

11 Número de publicación: 2 390 949

51 Int. CI.: E04B 2/82

E04B 2/82 (2006.01) **E06B 3/46** (2006.01)

TRADUCCIÓN DE PATENTE EUROPEA 96 Número de solicitud europea: 09156348 .6 96 Fecha de presentación: 26.03.2009 97 Número de publicación de la solicitud: 2108755 97 Fecha de publicación de la solicitud: 14.10.2009			ТЗ
64 Título: Sistema de panel de pared que incluye un anclaje de suelo retráctil			
③ Prioridad: 26.03.2008 US 56242	C.R 250	ular/es: R. LAURENCE COMPANY, INC. (1 D3 EAST VERNON AVENUE IS ANGELES, CALIFORNIA 90058	·
Fecha de publicación de la mención B 20.11.2012	•	entor/es: RAGUE, GARY	
Fecha de la publicación del folleto de l 20.11.2012		ente/Representante: ELZABURU MÁRQUEZ, Alberto	

ES 2 390 949 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Sistema de panel de pared que incluye un anclaje de suelo retráctil.

Campo de la invención

5

10

15

20

25

30

35

40

45

50

55

La presente invención se refiere a sistemas de paneles de pared móviles y en particular, a sistemas de paneles de pared que incluyen conjuntos de paneles de pared pivotantes.

Antecedentes de la invención

Los paneles de pared móviles se usan a menudo para dividir un área en dos o más regiones. Por ejemplo, los paneles de pared móviles se emplean en escuelas, hoteles o centros de convenciones para dividir una sala grande en dos o más salas más pequeñas. Otro uso común de los paneles de pared móviles es la formación de frentes de tienda individuales dentro de un centro comercial. Los paneles de vidrio transparente se almacenan típicamente durante las horas de trabajo para producir un escaparate ancho y abierto, y se disponen por delante del escaparate durante las horas de descanso al mismo tiempo que permiten que se vea la mercancía. Alternativamente, los paneles de vidrio transparente se podrían disponer enfrente del escaparate durante las horas de trabajo si se desea, y uno o más paneles se podrían configurar para que pivotasen con el fin de facilitar el acceso, por ejemplo durante un tiempo inclemente.

Los sistemas de paneles de pared móviles incluyen típicamente varios componentes, tales como paneles de pared, carritos acoplados a los paneles de pared, y unas vías dentro de las cuales pueden deslizarse los carritos y desplazar los paneles de pared. Los paneles de pared son a menudo grandes estructuras planas que podrían estar separadas o fijarse entre sí extremo con extremo. Muchas aplicaciones modernas de los sistemas de paneles de pared utilizan paneles de pared separados con el fin de permitir una versatilidad mayor que los sistemas que emplean paneles de pared que se fijan extremo con extremo.

Se podrían incluir mecanismos que permitan que un panel deslizante se convierta en un panel pivotante. Por ejemplo, la patente de EE.UU. número 5.394.648, asignada a Kordes, divulga una puerta o panel de partición de pared que incluye una unidad para bascular y correr el panel. El panel está acoplado pivotablemente a un transportador móvil que está suspendido de un raíl por una pluralidad de suspensiones. En una parte inferior del panel se incluye un enclavamiento de suelo que sirve para enclavar y desenclavar selectivamente la puerta en una ubicación específica. El enclavamiento de suelo proporciona también una función de articulación para el movimiento giratorio de la puerta cuando está en la posición enclavada. En la parte superior del panel se incluye también una unidad de fijación y enclavamiento que está configurada para enclavar selectivamente el movimiento relativo entre el raíl y el transportador y entre el panel y el transportador. La unidad de fijación y enclavamiento incluye un tornillo de enclavamiento que se puede mover independientemente de un tornillo de fijación para restringir la traslación del panel a lo largo del raíl o el movimiento pivotante del panel con respecto al transportador.

En la patente de EE.UU. Nº 5.031.274, asignada a Eutebach, se divulga un ejemplo de un enclavamiento de puerta de suelo. El enclavamiento de puerta de suelo incluye un alojamiento que está situado dentro de un transportador, un brazo pivotante, un pasador de enclavamiento y unos medios de bloqueo. El brazo pivotante está conectado pivotablemente al alojamiento y el pasador de enclavamiento está fijado al fondo del brazo pivotante. En una posición enclavada, el brazo pivotante es pivotado hacia el suelo de tal manera que el pasador de enclavamiento se extiende en una abertura de recepción practicada en el suelo. En una posición desenclavada, el brazo pivotante es pivotado hacia la puerta y al interior del alojamiento de tal manera que el pasador de enclavamiento se desacople de la abertura de recepción. Los medios de bloqueo proveen una interfaz de control y están configurados de tal manera que se roten para apoyarse contra el brazo pivotante con el fin de pivotar y retener al brazo pivotante en la posición enclavada.

En todavía un ejemplo adicional, la patente de EE.UU. 5.426.892, asignada a Haab et al., divulga un mecanismo de anclaje para una puerta giratoria que incluye una parte de bisagra en forma de cuña que se mueve a lo largo de un eje vertical entre una posición enclavada y una posición desenclavada. Un borde vertical de la parte de bisagra incluye una sección de guiado que establece una interfaz con una acanaladura de guiado incluida en una parte de guiado que está montada a una tira de bastidor de fondo de la puerta giratoria. Una superficie inclinada de la parte de bisagra establece una interfaz con una superficie inclinada de una parte descendente que se mueve a lo largo de un eje horizontal. Cuando la parte descendente se mueve a lo largo del eje horizontal, la interfaz entre las superficies inclinadas causa que la parte de bisagra se mueva verticalmente. Un saliente de bisagra se extiende desde una superficie del fondo de la parte de bisagra y, cuando el mecanismo de anclaje está en una posición enclavada, el saliente de bisagra se aloja en un casquillo rotatorio que está anclado en el suelo. El casquillo podría estar configurado también para ofrecer resistencia al giro de la puerta y cierra automáticamente la puerta giratoria.

Un inconveniente significativo de los mecanismos de anclaje descritos anteriormente estriba en que el enclavamiento de puerta y el conjunto de casquillo rotatorio deben anclarse en una cavidad practicada en el suelo. Como resultado, si el enclavamiento de puerta o el casquillo no se instalan durante la construcción inicial del suelo (lo cual requiere una planificación previa en cuanto a la ubicación del conjunto de paneles de pared), se requiere que un instalador realice la tarea difícil y que consume tiempo de crear una cavidad suficiente en el suelo, muchas veces

en hormigón, e instalar el conjunto en esa cavidad. Otro inconveniente de los sistemas actuales es que los conjuntos de cerrador de puerta son grandes y no agradables a la vista y están expuestos o bien como un conjunto montado del suelo o un conjunto de colector.

De acuerdo con lo anterior, existe una necesidad para un anclaje de suelo que no requiera la instalación de un casquillo rotatorio o de un mecanismo cerrador de puerta en una cavidad practicada en el suelo. Hay también una necesidad de un cerrador de puerta que se pueda instalar en un panel de puerta.

Sumario de la invención

5

10

15

20

25

30

35

40

45

50

55

La presente invención alivia en gran manera los inconvenientes de los sistemas conocidos de enclavamiento de puerta mediante la provisión de un anclaje de suelo y un método de uso relacionado con el mismo, en el que uno o más conjuntos de paneles de puerta se proveen de un anclaje de suelo que incluye un husillo retráctil. Adicionalmente, se provee un anclaje para suelo que incluye también un cerrador de puerta.

En una realización, un anclaje de suelo retráctil para un sistema de paneles de pared incluye un miembro de base, un conjunto cerrador de puerta, un husillo y un dispositivo de accionamiento lineal. El dispositivo de accionamiento lineal acopla móvilmente el miembro de base al husillo de tal manera que el husillo se pueda trasladar verticalmente entre una posición retirada y una posición extendida. El husillo está acoplado a rotación al conjunto cerrador de puerta.

En otra realización, un anclaje del de suelo retráctil para un sistema de paneles de pared incluye un miembro de base, un conjunto cerrador de puerta, un husillo y un dispositivo de accionamiento lineal que acopla de forma móvil el miembro de base al conjunto cerrador de puerta. El husillo está acoplado a rotación al conjunto cerrador de puerta. El dispositivo de accionamiento lineal incluye una articulación con acción de leva de entrada rotatoria que está acoplada pivotablemente al miembro de base y acoplada de forma trasladable al conjunto cerrador de puerta. La articulación con acción de leva de entrada rotatoria está destinada a rotar entre una primera posición y una segunda posición. El conjunto cerrador de puerta está en una posición retirada cuando la articulación con acción de leva de entrada está en la primera posición, y el conjunto cerrador de puerta está en una posición extendida cuando la articulación con acción de levar de entrada está en la segunda posición.

Se ha provisto un sistema de paneles de pared que incluye una vía, como mínimo un conjunto deslizante de panel de pared y como mínimo un conjunto pivotante de panel de pared. El conjunto deslizante de panel de pared está acoplado de forma trasladable a la vía, e incluye un raíl superior, un raíl inferior y un panel de pared acoplado fijamente a cada uno del raíl superior y del raíl inferior e interpuesto entre los mismos. El conjunto pivotante de panel de pared está acoplado trasladablemente a la vía, e incluye un raíl deslizable., un raíl pivotable, un panel de pared, un raíl inferior, un conjunto cerrador de puerta, un husillo y un dispositivo de accionamiento lineal. El raíl pivotante está acoplado pivotablemente al raíl deslizable, y el panel de pared está acoplado fijamente al raíl pivotante. El raíl inferior está acoplado a un segundo lado del panel de pared opuesto al raíl pivotante. El anclaje de suelo retráctil está acoplado al raíl inferior e incluye un miembro de base, un conjunto cerrador de puerta, un husillo y un dispositivo de accionamiento lineal. El husillo está acoplado a rotación al conjunto cerrador de puerta. El dispositivo de accionamiento lineal acopla de forma móvil el miembro de base al husillo y está destinado a trasladar al husillo con respecto al miembro de base a lo largo de un eje vertical entre una posición retirada y una posición extendida. El husillo está más espaciado del miembro de base en la posición extendida que en la posición retirada.

El sistema de paneles de pared incluye además una parte pivotante acoplada pivotablemente al conjunto deslizante de panel de pared, y un enclavamiento de pivote. El enclavamiento de pivote incluye un primer miembro de enclavamiento, un segundo miembro de enclavamiento y un mecanismo de acoplamiento que se extiende entre los miembros de enclavamiento primero y segundo. El primer miembro de enclavamiento se puede mover entre una posición extendida, en la que el primer miembro de enclavamiento se extiende entre la parte deslizante y la vía e impide el movimiento relativo entre los mismos, y una posición retirada en la que el primer miembro de enclavamiento está posicionado para permitir el movimiento relativo entre la parte deslizante y la vía. El segundo miembro de enclavamiento se extiende entre la parte deslizante y la parte pivotante e impide el movimiento relativo entre las mismas, y una parte retirada en la que el segundo miembro de enclavamiento está posicionado para permitir el movimiento relativo entre la parte deslizante y la parte pivotante. El mecanismo de acoplamiento acopla los miembros primero y segundo de enclavamiento de tal manera que, cuando el primer miembro de enclavamiento esté en la posición extendida, el segundo miembro de enclavamiento esté en la posición retirada, y cuando el primer miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el segundo miembro de enclavamiento esté en la posición retirada, el s

Estas y otras características y ventajas de la presente invención se apreciarán a partir de una revisión de la siguiente descripción detallada de la misma, junto con las figuras adjuntas en las que los números de referencia similares se refieren a partes similares a lo largo de todas las figuras.

Breve descripción de los dibujos

La figura 1 es una vista lateral de una realización ejemplar de un sistema de paneles de pared que incorpora un anclaje de suelo en una posición retirada según la presente invención;

La figura 2 es otra vista lateral del sistema de paneles de pared de la figura 1 con el anclaje de suelo en una posición extendida:

- 5 La figura 3 es una vista lateral de una parte de la puerta giratoria que incluye el anclaje de suelo en una posición retirada
 - La figura 4 es otra vista lateral de una parte de la puerta giratoria que incluye el anclaje de suelo en una posición extendida;
 - La figura 5 es una vista lateral en corte transversal parcial de un anclaje de suelo en una posición retirada;
- La figura 6 es una vista desde un extremo en corte transversal tomado a lo largo de la línea A-A del anclaje de suelo de la figura 5;
 - La figura 7 es una vista lateral parcial en corte transversal de un anclaje de suelo en una posición extendida;
 - La figura 8 es una vista lateral esquemática del anclaje de suelo de la figura 5 que ilustra las fuerzas que actúan sobre los componentes del mecanismo;
- La figura 9 es otra vista lateral esquemática del anclaje de suelo de la figura 7 que ilustra las fuerzas que actúan sobre los componentes del mecanismo;
 - La figura 10 es una vista en corte transversal de una parte de otra realización del anclaje de suelo en una posición retirada; y
- La figura 11 es otra vista en corte transversal de la parte del anclaje de suelo de la figura 10 en una posición extendida.
 - La figura 12 es una vista en corte transversal de una realización del anclaje de suelo según la presente invención.
 - La figura 13 es una vista lateral esquemática de una realización de un accesorio del suelo usado de acuerdo con realizaciones de la presente invención.
- La figura 14 es una vista de frente esquemática de una realización de un accesorio de suelo utilizado según realizaciones de la presente invención.
 - La figura 15 es una vista desde abajo de una realización de un accesorio de suelo usado de acuerdo con realizaciones de la presente invención.
 - La figura 16 es una vista desde arriba de una realización de un accesorio de suelo usado según realizaciones de la presente invención.
- La figura 17 es una vista en corte transversal de una realización de un accesorio de suelo usado de acuerdo con realizaciones de la presente invención.
 - Las figuras 18 A-C son vistas esquemáticas de una realización de una placa de cubierta exterior usada de acuerdo con realizaciones de la presente invención.
- Las figuras 19 A-C son vistas esquemáticas de una realización de una placa de cubierta interior usada de acuerdo con realizaciones de la presente invención.
 - La figura 20 es una vista en perspectiva de una realización de un anclaje de suelo según la presente invención.
 - La figura 21 es una vista en perspectiva de una realización de un anclaje de suelo según la presente invención.
 - La figura 22 es una vista de una realización de un sistema de paneles de pared según la presente invención en la que un panel está " girando" abierto.
- 40 La figura 23 es una vista de una realización de un sistema de paneles de pared según la presente invención en la que un panel está girando abierto.

Descripción detallada de la invención

45

En los párrafos siguientes, se describirá la presente invención con detalle, a título de ejemplo, con referencia a los dibujos adjuntos. A lo largo de esta descripción, las realizaciones preferidas y los ejemplos mostrados deberían considerarse como ejemplares, más que como limitaciones en la presente invención. Tal como se usa la presente memoria, el término "presente invención" se refiere a una cualquiera de las realizaciones de la invención descritas

en la presente memoria, y a cualquiera de sus equivalentes. Además la referencia a diversos aspectos de la invención a lo largo de este documento no significa que todas las realizaciones o métodos reivindicados deban incluir los aspectos referenciados.

Refiriéndose a las figuras 1 y 2, se describe un sistema 10 de paneles de pared en el que se utiliza un anclaje 11 de suelo de la presente invención. En general, el anclaje 11 de suelo de puerta permite que un conjunto pivotante 15 de paneles de pared del sistema 10 de paneles de pared se convierta entre una configuración deslizante/de rodadura y una configuración pivotante. En particular, el anclaje 11 de suelo incluye un husillo retráctil 17 que está configurado para acoplarse a una abertura practicada en el suelo, o en un umbral fijado al suelo, para proveer un mecanismo pivotante inferior. El husillo 17 está acoplado al conjunto 44 de cerrador de puerta que está incluido también en el anclaje 11 de suelo de tal manera que el conjunto pivotante 15 de paneles de pared es de auto-cierre. A diferencia de los anclajes de suelo anteriores, el cerrador 19 de puerta está incluido en el anclaje 11 de suelo en lugar de en una cavidad creada en el suelo. Como resultado, la instalación se simplifica enormemente porque no requiere crear una cavidad adecuadamente alineada y situada en el suelo que sea suficientemente amplia para alojar a un cerrador de puerta.

El sistema 10 de paneles de pared incluye una pluralidad de conjuntos separados de paneles de pared, que incluyen unos conjuntos deslizantes 14 de paneles de pared y un conjunto pivotante 15 de paneles de pared, suspendido de la vía 16 por una pluralidad de carritos 18. Cada conjunto deslizante 14 de paneles de pared está construido generalmente de un panel 20 de pared, un raíl superior 22, y un raíl inferior 24. El panel 20 de pared está construido de tal manera que forme un tabique cuando está suspendido por la vía 16. El panel 20 de pared se podría construir de cualquier material adecuado para proveer una pared de tabique móvil, tal como vidrio, madera, materiales compuestos o cualquier combinación de los mismos. En una realización preferida, el panel 20 de pared se construye de vidrio templado para que proporcione una barrera física transparente.

El raíl superior 22 y el panel 20 de pared están acoplados mecánicamente para que el panel 20 de pared pueda suspenderse del raíl superior 22. El raíl superior 22 incluye un canal que recibe a un borde superior del panel 20 de pared. El raíl superior 22 y el panel 20 de pared podrían acoplarse por fijación mecánica, unión u otros elementos de sujeción que sean suficientes para soportar el peso del panel de pared y cualquier hardware adicional montado sobre el panel 20 de pared.

25

30

45

50

55

Similarmente, el raíl inferior 24 está también acoplado mecánicamente al panel 20 de pared para que el panel 20 de pared y el raíl inferior 24 puedan estar suspendidos de la vía 16. El raíl inferior 24 incluye un canal que recibe a un borde inferior del panel 20 de pared y las partes se acoplan por fijación mecánica o unión.

Los raíles superior e inferior 22 y 24 se podrían construir de cualquier material rígido tal como acero, aluminio y material compuesto. Adicionalmente, los raíles superior e inferior 22 y 24 podrían proveerse en cualquier acabado deseado. Por ejemplo, los raíles se podrían proveer en un acabado satinado, bronce oscuro, acero inoxidable, etcétera.

El conjunto pivotante 15 de paneles de pared difiere de los conjuntos 14 de paneles de pared en que incluye un conjunto de raíl superior que está construido del raíl 26 de pivote y raíl deslizante 28. El raíl 26 de pivote incluye un canal que recibe un borde superior del panel 30 de pared. El raíl 26 de pivote y el panel 30 de pared se podrían acoplar por fijación mecánica, unión u otros elementos de sujeción. Como se muestra en la figura 1, el conjunto pivotante 15 de paneles de pared está configurado para que se deslice o ruede a lo largo de la vía 16. En esa configuración deslizante, el raíl 26 de pivote está suspendido del raíl deslizante 28 por el conjunto 32 de pivote adyacente a un primer extremo del raíl 26 de pivote y del enclavamiento 34 de pivote adyacente a un segundo extremo del raíl 26 de pivote.

El conjunto 32 de pivote está configurado para permitir que el raíl 26 de pivote rote con respecto al raíl deslizante 28 alrededor de un eje geométrico vertical definido por un eje vertical 36. El eje 36 se extiende desde una parte superior del raíl 26 de pivote al raíl deslizante 28. Unos cojinetes 38 están interpuestos entre el eje 36 y el raíl 26 de pivote para que el raíl 26 de pivote rote alrededor del eje 36. El eje 36 y los cojinetes 38 se seleccionan preferiblemente para que tengan suficiente resistencia mecánica y rigidez para suspender a la totalidad del conjunto 15 de paneles de pared.

El enclavamiento 34 de pivote provee un mecanismo para acoplar selectivamente el raíl 26 de pivote con el raíl deslizante 28 y para acoplar selectivamente el raíl deslizante 28 con la vía 16. En la configuración deslizante, mostrada en la figura 1, el enclavamiento 34 de pivote está configurado para impedir la rotación relativa entre el raíl 26 de pivote y el raíl deslizante 28 y para permitir la translación relativa entre el raíl deslizante 28 y la vía 16. Recíprocamente, en la configuración pivotante, mostrada en la figura 2, el enclavamiento 34 de pivote está configurado para permitir la rotación relativa entre el raíl 26 de pivote y el raíl deslizante 28 y para impedir la translación relativa entre el raíl deslizante 28 y la vía 16.

En una realización, el anclaje 11 de suelo está integrado en el raíl inferior 29 del conjunto 15 de paneles de pared y encerrado por una cubierta retirable 42. En particular, se ha incluido una cavidad en una parte de extremo inferior del raíl 29, que está dimensionada para recibir a los componentes del anclaje 11. El anclaje 11 de suelo está encerrado

por una placa de cubierta interior 42 y una placa de cubierta exterior 47, aunque debe entenderse que los términos "interior" y "exterior" se usan de ahora en adelante en la presente memoria para identificar las placas, y no necesariamente si una o la otra deben mirar un área "interior" o un área "exterior" o de exteriores. Las placas de cubierta interior 42 se pueden ver en los conjuntos 15 de paneles de pared que están "girando" abiertas en la figura 22, y las placas de cubierta exterior 47 se pueden ver en los conjuntos 15 de paneles de pared girando abiertas en la Figura 23. La placa de cubierta exterior 47 se muestra también con detalle en las figuras 18 A-C y 21. Como se muestra en las figuras 3, 4, 19 A, 20 y 22, la placa de cubierta interior 42 incluye una abertura 43 para permitir el acceso al costado del dispositivo cerrador, que comprende una interfaz 55 de control de entrada acoplada a una articulación con acción de leva 54 del anclaje 11. El usuario podría acceder a la interfaz 55 de control de entrada a través de la abertura 43 para activar el anclaje 11, y en particular, para retirar o extender selectivamente el husillo 17, como se describe más adelante con mayor detalle.

5

10

15

20

25

30

35

40

45

50

Por ejemplo, como se ha mostrado en las figuras 3 y 4, un usuario podría utilizar una herramienta 45 que esté destinada para acoplar la interfaz 55 de control de entrada y rotar la articulación con acción de leva 54 con el fin de retirar o extender el husillo 17. En una realización preferida, la herramienta es una llave inglesa, que establece una interfaz con un mecanismo de ajuste que provee un ajuste del giro de la puerta, por ejemplo en un intervalo previsto de más o menos 3 grados o mayor. Este ajuste alinea el borde de puerta vertical del lado de la empuñadura con el panel de cristal adyacente durante el modo de puerta de pivote.

La vía 16 define el camino de desplazamiento deslizante/ rodante de los conjuntos 14 de paneles de pared y del conjunto pivotante 15 de paneles de pared del sistema 10 de paneles de pared. La vía 16 es generalmente un miembro tubular alargado que incluye un canal que se extiende desde el interior hasta exterior del miembro tubular. Una parte de rodillo de cada carrito 18 está configurada para rodar libremente dentro del interior de la vía 16.

Cada carrito 18 incluye un eje vertical, tal como un perno colgante, que se extiende hacia abajo desde la parte de rodillo del carrito 18 y está acoplado o bien al raíl superior 22 del conjunto 14 de paneles de pared o bien al raíl deslizante 28 de conjunto pivotante 15 de paneles de pared. El perno colgante está configurado para rotar con respecto al resto del carrito 18, proporcionando de ese modo una interfaz de rotación entre el conjunto 14 de paneles de pared, o el conjunto pivotante 15 de paneles de pared, y el carrito 18.

En la realización ilustrada, el sistema 10 de paneles de pared emplea una pluralidad de conjuntos 14 de paneles de pared y un solo conjunto pivotante 15 de paneles de pared, cada uno de los cuales está soportado por dos carritos 18 acoplados con la vía 16. Cada conjunto 14, 15 de paneles de pared está separado de los otros de tal manera que cada uno se pueda trasladar por separado a lo largo de la vía 16 y apilarse si se desea.

Refiriéndose a las figuras 5 y 6, se muestra el anclaje 11 de suelo con el husillo 17 en la posición retirada. El anclaje 11 de suelo generalmente incluye una base 46, un conjunto 44 cerrador de puerta, un husillo 17 y un dispositivo de accionamiento lineal 48. El dispositivo de accionamiento lineal 48 se extiende generalmente entre la base 46 y el husillo 47 y está configurado para trasladar selectivamente al husillo 17 entre la posición retirada y la posición extendida.

En la presente realización, la base 46 es una parte del raíl inferior 29 que provee una estructura de montaje para una parte del dispositivo de accionamiento lineal 48 que está estacionario con respecto al raíl inferior 29 y panel de pared 30. En la presente realización, la base 46 es una placa que está alojada en una cavidad definida por el raíl inferior 29 generalmente por debajo del conjunto 32 de pivote. La base 46 provee una estructura de soporte para montar articulaciones que están incluidas en el dispositivo de accionamiento lineal 48 así como unos miembros de guiado 52 que se usan para definir la trayectoria de desplazamiento del husillo 17. Hay que hacer notar que la base 46 podría alternativamente ser un componente separado que esté acoplado fijamente al raíl inferior 29 usando cualquier método de sujeción, tal como por ejemplo, elementos de sujeción roscados, remaches o soldadura.

El dispositivo de accionamiento lineal 48 acopla la base 46 y el husillo 17 de tal manera que el husillo 17 se pueda trasladar selectivamente entre la posición retirada y la posición extendida. En la presente realización, el dispositivo de accionamiento lineal 48 está construido por una pluralidad de articulaciones que interactúan para trasladar el husillo 17 a lo largo de un eje geométrico vertical. En particular, el dispositivo de accionamiento lineal 48 incluye una articulación con acción de leva 54 de entrada que está acoplada pivotablemente en un primer extremo a la base 46 y deslizable y pivotablemente acoplada en un segundo extremo al miembro de traslación 60. La articulación con acción de leva 54 de entrada incluye también una interfaz 55 de control de entrada que permite que el usuario active manualmente al dispositivo de accionamiento lineal 48 colocando de ese modo al husillo en la posición extendida o retirada. El dispositivo de accionamiento lineal 48 incluye también una segunda articulación 58 con acción de leva que también está acoplada pivotablemente en un primer extremo a la base 46 y acoplada deslizable y pivotablemente en un segundo extremo al miembro de traslación 60.

El miembro de traslación 60 está destinado a trasladarse a lo largo de un eje geométrico vertical entre una primera posición, mostrada en las figuras 5 y 6, que corresponde con una posición retirada del husillo 17, y una segunda posición, mostrada en la figura 7, que corresponde a una posición extendida del husillos 17. El miembro de traslación 60 está destinado a trasladarse sobre los miembros de guiado 52 que definen la dirección de la trayectoria de desplazamiento del miembro de traslación 60. Como una alternativa, y como se muestra en las figuras 5-7, los

miembros de guiado 52 podrían ser unos tornillos sin cabeza que incluyesen partes de extremo roscadas que se alojan en los agujeros roscados practicados en la base 46. Las partes no roscadas de los miembros 52 de guiado se extienden a través de las aberturas incluidas en el miembro de traslación 60. Unos casquillos 66 o unos cojinetes lineales se podrían proveer en las aberturas para reducir la fricción durante el movimiento relativo entre el miembro de traslación 60 y los miembros de guiado 52. El miembro de traslación 60 incluye también una pluralidad de ranuras 62 cada una de las cuales recibe una parte de extremo de una respectiva articulación con acción de leva 54, 58.

5

10

15

20

25

Cada articulación con acción de leva incluye un par de brazos 64 que se extienden entre la base 46 y el miembro de traslación 60. El primer extremo de cada brazo está acoplado pívotablemente a la base 46, por ejemplo mediante un tornillo sin cabeza 64, una parte del cual está recibida de forma roscable por la base 46. En la presente realización, la ubicación de las conexiones de pivotamiento de las articulaciones con acción de leva están alineadas verticalmente sobre la base 46 de tal manera que una línea que se extiende a través de estas ubicaciones es perpendicular a la dirección de desplazamiento del miembro de traslación 60.

Cada una de las articulaciones con acción de leva 54 y 58 está acoplada también al miembro de traslación 60. El miembro de traslación 60 incluye una pluralidad de ranuras 62 cada una de las cuales recibe a un pasador 68 que se extiende entre los segundos extremos de los brazos 64 de cada articulación con acción de leva 54, 58. Los pasadores 68 se extienden a través de las ranuras 62 y están destinados a trasladarse dentro de las ranuras 62 en respuesta a la rotación de la articulación 54 con acción de leva de entrada, es decir, los pasadores 68 se acoplan de forma trasladable al miembro de traslación 60. En la presente realización, se han provisto unos rodillos 70 sobre los pasadores 68 para reducir la fricción durante la traslación de los pasadores 68 con respecto al miembro de traslación 60. Hay que hacer notar que los rodillos 70 podrían ser cualquier dispositivo capaz de reducir la fricción entre los pasadores 68 y el miembro de traslación 60, tal como casquillos autolubricantes, o cojinetes.

Un miembro de acoplamiento 72 se extiende entre las articulaciones 54 y 58 con acción de leva y asegura que la rotación de la articulación 54 de entrada con acción de leva se transmita directamente a la rotación de la segunda articulación con acción de leva 58. En la presente realización, el miembro de acoplamiento 72 es una articulación alargada que se extiende entre los segundos extremos de las articulaciones con acción de leva 54 y 58. Cada extremo del miembro de acoplamiento 72 incluye una abertura 74 que recibe a una parte de un pasador respectivo 68 para formar una conexión pivotable entre los mismos. El miembro de acoplamiento 72 se recibe en una parte lateralmente rebajada del miembro de traslación 60 para que se pueda minimizar la dimensión lateral del anclaje 11.

Se han provisto unos miembros de carga elástica 76 para urgir al miembro de traslación 60 hacia la base 46. En la presente realización, los miembros de carga elástica 76 se acoplan a cada miembro de guiado 52 y son unos resortes helicoidales que están dispuestos coaxialmente sobre los miembros de guiado 52 e interpuestos entre una cabeza de cada miembro de guiado 52 y un miembro de traslación 60. Los resortes se seleccionan y posicionan de tal manera que se encuentren a compresión entre la cabeza y el miembro de traslación 60 y como resultado, apliquen una fuerza sobre el miembro de traslación 60 en la dirección de la base 46, es decir, la fuerza ejercida por el miembro de carga elástica sobre el miembro de traslación 60 urge al miembro de traslación 60 hacia la base 46. Hay que hacer notar que se podría utilizar cualquier miembro de carga elástica, tal como los resortes helicoidales, arandelas Belleville, y/o imanes. Hay que hacer notar también que los miembros de carga elástica 76 se podrían posicionar entre cualquier componente en el anclaje 11 y se podrían configurar para que trabajasen a tracción más que a compresión si se desea.

El husillo 17 se acopla al miembro de traslación 60 de tal manera que se traslade con el miembro de traslación 60 en respuesta a la actuación del dispositivo de accionamiento lineal 48. El husillo 17 proporciona un enlace entre el anclaje 11 del conjunto pivotante 15 de paneles de pared y una superficie de suelo por trabajo del conjunto 10 de paneles de pared. El husillo 17 incluye una parte de cuerpo 78 y una parte de pestaña 80. La parte de cuerpo 78 está conformada y dimensionada para insertarse en una abertura practicada en la superficie que está por debajo del conjunto pivotante 15 de paneles de pared cuando está montado en el sistema 10 de paneles de pared. La parte 80 de pestaña está dispuesta en un extremo superior de la parte de cuerpo 78 y tiene una dimensión lateral exterior que es mayor que la correspondiente dimensión exterior lateral de la parte de cuerpo 78. En la presente realización, la parte de cuerpo 78 tiene una forma de sección transversal generalmente rectangular y la parte de pestaña 80 tiene generalmente forma de disco.

El anclaje 11 de suelo de puerta incluye también un cerrador 44 de puerta de tal manera que el panel pivotante 15 de pared pueda ser de auto- cierre cuando está en una configuración pivotante. El cerrador 44 de puerta está acoplado al miembro de traslación 60 de tal manera que el cerrador 44 de puerta se traslade con el miembro de traslación 60 y el husillo 17. El husillo 17 se extiende desde el cerrador 44 de puerta y está acoplado mecánicamente al mecanismo interno del cerrador 44 de puerta de tal manera que esté cargado elásticamente para rotar a una posición predeterminada. Por ejemplo, el cerrador 44 de puerta se podría configurar de tal manera que el husillo esté cargado elásticamente para rotar hasta una posición que corresponda al conjunto pivotante 15 de paneles de pared en una posición cerrada. Sin embargo, hay que hacer notar que el cerrador 44 de puerta y el husillo 17 podrían orientarse de tal manera que la posición neutral corresponda al conjunto 15 de paneles de puerta en cualquier posición deseada.

El cerrador 44 de puerta podría estar provisto también de unos mandos que permitan a un usuario ajustar la posición del husillo 17, la velocidad del cierre y la cantidad de fuerza requerida para abrir y cerrar el conjunto 15 de paneles de pared cuando esté en una configuración pivotante. Por ejemplo, se provee un mando 82 de ajuste de centrado de puerta en un costado del cerrador 44 de puerta que permite un pequeño ajuste de la posición del husillo 17 en un plano horizontal. El mando 82 de ajuste se podría usar también de tal manera que el husillo 17 pueda ser alineado fácilmente en dirección vertical debajo del conjunto 32 de pivote durante el armado del sistema 10 de paneles de pared. El cerrador 44 de puerta podría estar también provisto de una válvula 82 de ajuste y de un mando 83 que se pueden usar por un usuario para ajustar la velocidad de auto- cierre del panel 15, las fuerzas necesarias para abrir y cerrar pivotablemente el panel 15 de pared y/o la alineación del husillo 17.

10 Refiriéndose las figuras 12 a 17, el accesorio 88 de puerta sirve para sujetar el anclaje 11 al suelo y permitir el pivotamiento del conjunto 15 de paneles de pared. El accesorio 88 de suelo se puede usar también para ajustar la alineación vertical del conjunto de paneles. El accesorio 88 de suelo comprende un alojamiento 90 y un receptor 92 de husillo y es ajustable para recibir al husillo 17 del cerrador 44 de puerta. El alojamiento 90 comprende además un saliente de recepción 102, que recibe al husillo 17 cuando el alojamiento 90 está encajado sobre el usillo 17 y 15 descendido en el interior del primer agujero 94 en el suelo. El alojamiento 90 preferiblemente tiene una superficie de fondo dentada. Los dientes 104 facilitan el movimiento del accesorio 88 de suelo hacia atrás y hacia adelante cuando el conjunto 15 de paneles de pared pivota. Los dientes 54 sirven además para sujetar el peso del conjunto de paneles de pared y proveer la fricción necesaria para sujetar en posición al conjunto de paneles de pared. Como se puede ver mejor en la figura 17, el accesorio 88 de suelo tiene una placa de cubierta superior 98 y un 20 amortiguador 100 para mantener en posición a la placa de cubierta. Después que el conjunto de panel de paredes se ha estacionado en posición en una configuración cerrada, la placa de cubierta 98 impide que los tacones del conjunto de paneles caigan en el interior del alojamiento 90.

El accesorio 88 de suelo aporta ventajas significativas en el sentido de que es bastante pequeño de tamaño y muy fácil de instalar comparado con los actuales accesorios de suelo. Para acomodar el accesorio 88 de suelo, el primer agujero 94 necesita tener solamente 57 mm (2 ¼ pulgadas) de diámetro y debería tener como mínimo 32 mm (1 ¼ pulgadas) de profundidad. Se han practicado dos agujeros más pequeños en el suelo para recibir los pernos autorroscantes 96, que sirven para sujetar hacia abajo al sistema.

25

30

35

40

45

50

55

60

Cada conjunto 14 de paneles de pared incluye como mínimo un conjunto 12 de enclavamiento de panel para que pueda enclavarse en posición cuando está colocado en su posición cerrada predeterminada. Refiriéndose a la figura 5, el conjunto 12 de enclavamiento de panel está situado dentro de un rebajo cortado 52 provisto en el borde del panel 20 de pared. La localización del conjunto 12 de enclavamiento de panel dentro del rebajo cortado 52 permite que se espacie a la máxima distancia del próximo punto de conexión adyacente hasta un panel adyacente o a un punto de articulación al mismo tiempo que permite que el conjunto 12 de enclavamiento de panel se oculte dentro del conjunto 14 de paneles de pared. La ocultación del conjunto 12 de enclavamiento de panel impide la manipulación indebida, permite que el espesor del conjunto 14 de paneles de pared se minimice y proporciona un atractivo estético mediante la reducción del área de superficie del panel de pared dedicado al conjunto 12 de enclavamiento de panel.

Como se ha descrito brevemente antes, el conjunto pivotante 15 de paneles de pared podría convertirse selectivamente entre una configuración deslizante y una configuración pivotante. En la configuración deslizante, el anclaje 11 está en una configuración retirada y el enclavamiento 34 de pivote está configurado de tal manera que el raíl 26 de pivote esté enclavado con el raíl de deslizamiento 28 y el raíl de deslizamiento 28 sea libre para trasladarse a lo largo de la vía 16. Cuando se desee convertir un conjunto pivotante 15 de paneles de pared en una configuración pivotante, primero el conjunto 15 de paneles se traslada a una posición de pivote predeterminada a lo largo de la vía 16. La posición de pivote predeterminada corresponde a una ubicación en la que la vía 16 está configurada para acoplarse fijamente al raíl deslizante 28 mediante el enclavamiento 34 de pivote. Adicionalmente, la ubicación de pivote predeterminada corresponde también a una ubicación en la que el husillo 17 está situado sobre - y alineado con - una disposición receptora, tal como una abertura, un tapón de suelo o una placa base, en la superficie por debajo del sistema 10 de paneles de pared. Como se ha mostrado en las figuras 1 y 2, existe una sola posición de pivote predeterminada que corresponda con la ubicación donde una parte del enclavamiento 34 de pivote esté acoplada con la vía 16 y donde una abertura en el suelo por debajo del sistema 10 de paneles de pared esté alineada con el husillo, pero hay que hacer notar que podría existir cualquier número de posiciones de pivote predeterminadas.

A continuación, el anclaje 11 se convierte a la posición extendida para que el husillo 17 sea recibido por el dispositivo receptor. La conversión del anclaje 11 a la posición extendida requiere que la articulación 15 de acción de leva de entrada sea rotada desde una primera posición, mostrada en la figura 4, hasta una segunda posición mostrada en la figura 6. La articulación 54 con acción de leva de entrada preferiblemente se rota por un usuario utilizando una herramienta que esté configurada para acoplarse con la interfaz 55 de control de entrada. La interfaz 55 de control de entrada podría ser cualquier dispositivo que sea capaz de transmitir un par de torsión desde una herramienta a la articulación 54 con acción de leva de entrada. Por ejemplo, la interfaz 55 de control de entrada podría ser un perno poligonal o de forma de estrella que se adapte para que pueda girarse mediante una herramienta que incluya una empuñadura y un receptáculo que reciba al perno. En otros ejemplos, la interfaz 55 de

control de entrada podría ser un receptáculo que esté configurado para recibir una llave, tal como una llave Allen o una llave Torx.

El usuario rota la articulación 54 con acción de leva de entrada desde la primera posición hasta la segunda posición. La base 46 y la articulación 54 con acción de leva de entrada están configuradas de tal manera que la primera posición de la articulación 54 con acción de leva de entrada esté en un primer lado de una línea vertical que pase a través de la conexión de pivote entre la base 46 y la articulación 54 con acción de leva de entrada y la segunda posición de la articulación 54 con acción de leva de entrada esté en el lado opuesto de la línea vertical. Como resultado, la rotación de la articulación 54 con acción de leva de entrada entre las dos posiciones requiere que se rote pasada la línea de centros vertical. Hay que hacer notar también que la primera posición se rota lejos de la línea central por una cantidad mayor que la segunda posición. Como resultado, el miembro de traslación 60 está dispuesto más lejos de la base 46 cuando la articulación 54 con acción de leva de entrada esté dispuesta en la segunda posición que cuando la articulación 54 con acción de leva de entrada esté dispuesta en la primera posición.

10

15

30

35

40

45

50

55

Además, el miembro de carga elástica 76 ayuda al enclavamiento de la articulación 54 con acción de leva de entrada en la primera posición o en la segunda posición. Por ejemplo, como se muestra en la figura 8, el miembro de carga elástica 76 está configurado para urgir al miembro de traslación 60 hacia la base 46, mostrado con la flecha B, cuando la articulación 54 con acción de leva de entrada se rota en la dirección de la primera posición desde la línea de centros, la fuerza ejercida por el miembro de carga elástica 76 tiende a urgir a la articulación 54 con acción de leva de entrada a rotar más allá en la dirección de la primera posición, como se muestra con la flecha C..

Recíprocamente, como se muestra en la figura 9, cuando la articulación 54 con acción de leva de entrada se rota en la dirección de la segunda posición desde la línea de centros, la fuerza ejercida por el miembro de carga elástica 76, mostrado por la flecha B, tiende a urgir a la articulación 54 con acción de leva de entrada a rotar más allá en la dirección de la segunda posición, como se muestra con la flecha D. En la presente realización, la base 46 incluye el primer resalte 84 que está orientado y posicionado de tal manera que limita la rotación de la articulación 54 con acción de leva de entrada en una dirección en la primera posición, y un segundo resalte 86 que está orientado y posicionado de tal manera que limite la rotación de la articulación 54 con acción de leva de entrada en la otra dirección en la segunda posición. Como resultado, el dispositivo de accionamiento lineal 48 incluye fiadores en las posiciones primera y segunda.

El anclaje 11 se podría configurar también de tal manera que soporte una parte del peso del conjunto 15 de paneles de pared. En dicha realización, la parte 80 de pestaña o la parte 78 de cuerpo del husillo 17 se podrían configurar para aplicar una fuerza sobre el suelo. Esa fuerza se transmite entonces a través del dispositivo de accionamiento lineal 48 para soportar al panel de pared. Adicionalmente, esa fuerza ayuda a mantener en la segunda posición a la articulación 54 con acción de leva de entrada.

Finalmente, después que el anclaje 11 está en la configuración extendida y el husillo 17 se ha alojado en una abertura practicada en el suelo, el enclavamiento 34 de pivote se reconfigura. En una realización, se prefiere que el anclaje 11 se convierta a la posición extendida de tal manera que el husillo 17 sea alojado en la apertura antes de reconfigurar el enclavamiento 34 de pivote a la configuración pivotante, de tal manera que la parte pivotante del conjunto 15 de paneles de pared se ancle al suelo cuando el panel de pared rota entre una posición abierta y una posición cerrada. El enclavamiento 34 de pivote se configura de tal manera que el raíl de deslizamiento 28 se acopla a la vía 16 para impedir la traslación relativa entre el raíl de deslizamiento 28 y la vía 16 y de esta manera que el raíl 26 de pivote sea libre de pivotar relativamente al raíl de deslizamiento 28. Una realización de dicho sistema y de su funcionamiento se describe en la solicitud de patente de EE.UU. co-pendiente de publicación con número de serie 12/ 056.093, titulada "Sistema de paneles de pared incluyendo un enclavamiento de pivote y un método".

La longitud y la ubicación de las ranuras incluidas en el miembro de traslación se podrían seleccionar para limitar el recorrido del dispositivo de accionamiento lineal. Por ejemplo, la longitud y la posición de las ranuras 62 se podrían usar para limitar la rotación de las articulaciones 58 con acción de leva de entrada. En particular las posiciones totalmente retiradas y totalmente extendidas del husillo 17 se definen por el recorrido del dispositivo de accionamiento lineal 48. Como se describió previamente, los resaltes 84, .86 de base proveían topes de límite para la rotación de las articulaciones 54, .58 con acción de leva de entrada. Sin embargo, la longitud y la posición de las ranuras 62 se podrían seleccionar para proveer topes de límite previstos para la traslación de los pasadores 68 dentro de las ranuras 62.

Adicionalmente, se podría seleccionar la forma de las ranuras para obtener un comportamiento previsto. Refiriéndose a las figuras 10 y 11, se describirá otra realización del anclaje de suelo. El anclaje 90 del suelo está construido generalmente de forma idéntica a las realizaciones anteriormente descritas con la excepción de unas ranuras conformadas alternativamente 92. Por tanto, el resto de los componentes no se describirá más y se usan números de referencia idénticos.

En el anclaje 90 del suelo, la superficie inferior de la ranura 92 incluye un canal 94 dimensionado para recibir al menos una parte del pasador 68 incluida en las articulaciones 54, 58 con acción de leva de entrada. En dicha realización, cuando las articulaciones 54,58 con acción de leva de entrada están situadas en la segunda posición, como se muestra en la figura 9, los pasadores 68 están situados en los respectivos canales 94. La rotación de las

articulaciones 54, 58 con acción de leva de entrada desde la segunda posición hasta la primera posición, mostrada en la figura 8, requiere un par de torsión adicional para que el miembro de traslación 60 se traslade contra la fuerza provista por los miembros de carga elástica 76 en una distancia suficiente lejos de la base 46 para permitir que el pasador 68 salga del canal 94.

Como se ha mostrado, los canales 94 se han incorporado en unas ranuras 92 para proveer un enclavamiento más robusto del dispositivo de accionamiento lineal en la posición extendida. Sin embargo, hay que hacer notar que se podrían proveer cualquier número de canales para proporcionar enclavamiento en múltiples posiciones. Adicionalmente, como se muestra en las realizaciones anteriores, las articulaciones 54, 58 con acción de leva de entrada se rotaron pasada una posición vertical cuando se trasladaban entre las posiciones retirada y extendida del husillo 17. Esta característica, en combinación con la fuerza ejercida sobre el miembro de traslación 60 por el miembro de carga elástica 76 permitía que los resaltes 84, 86 y la ubicación de la ranura 62 se usasen para proporcionar posiciones de enclavamiento del dispositivo de accionamiento lineal. Los canales se podrían usar también de tal manera que las posiciones primera y segunda se localizasen de tal manera que no se requiera que la articulación con acción de leva de entrada rotase pasada la línea central cuando se rote entre las posiciones primera y segunda.

Hay que hacer notar que se podrían incorporar otras configuraciones del panel pivotante de paredes que utilicen diferentes configuraciones de raíl y un anclaje de suelo. Por ejemplo, en una realización alternativa, el conjunto pivotante de paneles de pared incluye un raíl de deslizamiento que está dispuesto en una relación yuxtapuesta con un raíl de pivote, y el raíl de deslizamiento y el raíl de pivote están articulados de tal manera que el raíl de pivote pueda rotar con respecto al raíl de deslizamiento.

Por tanto, se ve que se ha provisto un sistema y método de anclaje de suelo. Los expertos en la técnica apreciarán que la presente invención se puede llevar a la práctica por otras realizaciones distintas de las preferidas que se han presentado esta descripción. a título ilustrativo y sin carácter limitativo, y la presente invención está limitada solamente por las reivindicaciones que siguen.

25

20

REIVINDICACIONES

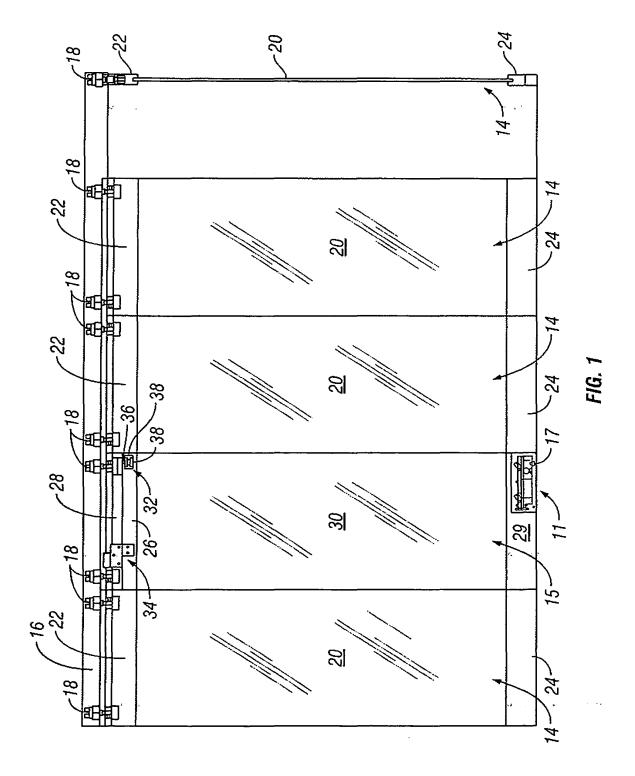
- 1. Un anclaje (11) de suelo retráctil para un sistema (10) de paneles de pared que comprende:
 - un miembro de base (46);
 - un conjunto (44) de cerrador de puerta;
- 5 un husillo (17) que está acoplado a rotación al conjunto (44) de cerrador de puerta; y
 - un dispositivo de accionamiento lineal (48) que acopla de forma móvil el miembro de base (46) al husillo (17);
 - en donde el dispositivo de accionamiento lineal (48) está destinado a trasladar al husillo (17) con respecto al miembro de base (46) a lo largo de un eje vertical entre una posición retirada y una posición extendida, y
- en donde el husillo (17) está más separado del miembro de base (46) en la posición extendida que en la oposición retirada.
 - 2. Un anclaje (11) de suelo retráctil para un sistema (10) de paneles de pared que comprende:
 - un miembro de base (46);

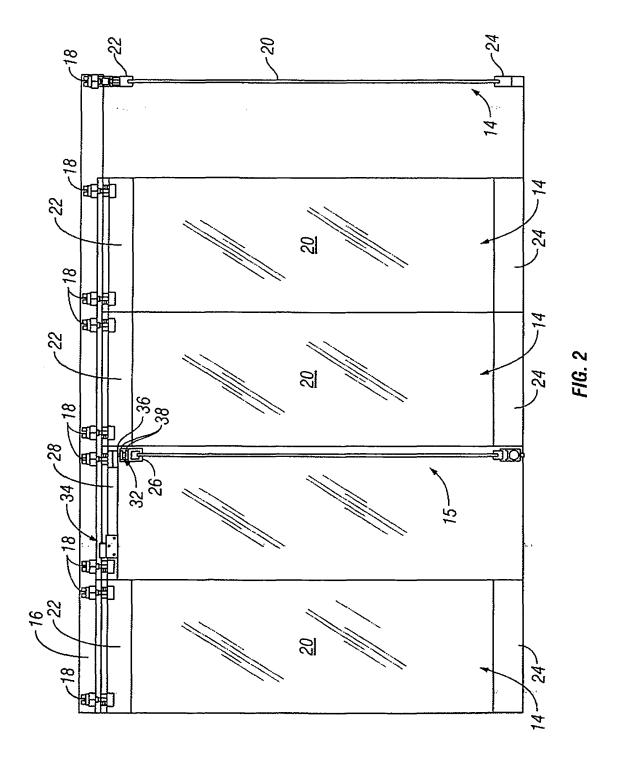
45

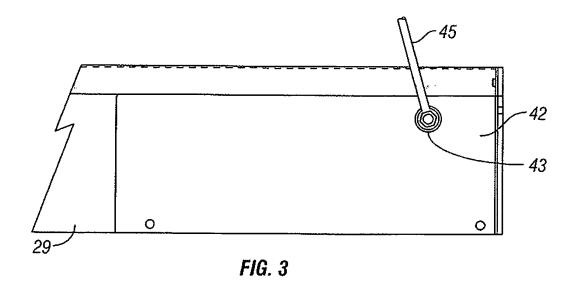
- un conjunto (44) de cerrador de puerta;
- un husillo (17) que está acoplado a rotación al conjunto (44) de cerrador de puerta; y
- un dispositivo de accionamiento lineal (48) que acopla de forma móvil el miembro de base (46) al conjunto (44) de cerrador de puerta;
 - en donde el dispositivo de accionamiento lineal (48) incluye una articulación (54) rotatoria con acción de leva de entrada que está acoplada pivotablemente al miembro de base (46) y acoplada de forma trasladable al conjunto (44) de cerrador de puerta,
- en donde la articulación rotatoria (54) con acción de leva de entrada está destinada a rotar entre una primera posición y una segunda posición, y
 - en donde el conjunto (44) de cerrador de puerta está en una posición retirada cuando la articulación (54) con acción de leva está en la primera posición y el conjunto (44) de cerrador de puerta está en una posición extendida cuando la articulación (54) con acción de leva está en la segunda posición.
- 3. El anclaje retráctil (11) de suelo de la reivindicación 1, que comprende además un miembro de traslación (60) en donde el conjunto (44) de cerrador de puerta está acoplado fijamente al miembro de traslación (60) y el dispositivo de accionamiento lineal (48) está destinado a trasladar al miembro de traslación (60), al conjunto (44) de cerrador de puerta y al husillo (17).
- 4. El anclaje retráctil (11) de suelo según las reivindicaciones 2 ó 3, que comprende además una pluralidad de miembros de guiado (52) que se extiende entre el miembro de traslación (60) y el miembro de base (46), en donde los miembros de guiado (52) están destinados a definir un camino de traslación del miembro de traslación (60) con respecto al miembro de base (46).
 - 5. El anclaje retráctil de suelo de las reivindicaciones 2 ó 3, que comprende además un miembro de carga elástica (76) configurado para cargar elásticamente al conjunto (44) de cerrador de puerta a la posición retirada.
- 35 6. El anclaje retráctil de suelo de la reivindicación 3, en donde el dispositivo de accionamiento lineal (48) es una articulación mecánica que comprende una articulación (54) con acción de leva de entrada que incluye un primer extremo que está acoplado pivotablemente al miembro de base (46) y a un segundo extremo que está acoplado de forma trasladable al miembro de traslación (60).
 - 7. El anclaje retráctil de suelo de las reivindicaciones 2 ó 6, que comprende además:
- una segunda articulación (58) con acción de leva que está acoplada pivotablemente al miembro de base (46) y acoplada de forma trasladable al miembro de traslación (60); y
 - un miembro de acoplamiento (72) que se extiende entre la articulación (54) con acción de leva de entrada y la segunda articulación (58) con acción de leva de entrada, en donde el miembro de acoplamiento (72) está destinado a transmitir la rotación de la articulación (54) con acción de leva de entrada directamente a la segunda articulación (58) con acción de leva de entrada.

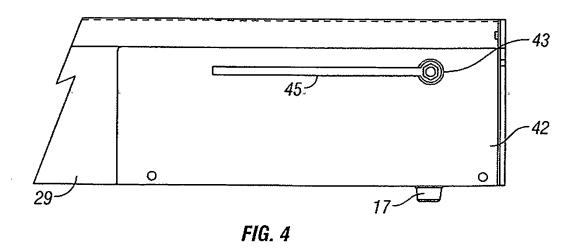
- 8. El anclaje retráctil de suelo de las reivindicaciones 2 ó 6, en donde la articulación (54) con acción de leva de entrada incluye un pasador (68) que se extiende a través de una ranura (62) incluida en el miembro de traslación (60), en donde el pasador (68) se puede trasladar dentro de la ranura (62).
- 9. El anclaje retráctil de suelo de la reivindicación 8, en donde la ranura (62) incluye como mínimo un canal que está dimensionado para recibir al menos una parte del pasador.
- 10. Un sistema (10) de paneles de pared que comprende:

una vía (16);


5


10


15


como mínimo un conjunto deslizante (14) de paneles de pared acoplado de forma trasladable a la vía (16), en donde el conjunto deslizante (14) de paneles de pared incluye un raíl superior (22), un raíl inferior (24) y un panel de pared (20) acoplados fijamente a cada uno del raíl superior (22) y raíl inferior (24) e interpuestos entre los mismos; y

como mínimo un conjunto pivotante (15) de paneles de pared acoplado de forma trasladable a la vía (16), en donde el conjunto pivotante (15) de paneles de pared comprende un raíl de deslizamiento (28), un raíl de pivote (26) acoplado pivotablemente al raíl de deslizamiento (28), un panel de pared (30) acoplado fijamente al raíl de pivote (26), un raíl inferior (29) acoplado a un segundo lado del panel de pared (30) opuesto al raíl de pivote (26), y un anclaje retráctil (11) de suelo según una cualquiera de las reivindicaciones 1 a 9, en donde el anclaje retráctil (11) de suelo está acoplado al raíl inferior (29).

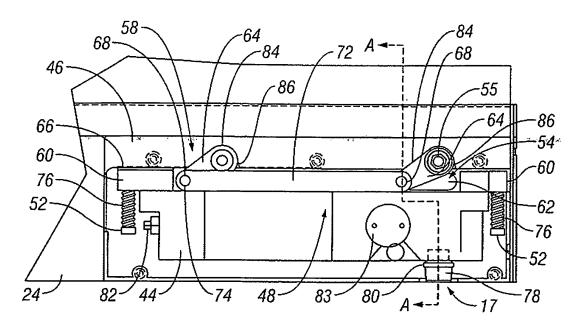
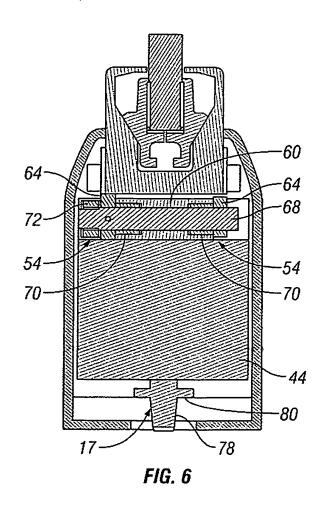
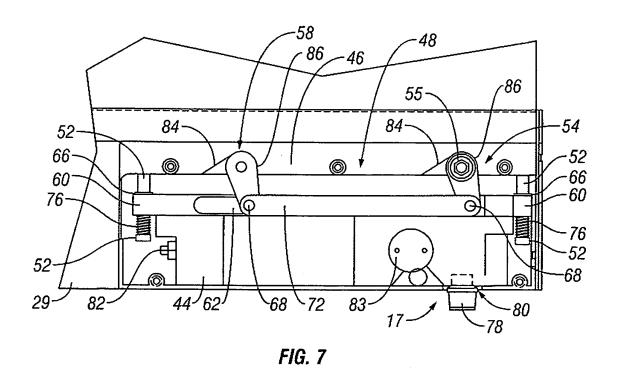




FIG. 5

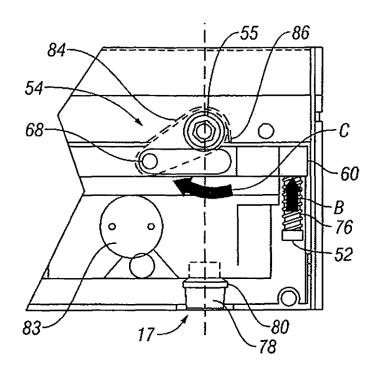


FIG. 8

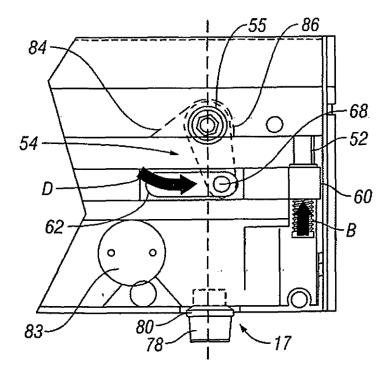


FIG. 9

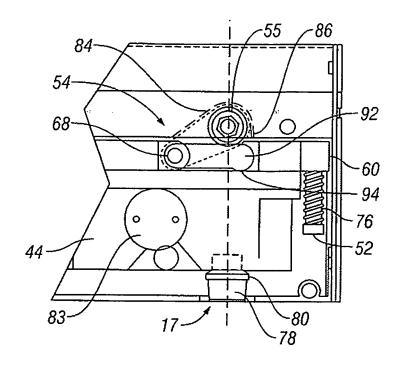
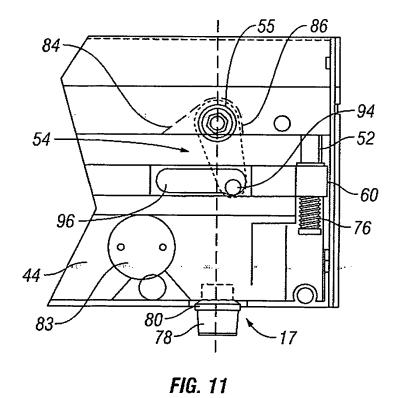
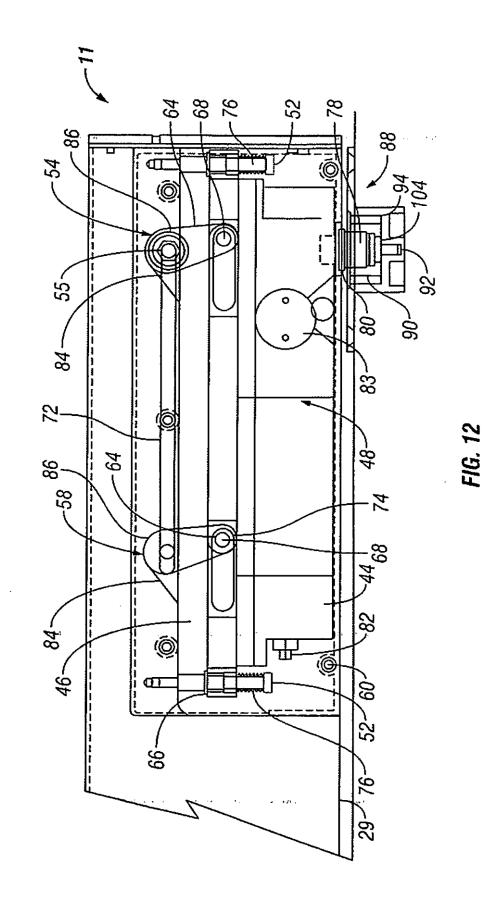




FIG. 10

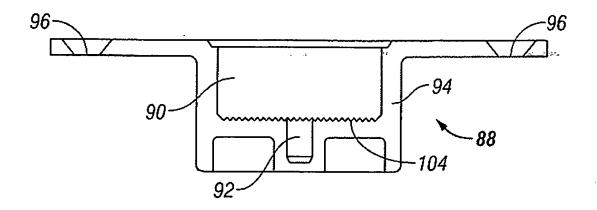
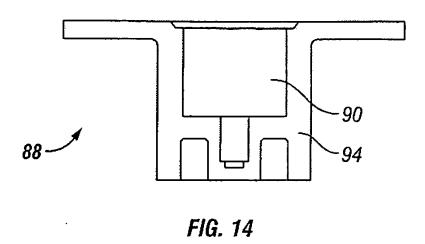



FIG. 13

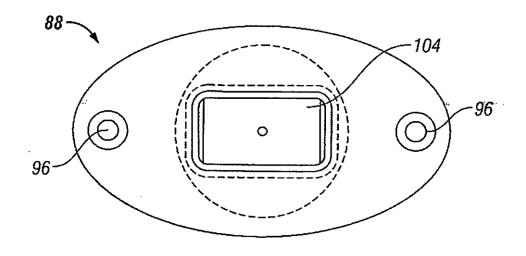
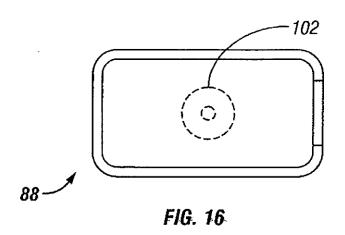
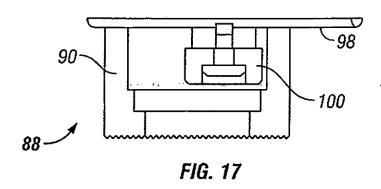




FIG. 15

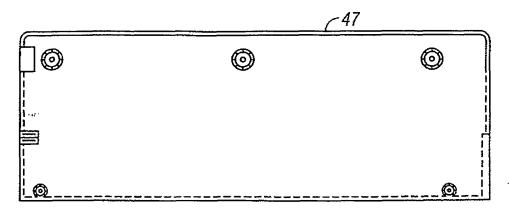


FIG. 18A

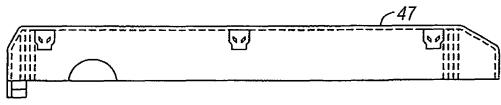
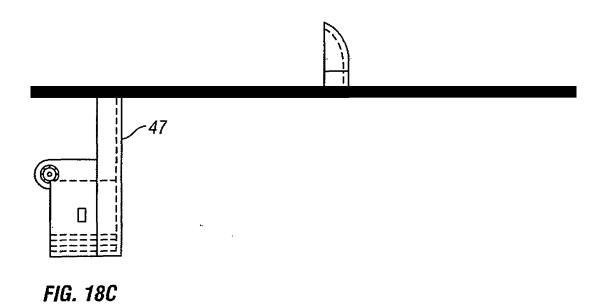



FIG. 18B

23

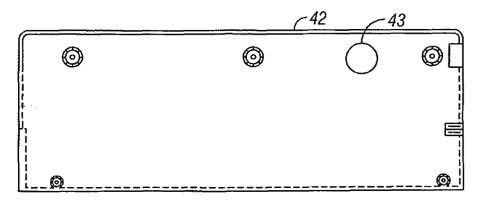
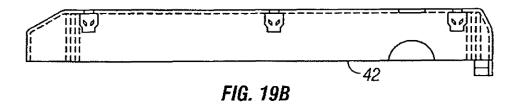



FIG. 19A

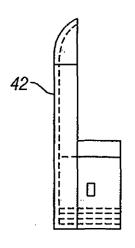


FIG. 19C

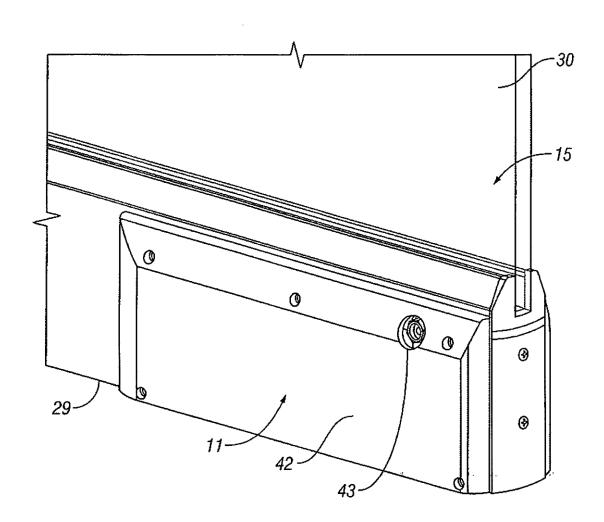
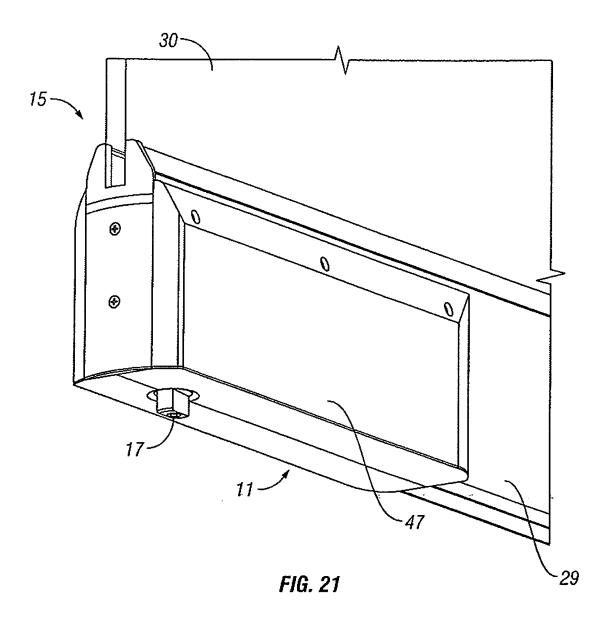
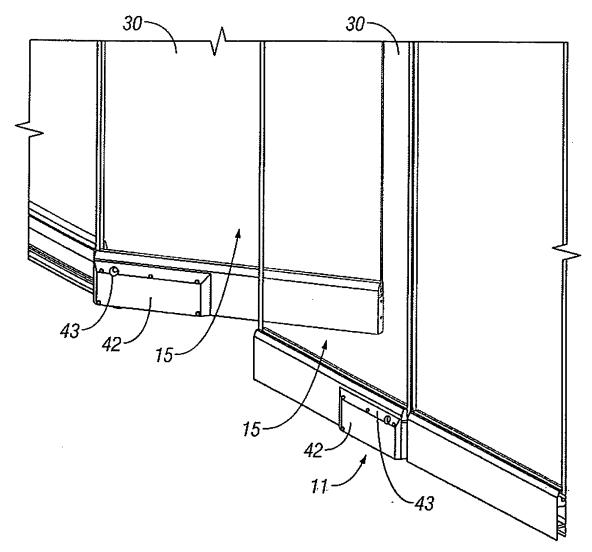




FIG. 20

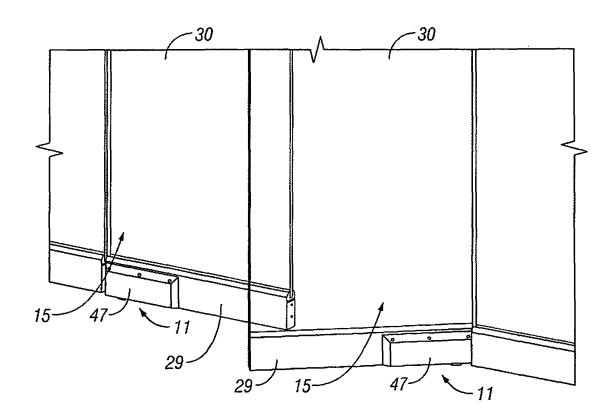


FIG. 23