

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 391 757

(51) Int. CI.: C07D 207/48 (2006.01) A61K 31/40 (2006.01) A61P 1/04 C07D 401/04 C07D 409/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Número de solicitud europea: 11155996 .9
- (96) Fecha de presentación: **29.08.2006**
- (97) Número de publicación de la solicitud: 2327692 (97) Fecha de publicación de la solicitud: 01.06.2011
- (54) Título: Derivados de 1-H-pirrol sustituidos con 1-heterociclilsulfonilo, 2-aminometilo, 5-heteroarilo como inhibidores de la secreción de ácido
- (30) Prioridad:

30.08.2005 JP 2005250356 31.03.2006 JP 2006100626

- (73) Titular/es:
 - **AKEDA PHARMACEUTICAL COMPANY LIMITED** (100.0%)

1-1, Doshomachi 4-chome Chuo-ku Osaka-shi Osaka 541-0045, JP

- (45) Fecha de publicación de la mención BOPI: 29.11.2012
- (72) Inventor/es:

KAJINO, MASAHIRO; HASUOKA, ATSUSHI y **NISHIDA, HARUYUKI**

- (45) Fecha de la publicación del folleto de la patente: 29.11.2012
- (74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

S 2 391 757 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de 1-H-pirrol sustituidos con 1-heterociclilsulfonilo, 2-aminometilo, 5-heteroarilo como inhibidores de la secreción de ácido.

Campo Técnico

5 La presente invención se refiere a compuestos de pirrol que tienen una actividad supresora de la secreción de ácido.

Antecedentes de la técnica

Los inhibidores de la bomba de protones representados por omeprazol, que suprimen la secreción de ácido gástrico para el tratamiento de úlcera péptica, esofagitis por reflujo, se han usado mucho en situaciones clínicas. Sin embargo, los inhibidores de la bomba de protones existentes están asociados a problemas respecto a su efecto y efectos secundarios. Para ser más precisos, dado que los inhibidores de la bomba de protones son inestables en condiciones ácidas, se formulan a menudo en forma de preparaciones entéricas, en cuyo caso se requieren varias horas antes de la expresión del efecto. Además, dado que los inhibidores de la bomba de protones existentes muestran inconsistentes efectos de tratamiento debido al polimorfismo de la enzima metabólica y a la interacción del fármaco con agentes farmacéuticos tales como diazepam, se ha deseado una mejora.

15 Como compuestos de pirrol que tienen una acción inhibidora de la bomba de protones, el documento EP-A-0259085 describe un compuesto representado por la fórmula:

$$C_6H_5CH_2NH$$
 NH_2
 $SO_3C_6H_6$

Como compuestos que tienen una acción antagonista de tromboxano A2 (TXA2) y acción inhibidora de sintasa TXA2, el documento JP-A-8-119936 describe un compuesto representado por la fórmula:

$$r1$$
 A_0
 N
 $r3$
 $r2$
 $r3$

20

25

10

en la que r1 es carboxi, carboxi protegido, carboxialquilo inferior, carboxialquilo inferior protegido, carboxialquenilo inferior, o carboxialquenilo inferior protegido, r2 es hidrógeno; alquilo inferior; alquilo inferior heterocíclico que tiene opcionalmente aminoimino o aminoimino protegido; alquenilo inferior heterocíclico; o carbonilo heterocíclico, r3 es hidrógeno o alquilo inferior, r4 es acilo, r5 es hidrógeno, A_o es alquileno inferior, y Z_o es S o NH, con tal de que cuando r1 es carboxi o carboxi protegido entonces Z_o es NH.

Además, como fármaco terapéutico para enfermedades neoplásticas o enfermedades autoinmunes, el documento WO2004/103968 describe un compuesto representado por la fórmula:

en la que r6 es arilo, aralquilo o heteroalquilo, r7 es arilo o heteroarilo, y r8 es arilo, heteroarilo u opcionalmente

aminometilo sustituido.

Descripción de la invención

Problemas a resolver por la invención

Un agente farmacéutico que suprime efectivamente la secreción de ácido gástrico como los conocidos inhibidores de la bomba de protones, que está mejorado en inestabilidad en condiciones ácidas, dispersión de efectos debidos al polimorfismo de la enzima metabólica e interacción con fármacos, que son problemas de los conocidos inhibidores de la bomba de protones, se espera que muestre un efecto superior en el tratamiento de la úlcera péptica, esofagitis por reflujo. Tal como está la situación, sin embargo, no se ha encontrado un inhibidor de la bomba de protones que satisfaga suficientemente estos requerimientos. Es por lo tanto un objetivo de la presente invención proporcionar un compuesto que tenga un superior efecto supresor de la secreción de ácido (particularmente, efecto inhibidor de la bomba de protones), que ha sido mejorado en estos problemas.

Medios de resolver los problemas

Los presentes inventores han realizado varios estudios y han encontrado que un compuesto representado por la fórmula (I):

15

25

en la que R¹ es un grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterocíclic, el grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo opcionalmente tiene sustituyente(s),

 R^2 es un grupo arilo de C_{6-14} opcionalmente sustituido, un grupo tienilo opcionalmente sustituido o un grupo piridilo opcionalmente sustituido,

R³ y R⁴ son cada uno átomos de hidrógeno, o uno de R³ y R⁴ es un átomo de hidrógeno y el otro es un grupo alquilo inferior opcionalmente sustituido, un grupo acilo, un átomo de halógeno, un grupo ciano o un grupo nitro, y

R⁵ es un grupo alquilo, como se define en la reivindicación 1, o una de sus sales [de aquí en adelante se va a abreviar como compuesto (I)] inesperadamente tiene un efecto supresor de la secreción de ácido muy fuerte (efecto inhibidor de la bomba de protones), y es totalmente satisfactorio como agente farmacéutico, lo que dio como resultado la terminación de la presente invención.

Por consiguiente, la presente invención se refiere a lo siguiente

[1] un compuesto representado por la fórmula (I):

30

en la que R¹ es un grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterocíclo, el grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo opcionalmente tiene sustituyente(s), R² es un grupo arilo de C₆₋₁₄ opcionalmente sustituido, un grupo tienilo opcionalmente sustituido o un grupo piridilo opcionalmente sustituido, R³ y

 R^4 son cada uno un átomo de hidrógeno, o uno de R^3 y R^4 es un átomo de hidrógeno y el otro es un grupo alquilo inferior opcionalmente sustituido, un grupo acilo, un átomo de halógeno, un grupo ciano o un grupo nitro, y R^5 es un grupo alquilo, o una de sus sales.

[2] Un compuesto representado por la fórmula (I):

5

10

en la que R^1 es un grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterocíclo, el grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo opcionalmente tiene sustituyente(s), R^2 es un grupo arilo de C_{6-14} opcionalmente sustituido, un grupo tienilo opcionalmente sustituido, R^3 y R^4 son cada uno un átomo de hidrógeno, o uno de R^3 y R^4 es un átomo de hidrógeno y el otro es un grupo alquilo inferior opcionalmente sustituido, un grupo acilo, un átomo de halógeno, un grupo ciano o un grupo nitro, y R^5 es un grupo alquilo, o una de sus sales.

- [3] el compuesto del anteriormente mencionado [1] o [2], en el que R¹ es un grupo heterocíclico monocíclico que contiene nitrógeno.
- [4] El compuesto del anteriormente mencionado [1] o [2], en el que el grupo heterocíclico monocíclico que contiene nitrógeno es un grupo piridilo.
 - [5] El compuesto del anteriormente mencionado [1] o [2], en el que R^2 es un grupo fenilo opcionalmente sustituido con 1 a 5 sustituyentes seleccionados de (i) un átomo de halógeno y (ii) un alquilo de C_{1-6} opcionalmente sustituido con 1 a 5 átomos de halógeno.
- [6] El compuesto del anteriormente mencionado [1], en el que R² es un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de alquilo de C₁₋₆, un átomo de halógeno, alcoxi, ciano, acilo, nitro y amino.
 - [7] El compuesto del anteriormente mencionado [1] o [2], en el que R³ y R⁴ son cada uno un átomo de hidrógeno.
 - [8] El compuesto del anteriormente mencionado [1] o [2], en el que R⁵ es un grupo metilo.
 - [9] 1-{5-(2-fluorofenil)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}-N-metilmetanamina o una de sus sales.
 - [10] 1-[4-fluoro-5-fenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina o una de sus sales.
- 25 [11] N-metil-1-[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina o una de sus sales.
 - [12] 1-[5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina o una de sus sales.
 - [13] 1-[5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina o una de sus sales.
 - [14] N-metil-1-[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina o una de sus sales.
- [16] Una composición farmacéutica que comprende el compuesto del anteriormente mencionado [1] o [2] o uno de 30 sus profármacos.
 - [17] La composición farmacéutica del anteriormente mencionado [16], que es un inhibidor de la secreción de ácido.
 - [18] La composición farmacéutica del anteriormente mencionado [16], que es un bloqueador de ácido competitivo con potasio.
- [19] La composición farmacéutica del anteriormente mencionado [16], que es un agente para el tratamiento o profilaxis de úlcera péptica, síndrome de Zollinger-Ellison, gastritis, esofagitis erosiva, esofagitis por reflujo, enfermedad por reflujo gastroesofágico sintomático (GERD sintomático), dispepsia funcional, cáncer gástrico, linfoma MALT del estómago, o hiperacidez gástrica; o un inhibidor de la hemorragia gastrointestinal superior debida a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo.
 - [20] Un compuesto para uso en un método para tratar o prevenir la úlcera péptica, síndrome de Zollinger-Ellison,

gastritis, esofagitis erosiva, esofagitis por reflujo, enfermedad por reflujo gastroesofágico sintomático (GERD sintomático), dispepsia funcional, cáncer gástrico, linfoma MALT del estómago, o hiperacidez gástrica; o un método para inhibir la hemorragia gastrointestinal superior debida a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo, que comprende administrar una cantidad efectiva del compuesto anteriormente mencionado [1] o [2] o uno de sus profármacos a un mamífero.

[21] El uso del compuesto del anteriormente mencionado [1] o [2] para la producción de una composición farmacéutica para el tratamiento o profilaxis de úlcera péptica, síndrome de Zollinger-Ellison, gastritis, esofagitis erosiva, esofagitis por reflujo, enfermedad por reflujo gastroesofágico sintomático (GERD sintomático), dispepsia funcional, cáncer gástrico, linfoma MALT del estómago, o hiperacidez gástrica; o un inhibidor de la hemorragia gastrointestinal superior debida a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo.

Efecto de la invención

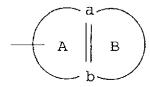
5

10

15

20

25


30

35

Dado que el compuesto (I) muestra un superior efecto inhibidor de la bomba de protones (mientras que los inhibidores de la bomba de protones convencionales tales como omeprazol, lansoprazol, etc. forman un enlace covalente con un resto cisteína de H+/K+-ATPasa e inhiben irreversiblemente la actividad de la enzima, dado que el compuesto (I) inhibe irreversiblemente la actividad de la bomba de protones (H+/K+ -ATPasa) y de una manera inhibidora antagonista de K+ para suprimir consecuentemente la secreción de ácido, se denomina a veces bloqueador de ácido competitivo con potasio: P-CAB o antagonista de la bomba de ácido (ACPA o APA), puede proporcionar una composición farmacéutica clínicamente útil para la profilaxis y/o tratamiento de úlcera péptica (por ejemplo, úlcera gástrica, úlcera gástrica debida a estrés postoperatorio, úlcera duodenal, úlcera anastomótica, úlcera causada por agentes antiinflamatorios no esteroideos, úlcera debida a estrés postoperatorio, etc.); síndrome de Zollinger-Ellison; gastritis; esofagitis erosiva; esofagitis por reflujo tal como esofagitis por reflujo erosivo; enfermedad por reflujo gastroesofágico sintomático (GERD sintomático) tal como enfermedad por reflujo no erosivo o enfermedad por reflujo gastroesofágico libre de esofagitis; dispepsia funcional; cáncer gástrico (que incluve cáncer gástrico asociado a la producción promovida de interleuquina 1ß debida al polimorfismo génico de interleuquina 1); linfoma MALT del estómago; hiperacidez gástrica; o un inhibidor de hemorragia gastrointestinal superior debida a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo (por ejemplo, estrés causado por cirugía mayor que requiere cuidado intensivo postoperatorio, y trastorno cerebrovascular, trauma craneal, fallo multiorgánico y quemaduras extensas, que requieren cada uno trato intensivo). Además, el compuesto (I) se usa para la profilaxis y/o tratamiento de trastornos de las vías respiratorias; asma, administración preanestésica, erradicación de Helicobacter pylori o ayuda para la erradicación. Dado que el compuesto (I) muestra baja toxicidad y es superior en solubilidad en agua, cinética en vivo y expresión de eficacia, es útil como composición farmacéutica. Además, dado que el compuesto (I) es estable incluso en condiciones ácidas, lo que permite la administración oral del compuesto en forma de un comprimido convencional sin formular una preparación entéricamente revestida. Esto tiene la consecuencia de que la preparación de comprimido se puede hacer más pequeña, lo que es ventajoso porque se traga fácilmente por los pacientes que tienen dificultad para tragar, particularmente los ancianos y los niños. Además, dado que está ausente el efecto de desprendimiento sostenido proporcionado por las preparaciones entéricamente revestidas, la expresión de una acción supresora de la secreción gástrica es rápida, y el alivio de los síntomas tales como el dolor es rápido.

Mejor modo de realizar la invención

- 40 En la fórmula (I), como "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" para R¹, se puede mencionar
 - (1) un grupo heterocíclico monocíclico que contiene nitrógeno, y
 - (2) un grupo de anillo condensado representado por la fórmula:

- en la que el anillo A es un grupo heterocíclico monocíclico que contiene nitrógeno, el anillo B es un anillo bencénico o un heterociclo, a y b son cada uno un átomo cabeza de puente que constituye el anillo (por ejemplo, un, un átomo de nitrógeno), y = muestra un enlace sencillo o un enlace doble, con tal de que esté presente un enlace a un grupo SO₂- en la fórmula (I) en un átomo que constituye el anillo A (átomo del anillo) distinto de los átomos cabeza de puente que constituyen el anillo a y b.
- Tal como se usa aquí, el anillo A necesita solo contener, como átomo que constituye el anillo A (átomo del anillo), por lo menos un (preferentemente de 1 a 4, más preferentemente 1 o 2) átomo de nitrógeno, y uno o ambos de los

ES 2 391 757 T3

átomos cabeza de puente que constituyen el anillo a y b pueden ser átomos de nitrógeno.

15

30

35

40

45

El "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" opcionalmente tiene sustituyente(s), y el(los) sustituyente(s) puede(n) estar presente(s) en cualquiera del anillo A y anillo B.

- Como "grupo heterocíclico monocíclico que contiene nitrógeno" del "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" y el anteriormente mencionado anillo A, por ejemplo, se pueden mencionar un grupo heterocíclico monocíclico que contiene nitrógeno no aromático saturado o insaturado (grupo heterocíclico monocíclico que contiene nitrógeno alifático), que contiene como átomo que constituye anillo (átomo del anillo), por lo menos un (preferentemente de 1 a 4, más preferentemente 1 o 2) átomo de nitrógeno.
 - Como "grupo heterocíclico monocíclico que contiene nitrógeno aromático", por ejemplo, se pueden mencionar, grupos heterocíclicos monocíclicos que contienen nitrógeno aromático tales como pirrolilo, oxazolilo, isoxazolilo, tiazolilo, isotiazolilo, imidazolilo (1H-imidazol-1-ilo, 1H-imidazol-4-ilo, etc.), pirazolilo, 1,2,3-oxadiazolilo, 1,2,4-oxadiazolilo, 1,3,4-oxadiazolilo, furazanilo, 1,2,3-tiadiazolilo, 1,2,4-tiadiazolilo, 1,3,4-tiadiazolilo, 1,2,3-tiadiazolilo, 1,2,4-triazolilo (1,2,4-triazol-1-ilo, 1,2,4-triazol-4-ilo, etc.), tetrazolilo, piridilo (2-, 3-, o 4-piridilo etc.), piridazinilo, pirimidinilo, pirazinilo, triazinilo y sus formas N-óxido. De estos, es preferible un grupo heterocíclico monocíclico que contiene nitrógeno aromático de 5 o 6 miembros, y son preferibles tiazolilo, imidazolilo, pirazolilo, piridilo, pirimidinilo y piridazinilo, y es particularmente preferible piridilo.
- Como "grupo heterocíclico monocíclico que contiene nitrógeno no aromático saturado o insaturado" se pueden mencionar formas parcialmente reducidas (por ejemplo, imidazolinilo, tetrahidropirimidinilo y similares) del anteriormente mencionado "grupo heterocíclico monocíclico que contiene nitrógeno aromático" y, por ejemplo, azetidinilo, pirrolidinilo, piperidilo (2-, 3- o 4-piperidilo), morfolinilo, tiomorfolinilo, piperazinilo (1-piperazinilo, etc.), homopiperazinilo. De estos, es preferible un grupo heterocíclico monocíclico que contiene nitrógeno no aromático de 5 o 6 miembros.
- Como "heterociclo" opcionalmente condensado con un grupo heterocíclico monocíclico que contiene nitrógeno, por ejemplo, se puede mencionar un heterociclo aromático o un heterociclo no aromático.
 - Como "heterociclo aromático", se pueden mencionar, por ejemplo, anillos heterocíclicos aromáticos de 5 o 6 miembros tales como un anillo furano, un anillo tiofeno, un anillo pirrol, un anillo oxazol, un anillo isoxazol, un anillo tiazol, un anillo isotiazol, un anillo imidazol, un anillo pirazol, un anillo 1,2,3-oxadiazol, un anillo 1,2,4-oxadiazol, un anillo 1,3,4-oxadiazol, un anillo furazano, un anillo 1,2,3-tiadiazol, un anillo 1,2,4-tiadiazol, un anillo 1,3,4-tiadiazol, un anillo 1,2,3-triazol, un anillo 1,2,4-triazol, un anillo tetrazol, un anillo piridina, un anillo piridazina, un anillo pirimidina, un anillo pirazina, un anillo triazina y, por ejemplo, heterociclos condensados aromáticos de 8 a 12 miembros tales como un anillo benzofurano, un anillo isobenzofurano, un anillo benzo[b]tiofeno, un anillo indol, un anillo isoindol, un anillo 1H-indazol, un anillo benzindazol, un anillo benzoxazol, un anillo 1,2-benzoisoxazol, un anillo benzotiazol, un anillo benzopirano, un anillo 1,2-benzoisotiazol, un anillo 1H-benzotriazol, un anillo quinolina, un anillo isoquinolina, un anillo cinnolina, un anillo quinazolina, un anillo quinoxalina, un anillo ftalazina, un anillo naftiridina, un anillo purina, un anillo pteridina, un anillo carbazol, un anillo α-carbolina, un anillo β-carbolina, un anillo γ-carbolina, un anillo acridina, un anillo fenoxazina, un anillo fenoxazina, un anillo fenoxatiina, un anillo tiantreno, un anillo fenantridina, un anillo fenantrona, un anillo indolizina, un anillo pirrolo[1,2-b]piridazina, un anillo pirazolo[1,5a]piridina, un anillo imidazo[1,2-a]piridina, un anillo imidazo[1,5-a]piridina, un anillo imidazo[1,2-b]piridazina, un anillo 1,2,4-triazolo[4,3-a]piridina, un imidazo[1,2-a]pirimidina, un anillo anillo 1,2,4-triazolo[4,3-b]piridazina (preferentemente, un heterociclo en el que el anillo heteromonocíclico aromático de 5 o 6 miembros anteriormente mencionado está condensado con un anillo bencénico o un heterociclo en el que dos heterociclos iguales o diferentes del anillo heteromonocíclico aromático de 5 o 6 miembros anteriormente mencionado están condensados, más preferentemente un heterociclo en el que el grupo heterocíclico monocíclico aromático de 5 o 6 miembros anteriormente mencionado está condensado con un anillo bencénico, preferentemente imidazopirimidinilo, etc.).
- Como "heterociclo no aromático", se pueden mencionar, por ejemplo, heterociclos no aromáticos saturados o insaturados de 3 a 8 miembros tales como un anillo oxirano, un anillo azetidina, un anillo oxetano, un anillo tietano, un anillo pirrolidina, un anillo tetrahidrofurano, un anillo tiorano, un anillo piperidina, un anillo tetrahidropirano, un anillo morfolina, un anillo tiomorfolina, un anillo piperazina, un anillo 3-hexahidrociclopenta[c]pirrol, un anillo homopiperidina, un anillo homopiperazina, o heterociclos no aromáticos en los que los dobles enlaces del anillo heteromonocíclico aromático anteriormente mencionado o heterociclo condensado aromático están parcial o totalmente saturados tales como un anillo dihidropiridina, un anillo dihidropirimidina, un anillo 1,2,3,4-tetrahidroguinolina.
- Como grupo heterocíclico monocíclico que contiene nitrógeno preferible condensado con un anillo bencénico o un heterociclo, se pueden mencionar, por ejemplo, grupos heterocíclicos condensados aromáticos que contienen nitrógeno tales como grupos heterocíclicos condensados bicíclicos aromáticos que contienen nitrógeno de 8 a 16 miembros (preferentemente de 8 a 12 miembros) tales como 2- o 3-indolilo, 1- o 3-isoindolilo, 1H-indazol-3-ilo, 2-bencimidazolilo, 2-benzoxazolilo, 3-benzoisoxazolilo, 3-benzoiso

4-isoquinolilo, 3- o 4-cinolinilo, 2- o 4-quinazolinilo, 2- o 3-quinoxalinilo, 1- o 4-ftalazinilo, naftiridinilo, purinilo, pteridinilo, 1,7-fenantrolin-2,3- o 4-ilo, 1-, 2-, 3-indolizinilo, pirrolo[1,2-b]piridazinilo, pirazolo[1,5-a]piridilo, imidazo[1,2-a]piridilo, imidazo[1,2-b]pirazolilo, imidazo[1,5-a]piridilo, imidazo[1,5-c]piridilo, pirazolo[3,4-d]pirimidinilo, imidazo[1,2-b]piridazinilo, imidazo[1,5-b]piridazinilo, pirazolo[3-4-b]piridilo, imidazo[1,2-a]pirimidinilo, 1,2,4-triazolo[4,3-a]piridilo, 1,2,4-triazolo[4,3-a]piridilo, 1,2,4-triazolo[1,5-a]piridilo, [1,2,4]triazolo[1,5-a]piridilo, [1,2,4]triazolo[1,5-a]piridilo, [1,2,4]triazolo[1,5-a]piridilo, pirrolo[2,3-b]piridilo, pirrolo[2,3-b]piridilo, pirrolo[2,3-b]piridilo, tieno[3,2-b]piridilo, tieno[3,2-b]piridilo, tieno[3,2-b]piridilo, pirrolo[2,3-b]piridilo, pirrolo[2,3-b]piridilo, pirrolo[2,3-d]pirimidinilo, pirrolo[2,3-d]pirimidinilo, pirrolo[2,3-d]pirimidinilo, pirrolo[3,2-d]pirimidinilo, pirrolo[4,3-d]pirimidinilo, pirrolo[2,3-d]pirimidinilo, pirrolo[4,3-d]pirimidinilo, pirrolo[4,3-d]p

10

25

30

35

40

45

50

55

60

Como "heterociclo que contiene nitrógeno no aromático", se puede mencionar, por ejemplo, un heterociclo (heterociclo que contiene nitrógeno alifático) no aromático saturado o insaturado (preferentemente saturado) que contiene nitrógeno de 3 a 8 miembros (preferentemente de 5 o 6 miembros) tales como azetidina, pirrolidina, imidazolidina, tiazolidina, oxazolidina, piperidina, morfolina, tiomorfolina, piperazina, o heterociclo no aromático que contiene nitrógeno en el que los dobles enlaces del heterociclo monocíclico aromático que contiene nitrógeno o heterociclo condensado aromático que contiene nitrógeno anteriormente mencionados están parcial o totalmente saturados, tales como 1,2,3,4-tetrahidroquinolina, 1,2,3,4-tetrahidroisoquinolina.

Como "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterocíclo", es preferible un grupo heterocíclico monocíclico que contiene nitrógeno aromático de 5 o 6 miembros entre aquellos mencionados anteriormente. De ellos es preferible un grupo heterocíclico que contiene nitrógeno aromático de 6 miembros tal como piridilo (por ejemplo, 2-, 3- o 4-piridilo, etc.), pirimidinilo (por ejemplo, 2-, 4- o 5-pirimidinilo, etc.), piridazinilo (por ejemplo, 3- o 4-piridazinilo, etc.), y es particularmente preferible piridilo.

Como sustituyente que puede tener el "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo", se pueden mencionar (1) un átomo de halógeno (por ejemplo, un átomo de flúor, átomo de cloro, átomo de bromo, átomo de yodo, etc.), (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, fluorometoxi, etc.) que tiene opcionalmente de 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (6) ariloxi de C₆-₁₄ (por ejemplo, feniloxi, naftiloxi, etc.), (7) aralquiloxi de C₇₋₁₆ (por ejemplo, benciloxi, fenetiloxi, difenilmetiloxi, 1naftilmetiloxi, 2-naftilmetiloxi, 2,2-difenilmetiloxi, 3-fenilpropiloxi, 4-fenilbutiloxi, 5-fenilpentiloxi, etc.), (8) mercapto, (9) alquiltio de C₁₋₆ (por ejemplo, metiltio, difluorometiltio, trifluorometiltio, etiltio, propiltio, isopropiltio, butiltio, 4,4,4trifluorobutiltio, pentiltio, hexiltio, etc.) que tiene opcionalmente de 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (10) ariltio de C₆₋₁₄ (por ejemplo, feniltio, naftiltio, etc.), (11) aralquiltio de C₇₋₁₆ (por ejemplo, benciltio, fenetiltio, difenilmetiltio, 1-naftilmetiltio, 2-naftilmetiltio, 2,2-difeniletiltio, 3-fenilpropiltio, 4-fenilbutiltio, 5fenilpentiltio, etc.), (12) amino, (13) mono-alquilamino de C₁₋₆ (por ejemplo, metilamino, etilamino, etc.), (14) monoarilamino de C₆₋₁₄ (por ejemplo, fenilamino, 1-naftilamino, 2-naftilamino, etc.), (15) mono-aralquil de C₇₋₁₆-amino (por ejemplo, bencilamino, etc.), (16) di-alquil de C₁₋₆-amino (por ejemplo, dimetilamino, dietilamino, etc.), (17) di-aril de C_{6-14} -amino (por ejemplo, difenilamino, etc.), (18) di-aralquil de C_{7-16} -amino (por ejemplo, dibencilamino, etc.), (19) formilo, (20) alquil de C₁₋₆-carbonilo (por ejemplo, acetilo, propionilo, etc.), (21) aril de C₆₋₁₄-carbonilo (por ejemplo, benzoilo, 1-naftoilo, 2-naftoilo, etc.), (22) carboxilo, (23) alcoxi de C₁₋₆-carbonilo (por ejemplo, metoxicarbonilo, etoxicarbonilo, propoxicarbonilo, terc-butoxicarbonilo, etc.), (24) ariloxi de C₆₋₁₄-carbonilo (por ejemplo, fenoxicarbonilo, etc.), (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C_{1-6} -carbamoilo (por ejemplo, metilcarbamoilo, etilcarbamoilo, etc.), (28) di-alquil de C_{1-6} -carbamoilo (por ejemplo, dimetilcarbamoilo, dietilcarbamoilo, etc.), (29) aril de C_{6-14} -carbamoilo (por ejemplo, fenilcarbamoilo, 1naftilcarbamoilo, 2-naftilcarbamoilo, etc.), (30) alquil de C₁₋₆-sulfonilo (por ejemplo, metilsulfonilo, etilsulfonilo, etc.), (31) aril de C₆₋₁₄-sulfonilo (por ejemplo, fenilsulfonilo, 1-naftilsulfonilo, 2-naftilsulfonilo, etc.), (32) alquil de C₁₋₆-sulfinilo (por ejemplo, metilsulfinilo, etilsulfinilo, etc.), (33) aril de C₆₋₁₄-sulfinilo (por ejemplo, fenilsulfinilo, 1-naftilsulfinilo, 2naftilsulfinilo, etc.), (34) formilamino, (35) alquil de C₁₋₆-carbonilamino (por ejemplo, acetilamino, etc.), (36) aril de C₆-14-carbonilamino (por ejemplo, benzoilamino, naftoilamino, etc.), (37) alcoxi de C₁₋₆-carbonilamino (por ejemplo, metoxicarbonilamino, etoxicarbonilamino, propoxicarbonilamino, butoxicarbonilamino, etc.), (38) alquil de C_{1.6}sulfonilamino (por ejemplo, metilsulfonilamino, etilsulfonilamino, etc.), (39) aril de C₆₋₁₄-sulfonilamino (por ejemplo, fenilsulfonilamino, 2-naftilsulfonilamino, 1-naftilsulfonilamino, etc.), (40) alquil de C₁₋₆-carboniloxi (por ejemplo, acetoxi, propioniloxi, etc.), (41) aril de C₆₋₁₄-carboniloxi (por ejemplo, benzoiloxi, naftilcarboniloxi, etc.), (42) alcoxi de C₁₋₆-carboniloxi (por ejemplo, metoxicarboniloxi, etoxicarboniloxi, propoxicarboniloxi, butoxicarboniloxi, etc.), (43) mono-alquil de C_{1-6} -carbamoiloxi (por ejemplo, metilcarbamoiloxi, etilcarbamoiloxi, etc.), (44) di-alquil de C_{1-6} carbamoiloxi (por ejemplo, dimetilcarbamoiloxi, dietilcarbamoiloxi, etc.), (45) aril de C₆₋₁₄-carbamoiloxi (por ejemplo, fenilcarbamoiloxi, naftilcarbamoiloxi, etc.), (46) un amino cíclico saturado de 5 a 7 miembros (por ejemplo, pirrolidin-1-ilo, piperidino, piperazin-1-ilo, morfolino, tiomorfolino, hexahidroazepin-1-ilo, etc.) que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de átomo de nitrógeno, átomo de azufre y átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros (por ejemplo, 2-tienilo, 3-tienilo, 2-piridilo, 3-piridilo, 4-piridilo, 2-quinolilo, 3-quinolilo, 4-quinolilo, 5-quinolilo, 8-quinolilo, 1isoquinolilo, 3-isoquinolilo, 4-isoquinolilo, 5-isoquinolilo, 1-indolilo, 2-indolilo, 3-indolilo, 2-benzo[b]tienilo, 3-benzo[b]tienilo, 2-benzo[b]furanilo, 3-benzo[b]furanilo, etc.) que contienen, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquilenodioxi de C₁₋₃ (por ejemplo, metilenodioxi, etilenodioxi, etc.), (49) cicloalquilo de C₃₋₇ (por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, cicloheptilo, etc.), (50) grupo alquilo de C₁₋₆ (por ejemplo, metilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo, terc-butilo, n-pentilo, sec-pentilo, isopentilo, neopentilo, isohexilo, etc.). que tienen opcionalmente de 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (51) un grupo alquenilo de C₂₋₆ (por ejemplo, alilo, isopropenilo, isobutenilo, 1-metilalilo, 2-pentenilo, 2-hexenilo, etc.) que tiene opcionalmente de 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (52) un grupo alquinilo de C₂₋₆ (por ejemplo, propargilo, 2-butinilo, 3-butinilo, 3-pentinilo, 3-hexinilo, etc.), (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi (por ejemplo, hidroximetilo, hidroxietilo, etc.).

El sustituyente puede estar presente en una posición sustituible, y el número de sustituyentes es de 1 a 5, preferentemente de 1 a 3.

Como "grupo arilo de C_{6-14} " del "grupo arilo de C_{6-14} opcionalmente sustituido" para R^2 , se puede mencionar, por ejemplo, fenilo, 1-naftilo, 2-naftilo, 2-bifenililo, 3-bifenililo, 4-bifenililo, 2-antrilo.

Como sustituyente que tiene opcionalmente el "grupo arilo de C₆₋₁₄", se pueden mencionar grupos similares a los sustituyentes que tiene opcionalmente el "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" para el R¹ anteriormente mencionado.

El número de sustituyentes es de 1 a 5, preferentemente de 1 a 3.

5

10

35

40

45

50

55

20 Como "grupo tienilo" del "grupo tienilo opcionalmente sustituido" para R², se puede mencionar 2- o 3-tienilo.

Como sustituyente que tiene opcionalmente el "grupo tienilo", se pueden mencionar grupos similares a los sustituyentes que tiene opcionalmente el "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" para el R¹ opcionalmente mencionado.

El número de sustituyentes es de 1 a 4, preferentemente de 1 a 3.

Como "grupo piridilo" del "grupo piridilo opcionalmente sustituido" para R², se pueden mencionar 2-, 3-, o 4-piridilo, o bipiridilo (por ejemplo, 2,3'-bipiridin-5-ilo).

Como sustituyente que tiene opcionalmente el "grupo piridilo", se pueden mencionar grupos similares a los sustituyentes que tiene opcionalmente el "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" para el R¹ opcionalmente mencionado.

30 El número de sustituventes es de 1 a 4, preferentemente de 1 a 3.

Como "grupo alquilo inferior" del "grupo alquilo inferior opcionalmente sustituido" para R^3 o R^4 , se pueden mencionar, por ejemplo, grupos alquilo de C_{1-4} tales como metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo.

Como sustituyente que tiene opcionalmente el "grupo alquilo inferior", se puede mencionar (1) un átomo de halógeno (por ejemplo, átomo de flúor, átomo de cloro, átomo de bromo, átomo de yodo, etc.), (2) nitro (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, fluorometoxi, etc.) que tiene opcionalmente de 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (6) ariloxi de C₆₋₁₄ (por ejemplo, feniloxi, naftiloxi, etc.), (7) aralquiloxi de C₇₋₁₆ (por ejemplo, benciloxi, fenetiloxi, difenilmetiloxi, 1-naftilmetiloxi, 2-naftilmetiloxi, 2,2-difeniletiloxi, 3-fenilpropiloxi, 4-fenilbutiloxi, 5-fenilpentiloxi, etc.), (8) mercapto, (9) alquiltio de C₁₋₆ (por ejemplo, metiltio, difluorometiltio, trifluorometiltio, etiltio, propiltio, isopropiltio, butiltio, 4,4,4-trifluorobutiltio, pentiltio, hexiltio, etc.) que tiene opcionalmente de 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (10) ariltio de C₆₋₁₄ (por ejemplo, feniltio, naftiltio, etc.), (11) aralquiltio de C₇₋₁₆ (por ejemplo, benciltio, fenetiltio, difenilmetiltio, 1-naftilmetiltio, 2-naftilmetiltio, 2,2-difeniletiltio, 3-fenilpropiltio, 4fenilbutiltio, 5-fenilpentiltio, etc.), (12) amino, (13) mono-alquilamino de C₁₋₆ (por ejemplo, metilamino, etilamino, etc.), (14) mono-arilamino de C₆₋₁₄ (por ejemplo, fenilamino, 1-naftilamino, 2-naftilamino, etc.), (15) mono-aralquil de C₇₋₁₆amino (por ejemplo, bencilamino, etc.), (16) di-alquil de C₁₋₆-amino (por ejemplo, dimetilamino, dietilamino, etc.), (17) di-aril de $C_{6.14}$ -amino (por ejemplo, difenilamino, etc.), (18) di-aralquil de $C_{7.16}$ -amino (por ejemplo, dibencilamino, etc.), (19) formilo, (20) alquil de C₁₋₆-carbonilo (por ejemplo, acetilo, propionilo, etc.), (21) aril de C₆₋₁₄-carbonilo (por ejemplo, benzoilo, 1-naftoilo, 2-naftoilo, etc.), (22) carboxilo, (23) alcoxi de C₁₋₆-carbonilo (por ejemplo, $metoxicarbonilo,\ etoxicarbonilo,\ propoxicarbonilo,\ terc-butoxicarbonilo,\ etc.),\ (24)\ ariloxi\ de\ C_{6-14}\text{-}carbonilo\ (por$ ejemplo, fenoxicarbonilo, etc.), (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C₁₋₆-carbamoilo (por ejemplo, metilcarbamoilo, etilcarbamoilo, etc.), (28) di-alquil de C_{1-6} -carbamoilo (por ejemplo, dimetilcarbamoilo, dietilcarbamoilo, etc.), (29) aril de C_{6-14} -carbamoilo (por ejemplo, fenilcarbamoilo, 1naftilcarbamoilo, 2-naftilcarbamoilo, etc.), (30) alquil de C_{1.6}-sulfonilo (por ejemplo, metilsulfonilo, etilsulfonilo, etc.), (31) aril de C₆₋₁₄-sulfonilo (por ejemplo, fenilsulfonilo, 1-naftilsulfonilo, 2-naftilsulfonilo, etc.), (32) alquil de C₁₋₆-sulfinilo (por ejemplo, metilsulfinilo, etilsulfinilo, etc.), (33) aril de C₆₋₁₄-sulfinilo (por ejemplo, fenilsulfinilo, 1-naftilsulfinilo, 2naftilsulfinilo, etc.), (34) formilamino, (35) alquil de C₁₋₆-carbonilamino (por ejemplo, acetilamino, etc.), (36) aril de C₆-14-carbonilamino (por ejemplo, benzoilamino, naftoilamino, etc.), (37) alcoxi de C₁₋₆-carbonilamino (por ejemplo, metoxicarbonilamino, etoxicarbonilamino, propoxicarbonilamino, butoxicarbonilamino, etc.), (38) alquil de C₁₋₆sulfonilamino (por ejemplo, metilsulfonilamino, etilsulfonilamino, etc.), (39) aril de C_{6-14} -sulfonilamino (por ejemplo, fenilsulfonilamino, 2-naftilsulfonilamino, 1-naftilsulfonilamino, etc.), (40) alquil de C₁₋₆-carboniloxi (por ejemplo, acetoxi, propioniloxi, etc.), (41) aril de C₆₋₁₄-carboniloxi (por ejemplo, benzoiloxi, naftilcarboniloxi, etc.), (42) alcoxi de C₁₋₆-carboniloxi (por ejemplo, metoxicarboniloxi, etoxicarboniloxi, propoxicarboniloxi, butoxicarboniloxi, etc.), (43) mono-alquil de C_{1-6} -carbamoiloxi (por ejemplo, metilcarbamoiloxi, etilcarbamoiloxi, etc.), (44) di-alquil de C_{1-6} carbamoiloxi (por ejemplo, dimetilcarbamoiloxi, dietilcarbamoiloxi, etc.), (45) aril de C₆₋₁₄-carbamoiloxi (por ejemplo, fenilcarbamoiloxi, naftilcarbamoiloxi, etc.), (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de átomo de nitrógeno, átomo de azufre y átomo de oxígeno (por ejemplo, pirrolidin-1-ilo, piperidino, piperazin-1-ilo, morfolino, tiomorfolino, hexahidroazepin-1-ilo, etc.), (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono. 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (por ejemplo, 2-tienilo, 3-tienilo, 2-piridilo, 3-piridilo, 4-piridilo, 2-quinolilo, 3-quinolilo, 4-quinolilo, 5-quinolilo, 8-quinolilo, 1-isoquinolilo, 3-isoquinolilo, 4-isoquinolilo, 5isoquinolilo, 1-indolilo, 2-indolilo, 3-indolilo, 2-benzotiazolilo, 2-benzo[b]tienilo, 3-benzo[b]tienilo, 2-benzo[b]tienilo, 3-benzo[b]tienilo, 3benzo[b]furanilo, etc.) (48) alquilenodioxi de C₁₋₃ (por ejemplo, metilenodioxi, etilenodioxi, etc.), (49) cicloalquilo de C₃₋₇ (por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohex

20 El número de sustituyentes es de 1 a 3.

5

10

15

25

30

35

40

45

50

55

60

Como "grupo acilo" para R³ o R⁴, se puede mencionar un grupo acilo que tiene de 1 a 20 átomos de carbono, que se deriva de ácido carboxílico orgánico. Por ejemplo, se pueden usar grupos alcanolilo de C₁₋₇ (por ejemplo, formilo; alquil de C₁₋₆-carbonilo tales como acetilo, propionilo, butirilo, isobutirilo, pentanoilo, hexanoilo, heptanoilo, etc.), grupos aril de C₆₋₁₄-carbonilo (por ejemplo, benzoilo, naftalenocarbonilo, etc.), grupos alcoxi de C₁₋₆-carbonilo (por ejemplo, metoxicarbonilo, etoxicarbonilo, propoxicarbonilo, isopropoxicarbonilo, butoxicarbonilo, isobutoxicarbonilo, sec-butoxicarbonilo, terc-butoxicarbonilo, etc.), grupos ariloxi de C₆₋₁₄-carbonilo (por ejemplo, grupo fenoxicarbonilo), grupos aralquil de C₇₋₁₉-carbonilo (por ejemplo, fenil-alquil de C₁₋₄-carbonilo tal como bencilcarbonilo, fenetilcarbonilo, fenilpropilcarbonilo, naftil-alquil de C_{1.4}-carbonilo tal como benzhidrilcarbonilo, naftiletilcarbonilo, etc.), grupos aralquiloxi de C_{7-19} -carbonilo (por ejemplo, fenil-alquiloxi de C_{1-4} -carbonilo tal como benciloxicarbonilo y similares, etc.), grupo carbonilo-heterociclo de 5 o 6 miembros o sus grupos carbonilo-heterociclo condensados (por ejemplo, pirrolilcarbonilo, tal como 2- o 3-pirrolilcarbonilo; pirazolilcarbonilo tal como 3-, 4- o 5-pirazolilcarbonilo y similares; imidazolilcarbonilo tal como 2-, 4- o 5-imidazolilcarbonilo; triazolilcarbonilo tal como 1,2,3-triazol-4-ilcarbonilo, 1,2,4triazol-3-ilcarbonilo; tetrazolilcarbonilo tal como 1H- o 2H-tetrazol-5-ilcarbonilo; furilcarbonilo tal como 2- o 3furilcarbonilo; tienilcarbonilo tal como 2- o 3-tienilcarbonilo y similares; oxazolilcarbonilo tal como 2-, 4-, o 5oxazolilcarbonilo; isoxazolilcarbonilo tal como 3-, 4- o 5-isoxazolilcarbonilo; oxadiazolilcarbonilo tal como 1,2,3oxadiazol-4- o 5-ilcarbonilo, 1,2,5-oxadiazol-3- o 4-ilcarbonilo, 1,3,4-oxadiazol-2-ilcarbonilo; tiazolilcarbonilo tal como 2-, 4-, o 5-tiazolilcarbonilo; isotiazolilcarbonilo tal como 3-, 4- o 5-isotiazolilcarbonilo; tiadiazolilcarbonilo tal como 1,2,3-tiadiazol-4- o 5-ilcarbonilo, 1,2,4-tiadiazol-3- o 5-ilcarbonilo, 1,2,5-tiadiazol-3- o 4-ilcarbonilo, 1,3,4-tiadiazol-2ilcarbonilo; pirrolidinilcarbonilo tal como 2- o 3-pirrolidinilcarbonilo; piridilcarbonilo tal como 2-, 3- o 4-piridilcarbonilo; piridilcarbonilo en el que un átomo de nitrógeno está oxidado tal como 2-, 3- o 4-piridil-N-oxidocarbonilo; piridazinilcarbonilo en el que uno o ambos átomos de nitrógeno están oxidados tal como 3-, 4-, 5- o 6-piridazinil-Noxidocarbonilo; pirimidinilcarbonilo tal como 2-, 4- o 5-pirimidinilcarbonilo; pirimidinilcarbonilo en el que uno o ambos átomos de nitrógeno están oxidados, tal como 2-, 4-, 5- o 6-pirimidinil-N-oxidocarbonilo; pirazinilcarbonilo; piperidinilcarbonilo tal como 2-, 3- o 4-piperidinilcarbonilo; piperazinilcarbonilo; indolilcarbonilo tal como 3H-indol-2- o 3-ilcarbonilo; piranilcarbonilo tal como 2-, o 3- o 4-piranilcarbonilo; tiopiranilcarbonilo tal como 2-, 3- o 4tiopiranilcarbonilo; quinolilcarbonilo tal como 3-, 4-, 5-, 6-, 7- u 8-quinolilcarbonilo; isoquinolilcarbonilo; pirido[2,3d]pirimidinilcarbonilo (por ejemplo, pirido[2,3-d]pirimidin-2-ilcarbonilo); naftiridinilcarbonilo (por ejemplo, 1,5-naftiridin-2- o 3-lilcarbonilo) tal como 1,5-, 1,6-, 1,7-, 1,8-, 2,6- o 2,7-naftiridinilcarbonilo; tieno[2,3-d]piridilcarbonilo (por ejemplo, tieno[2,3-d]piridin-3-ilcarbonilo); pirazinoquinolilcarbonilo (por ejemplo, pirazino[2,3-b]quinolin-2-ilcarbonilo); un grupo carbonilo-heterociclo de 5 o 6 miembros (por ejemplo, cromenilcarbonilo (por ejemplo, 2H-cromen-2- o 3ilcarbonilo, etc.)) que contiene de 1 a 4 heteroátomos tal como átomo de nitrógeno (opcionalmente oxidado, átomo de oxígeno, átomo de azufre (opcionalmente mono o dioxidado), un grupo acetilo-heterociclo de 5 o 6 miembros (por ejemplo, un grupo acetilo-heterociclo de 5 o 6 miembros que contiene de 1 a 4 heteroátomos tales como átomo de nitrógeno (opcionalmente oxidado), átomo de oxígeno, átomo de azufre (opcionalmente mono o dioxidado)), tal como 2-pirrolilacetilo, 3-imidazolilacetilo, 5-isoxazolilacetilo y similares.

Con respecto al sustituyente del grupo acilo, por ejemplo, cuando el anteriormente mencionado grupo acilo es un grupo alcanoilo o grupo alcoxi-carbonilo, el grupo acilo está opcionalmente sustituido con 1 a 3 grupos alquiltio (por ejemplo, alquiltio de C_{1-4} tal como metiltio, etiltio, n-propiltio, isopropiltio), halógeno (por ejemplo, flúor, cloro, bromo, yodo), grupos alcoxi (por ejemplo, alcoxi de C_{1-6} tal como metoxi, etoxi, n-propoxi, terc-butoxi, n-hexiloxi), un grupo nitro, grupos alcoxicarbonilo (por ejemplo, alcoxicarbonilo de C_{1-6} tal como metoxicarbonilo, etoxicarbonilo, n-propoxicarbonilo, isopropoxicarbonilo, n-butoxicarbonilo, isobutoxicarbonilo, sec-butoxicarbonilo, terc-butoxicarbonilo), grupo alquilamino (por ejemplo, mono- o di-alquilamino de C_{1-6} tal como metilamino, metilamino, n-propilamino, n-butilamino, n-pentilamino, n-hexilamino, dietilamino, metiletilamino, di-

ES 2 391 757 T3

(n-propil)amino, di-(n-butil)amino), grupos alcoxiimino (por ejemplo, alcoxiimino de C₁₋₆ tal como metoxiimino, etoxiimino, n-propoxiimino, terc-butoxiimino, n-hexiloxiimino) o hidroxiimino.

Cuando el anteriormente mencionado grupo acilo es un grupo aril-carbonilo, un grupo ariloxi-carbonilo, un grupo aralquil-carbonilo, un grupo aralquiloxicarbonilo, un grupo carbonilo-heterociclo de 5 o 6 miembros o un grupo acetilo-heterociclo de 5 o 6 miembros está opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) grupos alquilo (por ejemplo, alquilo de C₁₋₆ tal como metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo- tercbutilo, n-pentilo, sec-pentilo, isopentilo, neopentilo, n-hexilo, isohexil-cicloalquilo de C₃₋₆ tal como ciclohexilo), grupos alquenilo (por ejemplo, alquenilo de C₂₋₆ tal como alilo, isopropenilo, isobutenilo, 1-metilalilo, 2-pentenilo, 2-hexenilo), grupos alquinilo (por ejemplo, alquinilo de C₂₋₆ tal como propargilo, 2-butinilo, 3-butinilo, 3-pentinilo, 3-hexinilo), grupos alcoxi (por ejemplo, alcoxi de C₁₋₆ tal como metoxi, etoxi, n-propoxi, terc-butoxi, n-hexiloxi), grupos acilo [por ejemplo, alcanoilo de C₁₋₇ tal como formilo, acetilo, propionilo, butirilo, isobutirilo, pentanoilo, hexanoilo, heptanoilo; aril de C_{6-14} -carbonilo tal como benzoilo, naftalenocarbonilo; alcoxi de C_{1-6} -carbonilo tal como metoxicarbonilo, etoxicarbonilo, propoxicarbonilo, isopropoxicarbonilo, butoxicarbonilo, isobutoxicarbonilo, sec-butoxicarbonilo, tercbutoxicarbonilo; ariloxi de C₆₋₁₄-carbonilo tal como fenoxicarbonilo; aralquil de C₇₋₁₉-carbonilo tal como fenil-alquil de C₁₋₄-carbonilo (por ejemplo, bencilcarbonilo, fenetilcarbonilo, fenilpropilcarbonilo); aralquiloxi de C₇₋₁₉-carbonilo tal como fenil-alquiloxi de C₁₋₄-carbonilo (por ejemplo, benciloxicarbonilo)], nitro, amino, hidroxi, ciano, sulfamoilo, mercapto, halógeno (por ejemplo, flúor, cloro, bromo, yodo), o grupos alquiltio (alquiltio de C_{1.4} tal como metiltio, etiltio, n-propiltio, isobutiltio).

Como "átomo de halógeno" para R³ o R⁴ se pueden mencionar flúor, cloro, bromo y yodo.

5

10

15

25

30

35

40

45

50

55

20 Como "grupo alquilo" para R⁵, por ejemplo, se puede mencionar alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.).

Como R¹, es preferible un "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" (por ejemplo, grupos heterocíclicos monocíclicos que contienen nitrógeno aromáticos de 5-6 miembros tales como tiazolilo, imidazolilo, pirazolilo, piridilo, pirimidinilo, piridazinilo, piranilo) opcionalmente sustituidos con 1 a 3 sustituyentes seleccionados de (i) halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) hidroxi, (iii) ciano, (iv) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, secbutilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente 1 a 3) halógeno (por ejemplo, flúor, cloro, bromo, yodo), (v) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (vi) grupo amino opcionalmente sustituido con alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.), (vii) oxo y (viii) alcoxi de C₁₋₆-carbonilo (por ejemplo, metoxicarbonilo, etoxicarbonilo, propoxicarbonilo, terc-butoxicarbonilo, etc.).

Como R¹, especialmente, es preferible un "grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo" (por ejemplo, un grupo heterocíclico monocíclico que contienen nitrógeno aromático de 5-6 miembros tal como tiazolilo, imidazolilo, pirazolilo, piridilo, piridi

Como R¹, particularmente, es preferible un grupo heterocíclico monocíclico que contiene nitrógeno de 6 miembros, (por ejemplo, grupos piridilo (por ejemplo 2-, 3- o 4-piridilo, etc.), grupos pirimidinilo (por ejemplo, 2-, 4- o 5-pirimidinilo, etc.), grupos piridazinilo (por ejemplo, 3-, o 4-piridazinilo, etc.), etc.) opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) hidroxi, (iii) ciano, (iv) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (vi) un grupo amino opcionalmente sustituido con alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, terc-butilo, pentilo, hexilo, etc.) y es particularmente preferido un grupo piridilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, ter-butilo, pentilo, hexilo, etc.), opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo) y (ii) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo).

Como R², es preferible [1] un grupo arilo de C₆₋₁₄ (por ejemplo, grupo fenilo) opcionalmente sustituido con 1 a 5

(preferentemente de 1 a 3) sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo de C_{1-6} (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C_{1-6} (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) acetilo, (vi) cicloalquilo de C_{3-7} (por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, cicloheptilo, etc.), (vii) alquilsulfonilo de C_{1-6} (por ejemplo, metilsulfonilo, etilsulfonilo, etc.), (viii) un grupo alquilo de C_{1-6} sustituido con 1 a 3 hidroxi (por ejemplo, hidroximetilo, hidroxietilo, etc.), (ix) alquiltilo de C_{1-6} (por ejemplo, metiltio, etiltio, propiltio, isopropiltio, butiltio, isobutiltio, sec-butiltio, pentiltio, hexiltio, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo) y (x) alquilsulfinilo de C_{1-6} (por ejemplo, metilsulfinilo, etilsulfinilo, etc.),

10

15

35

40

55

[2] un grupo tienilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo de C_{1-6} (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C_{1-6} (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) acetilo, o

[3] es preferible un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo inferior (específicamente de C₁₋₆) (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) acilo (por ejemplo, acetilo), (vi) nitro y (vii) amino.

De estos, como R², es preferible [1] un grupo arilo de C₆₋₁₄ (por ejemplo, grupo fenilo) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo) y (v) acetilo,

[2] un grupo tienilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo de C_{1-6} (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C_{1-6} (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo) y (v) acetilo, o

[3] es preferible un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo inferior(específicamente de C₁₋₆) (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) acilo (por ejemplo, acetilo), (vi) nitro y (vii) amino.

Particularmente, [1] un grupo fenilo opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo),

[2] un grupo tienilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), y (ii) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), o

[3] es preferible un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo) y (ii) alquilo inferior(específicamente de C₁₋₆) (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo).

De los mencionados anteriormente, una realización preferida de R^2 incluye [1] un grupo fenilo opcionalmente sustituido con 1 a 5 sustituyentes seleccionados de (i) un átomo de halógeno y (ii) alquilo de C_{1-6} opcionalmente

sustituido con 1 a 5 átomos de halógeno, [2] un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de alquilo inferior (C_{1-6}), un átomo de halógeno, alcoxi (alcoxi de C_{1-6}), ciano, acilo (por ejemplo, acetilo), nitro y amino.

Como R², son particularmente preferibles un grupo fenilo, un grupo 2-fluorofenilo, un grupo 2-metilfenilo, un grupo 2-fluoropiridin-3-ilo, un grupo 3-fluoropiridin-4-ilo, un grupo 2-cloropiridin-3-ilo, un grupo 6-cloropiridin-3-ilo, un grupo 4-metilpiridin-3-ilo, un grupo 2-metilpiridin-3-ilo, un grupo 3-metilpiridin-2-ilo, un grupo 2-trifluorometilpiridin-3-ilo y un grupo 6'-cloro-2,3'-bipiridin-5-ilo.

Preferentemente R^3 y R^4 son cada uno un átomo de hidrógeno, o uno de R^3 y R^4 es un átomo de hidrógeno y el otro es un grupo alquilo de C_{1-6} (por ejemplo, metilo, etilo, n-propilo, isobutilo, etc.), un grupo alquil de C_{1-6} -carbonilo (por ejemplo, acetilo, propionilo, butirilo, isobutirilo, pentanoilo, hexanoilo, heptanoilo, etc.), un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), un grupo ciano o un grupo nitro. Es particularmente preferible un compuesto en el que tanto R^3 como R^4 son átomos de hidrógeno.

Como R⁵, es preferible metilo o etilo, y es particularmente preferible metilo.

Las realizaciones preferibles anteriormente mencionadas de los sustituyentes para R¹ a R⁵ se pueden combinar opcionalmente para conseguir una realización preferible del compuesto (I).

De los compuestos (I), es preferible un compuesto en el que

10

15

20

25

30

35

55

R¹ es un grupo heterocíclico (por ejemplo, tiazolilo, imidazolilo, pirazolilo, piridilo, piridil

 R^2 , es [1] un grupo arilo de C_{6-14} (por ejemplo, grupo fenilo) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo de C_{1-6} (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C_{1-6} (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) acetilo, (vi) cicloalquilo de C_{3-7} (por ejemplo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, etc.), (vii) alquilsulfonilo de C_{1-6} (por ejemplo, metilsulfonilo, etc.), (ix) alquiltio de C_{1-6} (por ejemplo, metiltio, propiltio, isopropiltio, butiltio, isobutiltio, sec-butiltio, pentiltio, hexiltio, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo) y (x) alquilsulfinilo de C_{1-6} (por ejemplo, metilsulfinilo, etilsulfinilo, etc.),

[2] un grupo tienilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo) y (v) acetilo,

[3] un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) ciano, (iii) alquilo inferior(específicamente de C₁₋₆) (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (iv) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (v) acilo (por ejemplo, acetilo), (vi) nitro y (vii) amino, o

[4] un grupo bipiridilo opcionalmente sustituido con 1 a 3 átomos de halógeno (por ejemplo, flúor, cloro, bromo, yodo); R^3 y R^4 son cada uno un átomo de hidrógeno, o uno de R^3 y R^4 es un átomo de hidrógeno y el otro es un grupo alquilo de C_{1-6} (por ejemplo, metilo, etilo, n-propilo, isobutilo, etc.) un grupo alquil de C_{1-6} -carbonilo (por ejemplo, acetilo, propionilo, butirilo, isobutirilo, pentanoilo, hexanoilo, heptanoilo, etc.), un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), un grupo ciano o un grupo nitro;

R⁵ es metilo o etilo.

10

15

25

45

50

un compuesto en el que, por ejemplo, es particularmente preferible

R¹ es un grupo piridilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), (ii) alcoxi de C₁₋₆ (por ejemplo, metoxi, etoxi, propoxi, isopropoxi, butoxi, isobutoxi, sec-butoxi, pentiloxi, hexiloxi, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), R², es [1] un grupo fenilo opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo), (ii) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo),

[2] un grupo tienilo opcionalmente sustituido con 1 a 3 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo) y (ii) alquilo de C₁₋₆ (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo), o

[3] un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (i) un átomo de halógeno (por ejemplo, flúor, cloro, bromo, yodo) y (ii) alquilo inferior (específicamente de C_{1-6}) (por ejemplo, metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, terc-butilo, pentilo, hexilo, etc.) opcionalmente sustituido con 1 a 5 (preferentemente de 1 a 3) halógenos (por ejemplo, flúor, cloro, bromo, yodo),

20 R³ y R⁴ son cada uno un átomo de hidrógeno, y R⁵ es metilo.

Como compuesto (I), es particularmente preferible, N-metil-1-[5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina, 1-[5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina, N-metil-1-[4-metil-1-(piridin-3-ilsulfonil)-5-fenil-1H-pirrol-3-il]metanoamina; N-metil-1-[1-(piridin-3-ilsulfonil)-5-(3-tienil)-1H-pirrol-3-il]metanamina, N-metil-1-[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina, 1-[5-(2,4-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina, 1-[4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina, N-metil-1-[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina, 0 una de sus sales.

Como una sal del compuesto (I), se puede mencionar sal metálica, sal de amonio, sales con bases orgánicas, sales con bases inorgánicas, sales con ácidos orgánicos, sales con aminoácidos básicos o ácidos. Los ejemplos preferibles de sal metálica incluyen sales de metal alcalino tales como sal de sodio, sal de potasio; sales de metal alcalinotérreo tales como sal de calcio, sal de magnesio, sal de bario; sales de aluminio. Los ejemplos preferibles de la sal con base orgánica incluyen una sal con trimetilamina, trietilamina, piridina, picolina, 2,6-lutidina, etanolamina, dietanolamina, trietanolamina, ciclohexilamina, diciclohexilamina, N,N'-dibenciletilendiamina. Los ejemplos preferibles de la sal con ácido inorgánico incluyen una sal con ácido clorhídrico, ácido fosfórico y similares. Los ejemplos preferibles de la sal con ácido orgánico incluyen una sal con ácido fórmico, ácido acético, ácido trifluoroacético, ácido ftálico, ácido fumárico, ácido oxálico, ácido tartárico, ácido maleico, ácido cítrico, ácido succínico, ácido málico, ácido metanosulfónico, ácido bencenosulfónico, ácido p-toluenosulfónico. Los ejemplos preferibles de la sal con aminoácido básico incluyen una sal con arginina, lisina, ornitina. Los ejemplos preferibles de la sal con aminoácido ácido incluyen una sal con ácido aspártico, ácido glutámico.

De estas, son preferibles las sales farmacéuticamente aceptables. Por ejemplo, cuando un compuesto contiene un grupo funcional ácido, sales inorgánicas tales como sal de metal alcalino (por ejemplo, sal de sodio, sal de potasio, etc.), sal de metal alcalinotérreo (por ejemplo, sal de calcio, sal de magnesio, sal de bario, etc.) sal de amonio; y cuando un compuesto contiene un grupo funcional básico, se pueden mencionar, por ejemplo, sales con ácido inorgánico tal como ácido clorhídrico, ácido bromhídrico, ácido nítrico, ácido sulfúrico, ácido fosfórico y similares, o sales con un ácido orgánico tal como ácido acético, ácido ftálico, ácido fumárico, ácido oxálico, ácido tartárico, ácido maleico, ácido cítrico, ácido succínico, ácido metanosulfónico, ácido p-toluenosulfónico.

El compuesto (I) se puede producir, por ejemplo, según los métodos descritos en la solicitud JP No. 2005-044740, Eur. J. Org. Chem., p. 2283 (2001), J. Med. Chem., vol. 43, p. 1886 (2000), J. Pharm. Pharmacol., vol. 46, p. 740 (1994), WO92/04025, J. Heterocyl. Chem., vol. 25, p. 635 (1988), J. Med. Chem., vol. 14, p. 328 (1971), J. Med. Chem., vol 35, p. 4195 (1992) o Tetrahedron Lett., vol. 26., p. 4047 (1985), o un método análogo a ellos.

Los métodos de producción del compuesto (I) se explican en la presente invención.

Los compuestos (II)-(XXIV) en la fórmula pueden formar sales, y como tales sales, se pueden mencionar, por ejemplo, aquellas similares a las sales del compuesto (I).

55 Aunque los compuestos obtenidos en las respectivas etapas se pueden usar para la siguiente reacción en la forma

de una mezcla de reacción o de un producto en bruto, se pueden también aislar fácilmente y purificar de la mezcla de reacción por medios de separación y purificación conocidos, tales como recristalización, destilación, cromatografía.

El compuesto (II) en el que R^2 , R^3 y R^4 son como se define anteriormente, y R^6 es un grupo alquilo de C_{1-4} tal como metilo, etilo, propilo, isopropilo, butilo se puede producir según un método conocido per se, tal como el método descrito en Chem. Pharm. Bull, vol. 49, p. 1406 (2001), Tetrahedron Letters, vol. 35. p. 5989 (1994) o un método análogo a ellos.

10 Haciendo reaccionar el compuesto (II) con un compuesto representado por la fórmula (IIIa):

5

en la que R¹¹ es como se define para R¹, o el grupo protector descrito en Protective Groups in Organic Synthesis, 3rd Ed.. Theodora W. Greene, Peter G. M. Wuts, pp. 615-617, Wiley-Insterscience (1999) (por ejemplo, fenilo, 4-metilfenilo, etc.), se puede producir el compuesto (IV) (cada símbolo en la fórmula es como se define anteriormente).

Esta reacción se lleva a cabo ventajosamente usando un disolvente inerte para la reacción. Aunque el disolvente no está particularmente limitado con tal de que la reacción avance, son preferibles hidrocarburos tales como benceno, tolueno y éteres tales como tetrahidrofurano, amidas tales como N,N-dimetilformamida, N,N-dimetilacetamida o una de sus mezclas de disolventes.

El uso de una base es efectivo para la reacción. Como base, se puede mencionar, por ejemplo, bases inorgánicas tales como hidruro de sodio, hidróxido de sodio, hidróxido de potasio, sales básicas tales como carbonato de sodio, carbonato de potasio, carbonato de cesio, hidrogenocarbonato de sodio, bases metálicas tales como etóxido de potasio, terc-butóxido de potasio, metóxido de sodio, etóxido de sodio, aminas aromáticas tales como piridina, lutidina, aminas terciarias tales como trietilamina, tripropilamina, tributilamina, ciclohexildimetilamina, 4-dimetilaminopiridina, N,N-dimetilanilina, N-metilpiperidina, N-metilpirrolidina, N-metilmorfolina. La cantidad de la base a usar es de alrededor de 1 a alrededor de 10 mol, preferentemente de alrededor de 1 a alrededor de 5 mol, por 1 mol de compuesto (II).

La reacción se puede llevar a cabo también en co-presencia de un éter corona. Como éter corona, se puede

mencionar, por ejemplo, éter 15-corona-5, éter 18-corona-6. La cantidad del éter corona a usar es de alrededor de 1 a alrededor de 10 mol, preferentemente de alrededor de 1 a alrededor de 5 mol, por 1 mol de compuesto (II).

Aunque el tiempo de reacción varía dependiendo de los reactivos y disolvente que se van a usar, es generalmente de alrededor de 30 min a alrededor de 24 h, preferentemente de alrededor de 30 minutos a alrededor de 8 h.

5 La temperatura de reacción es generalmente de alrededor de 0°C a alrededor de 100°C, preferentemente de alrededor de 10°C a alrededor de 50°C.

10

15

El compuesto (V) (cada símbolo en la fórmula es como se define anteriormente) se puede producir según un método conocido per se, por ejemplo, los métodos descritos en Tetrahedron Letters, vol. 13, p. 5337 (1972), Heterocycles, vol. 7, p. 77 (1977), Chem. Pharm. Bull., vol. 27, p. 2857 (1979), J. Org. Chem., vol. 62, p. 2649 (1997), o un método análogo a ellos.

El compuesto (VI) (cada símbolo en la fórmula es como se define anteriormente) se puede producir haciendo reaccionar el compuesto (V) con N-bromosuccinimida (NBS).

La N-bromosuccinimida (NBS) se usa preferentemente en una cantidad de alrededor de un equivalente con relación al compuesto (V), y la reacción se lleva a cabo preferentemente en atmósfera de un gas inerte tal como nitrógeno, argón.

Esta reacción se lleva a cabo ventajosamente usando un disolvente inerte para la reacción. Aunque el disolvente no está particularmente limitado con tal de la reacción avance, son preferibles disolventes tales como éteres (por ejemplo, tetrahidrofurano, éter dietílico), amidas (por ejemplo, N,N-dimetilformamida, N,N-dimetilacetamida), una de sus mezclas disolventes.

Aunque el tiempo de reacción varía dependiendo de los reactivos y disolvente que se van a usar, es generalmente de alrededor de 30 minutos a alrededor de 24 horas, preferentemente de alrededor de 5 a 12 h.

La temperatura de reacción es generalmente de alrededor de -78° C a alrededor de 25° C, preferentemente de alrededor de -78° C a alrededor de 0° C.

La adición de una base es a veces efectiva para la reacción. Aunque la base que se va a usar no está limitada con tal de que la reacción avance, se puede mencionar una base orgánica tal como piridina, picolina, lutidina. La cantidad de la base orgánica a usar es de alrededor de 0,001 a alrededor de 10 equivalentes, preferentemente de alrededor de 0,001 a alrededor de 0,1 equivalentes, por 1 mol de compuesto (V).

El compuesto (VII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (VI) según un método similar al método para producir el compuesto (IV) a partir del compuesto (II).

El compuesto (IV) (cada símbolo en la fórmula es como se define anteriormente) se puede producir también haciendo reaccionar el compuesto (VII) con un compuesto representado por la fórmula (VIIIa):

(VIIIa)

o la fórmula (VIIIb):

En la que R² es como se define anteriormente, según el método descrito en Synthetic Communications, vol. 11, p. 513 (1981), o un método análogos a ellos.

El compuesto (IX) (cada símbolo en la fórmula es como se define anteriormente) se puede producir reduciendo el compuesto (V) con un agente reductor tal como hidruro de aluminio y litio, hidruro de diisobutillitio, borohidruro de sodio, borohidruro de calcio. Como agente de reducción es particularmente preferible hidruro de diisobutillitio. La

cantidad de agente reductor a usar es de alrededor de 0,75 a alrededor de 10 equivalentes, preferentemente de alrededor de 1 a alrededor de 5 equivalentes, por 1 mol de compuesto (IV).

Esta reacción se lleva a cabo ventajosamente usando un disolvente inerte. Aunque el disolvente no está particularmente limitado con tal de que avance la reacción, son preferibles disolventes tales como hidrocarburos (por ejemplo, benceno, tolueno) y éteres (por ejemplo, tetrahidrofurano, éter dietílico), una de sus mezclas disolventes.

Aunque el tiempo de reacción varía dependiendo de los reactivos y disolvente que se van a usar, es generalmente de alrededor de 30 min a alrededor de 24 h, preferentemente de alrededor de 30 min a alrededor de 8 h.

La temperatura de reacción es generalmente de alrededor de -78°C a alrededor de 100°C, preferentemente de alrededor de -78°C a alrededor de 25°C.

El compuesto (X) (cada símbolo en la fórmula es como se define anteriormente) se puede sintetizar haciendo reaccionar el compuesto (IX) con un oxidante tal como el complejo ácido crómico-piridina, clorocromato de piridinio, dióxido de manganeso, complejo trióxido de azufre-piridina o perrutenato de tetra-n-propilamonio y similares. Como oxidante, es preferible dióxido de manganeso, complejo piridina-trióxido de azufre o perrutenato de tetra-n-propilamonio. La reacción de oxidación se puede llevar a cabo, por ejemplo, según el método descrito en Synthesis, p. 639 (1994).

El compuesto (la) (cada símbolo en la fórmula es como se define anteriormente) se puede producir sometiendo el compuesto (X) y un compuesto representado por la fórmula (XI):

en la que R^5 es como se define anteriormente, a una reacción de aminación reductora según los métodos descritos en Shin Jikken Kagaku Koza, vol. 14-III, pp. 1380-1385 (Maruzen Press).

Además, el compuesto (la) se puede producir también por el siguiente método.

5

El compuesto (XII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (VII) según un método similar al método para producir el compuesto (IX) a partir del compuesto (IV)

El compuesto (XIII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XII) según un método similar al método para producir el compuesto (X) a partir del compuesto (IX).

El compuesto (XIV) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XIII) según un método similar al método para producir el compuesto (la) a partir del compuesto (X).

El compuesto (XV) (cada símbolo en la fórmula es como se define anteriormente y R⁷ es un grupo protector de amino) se puede producir protegiendo un grupo amino del compuesto (XIV). Como grupo protector de amino, se puede mencionar el grupo terc-butilcarbamato (grupo BOC), grupo bencilcarbamato (grupo Cbz). La reacción de protección se puede llevar a cabo según un método conocido per se, por ejemplo, el método descrito en Protective Groups in Organic Synthesis, 3rd Ed., Theodora W. Green, Peter G.M. Wuts, pp. 494-653, Wiley-Intescience (1999).

El compuesto (XVI) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XV) según un método similar al método para producir el compuesto (IV) a partir del compuesto (VII).

El compuesto (la) (cada símbolo en la fórmula es como se define anteriormente) se puede producir eliminando el grupo protector de amino del compuesto (XVI) por un método conocido per se, por ejemplo, el método descrito en Protective Groups in Organic Synthesis, 3rd Ed., Theodora W. Greene, Peter G. M. Wuts, pp. 494-653, Wiley-Interscience (1999).

Además, los compuestos (XVI) y (la) se pueden producir también por los siguientes métodos.

15

5

El compuesto (XVII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (II) según un método similar al método para producir el compuesto (IX) a partir del compuesto (IV).

(XVI)

(la)

El compuesto (XVIII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XVII) según un método similar al método para producir el compuesto (X) a partir del compuesto (IX).

El compuesto (XIX) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XVIII) según un método similar al método para producir el compuesto (Ia) a partir del compuesto (X).

El compuesto (XX) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XIX) según un método similar al método para producir el compuesto (XV) a partir del compuesto (XIV).

El compuesto (XVI) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XX) según un método similar al método para producir el compuesto (IV) a partir del compuesto (II). Además, el compuesto (Ia) se puede producir por un método similar al método anteriormente mencionado.

Además, los compuestos (XIII), (X) y (la) se pueden producir también por los siguientes métodos.

El compuesto (XXI) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (V) según un método similar al método para producir el compuesto (IV) a partir del compuesto (II).

- El compuesto (XXII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XXI) según un método similar al método para producir el compuesto (IX) a partir del compuesto (IV).
 - El compuesto (XXIII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XXII) según un método similar al método para producir el compuesto (X) a partir del compuesto (IX).
 - El compuesto (XIII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XXIII) según un método similar al método para producir el compuesto (VI) a partir del compuesto (V).
- El compuesto (X) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XIII) según un método similar al método para producir el compuesto (IV) a partir del compuesto (VII), o del compuesto (XVIII) según un método similar al método para producir el compuesto (IV) a partir del compuesto (II). Además, el compuesto (Ia) se puede producir según un método similar al método anteriormente mencionado.
- Además, el compuesto (XIII) y el compuesto (XVIII) se pueden sintetizar también por el siguiente método, y el compuesto (la) se puede producir adicionalmente por un método similar al método anteriormente mencionado.

El compuesto (XXIV) (cada símbolo en la fórmula es como se define anteriormente) se puede producir según un método conocido per se, por ejemplo, el método descrito en J. Org. Chem., vol. 55, p. 6317 (1990), o un método similar a ellos.

El compuesto (XIII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XXIV) según un método similar al método para producir el compuesto (IV) a partir del compuesto (II).

El compuesto (XVIII) (cada símbolo en la fórmula es como se define anteriormente) se puede producir del compuesto (XXIV) según un método similar al método para producir el compuesto (IV) a partir del compuesto (VII).

Cuando R¹¹ es un grupo distinto del grupo representado por R¹ en cada compuesto, el compuesto se puede convertir en el compuesto (I) después de desprotección por un método conocido per se, por ejemplo, el método descrito en Protective Groups in Organic Synthesis, 3rd Ed., Theodora W. Greene, Peter G. M. Wuts, pp. 615-617, Wiley-Interscience (1999), usando la fórmula (III)

en la que cada símbolo en la fórmula es como se define anteriormente, según un método similar al método para producir el compuesto (V) a partir del compuesto (II).

15

30

35

45

En cada una de las anteriormente mencionadas reacciones, cuando el compuesto de partida tiene un grupo amino, un grupo carboxilo o un grupo hidroxi como sustituyente, se puede introducir en estos grupos un grupo protector generalmente usado en la química de péptidos. En este caso, eliminando el grupo protector según sea necesario después de la reacción, se puede obtener el compuesto objetivo. La introducción y eliminación de estos grupos protectores se puede realizar según un método conocido per se, por ejemplo, el método descrito en Protective Groups in Organic Synthesis, 3rd Ed., Theodora W. Greene, Peter G.M. Wuts, Wiley-Interscience (1999).

El compuesto (I) se puede aislar y purificar por un medio conocido tal como transferencia de fase, concentración, extracción con disolvente, fraccionamiento, conversión líquida, cristalización, recristalización, cromatografía.

Cuando el compuesto (I) se obtiene en forma de compuesto libre, se puede convertir en una sal deseada por un método conocido per se o un método análogo a él; en cambio, cuando el compuesto (I) se obtiene en forma de una sal, se puede convertir en una forma libre u otra sal deseada por un método conocido per se o un método análogo a él.

El compuesto (I) se puede usar como profármaco. El profármaco del compuesto (I) quiere decir un compuesto que se convierte en el compuesto (I) en condiciones fisiológicas en el cuerpo por reacción con una enzima o ácido gástrico, es decir, un compuesto que se convierte en compuesto (I) por oxidación enzimática, reducción, hidrólisis; un compuesto que se convierte en compuesto (I) por hidrólisis con ácido gástrico.

El profármaco del compuesto (I) incluye un compuesto en el que el grupo amino del compuesto (I) se modifica con acilo, alquilo o fosforilo (por ejemplo, un compuesto en el que el grupo amino del compuesto (I) se modificad con eicosanilo, alanilo, pentilaminocarbonilo, (5-metil-2-oxo-1,3-dioxolen-4-yil)metoxicarbonilo, tetrahidrofuranilo, pirrolidilmetilo, pivaloiloximetilo o t-butilo, etc.); un compuesto en el que el grupo hidroxi del compuesto (I) se modifica con acilo, alquilo, ácido fosfórico, o ácido bórico (por ejemplo, un compuesto en el que el grupo hidroxi del compuesto (I) se modifica con acetilo, palmitoilo, propanoilo, pivaloilo, succinilo, fumarilo, alanilo o dimetilaminometilcarbonilo, etc.); un compuesto en el que un grupo carboxilo del compuesto (I) se modifica a éster o amida (por ejemplo, un compuesto en el que un grupo carboxilo del compuesto (I) se modifica a éster efenílico, éster carboximetílico, éster dimetilaminometílico, éster pivaloiloximetílico, éster etoxicarboniloxietílico, éster ftalidílico, éster (5-metil-2-oxo-1,3-dioxolen-4-il)metílico, éster ciclohexiloxicarboniletílico o metilamida, etc.). Estos profármacos se pueden producir del compuesto (I) por un método conocido per se.

Además, el profármaco del compuesto (I) puede ser un compuesto, que se convierte en compuesto (I) en condiciones fisiológicas, como se describe en Pharmaceutical Research and Development, vol. 7 (Molecule Design), pp. 163-198 (1990), publicado por Hirokawa Publishing Co.

Cuando el compuesto (I) contiene un isómero óptico, un estereoisómero, un regioisómero o un rotámero, el isómero y una mezcla de estos están incluidos también en el compuesto (I). Por ejemplo, cuando el compuesto (I) tiene un isómero óptico, un isómero óptico resuelto de un racemato está también incluido en el compuesto (I). Estos isómeros se puede obtener también en forma de productos únicos según métodos de síntesis y separación conocidos per se (concentración, extracción con disolvente, cromatografía en columna, recristalización, etc.)

El compuesto (I) puede ser un cristal, y tanto un solo cristal como mezclas de cristales están incluidos en el compuesto (I). Los cristales se pueden producir por cristalización según métodos de cristalización conocidos per se.

El compuesto (I) puede ser un solvato (por ejemplo, hidrato, etc.) o un no-solvato, ambos están incluidos en el

compuesto (I).

35

55

Un compuesto marcado con un isótopo (por ejemplo, ³H, ¹⁴C, ³⁵S, ¹²⁵I y similares) está también incluido en el compuesto (I)

- El compuesto (I) y uno de sus profármacos de la presente invención (de aquí en adelante a veces se va a abreviar como compuesto de la presente invención) tiene un efecto inhibidor de la bomba de protones y suprime efectivamente la secreción de ácido gástrico. Además, dado que muestran baja toxicidad (por ejemplo, toxicidad aguda, toxicidad crónica, toxicidad genética, toxicidad reproductiva, cardiotoxicidad, interacción con fármacos, carcinogenicidad) y alta solubilidad en agua, y son superiores en estabilidad, cinética in vivo (absorbabilidad, distribución, metabolismo, excreción) y expresión de eficacia, son útiles como agentes farmacéuticos.
- 10 El compuesto de la presente invención es útil para el tratamiento o profilaxis de úlcera péptica (por ejemplo, úlcera gástrica, úlcera gástrica debida a estrés postoperatorio, úlcera duodenal, úlcera anastomótica, úlcera causada por agentes antiinflamatorios no esteroideos, úlcera debida a estrés postoperatorio, etc.); síndrome de Zollinger-Ellison; gastritis; esofagitis erosiva; esofagitis por reflujo tal como esofagitis por reflujo erosivo; enfermedad por reflujo gastroesofágico sintomático (GERD sintomático) tal como enfermedad por reflujo no erosivo o enfermedad por 15 reflujo gastroesofágico libre de esofagitis; dispepsia funcional; cáncer gástrico (que incluye cáncer gástrico asociado a la producción promovida de interleuquina 1β debida al polimorfismo génico de interleuquina 1); linfoma MALT del estómago; hiperacidez gástrica; hemorragia gastrointestinal superior debida a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo (por ejemplo, estrés causado por cirugía mayor que requiere cuidado intensivo postoperatorio, y trastorno cerebrovascular, trauma craneal, fallo multiorgánico y quemaduras extensas, 20 que requieren cada uno trato intensivo); trastornos de las vías respiratorias; asma, administración preanestésica, erradicación de Helicobacter pylori o ayuda para la erradicación, en mamíferos (por ejemplo, ser humano, simio, oveja, ganado vacuno, caballo, perro, gato, conejo, rata, ratón, etc.).

Tal como se usa aquí, la esofagitis por reflujo anteriormente mencionada y la enfermedad por reflujo gastroesofágico sintomático (GERD sintomático) son denominadas a veces colectivamente para simplificar GERD.

- El contenido de un compuesto de la presente invención en la composición farmacéutica de la presente invención es alrededor de 0,01 a 100% en peso con relación a toda la composición. Aunque sujeta a cambio dependiendo del objeto de la administración, ruta de administración, enfermedad objetivo, su dosis es de alrededor de 0,5 a 1.500 mg/día, preferentemente de alrededor de 5 a alrededor de 150 mg/día, basada en el ingrediente activo, cuando, por ejemplo, el compuesto se administra oralmente como agente anti-ulcera a un ser humano adulto (60 kg). El compuesto de la presente invención se puede administrar una vez al día o en 2 o 3 porciones divididas por día.
 - El compuesto de la presente invención muestra baja toxicidad y se puede administrar apropiadamente oral o parenteralmente (por ejemplo, administraciones tópica, rectal, intravenosa) tal como está o en forma de preparación que contiene una composición farmacéutica que contiene un vehículo farmacológicamente aceptable mezclado según un método conocido per se, tales como comprimidos (incluyendo comprimidos revestidos con azúcar y comprimidos revestidos con película), polvo, gránulo, cápsula (incluyendo cápsula blanda), comprimido que se desintegra oralmente, película que se desintegra oralmente, líquido, inyección, supositorio, preparación de desprendimiento sostenido, emplaste. Particularmente, el compuesto de la presente invención se administra preferentemente en forma de una preparación oral en forma de comprimido, gránulo, cápsula.
- El vehículo farmacológicamente aceptable que se puede usar para producir la composición farmacéutica de la presente invención incluye varias substancias vehículo orgánico o inorgánico en uso común como materiales farmacéuticos, incluyendo excipientes, lubricantes, aglomerantes, desintegrantes, polímeros solubles en agua y sales inorgánicas básicas para preparaciones sólidas; y disolventes, ayudas de disolución, agentes de suspensión, agentes isotonizantes, tampones y agentes calmantes para preparaciones líquidas. Otros aditivos farmacéuticos ordinarios tales como conservantes, antioxidantes, agentes colorantes, agentes endulzantes, agentes acidulantes, agentes burbujeantes y saborizantes se pueden usar también según sea necesario.

Tales "excipientes" incluyen, por ejemplo, lactosa, sacarosa, D-manitol, almidón, almidón de maíz, celulosa cristalina, anhídrido silícico ligero, óxido de titanio y similares.

Tales "lubricantes" incluyen, por ejemplo, estearato de magnesio, ésteres de ácido graso y sacarosa, polietilenglicol, talco, ácido esteárico.

- Tales "aglomerantes" incluyen, por ejemplo, hidroxipropilcelulosa, hidroxipropilmetilcelulosa, celulosa cristalina, almidón, polivinilpirrolidona, polvo de goma arábiga, gelatina, pullulan, hidroxipropilcelulosa poco sustituida.
 - Tales "desintegrantes" incluyen (1) crospovidona, (2) lo que se denomina super-desintegrantes tales como croscaramelosa de sodio (FMC-Asahi Chemical) y caramelosa de calcio (Gotoku Yakunin) etc., (3) carboximetilalmidón de sodio (por ejemplo, producto de Matsutani Chemical), (4) hidroxipropilcelulosa poco sustituida (por ejemplo, producto de Shin-Etsu-Chemical), (5) almidón de maíz, etc.. Dicha "crospovidona" puede ser cualquier polímero reticulado que tiene el nombre químico homopolímero de 1-etenil-2-pirrolidinona, que incluye

polivinilpirrolidona (PVPP) y homopolímero de 1-vinil-2-pirrolidinona, y está ejemplificado por Colidon CL (producido por BASF), Polyplasdon XL (producido por ISP), Polyplasdon XL-10 (producido por ISP), Polyplasdon INF-10 (producido por ISP).

- Tales "polímeros solubles en agua" incluyen, por ejemplo, polímeros solubles en agua y solubles en etanol [por ejemplo, derivados de celulosa tales como hidroxipropilcelulosa (de aquí en adelante denominada también HPC), etc. polivinilpirrolidinona], polímeros solubles en agua insolubles en etanol [por ejemplo, derivados de celulosa tales como hidroxipropilmetilcelulosa (de aquí en adelante denominada también HPMC), etc., metilcelulosa, carboximetilcelulosa de sodio y similares, poli(acrilato de sodio), poli(alcohol vinílico), alginato de sodio, goma guar]
- Tales "sales inorgánicas básicas" incluyen, por ejemplo, sales inorgánicas básicas de sodio, potasio, magnesio y/o calcio. Son preferidas las sales inorgánicas básicas de magnesio y/o calcio. Son más preferidas las sales inorgánicas básicas de magnesio. Tales sales inorgánicas básicas de sodio incluyen, por ejemplo, carbonato de sodio, hidrogenocarbonato de sodio, hidrogenocarbonato de potasio. Tales sales inorgánicas básicas de potasio incluyen, por ejemplo, carbonato de potasio, hidrogenocarbonato de potasio. Tales sales inorgánicas básicas de magnesio incluyen, por ejemplo, carbonato de magnesio pesado, carbonato de magnesio, óxido de magnesio, hidróxido de magnesio, aluminato de magnesio, hidrotalcita sintética [Mg₆Al₂(OH)₁₆.CO₃.4H₂O], e hidróxido de magnesio y aluminio. Son preferidos carbonato de magnesio pesado, carbonato de magnesio, óxido de magnesio, hidróxido de magnesio. Tales sales inorgánicas básicas de calcio incluyen, por ejemplo, carbonato de calcio precipitado, hidróxido de calcio, etc.
- Tales "disolventes" incluyen, por ejemplo, agua para inyección, alcohol, propilenglicol, macrogol, aceite de sésamo, aceite de maíz, aceite de oliva.

Tales "ayudas de disolución" incluyen, por ejemplo, polietilenglicol, propilenglicol, D-manitol, benzoato de bencilo, etanol, trisaminometano, colesterol, trietanolamina, carbonato de sodio, citrato de sodio.

Tales "agentes de suspensión" incluyen, por ejemplo, tensioactivos tales como esteariltrietanolamina, laurilsulfato de sodio, ácido laurilaminopropiónico, lecitina, cloruro de benzalconio, cloruro de bencetonio, monoestearato de glicerilo, etc.; polímeros hidrófilos tales como poli(alcohol vinílico), polivinilpirrolidona, carboximetilcelulosa de sodio, metilcelulosa, hidroximetilcelulosa, hidroxipropilcelulosa, etc.

Tales "agentes isotonizantes" incluyen, por ejemplo, glucosa, D-sorbitol, cloruro de sodio, glicerol, D-manitol.

Tales "tampones" incluyen, por ejemplo, disoluciones tampón de fosfatos, acetatos, carbonatos, citratos, etc.

Tales "agentes calmantes" incluyen, por ejemplo, alcohol bencílico.

Tales "conservantes" incluyen, por ejemplo, ésteres de ácido p-oxibenzoico, clorobutanol, alcohol bencílico, alcohol fenetílico, ácido deshidroacético, ácido sórbico.

Tales "antioxidantes" incluyen, por ejemplo, sulfitos, ácido ascórbito, α-tocoferol.

Tales "agentes colorantes" incluyen, por ejemplo, colorantes alimentarios tales como colorante alimentario Amarillo No. 5, colorante alimentario Rojo No. 2, colorante alimentario Azul No. 2, etc.; colorantes food lake, óxido rojo.

Tales "agentes endulzantes" incluyen, por ejemplo, sacarina de sodio, glicirizinato de dipotasio, aspartamo, estevia, taumatina.

Tales "agentes acidulantes" incluyen, por ejemplo, ácido cítrico (anhídrido cítrico), ácido tartárico, ácido málico.

Tales "agentes burbujeantes" incluyen, por ejemplo, bicarbonato de sodio.

45

50

Tales "saborizantes" pueden ser substancias sintéticas o substancias naturales, e incluyen, por ejemplo, limón, lima, aranja, mentol, fresa.

El compuesto de la presente invención se puede preparar en forma de una preparación para administración oral según un método comúnmente conocido, por ejemplo, por moldeo por compresión con un vehículo tal como un excipiente, un desintegrante, un aglomerante, un lubricante, o similares, y subsecuentemente revestir la preparación según sea necesario por un método conocido comúnmente para el propósito de enmascarar el sabor, disolución entérica o desprendimiento sostenido. Para una preparación entérica, se puede proporcionar una capa intermedia por un método comúnmente conocido entre la capa entérica y la capa que contiene el fármaco para el propósito de separación de las dos capas.

Para preparar el compuesto de la presente invención en forma de comprimido que se desintegra oralmente, los métodos disponibles incluyen, por ejemplo, un método en el que un núcleo que contiene celulosa cristalina y lactosa se reviste con el compuesto de la presente invención y, cuando sea necesario, una sal inorgánica básica, y a continuación se reviste adicionalmente con una capa de revestimiento que contiene un polímero soluble en agua

para dar una composición, que se reviste con una capa de revestimiento entérico que contiene polietilenglicol, revestida adicionalmente con una capa de revestimiento entérico que contiene citrato de trietilo, revestida aún más con una capa de revestimiento entérico que contiene polietilenglicol, y revestida finalmente con manitol para dar gránulos finos, que se mezclan con aditivos y se dan forma.

- La anteriormente mencionada "capa de revestimiento entérico" incluye, por ejemplo, una capa que consiste en una mezcla de uno o más tipos de substratos de polímero entérico acuoso tales como acetato ftalato de celulosa (CAP), ftalato de hidroxipropilmetilcelulosa, acetato succinato de hidroximetilcelulosa, copolímeros de ácido metacrílico (por ejemplo, Eudragit L30D-55 (nombre comercial; producido por Rohm), Colicoat MAE30DP (nombre comercial; producido por BASF), Polyquid PA30 (nombre comercial; producido por Sanyo Chemical), etc.), carboximetiletilcelulosa, shellac; substratos de desprendimiento sostenido tales como copolímeros de ácido metacrílico (por ejemplo, Eudragit NE30D (nombre comercial), Eudragit RS30D (nombre comercial), etc.); polímeros solubles en agua; plastificantes tales como citrato de trietilo, polietilenglicol, monoglicéridos acetilados, triacetina, aceite de ricino, y similares.
- El "aditivo" anteriormente mencionado incluye, por ejemplo, alcoholes de azúcar solubles en agua (por ejemplo, sorbitol, manitol, maltitol, sacáridos de almidón reducido, xilitol, palatinosa reducida, eritritol, etc.), celulosa cristalina (por ejemplo, Ceolas KG 801, Avicel PH 101, Avicel PH 102, Avicel PH 301, Avicel PH 302, Avicel RC-591 (celulosa caramelosa de sodio cristalina), hidroxipropilcelulosa poco sustituida (por ejemplo, LH-22, LH-32, LH-33 (Shin-Etsu Chemical), sus mezclas, etc.). Además, se usan también aglomerantes, agentes acidulantes, agentes burbujeantes, agentes endulzantes, saborizantes, lubricantes, agentes colorantes, estabilizantes, excipientes, desintegrantes, etc.

El compuesto de la presente invención se puede usar en combinación con 1 a 3 de otros ingredientes activos.

Tales "otros ingredientes activos" incluyen, por ejemplo, substancias activas anti Helicobacter pylori, compuestos de imidazol, sales de bismuto, compuestos de quinolona, etc.

Tales "substancias activas anti-Helicobacter pylori" incluyen, por ejemplo, antibióticos penicilinas (por ejemplo, amoxicilina, bencilpenicilina, piperacilina, mecilinam, ampicilina, temocilina, bacampicilina, aspoxicilina, sultamicilina, lenampicilina, etc.), antibióticos cefems (por ejemplo, cefixima, cefaclor, etc.), antibióticos macrólidos (por ejemplo, eritromicina, claritromicina, roxitromicina, roquitamicina, fluritromicina, telitromicina, etc.), antibióticos tetraciclinas (por ejemplo, tetraciclina, minociclina, estreptomicina, etc.), antibióticos aminoglicósidos (por ejemplo, gentamicina, amikacina, etc.), imipenem, etc.. De estas substancias, son preferidas penicilinas antibióticas, o macrólidos antibióticos.

Tales "compuestos de imidazol" incluyen, por ejemplo, metronidazol o miconazol.

Tales "sales de bismuto" incluyen, por ejemplo, acetato de bismuto, citrato de bismuto o subsalicilato de bismuto.

Tales "compuestos de quinolona" incluyen, por ejemplo, ofloxacino o ciploxacino.

40

45

50

Para la erradicación del Helicobacter pylori, se usa preferentemente un compuesto (I) o una de sus sales de la presente invención con penicilina antibiótica (por ejemplo, amoxicilina) y eritromicina antibiótica (por ejemplo, claritromicina).

Para el propósito de la erradicación de Helicobacter pylori, aunque el compuesto de la presente invención tiene una acción anti-H. pylori (acción basteriostática o acción de erradicación) por sí mismo, puede mejorar la acción antibacteriana de otros antibióticos basada en la acción de control del pH en el estómago, y también proporciona un efecto de ayuda tal como un efecto de erradicación basado en la acción de los antibióticos que se van a usar en combinación.

Tales "otros ingredientes activos" y el compuesto (I) o una de sus sales de la presente invención se pueden mezclar, preparar en forma de una sola composición farmacéutica (por ejemplo, comprimidos, polvos, gránulos, cápsulas (incluyendo cápsulas blandas), líquidos, preparaciones inyectables, supositorios, preparaciones de desprendimiento sostenido), según un método comúnmente conocido y usado en combinación, y se puede preparar también en forma de preparaciones separadas y administrar el mismo sujeto simultáneamente o a intervalos de tiempo.

Además, el compuesto de la presente invención se puede usar en combinación con un mejorador de la motilidad gástrica, un fármaco que actúa sobre el esfínter esofágico inferior (por ejemplo, supresor de la relajación del esfínter esofágico inferior, etc.), abridor del canal CLC-2 (mejorador de la secreción de jugo intestinal), un antagonista del receptor H2 de histamina, un antiácido, un sedante, un digestivo estomacal o un fármaco anti-inflamatorio no esteroideo (NSAID).

Como "mejorador de la motilidad gástrica", se puede mencionar, por ejemplo, domperidona, metoclopramida, mosaprida, itoprida, tegaserod.

Como el "fármaco que actúa sobre el esfínter esofágico inferior" se puede mencionar, por ejemplo, agonistas del

ES 2 391 757 T3

receptor GABA-B tales como baclofeno, una de sus formas ópticamente activa.

Como "abridor del canal CLC-2 (mejorador de la secreción de jugo intestinal)" se puede mencionar lubiprostona.

Como "antagonista del receptor H2 de histamina" se puede mencionar cimetidina, ranitidina, famotidina, roxatidina, nizatidina, lafutidina.

5 Como "antiácido" se puede mencionar hidrogenocarbonato de sodio, hidróxido de aluminio.

Como "sedantes" se pueden mencionar diazepam, clordiazepoxido.

Como "digestivo estomacal" se puede mencionar gentiana, swertia japónica, diastasa.

Como "fármaco anti-inflamatorio no esteroide" se puede mencionar, por ejemplo, aspirina, indometacina, ibuprofeno, ácido mefenámico, diclofenac, etodolac, piroxicam, celecoxib.

Un mejorador de la motilidad gástrica, un fármaco que actúa sobre el esfínter esofágico inferior, un abridor del canal CIC-2 (mejorador de la secreción de jugo intestinal), un antagonista del receptor H2 de histamina, un antiácido, un sedante, un digestivo estomacal o un fármaco anti-inflamatorio no esteroide y el compuesto (I) o una de sus sales de la presente invención se pueden mezclar, preparar en forma de una sola composición farmacéutica [por ejemplo, comprimidos, polvos, gránulos, cápsulas (incluyendo cápsulas blandas), líquidos, inyecciones, supositorios, preparaciones de desprendimiento sostenido, etc.] según un método conocido per se para uso combinado, o se puede preparar también en forma de preparaciones separadas y administrar al mismo sujeto simultáneamente o de manera escalonada.

El compuesto de la presente invención se puede usar en combinación con los siguientes fármacos.

- (i) Inhibidores de la bomba de protones, por ejemplo, omeprazol, esomeprazol, pantaprazol, rabeprazol, 20 tenatoprazol, ilaprazol y lansoprazol;
 - (ii) mezclas antiácidas orales, por ejemplo, Maalox ®, Aludrox® y Gaviscon®;
 - (iii) agentes protectores de la mucosa, por ejemplo, polaprezinc, ecabet de sodio, rebamipida, teprenona, cetraxato, sucralfato, clorofilina de cobre y plaunotol;
 - (iv) agentes anti-gástricos, por ejemplo, vacuna anti-gastrina, itriglumida y Z-360;
- (v) antagonistas de 5-HT₃, por ejemplo, dolasetron, palonosetron, alosetron, azasetron, ramosetron, nitrazapina, granisetron, tropisetron, E-3620, ondasetron e indisetron;
 - (vi) agonistas de 5-HT₄, por ejemplo, tegaserod, mosaprida, cinitaprida e oxtriptan;
 - (vii) laxantes, por ejemplo, Trifyba®, Fybogel®, Konsyl®, Isogel®, Regulan®, Celevac® y Normacol®;
 - (viii) agonistas GABAB, por ejemplo, baclofeno y AZD-3355;
- $30 \qquad \text{(ix) antagonistas GABA}_{\text{B}}, \, \text{por ejemplo, GAS-360 y SGS-742}; \\$

40

- (x) bloqueadores del canal de calcio, por ejemplo, aranidipina, lacidipina, felodipina, azelnidipina, clinidipina, lomerizina, diltiazem, galopamil, efonidipina, nisoldipina, amlodipina, lercanidipina, bevantolol, nicardipina, isradipina, benidipina, verapamil, nitrendipina, barnidipina, propafenona, manidipina, bepridil, nifedipina, nilvadipina, nimodipina y fasudil;
- 35 (xi) antagonistas de dopamina, por ejemplo, metoclopramida, domperidona y levosulpirida;
 - (xii) antagonistas de taquiquinina (NK), particularmente antagonistas de NK-3, NK-2 y NK-1, por ejemplo, nepadutant, saredutant, talnetant, $(\alpha R, 9R)$ -7-[3,5-bis(trifluorometil)bencil]-8,9,10,11-tetrahidro-9-metil-5-(4-metilfenil)-7H-[1,4]diazocino[2,1-g][1,7]naftridino-6-13-diona (TAK-637), 5-[[(2R,3S)-2-[(1R)-1-[3,5-bis(trifluorometil)fenil]etoxi-3-(4-fluorofenil)-4-morfolinil]metil]-1,2-dihidro-3H-1,2,4-triazol-3-ona (MK-869), lanepitant, dapitant y 3-[[2-metoxi-5-(trifluorometoxi)fenil]metilamino]-2-fenil-piperidina (2S,3S);
 - (xiii) inhibidores de sintasa de óxido nítrico, por ejemplo, GW-274150, tilarginina, P54, guanidioetildisulfuro y nitroflurbiprofeno;
 - (xiv) antagonistas del receptor vaniloide 1, por ejemplo, AMG-517 y GW-705498;
 - (xv) agonistas de grelina, por ejemplo, capromorelina y TZP-101;
- 45 (xvi) estimulantes del desprendimiento de AchE, por ejemplo, Z-338 y KW-5092.

Los fármacos anteriormente mencionados de (i) a (xvi) y el compuesto (l) o una de sus sales de la presente invención se pueden mezclar, preparar en forma de una sola composición farmacéutica [por ejemplo, comprimidos, polvos, gránulos, cápsulas (incluyendo cápsulas blandas), líquidos, inyecciones, supositorios, preparaciones de desprendimiento sostenido, etc.] según un método conocido per se para uso combinado, o se puede preparar también en forma de preparaciones separadas y administrar al mismo sujeto simultáneamente o de una manera escalonada.

Ejemplos

La presente invención se explica con detalle a continuación por referencia a los Ejemplos de referencia, Ejemplos y Ejemplos Experimentales, que no se deben considerar limitantes.

En los siguientes Ejemplos de Referencia y Ejemplos, la "temperatura ambiente" generalmente quiere decir de alrededor de 10°C a alrededor de 35°C, pero no está particularmente limitada estrictamente. La relación de mezcla de los líquidos muestra una relación en volumen. A menos que se especifique lo contrario, "%"quiere decir %. El rendimiento está en % mol/mol. Se realizó cromatografía en columna de gel de sílice usando gel de sílice 60 (0,063-0,200 mm) fabricada por MERK o Fuji Silysia Chemical Ltd. Chromatorex (nombre de producto) NH (descrito como cromatografía en columna de gel de sílice básica). El punto de fusión se midió usando el aparato de medida del punto de fusión de trazas Yanagimoto o el aparato de medida del punto de fusión de trazas Büchi (B-545), y se muestra sin corrección. Para el espectro de H-RMN, se usó tetrametilsilano como estándar interno, y se usaron para la medida Varian Gemini-200 (200 MHz), Mercury-300 (300 MHz), Bruker AVANCE AV300 (300 MHz) y aparatos de resonancia magnética nuclear JNM-AL400 (400 MHz) JEOL DATUM (JEOL DATUM LTD.). Se usaron las siguientes abreviaturas para mostrar los resultados de medida; s: singlete, d: doblete, dd: doble doblete, dt: doble triplete, t: triplete, q: cuartete, m: multiplete, br: ancho, brs: singlete ancho, J: constante de acoplamiento, Hz:

Ejemplo de referencia 1

2-bromo-1-(2-fluorofenil)propan-1-ona

A una disolución de 2'-fluoropropiofenona (25,0 g) en ácido acético (250 ml) se añadió lentamente bromo (8,4 ml). La mezcla se agitó a temperatura ambiente durante 3 h, y se concentró a presión reducida. Se añadió agua (200 ml) al residuo, y la mezcla se extrajo con éter diisopropílico. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, se filtró y concentró a presión reducida para dar el compuesto del título en forma de un aceite amarillo (rendimiento 36,8 g, 97%).

 1 H-RMN (CDCl₃) δ : 1,89-1,91 (3H, m), 5,27-5,34 (1H, m), 7,12-7,19 (1H, m), 7,24-7,30 (1H, m), 7,52-7,59 (1H, m), 7,88-7,93 (1H, m).

Ejemplo de referencia 2

2-ciano-4-oxo-4-fenilbutanoato de etilo

Se añadió carbonato de potasio (13,82 g) a cianoacetato de etilo (37 ml), y la mezcla se agitó a 40-45°C durante 45 min. Se añadió una disolución (100 ml) de bromuro de fenacilo (10,0 g) en acetona gota a gota durante 30 min. Después de la finalización de la adición gota a gota, la mezcla se agitó a temperatura ambiente durante 18 horas. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. Se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El exceso de cianoacetato de etilo contenido en el aceite obtenido se evaporó a presión reducida, y el residuo se purificó por cromatografía en gel de sílice (eluyente: hexano-acetato de etilo = 8:1 →1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 10,41 g, 90%).

¹H-RMN (CDCl₃) δ: 1,35 (3H, t, J=7,2 Hz), 3,55 (1H, dd, J=16,0, 5,6 Hz), 3,80 (1H, dd, J=16,0, 7,0 Hz), 4,16 (1H, dd, J=7,0, 5,6 Hz), 4,31 (2H, q, J=7,2 Hz), 7,40-7,70 (3H, m), 7,90-8,00 (2H, m).

45 Ejemplo de referencia 3

50

2-ciano-4-(2-fluorofenil)-3-metil-4-oxobutanoato de metilo

A una disolución de cianoacetato de metilo (15,5 ml) y diisopropiletilamina (64 ml) en tetrahidrofurano (110 ml) se añadió una disolución de 2-bromo-1-(2-fluorofenil)propan-1-ona (36,8 g) en tetrahidrofurano (160 ml), y la mezcla se agitó a 70°C durante 20 h. La mezcla de reacción se dejó enfriar a temperatura ambiente, el material insoluble se separó por filtración, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 5:1) para dar el compuesto del título en forma de un aceite marrón (rendimiento 31,9 g, 80%).

¹H-RMN (CDCl₃) δ: 1,42-1,46 (3H, m), 3,82-3,85 (4H, m), 3,99-4,17 (1H, m), 7,14-7,22 (1H, m), 7,25-7,31 (1H, m),

7,55-7,63 (1H, m), 7,85-7,91 (1H, m).

Ejemplo de referencia 4

2-ciano-4-(2-fluorofenil)-4-oxobutanoato de etilo

A una disolución de 2'-fluoroacetofenona (28,6 g) en acetato de etilo (400 ml) se añadió bromuro de cobre (II) (92,6 5 q), y la mezcla se calentó a reflujo durante 4 h. La mezcla de reacción se dejó enfriar hasta temperatura ambiente y el material insoluble se separó por filtración. El filtrado se concentró a presión reducida para dar 2-bromo-1-(2fluorofenil)etanona en bruto (rendimiento 90,5 g) en forma de un aceite. Se añadió carbonato de potasio (88 g) a cianoacetato de etilo (168 g), y la mezcla se agitó a 45°C durante 1 h. Se añadió una disolución (360 ml) de 2bromo-1-(2-fluorofenil)etanona en bruto (90,5 g) en acetona gota a gota durante 20 min. Después de la finalización 10 de la adición gota a gota, la mezcla se agitó a la misma temperatura durante 1 h. Se añadieron agua (300 ml) y acetato de etilo (300 ml) a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa de dihidrogenofosfato de sodio al 10% y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El cianoacetato de etilo en exceso contenido en el aceite obtenido se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-15 acetato de etilo = 20:1→4:1) para dar el compuesto del título en forma de un aceite (rendimiento 64,0 g, alrededor de 100%).

¹H-RMN (CDCl₃) δ: 1,35 (3H, t, J=7,2 Hz), 3,55-3,80 (2H, m), 4,11 (1H, t, J=6,0 Hz), 4,24-4,34 (2H, m), 7,15-7,29 (2H, m), 7,55-7,62 (1H, m), 7,94 (1H, dt, J=7,5, 1,8 Hz).

Ejemplo de referencia 5

25

30

50

20 2-ciano-4-oxo-4-[(2-trifluorometil)fenil]butanoato de etilo

Se disolvió 2'-(trifluorometil)acetofenona (10,0 g) en cloroformo (30 ml) y éter dietílico (30 ml), se añadió gota a gota una disolución de bromo (8,50 g) en cloroformo (20 ml) manteniendo la temperatura de reacción no más alta de 25°C. Después de la adición gota a gota, la mezcla se agitó a temperatura ambiente durante 1 h, se añadió agua a la mezcla de reacción y la mezcla se extrajo con cloroformo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, se concentró a presión reducida para dar 2-bromo-1-(2-trifluorometilfenil)etanona en bruto. Se añadió carbonato de potasio (13,82 g) a cianoacetato de etilo (44,44 g), y la mezcla se agitó a 45°C durante 1 h. Se añadió gota a gota una disolución de 2-bromo-1-(2-trifluorometilfenil)etanona en bruto en acetona (100 ml). Después de la finalización de la adición gota a gota, la mezcla se agitó a la misma temperatura durante 1 h, y se agitó durante la noche a temperatura ambiente. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. Se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El cianoacetato de etilo en exceso contenido en el aceite obtenido se evaporó a presión reducida y el residuo se purificó por cromatografía en columna en gel de sílice (eluyente: hexano-acetato de etilo = 9:1 →7:1) para dar el compuesto del título en forma de un aceite (rendimiento 10,43 g, de 2'-(trifluorometil)acetofenona, rendimiento 66%).

 1 H-RMN (CDCl₃) δ: 1,36 (3H, t, J=7,2 Hz), 3,34-3,46 (1H, m), 3,59-3,70 (1H, m), 4,08-4,22 (1H, m), 4,32 (2H, q, J=7,2 Hz), 7,57-7,80 (4H, m).

Ejemplo de referencia 6

2-cloro-5-fenil-1H-pirrol-3-carboxilato de etilo

A una disolución (60 ml) de 2-ciano-4-oxo-4-fenilbutanoato de etilo (5,0 g) en tetrahidrofurano se insufló cloruro de hidrógeno (28 g) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 3 h. A continuación, se insufló nitrógeno para retirar cloruro de hidrógeno en exceso. La mezcla de reacción se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 6:1) para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 4,24 g, 79%).

 1 H-RMN (CDCl₃) δ : 1,37 (3H, t, J=6,8 Hz), 4,33 (2H, q, J=6,8 Hz), 6,87 (1H, d, J=3,2 Hz), 7,20-7,60 (5H, m), 8,79 (1H, br).

Ejemplo de referencia 7

2-cloro-5-(2-fluorofenil)-1H-pirrol-3-carboxilato de etilo

Una mezcla de 2-ciano-4-(2-fluorofenil)-4-oxobutanoato de etilo (19,3 g) y 4 mol/l de disolución (100 ml) de cloruro de hidrógeno-acetato de etilo se agitó a temperatura ambiente durante 18 h. La mezcla de reacción se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 10:1 →3:1) para dar el compuesto del título en forma de un sólido marrón (rendimiento 8,76 g, 53%)

¹H-RMN (CDCl₃) δ: 1,36-1,41 (3H, m), 4,33 (2H, q, J=7,2 Hz), 6,99-7,00 (1H, m), 7,09-7,26 (3H, m), 7,55-7,61 (1H,

m), 9,08 (1H, brs).

Ejemplo de referencia 8

2-cloro-5-(2-fluorofenil)-4-metil-1H-pirrol-3-carboxilato de metilo

A una disolución de 2-ciano-4-(2-fluorofenil)-3-metil-4-oxobutanoato de metilo (31,0 g) en acetato de etilo (30 ml) se añadió 4 mol/l de disolución (150 ml) de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 2 días. Se añadió agua (200 ml) a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó dos veces con agua, y a continuación se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, se secó sobre sulfato de sodio anhidro, se filtró, y se concentró a presión reducida. El residuo se recristalizó en acetato de etilo para dar el compuesto del título en forma de cristales blancos (rendimiento 19,3 g, 58%).

¹H-RMN (CDCl₃) δ: 2,33 (3H, s), 3,86 (3H, s), 7,12-7,42 (4H, m), 8,53 (1H, brs).

Ejemplo de referencia 9

5-fenil-1H-pirrol-3-carboxilato de etilo

A una disolución (50 ml) de 2-cloro-5-fenil-1H-pirrol-3-carboxilato de etilo (8,5 g) en etanol se añadió paladio al 10% sobre carbono (que contiene 50% de agua, 0,5 g) y la mezcla se agitó en atmósfera de nitrógeno a temperatura ambiente durante 24 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 9:1 →1:1) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 4,50 g, 62%).

¹H-RMN (CDCl₃) δ: 1,36 (3H, t, J=7,2 Hz), 4,31 (2H, q, J=7,2 Hz), 6,91 (1H, m), 7,20-7,70 (6H, m), 8,77 (1H, br).

20 Ejemplo de referencia 10

5-(2-fluorofenil)-1H-pirrol-3-carboxilato de etilo

A una disolución (80 ml) de 2-cloro-5-(2-fluorofenil)-1H-pirrol-3-carboxilato de etilo (8,6 g) en etanol se añadió paladio al 10% sobre carbono (que contiene 50% de agua, 0,86 g), y la mezcla se agitó en una atmósfera de hidrógeno a temperatura ambiente durante 36 h. La mezcla de reacción se filtró, y el filtrado se disolvió en etanol (70 ml), se añadió paladio al 10% sobre carbono (que contiene 50% de agua, 0,90 g), y la mezcla se agitó en una atmósfera de hidrógeno a temperatura ambiente durante 60 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo = 10:1 →5:1 g, 18%).

¹H-RMN (CDCl₃) δ: 1,67 (3H, t, J=7,2 Hz), 4,31 (2H, q, J=7,2 Hz), 7,03-7,05 (1H, m), 7,08-7,25 (3H, m), 7,49-7,50 (1H, m), 7,58-7,66 (1H, m), 9,22 (1H, brs).

Ejemplo de referencia 11

5-(2-fluorofenil)-4-metil-1H-pirrol-3-carboxilato de metilo

A una disolución de 2-cloro-5-(2-fluorofenil)-4-metil-1H-pirrol-3-carboxilato de metilo (10,2 g) en metanol (200 ml) se añadió paladio al 10% sobre carbono (que contiene 50% de agua, 1,28 g), y la mezcla se agitó en una atmósfera de hidrógeno a temperatura ambiente durante 20 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio (100 ml) al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, se filtró, y se concentró a presión reducida. La recristalización del residuo en hexano-acetato de etilo dio el compuesto del título en forma de cristales blancos (rendimiento 6,70 g, 76%).

¹H-RMN (CDCl₃) δ: 2,40 (3H, s), 3,82 (3H, s), 7,12-7,33 (3H, m), 7,42-7,49 (2H, m), 8,67 (1H, brs).

Ejemplo de referencia 12

5-[(2-trifluorometil)fenil]-1H-pirrol-3-carboxilato de etilo

Por una operación similar a la de los Ejemplos de referencia 7 y 9 y usando 2-ciano-4-oxo-4-[(2-trifluorometil)fenil]butanoato de etilo, se obtuvo el compuesto del título en forma de cristales incoloros. Más específicamente, una mezcla de 2-ciano-4-[(2-trifluorometil)fenil]-4-oxobutanoato de etilo (10,2 g) y 4 mol/l de disolución (100 ml) de cloruro de hidrógeno-acetato de etilo se agitó a temperatura ambiente durante 18 horas. La mezcla de reacción se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 10:1→3:1) para dar 2-cloro-5-[(2-trifluorometil)fenil]-1H-pirrol-3-carboxilato de etilo en forma de un sólido marrón (rendimiento 6,37 g, 59%). Este se disolvió en etanol (120 ml), se añadió

paladio al 10% sobre carbono (que contiene 50% de agua, 0,5 g), y la mezcla se agitó en atmósfera de hidrógeno a temperatura ambiente durante 24 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: hexano-acetato de etilo = 9:1→1:1) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 2,89 g, 51%).

¹H-RMN (CDCl₃) δ: 1,36 (3H, t, J=7,2 Hz), 4,31 (2H, q, J=7,2 Hz), 6,81 (1H, s), 7,42-7,61 (5H, m), 8,69 (1H, br).

Ejemplo de referencia 13

(5-fenil-1H-pirrol-3-il)metanol

Una disolución (100 ml) de 5-fenil-1H-pirrol-3-carboxilato de etilo (2,61 g) en tetrahidrofurano se enfrió a -78°C, y se añadió gota a gota una disolución (24 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno durante 10 min. La mezcla se agitó adicionalmente a -78°C durante 1 h, se añadió agua (2 ml) gota a gota durante 2 min, y la mezcla se agitó adicionalmente a temperatura ambiente durante 1 h. La mezcla de reacción se filtró usando celite y sulfato de magnesio anhidro, y se concentró a presión reducida para dar el compuesto del título en forma de un polvo rojo claro (rendimiento 1,51 g, 87%).

¹H-RMN (DMSO-d₆) δ: 4,34 (2H, d, J=5,4 Hz), 4,60 (1H, t, J=5,4 Hz), 6,45-6,46 (1H, m), 6,74 (1H, br), 7,11-7,15 (1H, m), 7,31-7,35 (2H, m), 7,57-7,59 (2H, m), 11,05 (1H, s).

Ejemplo de referencia 14

15

20

[5-(2-fluorofenil)-4-metil-1H-pirrol-3-il]metanol

Por una operación similar a la del Ejemplo de referencia 13 y usando 5-(2-fluorofenil)-4-metil-1H-pirrol-3-carboxilato de metilo (1,63 g) y una disolución (15 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno, se obtuvo el compuesto del título en forma de cristales blancos (rendimiento 1,18 g, 82%).

 1 H-RMN (CDCl₃) δ: 1,30 (1H, t, J=4,8 Hz), 2,25 (3H, s), 4,61 (2H, d, J=4,8 Hz), 6,87 (1H, d, J=3,3 Hz), 7,10-7,28 (3H, m), 7,44-7,50 (1H, m), 8,40 (1H, brs).

Ejemplo de referencia 15

5-fenil-1H-pirrol-3-carbaldehído

A una disolución (45 ml) de (5-fenil-1H-pirrol-3-il)metanol (1,51 g) en acetonitrilo se añadieron perrutenato de tetranpropilamonio (0,46 g), N-óxido de N-metilmorfolina (2,36 g) y tamices moleculares 4A en polvo (4,5 g), y la mezcla se agitó a temperatura ambiente durante 1,5 h. La mezcla de reacción se filtró a través de celite, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo = 4:1 →1:1) para dar el compuesto del título en forma de un polvo amarillo claro (rendimiento 0,92 g, 62%).

¹H-RMN (CDCl₃) 5: 6,95 (1H, m), 7,29-7,32 (1H, m), 7,40-7,44 (2H, m), 7,50-7,52 (3H, m), 9,02 (1H, br), 9,84 (1H, s).

Ejemplo de referencia 16

5-(2-fluorofenil)-4-metil-1H-pirrol-3-carbaldehído

Por una operación similar a la del Ejemplo de referencia 15 y usando [5-(2-fluorofenil)-4-metil-1H-pirrol-3-il]metanol (1,17 g), perrutenato de tetra-n-propilamonio (101 mg), N-óxido de N-metilmorfolina (1,01 g) y tamices moleculares 4A en polvo (572 mg), se obtuvo el compuesto del título en forma de cristales rosa claro (rendimiento 0,67 g, 58%).

¹H-RMN (CDCl₃) δ: 2,45 (3H, s), 7,14-7,36 (3H, m), 7,44-7,50 (2H, m), 8,82 (1H, brs), 9,92 (1H, s)

Ejemplo de referencia 17

5-(2-fluorofenil)-1H-pirrol-3-carbaldehído

Una disolución (220 ml) de 5-(2-fluorofenil)-1H-pirrol-3-carboxilato de etilo (11,6 g) en tetrahidrofurano se enfrió a -78°C, y se añadió gota a gota una disolución (100 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno durante 10 min. La mezcla se agitó a -78°C durante 1 h y se añadió agua (10 ml) gota a gota durante 2 min. La mezcla se dejó calentar a temperatura ambiente y la mezcla se agitó durante 2 h. La mezcla de reacción se filtró añadiendo celite y sulfato de magnesio anhidro y se concentró a presión reducida para dar un aceite amarillo claro (rendimiento 8,3 g). A una disolución (220 ml) del aceite (8,30 g) amarillo claro obtenido en acetonitrilo se añadieron perrutenato de tetra-n-propilamonio (1,75 g), N-óxido de N-metilmorfolina (13,5 g) y tamices moleculares 4A en polvo (5 g), y la mezcla se agitó a temperatura ambiente durante 1,5 h. La mezcla de reacción se filtró a través de celite, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 7:3 →1:1) para dar el compuesto del título en forma de cristales amarillos (rendimiento 5,6

g, 60%).

¹H-RMN (CDCl₃) δ: 7,07-7,28 (4H, m), 7,52-7,54 (1H, m), 7,61-7,67 (1H, m), 9,49 (1H, brs), 9,86 (1H, s).

Ejemplo de referencia 18

5-[2-(trifluorometil)fenil]-1H-pirrol-3-carbaldehído

5 Una disolución (28 ml) de 5-[2-(trifluorometil)fenil]-1H-pirrol-3-carboxilato de etilo (1,38 g) en tetrahidrofurano se enfrió a -78°C, y se añadió gota a gota una disolución (13 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno durante 10 min. La mezcla se agitó adicionalmente a -78°C durante 1 h, y se añadió agua (3 ml) gota a gota durante 2 min. La mezcla se dejó calentar a temperatura ambiente y la mezcla se agitó durante 1 h. La mezcla de reacción se filtró añadiendo celite y sulfato de magnesio anhidro y se concentró a presión reducida para dar un aceite amarillo 10 claro (rendimiento 1,14 g). El aceite (1,14 g) obtenido se disolvió en acetonitrilo (50 ml) y se añadieron a esta

disolución perrutenato de tetra-n-propilamonio (0,26 g), N-óxido de N-metilmorfolina (1,32 g) y tamices moleculares 4A en polvo (5 g). La mezcla se agitó a temperatura ambiente durante 1,5 h. La mezcla de reacción se filtró a través de celite, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1 →1:1) para dar el compuesto del título en forma de cristales incoloros 15 (rendimiento 0,71 g, 61%).

¹H-RMN (CDCl₃) δ: 6,79-6,81 (1H, m), 7,46-7,78 (5H, m), 9,13 (1H, br), 9,82 (1H, s).

Ejemplo de referencia 19

1H-pirrol-3-carboxilato de metilo

A una suspensión de terc-butóxido de potasio (17,9 g) en tetrahidrofurano (200 ml) se añadió gota a gota una 20 disolución de isocianuro de p-toluenosulfonilmetilo (25, 2 g) y acrilato de metilo (11,8 ml) en tetrahidrofurano (200 ml) durante 30 min. La mezcla de reacción se agitó a temperatura ambiente durante 1 h, se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, aqua v salmuera saturada, se secó sobre sulfato de magnesio anhidro, se filtró, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1) para 25 dar el compuesto del título en forma de un sólido blanco (rendimiento 6,56 g, 41%).

¹H-RMN (CDCl₃) δ: 3,82 (3H, s), 6,15 (1H, m), 6,75 (1H, m), 7,43 (1H, m), 8,50 (1H, brs).

Ejemplo de referencia 20

4-metil-1H-pirrol-3-carboxilato de metilo

Por una operación similar a la del Ejemplo de referencia 19 y usando isocianuro de p-toluenosulfonilmetilo (94,6 g), 30 crotonato de metilo (48,5 g) y terc-butóxido de potasio (76,7 g), se obtuvo el compuesto del título en forma de un sólido amarillo claro (rendimiento 16,8 g, 25%).

¹H-RMN (CDCl₃) δ: 2,29 (3H, s), 3,80 (3H, s), 6,53-6,54 (1H, m), 7,36-7,38 (1H, m), 8,25 (1H, brs).

Ejemplo de referencia 21

2-metil-1H-pirrol-3-carboxilato de etilo

35 Se añadió gota a gota acetato de vinilo (13,4 g) durante 2 h a bromo (25 g) con enfriamiento con hielo y con agitación. La mezcla de reacción se agitó adicionalmente a la misma temperatura durante 1 h. Se añadió 3oxobutanoato de etilo (18,5 g), y se añadió gota a gota una disolución (44 ml) acuosa al 25% de amoníaco durante 1 h. La mezcla de reacción se agitó adicionalmente a temperatura ambiente durante 30 min, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio 40 anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1 →3:1) y se recristalizó en hexano para dar el compuesto del título en forma de un sólido incoloro (rendimiento 7,56 q, 35%).

¹H-RMN (CDCl₃) δ: 1,32-1,37 (3H, m), 2,53 (3H, s), 4,24-4,31 (2H, m), 6,55-6,58 (2H, m), 8,13 (1H, br).

Ejemplo de referencia 22

45 5-bromo-1H-pirrol-3-carboxilato de metilo

> Una disolución (30 ml) de 1H-pirrol-3-carboxilato de metilo (3,06 g) en tetrahidrofurano se enfrió a -78°C, se añadió N-bromosuccinimida (4,38 g) y a continuación piridina (3 gotas), y la mezcla se agitó a la misma temperatura durante 1 h. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de

sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 5:1) para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 3,08 g, 62%).

¹H-RMN (CDCl₃) δ: 3,81 (3H, s), 6,58 (1H, m), 7,36 (1H, m), 8,60 (1H, brs).

5 Ejemplo de referencia 23

5-bromo-4-metil-1H-pirrol-3-carboxilato de metilo

Por una operación similar a la del Ejemplo de referencia 22 y usando 4-metil-1H-pirrol-3-carboxilato de metilo (1,0 g) y N-bromosuccinimida (1,28 g), se obtuvo el compuesto del título en forma de un sólido amarillo claro (rendimiento 489 mg, 31%).

10 1 H-RMN (CDCl₃) δ : 2,23 (3H, s), 3,80 (3H, s), 7,37 (1H, d, J=3,0 Hz), 8,40 (1H, brs).

Ejemplo de referencia 24

5-bromo-2-metil-1H-pirrol-3-carboxilato de etilo

A una disolución de 2-metil-1H-pirrol-3-carboxilato de etilo (1,53 g) en tetrahidrofurano (20 ml) se añadió N-bromosuccinimida (1,78 g) a -78°C, y la mezcla se agitó a la misma temperatura durante 30 min. Se añadieron agua y éter dietílico para extraer la mezcla de reacción. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida a 5°C o por debajo. El residuo se lavó con hexano para dar el compuesto del título en forma de un sólido incoloro (rendimiento 2,26 g, 97%).

¹H-RMN (CDCl₃) 5: 1,30-1,35 (3H, m), 2,51 (3H, s), 4,22-4,29 (2H, m), 6,50 (1H, s), 8,01 (1H, br).

Ejemplo de referencia 25

20 Ácido 2-hidroxi-5-pirimidinosulfónico

Ácido sulfúrico fumante (que contiene 25% de dióxido de azufre, 100 ml) se enfrió a 0°C, y se añadió gradualmente 2-aminopirimidina (25 g) durante 1 h. La mezcla se calentó a 180°C y se agitó durante 40 h. Después de enfriar a temperatura ambiente, la mezcla se vertió en hielo (1 kg). El precipitado se recogió por filtración y se recristalizó en agua para dar el compuesto del título (rendimiento 25,6 g, 55%).

¹H-RMN (DMSO-d₆) δ: 6,20-7,20 (2H, m), 8,71 (2H, s).

Ejemplo de referencia 26

Cloruro de 2-cloro-5-pirimindinosulfonilo

Una mezcla de ácido 2-hidroxi-5-pirimidinosulfonilo (12,8 g) y pentacloruro de fósforo (37,8 g) se agitó a 180°C durante 4 h. Después de enfriar a temperatura ambiente, se añadió tolueno (200 ml), y el material insoluble se separó por filtración. El filtrado se lavó con hielo-agua, se secó sobre sulfato de magnesio anhidro, y el disolvente se evaporó a presión reducida. El residuo se mantuvo en un congelador durante un día para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 14,8 g, 96%).

¹H-RMN (CDCl₃) δ: 9,19 (2H, s).

Ejemplo de referencia 27

35 6-cloropiridazina-3-tiol

40

A una suspensión (88 ml) de hidrogenosulfuro de sodio (3,78 g) en etanol se añadió 3,6-dicloropiridazina (5,0 g), y la mezcla se calentó a reflujo durante 1 h. El disolvente se evaporó a presión reducida, y se añadió agua (12,5 ml). La mezcla se ajustó a alrededor de pH 9 con disolución de hidróxido de sodio 2 mol/l, y el precipitado se separó por filtración. El filtrado se ajustó a alrededor de pH 2 con ácido clorhídrico 6 mol/l y el precipitado se recogió por filtración para dar el compuesto del título en forma de un sólido amarillo (rendimiento 4,74, 96%).

¹H-RMN (CDCl₃) δ: 6,99 (1H, d, J=9,6 Hz), 7,60 (1H, d, J=9,6 Hz)

Ejemplo de referencia 28

Fluoruro de 6-cloropiridazino-3-sulfonilo

A una mezcla enfriada a -20°C de metanol (10 ml) y agua (10 ml) se añadieron hidrogenofluoruro de potasio (16 g) y 6-cloropiridazino-3-tiol (2,37 g). Después de agitar a la misma temperatura durante 20 min, se insufló cloro durante 30 min. Se añadió hielo-agua (20 ml) y el precipitado se recogió por filtración. El precipitado se extrajo con acetato

ES 2 391 757 T3

de etilo y agua. El extracto se lavó con salmuera saturada, y se secó sobre sulfato de magnesio anhidro. EL disolvente se evaporó a presión reducida para permitir la cristalización, y los cristales se lavaron con hexano para dar el compuesto del título en forma de un sólido gris (rendimiento 1,68 g, 53%).

¹H-RMN (CDCl₃) δ: 7,86-7,89 (1H, m), 8,17-8,19 (1H, m).

5 Ejemplo de referencia 29

10

Hidrocloruro de cloruro de piridin-3-ilsulfonilo.

Una mezcla de ácido 3-piridinosulfónico (50,0 g), pentacloruro de fósforo (80,0 g) y oxicloruro de fósforo (100 ml) se agitó a 120°C durante 8 h. En atmósfera de nitrógeno, la mezcla se enfrió a temperatura ambiente, y se añadió cloroformo (deshidratado, 330 ml). Se insufló cloruro de hidrógeno, y los cristales precipitados se recogieron por filtración y se lavaron con cloroformo (deshidratado) para dar el compuesto del título en forma de un sólido blanco (rendimiento 54,7, 81%).

¹H-RMN (DMSO-d₆) δ: 8,03-8,07 (1H, m), 8,68 (1H, d, J=8,1 Hz), 8,87 (1H, d, J=5,7 Hz), 9,01 (1H, s).

Ejemplo de referencia 30

Cloruro de 6-metoxipiridin-3-ilsulfonilo

Se disolvió 5-amino-2-metoxipiridina (1,24 g) en ácido acético (8,3 ml), y la mezcla se agitó con enfriamiento con hielo. Se añadió ácido clorhídrico concentrado (8,3 ml), y se añadió gota a gota una disolución (5 ml) acuosa de nitrito de sodio (689 mg) durante 15 min manteniendo la temperatura interior no más alta de 10°C. La mezcla de reacción se agitó durante 10 min, y se añadió gradualmente a 5°C a una mezcla de cloruro cuproso (280 mg) y ácido acético (17 ml) saturado antes con dióxido de azufre gaseoso. La mezcla se dejó calentar gradualmente hasta temperatura ambiente hasta que paró la generación de gas. La mezcla de reacción se concentró a alrededor de 5 ml a presión reducida, y el precipitado se recogió por filtración para dar el compuesto del título (rendimiento 1,0 g, 51%) en forma de cristales en bruto. Este compuesto se usó para la siguiente reacción sin purificación.

Ejemplo de referencia 31

Cloruro de 6-cloropiridin-3-ilsulfonilo

Con enfriamiento con hielo, se añadió cloruro de tionilo (12 ml) gota a gota durante 1 h a agua (70 ml) y la mezcla se agitó a temperatura ambiente durante 12 h para dar una disolución que contiene dióxido de azufre. Separadamente, con enfriamiento con hielo, se añadió 5-amino-2-cloropiridina (5,0 g) a ácido clorhídrico concentrado (40 ml) y la mezcla se agitó. Una disolución acuosa (12,5 ml) de nitrito de sodio (2,88 g) se añadió gota a gota mientras se mantiene la temperatura interna no más alta de 5°C, y la mezcla se agitó adicionalmente durante 15 minutos. La mezcla de reacción se añadió gradualmente a 5°C a la anteriormente mencionada disolución que contiene dióxido de azufre con cloruro cuproso (70 mg) añadido. Con enfriamiento con hielo, la mezcla se agitó adicionalmente durante 30 min. El precipitado se recogió por filtración, y se lavó con agua y etanol para dar el compuesto del título (rendimiento 4,79 g, 58%)

¹H-RMN (CDCl₃) δ: 7,60-7,63 (1H, m), 8,24-8,27 (1H, m), 9,03-9,04 (1H, m).

35 Ejemplo de referencia 32

40

45

Cloruro de 2-cloro-3-piridinosulfonilo

Con enfriamiento con hielo, se añadió cloruro de tionilo (24 ml) gota a gota durante 1 h a agua (140 ml) y la mezcla se agitó a temperatura ambiente durante 12 h para dar una disolución que contiene dióxido de azufre. Separadamente, con enfriamiento con hielo, se añadió 3-amino-2-cloropiridina (10,0 g) a ácido clorhídrico concentrado (80 ml) y la mezcla se agitó. Una disolución acuosa (25 ml) del nitrito de sodio (5,75 g) se añadió gota a gota manteniendo la temperatura interna no más alta de 5°C, y la mezcla se agitó adicionalmente durante 15 minutos. La mezcla de reacción se añadió gradualmente a 5°C a la anteriormente mencionada disolución que contiene dióxido de azufre con cloruro cuproso (140 mg) añadido. Con enfriamiento con hielo, la mezcla se agitó adicionalmente durante 30 min, y el precipitado se recogió por filtración y se lavó con agua y etanol para dar el compuesto del título (rendimiento 6,99 g, 42%)

¹H-RMN (CDCl₃) δ: 7,54-7,56 (1H, m), 8,46-8,48 (1H, m), 8,71-8,73 (1H, m).

Ejemplo de referencia 33

6-cloro-5-metilpiridino-3-amina

Se añadió hierro reducido (793 mg) a una disolución acuosa (25 ml) de cloruro de amonio (1,27 g), y la mezcla se agitó a temperatura ambiente durante 5 min. Se añadió gota a gota durante 10 min una disolución (10 ml) de 2-cloro-

3-metil-5-nitropiridina (816 mg) en metanol. La mezcla de reacción se agitó a 40°C durante 20 min y a 50°C durante 1,5 h y se calentó a reflujo adicionalmente durante 1 h. La mezcla de reacción se filtró a través de celite, y el celite se lavó con metanol. El metanol se retiró en su mayor parte por concentración a presión reducida, y se añadió disolución acuosa saturada de hidrogenocarbonato de sodio. La mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→7:3) para dar el compuesto del título en forma de un sólido (rendimiento 280 mg, 42%).

¹H-RMN (CDCl₃) δ: 3,62 (2H, br), 6,88-6,89 (1H, m), 7,70-7,71 (1H, m).

Ejemplo de referencia 34

5

15

35

10 Cloruro de 6-cloro-5-metilpiridino-3-ilsulfonilo

Con enfriamiento con hielo, se añadió cloruro de tionilo (0,6 ml) gota a gota durante 30 min a agua (3,4 ml): La mezcla se agitó a temperatura ambiente durante 12 h para dar una disolución que contiene dióxido de azufre. Separadamente, con enfriamiento con hielo, se añadió 6-cloro-5-metilpiridino-3-amina (278 mg) a ácido clorhídrico concentrado (6 ml) y la mezcla se agitó. Una disolución acuosa (2 ml) del nitrito de sodio (148 mg) se añadió gota a gota manteniendo la temperatura interna no más alta de 5°C, y la mezcla se agitó adicionalmente durante 15 minutos. La mezcla de reacción se añadió gradualmente a 5°C a la anteriormente mencionada disolución que contiene dióxido de azufre con cloruro cuproso (5 mg) añadido. Con enfriamiento con hielo, la mezcla se agitó adicionalmente durante 30 min, y el precipitado se recogió por filtración y se lavó con agua para dar el compuesto del título (rendimiento 271 mg, 62%)

 1 H-RMN (CDCl₃) δ: 2,54 (3H, s), 8,15 (1H, s), 8,86 (1H, s).

Ejemplo de referencia 35

Cloruro de 2-piridinosulfonilo

Con enfriamiento con hielo, se añadió 2-mercaptopiridina (2,0 g) a ácido sulfúrico (50 ml) y se agitó la mezcla. Se añadió disolución de hipoclorito de sodio (contenido de cloro 5%, 126 ml) gota a gota durante 1,5 h, y la mezcla se agitó adicionalmente a la misma temperatura durante 30 min. La mezcla de reacción se diluyó con agua (100 ml), y se extrajo con diclorometano. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida para dar el compuesto del título en forma de un aceite incoloro (rendimiento 2,45 g, 77%).

¹H-RMN (CDCl₃) δ: 7,69-7,71 (1H, m), 8,06-8,14 (2H, m), 8,83-8,85 (1H, m).

30 Ejemplo de referencia 36

1-[(2-cloro-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo

Se disolvió 5-fenil-1H-pirrol-3-carboxilato de etilo (1,60 g) en tetrahidrofurano (50 ml), se añadió hidruro de sodio (al 60% en aceite, 446 mg) y la mezcla se agitó a temperatura ambiente durante 15 min. Se añadió 15-corona-5 (2,4 ml) y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió cloruro de 2-cloro-5-pirimidinosulfonilo (2,06 g) y la mezcla de reacción se agitó a temperatura ambiente durante 1 h. Se añadió agua , y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→7:3) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 2,03 q. 70%).

40 1 H-RMN (CDCl₃) δ : 1,35-1,39 (3H, m), 4,30-4,37 (2H, m), 6,64 (1H, s), 7,22-7,26 (2H, m), 7,37-7,51 (3H, m), 8,04 (1H, s).

Ejemplo de referencia 37

1-[(2-metil-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo

En atmósfera de nitrógeno, se añadieron tetraquis(trifenilfosfina)paladio (87 mg) y disolución (1,5 ml) de 1 mol/l de trimetilaluminio-hexano a una disolución de 1-[(2-cloro-5-pirimidina)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo (588 mg) en tetrahidrofurano (20 ml) con agitación. La mezcla se agitó a temperatura ambiente durante 15 min. y se añadió disolución (1 ml) de 2 mol/l de trimetilaluminio-hexano. Después de agitar a la misma temperatura durante 20 min se añadió agua (100 ml) y cloruro de amonio (2,0, g) y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 350 mg, 63%).

ES 2 391 757 T3

¹H-RMN (CDCl₃) δ: 1,34-1,39 (3H, m), 2,77 (3H, s), 4,29-4,36 (2H, m), 6,61 (1H, s), 7,21-7,26 (2H, m), 7,37-7,49 (3H, m), 8,06 (1H, s), 8,41 (2H, s).

Ejemplo de referencia 38

1-[(2-amino-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo

Se añadió disolución (1,0 ml) de 7 mol/l de amoníaco-metanol a una disolución de 1-[(2-cloro-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo (392 mg) en tetrahidrofurano (10 ml) con agitación. La mezcla se agitó a temperatura ambiente durante 20 min, se añadió disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida para dar el compuesto del título en forma de un sólido incoloro (rendimiento 373 mg, alrededor de 100%).

 1 H-RMN (CDCl₃) δ: 1,34-1,39 (3H, m), 4,28-4,36 (2H, m), 5,60 (2H, br), 6,59 (1H, s), 7,26-7,46 (5H, m), 8,02-8,03 (3H, m).

Eiemplo de referencia 39

1-(imidazo[1,2-a]pirimidin-6-ilsulfonil)-5-fenil-1H-pirrol-3-carboxilato de etilo

Una mezcla de 1-[(2-amino-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo (373 mg), 2-bromo-1,1-dietoxietano (394 mg) y ácido acético (20 ml) se agitó en un aparato de reacción de microondas a 130°C durante 30 min. Después de enfriar a temperatura ambiente, el disolvente se evaporó a presión reducida. Se añadió disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1) para dar el compuesto del título en forma de un sólido marrón (rendimiento 157 mg, 40%).

¹H-RMN (CDCl₃) δ: 1,35-1,40 (3H, m), 4,30-4,37 (2H, m), 6,61 (1H, s), 7,17-7,49 (2H, m), 7,26-7,49 (4H, m), 7,94 (1H, s), 7,99 (1H, s), 8,11 (1H, s), 8,38 (1H, s).

Ejemplo de referencia 40

5-fenil-1-(piridazin-3-ilsulfonil)-1H-pirrol-3-carboxilato de etilo

Se disolvió 5-fenil-1H-pirrol-3-carboxilato de etilo (1,06 g) en tetrahidrofurano (30 ml), se añadió hidruro de sodio (al 60% en aceite, 300 mg) y la mezcla se agitó a temperatura ambiente durante 15 min. Se añadió 15-corona-5 (1,52 ml) y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió cloruro de 6-cloropiridazino-3-sulfonilo (1,28 g) y la mezcla de reacción se agitó a temperatura ambiente durante 30 min. Se añadió hidrazina (1,60 g) y la mezcla de reacción se agitó a temperatura ambiente durante 15 min. Se añadió disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (30 ml), se añadió dióxido de manganeso (producto tratado químicamente al 75%, 5,0 g), y la mezcla se agitó a temperatura ambiente durante 10 min. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título (rendimiento 613 mg, rendimiento 24% (conteniendo impurezas)).

¹H-RMN (CDCl₃) δ: 1,34-1,39 (3H, m), 4,29-4,36 (2H, m), 6,61 (1H, s), 7,11-7,22 (2H, m), 7,24-7,51 (5H, m), 8,20 (1H, s), 9,28-9,30 (1H, s).

40 Ejemplo de referencia 41

30

35

5-bromo-1-(fenilsulfonil)-1H-pirrol-3-carboxilato de metilo

Se lavó hidruro de sodio (al 60% en aceite, 1,1 g) con hexano y se suspendió en N,N-dimetilformamida (50 ml). Se añadió a la suspensión a 0°C una disolución (10 ml) de 5-bromo-1H-pirrol-3-carboxilato de metilo (5,0 g) en N,N-dimetilformamida. Después de agitar a 0°C durante 30 min, se añadió una disolución de cloruro de bencenosulfonilo (3,3 ml) en N,N-dimetilformamida (5 ml), y la mezcla de reacción se agitó a temperatura ambiente durante 1 h. Se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 5:1) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 8,5 g, 99%).

 1 H-RMN (CDCl₃) δ: 3,83 (3H, s), 6,68 (1H, d, J=2,1 Hz), 7,55-7,60 (2H, m), 7,67-7,72 (1H, m), 7,96-7,99 (2H, m), 8,08 (1H, d, J=2,1 Hz).

Ejemplo de referencia 42

5-bromo-4-metil-1-(fenilsulfonil)-1H-pirrol-3-carboxilato de metilo

Se lavó hidruro de sodio (al 60% en aceite, 202 mg) con hexano y se suspendió en N,N-dimetilformamida (10 ml). Se añadió una disolución (10 ml) de 5-bromo-4-metil-1H-pirrol-3-carboxilato de metilo (1,0 g) en N,N-dimetilformamida gota a gota a -78°C. Después de la finalización de la adición gota a gota, la mezcla de reacción se agitó a temperatura ambiente durante 30 min y se añadió gota a gota a una disolución (10 ml) enfriada con hielo de cloruro de bencenosulfonilo (0,71 ml) en N,N-dimetilformamida. Después de la finalización de la adición gota a gota, la mezcla de reacción se agitó a temperatura ambiente durante 1 h, y se concentró a presión reducida. El residuo se recristalizó en acetato de etilo-hexano para dar el compuesto del título en forma de un sólido marrón (rendimiento 1,13 g, 69%).

¹H-RMN (CDCl₃) δ: 2,11 (3H, s), 3,79 (3H, s), 7,45-7,70 (3H, m), 7,87-7,95 (2H, m), 8,06 (1H, s)

Ejemplo de referencia 43

10

25

2-metil-1-(fenilsulfonil)-1H-pirrol-3-carboxilato de etilo

Por una operación similar a la del Ejemplo de referencia 41 y usando 2-metil-1H-pirrol-3-carboxilato de etilo (8,81 g), hidruro de sodio (al 60% en aceite, 2,58 g) y cloruro de bencenosulfonilo (7,8 ml), se obtuvo el compuesto del título en forma de cristales blancos (rendimiento 14,3 g, 85%).

 1 H-RMN (CDCl₃) δ : 1,31 (3H, t, J=7,2 Hz), 2,62 (3H, s), 4,24 (2H, q, J=7,2 Hz), 6,63 (1H, d, J=3,3 Hz), 7,30 (1H, d, J=3,3 Hz) 7,51-7,57 (2H, m), 7,62-7,68 (1H, m), 7,81-7,84 (2H, m)

Ejemplo de referencia 44

20 5-bromo-2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carboxilato de etilo

Se disolvió 5-bromo-2-metil-1H-pirrol-3-carboxilato de etilo (2,26 g) en tetrahidrofurano (100 ml), se añadió hidruro de sodio (al 60% en aceite, 1,16 g) y la mezcla se agitó a temperatura ambiente durante 15 min. Se añadió 15-corona-5 (5,90 ml) y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió hidrocloruro de cloruro de 3-piridinosulfonilo (3,13 g) y la mezcla de reacción se agitó a temperatura ambiente durante 1 h. Se añadió disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo = 19:1 →7:3) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 2,31 g, 64%).

 1 H-RMN (CDCl₃) δ: 1,24-1,34 (3H, m), 2,94 (3H, s), 4,23-4,30 (2H, m), 6,69 (1H, s), 7,51-7,55 (1H, m), 8,17-8,21 (1H, m), 8,88-8,91 (1H, m), 9,14 (1H, m).

Ejemplo de referencia 45

2-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carboxilato de etilo

Una suspensión de 5-bromo-2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carboxilato de etilo (2,26 g), ácido fenilborónico (1,54 g), dicloro[bis(trifenilfosfina)]paladio (211 mg) y carbonato de sodio (1,91 g) en 1,2-dimetoxietano (20 ml)-agua (10 ml) se agitó a 80°C durante 40 min. Después de enfriar, la mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. La capa orgánica se separó del filtrado, se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna en gel de sílice (eluyente: hexano-acetato de etilo = 9:1→6:4) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 2,39 g, alrededor de 100%).

¹H-RMN (CDCl₃) δ: 1,30-1,34 (3H, m), 2,92 (3H, s), 4,23-4,30 (2H, m), 6,59 (1H, s), 7,23-7,39 (4H, m), 7,50-7,68 (2H, m), 8,22-8,25 (1H, m), 8,61-8,62 (1H, m), 8,75-8,77 (1H, m).

Ejemplo de referencia 46

[5-bromo-1-(fenilsulfonil)-1H-pirrol-3-il]metanol

Una disolución (80 ml) de 5-bromo-1-(fenilsulfonil)-1H-pirrol-3-carboxilato de metilo (7,1 g) en tetrahidrofurano se enfrió a -78°C, se añadió gota a gota una disolución (42 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno durante 30 min y la mezcla se agitó adicionalmente a -78°C durante 1 h. Se añadió ácido clorhídrico 1 mol/l (20 ml) a la mezcla de reacción, y la mezcla de reacción se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida para dar el compuesto del título en forma de un aceite marrón (rendimiento 7,1 g, alrededor de 100%).

ES 2 391 757 T3

¹H-RMN (CDCl₃) δ: 1,62 (1H, brs), 4,51 (2H, s), 6,33-6,34 (1H, m), 7,44-7,45 (1H, m), 7,51-7,57 (2H, m), 7,62-7.68 (1H, m), 7,39-7,97 (2H, m).

Ejemplo de referencia 47

[2-metil-1-(fenilsulfonil)-1H-pirrol-3-il]metanol

Por una operación similar a la del Ejemplo de referencia 13 y usando 2-metil-1-(fenilsulfonil)-1H-pirrol-3-carboxilato de etilo (8,05 g) y disolución (55 ml) 1,5 mol/l de hidruro de diisobutilaluminio en tolueno, se obtuvo el compuesto en forma de cristales (rendimiento 6,61 g, 96%).

¹H-RMN (CDCl₃) δ: 1,37 (1H, brs), 2,29 (3H, s), 4,42 (2H, brs), 6,29 (1H, d, J=3,6 Hz), 7,30 (1H, d, J=3,6 Hz), 7,49-7,55 (2H, m), 7,58-7,64 (1H, m), 7,78-7,81 (2H, m).

10 Eiemplo de referencia 48

15

5-bromo-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución (80 ml) de [5-bromo-1-(fenilsulfonil)-1H-pirrol-3-il]metanol (7,1 g) en acetonitrilo se añadieron perrutenato de tetra-n-propilamonio (0,63 g), N-óxido de N-metilmorfolina hidrato (4,2 g) y tamices moleculares 4A en polvo (3,5 g), y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. Se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 4,6 g, 71%).

 1 H-RMN (CDCl₃) δ : 6,73 (1H, d, J=2,1 Hz), 7,57-7,63 (2H, m), 7,70-7,75 (1H, m), 7,98-8,02 (2H, m), 8,10 (1H, d, J=2,1 Hz), 9,77 (1H, s).

Ejemplo de referencia 49

5-bromo-4-metil-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 17 y usando 5-bromo-4-metil-1-(fenilsulfonil)-1H-pirrol-3-carboxilato de metilo, se obtuvo el compuesto del título en forma de un sólido incoloro (1,78 g, 54%).

¹H-RMN (CDCl₃) δ: 2,14 (3H, s), 7,50-7,62 (3H, m), 7,91-7,96 (2H, m), 8,04 (1H, s), 9,77 (1H, s).

Ejemplo de referencia 50

4-metil-5-fenil-1H-pirazol-3-carbaldehído.

Una suspensión de 5-bromo-4-metil-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído (1,78 g), ácido fenilborónico (1,37 g), dicloro[bis(trifenilfosfina)]paladio (0,19 g) y carbonato de sodio (1,72 g) en 1,2-dimetoxietano (30 ml)-agua (10 ml) se agitó a 100°C durante 1 h. Se añadió disolución (15 ml) acuosa de 8 mol/l de hidróxido de sodio, y la mezcla se agitó a 90°C durante 3 h. Después de enfriar, la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 9:1 →1:1), y el sólido obtenido se lavó con hexano para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 815 mg, 69%).

¹H-RMN (CDCl₃) δ: 2,47 (3H, s), 7,34-7,48 (6H, m), 8,58 (1H, br), 9,91 (1H, s).

Ejemplo de referencia 51

2-metil-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído

A una mezcla de [2-metil-1-(fenilsulfonil)-1H-pirrol-3-il]metanol (6,35 g), dimetilsulfóxido (50 ml) y trietilamina (25 ml) se añadió complejo de piridina y trióxido de azufre (4,57 g), y la mezcla se agitó a temperatura ambiente durante 12 horas. Se añadió disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, se filtró, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 2:1) para dar un compuesto del título blanco (rendimiento 5,27 g, 84%).

 1 H-RMN (CDCl₃) δ: 2,62 (3H, s), 6,65 (1H, d, J=3,6 Hz), 7,35 (1H, d, J=3,6 Hz), 7,55-7,61 (2H, m), 7,66-7,71 (1H, m), 7,85-7,88 (2H, m), 9,89 (1H, s).

Ejemplo de referencia 52

2-metil-1H-pirrol-3-carbaldehído

A una disolución de 2-metil-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído (4,59 g) en tetrahidrofurano (20 ml) y metanol (5 ml) se añadió disolución (2,5 ml) acuosa de 8 mol/l de hidróxido de sodio a 0°C, y la mezcla de reacción se agitó a la misma temperatura durante 30 min. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, se filtró y concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 2:1) para dar el compuesto del título en forma de un sólido blanco (rendimiento 1,06 g, 54%).

10 ¹H-RMN (CDCl₃) δ: 2,56 (3H, s), 6,58-6,59 (1H, m), 6,57-6,67 (1H, m), 8,52 (1H, brs), 9,89 (1H, s).

Ejemplo de referencia 53

2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 44 y usando 2-metil-1H-pirrol-3-carbaldehído (1,10 g), hidruro de sodio (al 60% en aceite, 1,20 g), 15-corona-5 (6,0 ml) e hidrocloruro de cloruro de piridin-3-ilsulfonilo (3,22 g), se obtuvo el compuesto del título en forma de cristales blancos (rendimiento 1,10 g, 44%).

¹H-RMN (CDCl₃) δ: 2,66 (3H, s), 6,68 (1H, d, J=3,9 Hz), 7,34 (1H, d, J=3,9 Hz), 7,51-7,55 (1H, m), 8,09-8,13 (1H, m), 8,89-8,91 (1H, m), 9,10-9,11 (1H, m), 9,90 (1H, s).

Ejemplo de referencia 54

15

35

5-bromo-2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución de 2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (974 mg) en N,N-dimetilformamida (10 ml) se añadió N-bromosuccinimida (1,17 g) a 0°C, y la mezcla se agitó a temperatura ambiente durante 1 h. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, se filtró, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =2:1) para dar el compuesto del título en forma de cristales blancos (rendimiento 675 mg, 53%).

¹H-RMN (CDCl₃) δ: 2,89 (3H, s), 6,18 (1H, s), 7,53-7,57 (1H, m), 8,21-8,26 (1H, m), 8,91-8,93 (1H, m), 9,17-9,18 (1H, m), 9,92 (1H, s).

Ejemplo de referencia 55

30 5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

En una atmósfera de argón se disolvió 1-fenil-1H-pirrol-3-carbaldehído (342 mg) en tetrahidrofurano absoluto (20 ml) y se añadió hidruro de sodio (al 60% en aceite, 240 mg) agitando a temperatura ambiente. Después de agitar a la misma temperatura durante 15 min, se añadió 15-corona-5 (1,21 ml), y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió hidrocloruro de cloruro de piridin-3-ilsulfonilo (642 mg), y la mezcla se agitó adicionalmente a la misma temperatura durante 30 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de un sólido marrón (rendimiento 470 mg, 75%).

40 1 H-RMN (CDCl₃) δ : 6,60 (1H, d, J=1,8 Hz), 7,15-7,19 (2H, m), 7,25-7,37 (3H, m), 7,42-7,48 (1H, m), 7,53-7,57 (1H, m), 8,13 (1H, d, J=1,8 Hz), 8,49-8,50 (1H, m), 8,74-8,76 (1H, m), 9,90 (1H, s).

Ejemplo de referencia 56

1-[(6-metoxipiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído

En una atmósfera de argón se disolvió 5-fenil-1H-pirrol-3-carbaldehído (171 mg) en tetrahidrofurano absoluto (20 ml) y se añadió hidruro de sodio (al 60% en aceite, 200 mg) agitando a temperatura ambiente. Después de agitar a la misma temperatura durante 15 min, se añadió 15-corona-5 (1,01 ml), y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió cloruro de 6-metoxipiridin-3-ilsulfonilo (623 mg), y la mezcla se agitó a la misma temperatura durante 1 h. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1—1:1) para dar el compuesto del título en forma de un

aceite (rendimiento 59 mg, 17%).

¹H-RMN (CDCl₃) 5: 3,95 (3H, s), 6,59-6,62 (2H, m), 7,19-7,44 (6H, m), 8,08-8,10 (2H, m), 9,88 (1H, s).

Ejemplo de referencia 57

1-(6-cloropiridin-3-ilsulfonil)-5-fenil-1H-pirrol-3-carbaldehído

En una atmósfera de argón se disolvió 5-fenil-1H-pirrol-3-carbaldehído (514 mg) en tetrahidrofurano absoluto (15 ml) y se añadió hidruro de sodio (al 60% en aceite, 180 mg) agitando a temperatura ambiente. Después de agitar a la misma temperatura durante 15 min, se añadió 15-corona-5 (0,90 ml), y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió cloruro de 6-cloropiridin-3-ilsulfonilo (827 mg), y la mezcla se agitó adicionalmente a la misma temperatura durante 1 h. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, y se secó sobre sulfato de magnesio aphidro. El disolvente se evaporó a presión reducida y el residuo se purificó por

sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→7:3) para dar el compuesto del título en forma de un aceite (rendimiento 762 mg, 73%).

¹H-RMN (CDCl₃) δ: 6,62 (1H, s), 7,19-7,49 (7H, m), 8,09 (1H, s), 8,24-8,26 (1H, m), 8,90 (1H, s).

15 Ejemplo de referencia 58

1-(2-cloropiridin-3-ilsulfonil)-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 55 y usando 5-fenil-1H-pirrol-3-carbaldehído (514 mg), hidruro de sodio (al 60% en aceite, 180 mg), 15-corona-5 (0,90 ml) y cloruro de 2-cloro-3-piridinosulfonilo (716 mg), se obtuvo el compuesto del título en una forma amorfa (rendimiento 716 mg, 69%).

20 ¹H-RMN (CDCl₃) δ: 6,64 (1H, s), 6,70-6,90 (1H, m), 7,05-7,08 (2H, m), 7,15-7,18 (2H, m), 7,26-7,32 (1H, m), 7,55-7,59 (1H, m), 8,26 (1H, s), 8,44-8,46 (1H, m), 9,94 (1H, s).

Ejemplo de referencia 59

1-(2-cloropirimidin-5-ilsulfonil)-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 55 y usando 5-fenil-1H-pirrol-3-carbaldehído (342 mg), hidruro de sodio (al 60% en aceite, 120 mg), 15-corona-5 (0,60 ml) y cloruro de 2-cloro-5-pirimidinosulfonilo (554 mg), se obtuvo el compuesto del título en forma de un sólido amarillo (rendimiento 390 mg, 56%).

¹H-RMN (CDCl₃) 5: 6,68 (1H, s), 7,22-7,26 (2H, m), 7,39-7,52 (3H, m), 8,09 (1H, s), 8,35 (2H, s), 9,91 (1H, s).

Ejemplo de referencia 60

30 1-[(6-cloro-5-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 55 y usando 5-fenil-1H-pirrol-3-carbaldehído (171 mg), hidruro de sodio (al 60% en aceite, 60 mg), 15-corona-5 (0,30 ml) y cloruro de 6-cloro-5-metilpiridino-3-sulfonilo (270 mg), se obtuvo el compuesto del título en forma de un sólido (rendimiento 244 mg, 68%)

 1 H-RMN (CDCl₃) δ: 2,27 (3H, s), 6,62 (1H, s), 7,20-7,26 (3H, m), 7,35-7,49 (3H, m), 8,09 (1H, s), 8,13 (1H, m), 9,90 (1H, s).

Ejemplo de referencia 61

2-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Una disolución (15 ml) de 2-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carboxilato de etilo (980 mg) en tetrahidrofurano se enfrió a -78°C, se añadió gota a gota durante 10 min una disolución (5,3 ml) de 15 mol/l de hidruro de diisobutilaluminio en tolueno, y la mezcla se calentó a 0°C durante 2 h. Se añadieron agua (100 ml) y acetato de etilo (20 ml), y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se filtró a través de celite, y la capa orgánica se recogió, se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se disolvió en disolución (25 ml) de acetonitrilo, y se añadió perrutenato de tetra-n-propilamonio (93 mg), N-óxido de N-metilmorfolina hidrato (466 mg) y tamices moleculares 4A en polvo (500 mg), y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se concentró a presión reducida, y se añadió al residuo acetato de etilo (30 ml). La mezcla se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de

un aceite amarillo (rendimiento 235 mg, 27%).

¹H-RMN (CDCl₃) δ: 2,93 (3H, s), 6,51 (1H, s), 7,18-7,42 (6H, m), 7,59-7,64 (1H, m), 8,60 (1H, s), 8,77-8,79 (1H, m), 10,03 (1H, s).

Ejemplo de referencia 62

10

15

5 1-[(2-metil-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído

En atmósfera de nitrógeno, una disolución de 1-[(2-metil-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo (280 mg) en tetrahidrofurano (20 ml) se enfrió a -78°C, se añadió agitando una disolución (3,0 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno. Después de agitar a la misma temperatura durante 15 min, la mezcla se dejó calentar a -40°C durante 30 min. Se añadió agua (50 ml), y después de agitar a la misma temperatura durante 5 min, la mezcla se dejó calentar a 0°C durante 10 min. Se añadió acetato de etilo (30 ml), y después de agitar a la misma temperatura durante 15 min, la mezcla se agitó a temperatura ambiente durante 20 min. Una mezcla del tipo de gel se filtró a través de celite, y el celite se lavó con acetato de etilo. La capa orgánica se separó del filtrado, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (50 ml), se añadió dióxido de manganeso (producto tratado químicamente al 75%, 3,0 g), y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 150 mg, 61%).

 1 H-RMN (CDCl₃) δ : 2,78 (3H, s), 6,64 (1H, s), 7,21-7,26 (2H, m), 7,36-7,51 (3H, m), 8,10 (1H, s), 8,40 (2H, s), 9,90 (1H, s).

Ejemplo de referencia 63

5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución (96 ml) de 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (475 mg) en tetrahidrofurano se añadió hidruro de sodio (al 60% en aceite, 503 mg) a temperatura ambiente y la mezcla se agitó durante 30 min. Se añadió 15-corona-5 (2,77 mg) gota a gota y la mezcla se agitó durante 30 min. Se añadió hidrocloruro de cloruro de piridino-3-sulfonilo (1,35 g), y la mezcla se agitó adicionalmente durante 3 h. La mezcla de reacción se diluyó con salmuera saturada, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 7:3→2:3) y se cristalizó en éter diisopropílico-acetato de etilo (4:1) para dar el compuesto del título en forma de cristales incoloros (rendimiento 680 mg, 82%).

 1 H-RMN (CDCl₃) δ: 6,68 (1H, d, J=1,8 Hz), 6,99-7,05 (1H, m), 7,16-7,19 (2H, m), 7,35-7,39 (1H, m), 7,45-7,51 (1H, m), 7,69-7,73 (1H, m), 8,14 (1H, d, J=1,8 Hz), 8,58-8,59 (1H, m), 8,81-8,83 (1H, m), 9,91 (1H, s).

Ejemplo de referencia 64

1-(piridin-3-ilsulfonil)-5-[2-(trifluorometil)fenil]-1H-pirrol-3-carbaldehído

A una disolución (36 ml) de 5-[2-(trifluorometil)fenil]-1H-pirrol-3-carbaldehído (240 mg) en tetrahidrofurano se añadió hidruro de sodio (al 60% en aceite, 201 mg) a temperatura ambiente y la mezcla se agitó durante 30 min. Se añadió 15-corona-5 (1,11 g) gota a gota y la mezcla se agitó durante 30 min. Se añadió hidrocloruro de cloruro de piridino-3-sulfonilo (537 mg), y la mezcla se agitó adicionalmente durante 3 h. La mezcla de reacción se diluyó con salmuera saturada, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1→2:3) y se cristalizó en éter diisopropílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 380 mg, alrededor de 100%).

 1 H-RMN (CDCl₃) δ: 6,69 (1H, d, J=1,8 Hz), 7,34-7,38 (1H, m), 7,44-7,48 (1H, m), 7,61-7,69 (4H, m), 8,16 (1H, d, J=1,8 Hz), 8,45 (1H, d, J=2,4 Hz), 8,81 (1H, m), 9,91 (1H, s).

45 Ejemplo de referencia 65

50

4-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Se disolvió 4-metil-5-fenil-1H-pirrol-3-carbaldehído (185 mg) en tetrahidrofurano (10 ml), se añadió hidruro de sodio (al 60% en aceite, 60 mg) y la mezcla se agitó a temperatura ambiente durante 15 min. Se añadió 15-corona-5 (0,30 ml) y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió hidrocloruro de 3-piridinosulfonilo (231 mg) y la mezcla de reacción se agitó a temperatura ambiente durante 1 h. Se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de

sílice (eluyente: hexano-acetato de etilo = $19:1\rightarrow 1:1$) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 172 mg, 53%).

¹H-RMN (CDCl₃) δ: 2,03 (3H, s), 7,01-7,04 (2H, m), 7,26-7,55 (5H, m), 8,07 (1H, s), 8,47 (1H, m), 8,75-8,78 (1H, m), 9,97 (1H, s).

5 Ejemplo de referencia 66

10

35

4-metil-5-fenil-1-(piridin-2-ilsulfonil)-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 65 y usando 4-metil-5-fenil-1H-pirrol-3-carbaldehído (185 mg), hidruro de sodio (al 60% en aceite, 60 mg), 15-corona-5 (0,30 ml) y cloruro de 2-piridinosulfonilo (231 mg) en lugar de hidrocloruro de cloruro de 3-piridinosulfonilo, se obtuvo el compuesto del título en forma amorfa (rendimiento 262 mg, 80%).

¹H-RMN (CDCl₃) δ: 2,03 (3H, s), 6,92-6,95 (2H, m), 7,21-7,49 (5H, m), 7,65-7,69 (1H, m), 8,14 (1H, s), 8,64-8,65 (1H, m), 9,98 (1H, s)

Ejemplo de referencia 67

1-[(1,2-dimetil-1H-imidazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído

- Por una reacción en similares condiciones a las del Ejemplo de referencia 65 y usando 4-metil-5-fenil-1H-pirrol-3-carbaldehído (185 mg), hidruro de sodio (al 60% en aceite, 60 mg), 15-corona-5 (0,30 ml) y cloruro de (1,2-dimetil-1H-imidazo-4-il)sulfonilo (253 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 294 mg, 86%).
- 1 H-RMN (CDCl₃) δ : 2,05 (3H, s), 2,33 (3H, s), 3,40 (3H, s), 6,48 (1H, s), 7,11-7,14 (2H, m), 7,26-7,41 (3H, m), 8,08 (1H, s), 9,93 (1H, s).

Ejemplo de referencia 68

1-[(5-cloro-1,3-dimetil-1H-pirazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 65 y usando 4-metil-5-fenil-1H-pirrol-3-carbaldehído (185 mg), hidruro de sodio (al 60% en aceite, 60 mg), 15-corona-5 (0,30 ml) y cloruro de (5-cloro-1,3-dimetil-1H-pirazol-4-il)sulfonilo (298 mg), se obtuvo el compuesto del título en forma de un aceite (rendimiento 379 mg, alrededor de 100%).

 1 H-RMN (CDCl₃) δ: 1,74 (3H, s), 2,04 (3H, s), 3,69 (3H, s), 7,04-7,07 (2H, m), 7,28-7,38 (3H, m), 8,09 (1H, s), 9,96 (1H, s).

Ejemplo de referencia 69

30 1-[(2,4-dimetil-1,3-triazol-5-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 65 y usando 4-metil-5-fenil-1H-pirrol-3-carbaldehído (185 mg), hidruro de sodio (al 60% en aceite, 60 mg), 15-corona-5 (0,30 ml) y cloruro de (2,4-dimetil-1,3-triazol-5-il)sulfonilo (275 mg), se obtuvo el compuesto del título en forma de un aceite (rendimiento 27,8 mg, 8%).

¹H-RMN (CDCl₃) δ: 2,05 (3H, s), 2,10 (3H, s), 2,59 (3H, s), 7,07-7,10 (2H, m), 7,31-7,40 (3H, m), 8,02 (1H, s), 9,96 (1H, s).

Ejemplo de referencia 70

5-(2-fluorofenil)-4-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Por una reacción en similares condiciones a las del Ejemplo de referencia 65 y usando 5-(2-fluorofenil)-4-metil-1H-pirrol-3-carbaldehído (301 mg), hidruro de sodio (al 60% en aceite, 179 mg), 15-corona-5 (0,88 ml) e hidrocloruro de cloruro de pridin-3-isulfonilo (476 mg), se obtuvo el compuesto del título en forma de cristales blancos (rendimiento 440 mg, 87%).

¹H-RMN (CDCl₃) δ: 2,02 (3H, s), 6,98-7,04 (1H, m), 7,13-7,24 (2H, m), 7,33-7,38 (1H, m), 7,43-7,51 (1H, m), 7,65-7,69 (1H, m), 8,09 (1H, s), 8,54-8,55 (1H, m), 8,80-8,82 (1H, m), 9,98 (1H, s).

Ejemplo de referencia 71

45 1-[5-bromo-1-(fenilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución (60 ml) de 5-bromo-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído (3,5 g) en metanol se añadieron cloruro

de metilamonio (7,5 g) y cianoborohidruro de sodio (2,4 g), y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se concentró a presión reducida, se añadió al residuo disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida para dar el compuesto del título en forma de un aceite marrón (rendimiento 4,4 g, alrededor de 100%).

 1 H-RMN (CDCl₃) δ: 2,47 (3H, s), 2,98 (1H, brs), 3,66 (2H, s), 6,35 (1H, d, J=2,4 Hz), 7,51-7,57 (3H, m), 7,61-7,68 (1H, m), 7,93-7,97 (2H, m).

Ejemplo de referencia 72

5

15

25

35

10 {[5-bromo-1-(fenilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

A una disolución de 1-[5-bromo-1-(fenilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina (4,4 g) en acetato de etilo (60 ml) se añadió bicarbonato de di-terc-butilo (2,8 ml), y la mezcla se agitó a temperatura ambiente durante 14 h. Se añadió disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa de hidrogenocarbonato de sodio y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 3,4 g, 73%).

¹H-RMN (CDCl₃) δ: 1,48 (9H, s), 2,79 (3H, brs), 4,17 (2H, brs), 6,24 (1H, brs), 7,35 (1H, brs), 7,51-7,57 (2H, m), 7,62-7,68 (1H, m), 7,90-7,94 (2H, m).

20 Ejemplo de referencia 73

[(5-bromo-1H-pirrol-3-il)metil]metilcarbamato de terc-butilo

Se disolvió {[5-bromo-1-(fenilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (1,0 g) en un disolvente mixto de tetrahidrofurano (15 ml) y metanol (5 ml), y se añadió gota a gota a no más de 10°C una disolución (1,5 ml) acuosa de 8 mol/l de hidróxido de sodio. Después de agitar a la misma temperatura durante 4 h, se añadió agua al residuo y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 9:1 →4:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 410 mg, 61%).

¹H-RMN (CDCl₃) δ: 1,48 (9H, s), 2,79 (3H, s), 4,17 (2H, s), 6,09 (1H, brs), 6,64 (1H, brs), 8,07 (1H, br).

30 Ejemplo de referencia 74

{[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

A una suspensión (10 ml) de hidruro de sodio (al 60% en aceite, 204 mg) en tetrahidrofurano se añadió una disolución (3 ml) de [(5-bromo-1H-pirrol-3-il)metil]metilcarbamato de terc-butilo (410 mg) en N,N-dimetilformamida a 0°C, y se añadieron 15-corona-5 (938 mg) e hidrocloruro de cloruro de piridin-3-ilsulfonilo (456 mg) a la misma temperatura. Después de agitar a temperatura ambiente durante 2 h, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 8:1→3:1) para dar el compuesto del título en forma de un polvo amarillo claro (rendimiento 522 mg, 85%).

40 ¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,80 (3H, brs), 4,18 (2H, brs), 6,28 (1H, brs), 7,35 (1H, brs), 7,48-7,52 (1H, m), 8,18-8,22 (1H, m), 8,85-8,88 (1H, m), 9,12-9,13 (1H, m).

Ejemplo de referencia 75

{[1-(2-cloro-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Se disolvió 1-(2-cloro-3-piridinosulfonil)-5-fenil-1H-pirrol-3-carbaldehído (443 mg) en tetrahidrofurano absoluto (5 ml), se añadió una disolución (0,74 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (97 mg) en metanol (2,5 ml), y la mezcla se agitó a la misma temperatura durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro y el disolvente se evaporó a presión reducida. El residuo se disolvió en tetrahidrofurano (20 ml), se añadieron bicarbonato de di-terc-butilo (1,40 g), hidrogenocarbonato de sodio (0,54 g) y agua (13 ml), y la mezcla se agitó a temperatura ambiente durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de

hidrogenocarbonato de sodio, agua y salmuera saturada y se secó sobre sulfato de magnesio anhidro, y el disolvente se evaporó a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = $19:1\rightarrow 3:1$) para dar el compuesto del título en forma de un sólido (rendimiento 361 mg, 61%).

5 1 H-RMN (CDCl₃) δ : 1,47 (9H, s), 2,87 (3H, s), 4,29 (2H, s), 6,30-6,32 (1H, m), 6,95-7,00 (1H, m), 7,06-7,33 (5H, m), 7,51-7,56 (2H, m), 8,38-8,41 (1H, m).

Ejemplo de referencia 76

{[1-(6-cloro-5-metil-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Se disolvió 1-[(6-cloro-5-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído (244 mg) en tetrahidrofurano absoluto (6,8 ml), se añadió una disolución (0,34 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 4 h. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (51 mg) en metanol (3 ml), y la mezcla se agitó a la misma temperatura durante 3 min. Se añadió bicarbonato de diterc-butilo (654 mg), y se añadieron agua (5 ml) e hidrogenocarbonato de sodio (420 mg) 3 min después. La mezcla se agitó adicionalmente a temperatura ambiente durante 30 min, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y el disolvente se evaporó a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→3:1) para dar el compuesto del título en forma de un aceite (rendimiento 247 mg, 77%).

 1 H-RMN (CDCl₃) δ : 1,47 (9H, s), 2,28 (3H, s), 2,82 (3H, s), 4,24-4,28 (2H, m), 6,15 (1H, s), 7,23-7,42 (7H, m), 8,15 (1H, s).

Ejemplo de referencia 77

({[1-(6-cloropiridin-3-il)-sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

Se disolvió 1-[(6-cloropiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído (1,27 g) en tetrahidrofurano absoluto (20 ml), se añadió una disolución (2,1 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a 25 temperatura ambiente durante 30 min. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (277 mg) en metanol (10 ml), y la mezcla se agitó a la misma temperatura durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada y se secó sobre sulfato de magnesio anhidro. Se añadió bicarbonato de di-terc-butilo (3,99 mg), y el disolvente se evaporó a presión reducida. El residuo se disolvió en tetrahidrofurano (30 ml), se 30 añadieron agua (36 ml) e hidrogenocarbonato de sodio (1,53 mg) y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→3:1) para dar el compuesto del título en forma de un sólido (rendimiento 35 544 mg, 32%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,82 (3H, s), 4,23 (2H, s), 6,16 (1H, s), 7,23-7,49 (8H, m), 8,28 (1H, s).

Ejemplo de referencia 78

Metil({[1-(6-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)carbamato de terc-butilo

En atmósfera de argón, una mezcla de ({[1-(6-cloropiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (100 mg), ácido metilborónico (14 mg), tetraquis(trifenilfosfina)paladio (25 mg), carbonato de potasio (90 mg) y dioxano (3 ml) se agitó a 80°C durante 24 h. Se añadieron ácido metilborónico (14 mg) y tetraquis(trifenilfosfina)paladio (25 mg), y la mezcla se agitó a 90°C durante 24 h. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de un aceite (rendimiento 85,8 mg, 36%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,58 (3H, s), 2,81 (3H, s), 4,20-4,23 (2H, m), 6,13 (1H, s), 7,07-7,10 (1H, m), 7,24-7,42 (7H, m), 8,39 (1H, s).

Ejemplo de referencia 79

Metil{[1-(piridin-3-ilsulfonil)-5-(3-tienil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

En atmósfera de argón, una suspensión de {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (232 mg), ácido tienilborónico (138 mg), tetraquis(trifenilfosfina)paladio (31,3 mg) y carbonato de sodio

(175 mg) en 1,2-dimetoxietano (10 ml) y agua (5 ml) se agitó a 105°C durante 1 h. La mezcla de reacción se dejó enfriar hasta temperatura ambiente, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 189 mg, 81%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,82 (3H, brs), 4,22 (2H, brs), 6,17 (1H, brs), 7,04-7,06 (1H, m), 7,16-7,17 (1H, m), 7,25-7,32 (3H, m), 7,57-7,61 (1H, m), 8,56 (1H, d, J=2,4 Hz), 8,71-8,73 (1H, m).

Ejemplo de referencia 80

5

10 {[5-(4-fluorofenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (4-fluorofenil)borónico (195 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 293 mg, 94%).

¹H-RMN (CDCl₃) δ : 1,47 (9H, s), 2,81 (3H, brs), 4,22 (2H, brs), 6,12 (1H, brs), 7,00-7,06 (2H, m), 7,18-7,31 (4H, m), 7,56-7.60 (1H, m), 8,54-8,55 (1H, m), 8,37-8,75 (1H, m).

Ejemplo de referencia 81

metil{[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

- Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (2-metilfenil)borónico (190 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 210 mg, 68%). Más específicamente, una suspensión de {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (2-metilfenil)borónico (190 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg) en 1,2-dimetoxietano (10 ml) y agua (7,5 ml) se agitó a 105°C durante 18 h.
- La mezcla de reacción se dejó enfriar hasta temperatura ambiente, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 7:1→3:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 210 mg, 68%).
- 1 H-RMN (CDCl₃) δ: 1,47 (9H, s), 1,92 (3H, s), 2,84 (3H, brs), 4,26 (2H, brs), 6,07 (1H, d, J=1,2 Hz), 6,87-6,89 (1H, m), 7,09-7,19 (2H, m), 7,26-7.35 (3H, m), 7,58-7,62 (1H, m), 8,54-8,55 (1H, m), 8,75-8,77 (1H, m).

Ejemplo de referencia 82

{[5-(4-fluoro-2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (4-fluoro-2-metilfenil)borónico (215 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite amarillo (rendimiento 216 mg, 67%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 1,92 (3H, s), 2,84 (3H, brs), 4,25 (2H, brs), 6,05 (1H, brs), 6,79-6,91 (3H, m), 7,30-7,35 (2H, m), 7,61-7,65 (1H, m), 8,58-8,59 (1H, m), 8,77-8,79 (1H, m).

40 Ejemplo de referencia 83

metil{[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-(4-metil-3-tienil)borónico il]metil}metilcarbamato de terc-butilo (300 mg), ácido tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de 45 un aceite amarillo claro (rendimiento 200 mg, 64%). Más específicamente, una suspensión de {[5-bromo-1-(piridin-3ilsulfonil)-1H-pirrol-3-il]metil\metilcarbamato de terc-butilo (300 mg), ácido (4-metil-3-tienil)borónico (198 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg) en 1,2-dimetoxietano (10 ml) y agua (7,5 ml) se agitó a 105°C durante 18 h. La mezcla de reacción se dejó enfriar hasta temperatura ambiente, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada 50 de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 6:1→3:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 200 mg, 64%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 1,81 (3H, s), 2,83 (3H, brs), 4,26 (2H, brs), 6,10 (1H, br), 6,90 (1H, br), 7,02-7,03 (1H, m), 7,26-7,35 (2H, m), 7,61-7,65 (1H, m), 8,58-8,59 (1H, m), 8,75-8,77 (1H, m).

Ejemplo de referencia 84

{[5-(3-cianofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (3-cianofenil)borónico (205 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 298 mg, 94%).

 1 H-RMN (CDCl₃) δ : 1,47 (9H, s), 2,81 (3H, brs), 4,22 (2H, brs), 6,21 (1H, br), 7,31-7,35 (2H, m), 7,46-7,69 (6H, m), 8,56 (1H, d, J=1,8 Hz), 8,76-8,78 (1H, m).

Ejemplo de referencia 85

{[5-(2-clorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (2-clorofenil)borónico (218 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite azul claro (rendimiento 171 mg, 53%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,84 (3H, brs), 4,26 (2H, brs), 6,20 (1H, d, J=1,8Hz), 7,26-7,36 (6H, m), 7,65-7,71 (1H, m), 8,58-8,59 (1H, m), 8,75-8,79 (1H, m).

Ejemplo de referencia 86

20 {[5-(2,4-difluorofenil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (2,4-difluorofenil)borónico (198 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (220 mg), se obtuvo el compuesto del título en forma de un aceite incoloro (rendimiento 113 mg, 50%).

¹H-RMN (CDCl₃) δ: 1,50 (9H, s), 1,92 (3H, s), 2,84 (3H, brs), 4,30 (2H, brs), 6,49 (1H, br), 6,78-6,92 (3H, m), 7,48-7,58 (1H, m), 8,78 (1H, br).

Ejemplo de referencia 87

{[5-(2,5-difluorofenil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (2,5-difluorofenil)borónico (220 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (220 mg), se obtuvo el compuesto del título en forma de un aceite incoloro (rendimiento 135 mg, 60%).

¹H-RMN (CDCl₃) δ: 1,50 (9H, s), 2,84 (3H, brs), 4,30 (2H, brs), 6,56 (1H, br), 6,77-6,85 (2H, m), 7,00-7,08 (1H, m), 7,20-7,26 (1H, m), 8,90 (1H, br).

35 Ejemplo de referencia 88

40

{[5-(4-cloro-2-fluorofenil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (4-cloro-2-fluorofenil)borónico (243 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (220 mg), se obtuvo el compuesto del título en forma de un aceite incoloro (rendimiento 127 mg, 54%).

¹H-RMN (CDCl₃) δ: 1,50 (9H, s), 2,84 (3H, brs), 4,30 (2H, s), 6,55 (1H, br), 6,80 (1H, br), 7,11-7,15 (2H, m), 7,46-7,52 (1H, m), 8,82 (1H, br).

Ejemplo de referencia 89

{[5-(2,4-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

45 Por una operación similar a la del Ejemplo de referencia 44 y usando {[5-(2,4-difluorofenil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (113 mg), hidruro de sodio (al 60% en aceite, 51 mg), 15-corona-5 (0.21 ml) e

hidrocloruro de cloruro de piridino-3-ilsulfonilo (113 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 110 mg, 68%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,82 (3H, brs), 4,24 (2H, brs), 6,19 (1H, br), 6,77-6,92 (2H, m), 7,11-7,19 (1H, m), 7,33-7,37 (2H, m), 7,68-7,72 (1H, m), 8,62 (1H, d, J=2,4 Hz), 8,77-8,79 (1H, m).

5 Ejemplo de referencia 90

10

35

40

45

50

{[5-(2,5-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 44 y usando {[5-(2,5-difluorofenil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (135 mg), hidruro de sodio (al 60% en aceite, 60 mg), 15-corona-5 (0,25 ml) e hidrocloruro de cloruro de piridin-3-ilsulfonilo (135 mg), se obtuvo el compuesto del título en forma de un aceite incoloro (rendimiento 105 mg, 54%).

¹H-RMN (CDCl₃) δ: 1,50 (9H, s), 2,82 (3H, brs), 4,23 (2H, brs), 6,24 (1H, br), 6,89-7,13 (4H, m), 7,33-7,39 (2H, m), 7,71-7,75 (1H, m), 8,67 (1H, d, J=2,4 Hz), 8,78-8,80 (1H, m).

Ejemplo de referencia 91

{[5-(4-cloro-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

- Por una operación similar a la del Ejemplo de referencia 44 y usando {[5-(4-cloro-2-fluorofenil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (127 mg), hidruro de sodio (al 60% en aceite, 54 mg), 15-corona-5 (0,22 ml) e hidrocloruro de cloruro de piridin-3-ilsulfonilo (120 mg), se obtuvo el compuesto del título en forma de un aceite incoloro (rendimiento 103 mg, 57%).
- 1 H-RMN (CDCl₃) δ : 1,46 (9H, s), 2,81 (3H, s), 4,23 (2H, brs), 6,21 (1H, brs), 7,08-7,15 (4H, m), 7,32-7,38 (2H, m), 7,69-7,73 (1H, m), 8,64 (1H, d, J=2,4 Hz), 8,77-8,79 (1H, m).

Ejemplo de referencia 92

{[5-(3-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (3-fluorofenil)borónico (195 mg), tetraquis(difenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 280 mg, 90%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,81 (3H, brs), 4,22 (2H, brs), 6,16 (1H, brs), 6,93-7,11 (3H, m), 7,27-7,32 (3H, m), 7,59-7,63 (1H, m), 8,58 (1H, d, J=2,1 Hz), 8,37-8,75 (1H, m).

Ejemplo de referencia 93

30 {[5-bromo-2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Se disolvió 5-bromo-2-metil-1-(piridin-3-ilsulfonilo)-1H-pirrol-3-carbaldehído (565 mg) en tetrahidrofurano (2 ml) y metanol (2 ml), se añadió una disolución al 40% (1,5 ml) de metilamina en metanol (2 ml) a temperatura ambiente y la mezcla se agitó durante 30 min. Se añadió borohidruro de sodio (130 mg) a la mezcla de reacción a temperatura ambiente y la mezcla se agitó durante 15 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada. se secó sobre sulfato de sodio anhidro, y el disolvente se evaporó a presión reducida. El residuo se disolvió en acetato de etilo (6 ml), se añadió bicarbonato de di-terc-butilo (0,45 ml) y la mezcla se agitó a temperatura ambiente durante 1 h. A la mezcla de reacción se añadió 1 mol/l de ácido clorhídrico (10 ml), y la mezcla se agitó adicionalmente durante 15 min. La mezcla de reacción se neutralizó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se evaporó a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo = 4:1→1:1) para dar una mezcla del compuesto del título y 5-bromo-2-metil-1-(piridin-3-ilsulfonil)-1Hpirrol-3-carbaldehído. La mezcla se disolvió en tetrahidrofurano (5 ml), se añadió una disolución (4 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 12 h. A la mezcla de reacción se añadió una disolución de borohidruro de sodio (131 mg) en metanol (1 ml), y la mezcla se agitó durante 1 h. La mezcla de reacción se concentró a presión reducida, se añadió al residuo una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se evaporó a presión reducida. El residuo se disolvió en acetato de etilo (6 ml), se añadió bicarbonato de di-terc-butilo (0,45 ml), y la mezcla se agitó a temperatura ambiente durante 1h. Se añadió disolución acuosa

saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El

extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se evaporó a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 2:1) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 384 mg, 50%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,49 (3H, s), 2,71 (3H, brs), 4,15 (2H, brs), 6,24 (1H, brs), 7,47-7,52 (1H, m), 8,13-8,17 (1H, m), 8,84-8,86 (1H, m), 9,07-9,08 (1H, m).

Ejemplo de referencia 94

2-bromo-1-(2,6-difluorofenil)etanona

A una disolución de 1-(2,6-difluorofenil)etanona (10,0 g) en éter dietílico (50 ml) se añadió cloruro de aluminio anhidro (86 mg) y la mezcla se agitó durante 5 min. Se añadió gota a gota bromo (3,3 ml) a 10-15°C. Después de agitar a temperatura ambiente durante 2 h, la mezcla se vertió en agua, y la mezcla se extrajo con acetato de etilo. La capa orgánica obtenida se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, se concentró a presión reducida para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 15,2 g, alrededor de 100%).

15 1 H-RMN (CDCl₃) δ: 4,37 (2H, s), 6,97-7,04 (2H, m), 7,43-7,53 (1H, m)

Ejemplo de referencia 95

2-ciano-4-(2,6-difluorofenil)-4-oxobutanoato de etilo

A una disolución de cianoacetato de etilo (7,24 g) y diisopropiletilamina (19,9 g) en tetrahidrofurano (30 ml) se añadió gota a gota una disolución de 2-bromo-1-(2,6-difluorofenil)etanona (15,16 g) en tetrahidrofurano (15 ml) a 10-15°C.

La mezcla se agitó a temperatura ambiente durante 12 h. La mezcla de reacción se filtró, y el filtrado obtenido se concentró a presión reducida. El residuo se disolvió en acetato de etilo, se lavó sucesivamente con agua, ácido clorhídrico de 1 mol/l y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: hexano-acetato de etilo = 4:1 →3:2) para dar el compuesto del título en forma de un aceite verde claro (rendimiento 13,8 g, 81%).

 1 H-RMN (CDCl₃) δ: 1,35 (3H, t, J=7,1 Hz), 3,44-3,53 (1H, m), 3,63-3,72 (1H, m), 4,13-4,18 (1H, m), 4,31 (2H, q, J=7,1 Hz), 6,95-7,05 (2H, m), 7,44-7,54 (1H, m).

Ejemplo de referencia 96

2-ciano-4-(4-ciclohexilfenil)-4-oxobutanoato de metilo

Se disolvió 4-ciclohexilacetofenona (10,0 g) en cloroformo (30 ml) y éter dietílico (30 ml), y se añadió lentamente gota a gota bromo (8,70 g). Después de la finalización de la adición gota a gota, la mezcla de reacción se agitó a temperatura ambiente durante 1 h, se diluyó con agua y se extrajo con cloroformo. El extracto se lavó con agua, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida para dar 2-bromo-1-(5-ciclohexilpiridin-2-il)etanona (15,8 g) en bruto en forma de un aceite. Esta se disolvió en tetrahidrofurano (20 ml), y se añadió gota a gota a una mezcla de cianoacetato de metilo (4,95 g), diisopropiletilamina (16,2 g) y tetrahidrofurano (50 ml). La mezcla de reacción se agitó a temperatura ambiente durante 20 h, el material insoluble se separó por filtración, y el filtrado se concentró a presión reducida. El residuo se disolvió en acetato de etilo, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =4:1→3:1) para dar el compuesto del título en forma de un aceite (rendimiento 12.1 q. 82%).

40 1 H-RMN (CDCl₃) δ : 1,20-1,51 (5H, m), 1,70-1,90 (5H, m), 2,51-2,64 (1H, m), 3,47-3,73 (1H, m), 3,58-3,88 (1H, m), 3,85 (3H, s), 4,09-4,19 (1H, m), 7,32 (2H, d, J=8,1 Hz), 7,89 (2H, d, J=8,1 Hz).

Ejemplo de referencia 97

2-cloro-5-(2,6-difluorofenil)-1H-pirrol-3-carboxilato de etilo

Una disolución (14 ml) de 2-ciano-4-(2,6-difluorofenil)-4-oxobutanoato de etilo (13,83 g) en acetato de etilo se añadió gota a gota a una disolución (100 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. La mezcla se agitó a temperatura ambiente durante 12 h, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 9:1→8:2) para dar el compuesto del título en forma de cristales amarillos (rendimiento 10,0 g, 68%).

¹H-RMN (CDCl₃) 5: 1,38 (3H, t, J=7,2 Hz), 4,34 (2H, g, J=7,2 Hz), 6,95-7,04 (2H, m), 7,14-7,23 (2H, m), 9,20 (1H, br).

2-cloro-4-(4-ciclohexilfenil)-1H-pirrol-3-carboxilato de metilo

Se añadió una disolución al 14% de cloruro de hidrógeno-1,4-dioxano (50 ml) a 2-ciano-4-(4-ciclohexilfenil)-4-oxobutanoato de metilo (12,1 g) y la mezcla se agitó a temperatura ambiente durante 8 h y se concentró a presión reducida. El residuo se disolvió en acetato de etilo, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se cristalizó en éster diisopropílico y se recogió por filtración para dar una mezcla casi 1:1 (3,41 g) del compuesto del título y 2-amino-5-(4-ciclohexilfenil)-3-furoato de metilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 7:2) para dar el compuesto del título en forma de cristales (rendimiento 0,64 g, 5%).

 1 H-RMN (CDCl₃) δ: 1,22-1,48 (5H, m), 1,71-1,91 (5H, m), 2,46-2,58 (1H, m), 3,86 (3H, s), 6,81 (1H, d, J=3,2 Hz), 7,23 (2H, d, J=8,3 Hz), 7,36 (2H, d, J=8,3 Hz), 8,67 (1H, brs).

Ejemplo de referencia 99

10

2-cloro-4-fluoro-5-fenil-1H-pirrol-3-carboxilato de metilo

15 A una suspensión de 2-cloro-5-fenil-1H-pirrol-3-carboxilato de metilo (4,66 g) sintetizado a partir de cianoacetato de metilo y bromuro de fenacilo de la misma manera que en el Ejemplo de referencia 95 y Ejemplo de referencia 97 en acetonitrilo (200 ml) se añadió triflato de 2,6-dicloro-N-fluoropiridinio (6,26 g) durante 10 min con enfriamiento con hielo. La mezcla de reacción se agitó a la misma temperatura durante 2 h y a temperatura ambiente durante 2 h, y se concentró a presión reducida. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al 20 residuo, y la mezcla se extrajo con acetato de etilo. EL extracto se secó sobre sulfato de magnesio, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→7;3) para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 815 mg, 16%). Más específicamente, a una disolución de cianoacetato de metilo (41 g) y diisopropiletilamina (117 g) en tetrahidrofurano (2600 ml) se añadió gota a gota una disolución de bromuro de fenacilo (75 g) en tetrahidrofurano 25 (370 ml). La mezcla se agitó a temperatura ambiente durante 12 h. La mezcla de reacción se filtró, y el filtrado obtenido se concentró a presión reducida. El residuo se disolvió en acetato de etilo, se lavó sucesivamente con 1mol/l de ácido clorhídrico, aqua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se lavó con éter dietílico para dar 2-ciano-4-fenil-4-oxobutanoato de metilo en forma de metilo en forma de un aceite marrón (rendimiento 77,4 g, 95%). A una disolución (125 ml) de 2-ciano-4-(2,6-30 difluorofenil)-4-oxobutanoato de etilo (25 g) en acetato de etilo se añadió gota a gota disolución (25 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. La mezcla se agitó a temperatura ambiente durante 18 h, y se concentró a presión reducida. Se añadió agua al residuo, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con disolución acuosa de hidrogenocarbonato de sodio al 6% y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se lavó con éter diisopropílico para dar 2-cloro-5-fenil-1H-35 pirrol-3-carboxilato de metilo en forma de cristales incoloros (rendimiento 10,0 g, 37%). El compuesto del título se sintetizó del 2-cloro-5-fenil-1H-pirrol-3-carboxilato de metilo obtenido de este modo.

¹H-RMN (CDCl₃) δ: 3,90 (3H, s), 7,26-7,32 (1H, m), 7,40-7,60 (4H, m), 8,29 (1H, br).

Ejemplo de referencia 100

5-(2,6-difluorofenil)-1H-pirrol-3-carboxilato de etilo

- A una disolución de 2-cloro-5-(2,6-difluorofenil)-1H-pirrol-3-carboxilato de etilo (9,28 g) en etanol (200 ml) se añadió paladio al 10% sobre carbono (que contiene 50% de agua, 4,91 g), y la mezcla se agitó en una atmósfera de hidrógeno a 40°C durante 72 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1) para dar el compuesto del título en forma de cristales incoloros (rendimiento 3,80 g, 24%)
- 1 H-RMN (CDCl₃) δ: 1,37 (3H, t, J=7,2 Hz), 4,32 (2H, q, J=7,2 Hz), 6,94-7,04 (2H, m), 7,11-7,21 (1H, m), 7,24-7,27 (1H, m), 7,54-7,55 (1H, m), 9,37 (1H, br).

Ejemplo de referencia 101

5-(4-ciclohexilfenil)-1H-pirrol-3-carboxilato de metilo

A una disolución de una mezcla (3,41 g) casi 1:1 de 2-cloro-5-(4-ciclohexilfenil)-1H-pirrol-3-carboxilato de metilo y 2-amino-5-(4-ciclohexilfenil)-3-furoato de metilo en metanol (30 ml) y acetato de etilo (10 ml) se añadió paladio al 10% sobre carbono (que contiene 50% de agua, 0,34 g), y la mezcla se agitó en atmósfera de nitrógeno a 50°C durante 14 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 3:1→2:1) para dar el compuesto del título en forma de cristales (rendimiento 1,25 g, 41%).

 1 H-RMN (CDCl₃) δ : 1,19-1,50 (5H, m), 1,73-1,93 (5H, m), 2,43-2,57 (1H, m), 3,84 (3H, s), 6,86 (1H, s), 7,24 (2H, d, J=8,3 Hz), 7,41 (2H, d, J=8,3 Hz), 7,45 (1H, dd, J=3,0, 1,7 Hz), 8,73 (1H, brs).

Ejemplo de referencia 102

4-fluoro-5-fenil-1H-pirrol-3-carboxilato de metilo

5 2-Cloro-4-fluoro-5-fenil-1H-pirrol-3-carboxilato de metilo (0,92 mg), paladio al 10% sobre carbono (que contiene 50% de agua, 0,20 g) y trietilamina (0,56 ml) se suspendieron en metanol (30 ml), y la mezcla se agitó en atmósfera de hidrógeno a temperatura ambiente durante 2h. La mezcla de reacción se filtró a través de celite, y el material insoluble se lavó con acetato de etilo. El filtrado se concentró a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→1:1) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 0,69 g, 87%).

¹H-RMN (CDCl₃) δ: 3,87 (3H, s), 7,24-7,31 (2H, m), 7,39-7,46 (2H, m), 7,51-7,54 (2H, m), 8,32 (1H, br).

Ejemplo de referencia 103

[5-(2,6-difluorofenil)-1H-pirrol-3-il]metanol

Una disolución (35 ml) de 5-(2,6-difluorofenil)-1H-pirrol-3-carboxilato de etilo (3,35 g) en tetrahidrofurano se enfrió a 50°C, y se añadió gota a gota en pequeñas porciones una disolución (30 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno. La mezcla se agitó a la misma temperatura durante 1 h, se añadió agua a la mezcla de reacción, y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se diluyó con acetato de etilo, se añadieron celite y sulfato de magnesio anhidro y la mezcla se agitó adicionalmente durante 15 min. La suspensión se filtró, y el filtrado obtenido se concentró a presión reducida para dar el compuesto del título en forma de cristales rojo claro (rendimiento 2,70 g, 97%).

¹H-RMN (CDCl₃) δ: 1,46 (1H, br), 4,64 (2H, s), 6,88-7,02 (4H, m), 7,06-7,16 (1H, m), 9,07 (1H, br).

Ejemplo de referencia 104

[5-(4-ciclohexilfenil)-1H-pirrol-3-il]metanol

A una disolución de 5-(4-ciclohexilfenil)-1H-pirrol-3-carboxilato de metilo (3,0 g) en tetrahidrofurano absoluto (40 ml) se añadió gota a gota una disolución (21,0 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno a -78°C. La mezcla se agitó adicionalmente a la misma temperatura durante 2 h. A la mezcla de reacción se añadió ácido clorhídrico 1 mol/l, y la mezcla se diluyó con acetato de etilo. El material insoluble se separó por filtración a través de celite, y el filtrado se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 1:1) para dar el compuesto del título en forma de cristales (rendimiento 1,07 g, 40%).

¹H-RMN (CDCl₃) δ: 1,16-1,50 (5H, m), 1,69-1,93 (5H, m), 2,45-2,55 (1H, m), 4,60 (2H, s), 6,45-6,51 (1H, m), 6,81-6,86 (1H, m), 7,21 (2H, d, J=8,3 Hz), 7,39 (2H, d, J=8,3 Hz), 8,30 (1H, br), 1H no detectado.

Ejemplo de referencia 105

35 5-(2,6-difluorofenil)-1H-pirrol-3-carbaldehído

A una disolución (26 ml) de [5-(2,6-difluorofenil)-1H-pirrol-3-il]metanol (2,56 g) en acetonitrilo se añadieron perrutenato de tetra-n-propilamonio (430 mg), N-óxido de N-metilmorfolina (2,15 g) y tamices moleculares 4A en polvo (5 g), y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se diluyó con acetato de etilo (60 ml) y se filtró a través de celite. El filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 1:1) para dar el compuesto del título en forma de cristales rojo claro (rendimiento 1,94 g, 77%).

 1 H-RMN (CDCl₃) δ : 6,97-7,06 (2H, m), 7,16-7,24 (1H, m), 7,28-7,31 (1H, m), 7,56-7,58 (1H, m), 9,55 (1H, br), 9,88 (1H, s).

Ejemplo de referencia 106

40

50

45 5-(4-ciclohexilfenil)-1H-pirrol-3-carbaldehído

A una disolución (35 ml) de [5-(4-ciclohexilfenil)-1H-pirrol-3-il]metanol (1,00 g) en acetonitrilo se añadieron perrutenato de tetra-n-propilamonio (115 mg), N-óxido de N-metilmorfolina (0,60 g) y tamices moleculares 4A en polvo (1,15 g) con enfriamiento con hielo. La mezcla se agitó a temperatura ambiente durante 1,5 h, y la mezcla de reacción se suspendió en acetato de etilo y se filtró a través de celite. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 2:1) para dar el

compuesto del título en forma de cristales (rendimiento 0,53 g, 53%).

¹H-RMN (CDCl₃) δ: 1,17-1,49 (5H, m), 1,70-1,95 (5H, m), 2,45-2,58 (1H, m), 6,89 (1H, s), 7,25 (2H, d, J=8,1Hz), 7,43 (2H, d, J=8,1 Hz), 7,47 (1H, s), 8,99 (1H, brs), 9,82 (1H, s).

Ejemplo de referencia 107

5 1H-pirrol-3-carbaldehído

10

15

25

35

A una suspensión de hidruro de sodio (13,7 g) en tetrahidrofurano (450 ml) se añadió gota a gota pirrol (17,4 g) con enfriamiento con hielo. La mezcla de reacción se agitó a la misma temperatura durante 1,5 h, y se añadió gota a gota a la misma temperatura cloruro de triisopropilsililo (50,0 g). La mezcla se agitó adicionalmente por debajo de 10°C durante 1,5 h, se añadió agua con hielo y la mezcla se extrajo con éter dietílico. El extracto se lavó con agua, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. Una disolución del residuo (57,7 g) en diclorometano (30 ml) se añadió inmediatamente a una suspensión de cloruro de (clorometileno)dimetilamonio (36,5 g) en diclorometano (500 ml) a 0°C. La mezcla de reacción se calentó a reflujo durante 30 minutos y se enfrió a 0°C. El sólido resultante se recogió por filtración, y se lavó con éter dietílico. El sólido obtenido se disolvió en agua (50 ml), se añadió a temperatura ambiente una disolución (500 ml) acuosa de 1 mol/l de hidróxido de sodio, y la mezcla se agitó durante 2 h. La mezcla de reacción se extrajo con cloroformo y acetato de etilo. El extracto se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se lavó con éter diisopropílico para dar el compuesto del título en forma de cristales marrón claro (rendimiento 9.4 g. 38%).

¹H-RMN (CDCl₃) ō: 6,68-6,70 (1H, m), 6,83-6,86 (1H, m), 7,45-7,47 (1H, m), 9,00-9,20 (1H, m), 9,82 (1H, s).

Ejemplo de referencia 108

20 2-cloro-2.2-difluoro-1-(2-metilfenil)etanona

Se suspendió magnesio (copos, 6,2 g) en éter dietílico (10 ml), y se añadió yodo (pequeña cantidad) y se añadió lentamente gota a gota una disolución de 2-bromotolueno (43,26 g) en éter dietílico (100 ml). Después de agitar a temperatura ambiente durante 1 h, la mezcla de reacción se añadió gota a gota a una disolución de ácido clorodifluoroacético (10,0 g) en éter dietílico (100 ml) a -10°C, y la mezcla se agitó a 0°C durante 1 h. Se añadió disolución acuosa saturada de cloruro de amonio a la mezcla de reacción, y la mezcla se extrajo con éter dietílico. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio, y se concentró a presión reducida. El residuo se destiló a presión reducida (punto de ebullición : 81-82°C/12-13 mmHg) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 4,9 g, 31%).

¹H-RMN (CDCl₃) δ: 2,54 (3H, s), 7,29-7,36 (2H, m), 7,47-7,53 (1H, m), 7,89-7,92 (1H, m).

30 Ejemplo de referencia 109

2,2-difluoro-2-yodo-1-(2-metilfenil)etanona

A una suspensión de cinc (1,6 g) en acetonitrilo (40 ml) se añadieron cloruro de trimetilsililo (3,1 ml) y 2-cloro-2,2-difluoro-1-(2-metilfenil)etanona (4,0 g), y la mezcla se agitó a 55°C durante 3 h. La mezcla de reacción se dejó enfriar a temperatura ambiente, se añadió yodo (3,5 g), y la mezcla se agitó adicionalmente durante 2 h. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con éter dietílico: El extracto se lavó con disolución acuosa de hidrogenosulfito de sodio, disolución acuosa de hidrogenocarbonato de sodio y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 2,6 g, 46%)

40 ¹H-RMN (CDCl₃) δ: 2,51 (3H, s), 7,26-7,35 (2H, m), 7,46-7,51 (1H, m), 7,91-7,94 (1H, m)

Ejemplo de referencia 110

2,2-difluoro-4-yodo-1-(2-metilfenil)-4-trimetilsililbutan-1-ona

En atmósfera de nitrógeno, a una mezcla de tetraquis(trifenilfosfina)paladio (0,52 g) y viniltrimetilsilano (1,9 ml) se añadió 2,2-difluoro-2-yodo-1-(2-metilfenil)etanona (2,6 g), y la mezcla se agitó a temperatura ambiente durante 2 h. Se añadió éter dietílico a la mezcla de reacción, el material insoluble se separó por filtración, y el filtrado se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 2,6 g, 74%).

¹H-RMN (CDCl₃) δ: 0,21 (9H, s), 2,50 (3H, s), 2,70-2,89 (2H, m), 3,19-3,24 (1H, m), 7,27-7,32 (2H, m), 7,42-7,48 (1H, m), 7,89-7,92 (1H, m).

3-fluoro-2-(2-metilfenil)-1H-pirrol

A una disolución (20 ml) de 2,2-difluoro-4-yodo-1-(2-metilfenil)-4-trimetilsililbutan-1-ona (2,5 g) en tetrahidrofurano se añadió disolución acuosa de amoníaco al 28% (6 ml), y la mezcla se agitó a temperatura ambiente durante 14 h. La mezcla de reacción se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en acetonitrilo (15 ml) y agua (8 ml), y se añadió fluoruro de potasio (0,75 g). La mezcla de reacción se agitó a 60°C durante 3 h, y se concentró a presión reducida. El residuo se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 20:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 0,87 g, 78%).

¹H-RMN (CDCl₃) δ: 2,39 (3H, d, J=1,5 Hz), 6,06-6,08 (1H, m), 6,60-6,63 (1H, m), 7,19-7,33 (4H, m), 7,71 (1H, brs).

Eiemplo de referencia 112

10

30

40

50

5-bromo-1H-pirrol-3-carbaldehído

Una disolución de 1H-pirrol-3-carbaldehído (19,1 g) en tetrahidrofurano (300 ml) se enfrió a -70°C, y se añadió gota a gota una disolución de N-bromosuccinimida (35,8 g) en N,N-dimetilformamida (100 ml). Después de agitar a la misma temperatura durante 1 h, la mezcla se elevó a -10°C durante 2 h y se agitó adicionalmente durante 30 min. Se añadió agua-hielo a la mezcla de reacción a 0°C, y la mezcla se dejó calentar hasta temperatura ambiente y se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa de ácido cítrico al 10%, disolución acuosa de hidrogenocarbonato de sodio al 6% y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. Los cristales obtenidos como residuo se lavaron con éter diisopropílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 17,7 g, 51%).

¹H-RMN (CDCl₃) δ: 6,65-6,66 (1H, m), 7,37-7,38 (1H, m), 8,80 (1H, br), 9,70 (1H, s).

Ejemplo de referencia 113

25 5-(2-metilfenil)-1H-pirrol-3-carbaldehído

5-Bromo-1H-pirrol-3-carbaldehído (100 mg), ácido 2-metilfenilborónico (94 mg) y carbonato de sodio (146 mg) se suspendieron en un disolvente mezcla de 1,2-dimetoxietano (5 ml) y agua (2 ml), y la mezcla se desgasificó suficientemente en atmósfera de nitrógeno. Se añadió tetraquis(trifenilfosfina)paladio (33 mg), y la mezcla se desgasificó adicionalmente y se calentó a reflujo a 105°C durante 24 h. La mezcla de reacción se dejó enfriar hasta temperatura ambiente, y la mezcla se extrajo con agua y acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 8:1→3:1) para dar el compuesto del título en forma de cristales incoloros (rendimiento 72 mg, 68%).

¹H-RMN (CDCl₃) δ: 2,44 (3H, s), 6,75-6,77 (1H, m), 7,23-7,36 (4H, m), 7,50-7,51 (1H, m), 8,75 (1H, br), 9,85 (1H, s).

35 Ejemplo de referencia 114

4-cloro-5-(2-fluorofenil)-1H-pirrol-3-carbaldehído

A una disolución (15 ml) de 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (1,0 g) en N,N-dimetilformamida se añadió N-clorosuccinimida (0,71 g) a 0°C, y la mezcla se agitó a 60°C durante 2 h. La mezcla se enfrió a temperatura ambiente, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se evaporó a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = $8:1\rightarrow 3:1$) para dar el compuesto del título en forma de un polvo amarillo (rendimiento 0,55 g, 46%)

¹H-RMN (CDCl₃) δ: 7,15-7,40 (3H, m), 7,52 (1H, d, J=3,6 Hz), 7,97-8,03 (1H, m), 9,24 (1H, br), 9,96 (1H, s)

Ejemplo de referencia 115

45 4-fluoro-5-(2-fluorofenil)-1H-pirrol-3-carbaldehído

A una disolución (60 ml) de 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (3,1 g) en tetrahidrofurano se añadió triflato de 2,6-dicloro-N-fluoropiridinio (5,6 g) a 0°C, y la mezcla se agitó a la misma temperatura durante 2 h. Se añadió disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 2:1) para dar el compuesto del

título en forma de cristales blancos (rendimiento 0,43 g, 13%).

¹H-RMN (CDCl₃) δ: 7,11-7,30 (4H, m), 7,80-7,87 (1H, m), 9,14 (1H, brs), 9,88 (1H, s).

Ejemplo de referencia 116

4-fluoro-5-(2-metilfenil)-1H-pirrol-3-carbaldehído

5 Se lavó hidruro de sodio (0,40 g) dos veces con hexano y se suspendió en tetrahidrofurano (10 ml). Se añadió una disolución de 3-fluoro-2-(2-metilfenil)-1H-pirrol (0,86 g) en tetrahidrofurano (3 ml) a 0°C, y la mezcla se agitó a la misma temperatura durante 30 min. Se añadió una disolución (2 ml) de trifluoroacetato de triisopropilsililo (2,7 ml) en tetrahidrofurano a 0°C, y la mezcla se agitó a la misma temperatura durante 15 min. Se añadió hielo-agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada 10 de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (10 ml) y acetonitrilo (2 ml), se añadió cloruro de (clorometileno)dimetilamonio (1,6 g), y la mezcla se calentó a reflujo durante 2 h, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (2 ml), se añadió disolución (20 ml) acuosa de 1mol/l de hidróxido de sodio, y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se extrajo con acetato de etilo. El 15 extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 2:1) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 0,48 g, 48%).

¹H-RMN (CDCl₃) δ: 2,38 (3H, s), 7,23-7,32 (5H, m), 8,38 (1H, brs), 9,87 (1H, s).

20 Eiemplo de referencia 117

5-nitro-3-(trifluorometil)piridin-2-ol

Se añadió 2-hidroxi-3-(trifluorometil)piridina (3,0 g) a ácido sulfúrico concentrado (18 ml) con enfriamiento con hielo, y la mezcla se agitó a la misma temperatura durante 5 min. Se añadió ácido nítrico fumante (90-95%, 7 ml) gota a gota durante 5 min, y la mezcla se dejó retornar a la temperatura ambiente durante 2 h, se calentó a 50°C y se agitó durante 3 h. Después de enfriar a temperatura ambiente, la mezcla de reacción se vertió sobre hielo (200 mg), y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El precipitado se lavó con éter diisopropílico para dar el compuesto del título en forma de sólido (rendimiento 2,7 g, 69%)

¹H-RMN (CDCl₃) δ: 8,65-8,67 (1H, m), 8,80-8,81 (1H, m), 1H no detectado.

30 Eiemplo de referencia 118

2-cloro-5-nitro-3-(trifluorometil)piridina

Una mezcla de 5-nitro-3-(trifluorometil)piridin-2-ol (2,65 g), pentacloruro de fósforo (3,17 g) y oxicloruro de fósforo (1,5 ml) se agitó a 90°C durante 3 h. Después de enfriar a temperatura ambiente, la mezcla de reacción se vertió en hielo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→3:1) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 2,21 g, 77%).

¹H-RMN (CDCl₃) δ: 8,79-8,81 (1H, m), 9,40-9,41 (1H, m)

Ejemplo de referencia 119

 $40 \hspace{0.5cm} \hbox{6-cloro-5-(trifluorometil)piridino-3-amina} \\$

Hierro reducido (1,3 g) y cloruro de amonio (2,1 g) se añadieron a agua (40 ml), y la mezcla se agitó a temperatura ambiente durante 5 min. Se añadió una disolución de 2-cloro-5-nitro-3-(trifluorometil)piridina (1,8 g) en metanol (40 ml), y la mezcla se agitó a temperatura ambiente durante 1 h. Se añadió hierro reducido (2,3 g), y la mezcla se agitó adicionalmente a la misma temperatura durante 3 h. La mezcla de reacción se filtró a través de celite, y celite se lavó con acetato de etilo. El filtrado se extrajo con acetato de etilo, y el extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1—1:1) para dar el compuesto del título en forma de un sólido (rendimiento 1,0 g, 65%).

¹H-RMN (CDCl₃) δ: 7,29 (1H, m), 7,99 (1H, m), 2H no detectado.

50

45

25

35

Cloruro de 6-cloro-5-(trifluorometil)piridino-3-sulfonilo

Con enfriamiento con hielo, se añadió cloruro de tionilo (4 ml) gota a gota durante 20 min a agua (27 ml). La mezcla se agitó a temperatura ambiente durante 12 h para dar una disolución que contiene dióxido de azufre. Separadamente, se añadió 6-cloro-5-(trifluorometil)piridino-3-amina (1,14 g) a ácido clorhídrico concentrado (9 ml) con agitación y enfriamiento con hielo, y se añadió adicionalmente ácido clorhídrico concentrado (9 ml). Se añadió gota a gota una disolución de nitrito de sodio (0,44 g) en agua (6 ml) durante 10 min. La mezcla de reacción se añadió gradualmente a 5°C a la anteriormente mencionada disolución que contiene dióxido de azufre con cloruro cuproso (15 mg) añadido. Con enfriamiento con hielo, la mezcla se agitó adicionalmente durante 30 min, y el precipitado se recogió por filtración y se lavó con agua. El precipitado obtenido se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→9:1) para dar el compuesto del título en forma de un sólido naranja (rendimiento 437 mg, 27%).

¹H-RMN (CDCl₃) δ: 8,58 (1H, m), 9,18 (1H, m).

Ejemplo de referencia 121

15 Cloruro de 6-cloro-2-metilpiridino-3-sulfonilo

Con enfriamiento con hielo, se añadió cloruro de tionilo (4 ml) gota a gota a agua (24 ml) durante 20 min. La mezcla se agitó a temperatura ambiente durante 12 h para dar una disolución que contiene dióxido de azufre. Separadamente, al ácido clorhídrico concentrado (6 ml) se añadió 5-amino-2-cloro-6-metilpiridina (1,0 g) con agitación con enfriamiento con hielo, y se añadió gota a gota durante 10 min una disolución de nitrito de sodio (0,5 g) en agua (2 ml). La mezcla de reacción se añadió gradualmente a 5°C a la disolución anteriormente mencionada que contiene dióxido de azufre con cloruro cuproso (10 mg) añadido. Con enfriamiento con hielo, la mezcla se agitó adicionalmente durante 30 min, y el precipitado se recogió por filtración, y se lavó con agua para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 1,1 g, 67%).

¹H-RMN (CDCl₃) δ:2,99 (3H, s), 7,41 (1H, dd, J=8,7, 0,9 Hz), 8,26 (1H, d, J=8,4 Hz).

25 Ejemplo de referencia 122

20

1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo

Por una reacción similar a la del Ejemplo de referencia 40 y usando cloruro de 5-bromo-6-cloropiridino-3-sulfonilo (3,49 g), se obtuvo el compuesto del título en forma de un sólido amarillo (rendimiento 1,63 g, 38%).

 $^{1}\text{H-RMN (CDCl}_{3}) \ \delta:1,35\text{-}1,39 \ (3\text{H, m}), \ 4,29\text{-}4,37 \ (2\text{H, m}), \ 6,60 \ (1\text{H, s}), \ 7,18\text{-}7,20 \ (2\text{H, m}), \ 7,35\text{-}7,51 \ (4\text{H, m}), \ 8,06 \ (1\text{H, s}), \ 8,45 \ (1\text{H, s}), \ 8,78 \ (1\text{H, s}).$

Ejemplo de referencia 123

5-fenil-1-{[5-(trifluorometil)piridin-3-il]sulfonil}-1H-pirrol-3-carboxilato de etilo

Por una reacción similar a la del Ejemplo de referencia 40 y usando cloruro de 6-cloro-5-(trifluorometil)piridino-3-sulfonilo (413 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 191 g, 35%).

 1 H-RMN (CDCl₃) δ:1,37 (3H, t, J=7,2 Hz), 4,33 (2H, dd, J=14,4, 7,2 Hz), 6,61 (1H, s), 7,16-7,18 (2H, m), 7,33-7,45 (3H, m), 7,65 (1H, s), 8,09 (1H, s), 8,75 (1H, s), 8,98 (1H, s).

Ejemplo de referencia 124

1-[(2-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo

Por una reacción similar a la del Ejemplo de referencia 40 y usando cloruro de 6-cloro-2-metilpiridino-3-sulfonilo (543 mg), se obtuvo el compuesto del título en forma de un aceite rojo (rendimiento 135 mg, 18%).

 1 H-RMN (CDCl₃) δ :1,35-1,40 (3H, m), 2,47 (3H, s), 4,33 (2H, dd, J=14,1, 6,9 Hz), 6,59 (1H, d, J=1,8 Hz), 6,82-7,49 (7H, m), 8,21 (1H, d, J=2,1 Hz), 8,51 (1H, dd, J=4,8, 1,8 Hz).

Ejemplo de referencia 125

4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carboxilato de metilo

45 Por una reacción similar a la del Ejemplo de referencia 36 y usando 4-fluoro-5-fenil-1H-pirrol-3-carboxilato de metilo (172 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 206 mg, 73%). Más específicamente, a una disolución de 4-fluoro-5-fenil-1H-pirrol-3-carboxilato de metilo (172 mg) en tetrahidrofurano

(10 ml) se añadió hidruro de sodio (al 60% en aceite, 94 mg), y la mezcla se agitó durante 15 min. Se añadió 15-corona-5 (0,48 ml), y la mezcla se agitó adicionalmente durante 15 min. Se añadió hidrocloruro de cloruro de piridino-3-sulfonilo (219 mg) y la mezcla se agitó durante 30 min. Se añadió agua, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de un sólido incoloro (rendimiento 206 mg, 73%).

¹H-RMN (CDCl₃) δ:3,89 (3H, s), 7,17-7,20 (2H, m), 7,26-7,55 (5H, m), 7,95 (1H, d, J=4,8 Hz), 8,50-8,51 (1H, m), 8,76-8,78 (1H, m).

10 Ejemplo de referencia 126

5

1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 62 y usando 1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo(1,63 g), se obtuvo el compuesto del título en forma de un sólido amarillo claro (rendimiento 1,18 g, 80%).

 $^{1}\text{H-RMN (CDCI}_{3}) \ 5: 6,63 \ (1\text{H, s}), \ 7,17-7,20 \ (2\text{H, m}), \ 7,36-7,39 \ (2\text{H, m}), \ 7,50-7,52 \ (2\text{H, m}), \ 8,10 \ (1\text{H, s}), \ 8,46 \ (1\text{H, s}), \ 8,79-8,80 \ (1\text{H, m}), \ 9,91 \ (1\text{H, s}).$

Ejemplo de referencia 127

5-fenil-1-{[5-(trifluorometil)piridin-3-il]sulfonil}-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 62 y usando 5-fenil-{[(5-trifluorometil)piridin-3-il]sulfonil}-1H-pirrol-3-carboxilato de etilo (190 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 138 mg, 83%).

¹H-RMN (CDCl₃) δ: 6,64 (1H, d, J=1,5 Hz), 7,15-7,18 (2H, m), 7,33-7,38 (2H, m), 7,44-7,47 (1H, m), 7,63-7,64 (1H, m), 8,14 (1H, d, J=1,5 Hz), 8,76 (1H, d, J=2,1 Hz), 9,00 (1H, d, J=1,5 Hz), 9,92 (1H, s).

Ejemplo de referencia 128

25 1-[(2-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 62 y usando 1-[(2-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carboxilato de etilo (364 mg), se obtuvo el compuesto del título en forma de un sólido naranja (rendimiento 182 mg, 57%).

 1 H-RMN (CDCl₃) δ : 2,47 (3H, s), 6,62 (1H, d, J=1,8 Hz), 6,83-6,90 (1H, m), 7,02-7,04 (2H, m), 7,16-7,31 (3H, m), 30 7,39-7,42 (1H, m), 8,24 (1H, s), 8,52-8,54 (1H, m), 9,93 (1H, s).

Ejemplo de referencia 129

4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

En atmósfera de nitrógeno, una disolución de 4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carboxilato de metilo (200 mg) en tetrahidrofurano (10 ml) se enfrió a -78°C, y se añadió una disolución (1,85 ml) de 1,5 mol/l de hidruro 35 de diisobutilaluminio en tolueno con agitación. Después de agitar a la misma temperatura durante 15 min, la mezcla se elevó a 0°C durante 1,5 h. Se añadió agua (20 ml), y la mezcla se agitó a la misma temperatura durante 5 min. Después de agitar, se añadió acetato de etilo (20 ml), y la mezcla se agitó durante 15 min, y a continuación se agitó a temperatura ambiente durante 20 min. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre 40 sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (10 ml), se añadió dióxido de manganeso (75% del producto tratado químicamente, 1,0 g), y la mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:2) para dar el compuesto del título en forma de un sólido incoloro 45 (rendimiento 123 mg, 67%).

 1 H-RMN (CDCl₃) δ:7,17-7,20 (2H, m), 7,26-7,57 (5H, m), 7,96 (1H, d, J=4,8 Hz), 8,50-8,51 (1H, m), 8,76-8,80 (1H, m), 9,92 (1H, s).

Ejemplo de referencia 130

5-(2,6-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución de 5-(2,6-difluorofenil)-1H-pirrol-3-carbaldehído (420 mg) en tetrahidrofurano (42 ml) se añadió hidruro de sodio (al 60% en aceite, 244 mg) a temperatura ambiente y la mezcla se agitó durante 30 minutos. Se añadió 15-corona-5 (1,34 g) gota a gota y la mezcla se agitó durante 30 min. Se añadió hidrocloruro de cloruro de 3-piridilsulfonilo (565 mg), y la mezcla se agitó adicionalmente durante 1 h. La mezcla de reacción se diluyó con salmuera saturada, y la mezcla se extrajo con acetato de etilo. El extracto obtenido se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 7:3→1:1), y se cristalizó en éter diisopropílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 590 mg, 84%).

¹H-RMN (CDCl₃) δ: 6,76 (1H, d, J=1,9 Hz), 6,90-6,95 (2H, m), 7,40-7,52 (2H, m), 7,77-7,81 (1H, m), 8,18 (1H, d, J=1,9 Hz), 8,65-8,66 (1H, m), 8,85-8,87 (1H, m), 9,91 (1H, s).

Ejemplo de referencia 131

10

5-(4-ciclohexilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Se añadió hidruro de sodio (al 60% en aceite, 68 mg) a una disolución de 5-(4-ciclohexilfenil)-1H-pirrol-3-carbaldehído (0,17 g) en tetrahidrofurano (12 ml) a temperatura ambiente. La mezcla se agitó durante 20 min, se añadió cloruro de 3-piridinosulfonilo (0,19 g), y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se vertió en agua con hielo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =3:2→2:1) para dar el compuesto del título en forma de cristales (rendimiento 0,26 g, 97%).

 1 H-RMN (CDCl₃) δ:1,21-1,53 (5H, m), 1,73-1,98 (5H, m), 2,50-2,60 (1H, m), 6,57 (1H, d, J=1,9 Hz), 7,03-7,09 (2H, m), 7,13-7,29 (3H, m), 7,48 (1H, ddd, J=8,3, 2,0, 1,9 Hz), 8,11 (1H, d, J=1,9 Hz), 8,49 (1H, d, J=2,3 Hz), 8,73 (1H, dd, J=4,8, 1,6 Hz), 9,89 (1H, s).

Ejemplo de referencia 132

1-[(6-cloropiridin-3-il)sulfonil]-5-(2-fluorofenil)-1H-pirrol-3-carbaldehído

- Por una reacción similar a la del Ejemplo de referencia 65 y usando 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (893 mg) y cloruro de 6-cloropiridino-3-sulfonilo (1,30 g), se obtuvo el compuesto del título en forma de un sólido rojo claro (rendimiento 1,14 g, 66%). Más específicamente, se disolvió 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (893 mg) en tetrahidrofurano (10 ml), se añadió hidruro de sodio (al 60% en aceite, 226 mg) y la mezcla se agitó a temperatura ambiente durante 15 min. Se añadió 15-corona-5 (1,1 ml) y la mezcla se agitó adicionalmente a la misma temperatura durante 15 min. Se añadió cloruro de 6-cloropiridino-3-sulfonilo (1,30 g). La mezcla de reacción se agitó a temperatura ambiente durante 15 min. Se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→3:2) para dar el compuesto del título en forma de un sólido rojo claro (rendimiento 1,14 g, 66%).
- 1 H-RMN (CDCl₃) δ: 6,71 (1H, d, J=9,0 Hz), 7,05 (1H, t, J=9,0 Hz), 7,19-7,23 (2H, m), 7,38 (1H, d, J=8,4 Hz), 7,45-7,53 (1H, m), 7,63-7,67 (1H, m), 8,11 (1H, d, J=1,8 Hz), 8,33 (1H, d, J=2,7 Hz), 9,91 (1H, s).

Ejemplo de referencia 133

5-(2-fluorofenil)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-carbaldehído

En atmósfera de argón, una mezcla de 1-[(6-cloropiridin-3-il)sulfonil]-5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (365 mg), ácido metilborónico (90 mg), tetraquis(trifenilfosfina)paladio (116 mg), carbonato de potasio (691 mg) y 1,4-dioxano (25 ml) se agitó a 80°C durante 3 días. La mezcla de reacción se vertió en disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→1:1) para dar el compuesto del título en forma de un sólido amarillo (rendimiento 134 mg, 39%).

¹H-RMN (CDCl₃) δ: 2,64 (3H, s), 6,67 (1H, d, J=1,8 Hz), 7,04 (1H, t, J=8,4 Hz), 7,17-7,21 (3H, m), 7,45-7,50 (1H, m), 7,58 (1H, dd, J=8,7, 3,6 Hz), 8,12 (1H, d, J=1,8 Hz), 8,45 (1H, d, J=2,4 Hz), 9,89 (1H, s).

Ejemplo de referencia 134

5-(2-fluorofenil)-1-(piridin-2-ilsulfonil)-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 65 y usando 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (190 mg) y cloruro de piridino-2-sulfonilo (231 mg), se obtuvo el compuesto del título en forma de un sólido rojo claro (rendimiento 183 mg, 55%).

¹H-RMN (CDCl₃) δ: 6,67 (1H, d, J=1,8 Hz), 6,97 (1H, t, J=8,7 Hz), 7,07-7,10 (2H, m), 7,36-7,42 (1H, m), 7,52-7,55 (2H, m), 7,76-7,82 (1H, m), 8,23 (1H, d, J=1,5 Hz), 8,67 (1H, d, J=4,5 Hz), 9,92 (1H, s).

Ejemplo de referencia 135

5-(2-fluorofenil)-1-[(1-metil-1H-pirazol-4-il)sulfonil]-1H-pirrol-3-carbaldehído

Por una reacción similar a la del Ejemplo de referencia 65 y usando 5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (189 mg) y cloruro de 1-metil-1H-pirazol-4-sulfonilo (217 mg), se obtuvo el compuesto del título en forma de cristales amarillos (rendimiento 217 mg, 65%).

¹H-RMN (CDCl₃) δ: 3,85 (3H, s), 6,67 (1H, d, J=1,8 Hz), 7,04-7,11 (1H, m), 7,17-7,22 (1H, m), 7,25-7,35 (3H, m), 7,43-7,50 (1H, m), 8,06 (1H, d, J=1,5 Hz), 9,86 (1H, s).

10 Ejemplo de referencia 136

15

5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución de 5-(2-metilfenil)-1H-pirrol-3-carbaldehído (371 mg) en tetrahidrofurano (10 ml) se añadió hidruro de sodio (al 60% en aceite, 288 mg) y 15-corona-5 (1,32 g) a temperatura ambiente. Después de agitar durante 5 min, se añadió una suspensión de hidrocloruro de cloruro de piridino-3-sulfonilo (642 mg) en N,N-dimetilformamida (5 ml) a la misma temperatura. Después de agitar durante 5 min, se añadió agua con hielo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo = 6:1→3:1) para dar el compuesto del título en forma de un aceite (rendimiento 521 mg, 80%).

¹H-RMN (CDCl₃) δ: 1,82 (3H, s), 6,56 (1H, d, J=1,5 Hz), 6,87-6,90 (1H, m), 7,11-7,19 (2H, m), 7,30-7,39 (2H, m), 7,56-7,60 (1H, m), 8,15 (1H, d, J=1,5 Hz), 8,52-8,53 (1H, m), 8,80-8,82 (1H, m), 9,92 (1H, s).

Ejemplo de referencia 137

4-cloro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Una suspensión de hidruro de sodio (al 60% en aceite, 216 mg) en tetrahidrofurano (5 ml) se enfrió a 0°C, se añadió a 10°C o menos una disolución de 4-cloro-5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (335 mg) en tetrahidrofurano (5 ml), 15-corona-5 (991 mg), e hidrocloruro de cloruro de piridina-3-sulfonilo (482 mg). Después de agitar durante 15 min, se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 4:1→2:1) para dar el compuesto del título en forma de un polvo amarillo (rendimiento 429 mg, 78%)

 1 H-RMN (CDCl₃) δ: 7,02-7,08 (1H, m), 7,19-7,29 (2H, m), 7,37-7,41 (1H, m), 7,50-7,57 (1H, m), 7,68-7,72 (1H, m), 8,15 (1H, s), 8,54-8,55 (1H, m), 8,83-8,86 (1H, m), 9,97 (1H, s).

Ejemplo de referencia 138

4-fluoro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Hidruro de sodio (al 60% en aceite, 0,25 g) se lavó dos veces con hexano y se suspendió en tetrahidrofurano (10 ml). Se añadió una disolución (5 ml) de 4-fluoro-5-(2-fluorofenil)-1H-pirrol-3-carbaldehído (0,43 g) en tetrahidrofurano a 0°C, y la mezcla se agitó a la misma temperatura durante 30 min. Se añadieron a 0°C 15-corona-5 (1,3 ml) e hidrocloruro de cloruro de 3-piridinosulfonilo (0,68 g), y la mezcla se agitó a la misma temperatura durante 1 h. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 1:1) para dar el compuesto del título en forma de cristales amarillo claro (rendimiento 0,55 g, 76%).

¹H-RMN (CDCl₃) δ: 7,02-7,08 (1H, m), 7,20-7,31 (2H, m), 7,36-7,41 (1H, m), 7,48-7,55 (1H, m), 7,67-7,71 (1H, m), 8,00 (1H, d, J=5,1 Hz), 8,55-8,56 (1H, m), 8,83-8,85 (1H, m), 9,93 (1H, s).

45 Ejemplo de referencia 139

50

4-fluoro-5-(2-metillfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Se lavó hidruro de sodio (al 60% en aceite, 0,11 g) dos veces con hexano y se suspendió en tetrahidrofurano (10 ml). Se añadió una disolución (5 ml) de 4-fluoro-5-(2-metilfenil)-1H-pirrol-3-carbaldehído (0.45 g) en tetrahidrofurano a 0°C, y la mezcla se agitó a la misma temperatura durante 15 min. Se añadió a 0°C una disolución (2 ml) de 15-corona-5 (0,56 ml) y cloruro de 3-piridinosulfonilo (0.44 g) in tetrahidrofurano y la mezcla se agitó a la misma

temperatura durante 30 min. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida: El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 1:1) para dar el compuesto en forma de cristales amarillo claro (rendimiento 0,59 g, 77%)

¹H-RMN (CDCl₃) δ: 1,77 (3H, s), 7,02-7,04 (1H, m), 7,17-7,23 (2H, m), 7,29-7,34 (1H, m), 7,37-7,42 (1H, m), 7,54-7,58 (1H, m), 8,00 (1H, d, J=4,5 Hz), 8,49-8,50 (1H, m), 8,81-8,83 (1H, m), 9,92 (1H, s).

Ejemplo de referencia 140

5

25

35

40

45

2-cloro-5-(2,6-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución de 5-(2,6-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (250 mg) en tetrahidrofurano (10 ml) y N,N-dimetilformamida (10 ml) se añadió N-clorosuccinimida (1,06 g) y la muestra se agitó durante 15 h. Se añadió agua a la muestra de reacción, y la muestra se extrajo con acetato de etilo. El extracto se lavó con disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, se secó sobre sulfato de magnesio anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 7:3→1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 160 mg, 58%),

 1 H-RMN (CDCl₃) δ : 6,74 (1H, s), 7,00-7,05 (2H, m), 7,42-7,56 (2H, m), 8,10-8,14 (1H, m), 8,91 (1H, dd, J=4,9, 1,5 Hz), 9,07 (1H, d, J=2,1 Hz), 9,92 (1H, s).

Ejemplo de referencia 141

20 2-cloro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución de 5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (331 mg) en N,N-dimetilformamida (33 ml) se añadió N-clorosuccinimida (268 mg) y la mezcla se agitó a 60°C durante 1 h. Se añadió a la muestra de reacción una disolución acuosa saturada de hidrogenocarbonato de sodio, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =7:3→1:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 250 mg, 68%),

 1 H-RMN (CDCl₃) δ : 6,65 (1H, s), 7,13-7,35 (3H, m), 7,45-7,55 (2H, m), 8,09-8,13 (1H, m), 8,90-9,03 (2H, m), 9,92 (1H, s).

Eiemplo de referencia 142

30 ({1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

Se disolvió 1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído (1,18 g) en tetrahidrofurano absoluto (15 ml), se añadió una disolución (4,6 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante16 h. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (341 mg) en metanol (6 ml), y la mezcla se agitó a la misma temperatura durante5 min. Se añadió bicarbonato de di-terc-butilo (3,87 g) y agua (15 ml) y se añadió hidrogenocarbonato de sodio (1,26 g) 5 min después. La mezcla se agitó adicionalmente a temperatura ambiente durante 30 min, se añadió agua a la muestra de reacción, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→1:1), y las fracciones que muestran valores de Rf de 0,63, 0,30 y 0,075 (eluyente: hexano-acetato de etilo =3:1) por análisis de TLC se recogieron y concentraron a presión reducida. El residuo se disolvió en tetrahidrofurano (30 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 3,0 g), y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 733 mg, 48%).

¹H-RMN (CDCl₃) δ,: 1,47 (9H, s), 2,82 (3H, s), 4,23 (2H, m), 6,16 (1H, s), 7,21-7,56 (7H, m), 8,44 (1H, s), 8,76 (1H, s).

Ejemplo de referencia 143

{[5-(2,4-dimetilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (300 mg), ácido (4-fluorofenil)borónico (209 mg), tetraquis(trifenilfosfina)paladio (40 mg) y carbonato de sodio (222 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro

(rendimiento 177 mg, 56%).

¹H-RMN (CDCl₃) δ,: 1,46 (9H, s), 1,89 (3H, s), 2,36 (3H, s), 2,83 (3H, s), 4,25 (2H, brs), 6,03-6,04 (1H, m), 6,76 (1H, d, J=8,1 Hz), 6,92-6,95 (1H, m), 7,00 (1H, brs), 7,26-7,33 (2H, m), 7,61-7,65 (1H, m), 8,56-8,57 (1H, m), 8,75-8,77 (1H, m).

5 Ejemplo de referencia 144

10

15

25

35

{[5-(2-formilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Se disolvió {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg) en tolueno (10 ml), y la mezcla se desgasificó suficientemente. Se añadieron diciclohexil(2',6'-dimetoxibifenil-2-il)fosfina (66 mg) y tris(dibencilidenoacetona)dipaladio (0) (37 mg) a temperatura ambiente. La mezcla se agitó durante 30 min con desaireación, y se añadieron una disolución (1,2 ml) acuosa de 2 mol/l de carbonate de sodio y ácido (2-formilfenil)borónico (180 mg). Después de agitación adicional a temperatura ambiente durante 15 min, la mezcla se calentó a 120°C durante 1 h, y se agitó adicionalmente durante 16 h. La mezcla de reacción se enfrió a temperatura ambiente, se añadió agua y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =4:1→1:1) para dar el compuesto del título en forma de un aceite amarillo (rendimiento 218 mg, 48%).

 1 H-RMN (CDCl₃) δ : 1,47 (9H, s), 2,86 (3H, s), 4,27 (2H, brs), 6,23 (1H, brs), 7,09-7,11 (1H, m), 7,28-7,33 (1H, m), 7,43 (1H, d, J=1,2 Hz), 7,53-7,61 (3H, m), 7,96-7,99 (1H, m), 8,49-8,50 (1H, m), 8,75-8,77 (1H, m), 9,61-9,62 (1H, m).

20 Ejemplo de referencia 145

metil{[5-[4-(metilsulfonil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

Una mezcla de {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido 4-(metanosulfonil)fenilboronico(300 mg), tetraquis(trifenilfosfina)paladio (115 mg), carbonato de sodio (320 mg), 1,2-dimetoxietano (10 ml) y agua (10 ml) se agitó en atmósfera de nitrógeno a 80°C durante 14 h. La mezcla de reacción se dejó enfriar a temperatura ambiente, se filtró a través de celite, y el filtrado se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =2:1→1:2) para dar el compuesto del título en forma de un aceite (rendimiento 275 mg, 64%),

¹H-RMN (CDCl₃) δ: 1,26 (9H, s), 2,79 (3H, s), 3,13 (3H, s), 4,22 (2H, s), 6,26 (1H, s), 7,26-7,37 (2H, m), 7,44-7,71 (3H, m), 7,93 (2H, d, J=8,3 Hz), 8,58 (1H, d, J=2,1 Hz), 8,76 (1H, dd, J=4,9, 1,5 Hz).

Ejemplo de referencia 146

({5-[2-(hidroximetil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

Se disolvió {[5-(2-formilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (218 mg) en tetrahidrofurano (2 ml), y se añadieron borohidruro de sodio (24 mg) y metanol (1 ml) a 0°. Después de agitar a la misma temperatura durante 30 min, se añadió agua, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 1:1→1:3) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 132 mg, 60%).

 $^{1}\text{H-RMN (CDCl}_{3}) \ \delta; \ 1,46 \ (9\text{H}, \ s), \ 2,10\text{-}2,15 \ (1\text{H}, \ m), \ 2,85 \ (3\text{H}, \ s), \ 4,25 \ (2\text{H}, \ brs), \ 4,30\text{-}4,38 \ (2\text{H}, \ m), \ 6,12 \ (1\text{H}, \ d, \ J=1,5 \ Hz), \ 6,69\text{-}6,72 \ (1\text{H}, \ m), \ 7,13\text{-}7,18 \ (1\text{H}, \ m), \ 7,30\text{-}7,35 \ (2\text{H}, \ m), \ 7,44\text{-}7,49 \ (1\text{H}, \ m), \ 7,59\text{-}7,62 \ (2\text{H}, \ m), \ 8,50 \ (1\text{H}, \ d, \ J=2,4 \ Hz), \ 8,76\text{-}8,78 \ (1\text{H}, \ m).$

Ejemplo de referencia 147

5-mesitil-1H-pirrol-3-carbaldehído

Una mezcla de 5-bromo-1H-pirrol-3-carbaldehído (0,87 g), ácido 2,4,6-trimetilfenilborónico (3,28 g), carbonato de cesio (13,0 g), tri-terc-butilfosfina (0,10 g), tris(dibencilidenoacetone)dipaladio (0) (0,23 g) y mesitileno (200 ml) se agitó con calentamiento a reflujo durante 5 h. Se añadió agua a la muestra de reacción, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =3:1) para dar el compuesto del título en forma amorfa marrón (rendimiento 0,30 g, 28%),

50 1H-RMN (CDCl3) δ: 2,11 (6H, s), 2,32 (3H, s), 6,51-6,52 (1H, m), 6,93 (2H, s), 7,47-7,49 (1H, m), 9,82 (1H, s), 1H no detectado.

5-[2-(metiltio)fenil]-1H-pirrol-3-carbaldehído

5-Bromo-1H-pirrol-3-carbaldehído (174 mg), ácido [2-(metiltio)fenil]borónico (202 mg) y carbonato de sodio (254 mg) se suspendieron en un disolvente mezcla de 1,2-dimetoxietano (5 ml) y agua (2 ml), y la mezcla se desgasificó suficientemente en atmósfera de nitrógeno. Se añadió tetraquis(trifenilfosfina)paladio (58 mg) y la mezcla se desgasificó adicionalmente y agitó a 105°C durante 16 h. La mezcla de reacción se dejó enfriar a temperatura ambiente, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =9:1→4:1) para dar el compuesto del título en forma de cristales amarillo claro (rendimiento 150 mg, 69%).

¹H-RMN (CDCl₃) δ: 2,38 (3H, s), 6,94-6,95 (1H, m), 7,21-7,31 (2H, m), 7,39-7,42 (1H, m), 7,48-7,53 (2H, m), 9,85 (1H, s), 9,95 (1H, br).

Ejemplo de referencia 149

10

25

35

5-(2-bromofenil)-1H-pirrol-3-carbaldehído

Por una operación similar a la del Ejemplo de referencia 148 y usando 5-bromo-1H-pirrol-3-carbaldehído (870 mg), ácido (2-bromofenil)borónico (1,20 g), carbonato de sodio (1,27 g) y tetraquis(trifenilfosfina)paladio (289 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 396 mg, 32%),

¹H-RMN (CDCl₃) δ: 6,94-6,95 (1H, m), 7,16-7,22 (1H, m), 7,34-7,39 (1H, m), 7,49-7,54 (2H, m), 7,63-7,66 (1H, m), 9,28 (1H, br), 9,85 (1H, s).

20 Ejemplo de referencia 150

5-[2-(metilsulfinil)fenil]-1H-pirrol-3-carbaldehído

A una disolución de 5-[2-(metiltio)fenil]-1H-pirrol-3-carbaldehído (200 mg) en acetato de etilo(10 ml) se añadió ácido 3-cloroperbenzoico (238 mg) con enfriamiento con hielo. Después de agitar a temperatura ambiente durante 1 h, se añadió a la muestra de reacción una disolución acuosa saturada de tiosulfato de sodio, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: acetato de etilo) para dar el compuesto del título en forma de un polvo rosa claro (rendimiento 160 mg, 75%).

 1 H-RMN (CDCl₃) δ: 2,64 (3H, s), 7,04-7,06 (1H, m), 7,35-7,41 (1H, m), 7,57-7,64 (2H, m), 7,72-7,82 (2H, m), 9,86 (1H, s), 12,35 (1H, br).

30 Ejemplo de referencia 151

5-[2-(metilsulfonil)fenil]-1H-pirrol-3-carbaldehído

A una disolución de 5-[2-(metiltio)fenil]-1H-pirrol-3-carbaldehído (100 mg) en acetato de etilo (5 ml) se añadió ácido 3-cloroperbenzoico (318 mg) con enfriamiento con hielo. Después de agitar a temperatura ambiente durante 3 h, se añadió a la muestra de reacción una disolución acuosa saturada de tiosulfato de sodio, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1→1:3) para dar el compuesto del título en forma cristales amarillo claro (rendimiento 88,9 mg, 78%).

¹H-RMN (CDCl₃) δ: 2,77 (3H, s), 6,94-6,96 (1H, m), 7,54-7,60 (2H, m), 7,67-7,73 (2H, m), 8,20-8,24 (1H, m), 9,88 (1H, s), 10,60 (1H, s).

40 Ejemplo de referencia 152

5-(2-fluorofenil)-4-yodo-1H-pirrol-3-carbaldehído

5-(2-Fluorofenil)-1H-pirrol-3-carbaldehído (2,0 g) se disolvió en N,N-dimetilformamida (60 ml), se añadió N-yodosuccinimida (2,38 g) y la mezcla se agitó durante 12 h. Se añadió agua a la muestra de reacción y la mezcla se extrajo con acetato de etilo. El extracto se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, una disolución acuosa de hidrogenosulfato de potasio al 3% y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =7:3—1:1) para dar el compuesto del título en forma de un polvo marrón claro (rendimiento 450 mg, 14%).

 1 H-RMN (CDCl₃) δ : 7,16-7,30 (2H, m), 7,37-7,44 (1H, m), 7,63 (1H, d, J=3,4 Hz), 7,81-7,86 (1H, m), 9,24 (1H, br), 9,81 (1H, s).

5-mesitil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución de 5-mesitil-1H-pirrol-3-carbaldehído (0,36 g) en tetrahidrofurano (20 ml) se añadió hidruro de sodio (al 60% en aceite, 0,14 g) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 0,5 h. Se añadió una disolución de 15-corona-5 (0,75 g) en tetrahidrofurano (3 ml) y, después de agitar durante 5 min, se añadió cloruro de piridin-3-ilsulfonilo (0,45 g) con enfriamiento con hielo, La mezcla de reacción se agitó a temperatura ambiente durante 0,5 h, se añadió a la muestra de reacción una disolución acuosa saturada de hidrogenocarbonato de sodio, y la muestra se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =10:1→2:1) para dar el compuesto del título en forma amorfa marrón claro (rendimiento 0,38 g, 62%).

¹H-RMN (CDCl₃) δ: 1,63 (6H, s), 2,35 (3H, s), 6,48 (1H, d, J=1,5 Hz), 6,83 (2H, s), 7,26-7,35 (1H, m), 7,60-7,64 (1H, m), 8,17 (1H, dd, J=1,5, 0,9 Hz), 8,56 (1H, d, J=2,1 Hz), 8,83 (1H, dd, J=4,5, 1,5 Hz), 9,90 (1H, s).

Ejemplo de referencia 154

10

20

45

15 5-[2-(metiltio)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una suspensión de hidruro de sodio (al 60% en aceite, 40 mg) en tetrahidrofurano (3 ml) se añadieron una disolución de 5-[2-(metiltio)fenil]-1H-pirrol-3-carbaldehído (150 mg) en tetrahidrofurano (5 ml), 15-corona-5 (182 mg) y cloruro de piridin-3-ilsulfonilo (135 mg) con enfriamiento con hielo. Después de agitar a temperatura ambiente durante 2 h, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =4:1→2:1) para dar el compuesto del título en forma de cristales incoloros (rendimiento 170 mg, 69%).

1H-RMN (CDCl3) δ: 2,05 (3H, s), 6,68 (1H, d, J=2,1 Hz), 6,97-6,99 (1H, m), 7,17-7,31 (3H, m), 7,40-7,45 (1H, m), 7,65-7,70 (1H, m), 8,16 (1H, d, J=2,1 Hz), 8,45-8,46 (1H, m), 8,75-8,77 (1H, m), 9,90 (1H, s).

25 Ejemplo de referencia 155

5-(2-bromofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

Por una operación similar a la del Ejemplo de referencia 154 y usando hidruro de sodio(al 60% en aceite, 91,0 mg), 5-(2-bromofenil)-1H-pirrol-3-carbaldehído (396 mg), 15-corona-5 (418 mg) y cloruro de piridin-3-ilsulfonilo (309 mg), se obtuvo el compuesto del título en forma de un sólido amarillo claro (rendimiento 560 mg, 91%).

 1 H-RMN (CDCl₃) δ: 6,66 (1H, d, J=1,5 Hz), 7,31-7,40 (4H, m), 7,48-7,52 (1H, m), 7,66-7,71 (1H, m), 8,15 (1H, d, J=1,8 Hz), 8,55 (1H, d, J=2,7 Hz), 8,82-8,84 (1H, m), 9,92 (1H, s).

Ejemplo de referencia 156

 $5\hbox{-}[2\hbox{-}(metilsulfonil)\hbox{-}1\hbox{-}(piridin-3\hbox{-}ilsulfonil)\hbox{-}1\hbox{H-}pirrol-3\hbox{-}carbaldeh\'ido$

Por una operación similar a la del Ejemplo de referencia 154 y usando hidruro de sodio (al 60% en aceite, 40 mg), 5- [2-(metilsulfonil)fenil]-1H-pirrol-3-carbaldehído (88,9 mg), 15-corona-5 (94,4 mg) y cloruro de piridin-3-ilsulfonilo (69,7 mg), se obtuvo el compuesto del título en forma amorfa incolora (rendimiento 72,0 mg, 52%).

¹H-RMN (CDCl₃) δ: 2,87 (3H, s), 6,67 (1H, d, J=1,8 Hz), 7,37-7,48 (2H, m), 7,72-7,76 (3H, m), 8,02-8,05 (1H, m), 8,14 (1H, d, J=1,8 Hz), 8,50 (1H, d, J=2,7 Hz), 8,81-8,83 (1H, m), 9,89 (1H, s).

Ejemplo de referencia 157

40 2-[4-formil-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il]benzonitrilo

Una suspensión de 5-(2-bromofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (102 mg), cianuro de cinc (61,0 mg) y tetraquis(trifenilfosfina)paladio (60,0 mg) en N,N-dimetilformamida (2 ml) se calentó (100 W, 4 min 30 sec) usando un reactor de microondas enfocado a la síntesis química fabricado por CEM, se añadió agua a la mezcla de reacción y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =4:1→2:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 97,4 mg, 63%).

¹H-RMN (CDCl₃) δ : 6,79 (1H, d, J=1,8 Hz), 7,41-7,51 (2H, m), 7,58-7,78 (4H, m), 8,17 (1H, d, J=1,5 Hz), 8,45 (1H, d, J=2,7 Hz), 8,84-8,86 (1H, m), 9,91 (1H, s).

5-(2-fluorofenil)-4-yodo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución (42 ml) de 5-(2-fluorofenil)-4-yodo-1H-pirrol-3-carbaldehído (400 mg) en tetrahidrofurano se añadió hidruro de sodio (al 60% en aceite, 102 mg) a temperatura ambiente y la mezcla se agitó durante 30 min. Se añadió gota a gota 15-corona-5 (560 mg) y la mezcla se agitó durante 30 min. Se añadió cloruro de piridin-3-ilsulfonilo (340 mg), y la mezcla se agitó adicionalmente durante 1 h. La mezcla de reacción se diluyó con salmuera saturada y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =3:2→1:1) y se cristalizó en éter diisopropílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 540 mg, 93%).

¹H-RMN (CDCl₃) δ: 7,01-7,07 (1H, m), 7,12-7,17 (1H, m), 7,23-7,28 (1H, m), 7,37-7,41 (1H, m), 7,50-7,58 (1H, m), 7,69-7,73 (1H, m), 8,21 (1H, s), 8,54-8,54 (1H, m), 8,85 (1H, dd, J=4,9, 1,5 Hz), 9,85 (1H, s).

Eiemplo de referencia 159

10

5-(2.6-dimetilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

- 15 Una mezcla de 5-bromo-1H-pirrol-3-carbaldehído (0,87 g), ácido 2,6-dimetilfenilborónico (4,50 g), carbonato de cesio (13,0 g), tri-terc-butilfosfina (0,10 g), tris(dibencilidenoacetone)dipaladio (0) (0,23 g) y mesitileno (200 ml) se agitó con calentamiento a reflujo durante 5 h. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo 20 =3:1) para dar un aceite marrón (0,48 g). A una disolución del aceite en tetrahidrofurano (20 ml) se añadió hidruro de sodio (al 60% en aceite, 0,19 g) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 0,5 h. Se añadió una disolución de 15-corona-5 (1,06 g) en tetrahidrofurano (3 ml), y la mezcla se agitó durante 5 min. Se añadió cloruro de piridin-3-ilsulfonilo (0,64 g) con enfriamiento con hielo. La mezcla de reacción se agitó a temperatura ambiente durante 0,5 h, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la 25 mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =2:1) para dar el compuesto del título en forma de aceite marrón claro (rendimiento 0,42 q, 25%).
- ¹H-RMN (CDCl₃) δ: 1,66 (6H, s), 6,52 (1H, d, J=2,1 Hz), 6,70 (2H, d, J=7,5 Hz), 7,25-7,34 (2H, m), 7,56-7,60 (1H, m), 30 8,19 (1H, d, J=1,5 Hz), 8,53 (1H, d, J=1,8 Hz), 8,81-8,83 (1H, m), 9,91 (1H, s).

Ejemplo de referencia 160

2-bromo-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

5-(2-Fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (330 mg) se disolvió en N,N-dimetilformamida (30 ml), se añadió N-bromosuccinimida (356 mg y la mezcla se agitó a 80°C durante 2 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =7:3) y se cristalizó en éter diisopropílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 270 mg, 66%).

 1 H-RMN (CDCl₃) δ: 6,70 (1H, s), 7,12-7,26 (2H, m), 7,29-7,35 (1H, m), 7,44-7,52 (2H, m), 8,07-8,11 (1H, m), 8,89 (1H, dd, J=4,9, 1,5 Hz), 9,01-9,02 (1H, m), 9,86 (1H, s).

Ejemplo de referencia 161

2-(2-fluorofenil)-4-formil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbonitrilo

5-(2-Fluorofenil)-4-yodo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (489 mg), cianuro de cobre (I) (480 mg), tris(dibencilidenoacetone)dipaladio (0) (49 mg) y 1,1'-bis(difenilfosfino)ferroceno (89 mg) se mezclaron en 1,4-dioxane (20 ml), y la mezcla se calentó a reflujo durante 3 h. Se dejó enfriar la mezcla de reacción, se diluyó con acetato de etilo, y se filtró. El filtrado obtenido se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =2:3→3:7) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 380 mg, alrededor de 100%).

¹H-RMN (CDCl₃) δ: 7,06-7,12 (1H, m), 7,24-7,32 (2H, m), 7,40-7,45 (1H, m), 7,55-7,63 (1H, m), 7,70-7,74 (1H, m), 8,19 (1H, s), 8,57 (1H, d, J=1,9 Hz), 8,88 (1H, dd, J=4,8, 1,6 Hz), 9,97 (1H, s).

5-(2-fluorofenil)-3-formil-1-(piridin-3-ilsulfonil)-1H-pirrol-2-carbonitrilo

2-Bromo-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (340 mg), cianuro de cobre (I) (400 mg), tris(dibencilidenoacetona)dipaladio (0) (40 mg), 1,1'-bis(difenilfosfino)ferroceno (70 mg) se mezclaron en 1,4-dioxano (30 ml), y la mezcla se calentó a reflujo durante 24 h. Se dejó enfriar la mezcla de reacción, se diluyó con acetato de etilo, y se filtró. El filtrado obtenido se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =3:2) y se cristalizó en éter diisopropílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 169 mg, 57%).

 $^{1}\text{H-RMN}$ (CDCl₃) δ : 6,72 (1H, s), 7,12-7,18 (1H, m), 7,24-7,28 (2H, m), 7,50-7,60 (2H, m), 8,10-8,14 (1H, m), 8,82 (1H, d, J=2,4 Hz), 8,92 (1H, dd, J=4,9, 1,5 Hz), 10,09 (1H, s).

Ejemplo de referencia 163

({5-bromo-1-[(6-metoxipiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

Hidruro de sodio (al 60% en aceite, 433 mg) se lavó dos veces con hexano, y se suspendió en tetrahidrofurano (20 ml). Se añadió una disolución de [(5-bromo-1H-pirrol-3-il)metil]metilcarbamato de terc-butilo (2,66 g) en tetrahidrofurano (10 ml) a la suspensión a 0°C, y se añadió una disolución de 15-corona-5 (2,20 ml) y 6-metoxipiridin-3-ilsulfonilo (2,29 g) en tetrahidrofurano (5 ml) a la misma temperatura. Después de agitar a temperatura ambiente durante 30 min, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo = 6:1) para dar el compuesto del título en forma de un aceite marrón (rendimiento 4,02 g, 95%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,79 (3H, brs), 4,01 (3H, s), 4,17 (2H, brs), 6,25 (1H, brs), 6,82 (1H, d, J=9,0 Hz), 7,32 (1H, brs), 7,94-7,98 (1H, m), 8,77-8,78 (1H, m).

25 Ejemplo de referencia 164

30

{[5-(4-cianofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido (4-cianofenil)borónico (176 mg), carbonato de sodio (254 mg) y tetraquis(trifenilfosfina)paladio (57,8 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 382 mg, 84%).

 1 H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,79 (3H, s), 4,21 (2H, brs), 6,23 (1H, brs), 7,28-7,34 (2H, m), 7,59-7,66 (3H, m), 8,55 (1H, d, J=2,1 Hz), 8,74-8,76 (1H, m).

Ejemplo de referencia 165

{[5-(5-ciano-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

- Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido (5-ciano-2-fluorofenil)borónico (198 mg), carbonato de sodio (254 mg) y tetraquis(trifenilfosfina)paladio (57,8 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 28,9 mg, 6%).
- ¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,82 (3H, s), 4,24 (2H, brs), 6,28 (1H, brs), 7,21 (1H, t, J=8,7 Hz), 7,35-7,42 (2H, m), 40 7,49-7,52 (1H, m), 7,69-7,73 (2H, m), 8,66 (1H, d, J=2,4 Hz), 8,81-8,83 (1H, m).

Ejemplo de referencia 166

{[5-(2-fluoro-5-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

{[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (431 mg), ácido (2-fluoro-5-metoxifenil)borónico (256 mg), hidrogenocarbonato de sodio (253 mg) y tetraquis(trifenilfosfina)paladio (174 mg) se añadieron a una mezcla desgasificada de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 90°C durante 1 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 475 mg, alrededor de 100%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,83 (3H, s), 3,78 (3H, s), 4,24 (2H, s), 6,22 (1H, d, J=1,1 Hz), 6,69-6,71 (1H, m), 6,90-6,98 (2H, m), 7,72-7,36 (2H, m), 7,69-7,73 (1H, m), 8,65 (1H, d, J=2,3 Hz), 8,77 (1H, dd, J=4,9, 1,5 Hz).

Ejemplo de referencia 167

{[5-(2-fluoro-3-formilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido (2-fluoro-3-formilfenil)borónico (252 mg), carbonato de sodio (254 mg) y tetraquis(trifenilfosfina)paladio (173 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 250 mg, 53%).

 $^{1}\text{H-RMN}$ (CDCl₃) δ : 1,47 (9H, s), 2,83 (3H, s), 4,25 (2H, brs), 6,28 (1H, brs), 7,26-7,46 (4H, m), 7,68-7,72 (1H, m), 7,92-7,97 (1H, m), 8,61 (1H, d, J=2,1 Hz), 8,77-8,79 (1H, m), 10,30 (1H, s).

Ejemplo de referencia 168

{[5-(3-acetil-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido (3-acetil-2-fluorofenil)borónico (273 mg), carbonato de sodio (254 mg), y tetraquis(trifenilfosfina)paladio (173 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 443 mg, 91%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,59 (3H, d, J=5,4 Hz), 2,83 (3H, s), 4,25 (2H, brs), 6,24 (1H, brs), 7,19-7,36 (4H, m), 7,66-7,70 (1H, m), 7,90-7,96 (1H, m), 8,60 (1H, d, J=2,4 Hz), 8,76-8,78 (1H, m).

Ejemplo de referencia 169

20 {[5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Una suspensión de {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido (2-fluoropiridin-3-il)borónico (221 mg), carbonato de sodio (254 mg) y tetraquis(trifenilfosfina)paladio (173 mg) en 1,2-dimetoxietano (10 ml) y agua (5 ml) se agitó a 105°C durante 1 h. La mezcla de reacción se enfrió a temperatura ambiente. Se añadió agua a la mezcla de reacción y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =6:1→1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 310 mg, 69%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,82 (3H, s), 4,23 (2H, brs), 6,29 (1H, brs), 7,23-7,27 (1H, m), 7,34-7,39 (2H, m), 7,66-7,73 (2H, m), 8,25-8,27 (1H, m), 8,66 (1H, d, J=2,4 Hz), 8,78-8,80 (1H, m).

30 Ejemplo de referencia 170

25

{[5-(3-fluoropiridin-4-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

{[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (215 mg), ácido (3-fluoropiridin-4-il)borónico hidrato (120 mg), hidrogenocarbonato de sodio (126 mg) y tetraquis(trifenilfosfina)paladio (87 mg) se añadieron a una mezcla desgasificada de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 80°C durante 3 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 60 mg, 27%).

 1 H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,61 (3H, s), 4,24 (2H, s), 6,35 (1H, s), 7,22-7,26 (1H, m), 7,35-7,40 (2H, m), 7,71-7,75 (1H, m), 8,47 (1H, d, J=4,8 Hz), 8,50 (1H, d, J=1,3 Hz), 8,70 (1H, d, J=2,1 Hz), 8,81 (1H, dd, J=4,8, 1,6 Hz).

Ejemplo de referencia 171

{[5-(2-cloropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

45 {[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (431 mg), ácido (2-cloropiridin-3-il)borónico (237 mg), hidrogenocarbonato de sodio (126 mg) y tetraquis(trifenilfosfina)paladio (87 mg) se añadieron a una mezcla desgasificada de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 100°C durante 3 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1→1:4) para dar el compuesto del

título en forma de un aceite incoloro (rendimiento 280 mg, 60%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,84 (3H, s), 4,27 (2H, s), 6,30 (1H, s), 7,30-7,39 (3H, m), 7,65-7,73 (2H, m), 8,43-8,45 (1H, m), 8,67 (1H, d, J=2,3 Hz), 8,80 (1H, dd, J=4,9, 1,5 Hz).

Ejemplo de referencia 172

5 {[5-(6-cloropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Ejemplo de referencia 173

{[5-(6'-cloro-2,3'-bipiridin-5-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

{[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (431 mg), ácido (6-cloropiridin-3il)borónico (237 mg), hidrogenocarbonato de sodio (252 mg) y tetraquis(trifenilfosfina)paladio (87 mg) se añadieron a 10 una mezcla desgasificada de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 90°C durante 3 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1→3:7), y las fracciones que 15 muestran un valor de Rf de 0,6 (eluyente: hexano-acetato de etilo =1:1) se recogieron para dar el compuesto del título del Ejemplo de referencia 172 en forma de un aceite incoloro (rendimiento 100 mg, 22%), A continuación, se recogieron fracciones que muestran un valor de Rf de 0,4 (eluyente: hexano-acetato de etilo=1:1) para dar el compuesto del título del Ejemplo de referencia 173 en forma de un polvo amarillo claro (rendimiento 100 mg, 19%). Ejemplo de referencia 172 H-RMN (CDCI₃) δ: 1,47 (9H, s), 2,81 (3H, s), 4,23 (2H, s), 6,24 (1H, s), 7,23-7,38 (3H, 20 m), 7,59-7,63 (1H, m), 7,72 (1H, dd, J=8,3, 2,3 Hz), 8,14 (1H, d, J=2,3 Hz), 8,64 (1H, d, J=2,3 Hz), 8,78 (1H, dd, J=4,7, 1,7 Hz).

Ejemplo de referencia 173 ¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,82 (3H, s), 4,24 (2H, s), 6,29 (1H, s), 7,31-7,37 (2H, m), 7,47 (1H, d, J=8,3 Hz), 7,64-7,68 (1H, m), 7,76-7,86 (2H, m), 8,38 (1H, dd, J=8,5, 2,5 Hz), 8,51 (1H, d, J=1,9 Hz), 8,63 (1H, d, J=2,3 Hz), 8,77 (1H, dd, J=4,9, 1,5 Hz), 9,04 (1H, d, J=2,3 Hz).

25 Ejemplo de referencia 174

30

(\(\frac{5-(2-fluoropiridin-3-il)-1-\[(6-metoxipiridin-3-il)\)sulfonil\]-1H-pirrol-3-il\\ metil\)metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando ({5-bromo-1-[(6-metoxipiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (463 mg), ácido (2-fluoropiridin-3-il)borónico (172 mg), carbonato de sodio (260 mg) y tetraquis(trifenilfosfina)paladio (176 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 293 mg, 45%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,83 (3H, brs), 3,97 (3H, s), 4,23 (2H, brs), 6,28 (1H, s), 6,69-6,72 (1H, m), 7,26-7,36 (2H, m), 7,49-7,53 (1H, m), 7,75-7,80 (1H, m), 8,22-8,23 (1H, m), 8,26-8,27 (1H, m).

Ejemplo de referencia 175

({5-[2-fluoro-3-(hidroximetil)fenil]-1-(piridin-3-ilsulfonil)- H-pirrol-3-il}metil)metilcarbamato de terc-butilo

A una disolución de {[5-(2-fluoro-3-formilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (388 mg) en tetrahidrofurano (8 ml) se añadieron con enfriamiento con hielo, borohidruro de sodio (41,3 mg) y metanol (3 ml). Después de agitar a la misma temperatura durante 30 min, se añadió agua a la mezcla de reacción y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =2:1—1:2) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 238 mg, 61%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,83 (3H, s), 4,24 (2H, brs), 4,65 (2H, brs), 6,19 (1H, brs), 7,15-7,19 (2H, m), 7,34-7,38 (2H, m), 7,51-7,55 (1H, m), 7,73-7,76 (1H, m), 8,40-8,41 (1H, m), 8,75-8,77 (1H, m), 1H no detectado.

Ejemplo de referencia 176

45 ({5-[2-fluoro-3-(1-hidroxietil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 175 y usando {[5-(3-acetil-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (443 mg), se obtuvo el compuesto del título en forma amorfa amarilla clara (rendimiento 318 mg, 71%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 1,50 (3H, d, J=6,3 Hz), 2,83 (3H, s), 4,25 (2H, brs), 5,06 (1H, q, J=6,3 Hz), 6,20 (1H, brs), 7,09-7,22 (2H, m), 7,34-7,38 (2H, m), 7,59-7,64 (1H, m), 7,72-7,76 (1H, m), 8,40 (1H, d, J=2,4 Hz), 8,75-8,78

(1H, m), 1H no detectado.

Ejemplo de referencia 177

{[5-(2-fluoro-3-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

{[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (431 mg), ácido (2-fluoro-3-metoxifenil)borónico (256 mg), hidrogenocarbonato de sodio (253 mg) y tetraquis(trifenilfosfina)paladio (88 mg) se añadieron a una mezcla de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 100°C durante 2 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 475 mg, alrededor de 100%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,82 (3H, s), 3,90 (3H, s), 4,24 (2H, s), 6,21 (1H, d, J=1,5 Hz), 6,72-6,79 (1H, m), 7,00-7,09 (2H, m), 7,32-7,36 (2H, m), 7,69-7,73 (1H, m), 8,63 (1H, d, J=2,3 Hz), 8,76 (1H, dd, J=4,9, 1,5 Hz).

Eiemplo de referencia 178

15 {[5-(2-fluoro-6-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

{[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (431 mg), ácido (2-fluoro-6-metoxifenil)borónico (256 mg), hidrogenocarbonato de sodio (253 mg) y tetraquis(trifenilfosfina)paladio (176 mg) se añadieron a una mezcla de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 100°C durante 20 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 100 mg, 21%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,85 (3H, s), 3,58 (3H, s), 4,26 (2H, s), 6,17 (1H, d, J=1,9 Hz), 6,64-6,70 (2H, m), 7,31-7,39 (3H, m), 7,71-7,75 (1H, m), 8,60 (1H, d, J=1,9 Hz), 8,76 (1H, dd, J=4,9, 1,5 Hz).

Ejemplo de referencia 179

20

2-[4-(difluorometoxi)fenil]-4,4,5,5-tetrametil-1,3,2-dioxaborolano

Una disolución (10 ml) de 1-bromo-4-(difluorometoxi)benceno (500 mg), 4,4,4',4',5,5,5',5'-octametil-2,2'-bi-1,3,2-dioxaborolano (654 mg), acetato de potasio (660 mg) y 1,1'-bis(difenilfosfino)ferroceno dicloropaladio (73,2 mg) en dimetilformamida se agitó a 80°C durante 3 h. La mezcla de reacción se enfrió a temperatura ambiente, se diluyó con acetato de etilo y se filtró a través de celite. El filtrado se lavó con agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→8:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 348 mg, 58%).

 1 H-RMN (CDCl₃) δ : 1,35 (12H, s), 6,54 (1H, t, J=73,5 Hz), 7,09 (2H, d, J=7,8 Hz), 7,81 (2H, d, J=7,8 Hz).

Ejemplo de referencia 180

({5-[4-(difluorometoxi)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

{[5-Bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), 2-[4-(difluorometoxi)fenil]-4,4,5,5-tetrametil-1,3,2-dioxaborolano (348 mg), carbonato de sodio (254 mg) y tetraquis(trifenilfosfina)paladio (174 mg) se suspendieron en dimetoxietano (10 ml) y agua (4 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 105°C durante 1 h. Se dejó enfriar la mezcla de reacción a temperatura ambiente, se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo =4:1→2:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 550 mg, rendimiento cuantitativo).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,80 (3H, s), 4,21 (2H, brs), 6,13 (1H, brs), 6,57 (1H, t, J=73,2 Hz), 7,06-7,09 (2H, m), 7,21-7,31 (4H, m), 7,55-7,59 (1H, m), 8,54 (1H, d, J=2,4 Hz), 8,71-8,73 (1H, m).

Ejemplo de referencia 181

metil{[5-(4-metilpiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

50 {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (431 mg), ácido (4-metilpiridin-3-

il)borónico (206 mg), hidrogenocarbonato de sodio (253 mg) y tetraquis(trifenilfosfina)paladio (87 mg) se añadieron a una mezcla desgasificada de 1,2-dimetoxietano (8 ml) y agua (2 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 80°C durante 6 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1→0:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 230 mg, 52%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,11 (3H, s), 2,85 (3H, s), 4,27 (2H, s), 6,15 (1H, s), 7,18 (1H, d, J=4,9 Hz), 7,34-7,39 (2H, m), 7,58-7,62 (1H, m), 7,94 (1H, s), 8,49 (1H, d, J=5,3 Hz), 8,64 (1H, d, J=2,3 Hz), 8,80 (1H, dd, J=4,9, 1,5 Hz).

Ejemplo de referencia 182

3-bromo-2-metilpiridina

5

10

2-Metilpiridina (46,6 g) se añadió gota a gota a cloruro de aluminio (200 g) y la mezcla se agitó a 100°C. A una mezcla se añadió gota a gota bromo (40,0 g) a la misma temperatura durante 1 h, y la mezcla se agitó adicionalmente durante 30 min. Después de enfriar, la mezcla de reacción se vertió en agua de hielo, se añadió ácido clorhídrico concentrado hasta que la mezcla se acidificó, La disolución obtenida se lavó con acetato de etilo, y la capa acuosa se basificó con una disolución acuosa de 8 mol/l de hidróxido de sodio. Después de la extracción con éter dietílico, el extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-éter dietílico =10:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 5,09 g, 12%),

¹H-RMN (CDCl₃) δ: 2,67 (3H, s), 6,98-7,03 (1H, m), 7,78-7,82 (1H, m), 8,40-8,44 (1H, m).

Ejemplo de referencia 183

{([5-(2-metilpiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

A una disolución de 3-bromo-2-metilpiridina (504 mg) en éter dietílico (15 ml) se añadió una disolución de 1,62 mol/l 25 de n-butillitio en hexano a -78°C, y la mezcla se agitó a la misma temperatura durante 15 min. Se le añadió triisopropoxiborano (1,22 ml) a la misma temperatura, y la mezcla obtenida se agitó a 0°C durante 1 h. Se añadió metanol (2 ml) a la mezcla de reacción, y la mezcla se concentró a presión reducida. ({5-Bromo-1-[(piridin-3il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (432 mg), carbonato de sodio (1,15 tetraquis(trifenilfosfina)paladio (174 mg), 1,2-dimetoxietano (20 ml) y agua (10 ml) se añadieron al residuo, y la 30 mezcla se agitó en una atmósfera de nitrógeno a 105°C durante 1 h. Se dejó enfriar la mezcla de reacción a temperatura ambiente, se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1) para dar el compuesto del título en forma de un aceite marrón 35 (rendimiento 282 mg, 22%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,09 (3H, s), 2,85 (3H, s), 4,27 (2H, brs), 6,14 (1H, brs), 7,10-7,14 (1H, m), 7,26-7,38 (3H, m), 7,56-7,60 (1H, m), 8,54-8,56 (1H, m), 8,60-8,61 (1H, m), 8,78-8,80 (1H, m).

Ejemplo de referencia 184

6-metilnicotinamida

40 Una mezcla de 6-metilnicotinato de metilo (13,9 g) y amoniaco acuoso al 28% (140 ml) se agitó a temperatura ambiente durante 4 h. La mezcla de reacción se concentró a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de un sólido blanco (rendimiento 8,98 g, 72%).

¹H-RMN (CDCl₃) δ: 2,63 (3H, s), 5,60-6,20 (2H, brm), 7,25-7,28 (1H, m), 8,04-8,07 (1H, m), 8,90 (1H, d, J=2,1 Hz).

Ejemplo de referencia 185

45 6-metilpiridino-3-amina

50

Se añadió bromo (1,0 ml) a una disolución (60 ml) acuosa de 4 mol/l de hidróxido de sodio a 0°C, y la mezcla se agitó a la misma temperatura durante 15 min. Se añadió 6-metilnicotinamida (2,4 g) a la disolución obtenida durante 10 min, y la mezcla se agitó a temperatura ambiente durante 30 min y se agitó adicionalmente a 75°C durante 4 h. Se dejó enfriar la mezcla de reacción a temperatura ambiente, y se extrajo con acetato de etilo:THF =2:1. El extracto se lavó con una pequeña cantidad de salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. La recristalización del residuo en acetato de etilo-hexano dio el compuesto del título en forma de un sólido amarillo claro (rendimiento 0,93 g, 49%).

¹H-RMN (CDCl₃) δ: 2,43 (3H, s), 3,54 (2H, brs), 6,89-6,95 (2H, m), 7,99-8,01 (1H, m).

Ejemplo de referencia 186

Cloruro de 6-metilpiridin-3-ilsulfonilo

A una mezcla de 6-metilpiridino-3-amina (449 mg) y ácido clorhídrico concentrado (5 ml) se añadió una disolución de nitrito de sodio (857 mg) en agua (2 ml) a 0°C, y la mezcla se agitó a la misma temperatura durante 10 min. A la mezcla se añadió una disolución de ácido clorhídrico concentrado (2,5 ml), sulfato de cobre (69 mg) y hidrogenosulfito de sodio (5,08 g) en agua (8 ml) a 0°C, y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =10:1) para dar el compuesto del título en forma de un sólido amarillo claro (rendimiento 0,12 g, 15%).

¹H-RMN (CDCl₃) δ: 2,73 (3H, s), 7,40-7,43 (1H, m), 8,16-8,20 (1H, m), 9,11-9,12 (1H, m).

Ejemplo de referencia 187

({5-bromo-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

A una disolución de [(5-bromo-1H-pirrol-3-il)metil]metilcarbamato de terc-butilo (207 mg) en tetrahidrofurano (30 ml) se añadió hidruro de sodio (al 60% en aceite, 31 mg) a 0°C, y la mezcla se agitó a la misma temperatura durante 10 min. Se añadió una disolución (3 ml) de 15-corona-5 (0,16 ml) y cloruro de 6-metilpiridin-3-ilo (117 mg) en tetrahidrofurano a la misma temperatura. Después de agitar a temperatura ambiente durante 30 min, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo =4:1) para dar el compuesto del título en forma de un aceite marrón (rendimiento 213 mg, 79%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,66 (3H, s), 2,79 (3H, s), 4,17 (2H, brs), 6,26 (1H, brs), 7,26-7,33 (2H, m), 8,03-8,07 (1H, m), 9,01-9,02 (1H, m).

25 Ejemplo de referencia 188

30

({5-(2-fluoropiridin-3-il)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo

Una suspensión de ({5-bromo-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (206 mg), ácido (2-fluoropiridin-3-il)borónico (80 mg), carbonato de sodio (119 mg) y tetraquis(trifenilfosfina)paladio (80 mg) en 1,2-dimetoxietano (5 ml) y agua (2,5 ml) se agitó en una atmósfera de nitrógeno a 105°C durante 1 h. Se dejó enfriar la mezcla de reacción a temperatura ambiente, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 87 mg, 41%).

35 ¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,62 (3H, m), 2,82 (3H, s), 4,23 (2H, brs), 6,29 (1H, s), 7,18-7,27 (2H, m), 7,33 (1H, s), 7,54-7,57 (1H, m), 7,72-7,75 (1H, m), 8,26-8,27 (1H, m), 8,53 (1H, s).

Ejemplo de referencia 189

5-(2-fluoropiridin-3-il)-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído

5-Bromo-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído (3,15 g), ácido (2-fluoropiridin-3-il)borónico (2,83 g), hidrogenocarbonato de sodio (2,53 g) y tetraquis(trifenilfosfina)paladio (870 mg) se añadieron a una mezcla desgasificada de 1,2-dimetoxietano (80 ml) y agua (20 ml), y la mezcla se agitó en una atmósfera de nitrógeno a 80°C durante 5 h. Se dejó enfriar la mezcla de reacción, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =4:1→2:3) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 2,25 g, 68%).

¹H-RMN (CDCl₃) δ: 6,71 (1H, d, J=1,7 Hz), 7,24-7,28 (1H, m), 7,42-7,48 (4H, m), 7,62-7,68 (1H, m), 7,70-7,76 (1H, m), 8,14 (1H, d, J=1,9 Hz), 8,28-8,31 (1H, m), 9,90 (1H, s).

Ejemplo de referencia 190

50 5-(2-fluoropiridin-3-il)-1H-pirrol-3-carbaldehído

5-(2-Fluoropiridin-3-il)-1-(fenilsulfonil)-1H-pirrol-3-carbaldehído (2,25 g) se disolvió en metanol (20 ml) y tetrahidrofurano (20 ml), se añadió una disolución (20 ml) acuosa de 8 mol/l de hidróxido de sodio gota a gota a temperatura ambiente y la mezcla se agitó durante 1 h. La mezcla de reacción se diluyó con salmuera saturada, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. Se añadió acetato de etilo al residuo y se recogieron cristales insolubles por filtración para dar el compuesto del título en forma de cristales marrón claro (rendimiento 1,03 g, 79%).

 1 H-RMN (DMSO-d₆) δ: 6,99 (1H, d, J=1,5 Hz), 7,43-7,48 (1H, m), 7,88 (1H, s), 8,12-8,15 (1H, m), 8,27-8,34 (1H, m), 9,77 (1H, s), 12.28 (1H, brs).

Ejemplo de referencia 191

5

15

25

35

45

10 4-cloro-5-(2-fluoropiridin-3-il)-1H-pirrol-3-carbaldehído

5-(2-Fluoropiridin-3-il)-1H-pirrol-3-carbaldehído (610 mg) se disolvió en N,N-dimetilformamida (20 ml), se añadió N-clorosuccinimida (641 mg) y la mezcla se agitó a 80°C durante 40 min. Después de enfriar, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =3:2→1:1) para dar el compuesto del título en forma de un polvo incoloro (rendimiento 320 mg, 44%).

 1 H-RMN (DMSO-d₆) δ : 7,49-7,54 (1H, m), 7,86 (1H, d, J=2,3 Hz), 8,12-8,19 (1H, m), 8,30-8,32 (1H, m), 9,80 (1H, s), 12,48 (1H, brs).

Ejemplo de referencia 192

4-cloro-5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído

A una disolución (20 ml) de 4-cloro-5-(2-fluoropiridin-3-il)-1H-pirrol-3-carbaldehído (270 mg) en tetrahidrofurano se añadió hidruro de sodio (al 60% en aceite, 100 mg) a temperatura ambiente y la mezcla se agitó durante 30 min, se añadió 15-corona-5 (530 mg) gota a gota y la mezcla se agitó durante 30 min. Se añadió cloruro de 3-piridilsulfonilo (321 mg) y la mezcla se agitó adicionalmente durante 1 h. La mezcla de reacción se diluyó con salmuera saturada, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =1:1→1:4), y se cristalizó en éter dietílico para dar el compuesto del título en forma de cristales incoloros (rendimiento 358 mg, 81%).

¹H-RMN (CDCl₃) δ: 7,35-7,39 (1H, m), 7,42-7,46 (1H, m), 7,69-7,73 (1H, m), 7,76-7,82 (1H, m), 8,14 (1H, s), 8,39-30 8,41 (1H, m), 8,64 (1H, dd, J=2,5 Hz, 0,6 Hz), 8,89 (1H, dd, J=4,8 Hz, 1,6 Hz), 9,97 (1H, s).

Ejemplo de referencia 193

tributil(2-tienil)estannano

Una disolución (10 ml) de 2-bromotiofeno (1,0 g) en tetrahidrofurano se enfrió a -70°C, y se añadió gota a gota una disolución (4,2 ml) de 1,6 mol/l de n-butillitio en hexano. Después de agitar a la misma temperatura durante 30 min, se añadió gota a gota cloruro de tributilestaño (2,1 g). Después de agitar adicionalmente durante 1 h, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El aceite residual (2,4 g) que contiene el compuesto del título se usó para la siguiente etapa sin purificación.

Ejemplo de referencia 194

40 metil{[1-(piridin-3-ilsulfonil)-5-(2-tienil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

A una disolución de tributil(2-tienil)estannano en bruto (1,1 g) y {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg) en tolueno se añadió tetraquis(trifenilfosfina)paladio (116 mg), y la mezcla se agitó en una atmósfera de nitrógeno a 120°C durante 1 h. Se dejó enfriar la mezcla de reacción a temperatura ambiente y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =4:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 315 mg, 73%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,83 (3H, s), 4,22 (2H, brs), 5,25 (1H, brs), 7,04-7,07 (1H, m), 7,16-7,17 (1H, m), 7,27-7,31 (2H, m), 7,36-7,37 (1H, m), 7,62-7,66 (1H, m), 8,58-8,59 (1H, m), 8,71-8,73 (1H, m).

Ejemplo de referencia 195

50 3-metil-2-(tributilestannil)piridina

Una disolución (10 ml) de 2-bromo-3-metilpiridina (1,0 g) en tetrahidrofurano se enfrió a -70°C, y se añadió gota a gota una disolución (4,0 ml) de 1,6 mol/l de n-butillitio en hexano. Después de agitar a la misma temperatura durante 15 min, se añadió gota a gota cloruro de tributilestaño (2,2 g). Después de agitar adicionalmente durante 1 h, se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 1,75 g, 79%).

¹H-RMN (CDCl₃) δ: 0,85-0,95 (9H, m), 1,11-1,17 (6H, m), 1,29-1,37 (6H, m), 1,49-1,57 (6H, m), 2,36 (3H, s), 6,99-7,03 (1H, m), 7,31-7,34 (1H, m), 8,52-8,54 (1H, m).

10 Ejemplo de referencia 196

5

15

25

metil{[5-(3-metilpiridin-2-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo

Una disolución de 3-metil-2-(tributilestannil)piridina (1,0 g), {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (563 mg) y tetraquis(trifenilfosfina)paladio (454 mg) en tolueno se agitó en una atmósfera de nitrógeno a 120°C durante 30 h. La mezcla se enfrió a temperatura ambiente y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =4:1) para dar el compuesto del título en forma de un aceite incoloro (rendimiento 129 mg, 22%)

¹H-RMN (CDCl₃) δ: 1,45 (9H, s), 2,80 (3H, brs), 4,25 (2H, brs), 6,26 (1H, brs), 7,23-7,27 (2H, m), 7,39-7,44 (1H, m), 7,60 (1H, d, J=6,9 Hz), 7,99-8,03 (1H, m), 8,36 (1H, d, J=4,5 Hz), 8,78-8,80 (1H, m), 8,86-8,87 (1H, m).

20 Eiemplo de referencia 197

{[5-{2-fluoro-3-[(hidroxiimino)metil]fenil}-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

A una disolución (3 ml) de {[5-(2-fluoro-3-formilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (182 mg) en 2-propanol se añadió hidrocloruro de hidroxilamina (40 mg) y acetato de sodio (47 mg). Después de agitar a temperatura ambiente durante 3 h, se añadió disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =8:1→3:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 150 mg, 80%).

¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,82 (3H, s), 4,24 (2H, s), 6,22 (1H, s), 7,15-7,19 (2H, m), 7,31-7,35 (2H, m), 7,67-30 7,71 (1H, m), 7,76-7,85 (1H, m), 8,27 (1H, s), 8,63 (1H, d, J=2,1 Hz), 8,76-8,78 (1H, m), 1H no detectado.

Ejemplo de referencia 198

 $\label{lem:condition} $$ [5-(3-ciano-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il] metil\ metil$

A una disolución (5 ml) de {[5-{2-fluoro-3-[(hidroxiimino)metil]fenil}-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (150 mg) en tetrahidrofurano se añadió trietilamina (93 mg) y cloruro de metanosulfonilo (84 mg) a temperatura ambiente. La mezcla de reacción se agitó a 70°C durante 8 h, y se enfrió a temperatura ambiente. Se añadió agua y la mezcla se extrajo con acetato de etilo, El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =8:1→3:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 106 mg, 73%).

40 ¹H-RMN (CDCl₃) δ: 1,46 (9H, s), 2,82 (3H, s), 4,24 (2H, s), 6,28 (1H, brs), 7,25-7,40 (3H, m), 7,48-7,53 (1H, m), 7,66-7,70 (2H, m), 8,62 (1H, d, J=2,7 Hz), 8,80-8,82 (1H, m).

Ejemplo de referencia 199

{[5-(4-bromo-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

Por una operación similar a la del Ejemplo de referencia 79 y usando {[5-bromo-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (430 mg), ácido (4-bromo-3-tienil)borónico (248 mg), carbonato de sodio (254 mg) y tetraquis(trifenilfosfina)paladio (116 mg), se obtuvo el compuesto del título en forma de un aceite amarillo claro (rendimiento 470 mg, 92%).

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,84 (3H, brs), 4,26 (2H, brs), 6,21-6,22 (1H, m), 7,18-7,19 (1H, m), 7,30-7,39 (3H, m), 7,63-7,67 (1H, m), 8,57-8,58 (1H, m), 8,74-8,76 (1H, m).

{[5-(4-ciano-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo

A una disolución (5 ml) de {[5-(4-bromo-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (470 mg) en N,N-dimetilformamida se añadió cianuro de cinc (215 mg) y tetraquis(trifenilfosfina)paladio (212 mg) y la mezcla se desgasificó suficientemente. La mezcla se agitó con calentamiento a 120°C durante 18 h y se enfrió a temperatura ambiente. Se añadió agua y acetato de etilo y la mezcla se filtró a través de celite. El filtrado se concentró a presión reducida y el residuo se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =4:1→2:1) para dar el compuesto del título en forma de un aceite amarillo claro (rendimiento 297 mg, 71%),

¹H-RMN (CDCl₃) δ: 1,47 (9H, s), 2,83 (3H, brs), 4,25 (2H, brs), 6,34-6,35 (1H, m), 7,35-7,39 (2H, m), 7,48 (1H, br), 7,65-7,68 (1H, m), 7,87 (1H, d, J=3,0 Hz), 8,53-8,54 (1H, m), 8,78-8,79 (1H, m).

Ejemplo 1

10

Dihidrocloruro de N-metil-1-[5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

- 15 5-Fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (230 mg) se disolvió en tetrahidrofurano absoluto (10 ml), se añadió una disolución (1 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (76 mg) en metanol (5 ml), y la mezcla se agitó a la misma temperatura durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera 20 saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: acetato de etilo-metanol =1:0→1:1) y adicionalmente por HPLC (ODS, agua que contiene ácido trifluoroacético al 0,1% - acetonitrilo que contiene ácido trifluoroacetico al 0.1% = 97:3→acetonitrilo que contiene ácido trifluoroacético al 0.1%) para dar trifluoroacetato del compuesto del título. El trifluoroacetato obtenido se neutralizó con una disolución saturada de hidrogenocarbonato 25 de sodio, se extrajo con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, aqua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida. El residuo se disolvió en acetato de etilo (5 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo (1 ml) y etanol (5 ml), y la mezcla se concentró a presión reducida y se cristalizó en acetato de etilo-etanol para dar el compuesto del título (rendimiento 85 mg, 29%).
- ¹H-RMN (DMSO-d₆) δ: 2,50 (3H, s), 3,97-4,00 (2H, s), 6,50 (1H, s), 7,14-7,16 (2H, m), 7,35-7,45 (3H, m), 7,62-7,70 (1H, m), 7,78-7,83 (2H, m), 8,47-8,48 (1H, m), 8,84-8,86 (1H, m), 9,08 (2H, br), 1H no detectado.

Ejemplo 2

Hidrocloruro de 1-{1-[(6-metoxipiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}-N-metilmetanamina

- 1-[(6-Metoxipiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído (59 mg) se disolvió en tetrahidrofurano absoluto (5 ml), se añadió una disolución (0,25 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (19 mg) en metanol (2 ml), y la mezcla se agitó a la misma temperatura durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con agua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: acetato de etilo-metanol =1:0→1:1) para dar una sal libre (48 mg) del compuesto del título. La sal libre obtenida se disolvió en acetato de etilo (2 ml), se añadió una disolución (3 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se dejó reposar a temperatura ambiente durante 30 min. Los cristales precipitados se recogieron por filtración, se lavaron con acetato de etilo para dar el compuesto del título (rendimiento 39 mg, 58%).
- 1 H-RMN (DMSO-d₆) δ: 2,50 (3H, s), 3,90 (3H, s), 3,98 (2H, s), 6,45 (1H, s), 6,91-6,94 (1H, m), 7,16-7,18 (2H, m), 7,36-7,45 (3H, m), 7,59-7,63 (1H, m), 7,72 (1H, s), 8,09-8,10 (1H, m), 8,91 (2H, br).

Ejemplo 3

Dihidrocloruro de N-metil-1-{1-[6-(metilamino)piridin-3-ilsulfonil]-5-fenil-1H-pirrol-3-il}metanamina

Por una reacción similar a la del Ejemplo 2 y usando 1-(6-cloro-3-piridinosulfonil)-5-fenil-1H-pirrol-3-carbaldehído (100 mg), se obtuvo el compuesto del título (rendimiento 58 mg, 47%).

¹H-RMN (DMSO-d₆) δ: 2,50 (3H, s), 2,78 (3H, s), 3,95-3,99 (2H, m), 6,39-6,42 (2H, m), 7,20-7,23 (3H, m), 7,35-7,43 (3H, m), 7,63 (1H, s), 7,82-7,85 (2H, m), 9,00 (2H, br), 1H no detectado.

Ejemplo 4

Dihidrocloruro de N-metil-1-{1-[2-(metilamino)piridin-3-ilsulfonil]-5-fenil-1H-pirrol-3-il}metanamina

Se disolvió 1-(2-cloropiridin-3-ilsulfonil)-5-fenil-1H-pirrol-3-carbaldehído (173 mg) en tetrahidrofurano (10 ml), se añadió una disolución (1,25 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 12 h. La mezcla de reacción se añadió a una disolución (2 ml) de borohidruro de sodio (76 mg) en metanol, y la mezcla se agitó a temperatura ambiente durante 20 min. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: acetato de etilo→acetato de etilo-metanol=1:4) para dar una sal libre del compuesto del título. A una disolución (3 ml) de la sal libre obtenida en etanol se añadió una disolución (1 ml) de 5 mol/l de cloruro de hidrógeno-acetato de etilo. El disolvente se evaporó a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título (rendimiento 126 mg, 59%).

 1 H-RMN (DMSO-d₆) δ : 2,50 (3H, s), 2,77 (3H, d, J=4,5 Hz), 3,95-3,99 (2H, m), 4,80 (1H, br), 6,28-6,30 (1H, m), 6,41-6,47 (2H, m), 7,10-7,19 (3H, m), 7,32-7,44 (3H, m), 7,88 (1H, s), 8,25-8,27 (1H, m), 9,19 (2H, br).

15 Ejemplo 5

Hidrocloruro de N-metil-1-{1-[2-(metilamino)pirimidin-5-ilsulfonil]-5-fenil-1H-pirrol-3-il}metanamina

Por una reacción similar a la del Ejemplo 2 y usando 1-(2-cloropirimidin-5-ilsulfonil)-5-fenil-1H-pirrol-3-carbaldehído (100 mg), se obtuvo el compuesto del título (rendimiento 64 mg, 57%).

 $^{1}\text{H-RMN (DMSO-d}_{6}) \ \bar{\delta}: \ 2,50 \ (3\text{H, s}), \ 2,80\text{-}2,82 \ (3\text{H, s}), \ 3,98 \ (2\text{H, s}), \ 6,47 \ (1\text{H, s}), \ 7,23\text{-}7,26 \ (2\text{H, m}), \ 7,39\text{-}7,43 \ (3\text{H, m}), \ 7,66\text{-}7,67 \ (1\text{H, m}), \ 7,96\text{-}7,97 \ (1\text{H, m}), \ 8,11\text{-}8,12 \ (1\text{H, m}), \ 8,48\text{-}8,52 \ (1\text{H, m}), \ 8,97 \ (2\text{H, br}).$

Eiemplo 6

25

35

40

45

Dihidrocloruro de N-metil-1-[2-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Por una reacción similar a la del Ejemplo 2 y usando 2-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (235 mg), se obtuvo un aducto de etanol (1 equivalente) del compuesto del título en forma de un sólido (rendimiento 110 mg, 39%).

 1 H-RMN (DMSO-d₆) δ : 1,06 (3H, t, J=7,2 Hz), 2,43-2,50 (6H, m), 3,44 (2H, dd, J=14,1, 7,2 Hz), 3,91-3,94 (2H, m), 6,47 (1H, s), 7,21-7,43 (2H, m), 7,36-7,41 (3H, m), 7,56-7,63 (1H, m), 7,82-7,88 (1H, m), 8,53 (1H, s), 8,87-8,93 (3H, m), 2H no detectado.

Ejemplo 7

30 Dihidrocloruro de N-metil-1-[1-(2-metilpirimidin-5-ilsulfonil)-5-fenil-1H-pirrol-3-il]-metanamina

1-[(2-Metil-5-pirimidino)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído (148 mg) se disolvió en tetrahidrofurano absoluto (10 ml), se añadió una disolución (1,25 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó durante la noche a temperatura ambiente. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (95 mg) en metanol (3,0 ml), y la mezcla se agitó a la misma temperatura durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se disolvió en tetrahidrofurano (20 ml), se añadieron bicarbonato de diterc-butilo (0,55 g), hidrogenocarbonato de sodio (0,25 g) y agua (10 ml), y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se disolvió en tetrahidrofurano (20 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 1,5 g), y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→1:1) para dar un aceite. El aceite obtenido se disolvió en etanol (1 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a temperatura ambiente durante 3 h. El disolvente se evaporó a presión reducida para dar un sólido (67 mg). La recristalización en etanol dio el compuesto del título en forma de un sólido incoloro (rendimiento 34 mg, 18%).

 1 H-RMN (DMSO-d₆) δ : 2,53 (3H, s), 2,70 (3H, s), 3,98 (2H, s), 6,50 (1H, s), 7,18-7,20 (2H, m), 7,38-7,47 (3H, m), 7,76-7,77 (1H, m), 8,59 (2H, s), 8,88 (2H, br), 1H no detectado.

50 Ejemplo 8

Fumarato de 1-[5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

5-(2-Fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (1,52 g) se disolvió en metanol (30 ml), se añadió una disolución (3,57 g) de metilamina en metanol al 40% a temperatura ambiente y la mezcla se agitó durante 30 min. Se añadió borohidruro de sodio (523 mg) a temperatura ambiente y la mezcla se agitó durante 10 min. Se añadió ácido clorhídrico (50 ml) de 1 mol/l y la mezcla se agitó durante 5 min. La mezcla de reacción se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo-metanol = 1:0 →7:3) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro (rendimiento 1,30 g). La sal libre obtenida (750 mg) se disolvió en acetato de etilo (30 ml), se añadió gota a gota una disolución de ácido fumárico (278 mg) en metanol (3 ml) a temperatura ambiente. Después de agitar durante 30 min, los cristales obtenidos se recogieron por filtración, y se lavaron con acetato de etilo para dar el compuesto del título en forma de cristales incoloros (rendimiento 912 mg, 74%).

 $^{1}\text{H-RMN (DMSO-d}_{6}) \ 5: \ 2,43 \ (3\text{H, s}), \ 3,87 \ (2\text{H, s}), \ 6,47 \ (2\text{H, s}), \ 6,49 \ (1\text{H, d, J=1,8 Hz}), \ 7,07-7,13 \ (1\text{H, m}), \ 7,19-7,26 \ (2\text{H, m}), \ 7,49-7,56 \ (1\text{H, m}), \ 7,59-7,64 \ (1\text{H, m}), \ 7,74 \ (1\text{H, d, J=1,8 Hz}), \ 7,86-7,90 \ (1\text{H, m}), \ 8,56-8,57 \ (1\text{H, m}), \ 8,87-15 \ 8,89 \ (1\text{H, m}), \ 3\text{H no detectado}.$

punto de fusión 201-203°C.

Eiemplo 9

10

Dihidrocloruro de N-metil-1-{1-(piridin-3-ilsulfonil)-5-[2-(trifluorometil)fenil]-1H-pirrol-3-il}metanamina

1-(Piridin-3-ilsulfonil)-5-[2-(trifluorometil)fenil]-1H-pirrol-3-carbaldehído (340 mg) se disolvió en etanol (34 ml), se añadió una disolución (695 mg) de metilamina en metanol al 40% a temperatura ambiente y la mezcla se agitó durante 30 min. Se añadió borohidruro de sodio (102 mg) a temperatura ambiente y la mezcla se agitó durante 10 min,. Se añadió ácido clorhídrico (10 ml) de 1 mol/l y la mezcla se agitó durante 5 min. La mezcla de reacción se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilometanol=1:0→7:3) y se disolvió en acetato de etilo (5 ml). Se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se concentró a presión reducida. El residuo se cristalizó en acetato de etilo para dar el compuesto del título en forma de cristales rojo claro (rendimiento 288 mg, 69%).

¹H-RMN (DMSO-d₆) δ: 2,47 (3H, t, J=5,5 Hz), 4,00 (2H, t, J=5,5 Hz), 6,60 (1H, d, J=1,8 Hz), 7,18-7,21 (1H, m), 7,63-7,81 (4H, m), 7,91-8,00 (2H, m), 8,58 (1H, d, J=1,8 Hz), 8,90-8,92 (1H, m), 9,48-9,57 (2H, m), 1H no detectado.

Ejemplo 10

30

Dihidrocloruro de N-metil-1-[4-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Por una reacción similar a la del Ejemplo 2 y usando 4-metil-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (171 mg), se obtuvo el compuesto del título (rendimiento 110 mg, 50%).

¹H-RMN (DMSO-d₆) δ: 1,79 (3H, s), 2,57 (3H, s), 3,96-4,00 (2H, m), 6,98-7,01 (2H, m), 7,36-7,43 (3H, m), 7,55-7,60 (1H, m), 7,79-7,82 (2H, m), 8,43-8,44 (1H, m), 8,84-8,86 (1H, m), 9,13 (2H, br), 1H no detectado.

Ejemplo 11

Hidrocloruro de N-metil-1-[4-metil-5-fenil-1-(piridin-2-ilsulfonil)-1H-pirrol-3-il]metanamina

4-Metil-5-fenil-1-(piridin-2-ilsulfonil)-1H-pirrol-3-carbaldehído (262 mg) se disolvió en tetrahidrofurano (10 ml), se 40 añadió una disolución (1,0 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 4 h. La mezcla de reacción se añadió a una disolución (5 ml) de borohidruro de sodio (76 mg) en metanol, y la mezcla se agitó a temperatura ambiente durante 20 min. Se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: acetato de etilo-45 metanol=1:0→1:1) y adicionalmente por HPLC (ODS, agua que contiene ácido trifluoroacético al 0,1%-acetonitrilo que contiene ácido trifluoroacético al 0,1%=9:1→acetonitrilo que contiene ácido trifluoroacético al 0,1%) para dar el trifluoroacetato del compuesto del título. El trifluoroacetato obtenido se neutralizó con una disolución acuosa saturada de hidrogenocarbonato de sodio, se extrajo con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, y se secó sobre sulfato de magnesio 50 anhidro. El disolvente se evaporó a presión reducida. El residuo se disolvió en acetato de etilo (3 ml), se añadió una disolución (2 m) de 4 mol/l de cloruro de hidrógeno en acetato de etilo. Después de dejar reposar a temperatura ambiente durante 30 min, el precipitado se recogió por filtración y se lavó con acetato de etilo para dar el compuesto del título (rendimiento 141 mg, 47%).

¹H-RMN (DMSO-d₆) δ: 1,79 (3H, s), 2,59 (3H, s), 4,01 (2H, s), 6,88-6,90 (2H, m), 7,27-7,45 (4H, m), 7,71-7,74 (2H,

m), 7,95-7,99 (1H, m), 8,68-8,70 (1H, m), 8,88 (2H, br).

Ejemplo 12

Dihidrocloruro de 1-{1-[(1,2-dimetil-1H-imidazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol--3-il}-N-metilmetanamina

- 1-[(1,2-Dimetil-1H-imidazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído (294 mg) se disolvió en tetrahidrofurano (5 ml), se añadió una disolución (1,0 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla se calentó a 40°C, y la mezcla se agitó adicionalmente durante 4 h. La mezcla de reacción se añadió a una disolución (5 ml) de borohidruro de sodio (76 mg) en metanol, y la mezcla se agitó a temperatura ambiente durante 1 h. Se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =9:1→0:1) para dar una sal libre del compuesto del título. A una disolución (3 ml) de la sal libre obtenida en acetato de etilo se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de dejar reposar a temperatura ambiente durante 30 min, el precipitado se recogió por filtración, y se lavó con acetato de etilo para dar el compuesto del título (rendimiento 196 mg, 53%).
- 1 H-RMN (DMSO-d₆) δ: 1,79 (3H, s), 2,25 (3H, s), 2,60 (3H, m), 3,45 (3H, s), 3,95-3,99 (2H, m), 4,86 (1H, br), 6,99-7,01 (2H, m), 7,13 (1H, s), 7,32-7,39 (3H, m), 7,59 (1H, s), 8,96 (2H, br).

Ejemplo 13

Hidrocloruro de 1-{1-[(5-cloro-1,3-dimetil-1H-pirazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-il}-N-metilmetanamina

Por una reacción similar a la del Ejemplo 12 y usando 1-[(5-cloro-1,3-dimetil-1H-pirazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído (378 mg), se obtuvo el compuesto del título en forma de un sólido (rendimiento 238 mg, 55%).

 1 H-RMN (DMSO-d₆) δ : 1,67 (3H, s), 1,79 (3H, s), 2,58 (3H, s), 3,67 (3H, s), 3,99 (2H, s), 6,97-6,99 (2H, m), 7,33-7,41 (3H, m), 7,73 (1H, s), 8,90 (2H, br).

Ejemplo 14

30

Hidrocloruro de 1-{1-[(1,3-dimetil-1H-pirazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-il}-N-metilmetanamina

Usando 1-[(5-cloro-1,3-dimetil-1H-pirazol-4-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído (295 mg), se obtuvo una sal libre (297 mg) del compuesto del Ejemplo 13 en forma de un aceite. El aceite obtenido se disolvió en tolueno (10 ml) y se añadieron metanol (10 ml), paladio al 10% sobre carbono (que contiene 50% de agua, 30 mg) y disolución (309 mg) al 20% de etóxido de sodio-etanol, y la mezcla se agitó en atmósfera de hidrógeno a temperatura ambiente durante 24 h. La mezcla de reacción se filtró, y el filtrado se concentró a presión reducida. El residuo se disolvió en acetato de etilo y se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de dejar reposar a temperatura ambiente durante 30 min, el precipitado se recogió por filtración, y se lavó con acetato de etilo para dar el compuesto del título (rendimiento 221 mg, 72%).

 1 H-RMN (DMSO-d₆) δ : 1,80 (3H, s), 1,90 (3H, s), 2,59 (3H, m), 3,63 (3H, s), 3,99 (2H, s), 6,99-7,02 (2H, m), 7,35-7,40 (3H, m), 7,51 (1H, s), 7,66 (1H, s), 8,87 (2H, br).

Ejemplo 15

Trifluoroacetato de 1-{1-[(2,4-dimetil-1,3-tiazol-5-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-il}-N-metilmetanamina

A una disolución (1 ml) de 1-[(2,4-dimetil-1,3-tiazol-5-il)sulfonil]-4-metil-5-fenil-1H-pirrol-3-carbaldehído (27,7 mg) en tetrahidrofurano se añadió una disolución (0,1 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se añadió a una disolución (1 ml) de borohidruro de sodio (7,6 mg) en metanol, y la mezcla se agitó a temperatura ambiente durante 20 min, Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por HPLC (ODS, agua que contiene ácido trifluoroacético al 0,1%-acetonitrilo que contiene ácido trifluoroacético al 0,1% solo), y se trituró con éter diisopropílico para dar el compuesto del título en forma de un sólido (rendimiento 12,1 mg, 33%)

 1 H-RMN (DMSO-d₆) δ: 1,80 (3H, s), 2,06 (3H, s), 2,58 (3H, s), 2,62 (3H, s), 4,03 (2H, s), 7,05-7,07 (2H, m), 7,37-7,44 (3H, m), 7,67 (1H, s), 8,62 (2H, br).

50 Ejemplo 16

Hidrocloruro de [5-(2-fluorofenil)-4-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución de 5-(2-fluorofenil)-4-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (382 mg) en metanol (5 ml) y tetrahidrofurano (2 ml) se añadió una disolución (1,1 ml) de metilamina en metanol al 40%, y la mezcla se agitó a temperatura ambiente durante 4 h. Se añadió borohidruro de sodio (51 mg) a la mezcla de reacción, y la mezcla se agitó adicionalmente durante 15 min. La mezcla de reacción se concentró a presión reducida. Se añadió al residuo una disolución (50 ml) acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo) para dar una sal libre del compuesto del título (rendimiento 342 mg), A una disolución de la sal libre obtenida (336 mg) en etanol (5 ml) se añadió una disolución (5,0 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se concentró a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales blancos (rendimiento 197 mg, 46%).

 1 H-RMN (DMSO-d₆) δ: 1,76 (3H, s), 2,59 (3H, t, J=5,4 Hz), 4,01 (2H, t, J=5,4 Hz), 7,03-7,08 (1H, m), 7,21-7,28 (2H, m), 7,51-7,64 (2H, m), 7,82-7,86 (2H, m), 8,53 (1H, d, J=2,4 Hz), 8,80-8,89 (3H, m).

15 Ejemplo 17

10

20

Hidrocloruro de 1-[1-(2-cloropiridin-3-ilsulfonil)-5-fenil-1H-pirrol-3-il]-N-metilmetanamina

A una disolución (3 ml) de{[1-(2-cloro-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (70 mg) en acetato de etilo se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 3 h. El disolvente se evaporó a presión reducida, y el residuo se cristalizó en etano-acetato de etilo para dar el compuesto del título (rendimiento 29 mg, 49%).

¹H-RMN (DMSO-d₆) δ: 2,56 (3H, s), 4,04 (2H, s), 6,48 (1H, s), 6,99-7,02 (2H, m), 7,25-7,36 (4H, m), 7,66-7,69 (1H, m), 7,83 (1H, s), 8,60-8,62 (1H, m), 8,79 (2H, br).

Ejemplo 18

5-({4-[(metilamino)metil]-2-fenil-1H-pirrol-1-il}sulfonil)pirimidino-2-amina

25 A una disolución (4 ml) de 1-(2-cloropirimidin-5-ilsulfonil)-5-fenil-1H-pirrol-3-carbaldehído (139 mg) en tetrahidrofurano se añadió una disolución (4 ml) de 0,5 mol/l de amoniaco-dioxano. Después de agitar a temperatura ambiente durante 1 h, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo: El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (5 ml), se añadió una disolución (0,75 ml) 30 de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó durante la noche a temperatura ambiente. La mezcla de reacción se añadió a una disolución (2 ml) de borohidruro de sodio (38 mg) en metanol, y la mezcla se agitó a temperatura ambiente durante 5 min. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por HPLC 35 (ODS, agua que contiene ácido trifluoroacético al 0,1%-acetonitrilo que contiene ácido trifluoroacético al 0,1% = (9:1)→acetonitrilo que contiene ácido trifluoroacético al 0,1%) para dar el trifluoroacetato del compuesto del título. El trifluoroacetato obtenido se neutralizó con una disolución acuosa saturada de hidrogenocarbonato de sodio, se extrajo con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, aqua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión 40 reducida y los cristales cristalizados se lavaron con éter diisopropílico para dar el compuesto del título en forma de un sólido incoloro (rendimiento 23 mg, 17%).

 1 H-RMN (DMSO-d₆) δ : 2,27 (3H, s), 3,52 (2H, s), 6,31 (1H, s), 7,26-7,40 (6H, m), 7,94 (2H, br), 8,00 (2H, s), 1H no detectado.

Ejemplo 19

50

55

45 Dihidrocloruro de 1-[(imidazo[1,2-a]pirimidin-6-ilsulfonil)-5-fenil-1H-pirrol-3-il]-N-metilmetanamina

En una atmósfera de nitrógeno, una disolución de 1-(imidazo[1,2-a]pirimidin-6-ilsulfonil)-5-fenil-1H-pirrol-3-carboxilato de etilo (242 mg) en tetrahidrofurano (10 ml) se enfrió a -78°C, se añadió una disolución (2,0 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno con agitación. Después de agitar a la misma temperatura durante 1 h, la mezcla se calentó a -20°C durante 1 h. Se añadió agua (30 ml) y, después de agitar a la misma temperatura durante 5 min, la mezcla se dejó calentar a 0°C durante 10 min. Se añadió acetato de etilo (20 ml) y, después de agitar a la misma temperatura durante 15 min, la mezcla se agitó a temperatura ambiente durante 20 min. La mezcla de reacción en un estado de gel se filtró a través de celite, y el celite se lavó con acetato de etilo. La capa orgánica se separó del filtrado, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (50 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 2,0 g), y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de

reacción se filtró a través de celite, y el celite se lavó con acetato de etilo: El filtrado se concentró a presión reducida, el residuo se disolvió en tetrahidrofurano absoluto (5 ml), se añadió una disolución (0,6 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se añadió a una disolución de borohidruro de sodio (45 mg) en metanol (2 ml), y la mezcla se agitó a la misma temperatura durante 20 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se disolvió en tetrahidrofurano (10 ml), se añadió bicarbonato de di-terc-butilo (0,22 g), hidrogenocarbonato de sodio (84 mg) y agua (5 ml), y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se diluyó con acetato de etilo, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se disolvió en tetrahidrofurano (20 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 1,0 g), y la mezcla se agitó a temperatura ambiente durante 2 días. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→0:1) para dar un aceite. El aceite obtenido se disolvió en etanol (1 ml), y se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 2 h, el disolvente se evaporó a presión reducida, y el residuo se trituró con acetato de etilo-etanol para dar el compuesto del título en forma de un sólido marrón (rendimiento 8,5 mg, 3%).

 1 H-RMN (DMSO-d₆) δ : 2,50 (3H, s), 4,02-4,05 (2H, m), 6,49 (1H, s), 7,16-7,19 (2H, m), 7,32-7,44 (3H, m), 7,79 (1H, s), 7,92-7,99 (2H, m), 8,29-8,30 (1H, m), 8,97 (2H, br), 9,23-9,24 (1H, m), 1H no detectado.

20 Ejemplo 20

10

15

25

30

35

40

45

55

Fumarato de N-metil-1-[5-fenil-1-(piridazin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

En una atmósfera de nitrógeno, una disolución de 5-fenil-1-(piridazin-3-ilsulfonil)-1H-pirrol-3-carboxilato de etilo (567 mg) en tetrahidrofurano (16 ml) se enfrió a -78°C, se añadió una disolución (6,4 ml) de 1,5 mol/l de hidruro de diisobutilaluminio en tolueno con agitación. La mezcla de reacción se calentó a -20°C durante 1 h. Se añadió agua, (75 ml), y después de agitar a la misma temperatura durante 5 min, la mezcla se dejó calentar a 0°C durante 10 min. Se añadió acetato de etilo, y después de agitar a la misma temperatura durante 15 min, la mezcla se agitó a temperatura ambiente durante 20 min. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. La capa orgánica se separó del filtrado, se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (30 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 5,0 g), y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida y el residuo se disolvió en tetrahidrofurano absoluto (15 ml). Se añadió una disolución (1,5 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó durante la noche a temperatura ambiente, La mezcla de reacción se añadió a una disolución de borohidruro de sodio (66 mg) en metanol (5 ml), y la mezcla se agitó a la misma temperatura durante 20 min. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por HPLC (ODS, agua que contiene ácido trifluoroacético al 0,1%-acetonitrilo que contiene ácido trifluoroacético al 0,1% = (9:1)→acetonitrilo que contiene ácido trifluoroacético al 0,1%) para dar el trifluoroacetato del compuesto del título. El trifluoroacetato obtenido se neutralizó con una disolución acuosa saturada de hidrogenocarbonato de sodio, se extrajo con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida para dar una sal libre (59 mg) del compuesto del título. La sal libre obtenida (59 mg) se disolvió en metanol (2 ml) y acetato de etilo (2 ml), y se añadió ácido fumárico (21 mg). El disolvente se evaporó a presión reducida, y la recristalización en acetato de etilo-metanol dio el compuesto del título en forma de un sólido amarillo claro (rendimiento 41 mg, 6%).

¹H-RMN (DMSO-d₆) δ: 2,42 (3H, s), 3,82 (2H, s), 6,41 (1H, s), 6,47 (2H, s), 7,09-7,12 (2H, m), 7,29-7,38 (3H, m), 7,63 (1H, s), 7,80-7,83 (1H, m), 7,91-7,96 (1H, m), 9,48-9,50 (1H, m), 3H no detectado.

Ejemplo 21

Fumarato de N-metil-1-[1-(5-metil-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metanamina

A una disolución (5 ml) de {[1-(6-cloro-5-metil-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metil}metilcarbamato de tercbutilo (237 mg) en tetrahidrofurano se añadió hidrazina (160 mg) a temperatura ambiente con agitación. Después de agitar a la misma temperatura durante 3 h, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (30 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 1,0 g), y la mezcla se agitó a temperatura ambiente durante 10 min. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→1:1) para dar un aceite. El aceite obtenido se disolvió en etanol (2 ml), y

se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 2 h, el disolvente se evaporó a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo (93 mg) se disolvió en etanol (3 ml), y se añadió ácido fumárico (29 mg). Después de dejar reposar a temperatura ambiente durante 30 min, los cristales precipitados se recogieron por filtración y se lavaron con metanol para dar el compuesto del título en forma de un sólido incoloro (rendimiento 91 mg, 40%).

 1 H-RMN (DMSO-d₆) δ: 2,27 (3H, s), 2,38 (3H, s), 3,75 (2H, s), 6,37 (1H, s), 6,47 (2H, s), 7,15-7,17 (2H, m), 7,36-7,45 (4H, m), 7,58 (1H, s), 8,28 (1H, s), 8,68 (1H, s), 3H no detectado.

10 Ejemplo 22

5

15

20

Hidrocloruro de 5-({4-[(metilamino)metil]-2-fenil-1H-pirrol-1-il}sulfonil)piridin-2-ol

{[1-(6-Cloro-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (175 mg) se disolvió en tetrahidrofurano (10 ml), se añadió una disolución (3,8 ml) acuosa de 8 mol/l de hidróxido de sodio, y la mezcla se agitó a 50°C durante 2 días. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→0:1) para dar una sal libre del compuesto del título. A una disolución (1 ml) de la sal libre obtenida en etanol se añadió una disolución (2 m) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 4 h, el disolvente se evaporó a presión reducida, y el residuo se cristalizó en etanol-acetato de etilo para dar el compuesto del título (rendimiento 40 mg, 27%).

¹H-RMN (DMSO-d₆) δ: 2,50 (3H, s), 3,97-4,01 (2H, m), 6,32-6,36 (1H, m), 6,47 (1H, s), 7,20-7,23 (4H, m), 7,37-7,48 (3H, m), 7,66 (1H, s), 8,94 (2H, br), 12,35 (1H, br).

Ejemplo 23

Hidrocloruro de 5-({4-[(metilamino)metil]-2-fenil-1H-pirrol-1-il}sulfonil)piridino-2-carbonitrilo

- En una atmósfera de argón, una mezcla de {[1-(6-cloro-3-piridinosulfonil)-5-fenil-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (100 mg), cianuro de zinc (II) (51 mg), tetraquis(trifenilfosfina)paladio (50 mg) y N,N-dimetilformamida (4 ml) se agitó a 100°C durante 2 h. La mezcla de reacción se diluyó con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada y se secó sobre sulfato de magnesio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→7:3) para dar un aceite. El aceite obtenido se disolvió en acetato de etilo (2 ml), y se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 1 h, el disolvente se evaporó a presión reducida, y el residuo se cristalizó en etanol para dar el compuesto del título (rendimiento 57 mg. 68%).
- 1 H-RMN (DMSO-d₆) δ : 2,50 (3H, s), 3,98 (2H, s), 6,52 (1H, s), 7,15-7,17 (2H, m), 7,37-7,47 (3H, m), 7,79 (1H, s), 8,04-8,07 (1H, m), 8,22-8,24 (1H, m), 8,61-8,62 (1H, m), 9,03 (2H, br).

Ejemplo 24

Dihidrocloruro de N-metil-1-{1-[(6-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metanamina

({[1-(6-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (113 mg) se disolvió en etanol (2 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 1 h. El disolvente se concentró a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título (rendimiento 40 mg, 38%).

 1 H-RMN (DMSO-d₆) δ: 2,50-2,53 (6H, m), 3,97-3,99 (2H, m), 6,46 (1H, s), 7,16-7,18 (2H, m), 7,38-7,44 (4H, m), 7,65-7,75 (2H, m), 8,34 (1H, s), 8,98 (2H, br), 1H no detectado.

Ejemplo 25

45 Hidrocloruro de N-metil-1-[1-(piridin-3-ilsulfonil)-5-(3-tienil)-1H-pirrol-3-il]metanamina

Por una operación similar a la del Ejemplo 24 y usando {[1-(piridin-3-ilsulfonil)-5-(3-tienil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (182 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 64 mg, 41%).

¹H-RMN (CDCl₃) δ: 2,60 (3H, s), 3,98 (2H, brs), 6,57 (1H, brs), 7,00 (1H, brd, J=4,5 Hz), 7,16 (1H, brs), 7,26-7,31 (2H, m), 7,70 (2H, brs), 8,61 (1H, brs), 8,73 (1H, brs), 9,86 (2H, brs).

Dihidrocloruro de 1-[5-(4-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(4-Fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (293 mg) se disolvió en diclorometano (1 ml), se añadió ácido trifluoroacetico (1 ml) a 0°C, y la mezcla se agitó a temperatura ambiente durante 3 h. La disolución de reacción se basificó añadiendo gota a gota una disolución acuosa de hidrogenocarbonato de sodio al 6%, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo (5 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se concentró a presión reducida. El residuo se recristalizó en acetato de etilo-etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 110 mg, 40%).

¹H-RMN (DNSO-d₆) δ: 2,47-2,51 (3H, m), 3,97 (2H, t, J=6,0 Hz), 6,52-6,53 (1H, m), 7,15-7,26 (4H, m), 7,57-7,61 (1H, m), 7,79-7,85 (2H, m), 8,00 (1H, d, J=2,4 Hz), 8,85-8,87 (1H, m), 9,22 (2H, br), 1H no detectado.

15 Ejemplo 27

10

Dihidrocloruro de N-metil-1-[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Por una operación similar a la del Ejemplo 26 y usando metil{[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3il]metil}carbamato de terc-butilo (210 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 67 34%). Más específicamente, metil{[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3mg, 20 il]metil}carbamato de terc-butilo(210 mg) se disolvió en diclorometano (2 ml), se añadió ácido trifluoroacetico (1 ml) a 0°C, y la mezcla se agitó a temperatura ambiente durante 2 h. La disolución de reacción se basificó añadiendo gota a gota una disolución acuosa de hidrogenocarbonato de sodio al 6%, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de 25 etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo (5 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógenoacetato de etilo, y la mezcla se concentró a presión reducida. El residuo se recristalizó en acetato de etilo-etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 67 mg, 34%).

 $^{1}\text{H-RMN (DMSO-d}_{6}) \ \delta: \ 1,80 \ (3\text{H, s}), \ 2,49-2,53 \ (3\text{H, m}), \ 4,00 \ (2\text{H, t}, \ J=5,4 \ \text{Hz}), \ 6,46 \ (1\text{H, d}, \ J=2,4 \ \text{Hz}), \ 6,83 \ (1\text{H, d}, \ J=7,8 \ \text{Hz}), \ 7,13-7,22 \ (2\text{H, m}), \ 7,33-7,39 \ (1\text{H, m}), \ 7,59-7,63 \ (1\text{H, m}), \ 7,80-7,85 \ (2\text{H, m}), \ 8,46 \ (1\text{H, d}, \ J=2,4 \ \text{Hz}), \ 8,88-8,90 \ (1\text{H, m}), \ 9,27 \ (2\text{H, br}), \ 1\text{H no detectado}.$

punto de fusión 196-200°C.

Eiemplo 28

Dihidrocloruro de 1-[5-(4-fluoro-2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una operación similar a la del Ejemplo 26 y usando {[5-(4-fluoro-2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil]metilcarbamato de terc-butilo (216 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 81 mg, 40%).

¹H-RMN (DMSO-d₆) δ: 1,80 (3H, s), 2,49-2,51 (3H, m), 4,00 (2H, t, J=6,0 Hz), 6,47 (1H, d, J=2,1 Hz), 6,85-6,90 (1H, m), 6,98-7,12 (2H, m), 7,61-7,65 (1H, m), 7,81-7,88 (2H, m), 8,51 (1H, d, J=2,7 Hz), 8,89-8,91 (1H, m), 9,29 (2H,br), 1H no detectado.

Ejemplo 29

40

45

50

Dihidrocloruro de N-metil-1-[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Por una operación similar a la del Ejemplo 26 y usando metil{[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-ii]metil}carbamato de terc-butilo (200 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 125 mg, 67%). Más específicamente, metil{[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-ii]metil}carbamato de terc-butilo (200 mg) se disolvió en diclorometano (1 ml), se añadió ácido trifluoroacético (1 ml) a 0°C, y la mezcla se agitó a temperatura ambiente durante 1 h. La disolución de reacción se basificó añadiendo gota a gota una disolución acuosa de hidrogenocarbonato de sodio al 6%, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexanoacetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo (5 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se concentró a presión reducida. El residuo se recristalizó en acetato de etilo-

etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 125 mg, 67%).

 1 H-RMN (DMSO-d₆) δ : 1,71 (3H, s), 2,49-2,51 (3H, m), 3,98 (2H, t, J=5,7 Hz), 6,49 (1H, d, J=2,1 Hz), 7,16-7,23 (2H, m), 7,58-7,62 (1H, m), 7,79-7,86 (2H, m), 8,50-8,51 (1H, m), 8,87-8,89 (1H, m), 9,30 (2H, br), 1H no detectado.

punto de fusión 178-181°C.

5 Ejemplo 30

Hidrocloruro de 3-[4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il]benzonitrilo

Por una operación similar a la del Ejemplo 26 y usando {[5-(3-cianofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (298 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 132 mg, 52%).

 $^{1}\text{H-RMN (DMSO-d}_{6}) \ \bar{\delta}: \ 2,48-2,51 \ (3\text{H, m}), \ 3,98 \ (2\text{H, brs}), \ 6,65 \ (1\text{H, d}, \ J=1,8 \ \text{Hz}), \ 7,51-7,65 \ (4\text{H, m}), \ 7,85-7,95 \ (3\text{H, m}), \ 8,55 \ (1\text{H, d}, \ J=2,4 \ \text{Hz}), \ 8,88-8,90 \ (1\text{H, m}), \ 9,25 \ (2\text{H, br}).$

Ejemplo 31

Dihidrocloruro de 1-[5-(2-clorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una operación similar a la del Ejemplo 26 y usando {[5-(2-clorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (171 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 74 mg, 46%).

 1 H-RMN (DMSO-d₆) δ : 2,50 (3H, br), 4,01 (2H, t, J=6,0 Hz), 5,40 (1H, br), 6,55 (1H, d, J=2,1 Hz), 7,13-7,16 (1H, m), 7,35-7,40 (1H, m), 7,47-7,51 (2H, m), 7,61-7,65 (1H, m), 7,84-7,93 (2H, m), 8,57 (1H, d, J=2,1 Hz), 8,89-8,91 (1H, m), 9,23 (2H, br).

20 Ejemplo 32

Dihidrocloruro de 1-[5-(2,4-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una operación similar a la del Ejemplo 26 y usando {[5-(2,4-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (110 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 58 mg, 56%).

 1 H-RMN (DMSO-d₆) δ: 2,48-2,51 (3H, m), 3,98 (2H, t, J=5,7 Hz), 6,62 (1H, d, J=1,8 Hz), 7,13-7,17 (2H, m), 7,28-7,36 (1H, m), 7,62-7,66 (1H, m), 7,86-7,95 (2H, m), 8,61 (1H, d, J=2,4 Hz), 8,89-8,91 (1H, m), 9,31 (2H, br), 1H no detectado.

Ejemplo 33

Hidrocloruro de 1-[5-(2,5-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una operación similar a la del Ejemplo 26 y {[5-(2,5-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil]metilcarbamato de terc-butilo (105 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 39 mg, 43%).

 1 H-RMN (DMSO-d₆) δ : 2,50-2,51 (3H, m), 3,99 (2H, brs), 6,62 (1H, d, J=1,8 Hz), 7,00-7,06 (1H, m), 7,27-7,44 (2H, m), 7,63-7,67 (1H, m), 7,86 (1H, br), 7,94-7,97 (1H, m), 8,65 (1H, d, J=2,7 Hz), 8,90-8,92 (1H, m), 9,08 (2H, m).

35 Ejemplo 34

Dihidrocloruro de 1-[5-(4-cloro-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una operación similar a la del Ejemplo 26 y usando {[5-(4-cloro-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (103 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 32 mg, 33%).

 40 1 H-RMN (DMSO-d₆) δ: 2,47-2,52 (3H, m), 3,97 (2H, t, J=6,0 Hz), 5,10 (1H, br), 6,64 (1H, brs), 7,15 (1H, t, J=7,8 Hz), 7,34-7,36 (1H, m), 7,50-7,53 (1H, m), 7,62-7,67 (1H, m), 7,88 (1H, brs), 7,95-7,98 (1H, m), 8,64 (1H, d, J=2,4 Hz), 8,90 (1H, d, J=4,8 Hz), 9,33 (2H, br).

Ejemplo 35

Hidrocloruro de 1-[5-(3-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

45 {[5-(3-Fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (280 mg) se disolvió en

acetato de etilo (3 ml), se añadió una disolución (6 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 16 h. La disolución de reacción se basificó añadiendo gota a gota una disolución acuosa de hidrogenocarbonato de sodio al 6%, y la mezcla se extrajo con acetato de etilo. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo-hexano=1:1→9:1) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo, se añadió una disolución de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se concentró a presión reducida. El residuo se cristalizó en acetato de etilo y hexano, y se recristalizó en acetato de etilo-etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 84 mg, 35%).

 1 H-RMN (DMSO-d₆) δ: 2,49-2,51 (3H, m), 3,97 (2H, s), 6,57 (1H, d, J=1,8 Hz), 6,98-7,02 (2H, m), 7,27-7,33 (1H, m), 7,40-7,47 (1H, m), 7,58-7,62 (1H, m), 7,80-7,87 (2H, m), 8,54 (1H, d, J=2,7 Hz), 8,86-8,88 (1H, m), 9,06 (2H, br).

Ejemplo 36

Fumarato de 1-[5-(2-fluorofenil)-2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Una suspensión de {[5-bromo-2-metil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (369 mg), 15 ácido (2-fluorofenil)borónico (234 mg), carbonato de sodio (265 mg) y tetraquis(trifenilfosfina)paladio (48,9 mg) en 1,2-dimetoxietano (15 ml) y agua (7,5 ml) se agitó a 105°C durante 12 h. Se dejó enfriar la mezcla de reacción a temperatura ambiente, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, aqua y salmuera saturada, se secó sobre sulfato de magnesio anhidro, se filtró, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna 20 de gel de sílice (eluyente: hexano-acetato de etilo =1:4) para dar un aceite. El aceite obtenido se disolvió en etanol (5 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 4 h. La mezcla de reacción se concentró a presión reducida, y el residuo se neutralizó añadiendo una disolución (50 ml) acuosa saturada de hidrogenocarbonato de sodio. La mezcla se extrajo con acetato de etilo, y el extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, aqua y 25 salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo), y adicionalmente por HPLC (ODS, agua que contiene ácido trifluoroacético al 0,1% - acetonitrilo que contiene ácido trifluoroacetico al 0,1% = 9:1→acetonitrilo que contiene ácido trifluoroacético al 0,1%) para dar el trifluoroacetato del compuesto del título. El trifluoroacetato obtenido se neutralizó con una disolución acuosa saturada de 30 hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, y se secó sobre sulfato de magnesio anhidro. El disolvente se evaporó a presión reducida para dar una sal libre del compuesto del título (rendimiento 65 mg). La sal libre (62 mg) se disolvió en acetato de etilo (2 ml), se añadió una disolución de ácido fumárico (17 mg) en metanol (2 ml), y la mezcla se agitó durante 10 min. La mezcla de reacción se concentró a 35 presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales blancos (rendimiento 25 mg, 7%).

 1 H-RMN (DMSO-d₆) δ : 2,35 (3H, s), 2,40 (3H, s), 3,75 (2H, s), 6,46 (3H, s), 7,20-7,28 (3H, s), 7,44-7,52 (1H, m), 7,63-7,67 (1H, m), 7,88-7,92 (1H, m), 8,61 (1H, d, J=2,4 Hz), 8,88-8,90 (1H, m), 3H no detectado.

Ejemplo 37

45

50

55

40 Hidrocloruro de N-metil-1-(5-fenil-1-{[5-(trifluorometil)piridin-3-il]sulfonil}-1H-pirrol-3-il)metanamina

A una disolución de 5-fenil-1-{[5-(trifluorometil)piridin-3-il]sulfonil}-1H-pirrol-3-carbaldehído (137 mg) en tetrahidrofurano absoluto (5 ml) se añadió a temperatura ambiente una disolución (0,36 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó durante 16 h. Se añadieron borohidruro de sodio (27 mg) y metanol (2 ml), y la mezcla se agitó a la misma temperatura durante 2 min. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (5 ml), bicarbonato de di-terc-butilo (218 mg), agua (2 ml) y se añadió hidrogenocarbonato de sodio (84 mg), y la mezcla se agitó a temperatura ambiente durante 30 min. Se añadió agua a la mezcla de reacción, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en tetrahidrofurano (20 ml), se añadió dióxido de manganeso (producto químicamente tratado al 75%, 1,0 g), y la mezcla se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se filtró a través de celite, y el celite se lavó con acetato de etilo. El filtrado se concentró a presión reducida, y el residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo = 19:1→1:1), se recogieron fracciones que contienen un material que muestra un valor de Rf de 0,46 (eluyente: hexano-acetato de etilo=3:1) por análisis de TLC y se concentró a presión reducida. El residuo se disolvió en etanol (1 ml), y se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 2 h, el disolvente se evaporó a presión reducida. El residuo se purificó por HPLC (ODS, agua que contiene ácido trifluoroacético al 0,1% acetonitrilo que contiene ácido trifluoroacético al 0,1% = 97:3→acetonitrilo que contiene ácido trifluoroacético al 0,1%) para dar el trifluoroacetato del compuesto del título. El trifluoroacetato obtenido se neutralizó con una disolución acuosa saturada de hidrogenocarbonato de sodio, se extrajo con acetato de etilo, se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada y se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en acetato de etilo (1 ml), se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se concentró a presión reducida. La recristalización en etanol dio el compuesto del título (rendimiento 23 mg, 15%),

 1 H-RMN (DMSO-d₆) δ : 2,50 (3H, s), 3,97 (2H, s), 6,49 (1H, s), 7,13-7,15 (2H, m), 7,37-7,48 (3H, m), 7,80-7,87 (2H, m), 8,72 (2H, br), 8,86 (1H, s), 9,33 (1H, s).

Eiemplo 38

5

10 Dihidrocloruro de N-metil-1-{1-[(2-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metanamina

Por una reacción similar a la del Ejemplo 12 y usando 1-[(2-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-carbaldehído (180 mg), se obtuvo el compuesto del título en forma de un sólido (rendimiento 110 mg, 48%),

 1 H-RMN (DMSO-d₆) δ: 2,37 (3H, s), 2,53-2,57 (3H, m), 4,02-4,10 (2H, m), 6,51 (1H, d, J=1,8 Hz), 7,01 (2H, d, J=6,9 Hz), 7,11-7,35 (4H, m), 7,44-7,46 (1H, m), 7,84 (1H, d, J=2,1 Hz), 8,61-8,62 (1H, m), 9,07 (2H, br), 1H no detectado.

15 Ejemplo 39

Fumarato de 1-[5-(2,6-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

5-(2,6-Difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (250 mg) se añadió a una mezcla de una disolución (560 mg) de metilamina en metanol al 40% y metanol (5 ml) a temperatura ambiente, y la mezcla se agitó durante 30 min. Se añadió borohidruro de sodio (41 mg) a la mezcla de reacción y la mezcla se agitó durante 10 min. La mezcla de reacción se concentró a presión reducida a 30°C. El residuo se extrajo con una disolución acuosa saturada de hidrogenocarbonato de sodio y acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo), se disolvió en etanol (5 ml), y se añadió una disolución de ácido fumárico (84 mg) in etanol (5 ml) para permitir la cristalización para dar el compuesto del título en forma de cristales incoloros (rendimiento 229 mg, 67%).

 1 H-RMN (DMSO-d₆) δ : 2,43 (3H, s), 3,85 (2H, s), 6,48 (2H, s), 6,57 (1H, d, J=1,7 Hz), 7,12-7,18 (2H, m), 7,55-7,66 (2H, m) 7,81 (1H, d, J=1,7 Hz), 7,93-7,97 (1H, m), 8,61 (1H, d, J=2,1 Hz), 8,90 (1H, dd, J=4,7, 1,5 Hz), 3H no detectado.

Ejemplo 40

35

30 Dihidrocloruro de 1-[5-(4-ciclohexilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución de 5-(4-ciclohexilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (0,78 g) en metanol (20 ml) se añadió cloruro de metilamonio (1,61 g) y cianoborohidruro de sodio (0,49 g), y la mezcla se agitó a temperatura ambiente durante 16 h. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo = 3:2→0:1) para dar un aceite (0,39 g). El aceite se disolvió en acetato de etilo (3 ml), se añadió una disolución (1,5 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se concentró a presión reducida. La cristalización en metanolacetato de etilo dio el compuesto del título en forma de cristales (rendimiento 0,41 g, 43%).

 40 1 H-RMN (DMSO-d₆) δ: 1,20-1,46 (5H, m), 1,68-1,88 (5H, m), 2,45-2,59 (1H, m), 2,48 (3H, s), 3,97 (2H, d, J=5,3 Hz), 6,48 (1H, s), 7,04 (2H, d, J=8,1 Hz), 7,20 (2H, d, J=8,1 Hz), 7,51-7,57 (1H, m), 7,73-7,79 (2H, m), 8,43 (1H, s), 8,83 (1H, d, J=4,7 Hz), 9,17 (2H, s), 1H no detectado.

Ejemplo 41

Dihidrocloruro de 1-[4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una reacción similar a la del Ejemplo 12 y usando 4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (121 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 30,7 mg, 20%). Más específicamente, 4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (121 mg) se disolvió en tetrahidrofurano (5 ml), se añadió una disolución (0,22 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 4 h. Se añadió una disolución (2 ml) de borohidruro de sodio (28 mg) en metanol a la mezcla de reacción, y la mezcla se agitó a temperatura ambiente durante 20 min. Se añadió una disolución acuosa de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se

purificó por cromatografía en gel de sílice (eluyente: acetato de etilo→acetato de etilo-metanol=1:4) para dar una sal libre del compuesto del título. A una disolución (2 ml) de la sal libre obtenida en etanol se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de dejar reposar a temperatura ambiente durante 30 min, la mezcla se concentró a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de un sólido incoloro (rendimiento 30,7 mg, 20%).

 1 H-RMN (DMSO-d₆) δ: 2,56-2,59 (3H, m), 4,03-4,05 (2H, m), 7,14-7,16 (2H, m), 7,41-7,48 (3H, m), 7,53-7,62 (1H, m), 7,80-7,85 (2H, m), 8,50 (1H, d, J=2,4 Hz), 8,88-8,89 (1H, m), 9,07 (2H, br), 1H no detectado.

punto de fusión 201-203°C.

Ejemplo 42

5

15

10 1-[4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

4-Fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (0,27 g) se disolvió en tetrahidrofurano (10 ml), se añadió una disolución (0,8 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 2 h. Se añadió borohidruro de sodio (91 mg) y metanol (7 ml), y la mezcla se agitó a la misma temperatura durante 30 min adicionales. La mezcla de reacción se concentró a presión reducida. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se secó sobre sulfato de magnesio y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (hexano-acetato de etilo=19:1→0:1). La operación anteriormente mencionada se repitió para dar el compuesto del título (0,22 g, rendimiento 39%) en forma de un sólido incoloro.

¹H-RMN (CDCl₃) δ: 2,48 (3H, s), 3,63 (2H, s), 7,22-7,42 (7H, m), 7,56-7,60 (1H, m), 8,55 (1H, d, J=2,1 Hz), 8,73 (1H, dd, J=4,8, 1,8 Hz), 1H no detectado.

punto de fusión 98-99°C.

Ejemplo 43

Hemifumarato de 1-[4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina 0,5

1-[4-Fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina (32 mg) se disolvió en etanol (2 ml), se añadió ácido fumárico (10 mg), y la mezcla se dejó reposar a temperatura ambiente durante 1 h. El precipitado se recogió por filtración para dar el compuesto del título en forma de un sólido incoloro (rendimiento 16 mg, 42%).

¹H-RMN (DMSO-d₃) δ: 2,30 (3H, s), 3,60 (2H, s), 6,50 (1H, s), 7,18-7,21 (2H, m), 7,39-7,50 (4H, m), 7,57-7,61 (1H, m), 7,79-7,83 (1H, m), 8,50 (1H, d, J=2,1 Hz), 8,87 (1H, dd, J=5,1, 1,8 Hz), 2H no detectado.

punto de fusión 163-166°C.

30 Ejemplo 44

Dihidrocloruro de 1-{5-(2-fluorofenil)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}-N-metilmetanamina

Por una reacción similar a la del Ejemplo 12 y usando 5-(2-fluorofenil)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-carbaldehído (134 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 96,1 mg, 57%). Más específicamente, 5-(2-fluorofenil)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-carbaldehído (134 mg) se disolvió en tetrahidrofurano (10 ml), se añadió una disolución (0,6 ml) de 2 mol/l de metilamina en tetrahidrofurano, y la mezcla se agitó a temperatura ambiente durante 4 h. Se añadió una disolución (5 ml) de borohidruro de sodio (76 mg) en metanol a la mezcla de reacción, y la mezcla se agitó a temperatura ambiente durante 20 min. Se añadió una disolución acuosa de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: acetato de etilo→acetato de etilo-metanol=1:4) para dar una sal libre del compuesto del título. A una disolución (2 ml) de la sal libre obtenida en etanol se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de dejar reposar a temperatura ambiente durante 30 min, la mezcla se concentró a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de un sólido incoloro (rendimiento 96,1 mg, 57%).

 1 H-RMN (DMSO-d₆) δ: 2,50-2,56 (6H, m), 3,97-4,02 (2H, m), 6,55 (1H, d, J=1,8 Hz), 7,08-7,11 (1H, m), 7,22-7,26 (2H, m), 7,47-7,60 (2H, m), 7,76-7,82 (2H, m), 8,44 (1H, d, J=2,4 Hz), 9,04 (2H, br), 1H no detectado.

punto de fusión 212-213°C.

Ejemplo 45

Hidrocloruro de 1-[5-(2-fluorofenil)-1-(piridin-2-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una reacción similar a la del Ejemplo 12 y usando 5-(2-fluorofenil)-1-(piridin-2-ilsulfonil)-1H-pirrol-3-carbaldehído (183 mg), se obtuvo el compuesto del título en forma de un sólido incoloro (rendimiento 78,3 mg, 37%).

 1 H-RMN (DMSO-d₆) δ : 2,54 (3H, s), 4,02 (2H, s), 6,52 (1H, d, J=2,1 Hz), 7,00-7,04 (1H, m), 7,11-7,19 (2H, m), 7,46-7,51 (1H, m), 7,57-7,60 (1H, m), 7,74-7,78 (2H, m), 8,03-8,08 (1H, m), 8,70-8,85 (3H, m).

5 Ejemplo 46

10

15

25

30

40

45

Fumarato de 1-{5-(2-fluorofenil)-1-[(1-metil-1H-pirazol-4-il)sulfonil]-1H-pirrol-3-il}-N-metilmetanamina

A una disolución (3 ml) de 5-(2-fluorofenil)-1-[(1-metil-1H-pirazol-4-il)sulfonil]-1H-pirrol-3-carbaldehído (217 mg) en tetrahidrofurano se añadió una disolución (152 mg) de metilamina en metanol al 40% y metanol (1 ml) a temperatura ambiente. Después de agitar a temperatura ambiente durante 1 h, se añadió borohidruro de sodio (82 mg) a 0°C. Después de agitar a temperatura ambiente durante 30 min, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro (rendimiento 152 mg). Una disolución de la sal libre obtenida en acetato de etilo (5 ml) se añadió a una disolución de ácido fumárico (50,6 mg) en metanol (1 ml), y la mezcla se concentró a presión reducida. El residuo se recristalizó en etanol/agua=95/5 para dar el compuesto del título en forma de cristales incoloros (rendimiento 143 mg, 48%).

 1 H-RMN (DMSO-d₆) δ : 2,46 (3H, s), 3,82 (3H, s), 3,85 (2H, s), 6,41 (1H, d, J=1,8 Hz), 6,46 (2H, s), 7,15-7,26 (3H, m), 7,46-7,56 (3H, m), 8,11 (1H, s), 3H no detectado.

Ejemplo 47

20 Fumarato de N-metil-1-[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

A una disolución de 5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (521 mg) en tetrahidrofurano (5 ml) y metanol (5 ml) se añadió una disolución (373 mg) de metilamina en metanol al 40%. Después de agitar a temperatura ambiente durante 1 h, se añadió borohidruro de sodio (202 mg). Después de agitar a la misma temperatura durante 30 min, se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo (rendimiento 422 mg). Una disolución de la sal libre obtenida en etanol (5 ml) se añadió a una disolución (15 ml) de ácido fumárico(144 mg) en etanol, y la mezcla se concentró a presión reducida. El residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 414 mg, 56%).

 1 H-RMN (DMSO-d₆) δ: 1,81 (3H, s), 2,45 (3H, s), 3,88 (2H, s), 6,33 (1H, d, J=1,8 Hz), 6,46 (2H, s), 6,83-6,85 (1H, m), 7,12-7,22 (2H, m), 7,32-7,37 (1H, m), 7,57-7,61 (1H, m), 7,69 (1H, d, J=1,8 Hz), 7,78-7,82 (1H, m), 8,44-8,45 (1H, m), 8,87-8,89 (1H, m), 3H no detectado.

punto de fusión 207-210°C.

35 Ejemplo 48

Fumarato de 1-[4-cloro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-ill-N-metilmetanamina

A una disolución de 4-cloro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (429 mg) en tetrahidrofurano (5 ml) y metanol (3 ml) se añadió una disolución (275 mg) de metilamina en metanol al 40% a temperatura ambiente. Después de agitar durante 30 min, se añadió borohidruro de sodio (99 mg). Después de agitar a la misma temperatura durante 1 h, se añadió agua, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo (rendimiento 257 mg). Se añadió una disolución de la sal libre obtenida en acetato de etilo (5 ml) a una disolución (10 ml) de ácido fumárico (79 mg) en metanol, y la mezcla se concentró a presión reducida. El residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 216 mg, 36%).

¹H-RMN (DMSO-d₆) δ: 2,43 (3H, s), 3,75 (2H, s), 6,54 (2H, s), 7,13-7,19 (1H, m), 7,24-7,32 (2H, m), 7,55-7,66 (2H, m), 7,81 (1H, s), 7,88-7,92 (1H, m), 8,56-8,57 (1H, m), 8,90-8,92 (1H, m), 3H no detectado.

Ejemplo 49

Fumarato de 1-[4-fluoro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución de 4-fluoro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)pirrol-3-carbaldehído (0,60 g) en tetrahidrofurano (6

ml) y metanol (6 ml) se añadió una disolución (1,8 ml) de metilamina en metanol al 40% y la mezcla se agitó a temperatura ambiente durante 30 min. Se añadió borohidruro de sodio (84 mg) a temperatura ambiente y la mezcla se agitó durante 5 min y se concentró a presión reducida. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro (rendimiento 0,36 g). La sal libre obtenida (0,36 g) se disolvió en etanol (10 ml), y se añadió una disolución de ácido fumárico(0,12 g) en etanol (10 ml) a temperatura ambiente. La mezcla de reacción se agitó durante 14 h, y se concentró a presión reducida. El residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 0,73 g, 43%).

 1 H-RMN (DMSO-d₆) δ : 2,36 (3H, s), 3,69 (2H, s), 6,54 (2H, s), 7,21-7,32 (3H, m), 7,54-7,65 (3H, m), 7,86-7,90 (1H, m), 8,57 (1H, d, J=2,4 Hz), 8,89-8,91 (1H, m), 3H no detectado.

Eiemplo 50

10

20

25

Fumarato de 1-[4-fluoro-5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución (5 ml) de 4-fluoro-5-(2-metilfenil)-1-(piridin-3-ilsulfonil)pirrol-3-carbaldehído (0,45 g) en tetrahidrofurano se añadió una disolución (1,5 ml) de metilamina en metanol al 40% y metanol (5 ml) y la mezcla se agitó a temperatura ambiente durante 30 min. Se añadió borohidruro de sodio (76 mg) a temperatura ambiente y la mezcla se agitó durante 30 min y se concentró a presión reducida. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro (rendimiento 0,33 g). La sal libre obtenida (0,33 g) se disolvió en etanol (4 ml), y se añadió una disolución de ácido fumárico(0,10 g) en etanol (10 ml) a temperatura ambiente. Después de agitar durante 30 min, la mezcla de reacción se concentró a presión reducida. El residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 0,32 g, 54%)

 1 H-RMN (DMSO-d₆) δ : 1,76 (3H, s), 2,43 (3H, s), 3,80 (2H, s), 6,52 (2H, s), 6,97-6,99 (1H, m), 7,19-7,26 (2H, m), 7,37-7,42 (1H, m), 7,58-7,65 (2H, m), 7,80-7,84 (1H, m), 7,46 (1H, d, J=2,4 Hz), 8,89-8,91 (1H, m), 3H no detectado.

30 Ejemplo 51

Fumarato de 1-[2-cloro-5-(2,6-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

2-Cloro-5-(2,6-difluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (160 mg) se añadió a una mezcla de disolución (325 mg) de metilamina en metanol al 40% y metanol (20 ml) a temperatura ambiente. Después de agitar durante 30 min, se añadió borohidruro de sodio (48 mg) y la mezcla se agitó durante 1 h. La mezcla de reacción se concentró a presión reducida a 30°C. El residuo se extrajo con una disolución acuosa saturada de hidrogenocarbonato de sodio y acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: acetato de etilo-metanol=1:0→7:3) y se disolvió en metanol (2 ml), y se añadió una disolución de ácido fumárico(48 mg) en etanol (2 ml). La cristalización en la mezcla dio el compuesto del título en forma de cristales incoloros (rendimiento 29 mg, 14%).

¹H-RMN (DMSO-d₆) δ: 2,28 (3H, s), 3,65 (2H, s), 6,51 (2H, s), 6,73 (1H, s), 7,21-7,28 (2H, m), 7,55-7,65 (1H, m), 7,73-7,77 (1H, m), 8,08-8,12 (1H, m), 8,82 (1H, d, J=2,4 Hz), 8,96 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

Eiemplo 52

Fumarato de 1-[2-cloro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

- A una disolución de hidrocloruro de metilamina (232 mg) en metanol (10 ml) se añadió 2-cloro-5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (250 mg) y la mezcla se agitó durante 30 min. Se añadió triacetoxiborohidruro de sodio (218 mg) y la mezcla se agitó durante 2 h. La mezcla de reacción se concentró a presión reducida a 30°C y se extrajo con una disolución acuosa saturada de hidrogenocarbonato de sodio y acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: acetato de etilometanol=1:0→17:3) y se disolvió en acetato de etilo (10 ml), y se añadió una disolución de ácido fumárico (80 mg) en metanol (2 ml). La cristalización en la mezcla dio el compuesto del título en forma de cristales incoloros (rendimiento 97 mg, 29%).
- ¹H-RMN (DMSO-d₆) δ: 2,23 (3H, s), 3,61 (2H, s), 6,51 (2H, s), 6,61 (1H, s), 7,27-7,33 (2H, m), 7,43-7,56 (2H, m), 7,69-7,74 (1H, m), 8,02-8,06 (1H, m), 8,80 (1H, brs), 8,94 (1H, dd, J=4,8, 1,4 Hz), 3H no detectado.

Hidrocloruro de 1-{1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}-N-metilmetanamina

({1-[(5-Bromopiridin-3-il)sulfonil]-5-fenil-1H-pyrrol-3-il}metil)metilcarbamato de terc-butilo (120 mg) se disolvió en etanol (3 ml), y se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 4 h, la mezcla se concentró a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de un sólido (rendimiento 51,3 mg, 49%).

 1 H-RMN (DMSO-d₆) δ: 2,50 (3H, s), 3,96 (2H, m), 6,51 (1H, s), 7,15-7,17 (2H, m), 7,39-7,50 (3H, m), 7,77 (1H, s), 7,84 (1H, s), 8,48 (1H, s), 8,89 (2H, br), 9,03 (1H, s).

Eiemplo 54

15

20

Hidrocloruro de 5-({4-[(metilamino)metil]-2-fenil-1H-pirrol-1-il}sulfonil)nicotinonitrilo

Una mezcla de ({1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato (112 mg), cianuro de cinc (50 mg) y N,N-dimetilformamida (4 ml) se desgasificó con argón gaseoso. Se añadió tetraquis(trifenilfosfina)paladio (46 mg), y la mezcla se agitó a 100°C durante 1,5 h. Después de enfriar la mezcla de reacción a temperatura ambiente, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexanoacetato de etilo =19:1→3:2) para dar un aceite incoloro. El aceite obtenido se disolvió en etanol (2 ml), y se añadió una disolución (2 ml) de 4 mol/l cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 1 h, la mezcla se concentró a presión reducida, y se recristalizó en etanol para dar el compuesto del título en forma de un sólido (rendimiento 32,7 mg, 42%).

 1 H-RMN (DMSO-d₆) δ: 2,50-2,52 (3H, m), 3,98 (2H, s), 6,50 (1H, s), 7,13-7,16 (2H, m), 7,37-7,50 (3H, m), 7,76 (1H, d, J=1,8 Hz), 8,28 (1H, d, J=2,1 Hz), 8,66 (1H, d, J=2,4 Hz), 8,82 (2H, br), 9,31 (1H, d, J=2,1 Hz).

Ejemplo 55

Hidrocloruro de 5-({4-[(metilamino)metil]-2-fenil-1H-pirrol-1-il}sulfonil)nicotinato de metilo

- Una mezcla de ({1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (112 mg), dicloro[bis(trifenilfosfina)]paladio (28 mg), trietilamina (0,25 ml) y metanol (15 ml) se agitó en una atmósfera de monóxido de carbono (3 atm) a 100°C durante 12 h. Después de enfriar a temperatura ambiente, la mezcla de reacción se concentró a presión reducida. Se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→3:2) para dar un aceite incoloro. El aceite obtenido se disolvió en etanol (2 ml), y se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 1 h, la mezcla se concentró a presión reducida, y se recristalizó en etanol para dar el compuesto del título en forma de un sólido (rendimiento 47,0 mg, 56%).
- 1 H-RMN (DMSO-d₆) δ: 2,49-2,51 (3H, m), 3,91 (3H, s), 3,98 (2H, s), 6,50 (1H, d, J=1,8 Hz), 7,15-7,17 (2H, m), 7,37-7,50 (3H, m), 7,80 (1H, s), 7,93-7,94 (1H, m), 8,81 (1H, d, J=2,1 Hz), 8,91 (2H, br), 9,29 (1H, d, J=2,1 Hz).

Ejemplo 56

Dihidrocloruro de N-metil-1-{1-[(5-metilpiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metanamina

- En una atmósfera de argón, una mezcla de ({1-[(5-bromopiridin-3-il)sulfonil]-5-fenil-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (112 mg), ácido metilborónico (18 mg), tetraquis(trifenilfosfina)paladio (23 mg), carbonato de potasio (138 mg) y 1,4-dioxane (5 ml) se agitó a 80°C durante un día. La mezcla de reacción se vertió en una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice (eluyente: hexano-acetato de etilo =19:1→1:1) para dar un aceite. El aceite se disolvió en etanol (1 ml), y se añadió una disolución (1 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo. Después de agitar a temperatura ambiente durante 1 h, la mezcla se concentró a presión reducida. El residuo se recristalizó en etanol-acetato de etilo para dar el compuesto del título en forma de un sólido incoloro (rendimiento 32,6 mg, 39%).
- 1 H-RMN (DMSO-d₆) δ: 2,28 (3H, s), 2,50-2,53 (3H, m), 3,94-4,00 (2H, m), 6,48 (1H, d, J=1,8 Hz), 7,12-7,15 (2H, m), 7,37-7,52 (4H, m), 7,75 (1H, s), 8,29 (1H, d, J=2,1 Hz), 8,70 (1H, d, J=1,5 Hz), 9,08 (2H, br), 1H no detectado.

Hidrocloruro de 1-[5-(2,4-dimetilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

Por una operación similar a la del Ejemplo 33 y usando {[5-(2,4-dimetilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (177 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 68 mg, 45%).

 1 H-RMN (DMSO-d₆) δ: 1,76 (3H, s), 2,32 (3H, s), 2,49 (3H, s), 3,99 (2H, s), 6,38 (1H, d, J=1,8 Hz), 6,71 (1H, d, J=8,1 Hz), 6,95-7,03 (2H, m), 7,59-7,63 (1H, m), 7,77-7,85 (2H, m), 8,48 (1H, d, J=2,7 Hz), 8,88-8,90 (1H, m), 9,07 (2H, br).

Ejemplo 58

5

Dihidrocloruro de N-metil-1-{5-[4-(metilsulfonil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metanamina

- A una disolución de metil{[5-[4-(metilsulfonil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo (275 mg) en acetato de etilo (2 ml) se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo, y la mezcla se agitó a temperatura ambiente durante 4 h. Los cristales precipitados se recogieron por filtración, se lavaron con acetato de etilo y se recristalizaron en etanol para dar el compuesto del título en forma de cristales blancos (rendimiento 157 mg, 33%).
- 1 H-RMN (DMSO-d₆) δ: 2,50 (3H, s), 3,29 (3H, s), 3,98 (2H, t, J=5,6 Hz), 6,67 (1H, d, J=1,9 Hz), 7,48 (2H, d, J=8,7 Hz), 7,60 (1H, dd, J=8,6, 4,4 Hz), 7,86-7,97 (4H, m), 8,59 (1H, d, J=1,9 Hz), 8,88 (1H, dd, J=4,8, 1,4 Hz), 9,20 (2H, s), 1H no detectado.

Ejemplo 59

Fumarato de (2-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}fenil)metanol

- ({5-[2-(Hidroximetil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (132 mg) se disolvió en ácido trifluoroacetico (1 ml), y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio y se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo-metanol=1:0→9:1) para dar una sal libre del compuesto del título en forma de un aceite incoloro (rendimiento 60,3 mg). Una disolución de la sal libre obtenida en acetato de etilo (5 ml) se añadió a una disolución de ácido fumárico(19,6 mg) en metanol (2 ml), y la mezcla se concentró a presión reducida. El residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 48 mg, 35%).
- $^{1}\text{H-RMN (DMSO-d}_{6}) \ 5: \ 2,42 \ (3\text{H, s}), \ 3,83 \ (2\text{H, s}), \ 4,00 \ (2\text{H, s}), \ 6,35 \ (1\text{H, d}, \ J=1,5 \ \text{Hz}), \ 6,46 \ (2\text{H, s}), \ 6,81-6,83 \ (1\text{H, m}), \ 3,00 \ (2\text{H, m}), \ 7,17-7,22 \ (1\text{H, m}), \ 7,41-7,50 \ (2\text{H, m}), \ 7,55-7,60 \ (1\text{H, m}), \ 7,65 \ (1\text{H, s}), \ 7,75-7,78 \ (1\text{H, m}), \ 8,46 \ (1\text{H, d}, \ J=2,4 \ \text{Hz}), \ 8,86 \ (1\text{H, d}, \ J=4,8 \ \text{Hz}), \ 4\text{H no detectado.}$

Ejemplo 60

Fumarato de N-metil-1-[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

- Por una reacción similar a la del Ejemplo 59 y usando {[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-35 il]metil}metilcarbamato de terc-butilo (943 mg), se obtuvo el compuesto del título en forma de cristales incoloros 57%). Más específicamente, {[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-553 mg. il]metil}metilcarbamato de terc-butilo (943 mg) se disolvió en ácido trifluoroacético (3 ml), y la mezcla se agitó a temperatura ambiente durante 30 min. La mezcla de reacción se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada. 40 se secó sobre sulfato de sodio anhidro, y el disolvente se dejó evaporar a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:9) para dar una sal libre del compuesto del título en forma de un aceite incoloro (rendimiento 631 mg). Se añadió una disolución de la sal libre obtenida en acetato de etilo (5 ml) a una disolución de ácido fumárico (211 mg) en metanol (2 ml), y la mezcla se concentró a presión reducida. El residuo se recristalizó en etanol-aqua para dar el compuesto del título en forma de 45 cristales incoloros (rendimiento 553 mg, 57%).
 - 1 H-RMN (DMSO-d₆) δ : 1,71 (3H, s), 2,42 (3H, s), 3,83 (2H, s) 6,34 (1H, d, J=1,8 Hz), 6,45 (2H, s), 7,15-7,16 (1H, m), 7,21-7,22 (1H, m), 7,56-7,60 (1H, m), 7,64-7,65 (1H, m), 7,78-7,82 (1H, m), 8,48 (1H, d, J=2,4 Hz), 8,84-8,86 (1H, m), 3H no detectado.

punto de fusión 182-183°C.

50 Ejemplo 61

Fumarato de N-metil-1-(5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il)metanamina

5-Fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (650 mg) se disolvió en una mezcla de una disolución (808 mg) de metilamina en metanol al 40% y metanol (30 ml) a temperatura ambiente y la mezcla se agitó durante 10 min. Se añadió borohidruro de sodio (118 mg) y la mezcla se agitó durante 10 min. La mezcla de reacción se concentró a presión reducida a 30°C y el residuo se extrajo con una disolución acuosa saturada de hidrogenocarbonato de sodio (40 ml) y acetato de etilo (80 ml). El extracto se lavó con salmuera saturada (40 ml), se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo) y se añadió una disolución de ácido fumárico (242 mg) en etanol (24 ml). Los cristales obtenidos se recogieron por filtración y se recristalizaron en etanol-agua (85:15) para dar el compuesto del título en forma de cristales incoloros (rendimiento 480 mg, 52%).

 1 H-RMN (DMSO-d₆) δ: 2,42 (3H, s), 3,86 (2H, s), 6,42 (1H, d, J=1,9 Hz), 6,47 (2H, s), 7,14-7,18 (2H, m), 7,34-7,46 (3H, m), 7,54-7,58 (1H, m), 7,67 (1H, d, J=1,9 Hz), 7,76-7,80 (1H, m), 8,46 (1H, dd, J=2,5, 0,8 Hz), 8,84 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

Ejemplo 62

Fumarato de 1-[5-mesitil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

- 15 A una disolución de 5-mesitil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (0,37 g) en tetrahidrofurano (15 ml) se añadió gota a gota una disolución de una disolución (0,41 g) de metilamina en metanol al 40% en tetrahidrofurano (1 ml) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 2 h. Se añadió metanol (10 ml) y la mezcla se agitó adicionalmente a temperatura ambiente durante 2 h. Se añadió borohidruro de sodio (0,06 g) gradualmente con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de 20 reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→acetato de etilo-metanol=5:1) para dar una sal libre del compuesto del título en forma de un aceite marrón claro. A una disolución de la sal libre obtenida en 25 acetato de etilo (5 ml) se añadió gota a gota una disolución de ácido fumárico(0,14 g) en metanol (2,5 ml) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 15 min. El precipitado se recogió por filtración y se recristalizó en etanol-aqua para dar el compuesto del título en forma de cristales blancos (rendimiento 0,32 g, 61%).
- $^{1}\text{H-RMN (DMSO-d}_{6}) \ \bar{\delta}: \ 1,58 \ (6\text{H, s}), \ 2,28 \ (3\text{H, s}), \ 2,44 \ (3\text{H, s}), \ 3,87 \ (2\text{H, s}), \ 6,21 \ (1\text{H, s}), \ 6,45 \ (2\text{H, s}), \ 6,83 \ (2\text{H, s}), \ 3,60 \ (1\text{H, dd}, \ J=8,1, \ 1,8 \ \text{Hz}), \ 7,70 \ (1\text{H, s}), \ 7,84 \ (1\text{H, dd}, \ J=8,4, \ 1,8 \ \text{Hz}), \ 8,46 \ (1\text{H, s}), \ 8,88 \ (1\text{H, d}, \ J=3,9 \ \text{Hz}), \ 3\text{H no detectado}.$

Ejemplo 63

Fumarato de N-metil-1-{5-[2-(metiltio)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metanamina

- A una disolución (3 ml) de 5-[2-(metiltio)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (170 mg) en tetrahidrofurano se añadió una disolución (110 mg) de metilamina en metanol al 40% y metanol (1 ml) a temperatura ambiente, y la mezcla se agitó durante 1 h. Se añadió borohidruro de sodio (59,8 mg) con enfriamiento con hielo. Después de agitar a temperatura ambiente durante 2 h, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite incoloro. La sal libre obtenida se disolvió en acetato de etilo, y se añadió a una disolución (1 ml) de ácido fumárico (33,2 mg) en metanol. El disolvente se evaporó a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 89,3 mg, 38%).
- 1 H-RMN (DMSO-d₆) δ: 2,11 (3H, s), 2,43 (3H, s), 3,86 (2H, s), 6,38 (1H, d, J=1,8 Hz), 6,46 (2H, s), 7,07-7,20 (3H, m), 7,41-7,46 (1H, m), 7,53-7,58 (1H, m), 7,68 (1H, d, J=1,8 Hz), 7,79-7,83 (1H, m), 8,43 (1H, d, J=2,4 Hz), 8,82-8,84 (1H, m), 3H no detectado.

Ejemplo 64

Hemifumarato de N-metil-1-{5-[2-(metilsulfonil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metanamina

Por una operación similar a la del Ejemplo 63 y usando 5-[2-(metilsulfonil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (72,0 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 56,4 mg, 66%).

 1 H-RMN (DMSO-d₆) δ : 2,37 (3H, s), 3,00 (3H, s), 3,71 (2H, s), 6,41 (1H, s), 6,48 (1H, d, J=1,5 Hz), 7,14-7,17 (1H, m), 7,61-7,65 (2H, m), 7,70-7,80 (2H, m), 7,93-7,97 (1H, m), 8,02-8,05 (1H, m), 8,66 (1H, d, J=2,1 Hz), 8,87-8,89 (1H, m), 2H no detectado.

Fumarato de 2-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}benzonitrilo

Por una operación similar a la del Ejemplo 63 y usando 2-[4-formil-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il]benzonitrilo (129 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 69 mg, 38%).

¹H-RMN (DMSO-d₆) δ: 2,39 (3H, s), 3,82 (2H, s), 6,47 (2H, s), 6,58 (1H, d, J=1,8 Hz), 7,34-7,36 (1H, m), 7,59-7,76 (4H, m), 7,84-7,89 (2H, m), 8,53 (1H, d, J=2,4 Hz), 8,87-8,89 (1H, m), 3H no detectado.

Ejemplo 66

Fumarato de 1-[5-(2,6-dimetilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución de 5-(2,6-dimetilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (0,42 g) en tetrahidrofurano (15 10 ml) se añadió gota a gota una disolución de una disolución (0,48 g) de metilamina en metanol al 40% en tetrahidrofurano (1 ml) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 2 h. Se añadió metanol (10 ml) y la mezcla se agitó adicionalmente a temperatura ambiente durante 2 h. Se añadió gradualmente borohidruro de sodio (0,07 g) con enfriamiento con hielo, y la mezcla se agitó a temperatura ambiente durante 1 h. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de 15 hidrogenocarbonato de sodio al residuo, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluvente: hexano-acetato de etilo =1:1→acetato de etilometanol=5:1) para dar una sal libre del compuesto del título en forma de un aceite marrón claro. A una disolución de la sal libre obtenida en acetato de etilo (5 ml) se añadió gota a gota una disolución de ácido fumárico (0,12 g) en 20 metanol (2 ml) con enfriamiento con hielo y la mezcla se agitó a temperatura ambiente durante 15 min. El precipitado se recogió por filtración, y se recristalizó en etanol-agua para dar el compuesto del título en forma de cristales blancos (rendimiento 0,18 g, 50%).

 1 H-RMN (DMSO-d₆) δ: 1,62 (6H, s), 2,45 (3H, s), 3,88 (2H, s), 6,25 (1H, d, J=1,5 Hz), 6,45 (2H, s), 7,02 (2H, d, J=7,5 Hz), 7,24 (1H, d, J=7,5 Hz), 7,58-7,62 (1H, m), 7,71 (1H, s), 7,81-7,85 (1H, m), 8,44 (1H, d, J=2,7 Hz), 8,89 (1H, dd, J=4,8, 1,5 Hz), 3H no detectado.

Ejemplo 67

25

Fumarato de N-metil-1-{5-[2-(metilsulfinil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metanamina

A una suspensión (5 ml) de hidruro de sodio (al 60% en aceite, 39,5 mg) en tetrahidrofurano se añadió una disolución (3 ml) de 5-[2-(metilsulfinill)fenil]-1H-pirrol-3-carbaldehído (160 mg) en N,N-dimetilformamida, 15-corona-5 30 (181 mg), y cloruro de piridin-3-ilsulfonilo (134 mg) con enfriamiento con hielo. Después de agitar a temperatura ambiente durante h, se añadió agua y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se suspendió en tetrahidrofurano (5 ml), se añadió una disolución (160 mg) de metilamina en metanol al 40% a temperatura ambiente y la mezcla se agitó durante 1 h. Se añadió borohidruro de sodio (86,5 mg) con enfriamiento con hielo. Después de 35 agitar a temperatura ambiente durante 2 h, se añadió agua y la mezcla se extrajo dos veces con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→ acetato de etilo) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo, y se añadió a una disolución (1 ml) de ácido fumárico (28,1 mg) en metanol. 40 El disolvente se evaporó a presión reducida, y el residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 83,9 mg, 24%).

 1 H-RMN (DMSO-d₆) δ : 2,41 (3H, s), 2,49-2,51 (3H, m), 3,81 (2H, s), 6,46 (2H, s), 6,50 (1H, d, J=1,5 Hz), 7,00 (1H, br), 7,50-8,00 (6H, m), 8,57 (1H, br), 8,87-8,89 (1H, m), 3H no detectado.

Ejemplo 68

50

45 Fumarato de 2-(2-fluorofenil)-4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbonitrilo

2-(2-Fluorofenil)-4-formil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbonitrilo (295 mg) se disolvió en una disolución de hidrocloruro de metilamina (1,12 g) en metanol (20 ml) y la mezcla se agitó durante 30 min. Se añadió triacetoxiborohidruro de sodio (1,06 g) y la mezcla se agitó durante 2 h. La mezcla de reacción se concentró a presión reducida a 30°C, se añadió una disolución (40 ml) acuosa saturada de hidrogenocarbonato de sodio al residuo y la mezcla se extrajo con acetato de etilo (80 ml). El extracto se lavó con salmuera saturada (40 ml), se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en gel de sílice (eluyente: acetato de etilo-metanol=85:15→75:25), y a continuación por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo), y se añadió una disolución de ácido fumárico (96 mg) en etanol (5 ml). La cristalización en la mezcla dio el compuesto del título en forma de cristales incoloros (rendimiento 120 mg,

30%).

10

 1 H-RMN (DMSO-d₆) δ : 2,40 (3H, s), 3,76 (2H, s), 6,57 (2H, s), 7,28-7,37 (3H, m), 7,63-7,71 (2H, m), 7,87 (1H, s), 7,95-7,99 (1H, m), 8,64 (1H, dd, J=2,5, 0,6 Hz), 8,94 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

Eiemplo 69

5 Fumarato de 5-(2-fluorofenil)-3-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-carbonitrilo

5-(2-Fluorofenil-3-formil-1-(piridin-3-ilsulfonil)-1H-pirrol-2-carbonitrilo (650 mg) se disolvió en una disolución (808 mg) de metilamina en metanol al 40% y metanol (30 ml) a temperatura ambiente y la mezcla se agitó durante 10 min. Se añadió borohidruro de sodio (118 mg) y la mezcla se agitó durante 10 min. La mezcla de reacción se concentró a presión reducida a 30°C, se añadió una disolución (40 ml) acuosa saturada de hidrogenocarbonato de sodio al residuo y la mezcla se extrajo con acetato de etilo (80 ml). El extracto se lavó con salmuera saturada (40 ml), se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo) y se añadió una disolución de ácido fumárico(242 mg) en etanol (24 ml). Los cristales obtenidos se recogieron por filtración, y se recristalizó en etanol-agua (85:15) para dar el compuesto del título en forma de cristales incoloros (rendimiento 480 mg, 52%).

 $^{1}\text{H-RMN (DMSO-d}_{6}) \ \bar{\delta}; \ 2,27 \ (3H, s), \ 3,74 \ (2H, s), \ 6,57 \ (2H, s), \ 6,71 \ (1H, s), \ 7,29-7,38 \ (3H, m), \ 7,58-7,64 \ (1H, m), \ 7,71-7,75 \ (1H, m), \ 7,96-8,00 \ (1H, m), \ 8,66 \ (1H, d, J=2,3 \ Hz), \ 8,97 \ (1H, dd, J=4,9, 1,5 \ Hz), \ 3H \ no \ detectado.$

Ejemplo 70

Fumarato de 4-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}benzonitrilo

A una disolución (2 ml) de {[5-(4-cianofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (382 mg) en acetato de etilo se añadió una disolución (3 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo a temperatura ambiente. La mezcla se agitó durante 3 h, y se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio. La mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo, y se añadió a una disolución (2 ml) de ácido fumárico (77,1 mg) en metanol. El disolvente se evaporó a presión reducida, y el residuo se recristalizó en una mezcla disolvente de etanol y agua para dar el compuesto del título en forma de cristales incoloros (rendimiento 218 mg, 55%).

¹H-RMN (DMSO-d₆) δ: 2,37 (3H, s), 3,79 (2H, s), 6,47 (2H, s), 6,55 (1H, d, J=1,8 Hz), 7,40-7,44 (2H, m), 7,55-7,60 (1H, m), 7,70-7,71 (1H, m), 7,81-7,87 (3H, m), 8,55-8,56 (1H, m), 8,84-8,86 (1H, m), 3H no detectado.

Ejemplo 71

35

45

Hemifumarato de 4-fluoro-3-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}benzonitrilo

Por una operación similar a la del Ejemplo 70 y usando {[5-(5-ciano-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (100 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 37,1 mg, 40%).

 1 H-RMN (DMSO-d₆) δ : 2,34 (3H, s), 3,71 (2H, s), 6,44 (1H, s), 6,55 (1H, brs), 7,52 (1H, t, J=9,0 Hz), 7,60-7,68 (2H, m), 7,73-7,75 (1H, m), 7,91-7,93 (1H, m), 8,03-8,08 (1H, m), 8,64 (1H, d, J=2,4 Hz), 8,88-8,90 (1H, m), 2H no detectado.

Ejemplo 72

40 Fumarato 1-[5-(2-fluoro-5-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(2-fluoro-5-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (475 mg) se disolvió en etanol (10 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 30 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en acetato de etilo, se añadió a una disolución (13 ml) de ácido fumárico (116 mg) en metanol, y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 385 mg, 78%),

 1 H-RMN (DMSO-d₆) δ : 2,41 (3H, s), 3,71 (3H, s), 3,82 (2H, s), 6,47 (1H, d, J=1,9 Hz), 6,48 (2H, s), 6,57-6,60 (1H, m), 7,02-7,07 (1H, m), 7,12-7,18 (1H, m), 7,60-7,64 (1H, m), 7,70 (1H, d, J=1,5 Hz), 7,89-7,93 (1H, m), 8,60 (1H, d, J=2,3 Hz), 8,88 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

5

15

20

Fumarato de 1-(2-fluoro-3-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}fenil)etanona

Por una operación similar a la del Ejemplo 70 y usando {[5-(3-acetil-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (118 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 44,7 mg, 37%).

 1 H-RMN (DMSO-d₆) δ : 2,40 (3H, s), 2,49-2,53 (3H, m), 3,80 (2H, m), 6,47 (2H, s), 6,52 (1H, d, J=1,8 Hz), 7,32-7,40 (2H, m), 7,59-7,64 (1H, m), 7,73 (1H, d, J=1,8 Hz), 7,86-7,93 (2H, m), 8,60 (1H, d, J=2,7 Hz), 8,87-8,89 (1H, m), 3H no detectado.

Ejemplo 74

10 Fumarato de 1-[5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

A una disolución de {[5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (2,48 g) en acetato de etilo (10 ml) y metanol (10 ml) se añadió una disolución (20 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo a temperatura ambiente. Después de agitar durante 5 h, la mezcla se concentró a presión reducida. El residuo se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio y se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: hexano-acetato de etilo =1:1-→1:9) para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo (10 ml) y se añadió a una disolución (10 ml) de ácido fumárico (350 mg) en metanol. El disolvente se evaporó a presión reducida y el residuo se recristalizó en una mezcla disolvente de etanol y agua para dar el compuesto del título en forma de cristales incoloros (rendimiento 793 mg, 29%).

 1 H-RMN (DMSO-d₀) δ : 2,39 (3H, s), 3,78 (2H, s), 6,48 (2H, s), 6,56 (1H, d, J=1,8 Hz), 7,40-7,44 (1H, m), 7,61-7,65 (1H, m), 7,72-7,79 (2H, m), 7,89-7,93 (1H, m), 8,32-8,34 (1H, m), 8,62 (1H, d, J=1,8 Hz), 8,88-8,90 (1H, m), 3H no detectado.

punto de fusión 183-184°C.

Eiemplo 75

Fumarato de 1-[5-(3-fluoropiridin-4-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(3-Fluoropiridin-4-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (60 mg) se disolvió en metanol (5 ml), se añadió una disolución (1,5 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 30 min. La mezcla de reacción se concentró a presión reducida y se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio. La mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en acetato de etilo (8 ml), se añadió una disolución de ácido fumárico (58 mg) en metanol (2 ml), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 45 mg, 72%).

 1 H-RMN (DMSO-d₆) δ: 2,37 (3H, s), 3,78 (2H, s), 6,49 (2H, s), 6,64 (1H, d, J=1,5 Hz), 7,30-7,33 (1H, m), 7,62-7,66 (1H, m), 7,77 (1H, d, J=1,5 Hz), 7,94-7,98 (1H, m), 8,49-8,51 (1H, m), 8,64 (1H, d, J=1,5 Hz), 8,69 (1H, d, J=2,3 Hz), 8,90 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

Ejemplo 76

45

40 Fumarato de 1-[5-(2-cloropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(2-Cloropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (280 mg) se disolvió en etanol (10 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 30 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, y se concentró a presión reducida. El residuo se disolvió en acetato de etilo (10 ml), se añadió una disolución de ácido fumárico (116 mg) en metanol (3 ml), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 197 mg, 68%).

 $^{1}\text{H-RMN (DMSO-d}_{6}) \ \delta; \ 2,40 \ (3\text{H, s}), \ 3,81 \ (2\text{H, s}), \ 6,49 \ (2\text{H, s}), \ 6,52 \ (1\text{H, d}, \ J=1,9 \ \text{Hz}), \ 7,47-7,52 \ (1\text{H, m}), \ 7,61-7,73 \ (3\text{H, m}), \ 7,90-7,94 \ (1\text{H, m}), \ 8,50 \ (1\text{H, dd}, \ J=4,9, \ 1,9 \ \text{Hz}), \ 8,63-8,64 \ (1\text{H, m}), \ 8,90 \ (1\text{H, dd}, \ J=4,5, \ 1,5 \ \text{Hz}), \ 3\text{H no} \ 50 \ detectado.$

1,5-fumarato de 1-[5-(6-cloropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(6-cloropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (100 mg) se disolvió en metanol (8 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 30 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo-metanol=99:1→19:1) para dar una sal libre del compuesto del título. La sal libre obtenida se disolvió en acetato de etilo (8 ml), se añadió una disolución de ácido fumárico (116 mg) en metanol (2 ml), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 60 mg, 52%).

 1 H-RMN (DMSO-d₆) δ : 2,41 (3H, s), 3,83 (2H, s), 6,52 (3H, s), 6,58 (1H, d, J=1,5 Hz), 7,57-7,63 (2H, m), 7,75-7,78 (2H, m), 7,85-7,89 (1H, m), 8,20 (1H, d, J=2,3 Hz), 8,61 (1H, d, J=2,6 Hz), 8,88 (1H, dd, J=4,9, 1,5 Hz), 4H no detectada.

15 Ejemplo 78

10

Hemifumarato de 1-[5-(6'-cloro-2,3'-bipiridin-5-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(6'-Cloro-2,3'-bipiridin-5-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (100 mg) se disolvió en etanol (8 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 30 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo-metanol = 99:1→19:1) para dar una sal libre del compuesto del título. La sal libre obtenida se disolvió en acetato de etilo (8 ml), se añadió una disolución de ácido fumárico (116 mg) en metanol (2 ml), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 61 mg, 66%).

 1 H-RMN (DMSO-d₆) δ : 2,33 (3H, s), 3,69 (2H, s), 6,46 (1H, s), 6,58-6,59 (1H, m), 7,57-7,62 (1H, m), 7,66-7,70 (2H, m), 7,83-7,88 (2H, m), 8,15 (1H, d, J=8,3 Hz), 8,52 (1H, d, J=1,9 Hz), 8,57 (1H, d, J=2,3 Hz), 8,60-8,61 (1H, m), 8,86 (1H, d, J=4,9 Hz), 9,18 (1H, d, J=2,3 Hz), 2H no detectado.

Eiemplo 79

30 Hidrocloruro de 1-{5-(2-fluoropiridin-3-il)-1-[(6-metoxipiridin-3-il)sulfonil]-1H-pirrol-3-il}-N-metilmetanamina

Por una operación similar a la del Ejemplo 24 y usando ({5-(2-fluoropiridin-3-il)-1-[(6-metoxipiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (289 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 74,2 mg, 29%).

¹H-RMN (DMSO-d₆) δ: 2,52 (3H, s), 3,94 (3H, s), 3,99 (2H, s), 6,65 (1H, d, J=1,8 Hz), 6,99-7,02 (1H, m), 7,42-7,47 (1H, m), 7,73-7,80 (2H, m), 7,84 (1H, d, J=1,8 Hz), 8,27-8,28 (1H, m), 8,34-8,36 (1H, m), 9,10 (2H, brs).

Ejemplo 80

Fumarato de (2-fluoro-3-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}fenil)metanol

Por una operación similar a la del Ejemplo 70 y usando ({5-[2-fluoro-3-(hidroximetil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (238 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 55,3 mg, 22%).

1H-RMN (DMSO-d6) δ : 2,40 (3H, s), 3,80 (2H, s), 4,49 (2H, s), 6,43 (1H, d, J=1,8 Hz), 6,47 (2H, s), 6,97-7,02 (1H, m), 7,17-7,22 (1H, m), 7,54-7,62 (2H, m), 7,68 (1H, d, J=1,2 Hz), 7,84-7,88 (1H, m), 8,56 (1H, d, J=2,1 Hz), 8,86-8,88 (1H, m), 4H no detectado.

Ejemplo 81

Fumarato de 1-(2-fluoro-3-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}fenil)etanol

Por una operación similar a la del Ejemplo 70 y usando ({5-[2-fluoro-3-(1-hidroxietil)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (318 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 69,7 mg, 21%).

¹H-RMN (DMSO-d₆) δ: 1,31 (3H, d, J=6,3 Hz), 2,40 (3H, s), 3,81 (2H, s), 4,90 (1H, q, J=6,3 Hz), 6,43 (1H, d, J=1,8 Hz), 6,47 (2H, s), 6,94-7,00 (1H, m), 7,16-7,22 (1H, m), 7,58-7,68 (3H, m), 7,84-7,87 (1H, m), 8,55 (1H, d, J=2,7 Hz),

8,86-8,88 (1H, m), 4H no detectado.

Ejemplo 82

Fumarato de 1-[5-(2-fluoro-3-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(2-Fluoro-3-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (475 mg) se disolvió en metanol (20 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 20 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en etanol (13 ml), se añadió ácido fumárico (116 mg), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 310 mg, 63%).

 1 H-RMN (DMSO-d₆) δ : 2,41 (3H, s), 3,82 (2H, s), 3,86 (3H, s), 6,45 (1H, d, J=1,7 Hz), 6,48 (2H, s), 6,58-6,63 (1H, m), 7,10-7,16 (1H, m), 7,24-7,30 (1H, m), 7,59-7,63 (1H, m), 7,70 (1H, d, J=1,5 Hz), 7,86-7,90 (1H, m), 8,58 (1H, dd, J=2,3, 0,7 Hz), 8,87-8,89 (1H, m), 3H no detectado.

Ejemplo 83

20

25

30

40

15 Fumarato de 1-[5-(2-fluoro-6-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

{[5-(2-fluoro-6-metoxifenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (100 mg) se disolvió en metanol (20 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 20 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. La capa orgánica obtenida se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se disolvió en etanol (6 ml), se añadió ácido fumárico (49 mg), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 53 mg, 51%).

¹H-RMN (DMSO-d₆) δ: 2,45 (3H, s), 3,44 (3H, s), 3,83 (2H, s), 6,36 (1H, d, J=1,5 Hz), 6,48 (2H, s), 6,79-6,86 (2H, m), 7,44-7,52 (1H, m), 7,60-7,65 (1H, m), 7,70 (1H, d, J=1,5 Hz), 7,88-7,92 (1H, m), 8,56 (1H, d, J=1,9 Hz), 8,88 (1H, dd, J=4,7, 1,7 Hz), 3H no detectado.

Eiemplo 84

Fumarato de 1-{5-[4-(difluorometoxi)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}-N-metilmetanamina

Por una operación similar a la del Ejemplo 70 y usando ({5-[4-(difluorometoxi)fenil]-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il}metil)metilcarbamato de terc-butilo (550 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 313 mg, 62% para 2 etapas).

 $^1\text{H-RMN}$ (DMSO-d₆) δ : 2,38 (3H, s), 3,78 (2H, s), 6,40 (1H, s), 6,47 (2H, s), 7,15-7,24 (4H, m), 7,32 (1H, t, J=73,5 Hz), 7,54-7,58 (1H, m), 7,62 (1H, s), 7,77-7,80 (1H, m), 8,50 (1H, d, J=2,4 Hz), 8,84 (1H, d, J=4,5 Hz), 3H no detectado.

Ejemplo 85

Fumarato de N-metil-1-[5-(4-metilpiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Metil{[5-(4-metilpiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}carbamato de terc-butilo (230 mg) se disolvió en metanol (20 ml), se añadió una disolución (2 ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo y la mezcla se agitó a 70°C durante 20 min. La mezcla de reacción se concentró a presión reducida, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio, y la mezcla se extrajo con acetato de etilo. La capa orgánica obtenida se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilometanol (99:1→95:5) para dar una sal libre del compuesto del título. Esta se disolvió en acetato de etilo (8 ml), se añadió una disolución de ácido fumárico (90 mg) en metanol (2 ml), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 115 mg, 48%).

 45 1 H-RMN (DMSO-d₆) δ: 1,89 (3H, s), 2,43 (3H, s), 3,84 (2H, s), 6,45 (1H, d, J=1,9 Hz), 6,48 (2H, s), 7,29 (1H, d, J=4,9 Hz), 7,60-7,65 (1H, m), 7,73 (1H, d, J=1,9 Hz), 7,81-7,85 (1H, m), 7,98 (1H, s), 8,47 (1H, d, J=4,9 Hz), 8,51 (1H, d, J=1,9 Hz), 8,90 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

Ejemplo 86

Fumarato de N-metil-1-[5-(2-metilpiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Por una operación similar a la del Ejemplo 70 y usando metil{[5-(2-metilpiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil)-1H-pirrol-3-ilsulfonil

il]-metil}carbamato de terc-butilo (278 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 93 mg, 32%).

 1 H-RMN (DMSO-d₆) δ : 2,00 (3H, s), 2,43 (3H, s), 3,83 (2H, s), 6,42 (1H, s), 6,47 (2H, s), 7,20-7,24 (1H, m), 7,28-7,31 (1H, m), 7,59-7,63 (1H, m), 7,70 (1H, s), 7,80-7,84 (1H, m), 8,49-8,51 (2H, m), 8,88-8,90 (1H, m), 3H no detectado.

5 Ejemplo 87

10

15

25

30

Hemifumarato de 1-{5-(2-fluoropiridin-3-il)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}-N-metilmetanamina

A una disolución de ({5-(2-fluoropiridin-3-il)-1-[(6-metilpiridin-3-il)sulfonil]-1H-pirrol-3-il}metil)metilcarbamato de tercbutilo (86 mg) en etanol (2 ml) se añadió una disolución (2ml) de 4 mol/l de cloruro de hidrógeno-acetato de etilo a temperatura ambiente. La mezcla se agitó durante 2 h, y se concentró a presión reducida. El residuo se basificó con una disolución acuosa saturada de hidrogenocarbonato de sodio y la mezcla se extrajo con acetato de etilo. El extracto se lavó sucesivamente con una disolución acuosa saturada de hidrogenocarbonato de sodio, agua y salmuera saturada, se secó sobre sulfato de sodio anhidro, y se concentró a presión reducida para dar una sal libre del compuesto del título en forma de un aceite amarillo claro. La sal libre obtenida se disolvió en acetato de etilo (2 ml) y se añadió a una disolución (2 ml) de ácido fumárico (11,3 mg) en etanol, y el disolvente se evaporó a presión reducida. El residuo se recristalizó en etanol para dar el compuesto del título en forma de cristales incoloros (rendimiento 14 mg, 18%).

 1 H-RMN (DMSO-d₆) δ : 2,33 (3H, s), 2,56 (3H, s), 3,68 (2H, s), 6,44 (1H, s), 6,53 (1H, s), 7,41-7,50 (2H, m), 7,64 (1H, s), 7,74-7,81 (2H, m), 8,34 (1H, s), 8,48 (1H, s), 2H no detectado.

Ejemplo 88

20 Fumarato de 1-[4-cloro-5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina

4-Cloro-5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-carbaldehído (320 mg) se disolvió en una disolución de hidrocloruro de metilamina (591 mg) en metanol (32 ml) y la mezcla se agitó durante 30 min. Se añadió triacetoxiborohidruro de sodio (557 mg) y la mezcla se agitó durante 3 h. La mezcla de reacción se concentró a presión reducida a 30°C, se añadió una disolución acuosa saturada de hidrogenocarbonato de sodio al residuo y la mezcla se extrajo con acetato de etilo. El extracto se lavó con salmuera saturada, se secó sobre sulfato de magnesio anhidro, y se concentró a presión reducida. El residuo se purificó por cromatografía en columna de gel de sílice básica (eluyente: acetato de etilo-metanol=99:1→95:5) para dar una sal libre del compuesto del título. Este se disolvió en acetato de etilo (8 ml), se añadió una disolución de ácido fumárico(102 mg) en metanol (2 ml), y los cristales obtenidos se recogieron por filtración para dar el compuesto del título en forma de cristales incoloros (rendimiento 52 mg, 12%).

 1 H-RMN (DMSO-d₆) δ : 2,39 (3H, s), 3,70 (2H, s), 6,65 (2H, s), 7,48-7,53 (1H, m), 7,63-7,68 (1H, m), 7,81 (1H, s), 7,84-7,96 (2H, m), 8,40-8,42 (1H, m), 8,65 (1H, d, J=1,9 Hz), 8,93 (1H, dd, J=4,9, 1,5 Hz), 3H no detectado.

Ejemplo 89

Fumarato de N-metil-1-[1-(piridin-3-ilsulfonil)-5-(2-tienil)-1H-pirrol-3-il]metanamina

Por una operación similar a la del Ejemplo 70 y usando metil{[1-(piridin-3-ilsulfonil)-5-(2-tienil)-1H-pirrol-3-il]metil}carbamato de terc-butilo (315 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 165 mg, 51%).

 1 H-RMN (DMSO-d₆) δ: 2,43 (3H, s), 3,83 (2H, s), 6,47 (2H, s), 6,52 (1H, d, J=1,8 Hz), 7,07-7,12 (2H, m), 7,55-7,62 (2H, m), 7,70 (1H, d, J=1,8 Hz), 7,84-7,88 (1H, m), 8,53-8,54 (1H, m), 8,83-8,85 (1H, m), 3H no detectado.

40 Ejemplo 90

Fumarato de N-metil-1-[5-(3-metilpiridin-2-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina

Por una operación similar a la del Ejemplo 70 y usando metil{[5-(3-metilpiridin-2-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-metil}carbamato de terc-butilo (229 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 124 mg, 53%).

¹H-RMN (DMSO-d₆) δ: 2,18 (3H, s), 2,44 (3H, s), 3,86 (2H, s), 6,46 (2H, s), 6,52 (1H, d, J=1,8 Hz), 7,32-7,36 (1H, m), 7,66-7,74 (3H, m), 8,17-8,21 (1H, m), 8,28-8,30 (1H, m), 8,87-8,90 (2H, m), 3H no detectado.

Ejemplo 91

Fumarato de 2-fluoro-3-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}benzonitrilo

Por una operación similar a la del Ejemplo 70 y usando {[5-(3-ciano-2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-

ES 2 391 757 T3

il]metil}metilcarbamato de terc-butilo (170 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 96 mg, 74%).

 1 H-RMN (DMSO-d₆) δ : 2,39 (3H, s), 3,80 (2H, s), 6,47 (2H, s), 6,59 (1H, d, J=1,5 Hz), 7,43-7,48 (1H, m), 7,52-7,57 (1H, m), 7,60-7,65 (1H, m), 7,76 (1H, d, J=1,8 Hz), 7,89-7,93 (1H, m), 8,02-8,07 (1H, m), 8,59-8,60 (1H, m), 8,89-8,91 (1H, m), 3H no detectado.

Ejemplo 92

5

10

Fumarato de 4-{4-[(metilamino)metil]-1-(piridin-3-ilsulfonil)-1H-pirrol-2-il}tiofeno-3-carbonitrilo

Por una operación similar a la del Ejemplo 70 y usando {[5-(4-ciano-3-tienil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metil}metilcarbamato de terc-butilo (297 mg), se obtuvo el compuesto del título en forma de cristales incoloros (rendimiento 155 mg, 50%).

 1 H-RMN (DMSO-d₆) δ: 2,41 (3H, s), 3,84 (2H, s), 6,47 (2H, s), 6,56 (1H, d, J=2,1 Hz), 7,59-7,74 (1H, m), 7,67 (1H, d, J=3,0 Hz), 7,73-7,74 (1H, m), 7,86-7,90 (1H, m), 8,57-8,59 (2H, m), 8,87-8,89 (1H, m), 3H no detectado.

Las estructuras de los compuestos descritos en los Ejemplos de referencia se muestran en las Tablas 1-14.

Tabla 1

Ej. Ref. No.	R ^{1a}	R ¹⁸	R ^{3a}	R ^{4a}	R ^{5a}
6	Н	F	н	CO ₂ Et	CI
7	Н	F	Н	CO ₂ Et	CI
8	Н		Ме	CO ₂ Me	CI
9	Н	⟨ F	Н	CO ₂ Et	н
10	Н		Н	CO ₂ Et	н
11	Н		Me	CO ₂ Me	н :
12	н	CF ₃	н	CO₂Et	Н
13	н .	F	н	CH₂OH	H
14	Н		Me	CH₂OH	Н
15	Н	√F.	н	СНО	н
16	н	F	Me	СНО	н
17	н	CF ₃	н	СНО	н
18	Н		Н	СНО	н ·
19	н	Н	н	CO ₂ Me	н
20	Н	Н	Me	CO ₂ Me	н
21	Н	н	Н	CO ₂ Et	Me
22	Н	Br	Н	CO ₂ Me	Н

Tabla 2

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}	
23	Н	Br	Me	CO ₂ Me	Н	
24	H	Br	Н	CO ₂ Et	Ме	
36			Н	CO ₂ Et	Н	
37	Me—N=—SO ₂		Н	CO ₂ Et	Н	
38	H_2N SO_2		Н	CO ₂ Et	н	-
39	$N \longrightarrow SO_2$		Н	CO ₂ Et	Н	
40	\sim		Н	CO ₂ Et	Н	
41	\sim	Br	н	CO₂Me	н	
42	$\langle \overline{} \rangle$ $ so_2$	Br	Me	CO ₂ Me	н	
43 ·	$ so_2$	Н	Н	CO ₂ Et .	Me	
44	\sim	Br	Н	CO ₂ Et	Me	
45	\sim		Н	CO ₂ Et	Me	
46	\sim	Br	н	CH ₂ OH	Н	
47	\sim	Н	Н	CH ₂ OH	Me	
48	so_2 so_2	Br	Н	СНО	, н	
49		Br	Me	СНО	Н	
50	Н		Me	СНО	Н	

Tabla 3

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}	
51	\sim	Н	Н	СНО	Me	
52	Н	. H	. Н	CHO	Me	
53	N=>02	Н	Н	СНО	Me	
54	\sim	Br	Н	СНО	Me	
55	\sim		Н	CHO	Н	
56 _{Me} C	\sim		Н	СНО	н	
57 CI	SO ₂		Н	СНО	H .	
58	\sim		Н	СНО	н	
59 CI	$ \sim$ \sim		H	СНО	н	
60 CI	<u>}/</u> /		Н	СНО	Н	
61	Me N= SO ₂		Н	СНО	Me	
62 Me	\sim	F	H	СНО	Н	
63	\sim	CE.	н .	СНО	Н	
64	\sim	CF ₃	Н	СНО	н	
65	\sim		Me	СНО	Н	
66			Me	СНО	Н	

Tabla 4

Ej . Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
67	Me N SO ₂		Me	СНО	Н
68	Me N SO ₂		Me	СНО	н
69	Me SO ₂	— F	Me	СНО	н
70	\sim		Me	CHO	н
71	\sim so_2	Br	Н	CH ₂ NHMe	н
72	\sim	Br	Н	CH ₂ N< Me Boc	H
73	Н	Br	Н	CH ₂ N< Boc	. Н
74	\sim	Br	Н	CH ₂ N< Boc	Н
75	SO ₂		н	CH ₂ N< Me Boc	н
76	CI—SO ₂		Н	CH ₂ N< Boc	Н.
77	CI—\$02		Н	CH ₂ N <me Boc</me 	Н
78	$Me - SO_2$		Н	CH₂N< ^{Me} Boc	Н
79			Н	CH₂N< ^{Me} Boc	Н
80	\sim	F—	Н	CH ₂ N Boc	Н

Tabla 5

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
81	\sim	Me	н	CH ₂ N⊂ ^{Me} Boc	Н
82	\sim	F—	н	CH ₂ N<	Н
83	\sim	Me	· Н	CH ₂ N< Me Boc	Н
84	N= -\$O₂	, NC CI	Н	CH ₂ NCMe Boc	Н
85	\sim		Н	CH ₂ N< Boc	Н
. 86	Н	F————	н	CH ₂ N< Boc	Н
87	Н	F F	Н	CH ₂ N< Me Boc	н
88	Н	CI—	н	CH ₂ N< Me Boc	, н
89	SO_2	F————	н	CH ₂ N Boc	Н
90	\sim	F	Н	CH ₂ N< Me	Н
91	\sim	CI—	Н	CH ₂ N< Me Boc	Н
92	\sim		н	CH ₂ N< Me Boc	Н
93	\sim	Br	Н	CH ₂ N< ^{Me} Boç	Me

Tabla 6

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
97	Н		Н	CO ₂ Et	CI
98	н		н	CO ₂ Me	CI
99	Н		F	CO ₂ Me	CI
100	н		Н	CO ₂ Et	н
101	н		н	CO ₂ Me	н
102	н		F	CO ₂ Me	н
103	н		Н	CH₂OH	н
104	н .	<u></u>	Н	CH ₂ OH	Н .
105	_z H		Н	СНО	н
106	н		Н	СНО	Н
107	Н	Н	Н	СНО	н
111	Н	Me	F	Н	н
112	Н	Br ,	Н	СНО	н

Tabla 7

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
113	н	Me	Н.	сно	Н
114	н		CI	СНО	Н
115	Н		F	. сно	Н
116	Н	Me	F	сно	н .
122	SO ₂		Н	CO ₂ Et	н
123	r_3 C		Н	CO ₂ Et	н
124	Me SO ₂		Н	CO₂Et	Н
125	\sim		F	CO ₂ Me	н
126	Br So ₂		Н	СНО	н
127	F ₃ C Me		н	СНО	н
128	N—SO ₂		Н	CHO	н

Tabla 8

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}	
129	\sim	<u></u>	F .	СНО	Н	
130	SO_2	F.	н	CHO	· н	
131	\sim \sim \sim	<u> </u>	Н	СНО	Н	
132	CI S O_2		н	СНО	н	
133	Me—SO ₂		н	сно	Н	ķī.
134	SO ₂	F	н	СНО	н	ű
135	Me_N_SO ₂		Н	сно	Н	
136	\sim	Me	н	СНО	н	
137	\sim		CI	СНО	Н	E\$.
138	\sim	<u></u>	F	СНО	н	

Tabla 9

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
139	\sim	Me	F	СНО	H
140	$\langle - so_2 \rangle$	F	Н	СНО	CI
141	$\stackrel{\textstyle \bigvee}{\longleftarrow} SO_2$	\bigcirc	Н	CHO	CI
142	SO ₂		Н	CH ₂ N< Me Boc	н .
143	N-SO ₂	Me Me	Н	CH ₂ N< Me Boc	Н
144	\sim	СНО	н	CH ₂ N< Me Boc	н
145	\sim		Н	CH ₂ N< Me	н
146	\sim	CH₂OH	Н	CH ₂ N< ^{Me} Boc	н

Tabla 10

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}	
147	Н	Me Me	Н	СНО	H	
148	. н	SMe	н	СНО	. H	,
149	Н	Br	н	СНО	Н	
150	н	SOMe	Н	СНО	, H	
. 151	н	SO ₂ Me	Н	СНО	н	
152	Н	<u></u>	1	сно	Н	
153	\sim	Me Me	н	СНО	H	
154	\sim	SMe	Н	сно	Н	
155	\sim	Br	Н	. СНО	Н	
156	$\begin{array}{c} \stackrel{N=}{\longrightarrow} - \stackrel{\checkmark}{\circ} O_2 \\ \stackrel{N=}{\longrightarrow} - \stackrel{\checkmark}{\circ} O_2 \end{array}$	SO ₂ Me	H	СНО	Н	
157	\sim	CN	н	СНО	H ·	

Tabla 11

Ej. Ref. No	D. R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}	
158	N=>02	F-	F	CHO .	Н	
159	\sim	Me	Н	СНО	н	
160	\sim		Н	СНО	Br	
161	\sim	F_	CN	СНО	н	
162	\sim	_	Н	СНО	CN	
163 (MeO-SO ₂	Br	Н	CH ₂ N< Me Boc	H _.	
164	N= SO ₂ N		Н	CH ₂ N< Me Boc	Н	
165	\sim	NC NC	Н	CH ₂ N <boc< td=""><td>Н , .</td><td></td></boc<>	Н , .	
166	\sim	MeO	Н	CH₂N< ^{Me} Boc	Н	
167	N= So ₂	ОНС	Н	CH ₂ N< Me	H	

Tabla 12

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
		Me F			
168	\sim		Н	CH₂N< ^{Me} Boc	н
169	\sim		Н	CH ₂ N< Me Boc	Н
170	SO ₂	N ====================================	Н	CH ₂ N Boc	Н
171 ·	\sim \sim \sim \sim	CI CI	н	CH ₂ N ^{Me} _{Boc}	н
172	SO ₂	CI—N—	Н	CH ₂ N< Me Boc	H
173	SO ₂ CH	~~~	— н	CH ₂ N<	н
174 MeC		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	н	CH ₂ N Boc	Н
175	\sim	HO—F	H.	CH ₂ N Boc	Н
176	$\overset{N}{\longleftarrow} - \overset{so_2}{=}$	НО	н ·	CH ₂ N Boc	н
177	\sim	MeO	Н	CH ₂ N< Me Boc	Н
178	\sim		Н	CH ₂ N< Me Boc	н
Constitution		OMe			

Tabla 13

Ej. Ref. No.	R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a}
	N=\ /			Me	
180	SO ₂		- Н	CH ₂ N <boc< td=""><td>н</td></boc<>	н
181	\sim	Me	Н	CH ₂ N< Boc	H .
183	\sim	N	н	CH ₂ N< Boc	Н
187 _N	Ne SO ₂	Br F	Н	CH ₂ N< Boc	Н
188 _M	Ne-SO ₂	N F	Н	CH ₂ N Boc	Н
189	\sim - so_2		Н	сно	Н
190	, н	N	н	СНО	Н
191	Н	, F	CI	сно	Н
192	\sim		Cl	СНО	Н
194	\sim	Me Me	,H	CH ₂ N Boc	Н
196	SO ₂	Me	н	CH ₂ N Me	Н

Tabla 14

Ej. Ref. No.	· R ^{1a}	R ^{2a}	R ^{3a}	R ^{4a}	R ^{5a} .
		HO _N			
197	\sim		н .	CH ₂ N< Me Boc	Н
198	\sim	NC F	Н	CH ₂ N<	Н
199	\sim	Br	н	CH ₂ N< Me Boc	Н
200	N=>/so ₂	NC S	н	CH ₂ N< Boc	Н

Las estructuras de los compuestos descritos en los Ejemplos se muestran en las Tablas 15-23.

Tabla 15

Ej. No.	R ^{1b}	R ^{1b}	R ^{3b}	R ^{4b}	sal de adición
1	N=>-so ₂	<u> </u>	Н	Н	2HCI
2 MeC	\sim		Н	н	HCI
3. MeHI			Н	Н	2HCI
4	NHMe SO ₂		Н	н	2HCI
5 MeHi	N-SO ₂		н	Н	HCI
6	\sim		Н	Me	2HCI
7 M	se—N—SO ₂		Н	Н	2HCI
8	\sim	CF ₃	H	Н	ноос
9	\sim		Н	Н	2HCI
10	\sim		Me	Н	2HCI
11	SO ₂		Ме	Н	HCI
12	Me N SO ₂		Me	Н	2HCI
13	Me SO ₂		Me	н	нсі
14	Me Ne SO ₂		Me	н	HCI

Tabla 16

Ej. No.	. R ^{1b}	R ^{1b}	R ^{3b}	R ^{4b}	sal de adición
15	Me SO ₂		Me	Н	CF₃COOH ′
16	\sim		Me	Н	HCI
17	SO ₂		Н	Н	HCI
18	$H_2N \longrightarrow SO_2$		Н	Н	25
19	N-SO ₂		н	Н	2HCI
20	\sim		Н	Н	ноос
21	\sim		Н	Н ,	СООН
22	HO——SO ₂		H	Н	HCI
23	NC-\SO_2		Н	Н	HCI
24	Me——SO ₂		н	н	2HCI
25	\sim		Н	Н	HCI
26	\sim	F—	н	Н	2HCI
27	\sim	Me	н	Н	2HCI
28	so ₂	F——	Н	Н	2HCI

Tabla 17

_			R ^{ID}			•
_	Ej. No.	R ^{1b}	R ^{2b}	R ^{3b}	R ^{4b}	sal de adición
	29	SO ₂	Me NG	Н	Н	2HCI
	30	\sim	CI	Н	Н	HCI
	· 31	SO_2		Н	H	2HCI
	32	SO ₂	F——F	Н	Н	2HCl
	33	\sim		Н	Н	HCI
	34	\sim	ci—	Н	Н	2HCI
	35	\sim		Н	H	HCI
	36			Н	Me	ноос

Tabla 18

Ej. No.	R ^{1b}	R ^{1b}	R ^{3b}	R ^{4b}	sal de adición
37	so ₂	\bigcirc	Н	Н	HCI
38	F ₃ C Me		Н	Н	2HCl
39	\sim	F-	Н	н	HO ₂ C CO ₂ H
40	$\langle - so_2 \rangle$		- н	н	2HCI
41	\sim		F	н	2HCI
42	\sim		F	н	
43	\sim		F	н 0	0.5 HO ₂ C
44	Me—SO ₂		Н	e H	2HCI
45	\sim		н	Н	HCI
46	Me N SO ₂		н	H .	HO ₂ CCO ₂ H
47	\sim	Me	H	Н	HO ₂ C CO ₂ H
					•

Tabla 19

Ej. No.	R ^{1b}	R ^{1b}	R ^{3b}	R ^{4b}	sal de adición
48	\sim	F.	CI	Н	HO ₂ C CO ₂ H
49	\sim	\bigcirc	F	Н	HO ₂ C CO ₂ H
50	· \$\sim_\$O ₂	Me	F	Н	HO ₂ CCO ₂ H
51	\sim		н -	CI	HO ₂ C CO ₂ H
52	\sim	F	Н	CI	HO ₂ C CO ₂ H
53	SO ₂		Н	Н	HCI
54	NC SO ₂		Н	н	HCI .
55	MeO ₂ C	\bigcirc	Н	н	HCI
56	Me SO ₂		Н	н	2HCl
57	N=\	//e—/	H	Н	HCI

Tabla 20

Ej. No.	R ^{1b}	R ^{2b}	R ^{3b}	R ^{4b}	sal de adición
58	\sim	MeO ₂ S—	Н	Н	2HCI
59	\sim	CH ₂ OH	Н	Н	HO ₂ C CO ₂ H
60	\sim	Me	Н	Н	HO ₂ C,CO ₂ H

Tabla 21

Ej. No.	R ^{1c}	R ²⁶	R ^{3c}	R ^{4c}	R ^{5c} sal de adición
61	\sim		Н	CH ₂ NHMe	HO ₂ C CO ₂ H
62	\sim \sim \sim \sim \sim	Me Me	Н	CH ₂ NHMe	HO ₂ C H CO ₂ H
63	N=>50 ₂	iMe SMe	н	CH ₂ NHMe	HO ₂ C
64	\sim	SO ₂ Me	Н	CH ₂ NHMe	HO ₂ C H 0.5
65	\sim	CN	Н	CH ₂ NHMe	HO ₂ C
66	\sim	Me	Н	CH ₂ NHMe	HO ₂ C CO ₂ H
67	\sim	SOMe	Н	CH ₂ NHMe	HO ₂ C
68			CN	CH ₂ NHMe	HO ₂ C
69	\sim	F_	Н	CH ₂ NHMe	HO₂C CN CO₂H
70	\sim \sim \sim \sim \sim	IC-	Н	CH ₂ NHMe	HO ₂ CCO ₂ H
71	\sim		Н	CH ₂ NHMe	HO ₂ C H 0.5
. ,		NĆ		•	

Tabla 22

	Ej. No.	R ^{1c}	R ^{2c}	R ^{3c}	R ^{4c}	R ⁵⁰	sal de adición
	72	\sim	MeO	Н	CH₂NHMe	Н	HO ₂ C CO ₂ H
	. 73	\sim	O—Me	н	CH ₂ NHMe	ͺΗ	HO ₂ C CO ₂ H
E.	74	\sim		н	CH ₂ NHMe	Н	HO ₂ C CO ₂ H
	75	N=SO ₂	N S	Н	CH ₂ NHMe	Н	HO ₂ C CO ₂ H
	76	\sim	√N=CI	Н	CH ₂ NHMe	Н	HO ₂ C CO ₂ H
	77	N-SO ₂	CI	Н	CH ₂ NHMe	Н	CO ₂ H
	78	SO _{2 CI}		Н	CH ₂ NHMe	Н	HO ₂ C 0.5 CO ₂ H
	79	MeO-SO ₂	F	Н	CH ₂ NHMe	н	HCI
	80	\$02	HO	Н	CH ₂ NHMe	Н	HO ₂ C CO ₂ H
8	81	\sim	HO	Н	CH₂NHMe	Н	HO ₂ C CO ₂ H
	82	\sim	MeO	Н	CH ₂ NHMe	Н	HO ₂ C

Tabla 23

Ej. No.	R ^{1c}	R ^{2c}	R ^{3c}	R ^{4c}	R ^{5c} sal de adición
. 83	N=>-so ₂	OMe	Н	CH ₂ NHMe	HO ₂ C H CO ₂ H
84	$\stackrel{\text{N}=}{\longrightarrow} - \stackrel{\text{N}}{\text{so}_2}$	F—{	Н	CH ₂ NHMe	HO ₂ C
85	\sim	Me N—	H	CH₂NHMe	HO ₂ C CO ₂ H
86	\sim	N=Me	Н	CH ₂ NHMe	HO ₂ C H CO ₂ H
87 M	e—————————————————————————————————————	N=====================================	Н	CH ₂ NHMe	HO ₂ C H 0.5 CO ₂ H
88	\sim	F	CI	CH ₂ NHMe	HO ₂ C
89	\sim		Н	CH ₂ NHMe	HO ₂ C
90	\sim	Me	Н	CH ₂ NHMe	H HO ₂ C CO ₂ H
91	N=>-so ₂	NC_F	H	CH ₂ NHMe	HO ₂ C
92	N=>-so ₂	S CN	Н	CH₂NHMe	H CO ₂ C

Ejemplo experimental 1

Ensayo de actividad inhibidora de protón/potasio-adenosina trifosfatasa (H⁺/K⁺-ATPasa)

Según el método [Biochim. Biophys. Acta, 728, 31 (1983)] de Wallmark et al., se preparó una fracción microsomal de membrana de mucosa gástrica de estómago de cerdo. Primero, se retiró el estómago, se lavó con agua del grifo, se sumergió en 3 mol/l de salmuera, y la superficie de la membrana de la mucosa se limpió con una toalla de papel. La membrana de mucosa gástrica se separó, se cortó, y se homogeneizó en 0,25 mol/l de disolución de sacarosa (pH 6,8) que contiene 1 mmol/l de EDTA y 10 mmol/l de ácido tris-clorhídrico usando polytron (Kinematica). El homogeneizado obtenido se centrifugó a 20.000xg durante 30 min y el sobrenadante se centrifugó a 100.000xg durante 90 min. El precipitado se suspendió en 0,25 mol/l de disolución de sacarosa, se añadió una disolución de 0,25 mol/l de sacarosa que contiene Ficoll al 7,5%, y se centrifugó a 100.000xg durante 5 h. La fracción que contiene la interfase entre ambas capas se recuperó, y se lavó centrífugamente con una disolución de 0,25 mol/l de sacarosa.

La fracción microsomal obtenida se usó como producto estándar de protón/potasio-adenosina trifosfatasa.

A 40 µl de un tampón HEPES-tris de 50 mmol/l (5 mmol/l de cloruro de magnesio, 10 mmol/l de cloruro de potasio, 15 10 μmol/l de valinomicina, pH=6,5) que contiene 2,5 μg/ml (basado en la concentración de proteína) del producto estándar de enzima se añadió un compuesto de ensayo (5 µl) disuelto en una disolución acuosa de dimetilsulfóxido al 10%, y la mezcla se incubó a 37°C durante 30 min. La reacción enzimática se inició añadiendo 5 µl de una disolución de 2 mmol/l de sal de tris de adenosinatrifosfato (50 mmol/l de tampón HEPES-tris (5 mmol/l de cloruro de magnesio, pH 6,5)). La reacción enzimática se llevó a cabo a 37°C durante 20 min, y se añadieron 15 µl de una 20 disolución de verde de malaquita (se mezclaron disolución al 0,12% de verde de malaquita en ácido sulfúrico (2,5 mol/l), molibdato de amonio al 7,5% y Tween 20 al 11% en una relación 100:25:2) para enfriar rápidamente la reacción. Después de dejar reposar a temperatura ambiente durante 15 min, el producto de reacción resultante de fósforo inorgánico con verde de malaquita se determinó colorimétricamente a una longitud de onda de 610 nm. Además, se midió de la misma manera la cantidad del ácido fosfórico en la disolución de reacción libre de cloruro de 25 potasio, que se substrajo de la cantidad de ácido fosfórico inorgánico en presencia de cloruro de potasio para determinar la actividad del protón/potasio-adenosina trifosfatasa. El porcentaje (%) de inhibición se determinó del valor de la actividad del control y los valores de actividad de varias concentraciones del compuesto de ensayo, y se determinó la concentración inhibidora del 50% (IC50) de protón/potasio-adenosina trifosfatasa. Los resultados se muestran en la Tabla 24.

30 Ejemplo experimental 2

La línea celular derivada de cáncer de hígado humano HepG2 (ATCC No. HB-8065) se pasó usando medio Eagle modificado por Dulbecco (DMEM; Invitrogen) que contiene suero bovino fetal al 10% (FBS; TRACE SCIENTIFIC LTD.), 1 mmol/l de piruvato de sodio (Invitrogen), 2 mmol/l de L-glutamina (Invitrogen), 50 IU/ml de penicilina (Invitrogen) y 50 μg/ml de estreptomicina (Invitrogen) a 5% de CO₂, 37°C. El reactivo de ensayo se preparó con DMSO a 10 mM, y se diluyó adicionalmente con medio DMEM que contiene FBS al 5%, 1 mmol/l de piruvato de sodio, 2 mmol/l de L-glutamina, 50 IU/ml de penicilina y 50 μg/ml de estreptomicina hasta una concentración final de DMS del 0,1%. Se cultivó HepG2 (2x10⁴ células/pocillo) en una placa (Costar) blanca de 96 pocillos con el reactivo de ensayo a 5% de CO₂, 37°C. Después del cultivo durante un día, se midió el contenido de ATP intracelular usando ATPLite™ (Perkin Elmer Life Sciences). Los resultados se muestran en la Tabla 24 (n≥3, valor medio±SD) como valor relativo (%) respecto al control (sin la adición del fármaco) a 30 μM.

Tabla 24

35

40

Ejemplo No.	Actividad inhibidora de H ⁺ /K ⁺ -ATPasa (IC ₅₀ , nM)	Contenido de ATP (%, 30 µM)
2	13	45,2
5	65	73,9
8	22	87,9
29	41	71,5
41	43	86,7
44	48	78,5
47	58	81,8
74	210	95,2

ES 2 391 757 T3

De los resultados de la Tabla 24, está claro que el compuesto (I) de la presente invención tiene una superior actividad inhibidora de H^+/K^+ -ATPasa, y adicionalmente muestra baja toxicidad.

Aplicabilidad industrial

Dado que el compuesto (I) de la presente invención muestra un superior efecto inhibidor de la bomba de protones (mientras que los inhibidores de la bomba de protones convencionales tales como omeprazol, lansoprazol, etc. forman un enlace covalente con un resto cisteína de H⁺/K⁺-ATPasa e inhiben irreversiblemente la actividad de la enzima, dado que el compuesto (I) inhibe la actividad de la bomba de protones (H⁺/K⁺-ATPasa) reversiblemente y de una manera inhibidora antagonista de K⁺ para suprimir consecuentemente la secreción de ácido, se denomina a veces bloqueador de ácido competitivo con potasio: P-CAB o antagonista de la bomba de ácido (ACPA o APA)), 10 puede proporcionar una composición farmacéutica clínicamente útil para la profilaxis y/o tratamiento de úlcera péptica, síndrome de Zollinger-Ellison, gastritis, esofagitis erosiva, esofagitis por reflujo, enfermedades de reflujo esofágico sintomático (GERD sintomático), dispepsia funcional, cáncer gástrico, linfoma MALT del estómago, o hiperacidez gástrica; o un inhibidor de la hemorragia gastrointestinal superior debido a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo. Dado que el compuesto (I) muestra baja toxicidad y es 15 superior en solubilidad en agua, cinética in vivo y expresión de eficacia, es útil como composición farmacéutica. Además, dado que el compuesto (I) es estable incluso en condiciones ácidas, lo que permite la administración oral del compuesto en forma de comprimido convencional sin formular una preparación entéricamente revestida. Esto tiene una consecuencia que la preparación o comprimido se puede hacer más pequeña, que es ventajoso porque se traga fácilmente por pacientes que tienen dificultad para tragar, particularmente los ancianos y los niños. Además, 20 dado que está ausente el efecto de desprendimiento sostenido proporcionado por las preparaciones entéricamente revestidas, la expresión de la acción supresora de la secreción de ácido gástrico es rápida, y el alivio de los síntomas tales como el dolor es rápido.

Esta solicitud está basada en las solicitudes de patente Nos. 2005-250356 y 2006-100626 presentadas en Japón, cuyos contenidos se incorporan totalmente aquí por esta referencia.

25

REIVINDICACIONES

1. Un compuesto representado por la fórmula (I):

30

35

40

45

50

5 en la que R1 es un grupo heterocíclico monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo, el grupo heterocícloo monocíclico que contiene nitrógeno opcionalmente condensado con un anillo bencénico o un heterociclo opcionalmente tiene de 1 a 5 sustituyentes seleccionados de (1) un átomo de halógeno, (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C₆₋₁₄, (7) aralquiloxi de C₇₋₁₆, (8) mercapto, (9) alquiltio de C₁₋₆ que opcionalmente tiene de 1 a 3 átomos 10 de halógeno, (10) ariltio de C_{6-14} , (11) aralquiltio de C_{7-16} , (12) amino, (13) mono-alquil de C_{1-6} -amino, (14) mono-aril de C_{6-14} -amino, (15) mono-aralquil de C_{7-16} -amino, (16) di-alquil de C_{1-6} -amino, (17) di-aril de C_{6-14} -amino, (18) diaralquil de C₇₋₁₆-amino, (19) formilo, (20) alquil de C₁₋₆-carbonilo, (21) aril de C₆₋₁₄-carbonilo, (22) carboxilo, (23) alcoxi de C₁₋₆-carbonilo, (24) ariloxi de C₆₋₁₄-carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C₁₋₆carbamoilo, (28) di-alquil de C₁₋₆-carbamoilo, (29) aril de C₆₋₁₄-carbamoilo, (30) alquil de C₁₋₆-sulfonilo, (31) aril de C₆-15 14-sulfonilo, (32) alquil de C₁₋₆-sulfinilo, (33) aril de C₆₋₁₄-sulfinilo, (34) formilamino, (35) alquil de C₁₋₆-carbonilamino, (36) aril de C₆₋₁₄-carbonilamino, (37) alcoxi de C₁₋₆-carbonilamino, (38) alquil de C₁₋₆-sulfonilamino, (39) aril de C₆₋₁₄sulfonilamino, (40) alquil de C_{1-6} -carboniloxi, (41) aril de C_{6-14} -carboniloxi, (42) alcoxi de C_{1-6} -carboniloxi, (43) monoalquil de C₁₋₆-carbamoiloxi, (44) di-alquil de C₁₋₆-carbamoiloxi, (45) aril de C₆₋₁₄-carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 20 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi, (49) cicloalquilo de C₃₋₇, (50) grupo alquilo de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (51) un grupo alquenilo de C₂₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (52) 25 un grupo alquinilo de C₂₋₆, y (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi,

R² es (i) un grupo arilo de C₆₋₁₄ que tiene opcionalmente de 1 a 5 sustituyentes seleccionados de (1) un átomo de halógeno, (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C_{6-14} , (7) aralquiloxi de C_{7-16} , (8) mercapto, (9) alquiltio de C_{1-6} que tiene opcionalmente de 1 a 3 átomos de halógeno, (10) ariltio de C₆₋₁₄, (11) aralquiltio de C₇₋₁₆, (12) amino, (13) mono-alquil de C₁₋₆-amino, (14) mono-aril de C₆₋₁₄-amino, (15) mono-aralquil de C₇₋₁₆-amino, (16) di-alquil de C₁₋₆-amino, (17) di-aril de C₆₋₁₄-amino, (18) di-aralquil de C₇₋₁₆-amino, (19) formilo, (20) alquil de C₁₋₆-carbonilo, (21) aril de C₆₋₁₄-carbonilo, (22) carboxilo, (23) alcoxi de C₁₋₆ 6-carbonilo, (24) ariloxi de C₆₋₁₄-carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C₁₋₆-carbamoilo, (28) di-alguil de C₁₋₆-carbamoilo, (29) aril de C₆₋₁₄-carbamoilo, (30) alguil de C₁₋₆-sulfonilo, (31) aril de C₆₋₁₄-sulfonilo, (32) alquil de C₁₋₆-sulfinilo, (33) aril de C₆₋₁₄-sulfinilo, (34) formilamino, (35) alquil de C₁₋₆-carbonilamino, (36) aril de C_{6-14} -carbonilamino, (37) alcoxi de C_{1-6} -carbonilamino, (38) alquil de C_{1-6} -sulfonilamino, (39) aril de C_{6-14} -sulfonilamino, (40) alquil de C_{1-6} -carboniloxi, (41) aril de C_{6-14} -carboniloxi, (42) alcoxi de C_{1-6} -carboniloxi, (43) monoalquil de C_{1-6} -carbamoiloxi, (44) di-alquil de C_{1-6} -carbamoiloxi, (45) aril de C_{6-14} -carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi, (49) cicloalquilo de C₃₋₇, (50) grupo alquilo de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (51) un grupo alquenilo de C₂₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (52) un grupo alquinilo de C₂₋₆, y (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi, (ii) un grupo tienilo que tiene opcionalmente de 1 a 4 sustituyentes seleccionados de (1) un átomo de halógeno, (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C₆₋₁₄, (7) aralquiloxi de C₇₋₁₆, (8) mercapto, (9) alquiltio de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (10) ariltio de C₆₋₁₄, (11) aralquiltio de C₇₋₁₆, (12) amino, (13) mono-alquil de C₁₋₆-amino, (14) mono-aril de C₆₋₁₄-amino, (15) mono-aralquil de C_{7-16} -amino, (16) di-alquil de C_{1-6} -amino, (17) di-aril de C_{6-14} -amino, (18) di-aralquil de C_{7-16} -amino, (19) formilo, (20) alquil de C_{1-6} -carbonilo, (21) aril de C_{6-14} -carbonilo, (22) carboxilo, (23) alcoxi de C_{1-6} -carbonilo, (24) ariloxi de C_{6-14} carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C₁₋₆-carbamoilo, (28) di-alquil de C₁₋₆-carbamoilo, (29) aril de C₆₋₁₄-carbamoilo, (30) alquil de C₁₋₆-sulfonilo, (31) aril de C₆₋₁₄-sulfonilo, (32) alquil de C₁₋₆-sulfinilo, (33)

5

10

15

20

25

30

35

40

45

50

55

60

aril de C₆₋₁₄-sulfinilo, (34) formilamino, (35) alquil de C₁₋₆-carbonilamino, (36) aril de C₆₋₁₄-carbonilamino, (37) alcoxi de C₁₋₆-carbonilamino, (38) alquil de C₁₋₆-sulfonilamino, (39) aril de C₆₋₁₄-sulfonilamino, (40) alquil de C₁₋₆-carboniloxi, $(41) \ \text{aril de } C_{6\text{-}14}\text{-carboniloxi}, \ (42) \ \text{alcoxi de } C_{1\text{-}6}\text{-carboniloxi}, \ (43) \ \text{mono-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (44) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (45) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (45) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (45) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (46) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (47) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi}, \ (48) \ \text{di-alquil de } C_{1\text{-}6}\text{-carbamoiloxi},$ C₁₋₆-carbamoiloxi, (45) aril de C₆₋₁₄-carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi, (49) cicloalquilo de C₃₋₇, (50) grupo alquilo de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (51) un grupo alquenilo de C2-6 que tiene opcionalmente de 1 a 3 átomos de halógeno, (52) un grupo alquinilo de C2-6, y (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi, o (iii) un grupo piridilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (1) un átomo de halógeno, (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C₆₋₁₄, (7) aralquiloxi de C₇₋₁₆, (8) mercapto, (9) alquiltio de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (10) ariltio de C₆₋₁₄, (11) aralquiltio de C₇₋₁₆, (12) amino, (13) mono-alquil de C_{1-6} -amino, (14) mono-aril de C_{6-14} -amino, (15) mono-aralquil de C_{7-16} -amino, (16) di-alquil de C_{1-6} ₆-amino, (17) di-aril de C₆₋₁₄-amino, (18) di-aralquil de C₇₋₁₆-amino, (19) formilo, (20) alquil de C₁₋₆-carbonilo, (21) aril de C₆₋₁₄-carbonilo, (22) carboxilo, (23) alcoxi de C₁₋₆-carbonilo, (24) ariloxi de C₆₋₁₄-carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de $C_{1.6}$ -carbamoilo, (28) di-alquil de $C_{1.6}$ -carbamoilo, (29) aril de $C_{6.14}$ -carbamoilo, (30) alquil de C₁₋₆-sulfonilo, (31) aril de C₆₋₁₄-sulfonilo, (32) alquil de C₁₋₆-sulfinilo, (33) aril de C₆₋₁₄-sulfinilo, (34) formilamino, (35) alquil de C₁₋₆-carbonilamino, (36) aril de C₆₋₁₄-carbonilamino, (37) alcoxi de C₁₋₆-carbonilamino, (38) alquil de C_{1-6} -sulfonilamino, (39) aril de C_{6-14} -sulfonilamino, (40) alquil de C_{1-6} -carboniloxi, (41) aril de C_{6-14} carboniloxi, (42) alcoxi de C₁₋₆-carboniloxi, (43) mono-alquil de C₁₋₆-carbamoiloxi, (44) di-alquil de C₁₋₆-carbamoiloxi, (45) aril de C₆₋₁₄-carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi, (49) cicloalquilo de C₃₋₇, (50) grupo alquilo de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (51) un grupo alquenilo de C₂₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (52) un grupo alquinilo de C₂₋₆, y (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi,

R³ y R⁴ son cada uno un átomo de hidrógeno, o uno de R³ y R⁴ es un átomo de hidrógeno y el otro es (i) un grupo alquilo de C₁₋₄ que tiene opcionalmente de 1 a 3 sustituyentes seleccionados de (1) un átomo de halógeno, (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C₆₋₁₄, (7) aralquiloxi de C₇₋₁₆, (8) mercapto, (9) alquiltio de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (10) ariltio de C_{6-14} , (11) aralquiltio de C_{7-16} , (12) amino, (13) mono-alquil de C_{1-6} -amino, (14) mono-aril de C_{6-14} -amino, (15) mono-aralquil de C₇₋₁₆-amino, (16) di-alquil de C₁₋₆-amino, (17) di-aril de C₆₋₁₄-amino, (18) di-aralquil de C₇₋₁₆amino, (19) formilo, (20) alguil de C_{1-6} -carbonilo, (21) aril de C_{6-14} -carbonilo, (22) carboxilo, (23) alcoxi de C_{1-6} carbonilo, (24) ariloxi de C₆₋₁₄-carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C₁₋₆-carbamoilo, (28) di-alquil de C₁₋₆-carbamoilo, (29) aril de C₆₋₁₄-carbamoilo, (30) alquil de C₁₋₆-sulfonilo, (31) aril de C₆₋₁₄-sulfonilo, $(32) \ alquil \ de \ C_{1\text{-}6}\text{-sulfinilo}, \ (33) \ aril \ de \ C_{6\text{-}14}\text{-sulfinilo}, \ (34) \ formilamino, \ (35) \ alquil \ de \ C_{1\text{-}6}\text{-carbonilamino}, \ (36) \ aril \ de \ C_{1\text{$ C₆₋₁₄-carbonilamino, (37) alcoxi de C₁₋₆-carbonilamino, (38) alquil de C₁₋₆-sulfonilamino, (39) aril de C₆₋₁₄sulfonilamino, (40) alquil de C₁₋₆-carboniloxi, (41) aril de C₆₋₁₄-carboniloxi, (42) alcoxi de C₁₋₆-carboniloxi, (43) monoalquil de C_{1-6} -carbamoiloxi, (44) di-alquil de C_{1-6} -carbamoiloxi, (45) aril de C_{6-14} -carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi y (49) cicloalquilo de C₃₋₇, (ii) un grupo acilo seleccionado del grupo que consiste en un grupo alcanoilo de C₁₋₇, un grupo aril de C₆₋₁₄-carbonilo, un grupo alcoxi de C₁₋₆-carbonilo, un grupo ariloxi de C_{6-14} -carbonilo, un grupo aralquil de C_{7-19} -carbonilo, un grupo aralquiloxi de C_{7-19} -carbonilo, un grupo carboniloheterociclo de 5 o 6 miembros o su grupo carbonilo-heterociclo condensado, y un grupo acetilo-heterociclo de 5 o 6 miembros, en el que cuando el grupo acilo es un grupo alcanoilo de C₁₋₇ o un grupo alcoxi de C₁₋₆-carbonilo, el grupo acilo está opcionalmente sustituido con 1 a 3 grupos alquiltio de C₁₋₄, halógeno, grupos alcoxi de C₁₋₆, un grupo nitro, grupos alcoxi de C₁₋₆-carbonilo, grupos mono- o di-alquil de C₁₋₆-amino, grupos alcoxi de C₁₋₆-imino, o hidroxiimino, en el que cuando el grupo acilo es un grupo aril de C₆₋₁₄-carbonilo, un grupo ariloxi de C₆₋₁₄-carbonilo, un grupo aralquil de C₇₋₁₉-carbonilo, un grupo aralquiloxi de C₇₋₁₉-carbonilo, un grupo carbonilo-heterociclo de 5 o 6 miembros o un grupo acetilo-heterociclo de 5 o 6 miembros, el grupo acilo está opcionalmente sustituido con 1 a 5 grupos alquilo de C₁₋₆, grupos cicloalquilo de C₃₋₆, grupos alquenilo de C₂₋₆, grupos alquinilo de C₂₋₆, grupos alcoxi de C₁₋₆, grupos alcanoilo de C₁₋₇, grupos aril de C₆₋₁₄-carbonilo, grupos alcoxi de C₁₋₆-carbonilo, grupos aralquiloxi de C₇₋₁₉carbonilo, nitro, amino, hidroxi, ciano, sulfamoilo, mercapto, halógeno o grupos alquiltio de C₁₋₄, (iii) un átomo de halógeno, (iv) un grupo ciano o (v) un grupo nitro, y

 R^5 es un grupo alquilo de C_{1-6} , o una de sus sales, para uso para el tratamiento o profilaxis de úlcera péptica, síndrome de Zollinger-Ellison, gastritis, esofagitis erosiva, esofagitis por reflujo, enfermedad por reflujo gastroesofágico sintomático (GERD sintomático), dispepsia funcional, cáncer gástrico, linfoma MALT del estómago,

o hiperacidez gástrica; o la inhibición de la hemorragia gastrointestinal superior debida a úlcera péptica, úlcera de estrés agudo, gastritis hemorrágica o estrés invasivo, o para uso para la erradicación de helicobacter pylori.

- El compuesto, o una de sus sales, para uso según la reivindicación 1, en el que R² es (i) un grupo arilo de C₆₋₁₄ opcionalmente sustituido con 1 a 5 sustituyentes seleccionados (1) un átomo de halógeno, (2) nitro, (3) ciano, 5 (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C₆₋₁₄, (7) aralquiloxi de C₇₋₁₆, (8) mercapto, (9) alquiltio de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (10) ariltio de C₆₋₁₄, (11) aralquiltio de C_{7-16} , (12) amino, (13) mono-alquil de C_{1-6} -amino, (14) mono-aril de C_{6-14} -amino, (15) mono-aralquil de C_{7-16} -amino, (16) di-alquil de C_{1-6} -amino, (17) di-aril de C_{6-14} -amino, (18) di-aralquil de C_{7-16} -amino, (19) formilo, (20) alquil de C₁₋₆-carbonilo, (21) aril de C₆₋₁₄-carbonilo, (22) carboxilo, (23) alcoxi de C₁₋₆-carbonilo, (24) ariloxi de C₆₋₁ 14-carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C₁₋₆-carbamoilo, (28) di-alquil de C₁₋₆-10 carbamoilo, (29) aril de C₆₋₁₄-carbamoilo, (30) alquil de C₁₋₆-sulfonilo, (31) aril de C₆₋₁₄-sulfonilo, (32) alquil de C₁₋₆-sulfonilo, (31) aril de C₆₋₁₄-sulfonilo, (32) alquil de C₁₋₆-sulfonilo, (32) alquil de C₁₋₆-s sulfinilo, (33) aril de C₆₋₁₄-sulfinilo, (34) formilamino, (35) alquil de C₁₋₆-carbonilamino, (36) aril de C₆₋₁₄-carbonilamino, (37) alcoxi de C₁₋₆-carbonilamino, (38) alquil de C₁₋₆-sulfonilamino, (39) aril de C₆₋₁₄-sulfonilamino, (40) alquil de C₁₋₆carboniloxi, (41) aril de C_{6-14} -carboniloxi, (42) alcoxi de C_{1-6} -carboniloxi, (43) mono-alquil de C_{1-6} -carbamoiloxi, (44) di-alquil de C_{1-6} -carbamoiloxi, (45) aril de C_{6-14} -carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que 15 contiene opcionalmente, además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi, 20 (49) cicloalquilo de C_{3-7} , (50) grupo alquilo de C_{1-6} que tiene opcionalmente de 1 a 3 átomos de halógeno, (51) un grupo alquenilo de C₂₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (52) un grupo alquinilo de C₂₋₆, y (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi, o (ii) un grupo tienilo opcionalmente sustituido con 1 a 4 sustituyentes seleccionados de (1) un átomo de halógeno, (2) nitro, (3) ciano, (4) hidroxi, (5) alcoxi de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (6) ariloxi de C₆₋₁₄, (7) aralquiloxi de C₇₋₁₆, (8) mercapto, (9) alquiltio de 25 C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (10) ariltio de C₆₋₁₄, (11) aralquiltio de C₇₋₁₆, (12) amino, (13) mono-alquil de C₁₋₆-amino, (14) mono-aril de C₆₋₁₄-amino, (15) mono-aralquil de C₇₋₁₆-amino, (16) di-alquil de C₁₋ ₆-amino, (17) di-aril de C_{6-14} -amino, (18) di-aralquil de C_{7-16} -amino, (19) formilo, (20) alquil de C_{1-6} -carbonilo, (21) aril de C₆₋₁₄-carbonilo, (22) carboxilo, (23) alcoxi de C₁₋₆-carbonilo, (24) ariloxi de C₆₋₁₄-carbonilo, (25) carbamoilo, (26) tiocarbamoilo, (27) mono-alquil de C_{1-6} -carbamoilo, (28) di-alquil de C_{1-6} -carbamoilo, (29) aril de C_{6-14} -carbamoilo, 30 (30) alquil de C_{1-6} -sulfonilo, (31) aril de C_{6-14} -sulfonilo, (32) alquil de C_{1-6} -sulfinilo, (33) aril de C_{6-14} -sulfinilo, (34) formilamino, (35) alquil de C₁₋₆-carbonilamino, (36) aril de C₆₋₁₄-carbonilamino, (37) alcoxi de C₁₋₆-carbonilamino, (38) alquil de C₁₋₆-sulfonilamino, (39) aril de C₆₋₁₄-sulfonilamino, (40) alquil de C₁₋₆-carboniloxi, (41) aril de C₆₋₁₄carboniloxi, (42) alcoxi de $C_{1.6}$ -carboniloxi, (43) mono-alquil de $C_{1.6}$ -carbamoiloxi, (44) di-alquil de $C_{1.6}$ -carbamoiloxi, (45) aril de C₆₋₁₄-carbamoiloxi, (46) un amino cíclico saturado de 5 a 7 miembros que contiene opcionalmente, 35 además de un átomo de nitrógeno y átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (47) un grupo heterocíclico aromático de 5 a 10 miembros que contiene, además de átomos de carbono, 1 o 2 tipos de 1 a 4 heteroátomos seleccionados de un átomo de nitrógeno, un átomo de azufre y un átomo de oxígeno, (48) alquileno de C₁₋₃-dioxi, (49) cicloalquilo de C₃₋₇, (50) grupo alquilo de C₁₋₆ que tiene opcionalmente de 1 a 3 átomos de halógeno, (51) un grupo alquenilo de C₂₋₆ que 40 tiene opcionalmente de 1 a 3 átomos de halógeno, (52) un grupo alquinilo de C₂₋₆, y (53) un grupo alquilo de C₁₋₆ sustituido con 1 a 3 hidroxi.
 - 3. El compuesto, o una de sus sales, para uso según la reivindicación 1, en el que R¹ es un grupo heterocíclico monocíclico que contiene nitrógeno.
- 4. El compuesto, o una de sus sales, para uso según la reivindicación 1, en el que el grupo heterocíclico 45 monocíclico que contiene nitrógeno es un grupo piridilo.
 - 5. El compuesto, o una de sus sales, para uso según la reivindicación 1, en el que R^2 es un grupo fenilo opcionalmente sustituido con 1 a 5 sustituyentes seleccionados de (i) un átomo de halógeno y (ii) un alquilo de C_{1-6} opcionalmente sustituido con 1 a 3 átomos de halógeno.
- - 7. El compuesto, o una de sus sales, para uso según la reivindicación 1, en el que R³ y R⁴ son cada uno un átomo de hidrógeno.
 - 8. El compuesto, o una de sus sales, para uso según la reivindicación 1, en el que R⁵ es un grupo metilo.
- 55 9. El compuesto para uso según la reivindicación 1, que es 1-{5-(2-fluorofenil)-1-[(6-metilpiridin-3-il)-sulfonil]-1+-pirrol-3-il}-N-metilmetanamina o una de sus sales.
 - 10. El compuesto para uso según la reivindicación 1, que es 1-[4-fluoro-5-fenil-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina o una de sus sales.

ES 2 391 757 T3

- 11. El compuesto para uso según la reivindicación 1, que es N-metil-1-[5-(4-metil-3-tienil)-1-(piridin-3-ilsulfonil)-1+pirrol-3-il]metanamina o una de sus sales.
- 12. El compuesto para uso según la reivindicación 1, que es 1-[5-(2-fluoropiridin-3-il)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina o una de sus sales.
- 5 13. El compuesto para uso según la reivindicación 1, que es 1-[5-(2-fluorofenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]-N-metilmetanamina o una de sus sales.
 - 14. El compuesto para uso según la reivindicación 1, que es N-metil-1-[5-(2-metilfenil)-1-(piridin-3-ilsulfonil)-1H-pirrol-3-il]metanamina o una de sus sales.
- 15. El compuesto, o una de sus sales, para uso según la reivindicación 1, para la erradicación de helicobacter 10. pylori.
 - 16. El compuesto, o una de sus sales, para uso según la reivindicación 15, en combinación con de 1 a 3 de otros ingredientes activos.
 - 17. El compuesto, o una de sus sales, para uso según la reivindicación 16, en el que los otros ingredientes activos se seleccionan de (i) penicilinas antibióticas y/o (ii) eritromicinas antibióticas.
- 15 18. El compuesto, o una de sus sales, para uso según la reivindicación 16, en el que los otros ingredientes activos se seleccionan de compuestos de imidazol.