

11 Número de publicación: 2 391 200

51 Int. Cl.: H01H 9/34 H01H 9/44

(2006.01) (2006.01)

T3

- 96 Número de solicitud europea: 07425330 .3
- 96 Fecha de presentación: 30.05.2007
- 97) Número de publicación de la solicitud: 1998349 97) Fecha de publicación de la solicitud: 03.12.2008
- 54 Título: Disyuntor de circuitos de alta capacidad de desconexión
- Fecha de publicación de la mención BOPI: **22.11.2012**
- 73 Titular/es:

BTICINO S.P.A. (100.0%) VIA MESSINA, 38 20154 MILANO, IT

- 45 Fecha de la publicación del folleto de la patente: 22.11.2012
- 72 Inventor/es:

FABRIZI, FABRIZIO

(4) Agente/Representante:
PÉREZ BARQUÍN, Eliana

DESCRIPCIÓN

Disyuntor de circuitos de alta capacidad de desconexión

5 La presente invención se refiere al campo de disyuntores de circuitos y en particular a un disyuntor de circuitos de alta capacidad de desconexión.

Un disyuntor de circuitos según se define en el preámbulo según la reivindicación 1 es ya conocido a partir del documento US 5548258.

10

15

20

Según se sabe, un disyuntor de circuitos, como el denominado disyuntor de circuitos de caja moldeada, comprende un circuito eléctrico formado por un contacto eléctrico fijo y un contacto eléctrico móvil. Generalmente, dentro del disyuntor de circuitos, el contacto eléctrico fijo está integrado con el cuerpo del disyuntor de circuitos mientras que el contacto móvil está abisagrado de forma giratoria con el cuerpo del disyuntor de circuitos, con el fin de poder desplazarse desde una posición abierta a una cerrada. En la posición abierta, el contacto eléctrico móvil está separado del contacto eléctrico fijo y el circuito eléctrico del disyuntor de circuitos está abierto. Por el contrario, en la posición cerrada, el contacto eléctrico móvil empalma con el contacto fijo y el circuito eléctrico está cerrado. Con el fin de eliminar los arcos eléctricos formados durante las operaciones de apertura/cierre del circuito eléctrico, el disyuntor de circuitos está provisto normalmente de una célula de desionización, que está situada cerca de los contactos eléctricos fijo y móvil. El contacto fijo, la parte de extremo del contacto móvil que interacciona con el contacto fijo y la célula de desionización se encuentran dentro de una cámara interna del disyuntor de circuitos denominada cámara de desionización.

Un parámetro característico de un disyuntor de circuitos es la denominada capacidad de desconexión, que puede definirse como la corriente de cortocircuito máxima que puede ser interrumpida por el disyuntor de circuitos. La corriente correspondiente a la capacidad de desconexión máxima es muy superior (algunos órdenes de magnitud) con respecto a la corriente nominal máxima del disyuntor de circuitos. La segunda es otra propiedad característica que puede definirse como la corriente máxima que el disyuntor de circuitos es capaz de resistir durante un intervalo de tiempo ilimitado.

30

La capacidad de desconexión de un disyuntor de circuitos es un parámetro que depende de las características de construcción del mismo disyuntor de circuitos, como, por ejemplo, el tamaño del disyuntor de circuitos y las propiedades dieléctricas del medio interpuesto entre el contacto móvil y el fijo.

35 El objeto de la presente invención es proporcionar un disyuntor de circuitos que tiene una capacidad de desconexión superior a la de los disyuntores de circuitos de la técnica conocida.

Este objeto se consigue proporcionando un disyuntor de circuitos según se define en la reivindicación adjunta 1, en su forma más extensa, y según se define en las reivindicaciones dependientes, que se refieren a formas de realización particulares de la misma.

La invención se comprenderá más fácilmente en relación con la siguiente descripción detallada de algunas de sus formas de realización, que se proporcionan sólo como ejemplos no limitativos, con referencia a los dibujos adjuntos, en los que:

45

40

la figura 1 muestra una vista isométrica del lado posterior de una forma de realización preferente de la invención en particular de un disyuntor de circuitos según la invención, en el que se muestra un componente de dicho disyuntor de circuitos separado del disyuntor de circuitos,

50 la figura 2 muestra algunos de los componentes del circuito eléctrico del disyuntor de circuitos de la figura 1,

la figura 3 muestra la configuración de componentes de la figura 3 en el disyuntor de circuitos de la figura 1,

la figura 4 muestra una vista interna parcial del disyuntor de circuitos de la figura 1, y

55

65

la figura 5 muestra una célula de desionización, que puede usarse en el disyuntor de circuitos de la figura 1.

En las figuras, los elementos idénticos o similares se indican mediante las mismas referencias numéricas.

60 Con referencia la figura 1, una forma de realización ilustrativa preferente en particular y no limitativa del disyuntor de circuitos según la invención se indica en general mediante el número de referencia 1.

En la forma de realización particular de la figura 1, el disyuntor de circuitos 1 es, por ejemplo, un disyuntor de circuitos denominado de caja moldeada. Un disyuntor de circuitos de caja moldeada, en oposición al denominado disyuntor de circuitos al aire, tiene un cuerpo revestido 2 formado por material aislante, para sostener el mecanismo interno del disyuntor de circuitos. Los disyuntores de circuitos de caja moldeada se usan generalmente en la

ES 2 391 200 T3

industria de la automatización así como en el sector de servicios y mantenimiento, para interrumpir corrientes de hasta 1.500 A.

En el ejemplo mostrado, el disyuntor de circuitos 1 está representado de una forma no limitativa por un disyuntor de circuitos de tres polos automático de caja moldeada.

El cuerpo revestido 2 está formado por yuxtaposición de dos capas, en particular una capa de base, o base 3, y una caja de tapa, o tapa 4. Dichas capas 3, 4 se yuxtaponen y se fijan mutuamente por medios de fijación, no mostrados en las figuras, como remaches, tornillos o pernos.

En la tapa 4, se proporciona una parte delantera en saliente, denominada comúnmente "parte frontal DIN", que se proporciona con una palanca para accionar el disyuntor de circuitos 1, no mostrada.

10

20

25

30

35

50

55

60

65

En el cuerpo revestido 2 del disyuntor de circuitos se proporcionan en el lado superior 6 tres abrazaderas de tornillo 7, o terminales de entrada 7, para conectar el disyuntor de circuitos 1 con los cables de la red eléctrica. Se proporcionan abrazaderas análogas, o terminales de salida, no mostradas, en el lado inferior del cuerpo revestido 2.

En el lado posterior 8 del cuerpo revestido 2 se proporcionan medios de fijación adecuados 9 para fijar el disyuntor de circuitos 1 a un panel eléctrico. Por ejemplo, de una forma no limitativa, dichos medios de fijación permiten fijar el disyuntor de circuitos 1 a un raíl DIN usando un dispositivo de montaje como el descrito en la solicitud de patente italiana nº RM 2006 A 000145.

Según se muestra en la figura 1, en el lado posterior 8 del cuerpo revestido 2 se proporcionan aberturas 10 para permitir la introducción, desde el exterior y desde el lado posterior 8 del disyuntor de circuitos 1, de los elementos de sujeción 20 para los contactos eléctricos fijos del disyuntor de circuitos 1. Como en el ejemplo mostrado el disyuntor de circuitos 1 es un disyuntor de circuitos de tres polos, en su lado posterior 8 se proporcionan tres aberturas 10, cada una de las cuales permite la introducción de un elemento de sujeción respectivo, o portacontactos 20, al que se proporciona un contacto eléctrico fijo. Preferentemente, pero no de forma limitativa, los portacontactos 20 están hechos de cobre o aleación de cobre, por ejemplo, una aleación de cobre y latón.

Preferentemente, con el fin de fijar los portacontactos 20 a la parte posterior del disyuntor de circuitos 1, se proporcionan medios de fijación, como por ejemplo orificios para los tornillos correspondientes 22, remaches o medios de fijación análogos en el lado posterior 8 del disyuntor de circuitos 1, y en el elemento de sujeción 20 se proporciona al menos un orificio 21, que coopera con dichos medios de fijación.

Preferentemente, cada uno de los portacontactos 20 tiene un extremo escalonado, provisto de un orificio 23 para recibir un tornillo correspondiente, o un pasador, de un terminal de tornillo de conexión 7.

Según se sabe, como el disyuntor de circuitos 1 es del tipo de tres polos, está provisto de tres circuitos eléctricos separados para ser accionado simultáneamente por una única palanca. Cada uno de estos circuitos se proporciona con el fin de interrumpir una fase respectiva y comprende un par de contactos, es decir, un contacto eléctrico fijo y uno móvil.

En la figura 2 se ilustra una parte del circuito eléctrico del disyuntor de circuitos 2, que muestra un contacto eléctrico fijo 25 y un contacto eléctrico móvil 24. Estos contactos son preferentemente contactos de cobre.

El contacto eléctrico fijo 25 está conectado, por ejemplo por soldadura o remachado, al portacontactos respectivo 20, ya descrito con referencia la figura 1. El contacto eléctrico móvil 24 está fijo, por ejemplo mediante soldadura o remachado, a un brazo de sujeción 26, que puede girar alrededor del eje R-R. De este modo, el contacto eléctrico móvil 24 puede girar en cualquier dirección a lo largo de una trayectoria curvada T, definida entre una primera posición de funcionamiento, en la que el contacto móvil 24 topa con el contacto fijo 25 y una segunda posición de funcionamiento, en la que el contacto móvil 24 está colocado a una distancia predeterminada desde el contacto eléctrico fijo 25. La primera posición de funcionamiento corresponde a una condición de circuito cerrado, mientras que la segunda posición de funcionamiento, ilustrada en la figura 2, corresponde a una condición de circuito abierto.

Según se muestra en la figura 2, un disyuntor de circuitos 1 según la presente invención comprende además dos elementos paralelos generalmente de tipo placa 27, 28, hechos de material ferromagnético, preferentemente hierro, con una permeabilidad relativa de aproximadamente 10.000. Estos elementos están separados entre sí cerca de los contactos fijo y móvil 24, 25, y están opuestos entre sí con respecto a un plano que comprende la trayectoria T de contacto móvil 24. Preferentemente, dichos elementos de tipo placa 28, 28 se extienden aproximadamente a partir del contacto fijo 25 en una magnitud tal que al menos una parte significativa de la trayectoria T se encuentra entre estos elementos 27, 28. Por ejemplo, la parte significativa corresponde al menos al 50% de la longitud total de la trayectoria T. Más preferentemente, esta parte significativa corresponde al menos al 70% de la longitud total de dicha trayectoria T.

En una forma de realización especialmente ventajosa, según se muestra en la figura 2, los dos elementos de tipo

ES 2 391 200 T3

placa 27, 28 son partes de una pieza ferromagnética integral, que comprende además una barra cruzada 29 conectada a una parte de extremo respectiva de cada uno de los elementos de tipo placa 27, 28. Preferentemente, este elemento integral, que en lo sucesivo será denominado elemento ferromagnético, tiene generalmente forma de "C" o de "U".

5

10

15

En la forma de realización preferente en particular de la figura 2, la barra cruzada 29 del elemento ferromagnético 27, 28, 29 está colocada debajo del contacto eléctrico fijo 25. Más en detalle, el portacontactos 20 está provisto de una parte de extremo con forma de gancho, que comprende una placa 31, en la que se fija el contacto fijo 25, en la que la barra cruzada 29 se coloca bajo dicha placa 31, y se interpone entre la placa y la parte restante del portacontactos 20.

En una forma de realización especialmente ventajosa, el componente ferromagnético 27, 28, 29 tiene también la tarea de fijar el contacto fijo 25 y su soporte 20 a la base 3 de disyuntor de circuitos 1. Para este fin, cada uno de los dos elementos de tipo placa 27, 28 está provisto, en su extremo distal, con respecto al contacto fijo 25, de medios de fijación 32 con el fin de fijar el elemento ferromagnético 28, 29, 29 a la base 3 del disyuntor de circuitos 1. En la forma de realización mostrada en particular, estos medios de fijación están formados por un par de pasadores 32, en los que cada par tiene un elemento de tipo placa 27, 28 colocado en un extremo respectivo. El procedimiento de fijación por medio de pares de pasadores 32 se explicará más extensamente en la siguiente descripción.

20

La figura 3 muestra una parte del disyuntor de circuitos de la figura 1, en la que la base 3 del disyuntor de circuitos 1 se muestra en una sección transversal A-A de la figura 1. En la figura 3, el contacto eléctrico móvil 24 está en la posición cerrada, es decir, topa con el contacto fijo 25. Esta figura muestra también el mecanismo giratorio 36 que actúa sobre el brazo 26 que sostiene el contacto móvil 24, con el fin de moverlo entre sus dos posiciones de funcionamiento.

25

La figura 4 muestra una vista interna de una parte de base 3, en la que se han omitido el mecanismo giratorio 36, el brazo de sujeción 26 y el contacto móvil 24.

35

40

60

65

30

Como puede verse en la figura 3 y 4, el contacto fijo 25 y el contacto móvil 24 están alojados dentro de una cámara 35, denominada habitualmente cámara de interrupción o cámara de desionización. En una forma de realización preferente en particular, se proporcionan dos paredes laterales opuestas 36, 37 de la cámara 35 con una parte de pared respectiva 38, 39 que se proyecta hacia el interior de la cámara de interrupción 35 y se proporciona una cavidad interna, que se aprecia mejor en la figura 3, que está aislada sustancialmente de la cámara de desionización 35 y recibe un elemento de tipo placa 27, 28 correspondiente del elemento ferromagnético 27, 28, 29.

Como puede verse en la figura 3, cada una de las dos cavidades está cerrada en el lado superior por una pared transversal 40, en la que se proporciona una abertura, a través de la cual se introducirá un par de pasadores 32. La fijación del componente ferromagnético 27, 28, 29 puede conseguirse, por ejemplo, por medio de arandelas metálicas 33, en particular introduciendo cada par de pasadores 32, después de hacerlos pasar a través de las aberturas proporcionadas en las paredes transversales 40, en una arandela respectiva 32, y a continuación separando los pasadores 32 de un mismo par.

Debe observarse que al dejar que la barra cruzada 29 del componente ferromagnético 27, 28, 29 pase por debajo de la placa 31 que sostiene el contacto fijo 25 y al fijar el componente ferromagnético 27, 28, 29 a la base 2 del disyuntor de circuitos 1, por ejemplo según se muestra anteriormente, el contacto fijo 25 se fija firmemente a la base 2, formando una configuración estructural que es muy resistente a los choques que se originan a partir del cierre del contacto móvil 25.

Además debe observarse que al proporcionar la introducción de los dos elementos de tipo placa 27, 29 en las cavidades proporcionadas en dichas paredes laterales opuestas (con respecto al plano de la trayectoria T), se consigue una ventaja en el sentido de que las paredes laterales 36, 37 de la cámara de desionización 35 se refuerzan enormemente. Estas paredes 36, 37 normalmente están sometidas a gran tensión por la ignición de arcos eléctricos entre el contacto fijo y el móvil, durante las operaciones de apertura y cierre del disyuntor de circuitos 1. Dichas tensiones son provocadas por un calentamiento importante del gas del interior de la cámara 35, debido a la generación del arco eléctrico, lo que determina un gran incremento del volumen de dicho gas dentro de la cámara.

Como el disyuntor de circuitos 1 del ejemplo mostrado es un disyuntor de circuitos de tres polos, en la figura 4 se muestran parcialmente al menos tres cámaras de desionización 35 adyacentes. En una de ellas, se muestra una denominada célula de desionización 50. Obviamente, las otras dos cámaras 35 están provistas también normalmente de una célula de desionización 50 respectiva, aunque en la figura 4 se muestran sin dicha célula.

En la figura 5 se muestra una forma de realización preferente en particular de una célula de desionización 50. La célula 50 comprende un grupo de placas delgadas paralelas densamente apretadas 51, que están unidas entre sí por barras laterales opuestas 52. Las placas delgadas 51 tienen una incisión curvada 53 en la parte dirigida hacia el contacto móvil, de manera que dentro de la célula 50 se define una ranura, que en general es paralela a la trayectoria T, y favorece que el arco se apague.

ES 2 391 200 T3

Las simulaciones y las pruebas experimentales han mostrado que un disyuntor de circuitos según la invención es capaz de conseguir el objetivo descrito previamente con referencia a los disyuntores de circuitos según la técnica conocida.

5

En particular se ha observado que la presencia de los elementos de tipo placa 27, 28 de material ferromagnético, cuando se genera un arco entre el contacto fijo y el móvil, permite la modificación de la distribución del campo magnético generado por dicho arco, ya que los elementos de tipo placa provocan el cierre de las líneas de flujo de dicho campo en los elementos de tipo placa. Debe observarse que este campo magnético es generado porque el arco puede considerarse equivalente a un conductor eléctrico, en el que un campo magnético es causado por una corriente eléctrica que circula a través de él.

15

10

En otras palabras, se ha observado un confinamiento del campo magnético entre los elementos de tipo placa 27, 28, lo que provoca, en oposición a una configuración sin elementos de tipo placa, un campo electromagnético inducido, que tiene una intensidad muy superior en el área interpuesta entre los dos elementos de tipo placa 27, 28. Esto provoca un gran aumento de la fuerza que actúa sobre el arco eléctrico y, por tanto, un incremento del efecto de expulsión que actúa sobre el arco eléctrico, dirigido hacia la célula de desionización 50. Esto permite obtener un disyuntor de circuitos que, con respecto a los disyuntores de circuitos de la técnica conocida, tiene mejores características en términos de capacidad de desconexión.

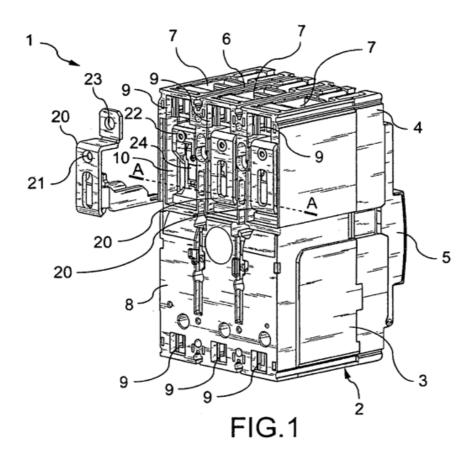
20

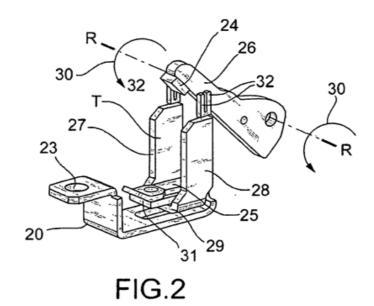
Obviamente, un experto en la materia, con el fin de satisfacer necesidades contingentes y específicas, puede introducir diversas modificaciones y cambios en el disyuntor de circuitos descrito anteriormente, en el que estas modificaciones y cambios están comprendidas todas, por cierto, en el ámbito de protección, según se define en las reivindicaciones siguientes.

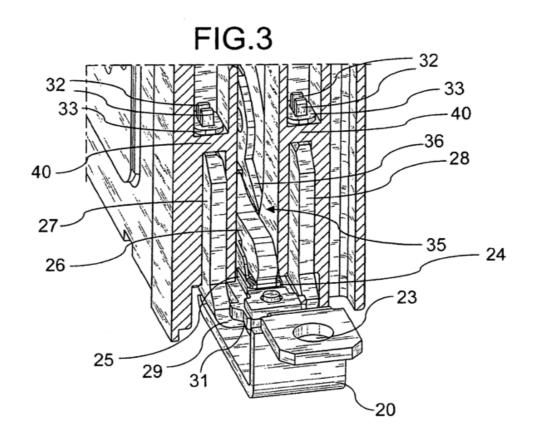
REIVINDICACIONES

1. Disyuntor de circuitos (1) que comprende:

15


20


30


55

60

- un circuito eléctrico que tiene al menos un contacto eléctrico fijo (25) y al menos un contacto eléctrico móvil (24), en el que el contacto móvil (24) puede girar a lo largo de una trayectoria (T) que se extiende en un plano y está definida entre una primera posición de funcionamiento, en la que el contacto móvil (24) topa contra el contacto fijo (25) y una segunda posición de funcionamiento, en la que el contacto móvil (24) está colocado a una distancia predeterminada del contacto fijo (25), en el que el disyuntor de circuitos (1) comprende además un elemento de sujeción (20) para el contacto fijo (25),
 - dos elementos paralelos generalmente de tipo placa (27, 28), hechos de material ferromagnético, colocados a una cierta distancia mutua en lados opuestos con respecto a dicho plano, siendo dichos elementos (27, 28) partes de un único componente (27, 28, 29), hecho de material ferromagnético, que comprende una barra cruzada (19) conectada a una parte de extremo respectiva de dichos elementos de tipo placa (27, 28),
 - un cuerpo revestido (2) con una base (3) de material aislante y una parte de cubierta (4), que puede ponerse sobre la base (2), formando además dicho componente de material ferromagnético (27, 28, 29) un elemento de fijación con el fin de fijar el contacto fijo (25) a la base (3);
 - caracterizado porque dicho componente (27, 28, 29) y dicho elemento de sujeción (20) están unidos a dicha base (3) introduciéndolos en la base (3) desde el lado opuesto (8) de la base (3), con respecto a dicha parte de cubierta (5).
- Disyuntor de circuitos (1) según la reivindicación 1, en el que la longitud de dichos elementos (27, 28), empezando
 desde dicho contacto fijo (25), es tal que una parte significativa de dicha trayectoria (T) está interpuesta entre dichos elementos (27, 28).
 - 3. Disyuntor de circuitos (1) según la reivindicación 2, en el que dicha parte significativa es al menos igual al 50% de la longitud total de dicha trayectoria (T).
 - 4. Disyuntor de circuitos (1) según la reivindicación 2, en el que dicha parte es al menos igual al 75% de la longitud total de dicha trayectoria (T).
- 5. Disyuntor de circuitos (1) según la reivindicación 1, en el que dicho componente (27, 28, 29) tiene sustancialmente forma de "C" o de "U".
 - 6. Disyuntor de circuitos (1) según la reivindicación 1, en el que la barra cruzada (29) está colocada debajo del contacto eléctrico fijo (25).
- 7. Disyuntor de circuitos (1) según la reivindicación 6, en el que al elemento de sujeción (20) se le proporciona una parte de extremo en gancho, que comprende una placa de sujeción (31), a la que se fija el contacto fijo (25), en el que la barra cruzada (29) está colocada entre la placa de sujeción (31) y una parte opuesta de dicho extremo en gancho.
- 45 8. Disyuntor de circuitos (1) según la reivindicación 7, en el que la barra cruzada (29) está en contacto con la placa de sujeción (31).
- 9. Disyuntor de circuitos (1) según la reivindicación 1, en el que la base comprende una cámara de desionización (35), que aloja los contactos eléctricos fijo (25) y móvil (24), estando dicha cámara (35) definida entre dos paredes opuestas laterales (35, 37), con respecto a dicho plano, comprendiendo cada una de dichas paredes una cavidad (38, 39) para recibir respectivamente uno de dichos elementos de tipo placa (27, 28).
 - 10. Disyuntor de circuitos (1) según la reivindicación 1, en el que cada uno de dichos elementos de tipo placa (27, 28) comprende una parte de extremo, colocada distalmente con respecto a dicha barra cruzada (29), y a la que se proporcionan medios (32) para fijar dicho componente a dicha base.
 - 11. Disyuntor de circuitos (1) según la reivindicación 10, en el que dichos medios comprenden para cada elemento de tipo placa (27, 28) un par de pasadores paralelos (32), que pueden dividirse después de introducir dicho elemento de tipo placa en su cavidad (38, 39) respectiva.
 - 12. Disyuntor de circuitos (1) según cualquiera de las reivindicaciones anteriores, en el que dicho disyuntor de circuitos es un disyuntor de circuitos automático de caja moldeada.
- 13. Disyuntor de circuitos (1) según la reivindicación 12, en el que dicho disyuntor de circuitos es un disyuntor de circuitos de tres polos o cuatro polos.

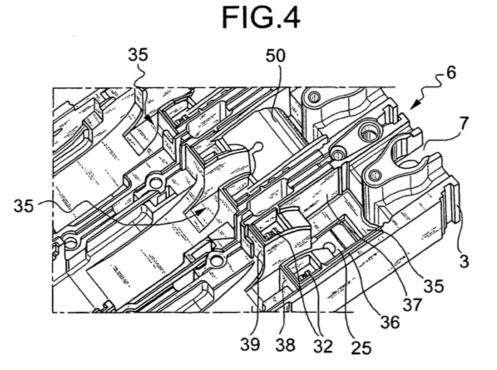
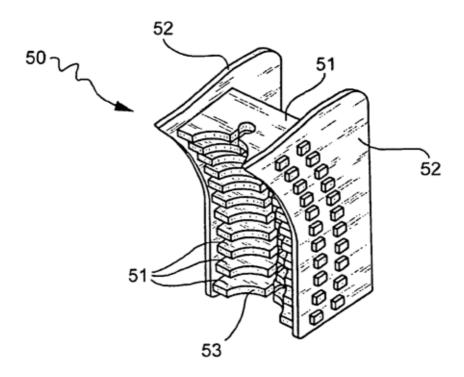



FIG.5

