse/controlarse de tal forma que haya vacío o presión excesiva en la cámara de separación. Por "vacío" se refiere a una presión determinada en bar, que es inferior a la presión atmosférica. Por "presión excesiva" se refiere a una presión que es mayor que la presión atmosférica. En la presente invención, la presión atmosférica se define como 0 (cero) bar.
- En una realización, la presión ejercida sobre la cámara de separación es de -1 a -0,05 bar con respecto a la presión atmosférica.
- 65 En otra realización, la presión ejercida sobre la cámara de separación es de 0,05 a 10 bar con respecto a la presión atmosférica.

En una realización adicional, la presión ejercida sobre la cámara de separación es de 1,0 a 6 bar con respecto a la presión atmosférica.

En todavía una realización adicional, la presión ejercida sobre la cámara de separación es de 1,5 a 4 bar con respecto a la presión atmosférica.

Suspensión

5

20

25

35

40

45

55

60

Para los fines de la presente invención, ahora es posible proporcionar una suspensión a un procedimiento de separación/filtración de manera continua, tal como una suspensión que se proporciona como una corriente continua. Por esto se refiere a que la suspensión puede suministrarse al aparato de filtración, también dentro del alcance de la invención, de forma continua a lo largo del proceso de filtración. El volumen de suspensión suministrada y la velocidad con la que la suspensión se suministra al aparato de filtración dependen de factores tales como la naturaleza física de la suspensión, la cantidad de suspensión que se desea filtrar, y el tamaño y tipos de al menos un filtro.

En otro aspecto de la invención, la suspensión se proporciona como una corriente no continua. Por ejemplo, este puede ser el caso cuando una suspensión se coloca inmóvil en el recipiente de la cámara de separación, en el que el al menos un filtro se pone en contacto con la suspensión.

Usando el presente procedimiento de filtración es posible separar materia seca de un medio a una tasa altamente eficaz. En una realización de la invención, la suspensión tiene un contenido de materia seca anterior a la separación de al menos el 5%. Sin embargo, en otra realización de la invención, el contenido de materia seca de la suspensión anterior a la separación es al menos el 10%. En otra realización más, el contenido de materia seca de la suspensión anterior a la separación es al menos el 15%, por ejemplo, al menos el 20%, tal como al menos el 25%, por ejemplo, al menos el 30%, tal como al menos el 35%, por ejemplo, el 40%, tal como al menos el 45%, por ejemplo, al menos el 50%.

La presente invención es capaz de filtrar suspensiones que tengan un contenido de materia seca relativamente alto.

30 Dichas suspensiones pueden ser, por ejemplo, un zumo que comprende pulpa o residuos de fruta.

Es el fin de la presente invención proporcionar un procedimiento en el que la suspensión después de la separación tenga un contenido de materia seca de como mucho el 50%, tal como mucho el 45%, por ejemplo, como mucho el 40%, tal como mucho el 35%, por ejemplo, como mucho el 30%, tal como mucho el 25%, por ejemplo, como mucho el 20%, tal como mucho el 25, por ejemplo, como mucho el 20%, tal como mucho el 25, por ejemplo, como mucho el 20%, tal como mucho el 15%, por ejemplo, como mucho el 20%, tal como mucho el 5%, por ejemplo, como mucho el 2%.

Extracción de la torta de filtración sustancialmente seca

Una vez que se ha recogido la materia seca en el al menos un filtro, puede extraerse de acuerdo con la invención. La materia seca recogida en el al menos un filtro se denomina "torta de filtración sustancialmente seca". La extracción de la torta de filtración sustancialmente seca puede tener lugar simultáneamente con la continuación del proceso de separación, es decir, el hecho de que la torta de filtración sustancialmente seca se esté extrayendo no incluye en la continuidad del proceso de separación.

Por consiguiente, en una realización de la invención, la torta de filtración, tal como una torta de filtración sustancialmente seca, se extrae del al menos un filtro, tal como un tren de filtración, por medio de aire comprimido.

50 En una segunda realización, la torta de filtración, tal como una torta de filtración sustancialmente seca, se extrae del al menos un filtro por medio de vibración.

En una realización adicional, la torta de filtración, tal como una torta de filtración sustancialmente seca, se extrae del al menos un filtro por medio de raspado. La espátula puede seleccionarse entre una gran diversidad de materiales, y la espátula también puede ser el propio filtro.

Limpieza del filtro

Es un fin de la invención proporcionar un procedimiento en el que el al menos un filtro puede reciclarse a la cámara de separación. Esto requiere la limpieza del al menos un filtro. La durabilidad del al menos un filtro puede depender del tipo de filtro, la naturaleza de la suspensión y el tiempo de uso de dicho filtro.

La limpieza del filtro de acuerdo con la invención puede realizarse, en una realización, por enzimas, que son capaces de absorber los residuos de materiales de la materia seca en el al menos un filtro.

En otra realización, el al menos un filtro se limpia por medio de lavado a alta presión.

Adicionalmente, en otra realización más, el al menos un filtro se limpia mediante productos químicos, tales como un detergente.

Por razones de aclaración, la descripción del presente procedimiento que se ha mencionado anteriormente también es válido para el aparato de la presente invención.

Aplicaciones del procedimiento y el sistema

20

25

- La presente invención se refiere a un procedimiento y un sistema para separar materia seca de un medio. La presente invención puede usarse en relación con cualquier materia seca y medio, en los que el medio es normalmente un medio gaseoso cualquiera, tal como gas o aire, o un líquido. La invención puede usarse con una diversidad de fines y una diversidad de industrias.
- Además, la presente invención puede usarse junto con procedimientos de separación en los que se incluye un procedimiento para convertir la materia seca o el medio, o ambos. Esto puede ser relevante si, por ejemplo, se incluye un catalizador en el filtro.
 - Además, en la presente invención un tren de filtración que lleva compuestos que tienen afinidad para uno o más tipos de materia seca en la suspensión, de manera que dicha materia seca se "coja" por los compuestos opcionalmente para su procesamiento o uso adicional después de la separación del medio.
 - Como puede entenderse a partir de los ejemplos que se mencionan a continuación, el procedimiento y el sistema de acuerdo con la invención de acuerdo con la invención pueden usarse para separar materia seca de un medio, en los que la materia seca o el medio, o ambos, pueden usarse después de la separación.
 - Por ejemplo, la presente invención puede usarse en la industria de producción de alimentos, piensos y bebidas. Ejemplos son:
- Un ejemplo de una aplicación de este tipo es en la fabricación de zumo, en la que se desea separar componentes de las frutas o verduras, etc. del líquido de las frutas o verduras, etc. Además, el agente de filtración puede extraerse del zumo líquido.
- En una realización preferida los componentes de las frutas o verduras, etc. se separan del líquido de las frutas o verduras sin la ayuda de enzimas o calentamiento. Esto proporciona un producto más natural ya que se conservan más nutrientes usando la presente invención en comparación con técnicas de separación convencionales que usan, por ejemplo, enzimas y/o calentamiento. Este tratamiento preventivo puede usarse en la fabricación de una diversidad de productos alimentarios. Además, el agente de filtración puede extraerse del zumo líquido.
- En ciertas áreas de aplicación, un zumo de este tipo que prepara la invención puede usarse adicionalmente en los hogares. Aquí, la presente invención puede aplicarse a cualquier suspensión alimentaria en la que sea deseable separar materia seca de líquido.
 - Otro ejemplo de la aplicación de la presente invención es en la industria cervecera. Aquí, en una realización, puede extraerse la malta de la máscara para obtener un mosto. En otra realización, puede extraerse el sedimento del mosto para obtener un mosto sin sedimentos. En otra realización más, se extraen las células de levadura de una cerveza ya preparada obteniendo cerveza sin levadura. En una realización adicional, se extrae la bruma de una cerveza sin levadura obteniendo una cerveza lista para beber.
- Un ejemplo adicional de la aplicación de la presente invención es en la industria vitivinícola. Aquí, en una realización, se extrae la pulpa de las uvas aplastadas. En otra realización se extraen las células de levadura de un vino ya preparado obteniendo vino sin levadura. En una realización adicional, se extrae la bruma del vino sin levadura obteniendo un vino listo para beber.
- La presente invención puede reemplazar las técnicas vitivinícolas convencionales sin usar enzimas en el procedimiento de preparación del vino. Sin embargo, en una realización adicional, la torta de filtración obtenida a partir del proceso de filtración puede deshidratarse y se añaden enzimas. Esto se realiza para extraer el color y el zumo restante (véase la ilustración de la figura 10).
- El presente procedimiento/aparato de separación puede aplicarse para la separación de bacterias o grasa de la leche cruda. Además, las esporas pueden extraerse de la leche usada para la preparación del queso. En otra realización se extrae el agua, la proteína o la lactosa del trigo.
- Además, de acuerdo con la invención, se prevé que el presente procedimiento y aparato puedan usarse en la industria de los aceites comestibles. Por ejemplo, separando el líquido, es decir, el aceite de la fuente de dicho aceite, siendo la fuente, por ejemplo, componentes de las aceitunas, diversas semillas, y otras fuentes de aceites comestibles. En una realización preferida, se usa un tipo de filtro de paso para esta aplicación. En una realización

adicional de la invención, se extrae aceite blanqueador de aceite comestible en bruto. La presente invención puede reemplazar la prensa de tornillo convencional.

- El uso de la torta de filtración sustancialmente seca también está dentro del alcance de la presente invención. En una realización, la torta de filtración sustancialmente seca puede usarse para la alimentación animal. En otra realización, la torta de filtración sustancialmente seca puede usarse como material aislante, por ejemplo, en la construcción. En otra realización, la industria textil puede usar la torta de filtración sustancialmente seca como un material aislante en, tal como artículos de equipo al aire libre, por ejemplo, sacos de dormir.
- En otro aspecto de la invención, el uso del procedimiento y el aparato puede ser para el tratamiento de lodos, por ejemplo, eliminando las partículas no deseadas antes de introducirlo de nuevo en el entorno circundante. Además, está dentro del alcance de la invención reciclar aguas residuales aplicando la presente invención. Tal reciclaje puede aplicarse para el lavado comercial de coches.
- 15 En otro aspecto adicional, el uso del presente procedimiento y aparato se aplica a la industria del papel y la pulpa.

20

25

30

45

55

En un aspecto medioambiental de la invención, el uso de la presente invención es para el procesamiento de estiércol. Este es un proceso importante relacionado con las industrias de agricultura modernas. El estiércol puede someterse al presente proceso de separación para eliminar el agua antes de reciclar el estiércol, por ejemplo, en una planta de biogás.

Adicionalmente, la presente invención puede usarse para extraer el agua, la materia seca y los gérmenes de los líquidos de fermentación, y como un requisito previo de pretratamiento para esterilizar un sustrato usado en el proceso de fermentación.

La presente invención puede usarse en una realización adicional en la industria farmacéutica. Por ejemplo, aplicando el procedimiento se separación en la purificación de composiciones farmacéuticas.

Además, la invención puede usarse en otra realización en la industria cosmética para la extracción de impurezas de los productos cosméticos, tales como jabón, maquillaje y cremas hidratantes.

Se prevé adicionalmente que la presente invención pueda usarse en una máquina de café automática. Aplicando la presente invención, el café hecho mantendrá la misma intensidad a lo largo de todo el proceso de preparación.

- Otra aplicación del presente procedimiento y aparato es para su uso en máquinas de limpieza de suelos. Se prevé que el agua usada en las máquinas de limpieza de suelos industriales pueda reciclarse ya que el proceso de filtración se realiza al mismo tiempo que se limpia el suelo.
- La presente invención puede usarse adicionalmente para eliminar el nitrato, las bacterias y/o el ocre del agua 40 potable.

La presente invención puede usarse para separar impurezas de la pintura; el material biológico, tal como material vegetal de una salida de desagüe; impurezas de la gasolina; impurezas de la sangre y materia seca del agua de una salida de un fregadero de cocina.

- Cuando el tren de filtración está cubierto con compuestos que tienen afinidad para uno o más tipos de materias secas en la suspensión, el procedimiento y el sistema de acuerdo con la invención pueden usarse para separar anticuerpos, proteínas, nucleótidos, y similares para su uso en los campos médicos y biotécnicos.
- 50 Además, la presente invención puede usarse para separar materia seca del aire o un gas. Ejemplos son:

La separación de partículas de un gas, tal como gas de combustión del escape de un vehículo, así como otros motores de combustión. En particular, cuando se usa un filtro que está cubierto con un catalizador capaz de catalizador NOX y partículas de hollín. Un filtro de este tipo puede llevar reactantes útiles en la reacción, tal como amoniaco. En particular, para su uso en relación con vehículos, tales como camionetas o camiones, es ventajoso diseñar el tamaño del sistema para que se ajuste con el tamaño de las partes de escape convencionales de los vehículos.

Otro ejemplo es la limpieza del aire, por ejemplo, la limpieza del aire de uso estéril, tal como el aire de un quirófano.

REIVINDICACIONES

- 1. Un procedimiento para separar materia seca de un medio, que comprende las etapas de
- proporcionar una cámara de separación definida, en sección transversal, por una pluralidad de rodillos, en el que dicha cámara es capaz de regularse a presión, y en el que al menos uno de dichos rodillos es un rodillo poroso que tiene una superficie con poros que permiten la permeabilidad del medio y, además, que tiene al menos un canal para el guiado del filtrado a la salida del filtrado, estando dicho canal en contacto fluido con los poros de la superficie,
- disponer al menos un medio de filtración de manera que una torta de filtración pase entre al menos un conjunto de rodillos, consistiendo dicho un conjunto de rodillos en un rodillo poroso y otro rodillo más,
 - establecer una diferencia de presión a través del al menos un medio de filtración,
- poner en contacto el al menos un medio de filtración con una suspensión de materia seca y un medio que acumula materia seca en el al menos un medio de filtración,
 - obtener una torta de filtración en dicho medio de filtración, y
- pasar el al menos un medio de filtración y la torta de filtración a través de dicho al menos un conjunto de rodillos, por lo que el medio se separa de la torta de filtración,
 - extraer opcionalmente la torta de filtración.

5

35

45

- 2. El procedimiento de acuerdo con la reivindicación 1, en el que el medio de filtración se integra con la superficie del rodillo poroso.
 - 3. El procedimiento de acuerdo con la reivindicación 1, en el que el medio de filtración es un tren de filtración.
- 30 4. El procedimiento de acuerdo con la reivindicación 1, en el que el medio de filtración es un filtro fijado al rodillo poroso.
 - 5. El procedimiento de acuerdo con la reivindicación 1, en el que la suspensión se dispone en la cámara de separación y el medio se transporta a los poroso del rodillo poroso durante la separación.
 - 6. El procedimiento de acuerdo con la reivindicación 1, en el que la suspensión se dispone en el rodillo poroso, y el medio se transporta a la cámara de separación durante la separación.
- 7. El procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, que comprende una etapa adicional, en el que el al menos un filtro se pone en contacto de nuevo con la suspensión.
 - 8. El procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en el que un tren de filtración cubre al menos una parte de la superficie del rodillo poroso, en particular un tren de filtración que rodea la superficie del rodillo poroso.
 - 9. El procedimiento de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el al menos un filtro se desplaza a una velocidad de entre 0,2-100 km/h, en particular entre 0,4-70 km/h, en particular entre 0,6-50 km/h, en particular entre 0,8-20 km/h, en particular entre 1-10 km/h, en particular entre 1,5-5 km/h.
- 50 10. Un aparato para la separación de materia seca de un medio, que comprende
 - una cámara de separación definida, en sección transversal, por una pluralidad de rodillos, en el que dicha cámara es capaz de regularse a presión, y en el que al menos uno de dichos rodillos es un rodillo poroso que tiene una superficie con poroso que permiten la permeabilidad del medio y, además, que tiene al menos un canal para el guiado del filtrado a la salida del filtrado, estando dicho canal en contacto fluido con los poroso de la superficie,
 - al menos un medio de filtración dispuesto de manera que pase entre al menos un conjunto de rodillos que consiste en un rodillo poroso y otro rodillo más,
- medios para establecer una diferencia de presión a través de al menos un medio de filtrado,
 - medios para poner en contacto al menos un medio de filtración con una suspensión de materia seca y un medio, y
- medios para pasar el al menos un medio de filtrado y una torta de filtrado a través de dicho al menos un conjunto
 de rodillos,

- opcionalmente medios para extraer la torta de filtrado.
- 11. El aparato de acuerdo con la reivindicación 10, en el que el medio de filtración es un tren de filtración.
- 5 12. El aparato de acuerdo con la reivindicación 11, en el que un tren de filtración cubre al menos una parte de la superficie del rodillo poroso, en particular un tren de filtración que rodea la superficie del rodillo poroso.
- 13. El aparato de acuerdo con cualquiera de las reivindicaciones 10-12, en el que el filtro tiene una permeabilidad de agua de al menos 20.000 l/h/bar/m², en particular al menos 30.000 l/h/bar/m², en particular al menos 40.000 l/h/bar/m², en particular al menos 50.000 l/h/bar/m², en particular al menos 60.000 l/h/bar/m², en particular al menos 70.000 l/h/bar/m², en particular al menos 90.000 l/h/bar/m², en particular al menos 100.000 l/h/bar/m².
- 14. El aparato de acuerdo con cualquiera de las reivindicaciones 11-13, en el que el tren de filtración comprende un catalizador.
 - 15. Uso del procedimiento como se ha definido en las reivindicaciones 1-9 y/o el aparato como se define en las reivindicaciones 10-14 para separar materia seca de un medio.

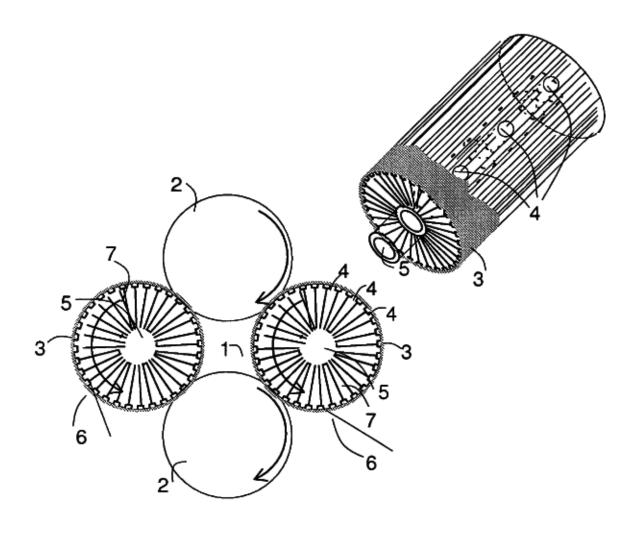


Fig. 1

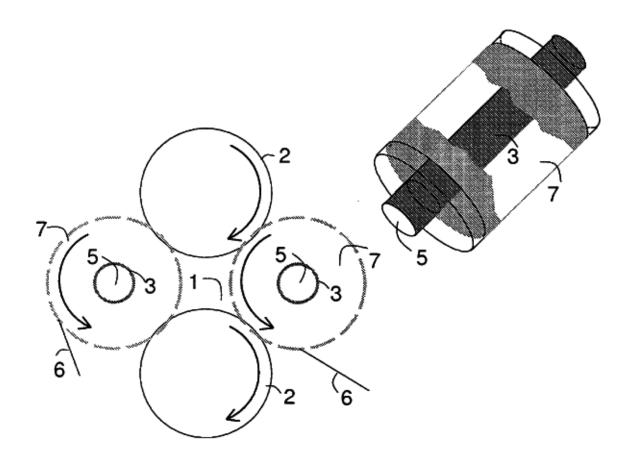


Fig. 2

Fig. 3

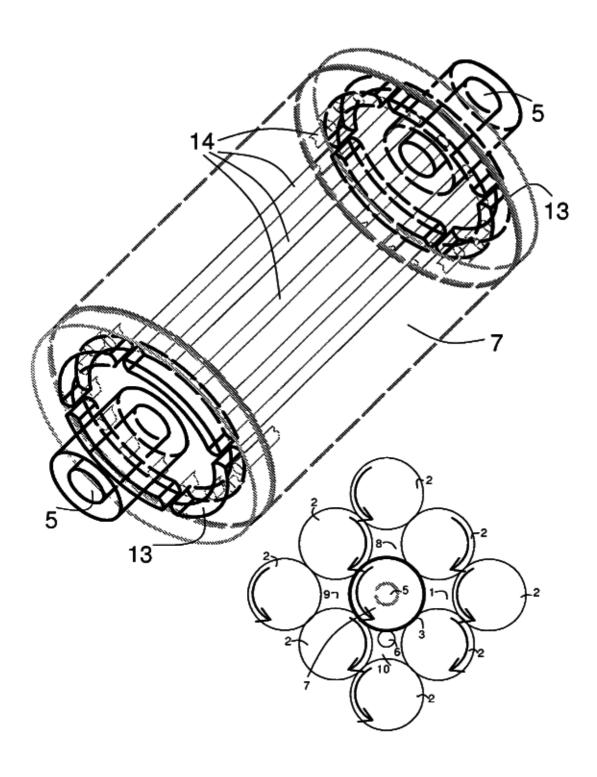


Fig. 4

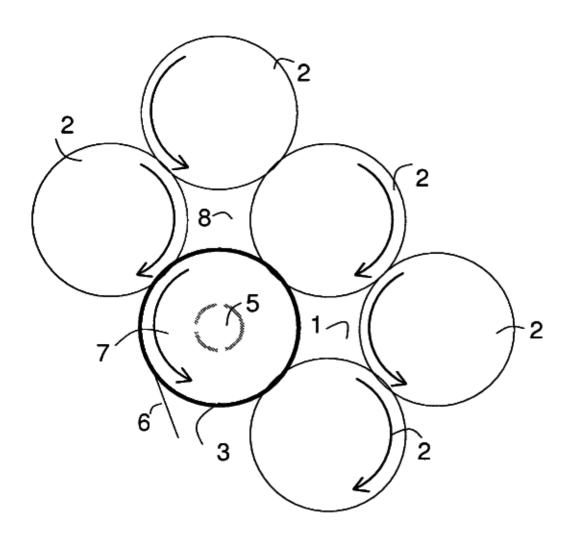


Fig. 5

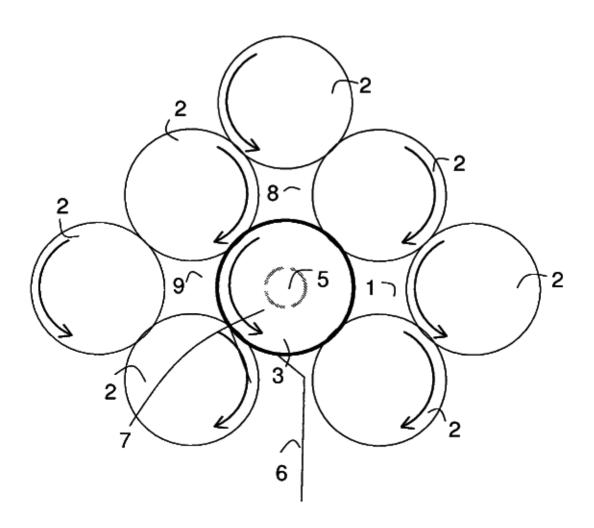


Fig. 6

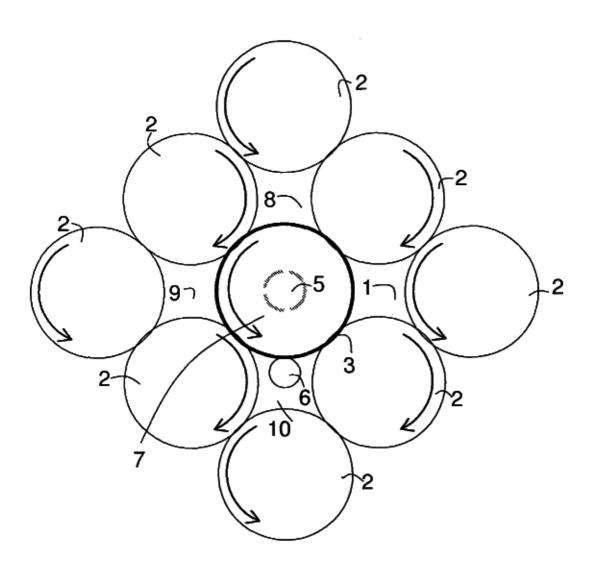


Fig. 7

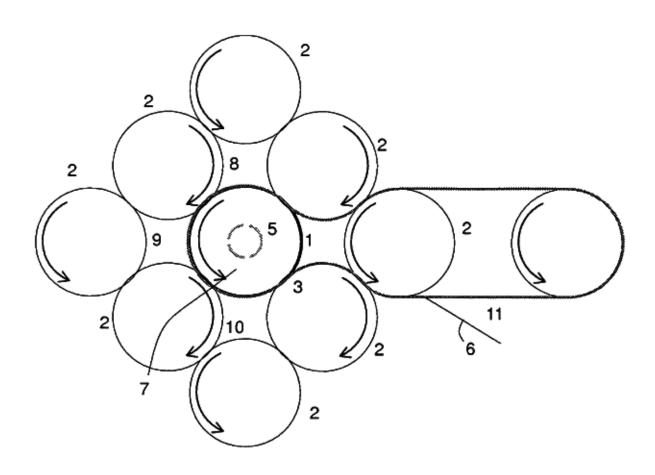


Fig. 8

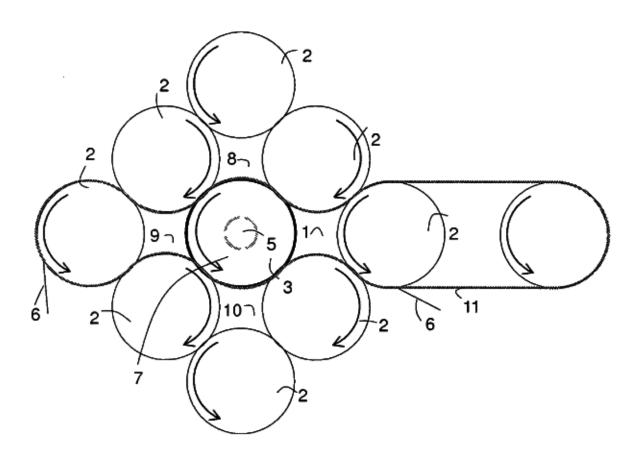


Fig. 9

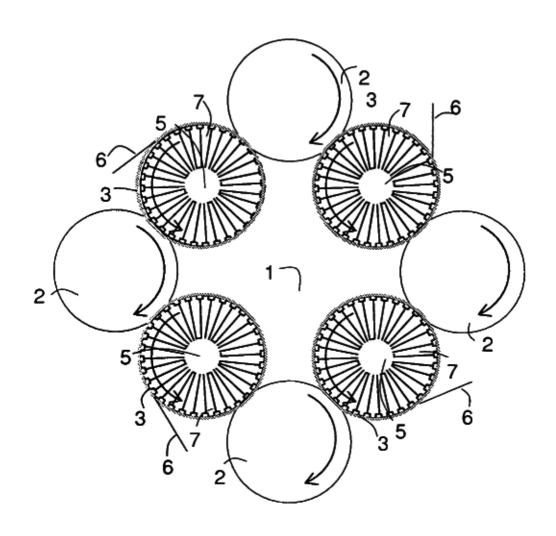


Fig. 10

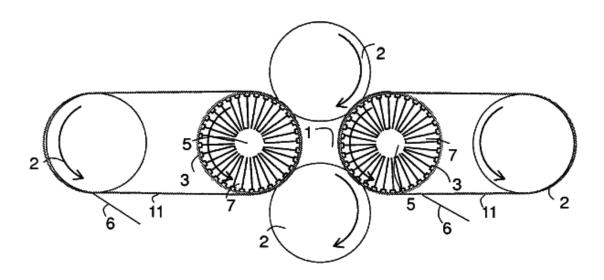


Fig. 11

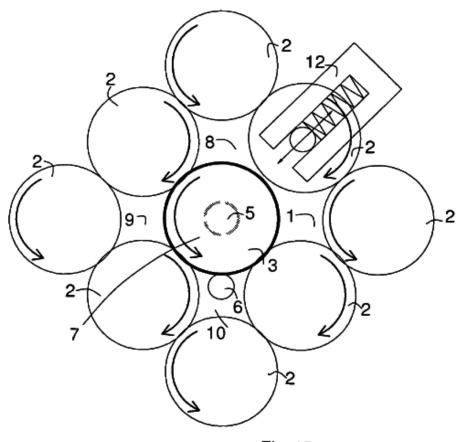


Fig. 12

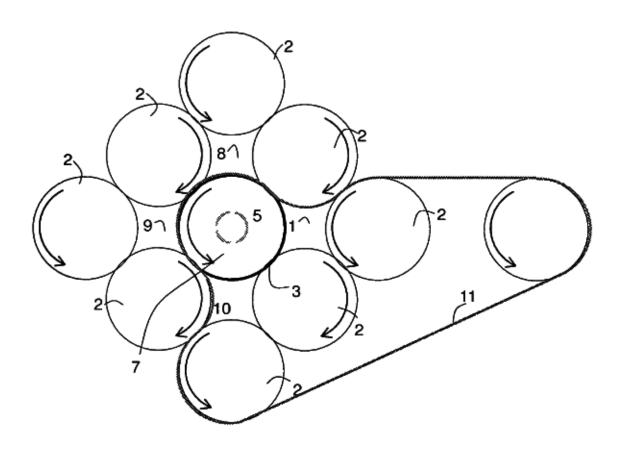


Fig. 13

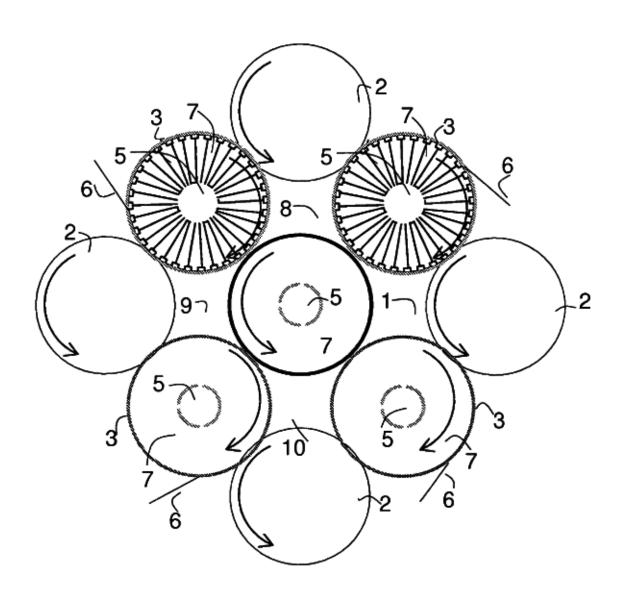


Fig. 14

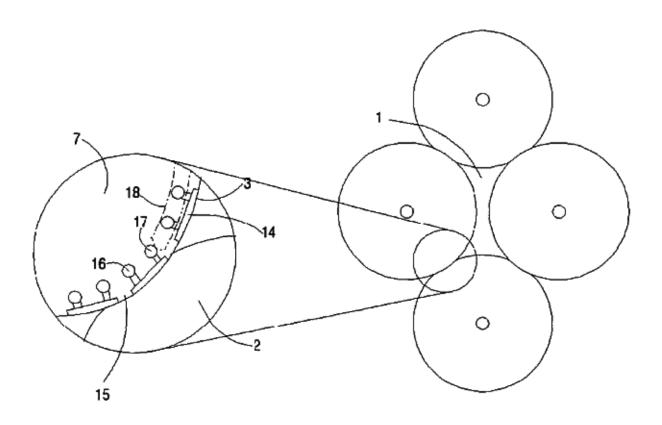


Fig. 15