

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 393 152

51 Int. Cl.:

H04W 88/02 (2009.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Número de solicitud europea: 03735669 .8

96 Fecha de presentación: 18.06.2003

Número de publicación de la solicitud: 1518362
Fecha de publicación de la solicitud: 30.03.2005

(54) Título: Método para la creación de una nueva red de comunicación mediante un terminal inalámbrico y terminal que pone en práctica el método

(30) Prioridad:

28.06.2002 FR 0208097

45) Fecha de publicación de la mención BOPI:

18.12.2012

45) Fecha de la publicación del folleto de la patente:

18.12.2012

(73) Titular/es:

THOMSON LICENSING (100.0%) 1-5, rue Jeanne d'Arc 92130 Issy-les-Moulineaux, FR

(72) Inventor/es:

DORE, RENAUD; JEANNE, LUDOVIC; LOPEZ, PATRICK y VINCENT, CHRISTOPHE

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Método para la creación de una nueva red de comunicación mediante un terminal inalámbrico y terminal que pone en práctica el método

La invención trata de un método para la creación de una nueva red por un terminal, más específicamente cuando el terminal estaba inicialmente asociado a una red existente. La invención también trata del terminal en sí mismo. Es de aplicación en particular en el contexto de redes inalámbricas con control centralizado, aunque no se limita a este contexto.

Una red de comunicaciones inalámbricas centralizada del tipo HIPERLAN 2 tiene unos recursos limitados. Cuando un gran número de terminales están asociados a la red, algunos terminales pueden ser incapaces de reservar los recursos requeridos para sus aplicaciones.

El documento "ETSI TS 101 761-4 V1.4.1A (2002–5) BRAN HIPERLAN Type 2, Data Link Control (DLC) Layer; Part 4: Extension For Home Environment, section 6.7.1 "Dymanic Central Controller Selection / Principle" describe que un terminal inalámbrico que es capaz de convertirse en el controlador central, y para el cual un intento de asociarse a un controlador central de una red existente falla, intenta el mismo convertirse en el controlador central iniciando el proceso de selección de control central descrito en el documento mencionado anteriormente.

El documento HABETHA J ET AL: "Central controller handover procedure for ETSI-BRAN Hiperlan/2 Ad Hoc network and clustering with quality of servicies guarantees" describe la transferencia del control desde un controlador central a otro dispositivo en una red Hiperlan/2. Bajo ciertas circunstancias el controlador central elije uno de los terminales conectados para sustituirse a sí mismo en el control. Transmite al controlador futuro alguna información de gestión, a continuación la red se para y la nueva se inicia bajo el control de un nuevo controlador.

La invención trata de un método para la creación de una nueva red de comunicaciones mediante un terminal inalámbrico, cuyo método está caracterizado porque, siendo inicialmente el terminal inalámbrico parte de una red centralizada existente que incluye un punto de acceso capaz de controlar la asociación de terminales inalámbricos a esta red, incluye, para el terminal asociado, los pasos de:

- des-asociación del terminal de la red; y

5

10

15

20

25

35

40

45

- iniciación de un procedimiento para crear una nueva red incluyendo una declaración del terminal como punto de acceso de la nueva red, en donde los parámetros operativos de la nueva red son tales que las comunicaciones en la nueva red no interfieren con la red existente.

Así, un terminal asociado previamente a la red, pero desasociado de esta red, puede crear una nueva red, sin interferir con la red inicial. Los nuevos recursos están de esta manera.

De acuerdo con una realización preferida, el terminal toma la iniciativa de la des-asociación El terminal puede decidir en esta des-asociación si por ejemplo el punto de acceso de la red inicial no responde favorablemente a ciertas peticiones, por ejemplo en referencia a la disposición de recursos de la red existente.

Otras características y ventajas de la invención resultarán aparentes a través de la descripción de una realización de ejemplo no limitativa, explicada mediante referencia a los dibujos que se acompañan, en los que:

- la Figura 1 es un diagrama que muestra los intercambios de información entre el terminal y el punto de acceso en el caso de una des-asociación tras la asociación;
- la Figura 2 es un diagrama del mismo tipo que el de la Figura 1 en el caso de una denegación del inicio de un cambio de frecuencia por el punto de acceso;
- la Figura 3 es una diagrama del mismo tipo que el de la Figura 1 en el caso de una denegación del establecimiento de una conexión;
- la Figura 4 es una diagrama de flujo del método de acuerdo con la realización de ejemplo.

La realización de ejemplo encaja dentro del contexto de una red de comunicaciones HIPERLAN 2. HIPERLAN 2 es un estándar en desarrollo por la ETSI (European Telecommunication Standar Institute, Instituto Europeo de Normalización de Telecomunicaciones). En este tipo de red en la que la comunicación tiene lugar mediante ondas de radio de aproximadamente 5 Ghz, una unidad denominada Punto de Acceso (AP) o Controlador Central (CC) gestiona el acceso de otros dispositivos de red al medio de transmisión. Estos otros dispositivos son denominados terminales inalámbricos o Terminales Móviles (MTs). Para ser capaz de acceder a la red, un terminal inalámbrico

ES 2 393 152 T3

debe en primer lugar asociarse al punto de acceso. El procedimiento adecuado está descrito en particular en el siguiente documento:

"ETSI TS 101 761-2 V.1.4.1A (2002-05) Broadband Radio Access Networks (BRAN); HIPERLAN Type 2: Data Link Control (DLC) Layer; Part 2: Radio Link Control (RLC) Sublayer", y en particular la Sección 5.1 "Services supporting ACF (Association Control Function)".

5

10

15

30

35

50

De acuerdo con la realización de ejemplo presente, puede haber varias razones para la no asociación de un terminal inalámbrico al punto de acceso, o una des-asociación de un terminal inalámbrico asociado.

La Figura 1 es un diagrama de una red que tiene un punto de acceso AP-CC y un terminal inalámbrico MT. Otros terminales inalámbricos de la red no están mostrados. Un terminal inalámbrico típico tiene una interfase con el medio de comunicaciones (la red inalámbrica) y un microprocesador que ejecuta aplicaciones y protocolos apropiados, estando almacenado el código para ésto en una memoria dentro del terminal. El diagrama de la Figura 1 indica la información intercambiada entre los dos dispositivos durante un intento de asociación del terminal inalámbrico MT al punto de acceso AP/CC. El terminal inalámbrico, una vez activado, analiza la actividad radio para detectar la presencia de una red que tenga características que permitan a priori una asociación. Estas características incluyen en particular la identidad de la red y son difundidas en el conjunto de datos controlado por el punto de acceso.

El terminal comienza un diálogo con el punto de acceso para intercambiar parámetros como por ejemplo la lista de capas de convergencia soportadas y cuando puede un terminal inalámbrico transmitir en modo directo a otro terminal inalámbrico. En la Figura 1, se asume que la asociación tiene lugar. Más adelante, con el terminal móvil asociado, el punto de acceso puede decidir arbitrariamente desasociar este terminal.

Más aún, un terminal móvil asociado a un punto de acceso puede resultar perturbado por otro dispositivo de otra red utilizando la misma frecuencia. En este caso, el terminal inalámbrico puede solicitar al punto de acceso al que está asociado que realice un cambio en la frecuencia de la red. Este proceso es conocido como DFS (Dynamic Frequency Selection, Selección de Frecuencias Dinámica). El punto de acceso puede de sin embargo rechazar el cambio de frecuencia, y el terminal inalámbrico puede a continuación desasociarse a sí mismo. El terminal inalámbrico puede también desasociarse a sí mismo si el punto de acceso no ha respondido a la petición de DFS en un tiempo predeterminado. Este escenario se ilustra en la Figura 2.

La Figura 3 representa la red en el estado en el que el terminal inalámbrico está asociado al punto de acceso. El terminal inalámbrico envía una petición de establecimiento de conexión al punto de acceso. El último puede rechazar la petición, notificando al terminal inalámbrico el rechazo. Esto puede ocurrir si el nivel de tráfico en la red es significativo. De acuerdo con la presente realización de ejemplo, una aplicación del terminal móvil decide a continuación desasociarse a sí mismo de la red, al menos para algunos tipos de conexión. De acuerdo con la realización presente, esta des-asociación es iniciada únicamente si no hay ninguna otra conexión en la red que implique al terminal móvil en cuestión.

La Figura 4 es un diagrama de flujo del método de acuerdo con la presente realización de ejemplo. En respuesta a un rechazo de una petición, como (por ejemplo) el establecimiento de una conexión o de un cambio de frecuencia, el terminal inalámbrico se desasocia a sí mismo de la red existente. En los otros dos casos que han sido descritos, el terminal inalámbrico ya se encuentra desasociado (en los ejemplos mencionados, tanto como respuesta a una decisión del punto de acceso, como respuesta a un rechazo de asociación por el punto de acceso).

El terminal inalámbrico desasociado se muestra a sí mismo como un punto de acceso de una nueva red.

Cuando es posible, utilizará ventajosamente una frecuencia que es diferente de la de la red inicial al objeto de evitar cualquier interferencia. Si la nueva red es creada en respuesta a un rechazo de cambio de frecuencia, entonces la nueva red utilizará ventajosamente una frecuencia que es diferente de las frecuencias de la red inicial y de la red que interfiere. En este extremo, el terminal móvil puede iniciar el proceso de selección de controlador central mencionado en la introducción.

45 El nuevo punto de acceso no puede a priori anunciar su nuevo estatus a los terminales ya asociados. Es la tarea de otro terminal, una vez desasociado, buscar un nuevo punto de acceso y asociarse a él.

De acuerdo con una realización, varios terminales de una misma red existente pueden decidir desasociarse de la red existente para crear su propia red. Estos terminales inician a continuación un proceso de selección para determinar cual de estos terminales será el punto de acceso de la nueva red. Los elementos para realizar la decisión de desasociación pueden ser comunicados entre los dispositivos por la red existente. Por lo tanto la nueva red permite evitar la saturación de algunos recursos de la red inicial, operando en otra frecuencia.

REIVINDICACIONES

- 1.- El método para la creación de una nueva red de comunicación por un terminal inalámbrico (MT), cuyo método está caracterizado porque siendo inicialmente el terminal inalámbrico parte de una red centralizada existente que incluye un punto de acceso (AP/CC) capaz de controlar la asociación de terminales inalámbricos a su red, incluye, para el terminal asociado, los pasos de:
- la des-asociación del terminal de la red (E4, E5); y
- la iniciación de un procedimiento para crear una nueva red (E6) incluyendo una declaración del terminal como punto de acceso de la nueva red, en el que los parámetros de operación de la nueva red son tales que las comunicaciones sobre la nueva red no interfieren con la red existente.
- 2.- El método de acuerdo con la reivindicación 1, caracterizado porque el terminal inicia la des-asociación en al menos uno de los siguientes casos:
 - el rechazo de un cambio de frecuencia por el punto de acceso de la red existente en respuesta a una petición del terminal en este sentido (E3); o
 - rechazo de establecimiento de conexión por el punto de acceso de la red existente en respuesta a una petición del terminal en este sentido (E2).
 - 3.- El método de acuerdo con cualquiera de las reivindicaciones 1 y 2, caracterizado porque el punto de acceso de la red existente inicia la des-asociación
 - 4.- El terminal inalámbrico (MT) que incluye una interfase con el medio de comunicación, un microprocesador y una memoria, estando caracterizado dicho terminal porque incluye adicionalmente en su memoria un programa que comprende los medios de programa adaptados para realizar una des-asociación del terminal de la red (E4, E5) y los medios de programa para realizar una iniciación de un procedimiento para crear una nueva red (E6) que incluye una declaración del terminal como punto de acceso de la nueva red, en al que los parámetros de operación de la nueva red son tales que las comunicaciones en la nueva red no interfieren con la red existente.
 - 5.- El terminal inalámbrico de acuerdo con la reivindicación 4, caracterizado porque dichos medios de programa están adaptados para iniciar la des-asociación de la red existente en uno de los siguientes casos:
 - el rechazo a un cambio de frecuencia por el punto de acceso de la red existente en respuesta a una petición del terminal en este sentido (E3); o
 - el rechazo al establecimiento de una conexión por el punto de acceso de la red existente en respuesta a una petición del terminal en este sentido (E2).

30

5

10

15

20

25

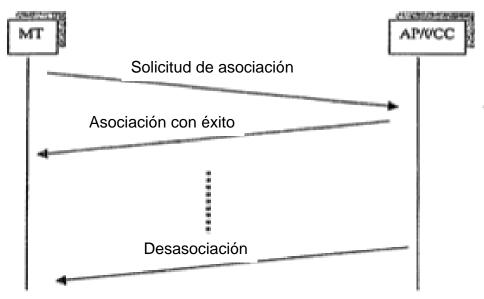


Fig. 1

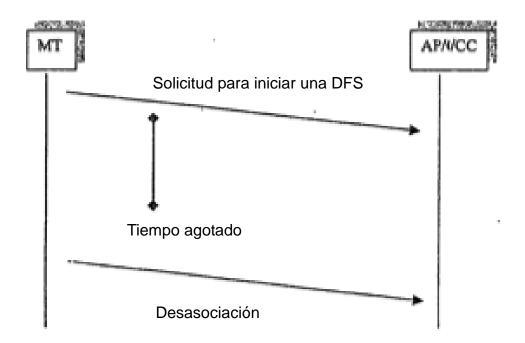


Fig. 2

Fig. 3

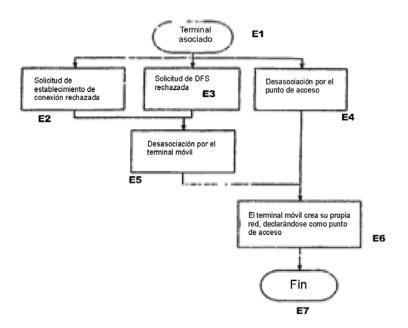


FIG 4