

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 393 621

51 Int. Cl.:

C07D 233/70	(2006.01)	A61K 31/5377	(2006.01)	A61P 35/00
A61K 31/4164	(2006.01)	A61K 31/542	(2006.01)	
A61K 31/4178	(2006.01)	A61P 1/04	(2006.01)	
A61K 31/422	(2006.01)	A61P 11/06	(2006.01)	
A61K 31/4245	(2006.01)	A61P 17/00	(2006.01)	
A61K 31/427	(2006.01)	A61P 17/06	(2006.01)	
A61K 31/433	(2006.01)	A61P 19/02	(2006.01)	
A61K 31/4439	(2006.01)	A61P 25/00	(2006.01)	
A61K 31/4725	(2006.01)	A61P 27/02	(2006.01)	
A61K 31/506	(2006.01)	A61P 29/00	(2006.01)	

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

(2006.01)

- 96 Número de solicitud europea: 07713881 .6
- 96 Fecha de presentación: 06.02.2007
- Número de publicación de la solicitud: 1988081
 Fecha de publicación de la solicitud: 05.11.2008
- (54) Título: Inhibidor de unión de esfingosina-1-fosfato
- (30) Prioridad:

06.02.2006 JP 2006028973

- 45) Fecha de publicación de la mención BOPI: 26.12.2012
- (45) Fecha de la publicación del folleto de la patente: **26.12.2012**

(73) Titular/es:

TAISHO PHARMACEUTICAL CO., LTD (100.0%) 24-1 TAKADA 3-CHOME TOSHIMA-KU TOKYO 170-8633, JP

(72) Inventor/es:

ONO, NAOYA; TAKAYAMA, TETSUO; SHIOZAWA, FUMIYASU; KATAKAI, HIRONORI; YABUUCHI, TETSUYA; OTA, TOMOMI; KOAMI, TAKESHI Y NISHIKAWA, RIE

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

S 2 393 621 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Inhibidor de unión de esfingosina-1-fosfato

Campo técnico de la invención

5

La presente invención se refiere a nuevos compuestos que tienen un efecto inhibidor en la unión entre esfingosina-1-fosfato que tiene diversas acciones fisiológicas y su receptor Edg-1 (receptor de gen de diferenciación Endotelial de tipo 1, S1 P₁). La presente invención también se refiere a preparaciones farmacéuticas que comprenden estos compuestos como principios activos, e intermedios sintéticos para estos compuestos.

10

15

25

30

35

45

Antecedentes de la técnica

La esfingosina-1-fosfato (denominada en lo sucesivo en este documento "S1P") es un lípido fisiológicamente activo que se genera cuando se metabolizan esfingolípidos (tipificados por esfingomielina) en células. Se sabe que S1P tiene una amplia diversidad de acciones tales como inducción de diferenciación celular, estimulación del crecimiento celular, inhibición de la motilidad celular e inhibición de apoptosis, y también se sabe que muestra acciones fisiológicas tales como angiogénesis, inducción de bradicardia, activación de células inflamatorias y activación de plaquetas (Documento no de patente 1).

Se han presentado como receptores de S1P, los siguientes 5 subtipos: Edg-1 (S1P₁), Edg-3(S1P₃), Edg-5(S1P₂), Edg-6(S1P₄) y Edg-8(S1P₅) (Documento no de patente 2).

Entre estos subtipos, Edg-1 (S1P₁) se expresa en gran medida en inmunocitos (por ejemplo, linfocitos T, células dendríticas) y células endoteliales vasculares, lo que sugiere que Edg-1 (contribuye profundamente a la migración de linfocitos T estimulada por S1P (Documento no de patente 3), migración de mastocitos (Documento no de patente 4), salida de linfocitos T y B de órganos linfoides (Documento no de patente 5) y angiogénesis (Documento no de patente 6), y está implicado en enfermedades autoinmunes tales como enfermedad de Crohn, colitis irritable, síndrome de Sjogren, esclerosis múltiple y lupus eritematoso sistémico, así como otras enfermedades tales como artritis reumatoide, asma, dermatitis atópica, rechazo después de trasplante de órgano, cáncer, retinopatía, psoriasis, osteoartritis, degeneración macular relacionada con la edad, etc.

Los ligandos para Edg-1 (S1P₁) serían eficaces para el tratamiento o prevención de estas enfermedades. Ligandos de Edg-1 (S1P₁) previamente conocidos incluyen ciertos tipos de derivados de tiofeno (Documento no de patente 7), derivados de ácido fosfórico (Documentos de Patente 1 y 2, Documentos no de patente 8 y 9) y derivados de tiazolidina (Documento de Patente 3), derivados de ácido carboxílico (Documentos de Patente 4, 5, 6 y 8, Documentos no de patente 10 y 11), derivados que contienen grupo amino (Documento de Patente 7) y derivados de pirrol (Documento de Patente 9).

Documento de Patente 1: WO2002-18395

40 Documento de Patente 2: JP 2003-137894 A

Documento de Patente 3: JP 2002-332278 A

Documento de Patente 4: W02002-092068

Documento de Patente 5: W02003-105771 Documento de Patente 6: W02004-058149

Documento de Patente 7: WO2004-103279

Documento de Patente 8: WO2005-058848

Documento de Patente 9: WO2005-123677

Documento no de patente 1: J Biol Chem. 2004, 279: 20555, FASEB J 2002, 16: 625, Proceedings of the Japanese Society for Immunology 2003, 33: 2-J-W30-20-P

Documento no de patente 2: Pharmacol Res 2003, 47: 401

Documento no de patente 3: FASEB J 2002, 16:1874

Documento no de patente 4: J Exp Med 2004, 199: 959

Documento no de patente 5: Nature 2004, 427: 355

Documento no de patente 6: J Clin Invest 2000, 106: 951, Biocchim Biophys Acta 2002, 1582:222

55 Documento no de patente 7: J Biol Chem 2004, 279: 13839

Documento no de patente 8: Bioorg Med Chem Lett 2003,13: 3401

Documento no de patente 9: J Biol Chem. 2005; 280: 9833

Documento no de patente 10: J Med Chem. 2004, 47: 6662

Documento no de patente 11: J Med Chem. 2005, 48: 6169

60

El documento WO 2006/013948, que representa el estado de la técnica de acuerdo con el Artículo 54(3), se refiere a un compuesto de triazol o una sal farmacéuticamente aceptable del mismo, que tiene el efecto de inhibir la unión entre SIP y su receptor Edg-1 (S1P1), y es útil como un producto farmacéutico.

Los documentos WO 96/10019 y US 5910506 se refieren a un derivado de imidazol o una sal del mismo, que tiene el efecto de inhibir específicamente el crecimiento de VIH como un virus patógeno y reducirse en toxicidad.

El documento WO 03/000679 se refiere a compuestos de piridina o sales de los mismos, que son adecuados para su uso como agentes herbicidas o reguladores del crecimiento.

Descripción de la invención

5

10

15

20

25

30

35

40

45

50

Problemas para resolver por la invención

El objeto de la presente invención es proporcionar compuestos que tengan un nuevo esqueleto, que tengan un efecto inhibidor en la unión entre SIP y su receptor Edg-1(S1P₁) y que sean útiles para fines farmacéuticos.

Medios para resolver el problema

Como resultados de esfuerzos extensivos e intensivos hechos para encontrar compuestos de ligando para Edg-I(SIP₁), los inventores de la presente invención han descubierto que este objeto se consigue mediante un compuesto de la siguiente fórmula (I) o una sal farmacéuticamente aceptable del mismo. Este descubrimiento lleva a la realización de la presente invención.

Más adelante, se darán realizaciones para un compuesto de fórmula (I) y su compuesto intermedio de fórmula (II) (en lo sucesivo, cada uno denominado "el compuesto de la presente invención").

1. Un compuesto representado por la fórmula (I) o una sal farmacéuticamente aceptable del mismo:

[Fórmula 1]

(en la que Ar representa un anillo monocíclico que contiene uno o dos átomos de nitrógeno como se define en la reivindicación 1, en el que dicho Ar puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C_1 - C_6 , un grupo fenilo y un átomo de halógeno, cada uno de Y^1 , Y^2 e Y^3 representa un átomo de carbono o un átomo de nitrógeno,

A representa un átomo de oxígeno,

 R^1 representa un átomo de hidrógeno, un grupo alquilo C_1 - C_6 que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo hidroxilo, un átomo de halógeno, un grupo alcoxi C_1 - C_6 (en el que dicho grupo alcoxi puede estar sustituido con un grupo fenilo) y un grupo fenilo (en el que dicho grupo fenilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C_1 - C_6)], un grupo cicloalquilo C_3 - C_8 , un grupo alquenilo C_2 - C_8 , un grupo alquinilo C_2 - C_8 o un grupo fenilo,

R² representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ o un grupo cicloalquilo C₃-C₈,

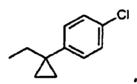
 R^3 representa (i) un átomo de hidrógeno, (ii) un grupo alquilo C_1 - C_{18} , (iii) un grupo alquenilo C_2 - C_8 que puede estar sustituido con un grupo fenilo o un grupo benciloxi, (iv) un grupo alquinilo C_2 - C_8 que puede estar sustituido con un grupo fenilo, (v) un grupo cicloalquilo C_3 - C_8 que puede estar condensado con un anillo de benceno, (vi) un grupo alquilo C_1 - C_6 sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un átomo de halógeno, un grupo fenilo (en el que dicho grupo fenilo puede estar sustituido con 1 a 5 sustituyentes seleccionados entre el grupo que consiste en un grupo fenilo, un grupo ciano, un átomo de halógeno, un grupo alquilo C_1 - C_6 , un grupo alcoxi C_1 - C_6 , un grupo trifluorometilo, un grupo metoxicarbonilo, un grupo alquiltio C_1 - C_6 , un grupo dimetilamino, un grupo nitro y un grupo acetamido), un grupo cicloalquilo C_3 - C_8 , un grupo hidroxilo, un grupo alquiltio C_1 - C_6 , un grupo alcoxi C_1 - C_6 , un grupo bencenosulfonilo, un grupo henciloxi, un grupo tricicloalquilo C_7 - C_{10} , un grupo carbometoxi(fenil)metilo, un grupo difenilmetilo, un grupo oxolanilo, un grupo metilpiperidinilo, un grupo piperazino que puede estar sustituido con un o más grupos alquilo C_1 - C_6 , un grupo bencilpiperidinilo, un grupo morfolino, un grupo 2-oxopirrolidin-1-ilo, un grupo 2-oxoimidazolidin-1-ilo, un grupo representado por la fórmula:

-CO₂R¹¹

(en la que R¹¹ representa un átomo de hidrógeno o un grupo alquilo C₁-C₆), un grupo representado por la fórmula:

[Fórmula 2]

(en la que cada uno de R¹² y R¹³ representa un átomo de hidrógeno o un grupo alguilo C₁-C₆), un grupo representado por la fórmula:


[Fórmula 3]

(en la que cada uno de R¹⁴ y R¹⁵ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆, un grupo fenilo o un grupo 4-piridilcarbonilo) y la fórmula:

-COR16

(en la que R¹⁶ representa un grupo alquilo C₁-C₆ o un grupo fenilo)], (vii) un grupo oxolanilo, un grupo metilpiperidinilo o un grupo representado por la fórmula:

[Fórmula 4]

10

5

o (viii) un grupo arilo opcionalmente sustituido como se define en la reivindicación 1,

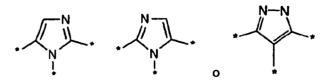
R⁴ representa un átomo de hidrógeno o un grupo alguilo C₁-C₆ que puede estar sustituido con un grupo carboxilo v

R⁵ representa un grupo como se define en la reivindicación 1.

15

- 2. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la realización 1, en el que en la fórmula (I),
 - R¹ representa un átomo de hidrógeno, un grupo alquilo C₁-C₀ o un grupo alquilo C₁-C₀ sustituido con un grupo

 R^2 representa un grupo alquilo C_1 - C_6 o un grupo cicloalquilo C_3 - C_8 , R^3 representa un grupo alquilo C_1 - C_6 o un grupo arilo opcionalmente sustituido como se define en la reivindicación 1, y


R⁴ representa un átomo de hidrógeno o un grupo alquilo C₁-C₆.

25

20

3. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la realización 1, en el que Ar es un sustituyente representado por la siguiente fórmula:

[Fórmula 6]

que puede estar sustituido con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, 30 un grupo fenilo y un átomo de halógeno.

4. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la realización 1, en el que Ar es un sustituyente representado por la siguiente fórmula:

[Fórmula 7]

que puede estar sustituido con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C_1 - C_6 , un grupo fenilo y un átomo de halógeno.

5. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la realización 1, en el que Ar es un sustituyente representado por la siguiente fórmula:

[Fórmula 8]

5

10

25

30

35

40

45

50

que puede estar sustituido con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo fenilo y un átomo de halógeno.

6. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 5, en el que A es un átomo de oxígeno.

7. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 y 3 a 6, en el que R^1 es un grupo alquilo C_1 - C_6 que puede estar sustituido con uno o más átomos de halógeno, o un grupo bencilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C_1 - C_6 .

8. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 y 3 a 6, en el que R¹ es un grupo metilo, un grupo etilo o un grupo bencilo que puede estar sustituido con uno o más átomos de halógeno.

9. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 6, en el que R¹ es un grupo metilo o un grupo etilo.

20 10. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 9, en el que R⁴ es un átomo de hidrógeno.

11. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 10, en el que R^2 es un grupo alquilo C_1 - C_6 o un grupo cicloalquilo C_3 - C_6 .

12. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 10, en el que R² es un grupo etilo o un grupo ciclopropilo.

15. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 12, en el que R^5 es un grupo alquilo C_1 - C_6 sustituido con un grupo naftilo, un grupo alquenilo C_2 - C_6 sustituido con un grupo fenilo, un grupo fenilo sin sustituir, un grupo fenilo sustituido con 1 a 5 sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo metilo, un grupo metoxi y un átomo de halógeno), un grupo fenilo que está sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo y al menos una de sus posiciones 3 y 4 está sustituida (en el que dicho grupo consiste en un grupo alquilo C_1 - C_6 , un átomo de halógeno, un grupo metoxi, un grupo trifluorometoxi, un grupo difluorometoxi, un grupo trifluorometilo, un grupo alquenilo C_1 - C_6 , un grupo metilsulfonilo, un grupo acetilo, un grupo metoxicarbonilo y un grupo ciano), un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un átomo de halógeno, un grupo alquilo C_1 - C_6 , un grupo furanilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo trifluorometilo y un átomo de halógeno, o un grupo benzotienilo, benzoxadiazolilo, benzodioxolilo, dihidrobenzodioxinilo, dihidrobenzofuranilo, indanilo o benzotiadiazolilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C_1 - C_6 y un átomo de halógeno.

16. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 12, en el que \mathbb{R}^5 es un grupo fenilo cuyas posiciones 3 y 4 están cada una sustituida con un átomo de halógeno o un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno, un grupo alquilo C_1 - C_6 y un grupo ciano.

17. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 16, en el que R³ es un grupo fenilo, un grupo naftilo, un grupo pirazolilo, un grupo pirazolilo, un grupo benzotiazolilo, un grupo benzotiadiazolilo, a grupo pirazolopirimidinilo, un grupo quinolinilo, un grupo benzotienilo o un grupo dihidroquinolinonilo, donde cada uno de estos grupos puede estar sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en los sustituyentes enumerados a continuación: un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más

átomos de flúor, un grupo cicloalquilo C₃-C₈, un átomo de halógeno, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de flúor, un grupo fenilo, un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino), un grupo fenoxi, un grupo fenilo, un grupo carboxilo, un grupo alcoxicarbonilo C2-C10, un grupo hidroxilo, un grupo hidrocarburo monocíclico C2-C7 saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆), un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno, un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo formilo, un grupo alcanoílo C2-C7, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C1-C4, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alquilsulfonilo C₁-C₆) y la fórmula:

-NR⁷R⁸

5

10

15

20

25

30

35

40

45

50

55

60

65

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C1-C4, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ forman opcionalmente, junto con el átomo de nitrógeno al que R⁷y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo],

18. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 16, en el que R³ es un grupo 2-naftilo (en el que dicho grupo naftilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C₁-C₆), un grupo 3-pirazolilo (en el que dicho grupo pirazolilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alguilo C₁-C₆, un grupo trifluorometilo y un átomo de halógeno) o un grupo 5-benzotiazolilo, 5-benzotiadiazolilo, 7-dihidroquinolinonilo, 7-isoquinolinilo, 7-quinolinilo, 3-piridilo o indolilo, que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo sin sustituir, o un grupo fenilo sustituido mostrado en (A) a (C) a continuación:

(A) un grupo fenilo cuya posición 4 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo cicloalquilo C₃-C₈, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), un átomo de halógeno, un grupo trifluorometoxi, un grupo fenoxi, un grupo fenilo, un grupo 1-pirrolilo y -NR^AR^B (en la que cada uno de R^A y R^{B} es un grupo alquilo C_{1} - C_{6} , o R^{A} y R^{B} forman opcionalmente, junto con el átomo de nitrógeno al que R^{A} y R^{B} están unidos, un anillo hidrocarburo saturado de 3 a 5 miembros), y además, cuya posición 3 puede estar sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un átomo de halógeno y un grupo alcoxi C₁-C₆,

(B) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo hidroxilo, un grupo alquilo C₁-C₆ y un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), y además, que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, o cuya posición 4 puede estar sustituida con un átomo de halógeno, y

(C) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición 4 puede estar sustituida con un átomo de halógeno:

(i) un grupo hidrocarburo monocíclico C₂-C₇ saturado que contiene uno o más átomos de nitrógeno como uno o más miembros de anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆),

(ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno,

(iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆,

(iv) un grupo piperazino [en el que dicho grupo piperazino puede estar sustituido con un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino) o un grupo alcanoílo C₂-C₇], y (v) la fórmula -NR⁷R⁸

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ forman opcionalmente, junto con el átomo de nitrógeno al que R⁷y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.

- 19. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 16, en el que R³ es un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición 4 puede estar sustituida con un átomo de halógeno:
- (i) un grupo hidrocarburo C2-C7 monocíclico saturado que contiene uno o más átomos de nitrógeno en forma de 10 uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆),
 - (ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno.
 - (iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆,
- (iv) un grupo piperazino [en el que dicho grupo piperazino puede estar sustituido con un grupo alquilo C₁-C₆ que 15 puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino) o un grupo alcanoílo C₂-C₇], y (v) la fórmula -NR⁷R⁸

5

20

25

30

35

45

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo hidroxilo o un grupo alcoxi C1-C6), un grupo alcanoílo C1-C6, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , o un grupo alquilsulfonilo C_1 - C_6 , o como alternativa, R^7 y R^8 forman opcionalmente, junto con el átomo de nitrógeno al que R⁷y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.

- 20. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 16, en el que R³ es un grupo fenilo cuya posición 4 está sustituida con un átomo de flúor o un átomo de cloro.
 - 21. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 16, en el que R³ es un grupo 6-indolilo.
- 22. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 y 3 a 16, en el que R³ es un grupo alquilo C1-C18 que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un átomo de halógeno, un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo alcoxi C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo y un grupo morfolino), un grupo alquenilo C₂-C₈, un grupo alquinilo C₂-C₈ o un grupo cicloalquilo C₃-C₈.
- 23. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las 40 realizaciones 1 y 3 a 16, en el que R³ es un grupo alquilo C₁-C₆ sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alcoxi C₁-C₆), o un grupo cicloalquilo C₃-C₅.
 - 24. Una preparación farmacéutica que comprende el compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las realizaciones 1 a 23.
 - 25. La preparación farmacéutica de acuerdo con la realización 24, que es un agente terapéutico para una enfermedad autoinmune, tal como enfermedad de Crohn, síndrome del intestino irritable, síndrome de Sjogren, esclerosis múltiple o lupus eritomatoso sistémico, artritis reumatoide, asma, dermatitis atópica, rechazo después de trasplante de órganos, cáncer, retinopatía, psoriasis, osteoartritis o degeneración macular relacionada con la edad.
- 50 26. Un compuesto representado por la fórmula (II) o una sal del mismo:

[Fórmula 9]

(en la que R¹, R² y R³ Y⁴ e Y⁵ son como se definen en la reivindicación 20).

- 27. El compuesto o sal del mismo de acuerdo con la realización 26, en el que en la fórmula (II), Y4 es CH, e Y5 es un átomo de nitrógeno.
- 28. El compuesto o sal del mismo de acuerdo con la realización 26 ó 27, en el que R¹ es un grupo alguilo C₁-C₆ que 55 puede estar sustituido con uno o más átomos de halógeno, o un grupo bencilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C₁-C₆. 29. El compuesto o sal del mismo de acuerdo con la realización 26 ó 27, en el que R¹ es un grupo metilo, un grupo

etilo o un grupo bencilo que puede estar sustituido con uno o más átomos de halógeno.

30. El compuesto o sal del mismo de acuerdo con la realización 26 ó 27, en el que R¹ es un grupo metilo o un grupo

31. El compuesto o sal del mismo de acuerdo con una cualquiera de las realizaciones 26 a 30, en el que R² es un grupo alquilo C₁-C₆ o un grupo cicloalquilo C₃-C₈.

32 .El compuesto o sal del mismo de acuerdo con una cualquiera de las realizaciones 26 a 30, en el que R2 es un grupo etilo o un grupo ciclopropilo.

33. El compuesto o sal del mismo de acuerdo con una cualquiera de las realizaciones 26 a 32, en el que R³ es un grupo fenilo, un grupo naftilo, un grupo pirazolilo, un grupo piridilo, un grupo indolilo, un grupo benzotiazolilo, un grupo benzotiadiazolilo, un grupo pirazolopirimidinilo, un grupo quinolinilo, un grupo isoquinolinilo, un grupo benzotienilo o un grupo dihidroquinolinonilo, en el que cada uno de estos grupos puede estar sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en los sustituyentes enumerados a continuación: un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más átomos de flúor, un grupo cicloalquilo C₃-C₈, un átomo de halógeno, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de flúor, un grupo fenilo, un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino), un grupo fenoxi, un grupo fenilo, un grupo carboxilo, un grupo alcoxicarbonilo C2-C10, un grupo hidroxilo, un grupo hidrocarburo monocíclico C₂-C₇ saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C1-C6), un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno, un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C_1 - C_6), un grupo formilo, un grupo alcanoílo C_2 - C_7 , un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alquilsulfonilo C₁-C₆] y la fórmula:

-NR7R8

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo hidroxilo o un grupo alcoxi C1-C6), un grupo alcanoílo C1-C6, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_4 , un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , o un grupo alquilsulfonilo C_1 - C_6 o como alternativa, R^7 y R^8 forman opcionalmente, junto con el átomo de nitrógeno al que R⁷ y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo].

34. El compuesto o sal del mismo de acuerdo con una cualquiera de las realizaciones 26 a 32, en el que R³ es un grupo 2-naftilo (en el que dicho grupo naftilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alguilo C₁-C₆), un grupo 3-pirazolilo (en el gue dicho grupo pirazolilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo trifluorometilo y un átomo de halógeno) o un grupo 5-benzotiazolilo, 5-benzotiadiazolilo, 7-dihidroquinolinonilo, 7-isoquinolinilo, 7-quinolinilo, 3-piridilo o indolilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo sin sustituir o un grupo fenilo sustituido mostrado en (A) a (C) a continuación:

(A) un grupo fenilo cuya posición 4 está sustituida con un sustituyente seleccionado entre el grupo que consiste

C₁-Cgalquilo grupo, un grupo cicloalquilo C₃-C₈, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C_1 - C_4 , un grupo morfolino y un grupo fenilo), un átomo de halógeno, un grupo trifluorometoxi, un grupo fenoxi, un grupo fenilo, un grupo 1-pirrolilo, y-NR A R B (en la que cada uno de R A y R B es un grupo alquilo C_1 - C_6 , o R A y R B forman opcionalmente, junto con el átomo de nitrógeno al que R A y R B están unidos, un anillo hidrocarburo saturado de 3 a 5 miembros), y además, cuya posición 3 puede estar sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un átomo de halógeno y un grupo alcoxi C₁-C₆,

(B) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo hidroxilo, un grupo alquilo C₁-C₆ y un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), y además, que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o cuya posición 4 puede estar sustituida con un átomo de halógeno,

(C) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición 4 puede estar sustituida con un átomo de halógeno:

(i) un grupo hidrocarburo C₂-C₇ monocíclico saturado que contiene uno o más átomos de nitrógeno en forma

8

45

5

10

15

20

25

30

35

40

50

55

60

de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆),

- (ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno.
- (iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alguilo C₁-C₆,
- (iv) un grupo piperazino [en el que dicho grupo piperazino puede estar sustituido con un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino sustituido con dos grupos alguilo C₁-C₄ y un grupo morfolino) o un grupo alcanoílo C_2 - C_7] y (v) la fórmula -NR⁷R⁸

10

15

5

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, o un grupo alquilsulfonilo C_1 - C_6 o como alternativa, R^7 y R^8 forman opcionalmente, junto con el átomo de nitrógeno al que R^7 y R^8 están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.

20

25

40

35. El compuesto o sal del mismo de acuerdo con una cualquiera de las realizaciones 26 a 32, en el que R3 es un grupo alquilo C₁-C₁₈ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un átomo de halógeno, un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo alcoxi C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo y un grupo morfolino), un grupo alquenilo C₂-C₈, un grupo alquinilo C₂-C₈ o un grupo cicloalquilo C₃-C₈.

La presente invención se ilustrará con mayor detalle a continuación.

30 El anillo monocíclico heterocíclico que contiene uno o dos átomos de nitrógeno representado en el presente documento por Ar se pretende que incluya pirrol, imidazol y pirazol mostrados a continuación.

[Fórmula 10]

La expresión "átomo de halógeno" se refiere a un átomo de flúor, un átomo de cloro, un átomo de bromo o un átomo de 35

La expresión "grupo alquilo C₁-C₆" se refiere un grupo alquilo lineal o ramificado que contiene de 1 a 6 átomos de carbono. Los ejemplos incluyen un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo isopropilo, un grupo n-butilo, un grupo isobutilo, un grupo terc-butilo, un grupo sec-butilo, un grupo n-pentilo, un grupo isopentilo, un grupo neopentilo, un grupo terc-pentilo y un grupo n-hexilo.

La expresión "grupo cicloalquilo C₃-C₈" se refiere a un grupo cicloalquilo que contiene de 3 a 8 átomos de carbono. Los ejemplos incluyen un grupo ciclopropilo, un grupo ciclobutilo, un grupo ciclopentilo y un grupo ciclohexilo.

- 45 La expresión "grupo alquenilo C2-C8" se refiere a un grupo alquenilo lineal o ramificado que contiene de 2 a 8 átomos de carbono. Los ejemplos incluyen un grupo vinilo, un grupo alilo, un grupo 1-propenilo, un grupo isopropenilo, un grupo 1-butenilo, un grupo 2-butenilo, un grupo 3-butenilo, un grupo 1,3-butadienilo, un grupo 2-metilalilo, un grupo 2-metil-propenilo, un grupo 2-pentenilo y un grupo 3-metil-but-2-enilo.
- 50 La expresión "grupo alquinilo C2-C8" se refiere a un grupo alquinilo lineal o ramificado que contiene de 2 a 8 átomos de carbono. Los ejemplos incluyen un grupo etinilo, un grupo 2-propinilo, un grupo 2-butinilo, un grupo 1-metil-prop-2-inilo, un grupo 2-pentinilo y un grupo 4-pentinilo.

ES 2 393 621 T3

La expresión "grupo alcoxi C₁-C₆" se refiere a un grupo alcoxi lineal o ramificado que contiene de 1 a 6 átomos de carbono. Los ejemplos incluyen un grupo metoxi, un grupo etoxi, un grupo propoxi, un grupo isopropoxi, un grupo butoxi, un grupo isobutoxi, un grupo sec-butoxi, un grupo terc-butoxi, un grupo pentiloxi y un grupo hexiloxi.

5

La expresión "grupo alquilo C₁-C₁₀" se refiere a un grupo alquilo lineal o ramificado que contiene de 1 a 10 átomos de carbono. Los ejemplos incluyen un grupo metilo, un grupo etilo, un grupo n-propilo, un grupo isopropilo, un grupo n-butilo, un grupo isobutilo, un grupo terc-butilo, un grupo sec-butilo, n-pentilo, un grupo isopentilo, un grupo neopentilo, un grupo terc-pentilo, un grupo n-hexilo, un grupo n-heptilo, un grupo n-octilo y un grupo n-hexadecilo.

10

La expresión "grupo alquiltio C₁-C₆" se refiere a un grupo alquiltio lineal o ramificado que contiene de 1 a 6 átomos de carbono. Los ejemplos incluyen un grupo metiltio, un grupo etiltio, un grupo propiltio, un grupo isopropiltio, un grupo butiltio, un grupo isobutiltio, un grupo pentiltio y un grupo hexiltio.

La expresión "grupo alquilsulfonilo C₁-C₆" se refiere a un grupo alquilsulfonilo lineal o ramificado que contiene de 1 a 6 15 átomos de carbono. Los ejemplos incluyen un grupo metanosulfonilo, un grupo etanosulfonilo, un grupo propano-2-sulfonilo y un grupo hexanosulfonilo.

20

La expresión "grupo alcoxicarbonilo C2-C10" se refiere a un grupo alcoxicarbonilo lineal o ramificado que contiene de 2 a 10 átomos de carbono. Los ejemplos incluyen grupos alcoxicarbonilo C₂-C₇, tales como un grupo metoxicarbonilo, un grupo etoxicarbonilo y un grupo t-butoxicarbonilo, así como un grupo octiloxicarbonilo.

25

La expresión "grupo alcanoílo C₂-C₇" se refiere a un grupo alcanoílo lineal o ramificado que contiene de 2 a 7 átomos de carbono. Los ejemplos incluyen un grupo acetilo, un grupo propanoílo, un grupo butanoílo y un grupo hexanoílo.

La expresión "grupo alcanoílo C₁-C₆" se refiere a un grupo alcanoílo lineal o ramificado que contiene de 1 a 6 átomos de carbono. Los ejemplos incluyen un grupo formilo, un grupo acetilo, un grupo propanoílo y un grupo butanoílo.

30

La expresión "grupo amino que puede estar sustituido con uno o dos grupos alguilo C₁-C₆" pretende incluir, por ejemplo, un grupo amino, un grupo metilamino, un grupo etilamino, un grupo isopropilamino, un grupo hexilamino, un grupo dimetilamino, un grupo dietilamino, un grupo diisopropilamino y un grupo dihexilamino.

La expresión "grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alguilo C₁-C₆" pretende incluir, por ejemplo, un grupo sulfamoílo, un grupo dimetilaminosulfonilo y un grupo dietilaminosulfonilo.

35

La expresión "grupo carbamoílo que puede estar sustituido con uno o más grupos alquilo C₁-C₄" pretende incluir un grupo carbamoílo, un grupo metilcarbamoílo, un grupo etilcarbamoílo y un grupo propilcarbamoílo.

La expresión "grupo piperazino que puede estar sustituido" o "grupo piperazina opcionalmente sustituido" se refiere a 40 un grupo piperazino que puede estar sustituido (preferiblemente en su átomo de nitrógeno) con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo formilo, un grupo alcanoílo C₂-C₇, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 y un grupo alquilsulfonilo C_1 - C_6 . Los ejemplos específicos incluyen un grupo piperazino, un grupo metilpiperazino, un grupo isopropilpiperazino, un grupo dimetilaminoetilpiperazino y un grupo acetilpiperazino.

45

50

La expresión "grupo hidrocarburo monocíclico C2-C7 saturado que contiene uno o más átomos de nitrógeno como uno o más miembros de anillo" se refiere a un grupo hidrocarburo monocíclico saturado de 3 a 9 miembros que contiene uno o dos átomos de nitrógeno como miembros sus miembros de anillo y está sustituido mediante su átomo de carbono del anillo. Los ejemplos incluyen un grupo azetidinilo, un grupo pirrolidinilo y un grupo piperidinilo (por ejemplo, un grupo 4-piperidinilo).

55

La expresión "grupo hidrocarburo monocíclico insaturado monocíclico que contiene nitrógeno" se refiere a un anillo insaturado de 5 ó 6 miembros que contiene de 1 a 3 átomos de nitrógeno en forma de sus miembros de anillo. Los ejemplos incluyen un grupo pirrolilo (por ejemplo, un grupo pirrol-1-ilo), un grupo imidazol-1-ilo (por ejemplo, un grupo imidazolilo), un grupo pirazolilo, un grupo triazol-4-ilo (por ejemplo, un grupo [1,2,4]triazol-4-ilo) y un grupo piridilo.

El anillo hidrocarburo saturado de 3 a 5 miembros formado por R^A y R^B, junto con el átomo de nitrógeno al que están unidos R^A y R^B pretende incluir un grupo aziridinilo, un grupo azetidinilo y un grupo pirrolidinilo.

El anillo hidrocarburo saturado de 3 a 8 miembros formado por R⁷ y R⁸ (o R^C y R^D) junto con el átomo de nitrógeno al que R⁷ y R⁸ (o R^C y R^D) están unidos, pretende incluir un grupo aziridinilo, un grupo azetidinilo, un grupo pirrolidinilo y un grupo piperidinilo.

5

10

15

20

25

35

40

45

50

55

60

La expresión "grupo fenilo condensado con un anillo hidrocarburo saturado de 5 a 7 miembros que puede contener uno o dos átomos de oxígeno como miembros de anillo" pretende incluir un grupo benzodioxepinilo, un grupo benzodioxolilo, un grupo dihidrobenzodioxinilo, un grupo dihidrobenzofuranilo, un grupo tetrahidronaftilo y un grupo indanilo.

La expresión "grupo arilo", como se usa en el presente documento, se refiere a un grupo hidrocarburo aromático, un grupo hidrocarburo aromático parcialmente saturado, un grupo heterocíclico aromático o un anillo heterocíclico aromático parcialmente saturado. El grupo hidrocarburo aromático se refiere a, por ejemplo, un grupo hidrocarburo aromático C₆-C₁₄, incluyendo un grupo fenilo, un grupo naftilo y un grupo antrilo.

El grupo hidrocarburo aromático parcialmente saturado se refiere a un grupo obtenido por la saturación parcial de un grupo hidrocarburo aromático policíclico C_6 - C_{14} . Los ejemplos incluyen un grupo tetrahidronaftilo y un grupo indanilo.

El grupo heterocíclico aromático se refiere a un grupo heterocíclico aromático C_2 - C_{13} monocíclico o policíclico que contiene de 1 a 6 heteroátomos (por ejemplo, átomos de oxígeno, azufre y/o nitrógeno). Los ejemplos incluyen un grupo tienilo, un grupo furanilo, un grupo pirrolilo, un grupo isotiazolilo, un grupo isoxazolilo, un grupo pirazolilo, un grupo pirazolilo, un grupo piridazinilo, un grupo piridazinilo, un grupo piridazinilo, un grupo pirazinilo, un grupo benzotienilo, un grupo pirazolopirimidinilo (por ejemplo, un grupo 5,7-dimetil-pirazolo[1,5-a]pirimidin-2-ilo).

El anillo heterocíclico aromático parcialmente saturado se refiere a un anillo heterocíclico obtenido por saturación parcial de un grupo heterocíclico aromático policíclico. Dicho anillo heterocíclico puede estar sustituido con un grupo oxo. Los ejemplos incluyen un grupo dihidroquinolinonilo:

[Fórmula 11]

un grupo dihidrobenzofuranilo, un grupo dihidrobenzodioxinilo, un grupo dihidrobenzodioxepinilo, un grupo dihidrobenzoxazolilo, un grupo dihidrobenzoxazolilo.

En el caso en el que dicho grupo arilo esté sustituido, los sustituyentes para el grupo arilo incluyen los que se enumeran a continuación y el grupo arilo puede estar sustituido con 1 a 5 de estos sustituyentes:

un átomo de halógeno, un grupo ciano, un grupo nitro, un grupo sulfamoílo, un grupo hidroxilo, un grupo carboxilo, un grupo alquilo C₁-C₆, un grupo trifluorometilo, un grupo metoxicarboniletilo, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con un grupo fenilo, un grupo alquilamino C₁-C₆, un grupo dialquilamino C₂-C₁₂ o un grupo morfolino), un grupo trifluorometoxi, un grupo difluorometoxi, un grupo cianoetoxi, un grupo alquenilo C₂-C₈, un grupo alquinilo C₂-C₈, un grupo cicloalquilo C₃-C₈, un grupo alcanoílo C₂-C₇, un grupo trifluoroacetilo, un grupo alcoxicarbonilo C2-C10, un grupo fenilo (en el que dicho grupo fenilo puede estar sustituido con un grupo alcanoílo C₂-C₇ o un grupo alcoxi C₁-C₆), un grupo fenoxi que puede estar sustituido con un grupo alcoxi C₁-C₆, un grupo pirazolilo, un grupo 1-metil-5-trifluorometil-1H-pirazol-3-ilo, un grupo metilpirimidinilo, un grupo 2-metilsulfanil- pirimidin-4-ilo, un grupo oxazolilo (por ejemplo, un grupo oxazol-5-ilo), un grupo isoxazol-5-ilo, un grupo 5-trifluorometil-isoxazol-3-ilo, un grupo piridiloxi (por ejemplo, un grupo 4-piridiloxi), un grupo piridincarbonilo, un grupo benzoílo, un grupo pirrolilo (por ejemplo, un grupo pirrol-1-ilo), un grupo imidazolilo (por ejemplo, un grupo imidazol-1-ilo), un grupo tiazolilo, un grupo [1,2,3]tiadiazol-4-ilo, un grupo triazolilo (por ejemplo, un grupo [1,2,4]triazol-4-ilo), un grupo alquiltio C₁-C₆ (por ejemplo, un grupo metiltio), un grupo alquilsulfonilo C₁-C₆ (por ejemplo, un grupo metanosulfonilo), un grupo bencenosulfonilo, un grupo pirrolidinsulfonilo, un grupo morfolinilsulfonilo, un grupo 4-piperidinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo morfolino que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo piperazino que está sustituido con uno o más grupos alquilo C_1 - C_6 o con uno o más grupos alquilo C_1 - C_6 sustituidos con un grupo dimetilamino, o un grupo representado por la fórmula -NR 7 R 8 [en la que cada uno de R 7 y R 8 representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo alcoxi C₁-C₆ o un grupo dimetilamino), un grupo alcanoílo C₁-C₆, un grupo carbamoílo, un grupo carbamoílo sustituido con uno o más grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo dimetilaminosulfonilo, o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ pueden formar opcionalmente, junto con el átomo de nitrógeno al que R⁷ y R⁸ están

unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con un grupo dimetilendioxi, un grupo oxo o un grupo hidroxilo] (por ejemplo, un grupo acetamido, un grupo dimetilamino, un grupo metilureido, un grupo butilureido, un grupo trimetilureido, un grupo morfolinilcarbonilamino), un grupo metoxietilureido y un grupo piridiletoxicarbonilamino.

5

15

20

25

La expresión "sal farmacéuticamente aceptable" se refiere a una sal con un metal alcalino, un metal alcalinotérreo, amonio o un alquilamonio, o una sal con un ácido mineral o un ácido orgánico. Los ejemplos incluyen una sal de sodio, una sal de potasio, una sal de calcio, una sal de amonio, una sal de aluminio, una sal de trietilamonio, una sal acetato, una sal propionato, una sal butirato, una sal formiato, una sal trifluoroacetato, una sal maleato, una sal tartrato, una sal citrato, una sal estearato, una sal succinato, una sal etilsuccinato, una sal lactobionato, una sal gluconato, una sal glucoheptato, una sal benzoato, una sal metanosulfonato, una sal etanosulfonato, una sal 2-hidroxietanosulfonato, una sal bencenosulfonato, una sal paratoluenosulfonato, una sal laurilsulfato, una sal malato, una sal aspartato, una sal glutamato, una sal adipato, una sal con cisteína, una sal con N-acetilcisteína, una sal clorhidrato, una sal bromhidrato, una sal fosfato, una sal sulfato, una sal yodhidrato, una sal nicotinato, una sal con un polímero de carboxivinilo.

Los compuestos de la presente invención pueden tener estereoisómeros, incluyendo isómeros ópticos, diaestereoisómeros e isómeros geométricos. Todos estos estereoisómeros y mezclas de los mismos también entran dentro del alcance de la presente invención. Algunos de los compuestos e intermedios de la presente invención también pueden existir, por ejemplo, en forma de tautómeros ceto-enol.

Como se muestra en el ejemplo de ensayo descrito posteriormente, los compuestos de la presente invención ejercen un fuerte efecto inhibidor en la unión entre S1P y su receptor Edg-1(S1P₁), y por lo tanto se espera que produzcan un efecto profiláctico o terapéutico en enfermedades autoinmunes tales como enfermedad de Crohn, colitis irritable, síndrome de Sjogren, esclerosis múltiple y lupus eritematoso sistémico, así como otras enfermedades tales como artritis reumatoide, asma, dermatitis atópica, rechazo después de trasplante de órgano, cáncer, retinopatía, psoriasis, osteoartritis, degeneración macular relacionada con la edad, etc.

A continuación se darán realizaciones preferidas del compuesto de la presente invención.

30

Un ejemplo preferido de Ar es un anillo insaturado de 5 miembros que contiene uno o dos átomos de nitrógeno. Se prefiere más un grupo imidazol representado por la siguiente fórmula:

[Fórmula 12]

e incluso se prefiere más

. \(\frac{1}{N} \).

35

Estos anillos pueden estar sustituidos con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C_1 - C_6 , un grupo fenilo y un átomo de halógeno. Más preferiblemente, Ar está sin sustituir.

40

Un ejemplo preferido de A es un átomo de oxígeno.

Un ejemplo preferido de R⁴ es un átomo de hidrógeno.

Un ejemplo preferido de R^1 es un grupo alquilo C_1 - C_6 que puede estar sustituido con uno o más átomos de halógeno, o un grupo bencilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C_1 - C_6 . Se prefiere más un grupo metilo, un grupo etilo o un grupo bencilo que puede estar sustituido con uno o más átomos de halógeno (más preferiblemente con uno o más átomos de flúor), e incluso se prefiere más un grupo metilo.

45

Un ejemplo preferido de R² es un grupo etilo o un grupo ciclopropilo.

50

Una realización preferida de R^3 es un grupo alquilo C_1 - C_6 sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 y un grupo alcoxi C_1 - C_6), un grupo cicloalquilo C_3 - C_5 o un grupo fenilo opcionalmente sustituido, un grupo 2-naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un

átomo de halógeno y un grupo alquilo C_1 - C_6 , un grupo 3-pirazolilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo), un grupo trifluorometilo y un átomo de halógeno], o un grupo 5-benzotiazolilo, 5-benzotiadiazolilo, 7-dihidroquinolinonilo, 7-isoquinolinilo, 7-quinolinilo, 3-piridilo o indolilo (preferiblemente 6-indolilo) que puede estar sustituido con uno o más grupos alquilo C_1 - C_6 (preferiblemente un grupo metilo).

El "grupo fenilo opcionalmente sustituido" entre las realizaciones preferidas de R³ pretende incluir un grupo fenilo sin sustituir y un grupo fenilo sustituido mostrado en (A) a (C) a continuación:

- (A) un grupo fenilo cuya posición 4 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo cicloalquilo C₃-C₈, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), un átomo de halógeno, un grupo trifluorometoxi, un grupo fenoxi, un grupo fenilo, un grupo 1-pirrolilo y -NR^AR^B (en la que cada uno de R^A y R^B es un grupo alquilo C₁-C₆, o R^A y R^B forman opcionalmente, junto con el átomo de nitrógeno al que R^A y R^B están unidos, un anillo hidrocarburo saturado de 3 a 5 miembros), y además, cuya posición 3 puede estar sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un átomo de halógeno y un grupo alcoxi C₁-C₆, (B) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo hidroxilo, un grupo alquilo C₁-C₆ y un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), y además, que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o cuya posición 4 puede estar sustituida con un átomo de halógeno, y
 (C) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en continuos posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en continuos posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en continuos posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en continuos posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en continuos posición 3 está
- (C) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición 4 puede estar opcionalmente sustituida con un átomo de halógeno, en el que el nitrógeno en dicho grupo que contiene nitrógeno es preferiblemente terciario y se usa preferiblemente para la unión al grupo fenilo:
 - (i) un grupo hidrocarburo C_2 - C_7 monocíclico saturado que contiene uno o más átomos de nitrógeno como uno o más miembros de anillo, que está sustituido en el grupo fenilo mediante un átomo de carbono (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C_1 - C_6) (por ejemplo, un grupo piperidinilo que puede estar sustituido con uno o más grupos alquilo C_1 - C_6 , como se ilustra por un grupo 4-piperidinilo),
 - (ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno (por ejemplo, un grupo pirrolilo, un grupo imidazolilo),
 - (iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆ (por ejemplo, un grupo morfolino).
 - (iv) un grupo piperazino opcionalmente sustituido [por ejemplo, un grupo piperazino que puede estar sustituido (preferiblemente en su átomo de nitrógeno miembro del anillo) con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C_1 - C_6 (en el que dicho grupo alquilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C_1 - C_4 y un grupo morfolino) y un grupo alcanoílo C_2 - C_7], y (v) la fórmula -NR⁷R⁸
- en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ forman opcionalmente, junto con el átomo de nitrógeno al que R⁷ y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo].

La fórmula -NR⁷R⁸ en (v) es más preferiblemente -NR^CR^D como se definen a continuación:

30

35

40

- cada uno de R^C y R^D representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo hidroxilo o un grupo alcoxi C₁-C₄), un grupo formilo, un grupo acetilo, un grupo aminocarbonilo, un grupo dimetilaminosulfonilo o un grupo metilsulfonilo, o como alternativa, R^C y R^D forman opcionalmente, junto con el átomo de nitrógeno al que R^C y R^D están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.
 - Una realización particularmente preferida de R³ es un grupo fenilo cuya posición 4 está sustituida con un átomo de flúor o un átomo de cloro, un grupo 6-indolilo o un grupo fenilo que está sustituido con un sustituyente seleccionado entre el grupo que consiste en los grupos que contienen nitrógeno mostrados en las realizaciones (i), (iv) y (v) en (C) anteriormente, y más adelante o cuya posición 4 puede estar sustituida con un átomo de halógeno.

Una realización preferida de R⁵ es un grupo alquilo C₁-C₁₆ (preferiblemente C₁-C₆) sustituido con un grupo cicloalquilo C₃-C₆, un grupo alquilo C₁-C₁₀ (preferiblemente C₁-C₆) sustituido con un grupo naftilo, un grupo alquenilo C₂-C₈ (preferiblemente C₂-C₆) sustituido con un grupo fenilo, un grupo fenilo o naftilo (preferiblemente un grupo 2-naftilo) que puede estar sustituido con 1 a 5 sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo alquilo C₁-C₆, un átomo de halógeno, un grupo alcoxi C₁-C₆, un grupo trifluorometoxi, un grupo difluorometoxi, un grupo trifluorometilo, un grupo alquenilo C1-C6, un grupo alquilsulfonilo C1-C6, un grupo alcanoílo C₂-C₇, un grupo alcoxicarbonilo C₂-C₇ y un grupo ciano), un grupo pirrolilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C1-C6 (preferiblemente un grupo metilo) y un grupo metoxicarbonilo], un grupo furanilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo), un grupo trifluorometilo y un átomo de halógeno], un grupo tienilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo), un grupo trifluorometilo, un grupo tiadiazolilo, un grupo oxazolilo y un átomo de halógeno], o como alternativa, un grupo benzotienilo (preferiblemente un grupo 2-benzotienilo), un grupo fenilo condensado con un anillo hidrocarburo saturado de 5 a 7 miembros que puede contener uno o dos átomos de oxígeno como miembros del anillo (por ejemplo, un grupo benzodioxepinilo, un grupo benzodioxolilo, un grupo dihidrobenzodioxinilo, un grupo dihidrobenzofuranilo, un grupo tetrahidronaftilo, un grupo indanilo), un grupo tiadiazolilo, un grupo benzoxadiazolilo o un grupo benzotiadiazolilo (preferiblemente un grupo 5-benzotiadiazolilo), pudiendo estar cada uno de los mismos sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo) y un átomo de halógeno.

15

20

25

30

35

40

45

50

60

El "grupo fenilo que puede estar sustituido" entre las realizaciones preferidas de R^5 pretende incluir un grupo fenilo sin sustituir, un grupo fenilo que está sustituido con 1 a 5 sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo), un grupo alcoxi C_1 - C_6 (preferiblemente un grupo metoxi) y un átomo de halógeno y un grupo fenilo que está sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo y al menos una de sus posiciones 3 y 4 está sustituida , en el que dicho grupo consiste en un grupo alquilo C_1 - C_6 , un átomo de halógeno, un grupo alcoxi C_1 - C_6 (preferiblemente un grupo metoxi), un grupo trifluorometoxi, un grupo difluorometoxi, un grupo alquenilo C_1 - C_6 , un grupo alquilsulfonilo C_1 - C_6 (preferiblemente un grupo metilsulfonilo), un grupo metoxicarbonilo, un grupo acetilo y un grupo ciano, más preferiblemente un átomo de halógeno, un grupo metilo y un grupo metoxi, e incluso más preferiblemente un átomo de halógeno.

El "grupo naftilo que puede estar sustituido" entre las realizaciones preferidas de R^5 pretende incluir un grupo naftilo que puede estar sustituido con uno o más sustituyentes (preferiblemente con 1 a 3 sustituyentes) seleccionados entre el grupo que consiste en un átomo de halógeno, un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo), un grupo ciano y un grupo alquilsulfonilo C_1 - C_6 (preferiblemente un grupo metilsulfonilo). Se prefiere más un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno, un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo) y un grupo ciano. En el caso de un grupo 2-naftilo, los ejemplos incluyen un grupo 2-naftilo sin sustituir y un grupo 2-naftilo que está sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C_1 - C_6 (sustituido en cualquier posición, más preferiblemente en la posición o posiciones 5, 7 y/u 8) y otros sustituyentes (sustituidos en la posición o posiciones 5, 7 y/u 8). De forma análoga, en el caso de un grupo 1-naftilo, los ejemplos incluyen un grupo 1-naftilo sin sustituir y un grupo 1-naftilo que está sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C_1 - C_6 (sustituido en cualquier posición) y otros sustituyentes, preferiblemente un átomo de halógeno (sustituido preferiblemente en la posición 4).

Una realización particularmente preferida de R^5 es un grupo fenilo cuyas posiciones 3 y 4 están cada una sustituida con un átomo de halógeno, un grupo 2-naftilo sin sustituir o un grupo 2-naftilo cuya posición o posiciones 5, 7 y/u 8 están sustituidas con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno, un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo) y un grupo ciano.

Las combinaciones particularmente preferidas de R^3 y R^5 son como se indican a continuación. En un caso en el que R^3 es un grupo fenilo cuya posición 4 está sustituida con un átomo de flúor o un átomo de cloro, R^5 es un grupo alquilo C_1 - C_{10} (preferiblemente C_1 - C_6) sustituido con un grupo naftilo, un grupo alquenilo C_2 - C_8 (preferiblemente C_2 - C_6) sustituido con un grupo fenilo, un grupo fenilo sustituido [por ejemplo, un grupo fenilo que está sustituido con 1 a 5 grupos metilo, un grupo fenilo que está sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo y al menos una de sus posiciones 3 y 4 está sustituida, en el que dicho grupo consiste en un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo, un grupo etilo, un grupo propilo), un átomo de halógeno, un grupo metoxi, un grupo trifluorometoxi, un grupo difluorometoxi, un grupo acetilo y un grupo ciano], un grupo benzotienilo, un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un átomo de halógeno, un grupo alquilo C_1 - C_6 (preferiblemente un grupo metilo), un grupo ciano y un grupo alquilsulfonilo C_1 - C_6 (preferiblemente un grupo metilo), un grupo metilo y un grupo metilo), un grupo dihidrobenzodioxolilo, un grupo dihidrobenzofuranilo, un grupo tetrahidronaftilo, un grupo dihidrobenzofuranilo, un grupo tetrahidronaftilo, un

grupo indanilo o un grupo benzotiadiazolilo (preferiblemente un grupo 5-benzotiadiazolilo).

En un caso en el que R³ es un grupo 6-indolilo:

R⁵ es un grupo alguilo C₁-C₁₀ (preferiblemente C₁-C₆) sustituido con un grupo naftilo, un grupo alguenilo C₂-C₈ (preferiblemente C₂-C₆) sustituido con un grupo fenilo, un grupo fenilo opcionalmente sustituido [por ejemplo, un grupo fenilo sin sustituir, un grupo fenilo que está sustituido con 1 a 5 metilo grupos, un grupo fenilo que está sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo y al menos una de sus posiciones 3 y 4 está sustituida, en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo, un grupo etilo, un grupo propilo), un átomo de halógeno, un grupo metoxi, un grupo trifluorometoxi, un grupo difluorometoxi, un grupo trifluorometilo, un grupo alquenilo C₁-C₆ (preferiblemente un grupo vinilo), un grupo metoxicarbonilo, un grupo acetilo y un grupo cianol, un grupo benzotienilo, un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un átomo de halógeno, un grupo alguilo C₁-C₆ (preferiblemente un grupo metilo), un grupo ciano y un grupo alguilsulfonilo C₁-C₆ (preferiblemente un grupo metilsulfonilo)], un grupo pirrolilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo) y un grupo metoxicarbonilo o un grupo benzodioxolilo, dihidrobenzodioxinilo, dihidrobenzofuranilo, tetrahidronaftilo, indanilo o benzotiadiazolilo (preferiblemente 5-benzotiadiazolilo), que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo) y un átomo de halógeno.

En un caso en el que R³ es la realización mostrada en (C) anteriormente:

R⁵ es un grupo alquilo C₁-C₆ sustituido con un grupo cicloalquilo C₈-C₈, un grupo alquilo C₁-C₁₀ (preferiblemente C₁-C₆) sustituido con un grupo naftilo, un grupo alquenilo C₂-C₈ (preferiblemente C₂-C₆) sustituido con un grupo fenilo, un grupo fenilo opcionalmente sustituido [por ejemplo, un grupo fenilo sin sustituir, un grupo fenilo que está sustituido con 1 a 5 sustituyentes seleccionados entre un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo) y un átomo de halógeno, un grupo fenilo que está sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo y al menos una de sus posiciones 3 y 4 está sustituida, en el que dicho grupo consiste en un grupo alquilo C₁-C₆, un átomo de halógeno, un grupo metoxi, un grupo trifluorometoxi, un grupo difluorometoxi, un grupo trifluorometilo, un grupo alquenilo C₁-C₆, un grupo alquilsulfonilo C₁-C₆ (preferiblemente un grupo metilsulfonilo), un grupo metoxicarbonilo, un grupo acetilo y un grupo ciano], un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un átomo de halógeno, un grupo alguilo C₁-C₆ (preferiblemente un grupo metilo), un grupo ciano y un grupo alguilsulfonilo C₁-C₆ (preferiblemente un grupo metilsulfonilo)], un grupo pirrolilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo) y un grupo metoxicarbonilo, un grupo tienilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo), un grupo trifluorometilo, un grupo tiadiazolilo, un grupo oxazolilo y un átomo de halógeno], un grupo furanilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo), un grupo trifluorometilo y un átomo de halógeno] o un grupo benzotienilo, benzodioxolilo, dihidrobenzodioxinilo, dihidrobenzofuranilo, tetrahidronaftilo, indanilo, (preferiblemente 5-tiadiazolilo), benzoxadiazolilo 0 benzotiadiazolilo (preferiblemente 5-benzotiadiazolilo) que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ (preferiblemente un grupo metilo) y un átomo de halógeno.

45

50

5

10

15

20

25

30

35

40

Son formas ópticamente activas preferidas de los compuestos de la presente invención aquellas que tienen la siquiente estructura.

[Fórmula 13]

Los compuestos de la presente invención pueden sintetizarse por los procedimientos que se muestran a continuación. a modo de ejemplo.

[Fórmula 14]

(Esquema 1)

Procedimiento A

[Fórmula 15]

(Esquema 1)

10

Procedimiento C Etapa 1C-1 Etapa 1C-2 Etapa 1C-3
$$OHC \xrightarrow{N} X \xrightarrow{Met-R^1} (1q) \xrightarrow{OH} R^1 \xrightarrow{N} X \xrightarrow{Azidación} R^1 \xrightarrow{N} X \xrightarrow{Reducción} (1r) (1s)$$

$$Etapa 1C-1 & Etapa 1C-2 & Etapa 1C-3$$

$$(1q) \xrightarrow{R^2} (1q) \xrightarrow{OH} R^1 \xrightarrow{N} X \xrightarrow{R^3} (1d) \xrightarrow{N} R^3$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d) \xrightarrow{N} R^3$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d) \xrightarrow{N} R^3$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d) \xrightarrow{N} (1d) \xrightarrow{N} (1d)$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d) \xrightarrow{N} (1d)$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d) \xrightarrow{N} (1d)$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d)$$

$$(1t) \xrightarrow{N} (1d)$$

$$(1t) \xrightarrow{N} X \xrightarrow{N} (1d)$$

$$(1t) \xrightarrow{N} (1d)$$

En las etapa anteriores, R^1 , R^2 , R^3 , R^5 y A son como se han definido anteriormente, R^{41} es igual que R^4 excepto por un átomo de hidrógeno, R^E representa un grupo alquilo C_1 - C_6 o un grupo fenilo, Met representa un metal típico, tal como Li, Na, MgCl o MgBr, Met' representa un metal típico (por ejemplo, Li, Na, B, Mg, Al, Zn, Sn) o un grupo representado por un complejo entre dicho metal típico o su ligando (en el que el ligando puede ser un grupo hidroxilo, un átomo de halógeno, un grupo metoxi o un ligando representado por la fórmula - $O(CH_2)_3O$ -), L representa un grupo saliente (en el que el grupo saliente puede ser, por ejemplo, un átomo de halógeno, tal como un átomo de cloro, un átomo de bromo o un átomo de yodo, un grupo acetiloxi, un grupo metanosulfoniloxi o un grupo p-toluenosulfoniloxi) y X representa un átomo de halógeno, tal como un átomo de cloro, un átomo de bromo o un átomo de yodo.

[Fórmula 16]

En las etapa anteriores, R¹, R², R³, R⁵ y A son como se han definido anteriormente, R⁴¹ es igual que R⁴, excepto por un átomo de hidrógeno, R^E representa un grupo alquilo C₁-C₆ o un grupo fenilo, Met representa un metal típico, tal como Li, Na, MgCl o MgBr, Met' representa un metal típico (por ejemplo, Li, Na, B, Mg, Al, Zn, Sn) o un grupo representado por un complejo entre dicho metal típico o su ligando (en el que el ligando puede ser un grupo hidroxilo, un átomo de halógeno, un grupo metoxi o un ligando representado por la fórmula -O(CH₂)₃O-), L representa un grupo saliente (en el que el grupo saliente puede ser, por ejemplo, un átomo de halógeno, tal como un átomo de cloro, un átomo de bromo o un átomo de yodo, un grupo acetiloxi, un grupo metanosulfoniloxi o un grupo p-toluenosulfoniloxi) y X representa un átomo de halógeno, tal como un átomo de cloro, un átomo de bromo o un átomo de yodo.

En las etapa anteriores, R^1 , R^3 , R^5 y A son como se han definido anteriormente, R^{41} es igual que R^4 excepto por un átomo de hidrógeno, R^{2A} representa - CH_2 - R^{21} (en la que R^{21} es un grupo alquilo C_1 - C_5), R^{BB} representa un grupo alquilo C_1 - C_6 o un grupo fenilo, Met representa un metal típico, tal como Li, Na, MgCl o MgBr, L representa un grupo saliente (en el que el grupo saliente puede ser, por ejemplo, un átomo de halógeno, tal como un átomo de cloro, un átomo de bromo o un átomo de yodo, un grupo acetiloxi, un grupo metanosulfoniloxi o un grupo p-toluenosulfoniloxi) y X representa un átomo de halógeno, tal como un átomo de cloro, un átomo de bromo o un átomo de yodo. A continuación, se darán detalles de cada esquema.

10 Esquema 1, Procedimiento A

Etapa 1A-1: Un compuesto representado por la fórmula (1a) puede hacerse reaccionar con imidazol en presencia de una base con o sin un disolvente para obtener un compuesto representado por la fórmula (1b). La cantidad del compuesto representado por la fórmula (1a) que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 3,0 equivalentes de imidazol. Los ejemplos de una base disponible para su uso incluyen hidróxidos de metal alcalino (por ejemplo, NaOH, KOH), sales de metal alcalino (por ejemplo, NaHCO₃, K₂CO₃), amidas de metal alcalino (por ejemplo, LiNH₂, NaNH₂) e hidruro sódico. La cantidad de la base que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 3,0 equivalentes de imidazol. La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente. Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo agua, éteres (por ejemplo, dioxano, tetrahidrofurano (THF)), disolventes apróticos polares (por ejemplo, dimetilformamida (DMF), N,N'-dimetilacetamida (DMA), N-metilpirrolidinona (NMP), N,N'-dimetilpropilenourea (DMPU), hexametilfosforamida (HMPA), dimetilsulfóxido (DMSO)), amoniaco o mezclas de los mismos. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.

25

20

Etapa 1A-2: El compuesto representado por la fórmula (1b) puede hacerse reaccionar con un agente de halogenación para obtener un compuesto representado por la fórmula (1c). Los ejemplos de un agente de halogenación incluyen Cl₂, N-clorosuccinimida (NCS), N-bromosuccinimida (NBS), N-vodosuccinimida 2,4,4,6-tetrabromociclohexadienona, hexacloroetano, PCI₅ y SOCI₂. La cantidad del agente de halogenación que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 1,5 equivalentes del compuesto representado por la fórmula (1b). Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo agua, éteres (por ejemplo, dioxano, THF, Et₂O), disolventes apróticos polares (por ejemplo, DMF, DMA, NMP, DMPU, HMPA), alcoholes (por ejemplo, MeOH, EtOH), disolventes halogenados (por ejemplo, CCI₄, CHCI₃, CH₂CI₂), CH₃CN, ácido acético o mezclas de los mismos. Si es necesario, se añade una base. Los ejemplos de una base incluyen hidróxidos de metal alcalino (por ejemplo, NaOH, KOH), sales de metal alcalino (por ejemplo, NaHCO₃, K₂CO₃, AcONa), aminas (por ejemplo, Et₃N, IPr₂NEt, iPr₂NH), n-BuLi, diisopropilamida de litio (LDA) y NaH. La cantidad de la base es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 1,2 equivalentes del compuesto representado por la fórmula (1b). La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente de -78 °C a temperatura ambiente. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.

15

20

25

30

35

40

45

50

55

Etapa 1A-3: El compuesto representado por la fórmula (1c) puede hacerse reaccionar con un compuesto representado por la fórmula (1d) en presencia de una base, con o sin un disolvente, para obtener un compuesto representado por la fórmula (1e). La cantidad de compuesto (1d) que debe usarse es generalmente de 1 a 5 equivalentes, preferiblemente de 1 a 3 equivalentes del compuesto representado por la fórmula (1c). Los ejemplos de una base incluyen sales de metales alcalinos (por ejemplo, Na₂CO₃, K₂CO₃, Cs₂CO₃, NaHCO₃, KHCO₃, NaOH, dimsil sodio, NaH, NaNH₂, t-BuOK, t-BuONa), aminas (por ejemplo, Et₃N, IPr₂NEt, iPr₂NH, pirrolidina, piperidina), AcONa, y AcOK. La cantidad de la base que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente 1 a 3 equivalentes del compuesto representado por la fórmula (1c). La temperatura de reacción varía de 0 °C a 300 °C, y la reacción puede completarse, por ejemplo, a presión normal, a presión elevada o en irradiación de microondas. Los ejemplos de un disolvente de reacción disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O), DMF, DMA, NMP, DMPU, HMPA, DMSO o mezclas de los mismos. Si es necesario, se añade un aditivo. Los ejemplos de un aditivo incluyen sales metálicas(por ejemplo, Cul, CuCl) o polvo de cobre. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 1 a 12 horas.

Etapa 1A-4: El compuesto representado por la fórmula (1e) puede hacerse reaccionar con una base en un disolvente y después hacerse reaccionar con un compuesto representado por la fórmula (1f) para obtener un compuesto representado por la fórmula (1g). La cantidad de compuesto (1f) que debe usarse es generalmente de 1 a 5 equivalentes, preferiblemente de 1 a 2 equivalentes del compuesto representado por la fórmula (1e). Los ejemplos de una base incluyen n-BuLi y LDA. La cantidad de una base que debe usarse es generalmente de 1 a 5 equivalentes, preferiblemente de 1 a 1,2 equivalentes del compuesto representado por la fórmula (1e). La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente de -78 °C a temperatura ambiente. Los ejemplos de un disolvente de reacción disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O), DMF, DMA, DMPU, HMPA, DMSO o mezclas de los mismos. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 12 horas.

Etapa 1A-5: El compuesto representado por la fórmula (1g) puede hacerse reaccionar con un agente de reducción en un disolvente para obtener un compuesto representado por la fórmula (1h). Los ejemplos de un agente de reducción incluyen NaBH4, KBH4, LiB(Sec-Bu)3H, (I-Bu)2AIH y LiAIH4. La cantidad del agente de reducción es de 0,5 a 5 equivalentes, preferiblemente de 0,5 a 1,2 equivalentes del compuesto representado por la fórmula (1g). Los ejemplos de un disolvente incluyen éteres (por ejemplo, dioxano, THF, Et2O) y alcoholes (por ejemplo, MeOH, EtOH). La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente 0 °C a temperatura ambiente. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 2 horas.

Etapa 1A-6: El compuesto representado por la fórmula (1h) puede hacerse reaccionar con cloruro de metanosulfonilo, cloruro de p-toluenosulfonilo, triflato anhídrido o similares, en un disolvente y, si fuera necesario, en presencia de una base, tal como piridina o trietilamina, seguido de reacción con un agente de azidación (por ejemplo, NaN₃, LiN₃, Zn(N₃)₂) o como alternativa, puede tratarse directamente con azodicarboxilato de dietilo (DEAD)/PPh₃/HN₃, difenilfosforilazida (DPPA)/1,8-diazabiciclo[5,4,0]un- dec-7-eno (DBU), Zn(N₃)₂/2 piridina o similares para obtener un compuesto representado por la fórmula (1i). Los ejemplos de un disolvente incluyen éteres (por ejemplo, dioxano, THF), disolventes halogenados (por ejemplo, CH₃CN, CCl₄, CHCl₃, CH₂Cl₂), benceno y tolueno.

Etapa 1A-7: El compuesto representado por la fórmula (1i) puede hacerse reaccionar con un agente de reducción en un disolvente y, si fuera necesario, en presencia de un catalizador (por ejemplo, Pd/C, Pd(OH)₂/C, PtO₂) para obtener un compuesto representado por la fórmula (1j). Los ejemplos de un agente de reducción incluyen hidrógeno, formiato amónico, hidrazina, PPh₃ y Mg. Los ejemplos de un disolvente disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O), alcoholes (por ejemplo, MeOH, EtOH), agua, AcOEt o mezclas de los mismos.

Etapa 1A-8: El compuesto representado por la fórmula (1j) puede hacerse reaccionar con un compuesto representado

por la fórmula (1k) en presencia de una base con o sin un disolvente, seguido de formación de sal según se necesite para obtener un compuesto representado por la fórmula (11) o una sal farmacéuticamente aceptable del mismo. La cantidad del compuesto representado por la fórmula (1k) que debe usarse es generalmente de 1 a 5 equivalentes, preferiblemente de 1 a 1,2 equivalentes del compuesto representado por la fórmula (1j). Los ejemplos de una base disponible para su uso incluyen hidróxidos de metal alcalino (por ejemplo, NaOH, KOH), sales de metal alcalino (por ejemplo, NaHCO₃, K₂CO₃) y aminas (por ejemplo, Et₃N, IPr₂NEt, iPr₂NH). La cantidad de la base es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 3,0 equivalentes del compuesto representado por la fórmula (1j). La temperatura de reacción varía de 0 °C a la temperatura de reflujo del disolvente, preferiblemente de 0 °C a temperatura ambiente. Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo hidrocarburos halogenados (por ejemplo, CHCl₃, CH₂Cl₂), éteres (por ejemplo, dioxano, THF, Et₂O) o mezclas de los mismos. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.

Etapa 1A-9: El compuesto representado por la fórmula (11) puede hacerse reaccionar con un compuesto representado por la fórmula (1m) en presencia de una base con o sin un disolvente, seguido de formación de sal según se necesite para obtener un compuesto representado por la fórmula (1n) o una sal farmacéuticamente aceptable del mismo. La cantidad del compuesto representado por la fórmula (1m) que debe usarse es de 1 a 10 equivalentes, preferiblemente de 1,1 a 1,5 equivalentes del compuesto representado por la fórmula (11). Los ejemplos de una base disponible para su uso incluyen hidróxidos de metal alcalino (por ejemplo, NaOH, KOH), sales de metal alcalino (por ejemplo, NaHCO₃, K₂CO₃) y aminas (por eiemplo, Et₃N, IPr₂NEt, iPr₂NH). La cantidad de la base es generalmente de 1 a 10 equivalentes. preferiblemente de 1,0 a 3,0 equivalentes del compuesto representado por la fórmula (11). La temperatura de reacción varía de 0 °C a la temperatura de reflujo del disolvente, preferiblemente de 0 °C a temperatura ambiente. Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo agua, éteres (por ejemplo, dioxano, THF, Et₂O), DMF, DMA, NMP, DMPU, HMPA, DMSO o mezclas de los mismos. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas. Además, partiendo de un compuesto representado por la fórmula (Iga) que se obtiene a través de halogenación del compuesto representado por la fórmula (1g), los procedimientos mostrados en las Etapas 1A-5 a 1A-9 del Esquema 1 pueden repetirse para obtener un compuesto sustituido con halógeno representado por la fórmula (1nb).

30 Además, el compuesto representado por la fórmula (1ga) puede hacerse reaccionar con un compuesto representado por la fórmula (1gb) para obtener un compuesto representado por la fórmula (1gc). Partiendo del compuesto resultante representado por la fórmula (1gc), los procedimientos mostrados en las Etapas 1A-5 a 1A-9 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (1na) que tiene el sustituyente R^E.

35 Etapa 1A-5A: El compuesto representado por la fórmula (1g) puede hacerse reaccionar con un agente de halogenación para obtener el compuesto representado por la fórmula (1ga). Los ejemplos de un agente de halogenación incluyen Cl₂, Br₂, I₂, NCS, NBS, NIS, 2,4,4,6-tetrabromociclohexadienona, PCl₅ y SOCl₂. La cantidad del agente de halogenación que debe usarse es generalmente de 2 a 10 equivalentes, preferiblemente de 1,0 a 2,5 equivalentes del compuesto representado por la fórmula (1g). Cuando se necesita un disolvente, puede usarse 40 cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo agua, éteres (por ejemplo, dioxano, THF), disolventes apróticos polares (por ejemplo, DMF, DMA, NMP, DMPU, HMPA, DMSO), alcoholes (por ejemplo, MeOH, EtOH), disolventes halogenados (por ejemplo, CCI₄, CHCI₃, CH₂CI₂), CH₃CN, ácido acético o mezclas de los mismos. Si es necesario, se añade una base. Los ejemplos de una base incluyen hidróxidos de metal alcalino (por ejemplo, NaOH, KOH), sales de metal alcalino (por ejemplo, NaHCO₃, K₂CO₃, AcONa) y aminas (por ejemplo, Et₃N, 45 IPr₂NEt). La cantidad de la base que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 1,2 equivalentes del compuesto representado por la fórmula (1g). La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente de -78 °C a temperatura ambiente. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.

50

55

60

65

15

20

25

Etapa 1A-5B: El compuesto representado por la fórmula (1ga) puede hacerse reaccionar con el compuesto representado por la fórmula (1gb) en presencia de un metal de transición y, si fuera necesario, en presencia de una base para obtener el compuesto representado por la fórmula (1gc). En el compuesto representado por la fórmula (1gb), Met' representa un metal típico (por ejemplo, Li, Na, B, Mg, Al, Zn, Sn) o un grupo representado por un complejo entre dicho metal típico o su ligando (en el que el ligando puede ser un grupo hidroxilo, un átomo de halógeno, un grupo metoxi o un ligando representado por la fórmula -O(CH₂)₃O-). La cantidad del compuesto representado por la fórmula (1gb) que debe usarse es de 1 a 10 equivalentes, preferiblemente de 1,0 a 1,5 equivalentes del compuesto representado por la fórmula (1ga). Los ejemplos de un metal de transición incluyen tetraquis(trifenilfosfina)paladio (0), acetato de paladio (II), paladio cloruro (II), aducto de tris(dibencilidenoacetona)dipaladio (0) cloroformo y bis(acetilacetonato)níquel (0). La cantidad de dicho metal de transición que debe usarse es generalmente de 0,01 a 0,5 equivalentes del compuesto representado por la fórmula (1ga).

Ademán, es deseable añadir una fosfina, excluyendo el caso en el que una fosfina ya esté coordinada. Los ejemplos de una fosfina incluyen trietilfosfina, tributilfosfina, trifenilfosfina, bis(difenilfosfino)etano, bis(difenilfosfino)propano, bis(difenilfosfino)butano y bis (difenilfosfino)ferroceno. La cantidad de dicha fosfina que debe usarse es de 1 a 2 equivalentes del metal de transición. Los ejemplos de una base incluyen hidróxidos de metal alcalino (por ejemplo,

NaOH, KOH) y sales de metal alcalino (por ejemplo, NaHCO₃, Na₂CO₃, K₂CO₃, K₃PO₄, Cs₂CO₃). La cantidad de la base que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente de 1,5 a 3,0 equivalentes del compuesto representado por la fórmula (1ga). La temperatura de reacción varía de 0 °C a la temperatura de reflujo del disolvente, preferiblemente de temperatura ambiente a la temperatura de reflujo del disolvente. Los ejemplos de un disolvente disponible para su uso incluyen agua, éteres (por ejemplo, dioxano, THF, Et₂O), DMF, DMA, NMP, DMPU, HMPA, DMSO o mezclas de los mismos. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.

Como alternativa, como se muestra en el Esquema 1, Procedimientos B y C, el compuesto representado por la fórmula (1n) también puede sintetizarse cambiando el orden de las reacciones en las etapas del Esquema 1, Procedimiento A.

Esquema 1, Procedimiento B

10

15

20

Etapa 1B-1: El compuesto representado por la fórmula (1c) que se obtuvo en la Etapa 1A-2 del Esquema 1 puede hacerse reaccionar con una base y después con DMF para formilación, para obtener un compuesto representado por la fórmula (1o). La cantidad de DMF que debe usarse es generalmente de 1 a 5 equivalentes, preferiblemente de 1 a 2 equivalentes del compuesto representado por la fórmula (1c). Los ejemplos de una base incluyen n-BuLi y LDA. La cantidad de una base que debe usarse es generalmente de 1 a 5 equivalentes, preferiblemente de 1 a 1,2 equivalentes del compuesto representado por la fórmula (1c). La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente de -78 °C a temperatura ambiente. Los ejemplos de un disolvente de reacción disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O), DMF, DMA, DMPU, HMPA, DMSO o mezclas de los mismos. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 12 horas.

Etapa 1B-2: El compuesto representado por la fórmula (10) puede hacerse reaccionar con el compuesto representado por la fórmula (1d) de la misma manera que se muestra en la Etapa 1A-3 del Esquema 1 para obtener un compuesto representado por la fórmula (1p).

Etapa 1B-3: El compuesto representado por la fórmula (1p) puede hacerse reaccionar con un compuesto representado por la fórmula (1q) para obtener el compuesto representado por la fórmula (1h). La cantidad del compuesto representado por la fórmula (1q) que debe usarse es de 1 a 10 equivalentes, preferiblemente de 1,1 a 1,5 equivalentes del compuesto representado por la fórmula (1p). Los ejemplos de un disolvente disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O) o mezclas de los mismos. La temperatura de reacción varía de -78 °C a temperatura ambiente, preferiblemente de -30 °C. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.

Partiendo del compuesto resultante representado por la fórmula (1h), los procedimientos mostrados en las Etapas 1A-6 a 1A-9 del Esquema 1 pueden repetirse para obtener el compuesto representado por la fórmula (1n). Además, partiendo de un compuesto representado por la fórmula (1pa) que se obtiene a través de halogenación del compuesto representado por la fórmula (1p), los procedimientos mostrados en las Etapas 1B-3 y 1A-6 a 1A-9 del Esquema 1 pueden repetirse para obtener el compuesto sustituido con halógeno representado por la fórmula (1nb).

- Además, el compuesto representado por la fórmula (1pa) puede hacerse reaccionar con el compuesto representado por la fórmula (1gb) para obtener un compuesto representado por la fórmula (1pb). Partiendo del compuesto resultante representado por la fórmula (1pb), los procedimientos mostrados en las Etapas 1B-3 y 1A-6 a 1A-9 del Esquema 1 pueden repetirse para obtener el compuesto representado por la fórmula (1na) que tiene el sustituyente R^E.
- Etapa 1B-3A: Partiendo del compuesto representado por (1p), el mismo procedimiento que se muestra en la Etapa 1A-5A del Esquema 1 puede repetirse para obtener el compuesto representado por la fórmula (1pa).

Etapa 1B-3B: Partiendo del compuesto representado por la fórmula (1pa) y el compuesto representado por la fórmula (1gb), el mismo procedimiento que se muestra en la Etapa 1A-5B del Esquema 1 puede repetirse para obtener el compuesto representado por la fórmula (1pb).

Esquema 1, Procedimiento C

Etapa 1C-1: Partiendo del compuesto representado por la fórmula (10) obtenido de la Etapa 1B-1 del Esquema 1 y el compuesto representado por la fórmula (1q), el mismo procedimiento que se muestra en la Etapa 1B-3 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (1r).

- Etapa 1C-2: Partiendo del compuesto representado por la fórmula (1r), el mismo procedimiento que se muestra en la Etapa 1A-6 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (1s).
- Etapa 1C-3: Partiendo del compuesto representado por la fórmula (1s), el mismo procedimiento que se muestra en la Etapa 1A-7 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (1t).
 - Etapa 1C-4: Partiendo del compuesto representado por la fórmula (1t) y el compuesto representado por la fórmula (1d), el mismo procedimiento que se muestra en la Etapa 1A-3 del Esquema 1 puede repetirse para obtener el compuesto representado por la fórmula (1j).
- 10 Partiendo del compuesto resultante representado por la fórmula (1j), los procedimientos mostrados en las Etapas 1A-8 a 1A-9 del Esquema 1 pueden repetirse para obtener el compuesto representado por la fórmula (1n).

Esquema 2

60

- 15 Etapa 2-1: Partiendo del compuesto representado por la fórmula (1b) y el compuesto representado por la fórmula (1f), el mismo procedimiento que se muestra en la Etapa 1A-4 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2a).
- Etapa 2-2: El compuesto representado por la fórmula (2a) puede hacerse reaccionar con un agente de halogenación 20 para obtener un compuesto representado por la fórmula (2b). Los ejemplos de un agente de halogenación incluyen Cl. Br₂, I₂, NCS, NBS, NIS, 2,4,4,6-tetrabromociclohexadienonea, PCI₅ y SOCI₂. La cantidad del agente de halogenación que debe usarse es generalmente de 2 a 10 equivalentes, preferiblemente de 1,0 a 2,5 equivalentes del compuesto representado por la fórmula (2a). Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo aqua, éteres (por ejemplo, dioxano, THF), disolventes apróticos polares (por ejemplo, DMF, DMA, NMP, DMPU, HMPA, DMSO), alcoholes (por ejemplo, MeOH, EtOH), disolventes 25 halogenados (por ejemplo, CCI₄, CHCI₃, CH₂CI₂), CH₃CN, ácido acético o mezclas de los mismos. Si es necesario, se añade una base. Los ejemplos de una base incluyen hidróxidos de metal alcalino (por ejemplo, NaOH, KOH), sales de metal alcalino (por ejemplo, NaHCO₃, K₂CO₃, AcONa) y aminas (por ejemplo, Et₃N, IPr₂NEt). La cantidad de la base que debe usarse es generalmente de 1 a 10 equivalentes, preferiblemente de 1,0 a 1,2 equivalentes del compuesto 30 representado por la fórmula (2a). La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente -78 °C a temperatura ambiente. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.
- Etapa 2-3: Partiendo del compuesto representado por la fórmula (2b) y el compuesto representado por la fórmula (1d), el mismo procedimiento que se muestra en la Etapa 1A-3 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2c).
- Etapa 2-4: El compuesto representado por la fórmula (2c) puede hacerse reaccionar en un disolvente, en presencia de un catalizador (por ejemplo, Pd/C, Pd(OH)₂/C, PtO₂) en una atmósfera de hidrógeno para obtener un compuesto representado por la fórmula (2d). Los ejemplos de un disolvente incluyen éteres (por ejemplo, dioxano, THF), alcoholes (por ejemplo, MeOH, EtOH) y AcOEt. La cantidad del catalizador que debe usarse es generalmente de 0,01 a 1,0 partes en peso del compuesto representado por la fórmula (2c).
- Etapa 2-5: Partiendo del compuesto representado por la fórmula (2d), el mismo procedimiento que se muestra en la Etapa 1A-5 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2e).
 - Etapa 2-6: Partiendo del compuesto representado por la fórmula (2e), el mismo procedimiento que se muestra en la Etapa 1A-6 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2f).
- Etapa 2-7: Partiendo del compuesto representado por la fórmula (2f), el mismo procedimiento que se muestra en la Etapa 1A-7 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2 g).
- Etapa 2-8: Partiendo del compuesto representado por la fórmula (2 g) y el compuesto representado por la fórmula (1k), el mismo procedimiento que se muestra en la Etapa 1A-8 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2h).
 - Etapa 2-9: Partiendo del compuesto representado por la fórmula (2h) y el compuesto representado por la fórmula (1m), el mismo procedimiento que se muestra en la Etapa 1A-9 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (2i). Además, partiendo del compuesto representado por la fórmula (2c), los procedimientos mostrados en las Etapas 2-5 a 2-9 del Esquema 2 pueden repetirse para obtener un compuesto sustituido con halógeno representado por la fórmula (2ib).
 - Además, el compuesto representado por la fórmula (2c) puede hacerse reaccionar con el compuesto representado por la fórmula (1gb) para obtener un compuesto representado por la fórmula (2ca). Partiendo del compuesto resultante representado por la fórmula (2ca), los procedimientos mostrados en las Etapas 2-5 a 2-9 del Esquema 2 pueden repetirse para obtener un compuesto representado por la fórmula (2ia) que tiene un sustituyente R^E.
 - Etapa 2-4A: Partiendo del compuesto representado por (2c), el mismo procedimiento que se muestra en la Etapa

1A-5B del Esquema 1 puede repetirse para obtener el compuesto representado por la fórmula (2ca).

Esquema 3

10

45

50

- 5 Etapa 3-1: Pueden hacerse reaccionar sal sódica de oxalacetato de dietilo y un compuesto representado por la fórmula (3a) en presencia de ácido acético para obtener un compuesto representado por la fórmula (3b).
 - Etapa 3-2: El compuesto representado por la fórmula (3b) puede hacerse reaccionar con un agente de halogenación (por ejemplo, POCl₃) en DMF para obtener un compuesto representado por la fórmula (3c).
 - Etapa 3-3: Partiendo del compuesto representado por la fórmula (3c) y el compuesto representado por la fórmula (1d), el mismo procedimiento que se muestra en la Etapa 1A-3 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (3d).
- Etapa 3-4: El compuesto representado por la fórmula (3d) puede hacerse reaccionar con un compuesto representado por la fórmula (3e) para obtener un compuesto representado por la fórmula (3f). La cantidad del compuesto representado por la fórmula (3e) que debe usarse es de 1 a 10 equivalentes, preferiblemente de 1,1 a 1,5 equivalentes del compuesto representado por la fórmula (3d). Los ejemplos de un disolvente disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O) o mezclas de los mismos. La temperatura de reacción varía de -78 °C a temperatura ambiente, preferiblemente -30 °C a 0 °C. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.
- Etapa 3-5: El compuesto representado por la fórmula (3f) puede hacerse reaccionar con un agente de reducción en presencia de un ácido de Lewis para obtener un compuesto representado por la fórmula (3g). Los ejemplos de un ácido de Lewis incluyen ácido trifluoroacético (TFA), TiCl₄, SnCl₄ y AlCl₃. La cantidad del ácido de Lewis es 1 a 20 equivalentes, preferiblemente de 5 a 10 equivalentes del compuesto representado por la fórmula (3f). Los ejemplos de un agente de reducción incluyen Et₃SiH, Bu₃SnH y NaBH₄. La cantidad del agente de reducción es de 1 a 5 equivalentes, preferiblemente de 1 a 3 equivalentes del compuesto representado por la fórmula (3f). Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo disolvente halogenados (por ejemplo, CCl₄, CHCl₃, CH₂Cl₂) o mezclas de los mismos. La temperatura de reacción varía de -78 °C a la temperatura de reflujo del disolvente, preferiblemente 0 °C a temperatura ambiente.
- Etapa 3-6: El compuesto representado por la fórmula (3g) puede hacerse reaccionar con un agente reductor para obtener un compuesto representado por la fórmula (3h). Los ejemplos de un agente de reducción incluyen NaBH₄, 35 KBH₄, LiB(H)Et₃, LiB(Sec-Bu)₃H, (i-Bu)₂AlHAl H (O-t-Bu)₃, LiAlH₄, LiHAl(O-t-Bu)₃ y NaH₂Al(OCH₂CH₂OCH₃). La cantidad del agente de reducción es de 0,5 a 5 equivalentes, preferiblemente de 0,5 a 1,2 equivalentes del compuesto representado por la fórmula (3g). Los ejemplos de un disolvente disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, éter dietílico), hexano, benceno, tolueno o mezclas de los mismos. La temperatura de reacción varía de -78 °C a temperatura ambiente, preferiblemente de -78 °C a 0 °C. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 4 horas.
 - Etapa 3-7: El compuesto representado por la fórmula (3h) puede hacerse reaccionar con el compuesto representado por la fórmula (1q) de la misma manera que se muestra en la Etapa 1B-3 del Esquema 1 para obtener un compuesto representado por la fórmula (3i). La cantidad del compuesto representado por la fórmula (1q) que debe usarse es 1 a 10 equivalentes, preferiblemente de 1,1 a 1,5 equivalentes del compuesto representado por la fórmula (3h). Los ejemplos de un disolvente disponible para su uso incluyen éteres (por ejemplo, dioxano, THF, Et₂O) o mezclas de los mismos. La temperatura de reacción varía de -78 °C a temperatura ambiente, preferiblemente de -30 °C a 0 °C. Aunque el tiempo de reacción variará dependiendo de la temperatura de reacción y/o compuesto de partida, éste es generalmente de 30 minutos a 24 horas.
 - Etapas 3-8 y 3-9: Partiendo del compuesto representado por la fórmula (3i), el mismo procedimiento que se muestra en las Etapas 1A-6 y 1A-7 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (3j).
- Etapa 3-10: Partiendo del compuesto representado por la fórmula (3j) y el compuesto representado por la fórmula (1k), el mismo procedimiento que se muestra en la Etapa 1A-8 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (3k).
- Etapa 3-11: Partiendo del compuesto representado por la fórmula (3k) y el compuesto representado por la fórmula (1m), el mismo procedimiento que se muestra en la Etapa 1A-9 del Esquema 1 puede repetirse para obtener un compuesto representado por la fórmula (31).
 - Etapa 3-12: El compuesto representado por la fórmula (31) puede hacerse reaccionar con un ácido para obtener un compuesto representado por la fórmula (3m). Los ejemplos de un ácido incluyen ácido clorhídrico/piridina; y BBr₃. La cantidad del ácido que debe usarse es de 1 a 20 equivalentes, preferiblemente de 10 a 20 equivalentes del compuesto representado por la fórmula (31). Cuando se necesita un disolvente, puede usarse cualquier disolvente siempre y cuando sea inerte para la reacción, incluyendo disolvente halogenados (por ejemplo, CCl₄, CHCl₃, CH₂Cl₂) o mezclas

de los mismos. La temperatura de reacción varía de temperatura ambiente a 200 °C, preferiblemente temperatura ambiente a 180 °C.

Para su uso como preparaciones farmacéuticas, los compuestos de la presente invención pueden complementarse con excipientes, diluyentes, reguladores de pH, solubilizantes y así sucesivamente, y después formularse usando técnicas convencionales en comprimidos, gránulos, píldoras, cápsulas, polvos, soluciones, suspensiones, inyecciones, etc. Las preparaciones farmacéuticas obtenidas de este modo pueden administrarse como formulaciones orales o parenterales.

Los compuestos de la presente invención pueden proporcionarse a pacientes adultos a 1 a 1000 mg por día como una dosis sencilla o en dosis divididas. Esta dosificación puede aumentarse o reducirse según sea apropiado para el tipo de enfermedad, la edad, peso corporal y síntomas de un paciente, etc.

Ventajas de la invención

15

5

Se descubrió que los compuestos de la presente invención eran ligandos de Edg-1 (SIP₁) fuertes, como resulta evidente a partir del ejemplo de ensayo descrito posteriormente.

Mejor modo de realizar la invención

20

La presente invención se describirá adicionalmente con mayor detalle por medio de los siguientes ejemplos y ejemplos de ensayo.

Ejemplo 1

25

3,4-Dicloro-N-[1-(3-etil-2(4-metilfenoxi)-3H-imidazol-4-il)-etil]-bencenosulfonamida (Compuesto 74)

[Fórmula 18]

1 -Etil-2-vodo-1H-imidazol

[Fórmula 19]

30

(1) A una solución de 1-etil-1H-imidazol (2,844 g) en THF (60 ml), se le añadió gota a gota n-BuLi (11,6 ml, 2,59 N en hexano) a -78 °C en una atmósfera de argón. Después de agitar a la misma temperatura durante 30 minutos, se añadió gota a gota una solución de I_2 (7,614 g) en THF (25 ml). La mezcla de reacción se calentó a temperatura ambiente, se diluyó con bicarbonato sódico acuoso saturado y se extrajo con AcOEt. Después de lavar con $Na_2S_2O_3$ acuoso saturado, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente, dando de esta manera el compuesto del título (6,492 g) en forma de un sólido de color amarillo claro.

RMN 1 H (200 MHz, CDC I_3) δ ppm: 1,40 (t, J = 7,4 Hz, 3H), 3,95 (c, J = 7,4 Hz, 2H), 7,02-7,06 (m, 1H), 7,07-7,11 (m, 1H)

40 <u>1-Etil-2(4-metilfeno</u>xi)-1H-imidazol

[Fórmula 20]

(2) Una mezcla del compuesto obtenido en el Ejemplo 1-(1) (30,27 g), 4-cresol (17,69 g), Cs_2CO_3 (53,43 g) y N,N'-dimetilpropilenourea (DMPU) (136 ml) se agitó a 200 °C durante 3 horas. La mezcla se enfrió a temperatura ambiente, se diluyó con agua y se extrajo con AcOEt. Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo OH neutro, hexano/AcOEt = del 10% al 40%) para dar el compuesto del título (8,54 g, aceite de color amarillo).

RMN 1 H (200 MHz, CDCI₃) δ ppm: 1,39 (t, J = 7,3 Hz, 3H), 2,32 (s, 3H), 3,89 (c, J = 7,3 Hz, 3H), 6,65 (d, J = 1,8 Hz, 1H), 6,70 (d, J = 1,8 Hz, 1H), 7,03-7,320 (m, 4H)

1-(3-Etil-2(4-metilfenoxi)-3H-imidazol-4-il)-etanol

[Fórmula 21]

15

20

25

30

10

(3) A una solución del compuesto obtenido en el Ejemplo 1-(2) (2,493 g) en THF (123 ml), se le añadió gota a gota n-BuLi (4,8 ml, 2,59 N en hexano) a -78 °C en una atmósfera de argón y se agitó a la misma temperatura durante 3,5 horas. La mezcla de reacción se enfrió a -100 °C, se mezcló con Ac₂O (2,3 ml), se calentó a -65 °C durante 50 minutos, se diluyó con bicarbonato sódico acuoso saturado y se extrajo con AcOEt. Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (gel de sílice de tipo NH, AcOEt/hexano = del 10% al 30%) para dar una mezcla de 1-(3-etil-2(4-metilfenoxi)- 3H-imidazol-4-il)-etanona y 1-etil-2(4-metilfenoxi)-1H-imidazol (1,509 g, aceite incoloro). A una solución de los compuestos resultantes (1,508 g) en MeOH (13 ml), se le añadió NaBH₄ (243 mg) a 0 °C y se agitó a la misma temperatura durante 15 minutos y después a temperatura ambiente durante 15 minutos. La mezcla de reacción se concentró, se diluyó con agua y se extrajo con AcOEt. Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (gel de sílice de tipo NH, AcOEt/ hexano = del 20% al 99%) para dar el compuesto del título (1,131 g, aceite incoloro).

RMN 1 H (200 Hz, CDCl₃) δ ppm: 1,38 (t, J = 7,3 Hz, 3H), 1,62 (d, J = 6,6 Hz, 3H), 2,33 (s, 3H), 3,86-4,20 (m, 2H), 4,70-4,88 (m, 1 H), 6,60 (d, J = 0,9 Hz, 1H), 7,04-7,21 (m, 4H)

5-(1-Azidoetil)-1-etil-2(4-metilfenoxi)-1H-imidazol

[Fórmula 22]

35

(4) A una solución del compuesto obtenido en el Ejemplo 1-(3) (1,130 g) en tolueno (46 ml), se le añadieron difenilfosforilazida (DPPA) (1,48 ml) y 1,8-diazabiciclo[5,4,0]undec-7-eno (DBU) a 0 °C y se agitó a temperatura ambiente durante 11,5 horas. La mezcla de reacción se diluyó con agua y se extrajo con AcOEt. Después de lavar con

salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (gel de sílice de tipo NH, AcOEt/hexano = del 0% al 10%) para dar el compuesto del título (983 mg, aceite incoloro).

RMN 1 H (200 Hz, CDCI₃) δ ppm: 1,38 (t, J = 7,1 Hz, 3H), 1,67 (d, J = 6,8 Hz, 3H), 2,33 (s, 3H), 3,90-4,07 (m, 2H), 4,25-4,40 (m, 1H), 6,68 (d, J = 0,9 Hz, 1H), 7,02-7,30 (m, 4H)

1-(3-Etil-2(4-metilfenoxi)-3H-imidazol-4-il)-etilamina

[Fórmula 23]

10

(5) Una mezcla del compuesto obtenido en el Ejemplo 1-(4) (983 mg) y paladio-carbón activado (197 mg, Pd al 10% en peso) en tolueno (46 ml) se agitó en una atmósfera de hidrógeno (aproximadamente 1 atm) a temperatura ambiente durante 4 horas. La mezcla de reacción se filtró a través de celite y el filtrado se concentró. El producto en bruto resultante se purificó por cromatografía en columna (gel de sílice de tipo NH, AcOEt/hexano = del 10% al 99%) para dar el compuesto del título (754 mg, aceite incoloro).

RMN 1 H (200 Hz, CDCl₃) δ ppm: 1,37 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,6 Hz, 3H), 2,32 (s, 3H), 3,82-4,12 (m, 3H), 6,53 (d, J = 0,9 Hz, 1H), 7,04-7,20 (m, 4H)

3,4-Dicloro-N-[1-(3-etil-2(4-metilfenoxi)-3H-imidazol-4-il)-etil]-bencenosulfonamida (Compuesto 74)

[Fórmula 24]

CI S NH NO

20

25

(6) A una solución del compuesto obtenido en el Ejemplo 1-(5) (24 mg) en THF (2,0 ml), se le añadieron Et₃N (0,041 ml) y cloruro de 3,4-diclorobencenosulfonilo (48 mg) a temperatura ambiente y se agitó a temperatura ambiente durante 12 horas. Después de la adición de AcOEt, la fase orgánica se lavó secuencialmente con ácido clorhídrico acuoso 1 N y salmuera, se secó sobre sulfato de magnesio anhidro, se filtró y después se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna sobre gel de sílice de tipo NH (disolvente de elusión: AcOEt), seguido de recristalización (AcOEt-hexano) para dar el compuesto del título (Compuesto 74) (25 mg, polvo incoloro).

RMN ¹H (200 MHz, DMSO-d6) δ ppm: 1,18 (t, J = 7,1 Hz, 3H), 1,26 (d, J = 6,8 Hz, 3H), 2,29 (s, 3H), 3,65-3,91 (m, 2H), 3,000 4,41-4,62 (m, 1H), 6,42 (s, 1H), 6,97-7,07 (m, 2H), 7,13-7,24 (m, 2H), 7,71 (dd, J = 8,4, 2,1 Hz, 1H), 7,87 (d, J = 8,4 Hz, 1H), 7,93 (d, J = 2,1 Hz, 1H), 8,28-8,43 (m, 1H) Punto de fusión: 142,5-143,5 °C

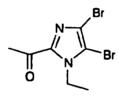
Ejemplo 2

35

3,4-Dicloro-N-[1-(1-etil-5-(4-metilfenoxi)-1H-imidazol-2vl)-etil1-bencenosulfonamida (Compuesto 179)

[Fórmula 25]

1-(1-Etil-1H-imidazol-2-il)-etanona


[Fórmula 26]

(1) A una solución de 1-etil-1H-imidazol (1,923 g) en THF (40 ml), se le añadió gota a gota n-BuLi (7,7 ml, 2,59 N en hexano) a -78 °C en una atmósfera de argón. Después de agitar a la misma temperatura durante 30 minutos, la mezcla de reacción se añadió gota a gota a -78 °C a través de una cánula a una solución de AcCl (1,56 ml) en THF (40 ml). La mezcla de reacción se calentó a temperatura ambiente durante 2 horas, se diluyó con bicarbonato sódico acuoso saturado y se extrajo con AcOEt. Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna sobre gel de sílice (gel de sílice de tipo NH, AcOEt/hexano = del 0% al 10%) para dar el compuesto del título (335 mg, aceite incoloro).

RMN 1 H (200 Hz, CDCl₃) δ ppm: 1,42 (t, J = 7,3 Hz, 3H), 2,67 (s, 3H), 4,43 (c, J = 7,3 Hz, 2H), 7,09 (s, 1H), 7,15 (d, J = 0,7 Hz, 1H)

1-(4,5-Dibromo-1-etil-1H-imidazol-2-il)-etanona

[Fórmula 27]

- 20 (2) A una solución del compuesto obtenido en el Ejemplo 2-(1) (1,08 g) en CH₃CN (78 ml), se le añadió N-bromosuccinimida (NBS) (2,782 g) a 0 °C, se calentó a reflujo durante 3 horas y después se agitó durante una noche a temperatura ambiente. Después de retirar el disolvente por destilación, el residuo resultante se purificó por cromatografía en columna sobre gel de sílice (gel de sílice neutro de tipo OH, AcOEt/hexano = del 5% al 20%) para dar el compuesto del título (1,865 g, aceite incoloro).
- 25 RMN 1 H (200 Hz, CDCI₃) δ ppm: 1,35 (t, J = 7,1 Hz, 3H), 2,63 (s, 3H), 4,51 (c, J = 7,1 Hz, 2H)

1-(4-Bromo-1-etil-5-(4-metilfenoxi)-1H-imidazol-2-il)-etanona

[Fórmula 28]

(3) Una mezcla del compuesto obtenido en el Ejemplo 2-(2) (833 mg), 4-cresol (883 μl), Cs₂CO₃ (2,979 g) y DMPU (2,8 ml) se agitó a 100 °C durante 30 minutos y después a 150 °C durante 1 hora. La mezcla de reacción se enfrió a temperatura ambiente, se diluyó con NaOH acuoso (2,0 N) y se extrajo con AcOEt/hexano (1/4). Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo NH, AcOEt/hexano = del 2% al 5%) para dar el compuesto del título (235 mg, sólido incoloro).

RMN 1 H (200 Hz, CDCl₃) δ ppm: 1,27 (t, J = 7,2 Hz, 3H), 2,33 (s, 3H), 2,63 (s, 3H), 4,31 (c, J = 7,2 Hz, 2H), 6,76-6,88 (m, 2H), 7,08-7,20 (m, 2H)

40

30

35

1-(1-Etil-5(4-metilfenoxi)-1H-imidazol-2-il)-etanona

[Fórmula 29]

(4) Una mezcla del compuesto obtenido en el Ejemplo 2-(3) (154 mg), paladio-carbón activado (31 mg, Pd al 10% en peso) y AcONa (47 mg) en MeOH (4,0 ml) se agitó en una atmósfera de hidrógeno (aproximadamente 1 atm) a temperatura ambiente durante 2 horas. La mezcla de reacción se filtró a través de celite y el filtrado se concentró, se diluyó con agua y se extrajo con AcOEt.

La fase orgánica se lavó con salmuera, se secó sobre MgSO₄, se filtró y después se evaporó a presión reducida para retirar el disolvente, dando de esta manera el compuesto del título (113 mg, aceite incoloro).

RMN ¹H (200 Hz, CDCl₂) à ppm: 1.35 (t, J = 7.1 Hz, 3H), 2.35 (s, 3H), 2.61 (s, 3H), 4.40 (c, J = 7.1 Hz, 2H), 6.53 (s, 1H).

RMN 1 H (200 Hz, CDCl₃) δ ppm: 1,35 (t, J = 7,1 Hz, 3H), 2,35 (s, 3H), 2,61 (s, 3H), 4,40 (c, J = 7,1 Hz, 2H), 6,53 (s,1H), 6,94-7,06 (m, 2H), 7,12-7,22 (m, 2H)

1-(1-Etil-5-(4-metilfenoxi)-1H-imidazol-2-il)-etanol

15

10

[Fórmula 30]

(5) A una solución del compuesto obtenido en el Ejemplo 2-(4) (171 mg) en MeOH (7,0 ml), NaBH₄ (26 mg) se añadió a 0 °C y se agitó a la misma temperatura durante 15 minutos. La mezcla de reacción se diluyó con agua y se extrajo con AcOEt. Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente, dando de esta manera el compuesto del título (158 mg, sólido incoloro).
RMN ¹H (200 Hz, CDCI₃) δ ppm: 1,33 (t, J = 7,3 Hz, 3H), 1,67 (d, J = 5,9 Hz, 3H), 2,32 (s, 3H), 3,92-4,07 (m, 2H), 4,76-4,98 (m, 1 H), 6,35-6,53 (m, 1H), 6,90-7,02 (m, 2H), 7,07-7,18 (m, 2H)

25 2-(1-Azido-etil)-1-etil-5-(4-metilfenoxi)-1H-imidazol

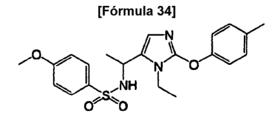
[Fórmula 31]

(6) Partiendo del compuesto obtenido en el Ejemplo 2-(5), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(4) para dar el compuesto del título (aceite incoloro, rendimiento 40%).
RMN ¹H (200 Hz, CDCl₃) δ ppm: 1,34 (t, J = 7,3 Hz, 3H), 1,79 (d, J = 6,8 Hz, 3H), 2,33 (s, 3H), 3,81-4,05 (m, 2H), 4,38-4,53 (m, 1H), 6,47 (s, 1H), 6,91-7,01 (m, 2H). 7,08-7,18 (m, 2H)

1-(1-Etil-5-(4-metilfenoxi)-1H-imidazol-2-il)-etilamina

[Fórmula 32]

- (7) Partiendo del compuesto obtenido en el Ejemplo 2-(6), el mismo procedimiento que el usado en el Ejemplo 1-(5) se repitió para dar el compuesto del título (aceite incoloro) con rendimiento cuantitativo. RMN ¹H (200 Hz, CDCl₃) δ ppm: 1,30 (t, J = 7,3 Hz, 3H), 1,53 (d, J = 6,8 Hz, 3H), 2,32 (s, 3H), 3,77-4,16 (m, 3H), 6,44 (s, 1H), 6,90-7,00 (m, 2H), 7,06-7,16 (m, 2H)
- 10 3,4-Dicloro-N-f1-(1-etil-5-(4-metilfenoxi)-1H-imidazol-2-il)-etil1-bencenosulfonamida (Compuesto 179)


[Fórmula 33]

(8) Partiendo del compuesto obtenido en el Ejemplo 2-(7), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(6) para dar el compuesto del título (Compuesto 179) (polvo incoloro, rendimiento 73%). RMN 1 H (200 MHz, DMSO-d6) δ ppm: 1,12 (t, J = 7,1 Hz, 3 H), 1,30 (d, J = 6,8 Hz, 3 H), 2,28 (s, 3H), 3,67-3,88 (m, 2H), 4,53-4,70 (m, 1H), 6,25 (s, 1H), 6,84-6,95 (m, 2H), 7,12-7,25 (m, 2H), 7,69 (dd, J = 8,5, 2,1 Hz, 1H), 7,84 (d, J = 8,5 Hz, 1H), 7,90 (d, J = 2,1 Hz, 1H), 8,47-8,64 (m, 1H) Punto de fusión: 133,0-134,5 °C

20 _

Ejemplo 3

$\underline{\text{N-[1-(3-Etil-2-p-toliloxi-3H-imidazol-4-il)-etil]-4-metoxibencenosulfonamida}} \ (Compuesto\ 23)$

25

A una solución del compuesto obtenido en el Ejemplo 1-(5) (12,3 mg) en THF (0,3 ml), se le añadieron secuencialmente Et₃N (25 μl) y una solución de cloruro de 4-metoxibencenosulfonilo (15,5 mg) en THF (0,3 ml) y se agitó a temperatura ambiente durante 2 horas. Después de la adición de PSA (amina soportada por polímero, VARIAN, 1,4 mequiv./g) (75 μl), la mezcla de reacción se agitó a temperatura ambiente durante 12 horas y se filtró para retirar los materiales insolubles. Después de retirar el disolvente por destilación, el producto en bruto resultante se purificó por cromatografía en columna sobre gel de sílice (SiO₂ de tipo OH ácido, AcOEt/hexano = del 50% al 100%, MeOH/CHCl₃ = 10%) para dar el compuesto del título (Compuesto 23, 14,3 mg) en forma de un polvo incoloro. EM APCI (M-H)⁻: 414, EM APCI (M+H)⁺: 416

35

Ejemplo 4

 $\underline{3,4\text{-}Dicloro\text{-}N\text{-}[1\text{-}(4\text{-}cloro\text{-}1\text{-}etil\text{-}5\text{-}p\text{-}toliloxi\text{-}1H\text{-}imidazol\text{-}2\text{-}il)\text{-}etil]\text{-}bencenosulfonamida}} \ (Compuesto\ 183)$

[Fórmula 35]

5 <u>1-(4,5-Dicloro-1-etil-1H-imidazol-2-il)-etanona</u>

[Fórmula 36]

(1) Se repitió el mismo procedimiento que se usó en el Ejemplo 2-(2) para dar el compuesto del título (aceite incoloro, rendimiento 47%), excepto porque se reemplazó N-bromosuccinimida (NBS) por N-clorosuccinimida (NCS). RMN ¹H (600 MHz, CDCI₃) δ ppm: 1,36 (t, J = 7,2 Hz, 3 H), 2,61 (s, 3 H), 4,48 (c, J = 7,2 Hz, 2 H)

1-(4-Cloro-1-etil-5-p-toliloxi-1H-imidazol-2-il)-etanona

[Fórmula 37]

15

20

10

(2) Partiendo del compuesto obtenido en el Ejemplo 4-(1), se repitió el mismo procedimiento que el usado en el Ejemplo 2-(3) para dar el compuesto del título (sólido incoloro, rendimiento 47%). RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,28 (t, J = 7,2 Hz, 3 H), 2,33 (s, 3 H), 2,62 (s, 3 H), 4,32 (c, J = 7,2 Hz, 2 H), 6,81-6,86 (m, 2 H), 7,12-7,16 (m, 2 H)

1-(4-Cloro-1-etil-5-p-toliloxi-1H-imidazol-2-il)-etanol

[Fórmula 38]

25

(3) Partiendo del compuesto obtenido en el Ejemplo 4-(2), se repitió el mismo procedimiento que el usado en el Ejemplo 2-(5) para dar el compuesto del título (aceite de color amarillo claro, rendimiento 87%). RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,28 (t, J = 7,3 Hz, 3 H), 1,66 (d, J = 6,4 Hz, 3 H), 2,32 (s, 3 H), 3,83-3,98 (m, 2 H),

4,81-4,88 (m, 1 H), 6,81-6,87 (m, 2 H), 7,09-7,14 (m, 2 H)

2-(1-Azidoetil)-4-cloro-1-etil-5-p-toliloxi-1H-imidazol

[Fórmula 39]

5

10

(4) Partiendo del compuesto obtenido en el Ejemplo 4-(3), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(4) para dar el compuesto del título (aceite de color amarillo claro, rendimiento 87%).

RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,28 (t, J = 7,1 Hz, 3 H), 1,78 (d, J = 6,4 Hz, 3 H), 2,32 (s, 3 H), 3,82-3,94 (m, 2 H), 4,40-4,45 (m, 1 H), 6,81-6,86 (m, 2 H), 7,10-7,15 (m, 2 H)

1-(4-Cloro-1-etil-5-p-toliloxi-1H-imidazol-2-il)-etilamina

[Fórmula 40]

15

20

(5) A una solución del compuesto obtenido en el Ejemplo 4-(4) (460 mg) y PPh₃ (790 mg) en THF (50 ml), se le añadió H₂O (0,6 ml) y se calentó a reflujo durante 15 horas. Después de añadir más cantidad de H₂O (0,6 ml), la mezcla de reacción se calentó a reflujo durante 4 horas más, se enfrió a temperatura ambiente y se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna sobre gel de sílice (tipo OH, SiO2 neutro, MeOH/CHCl₃ = del 0% al 10%) para dar el compuesto del título (372 mg, aceite incoloro).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,26 (t, J = 7,3 Hz, 3H), 1,52 (d, J = 6,9 Hz, 3H), 2,31 (s, 3H), 3,79-3,96 (m, 2H), 4,03-4,10 (m, 1H), 6,82-6,88 (m, 2H), 7,08-7,15 (m, 2H)

3,4-Dicloro-N-[1-(4-cloro-1-etil-5-p-toliloxi-1H-imidazol-2-il)-etil1-bencenosulfonamida (Compuesto 183)

25

[Fórmula 41]

30

(6) Partiendo del compuesto obtenido en el Ejemplo 4-(5), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(6) para dar el compuesto del título (Compuesto 183) (polvo incoloro, rendimiento 66%). RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,17 (t, J = 7,3 Hz, 3H), 1,49 (d, J = 6,9 Hz, 3H), 2,32 (s, 3H), 3,68-3,89 (m, 2H), 4,52-4,65 (m, 1H), 5,55-5,72 (m, 1H), 6,72-6,77 (m, 2H), 7,10-7,16 (m, 2H), 7,52-7,61 (m, 2H), 7,84 (d, J=2,3 Hz, 1H)

Punto de fusión: 122,5-123,5 °C

Ejemplo 5

3,4-Dicloro-N-{1-[3-etil-2-(4-fluorofenoxi)-5-metil-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 188)

[Fórmula 42]

2-Cloro-1-etil-1H-imidazol

[Fórmula 43]

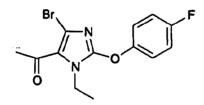
(1) A una solución de 1-etil-1H-imidazol (2,2 g) en THF (12 ml), se le añadió gota a gota n-BuLi (9,1 ml, 2,64 N en hexano) a -78 °C en una atmósfera de argón. Después de agitar a la misma temperatura durante 30 minutos, se añadió gota a gota una solución de hexacloroetano (5,7 g) en THF (12 ml) y se agitó a la misma temperatura durante 1 hora. La mezcla de reacción se diluyó con cloruro de amonio acuoso saturado, se calentó a temperatura ambiente y se extrajo con AcOEt. Después de lavar con agua y cloruro sódico acuoso saturado, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 20%) para dar el compuesto del título (2,74 g, aceite incoloro).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,40 (t, J = 7,3 Hz, 3H), 3,96 (c, J = 7,3 Hz, 2H), 6,88-6,98 (m, 2H)

20 1-(2-Cloro-3-etil-3H-imidazol-4-il)-etanona

[Fórmula 44]

(2) A una solución del compuesto obtenido en el Ejemplo 5-(1) (2,74 g) en THF (40 ml), se le añadió gota a gota n-BuLi (8,35 ml, 2,64 N en hexano) a -78 °C en una atmósfera de argón y se agitó a la misma temperatura durante 30 minutos. La mezcla de reacción resultante se añadió a -78 °C a una solución de Ac₂O (2,1 ml) en THF (40 ml) y se calentó a 0 °C durante 2,5 horas. La mezcla de reacción se diluyó con bicarbonato sódico acuoso saturado y se extrajo con AcOEt. Después de lavar con cloruro sódico acuoso saturado, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo NH, AcOEt/hexano = 10%) para dar el compuesto del título (2,57 g, aceite de color amarillo claro). RMN ¹H (600 MHz, CDCI₃) δ ppm: 1,33 (t, J = 7,2 Hz, 3 H), 2,46 (s, 3 H) 4,42 (c, J = 7,2 Hz, 2 H) 7,69 (s, 1 H)


1-[3-Etil-2-(4-fluorofenoxi)-3H-imidazol-4-ill-etanona

[Fórmula 45]

- (3) Una mezcla del compuesto obtenido en el Ejemplo 5-(2) (13,20 g), 4-fluorofenol (12,86 g), Cs₂CO₃ (49,9 g) y DMPU (15 ml) se agitó a 200 °C durante 2 horas. Después de enfriar a temperatura ambiente, se añadió MeOH/CHCl₃ (MeOH/CHCl₃ = 20%) y los materiales insolubles se retiraron por filtración. El filtrado se concentró y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ neutro de tipo OH, AcOEt/hexano = del 0% al 30%) para dar el compuesto del título (22,37 g, aceite de color amarillo claro).
- 10 RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,38 (t, J = 7,2 Hz, 3 H), 2,42 (s, 3 H), 4,38 (c, J = 7,2 Hz, 2 H), 7,04-7,12 (m, 2 H), 7,19-7,23 (m, 2 H), 7,47 (s, 1 H)

1-[5-Bromo-3-etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-etanona

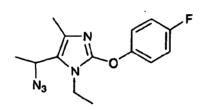
[Fórmula 46]

15

20

- (4) A una solución del compuesto obtenido en el Ejemplo 5-(3) (5,0 g) en DMF (50 ml), se le añadió N-bromosuccinimida (NBS) (7,15 g) y se agitó a temperatura ambiente durante 6 horas. Después de añadir más cantidad de NBS (1,83 g) y de agitar durante 4 horas más, la mezcla de reacción se concentró. El residuo resultante se purificó por cromatografía en columna sobre gel de sílice (SiO₂ neutro de tipo OH, AcOEt/hexano = del 0% al 10%) para dar el compuesto del título (4,916 g, aceite de color amarillo).
- RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,35 (t, J = 7,1 Hz, 3 H), 2,64 (s, 3 H), 4,37 (c, J = JA Hz, 2 H), 7,06-7,11 (m, 2 H), 7,20-7,24 (m, 2 H)
- 25 <u>1-[3-Etil-2-(4-fluorofenoxi)-5-metil-3H-imidazol-4-il1-etanona</u>

[Fórmula 47]


- (5) Una mezcla del compuesto obtenido en el Ejemplo 5-(4) (3,66 g), trimetilboroxina (1,57 ml), Pd(PPh₃)₄ (1,29 g) y K₂CO₃ (4,64 g) en dioxano (25 ml⁻) se agitó en una atmósfera de argón a 115 °C durante 6 horas. A esta mezcla, se le añadió más cantidad de trimetilboroxina (0,52 ml) y se agitó a la misma temperatura durante 4 horas más. La mezcla de reacción se enfrió a temperatura ambiente y se filtró para retirar los materiales insolubles. El filtrado se concentró y el residuo resultante se purificó por cromatografía en columna (SiO₂ de tipo neutro OH, AcOEt/hexano = del 0% al 50%) para dar el compuesto del título (627 mg, aceite de color amarillo).
- 35 RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,33 (t, J = 7,0 Hz, 3 H), 2,46 (2s, 6 H), 4,32 (c, J = 7,0 Hz, 2 H) 7,05-7,10 (m, 2 H) 7,19-7,22 (m, 2 H)

1-[3-Etil-2-(4-fluorofenoxi)-5-metil-3H-imidazol-4-il]-etanol

[Fórmula 48]

- (6) Partiendo del compuesto obtenido en el Ejemplo 5-(5), se repitió el mismo procedimiento que el usado en el Ejemplo 2-(5) para dar el compuesto del título (aceite de color amarillo claro, rendimiento 42%).
 RMN ¹H (600 MHz, CDCI₃) δ ppm: 1,35 (t, J = 7,1 Hz, 3 H), 1,58 (dd, J = 6,9, 1,8 Hz, 3 H), 2,13 (s, 3 H), 3,93-4,09 (m, 2 H), 4,94-5,01 (m, 1 H), 6,99-7,06 (m, 2 H), 7,15-7,20 (m, 2 H)
- 10 1-[3-Etil-2-(4-fluorofenoxi)-5-metil-3H-imidazol-4-il]-etilazida

[Fórmula 49]

(7) Partiendo del compuesto obtenido en el Ejemplo 5-(6), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(4) para dar el compuesto del título (aceite de color amarillo, rendimiento 44%).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,36 (t, J = 7,3 Hz, 3 H), 1,60 (d, J = 7,3 Hz, 3 H), 2,19 (s, 3 H), 3,88-4,00 (m, 2 H), 4,70-4,76 (m, 1 H), 7,00-7,08 (m, 2 H), 7,17-7,22 (m, 2 H)

5-(1-Aminoetil)-1-etil-2-(4-fluorofenoxi)-4-metil-1H-imidazol

[Fórmula 50]

NH₂ NO

(8) Una mezcla del compuesto obtenido en el Ejemplo 5-(7) (120 mg) y paladio-carbón activado (24 mg, Pd 10% en peso) en MeOH (3,0 ml) se agitó en una atmósfera de hidrógeno (aproximadamente 1 atm) a temperatura ambiente durante 4 horas. La mezcla de reacción se filtró a través de celite y el filtrado se concentró para dar el compuesto del título (120 mg, aceite incoloro).

RMN 1 H (600 MHz, CDCl₃) 8 ppm: 1,33 (t, J = 7,1 Hz, 3 H), 1,48 (d, J = 6,9 Hz, 3 H), 2,16 (s, 3 H), 3,92-4,14 (m, 2 H), 4,27 (c, J = 6,9 Hz, 1 H), 6,99-7,05 (m, 2 H), 7,14-7,21 (m, 2 H)

30

3,4-Dicloro-N-{1-[3-etil-2-(4-fluorofenoxi)-5-metil-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 188)

[Fórmula 51]

- (9) Partiendo del compuesto obtenido en el Ejemplo 5-(8), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(6) para dar el compuesto del título (Compuesto 188) (polvo incoloro, rendimiento 73%).
 RMN ¹H (600 MHz, CDCI₃) δ ppm: 1,25 (t, J = 7,1 Hz, 3H), 1,55 (d, J = 6,9 Hz, 3H), 2,00 (s, 3H), 3,60-3,73 (m, 1H), 3,77-3,89 (m, 1 H), 4,63-4,74 (m, 1 H), 4,95-5,03 (m, 1 H), 7,00-7,08 (m, 2H), 7,11-7,18 (m, 2H), 7,43-7,52 (m, 2H), 7,75 (d, J = 1,8 Hz, 1 H)
- 10 Punto de fusión: 119,5-120,0 °C

Ejemplo 6

25

3,4-Dicloro-N-[1-(4-etil-1-metil-5-p-toliloxi-1H-pirazol-3-il)-etil]-bencenosulfonamida (Compuesto 180)

[Fórmula 52]

15 Éster etílico del ácido 5-hidroxi-1-metil-1H-pirazol-3-carboxílico

[Fórmula 53]

- (1) A una solución de sal sódica de oxalacetado de dietilo (30,0 g) en tolueno (200 ml), se le añadieron ácido acético (200 ml) y metilhidrazina (15 ml), y se agitó a 100 °C durante 8,5 horas. La mezcla de reacción se concentró y el residuo resultante se diluyó con cloruro sódico acuoso saturado y se extrajo con AcOEt. La fase orgánica resultante se secó sobre MgSO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El sólido resultante se lavó con Et₂O/hexano (Et₂O/hexano = 2/1) y se secó para dar el compuesto del título (18,8 g, polvo de color pardo). RMN ¹H (600 MHz, DMSO-D6) δ ppm: 1,25 (t, J = 7,1 Hz, 3 H), 3,59 (s, 3 H), 4,16-4,25 (m, 2 H), 5,77 (s, 1 H)
 - Éster etílico del ácido 5-cloro-4-formil-1-metil-1H-pirazol-3-carboxílico

[Fórmula 54]

(2) A 1,2-dicloroetano (75 ml), se le añadieron secuencialmente, gota a gota, DMF (13,7 ml) y POCl₃ (82,5 ml) a 0 °C en una atmósfera de nitrógeno. A esta mezcla, se le añadió gota a gota una solución del compuesto obtenido en el Ejemplo 6-(1) (10,0 g) en 1,2-dicloroetano (75 ml) y se calentó a temperatura ambiente. Después de agitar a 110 °C durante 4,5 horas, la mezcla de reacción se enfrió a temperatura ambiente y se evaporó para retirar el disolvente. El residuo resultante se añadió a bicarbonato sódico acuoso saturado y se agitó durante 2 horas. Después de la extracción con AcOEt, la fase resultante se secó sobre MgSO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se recristalizó (AcOEt/hexano) para dar el compuesto del título (14,7 g, sólido de color amarillo).

RMN 1 H (600 MHz, DMSO-D6) δ ppm: 1,32 (t, J = 7,0 Hz, 3 H), 3,92 (s, 3 H), 4,36 (c, J = 7,0 Hz, 2 H), 10,24 (s, 1 H)

Éster etílico del ácido 4-formil-1-metil-5-p-toliloxi-1H-pirazol-3-carboxílico

[Fórmula 55]

(3) A una solución de 4-cresol (3,62 ml) en DMF (80 ml), se le añadió NaH (1,38 g, 60% en aceite mineral) a temperatura ambiente y se agitó a temperatura ambiente durante 15 minutos, seguido de la adición del compuesto obtenido en el Ejemplo 6-(2) (5,00 g). Después de agitar a 110 °C durante 1,5 horas, la mezcla de reacción se enfrió a temperatura ambiente y se evaporó para retirar el disolvente. El residuo resultante se purificó por cromatografía en columna (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 50%) para dar el compuesto del título (3,54 g, sólido incoloro).
RMN ¹H (600 MHz, DMSO-D6) δ ppm: 1,27-1,38 (m, 3 H), 2,27 (s, 3 H), 3,74 (s, 3 H), 4,32-4,42 (m, 2 H), 6,84-6,94 (m, 2 H), 7,10-7,20 (m, 2 H), 10,08 (s, 1 H)

Éster etílico del ácido 4-(1-hidroxietil)-1-metil-5-p-toliloxi-1H-pirazol-3-carboxílico

[Fórmula 56]

25

30

10

(4) A una solución del compuesto obtenido en el Ejemplo 6-(3) (3,50 g) en THF (20 ml)/Et₂0 (120 ml), se le añadió MeMgBr (5,26 ml, 3,0 mmol en Et₂O) a -30 °C en una atmósfera de nitrógeno. Después de calentar a 0 °C, la mezcla de reacción se agitó durante 2,5 horas, se diluyó con cloruro de amonio acuoso saturado y cloruro sódico acuoso saturado, y después se extrajo con AcOEt. La fase orgánica se secó sobre Na₂SO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 50%) para dar el compuesto del título (2,17 g, aceite de color amarillo claro). RMN 1 H (600 MHz, DMSO-D6) δ ppm: 1,22 (d, J = 6,4 Hz, 3 H), 1,28-1,32 (m, 3 H), 2,26 (s, 3 H), 3,56 (s, 3 H),4,28 (c, J = 6,9 Hz, 2 H), 4,75 (d, J = 4,6 Hz, 1H), 5,03-5,11 (m, 1 H), 6,79-6,84 (m, 2 H), 7,13-7,19 (m, 2 H)

35

<u>Éster etílico del ácido 4-etil-1-metil-5-p-toliloxi-1H-pirazol-3-carboxílico</u>

[Fórmula 57]

(5) A una solución del compuesto obtenido en el Eiemplo 6-(4) (2.14 g) en CHCl₃ (40 ml), se le añadieron CF₃COOH (5,4 ml) y Et₃SiH (2,3 ml) a -20 °C y se agitó a temperatura ambiente durante 3,5 horas. La mezcla de reacción resultante se purificó por cromatografía en columna (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 50%) para dar el compuesto del título (1,36 g, aceite incoloro).

RMN ¹H (600 MHz, DMSO-D6) δ ppm: 0,93 (t, J = 7,5 Hz, 3 H), 1,29 (t, J = 7,0 Hz, 3 H), 2,27 (s, 3 H), 2,42 (c, J = 7,5 Hz, 2 H), 3,63 (s, 3 H), 4,27 (c, J = 7,0 Hz, 2 H), 6,78-6,87 (m, 2 H), 7,16-7,22 (m, 2 H)

4-Etil-1-metil-5-p-toliloxi-1H-pirazol-3-carbaldehido

[Fórmula 58]

10

(6) A una solución del compuesto obtenido en el Ejemplo 6-(5) (1,36 g) en THF (30 ml), se le añadió LiB(C₂H₅)₃H (9,9 ml, 1,0 M en THF) a -20 °C y se agitó durante 2 horas. Después, la mezcla de reacción se calentó a 0 °C y se agitó durante 2 horas, seguido de la adición de AcOH (10% en EtOH). Después de agitar a temperatura ambiente durante 0,5 horas, la mezcla de reacción se evaporó para retirar el disolvente, se diluyó con HCl acuoso (1,0 M) y se extrajo con AcOEt. La fase orgánica se secó sobre MgSO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 99%) para dar el compuesto del título (72 mg, aceite incoloro) y 4-etil-1-metil-5-p-toliloxi-1H-pirazol-3-il)-metanol (554 mg, aceite incoloro).

20

15

4-Etil-1-metil-5-p-toliloxi-1H-pirazol-3-carbaldehído

RMN ¹H (600 MHz, DMSO-D6) δ ppm: 0,94 (t, J = 7,5 Hz, 3 H), 2,27 (s, 3 H), 2,42 (c, J = 7,5 Hz, 2 H), 3,71 (s, 3 H), 6,84-6,89 (m, 2 H), 7,18-7,22 (m, 2 H), 9,81 (s, 1 H)

25

4-Etil-1-metil-5-p-toliloxi-1H-pirazol-3-il)-metanol

RMN ¹H (600 MHz, DMSO-D6) δ ppm: 0.94 (t, J = 7.8 Hz, 3 H), 2.23 (c, J = 7.8 Hz, 2 H), 2.26 (s, 3 H), 3.48 (s, 3 H), 4.34 (d, J = 5.5 Hz, 2 H), 4.90 (t, J = 5.5 Hz, 1H), 6.76-6.83 (m, 2 H), 7.12-7.22 (m, 2 H)

30

1-(4-Etil-1-metil-5-p-toliloxi-1H-pirazol-3-il)-etanol

[Fórmula 59]

35

(7) A una solución de 4-etil-1-metil-5-p-toliloxi-1H-pirazol-3-carbaldehído obtenido en el Ejemplo 6-(6) (470 mg) en Et₂O (10 ml), se le añadió MeMgBr (0,71 ml, 3,0 mmol en Et₂O) a -30 °C en una atmósfera de nitrógeno. Después de agitar a 0 °C durante 4 horas, la mezcla de reacción se diluyó con cloruro de amonio acuoso saturado y se extrajo con AcOEt. La fase orgánica se secó sobre Na₂SO₄, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO2 de tipo OH, AcOEt/hexano = del 0% al 40

50%) para dar el compuesto del título (406 mg, aceite incoloro). RMN ¹H (600 MHz, DMSO-D6) δ ppm: 0,93 (m, 3 H), 1,39 (d, J = 6,4 Hz, 3 H), 2,22-2,32 (m, 5 H), 3,47 (s, 3 H), 4,64-4,72 (m, 1 H), 4,92 (d, J = 5,0 Hz, 1 H), 6,75-6,81 (m, 2 H), 7,14-7,20 (m, 2 H)

3-(1-Azidoetil)-4-etil-1-metil-5-p-toliloxi-1H-pirazol

[Fórmula 60]

- 5 (8) Partiendo del compuesto obtenido en el Ejemplo 6-(7), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(4) para dar el compuesto del título (aceite incoloro, rendimiento 70%). RMN 1 H (600 MHz, DMSO-D6) δ ppm: 0,92 (t, J = 7,8 Hz, 3 H), 1,53 (d, J = 6,9 Hz, 3 H), 2,23 (c, J = 7,8 Hz, 2 H), 2,27 (s, 3 H), 3,54 (s, 3 H), 4,69 (c, J = 6,9 Hz, 1H), 6,75-6,83 (m, 2 H), 7,14-7,22 (m, 2 H)
- 10 1-(4-Etil-1-metil-5-p-toliloxi-1H-pirazol-3-il)-etilamina

[Fórmula 61]

- (9) Partiendo del compuesto obtenido en el Ejemplo 6-(8), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(5) para dar el compuesto del título (aceite incoloro, rendimiento 89%). RMN 1 H (600 MHz, DMSO-D6) δ ppm: 0,92 (m, 3 H), 1,29 (d, J = 6,9 Hz, 3 H), 2,18-2,29 (m, 5 H), 3,46 (s, 3 H), 3,94 (c, J = 6,9 Hz, 1H), 6,75-6,82 (m, 2 H), 7,14-7,20 (m, 2 H)
 - 3,4-Dicloro-N-[1-(4-etil-1-metil-5-p-toliloxi-1H-pirazol-3-il)-etil]-bencenosulfonamida (Compuesto 180)

[Fórmula 62]

CI NH N-N

- (10) Partiendo del compuesto obtenido en el Ejemplo 6-(9), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(6) para dar el compuesto del título (Compuesto 180) (polvo incoloro, rendimiento 48%).
- 25 RMN 1 H (600 MHz, DMSO-d6) δ ppm: 0,78 (t, J = 7,6 Hz, 3H), 1,33 (d, J = 6,9 Hz, 3H), 1,95-2,12 (m, 2H), 2,26 (s, 3H), 3,37 (s, 3H), 4,37-4,51 (m, 1H), 6,60-6,70 (m, 2H), 7,12-7,22 (m, 2H), 7,64 (dd, J = 8,5, 2,1 Hz, 1H), 7,77-7,89 (m, 2H), 8,41(s a, 1 H)

Punto de fusión: 114,0-115,0 °C

30

Ejemplo 7

5

3,4-Dicloro-N-{1-[3-etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-propil}-bencenosulfonamida (Compuesto 191)

[Fórmula 63]

2-Cloro-3-etil-3H-imidazol-4-carbaldehído

[Fórmula 64]

(1) A una solución de 2-cloro-1-etil-1H-imidazol obtenido en el Ejemplo 5-(1) (15,0 g) en THF (570 ml), se le añadió gota a gota n-BuLi (2,64 M en hexano, 45,5 ml) a -78 °C durante 1 hora y se agitó a la misma temperatura durante 30 minutos. Se añadió gota a gota dimetilformamida (8,9 ml) a la misma temperatura durante 15 minutos y la mezcla de reacción se calentó a 0 °C durante 5 horas. La mezcla de reacción se diluyó con una solución saturada de cloruro de amonio y la fase acuosa se extrajo con acetato de etilo. La fase orgánica se lavó con cloruro sódico acuoso saturado, se secó sobre sulfato de magnesio, se filtró y se concentró. El residuo resultante se purificó por cromatografía en columna sobre gel de sílice (SiO₂ de tipo OH, AcOEt/hexano del 0% al 60%) para dar el compuesto del título (14,1 g) en forma de un cristal incoloro.

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,37 (t, J = 7,1 Hz, 3H), 4,27-4,50 (m, 2H), 7,69 (s, 1H), 9,64 (s, 1H)

20 3-Etil-2-(4-fluorofenoxi)-3H-imidazol-4-carbaldehído

[Fórmula 65]

(2) Una suspensión del compuesto obtenido en el Ejemplo 7-(1) (5,0 g), 4-fluorofenol (2,87 g) y Cs₂CO₃ (10,4 g) en DMPU (10 ml) se agitó a 200 °C durante 1 hora. Después de enfriar a temperatura ambiente, la mezcla de reacción se diluyó con metanol/cloroformo (1/4) y se filtró. El filtrado se concentró y el residuo resultante se purificó por cromatografía en columna (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 30%) para dar el compuesto del título (4,16 g) en forma de un líquido de color rosa claro.

RMN 1 H (600 MHz, CDCI₃) δ ppm: 1,44 (t, J = 7,3 Hz, 3H), 4,37 (c, J = 7,3 Hz, 2H), 7,10-7,17 (m, 2H), 7,36-7,40 (m, 2H)

1-[3-Etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-propan-1-ol

[Fórmula 66]

(3) A una solución del compuesto obtenido en el Ejemplo 7-(2) (468 mg) en Et₂O (4,0 ml), se le añadió EtMgBr (1,0 M en THF, 4,0 ml) a 0 °C y se agitó a la misma temperatura a temperatura ambiente durante 2 horas. La mezcla de reacción se diluyó con una solución saturada de cloruro de amonio y la fase acuosa se extrajo con acetato de etilo. Después de lavar con cloruro sódico acuoso saturado, la fase orgánica se secó sobre sulfato de magnesio y se filtró. El filtrado se concentró y el residuo resultante se purificó por cromatografía en columna sobre gel de sílice (SiO₂ de tipo OH, AcOEt/hexano = del 0% al 50%) para dar el compuesto del título (1,1 g) en forma de un sólido incoloro. RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,06 (t, J = 7,3 Hz, 3H), 1,39 (t, J = 7,1 Hz, 3H), 1,83-2,02 (m, 2H), 3,95-4,10 (m, 2H),

RMN 'H (600 MHz, CDCI₃) δ ppm: 1,06 (t, J = 7,3 Hz, 3H), 1,39 (t, J = 7,1 Hz, 3H), 1,83-2,02 (m, 2H), 3,95-4,10 (m, 2H) 4,43-4,51 (m, 1H), 6,53-6,60 (m, 1H), 7,02-7,10 (m, 2H), 7,17-7,25 (m, 2H)

5-(1-Azidopropil)-1-etil-2-(4-fluorofenoxi)-1H-imidazol

15

[Fórmula 67]

- (4) Partiendo del compuesto obtenido en el Ejemplo 7-(3) (550 mg), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(4) para dar el compuesto del título (606 mg) en forma de un aceite incoloro.
- 20 RMN 1 H (600 MHz, CDCl₃) δ ppm: 1-02-1,11 (m, 3H), 1,39 (t, J = 7,1 Hz, 3H), 1,96-2,06 (m, 2H), 3,89-4,02 (m, 2H), 4,02-4,08 (m, 1H), 6,64-6,71 (m, 1H), 7,02-7,41 (m, 4H)

1-[3-Etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-propilamina

[Fórmula 68]

NH₂

25

30

(5) Partiendo del compuesto obtenido en el Ejemplo 7-(4) (606 mg), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(5) para dar el compuesto del título (214 mg) en forma de un polvo incoloro.

RMN ¹H (600 MHz, CDCI₃) δ ppm: 1,00 (t, J = 7,3 Hz, 3H), 1,37 (t, J = 7,1 Hz, 3H), 1,63-1,73 (m, 1H), 1,84-1,94 (m, 1H),

3,70 (t, J = 6,9 Hz, 1 H), 3,93-4,10 (m, 2H), 6,50 (s, 1H), 7,01-7,07 (m, 2H), 7,17-7,24 (m, 2H)

3.4-Dicloro-N-{1-I3-etil-2-(4-fluorofenoxi)-3H-imidazol-4-ill-propil}-bencenosulfonamida (Compuesto 191)

[Fórmula 69]

(6) Partiendo del compuesto obtenido en el Ejemplo 7-(5) (107 mg), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(6) para dar el compuesto del título (Compuesto 191) (144 mg) en forma de un polvo incoloro. RMN ¹H (600 MHz, CDCl₃) δ ppm: 0,92 (t, J = 7,3 Hz, 3H), 1,30 (t, J = 7,1 Hz, 3H), 1,68-1,87 (m, 2H), 3,77-3,93 (m, 2H), 4,30-4,40 (m, 1H), 4,80-4,92 (m, 1H), 6,43 (s, 1H), 7,02-7,11(m. 2H), 7,14-7,22 (m, 2H), 7,52-7,56 (m, 1H), 7,56-7,62 (m, 1 H), 7,86 (d, J = 1,8 Hz, 1H)

10 Punto de fusión: 137,5-138,5 °C

Ejemplo 8

15

20

25

 $\underline{*3,4-Dicloro-N-\{1-[3-etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-propil\}-bencenosulfonamida}\ (Compuestos\ 253\ y\ 254)$

[Fórmula 70]

El compuesto obtenido en el Ejemplo 7 (80 mg) se resolvió ópticamente en una columna de resolución óptica (columna: CHIRALPAK AD [Daicel Chemical Industries, Ltd., Japón], 2 cm x 25 cm L; eluyente: i-PrOH/hexano = 50%, caudal: 6,0 ml/min) para dar el compuesto del título (Compuesto 253) [forma (R)-(+), 31 mg, polvo incoloro, cuya configuración se determinó por análisis estructural de rayos X] y otro compuesto del título (Compuesto 254) [forma (S)-(-), 28 mg, polvo incoloro, cuya configuración se determinó por análisis estructural de rayos X].

(R)-(+)-3,4-Dicloro-N-{1-[3-etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-propil}-bencenosulfonamida (Compuesto 253)

[Fórmula 71]

 $[\alpha]_D^{26}$ +19,7° (c 0,436, CHCl₃)

Tiempo de retención: 7,6 min (columna: CHIRALPAK AD [Daicel Chemical Industries, Ltd., Japón], 4,6 cm x 250 mm L; eluyente: i-PrOH/hexano = 60%; caudal: 0,5 ml/min)

(S)-(-)-3,4-Dicloro-N-{1-[3-etil-2-(4-fluorofenoxi)-3H-imidazol-4-il]-propil}-bencenosulfonamida (Compuesto 254)

[Fórmula 72]

5 $[\alpha]_D^{25}$ -17,3° (c 0,557, CHCl₃)

Tiempo de retención: 14,7 min (columna: CHIRALPAK AD [Daicel Chemical Industries, Ltd., Japón], 4,6 mm x 250 mm L; eluyente: i-PrOH/hexano = 60%; caudal: 0,5 ml/min)

10 Ejemplo 9

3,4-Dicloro-N-{1-[3-etil-2-(4-clorofenoxi)-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 189)

[Fórmula 73]

15 <u>1-(2-Cloro-3-etil-3H-imidazol-4-il)-etanol</u>

[Fórmula 74]

- (1) A una solución de 2-cloro-3-etil-3H-imidazol-4-carbaldehído obtenido en el Ejemplo 7-(1) (13,60 g) en Et₂O (429 ml), se le añadió MeMgBr (37,2 ml, 3,0 M en Et₂O) a -30 °C en una atmósfera de argón. Después de calentar a 0 °C, la mezcla de reacción se diluyó con NH₄Cl acuoso saturado y se extrajo con AcOEt. La fase orgánica se lavó con cloruro sódico acuoso saturado, se secó sobre MgSO₄, se filtró y se concentró. El producto en bruto resultante (sólido de color pardo) se lavó con hexano y después se secó para dar el compuesto del título (13,01 g) en forma de un sólido de color pardo claro.
- 25 RMN 1 H (200 MHz, CDCl₃) δ ppm: 1,37 (t, J = 7,3 Hz, 3H), 1,62 (d, J = 6,6 Hz, 3H), 3,89-4,30 (m, 2H), 4,80 (c, J = 6,6 Hz, 1H), 6:80(s; 1H)

5-(1-Azidoetil)-2-cloro-1-etil-1H-imidazol

[Fórmula 75]

$$N_3$$

30

(2) Partiendo del compuesto obtenido en el Ejemplo 9-(1) (11,95 g), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(4) para dar el compuesto del título (aceite de color amarillo claro, 13,67 g).

RMN 1 H (200 MHz, CDCl₃) δ ppm: 1,37 (t, J = 7,3 Hz, 3H), 1,69 (d, J = 6,6 Hz, 3H), 3,90-4,15 (m, 2H), 4,26-4,40 (m, 1H), 6,95 (d, J = 0,9 Hz, 1 H)

1-(2-Cloro-3-etil-3H-imidazol-4-il)-etilamina

5

10

15

20

25

30

[Fórmula 76]

(3) A una solución del compuesto obtenido en el Ejemplo 9-(2) (5,99 g) y PPh₃ (7,869 g) en THF (300 ml), se le añadió H₂O (10 ml) y se calentó a reflujo durante 15,5 horas. Después de enfriar a temperatura ambiente, el disolvente se retiró por destilación y el producto en bruto resultante se disolvió en CHCl₃ (200 ml). Se añadió ácido clorhídrico (1,0 N, 100 ml) para separar la fase orgánica y se añadió CHCl₃ (200 ml) a la fase acuosa para separar adicionalmente la fase orgánica. La fase acuosa se ajustó a un pH básico con NaOH (5,0 g), se saló con NaCl y se extrajo con CHCl₃ (200 ml x 2). Las fases orgánicas combinadas se secaron sobre Na₂SO₄, se filtraron y se concentraron para dar el compuesto del título (aceite incoloro, 4,588 g).

RMN 1 H (200 MHz, CDCl₃) δ ppm: 1,36 (t, J = 7,3 Hz, 3H), 1,49 (d, J = 6,6 Hz, 3H), 3,90-4,29 (m, 3H), 6,80 (s, 1H)

1-[2-(4-Clorofenoxi)-3-etil-3H-imidazol-4-ill-etilamina

[Fórmula 77]

(4) En un tubo de ensayo con tapón de rosca resistente a la presión, se introdujeron el compuesto obtenido en el Ejemplo 9-(3) (120 mg), 4-clorofenol (133 mg), Cs₂CO₃ (563 mg) y DMPU (0,69 ml) y se agitó a 200 °C durante 3 horas y después a 250 °C durante 1,5 horas. Después de enfriar a temperatura ambiente, se añadió MeOH/CHCl₃ (MeOH/CHCl₃ = 20%, 5 ml) y la mezcla de reacción se purificó (SiO₂ de tipo NH, MeOH/CHCl₃ = 1/4, 5 ml) para dar un aceite de color pardo, que después se purificó por cromatografía en columna (SiO₂ de tipo OH neutro, AcOEt, MeOH/CHCl₃ = del 0% al 20%) para dar el compuesto del título (58 mg, aceite de color pardo).

RMN 1 H (200 MHz, CDCl₃) δ ppm: 1,36 (t, J = 7,0 Hz, 3H), 1,50 (d, J = 6,6 Hz, 3H), 3,79-4,12(m. 3H), 6,55 (d, J = 0,9 Hz, 1 H), 7,12-7,36 (m, 4H)

3,4-Dicloro-N-{1-[3-etil-2-(4-clorofenoxi)-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 189)

[Fórmula 78]

(5) Partiendo del compuesto obtenido en el Ejemplo 9-(4) (55 mg), se repitió el mismo procedimiento que el usado en el Ejemplo 1-(6) para dar el compuesto del título (Compuesto 189) (53 mg) en forma de un polvo incoloro.
 RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,35 (t, J = 7,1 Hz, 3H), 1,37 (d, J = 6,9 Hz, 3H), 3,87-4,05 (m, 2H), 4,58-4,70 (m,1H), 4,81 (s a, 1H), 6,55 (s, 1H), 7,14-7,22 (m, 2H), 7,34 (d, J = 8,7 Hz, 2H), 7,61 (d, J = 8,7 Hz, 1H), 7,67-7,75 (m, 1H), 7,94-8,01 (m, 1H)

40 Punto de fusión: 153,0-157,0 °C

Ejemplo 10

$\underline{3,4-Dicloro-N-\{1-[2-(4-clorofenoxi)-3-etil-3H-imidazol-4-il]-etil\}-N-metil-bencenosulfonamida}\ (Compuesto\ 248)$

[Fórmula 79]

5

10

A una solución del compuesto obtenido en el Ejemplo 9-(5) (36 mg) en DMF (2,0 ml), se le añadieron K_2CO_3 (21 mg) y Mel (5 μ l), y se agitó a temperatura ambiente durante 7 horas. Los materiales insolubles se retiraron por filtración y el filtrado se concentró. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo NH, MeOH/CHCl₃ = del 0% al 2%), seguido de recristalización (AcOEt-hexano) para dar el compuesto del título (Compuesto 248) (30 mg, polvo incoloro).

RMN 1 H (200 MHz, CDC 1 3) 1 5 ppm: 1,15 (d, J = 7,0 Hz, 3H), 1,39 (t, J = 7,3 Hz, 3H), 2,63 (s, 3H), 4,04-4,16 (m, 2H), 5,29 (c, J = 7,0 Hz, 1 H), 6,59 (s, 1H), 7,16-7,24 (m, 2H), 7,30-7,36 (m, 2H), 7,64 (d, J = 8,4 Hz, 1H), 7,69 (dd, J = 8,4,1,8 Hz, 1H), 7,96 (d, J = 1,8 Hz, 1H)

15 Punto de fusión: 142,0-144,0 °C

Ejemplo 11

N-{1-[2-(3-Aminofenoxi)-3-etil-3H-imidazol-4-il]-etil}-3,4-diclorobencenosulfonamida (Compuesto 233)

20

[Fórmula 80]

Sal 1,5 trifluoroacetato de 1-(2-cloro-3-etil-3H-imidazol-4-il)-etilamina

[Fórmula 81]

25

30

(1) El compuesto obtenido en el Ejemplo 9-(3) (4,20 g) se disolvió en CHCl₃ (48 ml), seguido de la adición de ácido trifluoroacético (2,8 ml) a 0 °C. Después de calentar a temperatura ambiente, la mezcla de reacción se agitó durante 1 hora y después se concentró para dar el compuesto del título (8,262 g, polvo incoloro).

RMN 1 H (200 MHz, DMSO-D6) δ ppm: 1,23 (t, J = 7,3 Hz, 3H), 1,53 (d, J = 6,6 Hz, 3H), 3,77-4,23 (m, 2H), 4,45-4,59 (m, 1H), 7,08 (s, 1 H), 8,25(s a, 3H)

Análisis elemental: calc. (C: 34,85%, H: 3,95%. N: 12,19%), encontrado (C: 34,58%, H: 3,85%, N: 12,11%)

3-[5-(1-Aminoetil)-1-etil-1H-imidazol-2-ioxi]-fenilamina

[Fórmula 82]

- (2) En un tubo de ensayo con tapón de rosca resistente a la presión, se introdujeron el compuesto obtenido en el Ejemplo 11-(1) (1,00 g), 3-aminofenol (633 mg), Cs₂CO₃ (2,83 g) y DMPU (4,0 ml) y se agitó a 250 °C durante 2 horas. Después de enfriar a temperatura ambiente, se añadieron CHCl₃ y agua, y la mezcla se concentró. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo OH neutro, MeOH/CHCl₃ = del 10% al 20%) para dar el compuesto del título (103 mg, aceite de color pardo).
- 10 RMN 1 H (600 MHz, DMSO-D6) δ ppm: 1,19-1,24 (m, 3H), 1,35 (d, J = 6,4 Hz, 3H), 3,80-4,00 (m, 3H), 5,19-5,24 (m, 2H), 6,19-6,22 (m, 1H), 6,29-6,33 (m, 2H), 6,43 (d, J = 0,9 Hz, 1H), 6,93-6,98 (m, 1H)

N-{1-[2-(3-Aminofenoxi)-3-etil-3H-imidazol-4-il]-etil}-3,4-diclorobencenosulfonamida (Compuesto 233)

[Fórmula 83]

15

20

- (3) A una solución del compuesto obtenido en el Ejemplo 11-(2) (97 mg) y Et₃N (0,11 ml) en THF (1,0 ml), se le añadió una solución de cloruro de 3,4-diclorobencenosulfonilo (96,7 mg) en THF (1,0 ml) a -78 °C y se agitó durante una noche a temperatura ambiente. La mezcla de reacción se concentró y el producto en bruto resultante se purificó por cromatografía en columna sobre gel de sílice (SiO₂ de tipo, MeOH/CHCl₃ = 2%) para dar el compuesto del título (Compuesto 233) (150 mg, sustancia amorfa de color pardo claro).
- RMN 1 H (600 MHz, CDCl $_{3}$) δ ppm: 1,31 (t, J = 7,1 Hz, 3H), 1,36 (d, J = 6,9 Hz, 3H), 3,73(s a, 2H), 3,84-3,95 (m, 2H), 4,59-4,65 (m, 1H), 5,03 (d, J = 8,3 Hz, 1H), 6,45-6,49 (m, 1H), 6,49 (s, 1H), 6,51-6,56 (m, 2H), 7,09-7,14 (m, 1H), 7,57 (d, J = 8,3 Hz, 1H), 7,63-7,66 (m, 1H), 7,96 (d, J = 2,3 Hz, 1H)

25

Ejemplo 12

3,4-Dicloro-N-{1-[3-etil-2-(3-metanosulfonilaminofenoxi)-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 234)

[Fórmula 84]

30

- A una solución del compuesto obtenido en el Ejemplo 11-(3) (37 mg) en piridina (0,37 ml), se le añadió cloruro de metanosulfonilo (0,01 ml) a temperatura ambiente y se agitó a temperatura ambiente durante 5 horas. Después de la adición de agua, la mezcla de reacción se concentró y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo NH, MeOH/CHCl₃ = del 5% al 10%) para dar el compuesto del título (33 mg, sustancia amorfa e incolora)
- RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,31-1,39 (m, 6H), 2,97 (s, 3H), 3,90-3,97 (m, 2H), 4,59-4,67 (m, 1 H), 5,06 (d, J = 8,3 Hz, 1H), 6,56 (s, 1H), 6,91-6,97 (m, 2H), 7,04 (s, 1H), 7,24-7,29 (m, 1H), 7,62 (d, J = 8,3 Hz, 1H), 7,70 (d, J = 8,7 Hz, 1H), 7,87 (s, 1 H), 7,97 (d, J = 1,4 Hz, 1H)

40

Ejemplo 13

3,4-Dicloro-N-{1-[3-etil-2-(3-pirrol-1-il-fenoxi)-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 249)

[Fórmula 85]

5

A una solución del compuesto obtenido en el Ejemplo 11-(3) (40 mg) en AcOH (300 μ I), se le añadió 2,5-dimetoxi-tetrahidrofurano (20,3 μ I) y se agitó a 130 °C durante 1 hora. La mezcla de reacción se enfrió a temperatura ambiente y se concentró a presión reducida. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo OH neutro, MeOH/CHCI₃ = del 0% al 2%) y se purificó adicionalmente por cromatografía en columna (SiO₂ de tipo NH, AcOEt) para dar el compuesto del título (Compuesto 249) (19 mg, compuesto en polvo incoloro).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,36 (t, J = 7,3 Hz, 3H), 1,40 (d, J = 6,9 Hz, 3H), 3,91-4,00 (m, 2H), 4,52-4,57 (m, 1H), 4,63-4,69 (m, 1H), 6,32-6,34 (m, 1H), 6,57 (s, 1H), 7,04-7,73 (m, 9H), 7,95-7,99 (m, 1H)

15

Ejemplo 14

3,4-Dicloro-N-[1-(3-etil-2-p-tolilsulfanil-3H-imidazol-4-il)-etil]-bencenosulfonamida (Compuesto 241)

[Fórmula 86]

20

3-Etil-2-p-tolilsulfanil-3H-imidazol-4-carbaldehído

[Fórmula 87]

25

30

(1) En un tubo de ensayo con tapón de rosca resistente a la presión, se introdujeron el compuesto obtenido en el Ejemplo 7-(1) (500 mg), DMF (2,0 ml), 4-metilbencenotiol (803 mg) y Cs₂CO₃ (3,08 g) y se agitaron a 150 °C durante 2 horas y después a 170 °C durante 2 horas. Después de enfriar a temperatura ambiente, la mezcla de reacción se diluyó con NH₄Cl acuoso saturado y se extrajo con AcOEt. La fase orgánica se lavó con cloruro sódico acuoso saturado, se secó sobre MgSO₄, se filtró y se concentró. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ ácido de tipo OH, AcOEt/hexano = del 0% al 20%) para dar el compuesto del título (571 mg, sólido de color amarillo).

RMN 1 H (600 MHz, CDCI₃) 6ppm: 1,31 (t, J = 7,1 Hz, 3H), 2,35 (s, 3H), 4,39-4,48 (m, 2H), 7,06-7,29 (m, 2H), 7,36-7,43 (m, 2H), 7,75 (s, 1H), 9,62 (s, 1H)

1-(3-Etil-2-p-tolilsulfanil-3H-imidazol-4-il)-etanol

[Fórmula 88]

(2) A una solución del compuesto obtenido en el Ejemplo 14-(1) (571 mg) en THF (5,0 ml), se le añadió MeMgBr (1,55 ml, 3,0 M en Et₂O) a temperatura ambiente en una atmósfera de argón y se agitó durante 5 horas. La mezcla de reacción se diluyó con NH₄Cl acuoso saturado, se extrajo con AcOEt, se secó sobre MgSO₄, se filtró y se concentró. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ neutro de tipo OH, AcOEt/hexano = del 20% al 99%) para dar el compuesto del título (490 mg, aceite incoloro).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,25 (t, J = 7,8 Hz, 3H), 1,65 (d, J = 6,9 Hz, 3H), 2,29 (s, 3H), 4,07-4,28 (m, 2H), 4,79-4,89 (m, 1H), 7,05-7,12 (m, 3H), 7,14-7,21 (m, 2H)

5-(1-Azidoetil)-1-etil-2-p-tolilsulfanil-1H-imidazol

[Fórmula 89]

N₃ S

15

20

10

(3) Partiendo del compuesto obtenido en el Ejemplo 14-(2) (490 mg), el mismo procedimiento que el usado en el Ejemplo 1-(4) se repitió para dar el compuesto del título (aceite incoloro, 360 mg).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,25 (t, J = 7,3 Hz, 3H), 1,70 (d, J = 6,9 Hz, 3H), 2,29 (s, 3H), 4,02-4,18(m. 2H), 4,32-4,40 (m, 1H), 7,08 (d, J = 8,7 Hz, 2H), 7,13-7,20 (m, 3H)

3,4-Dicloro-N-[1-(3-etil-2-p-tolilsulfanil-3H-imidazol-4-il)-etil]-bencenosulfonamida (Compuesto 241)

[Fórmula 90]

25

30

35

(4) A una solución del compuesto obtenido en el Ejemplo 14-(3) (360 mg) y PPh₃ (657 mg) en THF (4,0 ml), se le añadió H₂O (0,44 ml) y se calentó a reflujo durante 4,5 horas. Después de enfriar a temperatura ambiente, el disolvente se retiró por destilación y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ neutro de tipo OH, AcOEt/ hexano = del 0% al 60%) para dar un aceite incoloro (284 mg), que después se disolvió en THF (2,0 ml). A esta solución, se le añadieron Et₃N (0,30 ml) y cloruro de 3,4-diclorobencenosulfonilo (316 mg) a temperatura ambiente y se agitó a temperatura ambiente durante 12 horas. Después de la adición de AcOEt, la fase orgánica se lavó secuencialmente con ácido clorhídrico acuoso 1 N y salmuera, se secó sobre sulfato de magnesio anhidro, se filtró y se evaporó a presión reducida para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna sobre gel de sílice de tipo NH (disolvente de elusión: AcOEt), seguido de recristalización (AcOEt-hexano) para dar el compuesto del título (Compuesto 241) (267 mg, polvo incoloro).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,20 (t, J = 7,3 Hz, 2H), 1,37 (d, J = 6,9 Hz, 3H), 2,30 (s, 3H), 4,00-4,20 (m, 2H), 4,59-4,71 (m, 1 H), 5,27 (d, J = 8,3 Hz, 1H), 6,89 (s, 1H), 7,07-7,12 (m, 2H), 7,16-7,21 (m, 2H), 7,53 (d, J = 8,3 Hz, 1H), 7,64 (dd, J = 8,3, 2,3 Hz, 1H), 7,95 (d, J = 2,3 Hz, 1H)

Punto de fusión: 173,0-174,0 °C

Eiemplo 15

$\underline{3,4\text{-}Dicloro\text{-}N\text{-}\{1\text{-}[3\text{-}etil\text{-}2\text{-}(tolueno\text{-}4\text{-}sulfonil})\text{-}3H\text{-}imidazol\text{-}4\text{-}il]\text{-}etil\}\text{-}bencenosulfonamida}} \ (Compuesto\ 252)$

[Fórmula 91]

CI S NH O O

5

10

A una solución del compuesto obtenido en el Ejemplo 14-(4) (100 mg) en cloroformo (2,0 ml), se le añadió ácido m-cloroperbenzoico (611 mg) y se agitó durante una noche a temperatura ambiente. Se añadió adicionalmente ácido M-cloroperbenzoico (410 mg) y se agitó a temperatura ambiente durante 3 horas más. Después de la adición de AcOEt, la fase orgánica se lavó secuencialmente con $Na_2S_2O_3$ acuoso al 5% y bicarbonato sódico acuoso saturado, se secó sobre $MgSO_4$, se filtró y se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO_2 de tipo neutro OH, AcOEt/hexano = del 0% al 30%) y se purificó adicionalmente por cromatografía en columna (SiO_2 de tipo NH, AcOEt/hexano = del 0% al 99%), seguido de recristalización (AcOEt/hexano) para dar el compuesto del título (Compuesto 252) (13 mg, compuesto en polvo incoloro).

RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,38-1,43 (m, 6H), 2,45 (s, 3H), 4,32-4,53 (m, 2H), 4,62-4,70 (m, 1H), 6,84 (s, 1H), 7,35-7,39 (m, 2H), 7,52-7,56 (m, 1H), 7,59-7,63 (m, 1H), 7,89-7,94 (m, 3H)

Punto de fusión: 180,0-183,0 °C

Ejemplo 16

20 3,4-Dicloro-N-{1-[3-etil-2-(1H-indol-6-iloxi)-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 250)

[Fórmula 92]

1-[3-Etil-2-(1H-indol-6-iloxi)-3H-imidazol-4-il]-etilamina

[Fórmula 93]

25

30

(1) En un tubo de ensayo con tapón de rosca resistente a la presión, se introdujeron el compuesto obtenido en el Ejemplo 11-(1) (500 mg), 1H-indol-6-ol (405 mg), Cs_2CO_3 (1,42 g) y DMPU (2,0 ml) y se agitó a 250 °C durante 2,5 horas. Después de enfriar a temperatura ambiente, se añadió MeOH/CHCl₃ (MeOH/CHCl₃ = 1/4) y los materiales insolubles se retiraron por filtración. El filtrado se concentró y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo NH, MeOH/CHCl₃ = del 0% al 2%) y se purificó adicionalmente por cromatografía en columna (SiO₂ neutro de tipo OH, MeOH/CHCl₃ = del 20% al 50%) para dar el compuesto del título (146 mg, aceite de color pardo).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,40 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,4 Hz, 3H), 3,97-4,12 (m, 3H), 6,46-6,49 (m, 35 1H), 6,54 (s, 1 H), 6,96 (dd, J = 8,5, 2,1 Hz, 1H), 7,11-7,14 (m, 1H), 7,30-7,34 (m, 1H), 7,56 (d, J = 8,7 Hz, 1H), 8,42(s a, 1H)

3,4-Dicloro-N-{1-[3-etil-2-(1H-indol-6-iloxi)-3H-imidazol-4-il]-etil}-bencenosulfonamida (Compuesto 250)

[Fórmula 94]

- (2) A una solución del compuesto obtenido en el Ejemplo 16-(1) (36 mg) y Et₃N (37,1 μl) en THF (0,5 ml), se le añadió una solución de cloruro de 3,4-diclorobencenosulfonilo (20,8 μl) en THF (0,5 ml) a -78 °C. La mezcla de reacción se calentó a temperatura ambiente y se agitó durante una noche. La mezcla de reacción se concentró y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ de tipo NH, MeOH/CHCI₃ = del 2% al 5%), seguido de recristalización (AcOEt-hexano) para dar el compuesto del título (Compuesto 250) (19 mg, polvo incoloro).
- 10 RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,33-1,40 (m, 6H), 3,90-4,01 (m, 2H), 4,61-4,72 (m, 2H), 6,49 (s, 1H), 6,51-6,53 (m, 1 H), 6,95 (dd, J = 8,5, 2,1 Hz, 1H), 7,16-7,19 (m, 1H), 7,32 (d, J = 2,3 Hz, 1H), 7,57-7,61 (m, 2H), 7,65-7,69 (m, 1H), 7,97 (d, J = 2,3 Hz, 1H), 8,28 (s a, 1H) Punto de fusión: 150,5-153,5 $^{\circ}$ C

15 Ejemplo 17

35

3,4-Dicloro-N-(1-{3-etil-2-[3-(4-metilpiperazin-1-il)-fenoxi]-3H-imidazol-4-il}-etil)-bencenosulfonamida (Compuesto 184)

[Fórmula 95]

20 <u>1-{3-Etil-2-[3-(4-metilplperazin-1-il)-fenoxil-3H-lmidazol-4-il}-etanona</u>

[Fórmula 96]

- (1) Una mezcla de 2-cloro-1-etil-1H-imidazol obtenido en Ejemplo 5-(2) (1,0 g), 3-(4-metilpiperazin-1-il)-fenol (1,67 g), Cs₂CO₃ (3,78 g) y DMPU (3,0 ml) se agitó a 200 °C durante 1 hora. Después de enfriar a temperatura ambiente, se añadió AcOEt y los materiales insolubles se retiraron por filtración. El filtrado se concentró y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ neutro de tipo OH, AcOEt/hexano = del 0% al 99%) para dar el compuesto del título (1,88 g, aceite de color amarillo).
- RMN ¹H (600 MHz, CDCl₃) δ ppm: 1,36 (t, J = 7,1 Hz, 3 H), 2,35 (s, 3 H), 2,41 (s, 3 H), 2,53-2,58 (m, 4 H), 3,19-3,28 (m, 4 H), 4,31-4,40 (m, 2 H), 6,63-6,71 (m, 1 H), 6,74-6,81 (m, 2 H), 7,21-7,31 (m, 1 H), 7,49 (s, 1H)

1-{3-Etil-2-[3-(4-metilpiperazin-1-il)-fenoxi]-3H-imidazol-4-il}-etanol

[Fórmula 97]

(2) A una solución del compuesto obtenido en el Ejemplo 17-(1) (1,87 g) en MeOH (10,0 ml), se le añadió NaBH₄ (325

mg) a 0 $^{\circ}$ C y se agitó a la misma temperatura durante 2 horas. La mezcla de reacción se diluyó con NH₄Cl acuoso saturado y se extrajo con AcOEt. Después de lavar con salmuera, la fase orgánica se secó sobre MgSO₄, se filtró y después se evaporó para retirar el disolvente. El producto en bruto resultante se purificó por cromatografía en columna (SiO₂ neutro de tipo OH, AcOEt/hexano = del 0% al 99%, MeOH/CHCl₃ = del 0% al 3%) para dar el compuesto del título (1,40 g, aceite de color amarillo).

RMN 1 H (600 MHz, CDCI₃) δ ppm: 1,37 (t, J = 7,3 Hz, 3 H), 1,62 (d, J = 6,4 Hz, 3 H), 2,34 (s, 3 H), 2,52-2,59 (m, 4 H), 3,18-3,24 (m, 4 H), 3,92-4,11 (m, 2 H); 4,77-4,85 (m, 1 H), 6,61-6,67 (m, 2 H), 6,69-6,73 (m, 1 H), 6,76-6,79 (m, 1 H), 7,18-7,23 (m, 1 H)

10 <u>1-{3-[5-(1-Azidoetil)-1-etil-1H-imidazol-2-iloxi]-fenil}-4-metilpiperazina</u>

[Fórmula 98]

$$N_3$$

(3) A una solución del compuesto obtenido en el Ejemplo 17-(2) (408 mg) en tolueno (6,0 ml), se le añadieron DPPA (1,48 ml) y DBU (368 μl) a 0 °C y se agitó a temperatura ambiente durante 16 horas. Después de la adición de CHCl₃, la mezcla de reacción se purificó por cromatografía en columna (SiO₂ de tipo neutro OH, MeOH/CHCl₃ = del 5% al 10%) para dar el compuesto del título (332 mg, aceite de color pardo claro).

RMN 1 H (600 MHz, CDCl₃) δ ppm: 1,37 (t, J = 7, Hz, 3 H), 1,68 (d, J = 6,9 Hz, 3 H), 2,34 (s, 3,H), 2,52-2,61 (m, 4 H), 3,18-3,25 (m, 4 H), 3,86-4,04 (m, 2 H), 4,30-4,37 (m, 1 H), 6,64-6,67 (m, 1 H), 6,70-6,73 (m, 2 H), 6,74-6,76 (m, 1 H), 7,19-7,24 (m, 1 H)

1-{3-Etil-2-f3-(4-metilpiperazin-1-il)-fenoxi]-3H-imidazol-4-il}-etilamina

[Fórmula 99]

25

30

35

40

20

(4) Una mezcla del compuesto obtenido en el Ejemplo 17-(3) (322 mg) y paladio-carbón activado (32 mg, Pd 10% en peso) en MeOH (6,5 ml) se agitó en una atmósfera de hidrógeno (aproximadamente 1 atm) a temperatura ambiente durante 14 horas. La mezcla de reacción se filtró a través de celite y el filtrado se concentró. El producto en bruto resultante se purificó por cromatografía en columna (gel de sílice de tipo NH, MeOH/CHCl₃ = del 0% al 2%) para dar el compuesto del título (190 mg, aceite incoloro).

RMN 1 H (600 MHz, CDCl₃) $^{\circ}$ ppm: 1,36 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,4 Hz, 3H), 2,35 (s, 3H), 2,53-2,60 (m, 4H), 3,19-3,25 (m, 4H), 3,90-4,11 (m, 3H), 6,55-6,56 (m, 1H), 6,63-6,71 (m, 2H), 6,76-6,79 (m, 1H), 7,15-7,25 (m, 1H)

3.4-Dicloro-N-(1-{3-etil-2-[3-(4-metilpiperazin-1-il)-fenoxi]-3H-imidazol-4-il}-etil)-bencenosulfonamida (Compuesto 184)

[Fórmula 100]

(5) A una solución del compuesto obtenido en el Ejemplo 17-(4) (60 mg) en THF (3,0 ml), se le añadieron Et₃N (50 μl) y cloruro de 3,4-diclorobencenosulfonilo (30 mg) a temperatura ambiente y se agitó a temperatura ambiente durante 3 horas. La mezcla de reacción se concentró y el producto en bruto resultante se purificó por cromatografía en columna (SiO₂ neutro de tipo OH, AcOEt/hexano = del 50% al 99%, MeOH/CHCl₃ = del 0% al 5%) y se purificó adicionalmente por cromatografía en columna (SiO₂ de tipo NH, AcOEt/hexano = del 50% al 99%, MeOH/CHCl₃ = del 0% al 2%),

seguido de recristalización (AcOEt-hexano) para dar el compuesto del título (Compuesto 184) (65 mg, polvo incoloro). RMN 1 H (600 MHz, CDCl $_3$) δ ppm: 1,33 (t, J = 7,1 Hz, 3 H), 1,37 (d, J = 6,9 Hz, 3 H), 2,36 (s, 3 H), 2,50-2,65 (m, 4 H), 3,18-3,30 (m, 4 H), 3,83-4,00 (m, 2 H), 4,58-4,69 (m, 1 H), 4,75-5,01 (m, 1 H), 6,48-6,55 (m, 1 H), 6,60-6,66 (m, 1 H), 6,69-6,77 (m, 2 H), 7,18-7,25 (m, 1 H), 7,56-7,62 (m, 1 H), 7,63-7,72 (m, 1 H), 7,97 (s, 1 H)

Punto de fusión: 164,5-165,5 °C

Partiendo de los materiales de partida correspondientes, los mismos procedimientos que se muestra en los Ejemplos 1 a 17 se repitieron, seguidos de formación de sal según se necesite para obtener los compuestos que se muestran en la Tabla 1 más adelante.

Los compuestos obtenidos en los ejemplos anteriores también se muestran en la Tabla 1, junto con otros compuestos. En la Tabla 1, algunos compuestos tienen dos valores de datos para cada uno de APCI MS (M-H)- y APCI MS(M+H)+. Esto se debe a que se detectaron dos picos debido a la presencia de isotópos de cloro o bromo.

Ejemplos de ensayo 1 (ensayo de inhibición de la unión de S1P₁)

15

20

25

Usando una fracción de membrana de cepa celular HEK-293 con transferencia del gen de Edg-1 (S1P₁) humano, se determinó la acción de inhibición de la unión de Edg-1 (S1P₁) de los compuestos de la presente invención de acuerdo con el método descrito en la bibliografía (Science. 2002, 296: 346) (que muestra una unión de Kd = 0,15 nM, Bmáx = 2,5 fmol/μg para [³³P]-S1P). La fracción de membrana se obtuvo tratando las células con un tampón solubilizador (Tris/HCl 1 mM, pH 7,2) durante 10 minutos en hielo, centrifugando a 1000 x g durante 5 minutos para retirar fracciones insolubles y centrifugando después a 40000 x g durante 30 minutos a 4 °C. La fracción de membrana resultante se disolvió en un tampón de unión (Tris-HCl 20 mM, pH 7,4, NaCl 100 mM, NaF 15 mM, desoxipiridoxina 2 mM, BSA sin ácidos grasos 4 mg/ml) y después se añadieron [³³P]-S1P (fabricado por ARC, a concentración final 0,1 nM) y una solución de DMSO (concentración final del compuesto 10⁻⁵ M, concentración final de DMSO 0,1%) del compuesto de ensayo. A continuación, la mezcla se agitó y después se trató durante una hora a 30 °C. Usando un recolector, se recogió la fracción de membrana en filtro unifilter-96 GF/C (fabricado por Perkin Elmer), se llevó a cabo un lavado cuatro veces con el tampón de unión y se secó el filtro. Se añadieron veinticinco μl de Microscint 0 (fabricado por Perkin Elmer), y se midió la reactividad usando Top Count NXT (fabricado por Packard) para calcular la cantidad (A) de [³³P]-S1 P unido a la fracción de membrana en el momento en el que se añadió el compuesto.

30

Se llevó a cabo el mismo procedimiento en ausencia del compuesto de ensayo y se calculó la cantidad (B) de [³³P]-S1P unido. Además, se llevó a cabo el mismo procedimiento en ausencia del compuesto de ensayo mediante el uso de células HEK-293 en las que no se introdujo gen de Edg-1 (S1P₁), y se calculó la cantidad de fondo (C) de [³³P]-S1P unido.

35

Se muestran las tasas de inhibición de la unión de Edg-1 (S1P₁) del compuesto calculadas usando la siguiente ecuación en la Tabla 1.

Tasa de inhibición (%) = $[1-(A-C)/(B-C)] \times 100$.

40

45

65

Además, también se calculó la concentración requerida para que un compuesto de ensayo produzca inhibición al 50% de la unión causada en ausencia del compuesto de ensayo (Cl₅₀). El ensayo de unión del sistema de membrana anterior se realizó en presencia de un compuesto de ensayo a diversas concentraciones para calcular la tasa de inhibición de la unión de Edg-1 (S1P1) a cada concentración de acuerdo con la ecuación anterior, seguido del cálculo de un valor de Cl₅₀ para cada compuesto con software de análisis de datos, Origin (Lightstone Corp., Japón).

Los resultados indicaron que los compuestos enumerados posteriormente tenían valores de CI₅₀ de 70 nM o menos y mostraron actividad particularmente fuerte:

50 Compuestos 186, 189, 194, 214, 229 y 236.

Además, los compuestos enumerados a continuación tuvieron valores de CI₅₀ de 35 nM o menos y mostraron actividad más fuerte:

55 Compuestos 187 v 234.

Los compuestos enumerados a continuación tuvieron valores de CI₅₀ de 15 nM o menos y mostraron actividad mucho más fuerte:

60 Compuestos 208, 246 y 247.

Se muestran a continuación datos detallados de Cl₅₀ para compuestos individuales (unidad: nM):

Compuesto 184: 14.3; Compuesto 185: 3.7; Compuesto 190: 10,9; Compuesto 192: 23,0; Compuesto 195: 20,0; Compuesto 198: 10,3; Compuesto 200: 17,0; Compuesto 203: 23,5; Compuesto 207: 18,2; Compuesto 209: 42,0; Compuesto 213: 49,0; Compuesto 235: 58,5; Compuesto 244: 32,5; Compuesto 250: 20,5; y Compuesto 253: 27,5.

[Tabla 1-1]

[Tabla 1-1]					
Compuesto N⁰	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μΜ)	
Compuesto 1	HM STANH	462	464		
Compuesto 2		441	443		
Compuesto 3	of the state of th	426	428	96,7	
Compuesto 4		384	386	72,8	
Compuesto 5	Br NH NO	462,464	484,466	105,8	
Compuesto 6	A STANDARD	440	442	54,7	
Compuesto 7	Br of to	462, 464	464,466	63,3	

[Tabla 1-2]

	Įια	ola I-Zj		
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 8	A STAND	456	458	

(Continuación)					
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)	
Compuesto 9	S. C. NH	462, 464	464, 468	112,7	
Compuesto 10	Br Crawling Control of the Control o	548, 548	548,550	68,6	
Compuesto 11	a January Control of the Control of	418	420	102,7	
Compuesto 12	CHILA	460	462	68,1	
Compuesto 13		409	411	64,4	
Compuesto 14	CI STANK	488	490	76,5	

[Tabla 1-3]

Compuesto Nº	Estructura química	[Tabla 1-3] EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 15		432	434	108,2
Compuesto 16	of the second se	446	448	109,1
Compuesto 17		452	454	80,0

Compuesto N°	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 18		452	454	72,8
Compuesto 19		444	446	87,3
Compuesto 20		336	338	
Compuesto 21		412	414	66,8

[Tabla 1-4]

		[1808 1-4]		
Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 μΜ)
Compuesto 22		402	404	92,1
Compuesto 23		414	416	98,6
Compuesto 24	NH T	322	324	
Compuesto 25		462	464	62,0
Compuesto 26		462	464	

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μΜ)
Compuesto 27	Disam Co	434	436	68,5
Compuesto 28		434	436	114,1

[Tabla 1-5]

Compuesto Nº	Estructura química	[Tabla 1-5] EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 29		462	464	52,5
Compuesto 30	3	474	476	75,8
Compuesto 31		510	512	93,3
Compuesto 32		410	412	93,5
Compuesto 33		488, 488	488, 490	114,6
Compuesto 34	A CARLON OF THE	510	512	
Compuesto 35		398	400	98,1

[Tabla 1-6]

Compuesto N°	Estructura química.	EM APCI (M-H) ⁻	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 36		398	400	
Compuesto 37		452	454	98,5
Compuesto 38	Company of the compan	398	400	79,8
Compuesto 39	to original to the state of the	468	470	64,8
Compuesto 40		410	412	81,2
Compuesto 41	STATE OF THE STATE	398	400	82,3
Compuesto 42	TON OF THE PARTY O	525	527	

[Tabla 1-7]

	្រង	ла 1-7]		
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 43	grap	535	537	
Compuesto 44		452	454	93,5

(Continuacion)				
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 45		412	414	85,8
Compuesto 46		474	478	58,8
Compuesto 47		530	532	
Compuesto 48		436	438	
Compuesto 49		403	405	

[Tabla 1-8]

Compuesto N°	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 50		460	462	
Compuesto 51		445	447	93,7
Compuesto 52	The state of the s	416	418	
Compuesto 53		442	444	

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 54	From the state of	452	454	
Compuesto 55		460	462	
Compuesto 56		426	428	57,3

[Tabla 1-9]

Compuesto N°	Estructura química	abla 1-9] EM APCI (M-H) ⁻	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 57	THE THE PROPERTY OF THE PROPER	488,488	488,490	103,1
Compuesto 58		440	442	66,4
Compuesto 59	CITY OF ONE OF THE OF T	452	454	101,3
Compuesto 60		432	434	64,5
Compuesto 61	CI OF ONH	4,18	420	

(Continuación)				
Compuesto N°	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 62	The state of the s	520	522	85,6
Compuesto 63	Cr Cr NH NH	452	454	95,3

[Tabla 1-10]

		[Tabla 1-10]		
Compuesto N°	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 64		432	434	96,7
Compuesto 65		438	438	105,8
Compuesto 66	THE STATE OF THE S	414	416	89,9
Compuesto 67	Br NH NH	498, 500	500, 502	84,6
Compuesto 68		456	458	64,7
Compuesto 69	Br Committee Com	492, 494	494, 496	82,9
Compuesto 70	CONTROL OF THE PROPERTY OF THE	416	418	56,8

[Tabla 1-11]

[Tabla 1-11]					
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 μΜ)	
Compuesto 71	A CO	454	456	72,0	
Compuesto 72	OF THE PART OF THE	540, 542	542,544	80:1	
Compuesto 73		428	430	74,3	
Compuesto 74	CL CL	452	454	101,3	
Compuesto 75	to the state of th	468	470		
Compuesto 76		409	411	89,3	
Compuesto 77		476	478		

[Tabla 1-12]

		[14014 1-12]		
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 78	J. Ca	486, 488	488, 490	66,7

		(Continuación) EM APCI	EM ADOL	Ensayo de unión
Compuesto Nº	Estructura química	(M-H)	EM APCI (M+H) [†]	(membrana)
Compuesto 79	CI ON NH	452	454	% de inhibición (10 μM) 90,1
Compuesto 80		420	422	61,2
Compuesto 81		444	446	83,1
Compuesto 82	F CI OF TO	436	438	64,2
Compuesto 83	PONN H	402	404	
Compuesto 84	CI NH	418	420	72,4 \

[Tabla 1-13]

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 85		426	428	
Compuesto 86	Cr Son	450	452	74,4
Compuesto 87	Br Or O	490, 92	492, 494	85,6

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 88	Br NH N	476, 478	478, 480	74,2
Compuesto 89	N N N N N N N N N N N N N N N N N N N	443	445	71,8
Compuesto 90	To the state of th	438	440	78,6
Compuesto 91	FOR MH	420	422	

[Tabla 1-14]

Compuesto N°	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μΜ)
Compuesto 92		520	522	
Compuesto 93		454	456	75,2
Compuesto 94		420	422	86,5
Compuesto 95	Br NH NH	480, 482	482, 484	80,1
Compuesto 96		454	456	80,4

Compuesto N°	Estructura química	EM APCI (M-H)	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 97	B T T T T T T T T T T T T T T T T T T T	498, 500	500, 502	90,8
Compuesto 98	FLY NH	454	456	88,7

[Tabla 1-15]

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H)+	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 99		466	468	
Compuesto 100	J. J.	488	490	
Compuesto 101	CI ON THE PROPERTY OF THE PROP	466	468	106,9
Compuesto 102		576, 578	578, 580	78,2
Compuesto 103		420	422	53,0
Compuesto 104	THE PART OF THE PA	486	488	70,9
Compuesto 105	J. T. J.	402	404	84,2

[Tabla 1-16]

[Tabla 1-16]					
Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)	
Compuesto 106		475	477		
Compuesto 107		448	450	79,8	
Compuesto 108	of the same of the	466	468	81,3	
Compuesto 109		438	440	81,3	
Compuesto 110	# # # # # # # # # # # # # # # # # # #	540, 542	542, 544	86,4	
Compuesto 111		457	459	59,6	
Compuesto 112		432	434		

[Tabla 1-17]

	[Tabla 1-17]					
Compuesto Nº	Estructura química	EM IAPCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)		
Compuesto 113	Br NH NH	540, 542	42, 544	77,8		

Compuesto Nº	Estructura química	ntinuación) EM IAPCI (M-H) ⁻	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 114	NA THE TOTAL PROPERTY OF THE P	427	429	96,8
Compuesto 115		412	414	92,9
Compuesto 116		450	452	78,2
Compuesto 117	NAME OF STREET	450	452	87,3
Compuesto 118	t and a	498, 500	500, 502	62,5
Compuesto 119		420	422	91,1

[Tabla 1-18]

Compuesto Nº	Estructura química	EM APCI (M-H)	APCI MS(M+H)+	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 120	CI NIM NIM NIM NIM NIM NIM NIM NIM NIM NI	436	438	81,2
Compuesto 121	F S NH	438	440	101,0

Compuesto Nº	Estructura química	EM APCI (M-H)	APCI MS(M+H)+	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 122	Br NH	476, 478	478, 480	100,5
Compuesto 123	F N N N N N N N N N N N N N N N N N N N	480, 482	482, 484	70,6
Compuesto 124	J. GO	530, 532	532, 534	65,6
Compuesto 125	+5.	530, 532	532, 534	
Compuesto 126		416	418	99,3

[Tabla 1-19]

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 127		416	418	86,4
Compuesto 128	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	436	438	65,6
Compuesto 129	Br No. of the last	480, 482	482, 484	102,0
Compuesto 130	Br CI O'''	496, 98	498, 500	77,5

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 131	A CO	530, 532	532, 534	
Compuesto 132		472	474	
Compuesto 133		412	414	104,1

[Tabla 1-20]

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 134		416	418	81,0
Compuesto 135		436	438	83,4
Compuesto 136		470	472	
Compuesto 137	Sign	490	492	
Compuesto 138		477	479	
Compuesto 139		399	401	

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 140		414	416	

[Tabla 1-21]

[Tabla 1-21]						
Compuesto Nº	. Estructura química	EM APCI (M-H) ⁻	APCI MS(M+H)+	Ensayo de unión (membrana) % de inhibición (10 µM)		
Compuesto 141		404	406			
Compuesto 142		448	450			
Compuesto 143	A STATE OF THE STA	456	458	58,8		
Compuesto 144		442	444	94,1		
Compuesto 145		4,19	421			
Compuesto 146	N S NH W	442	444	57,8		
Compuesto 147	THE STATE OF THE S	442	444	73,2		

[Tabla 1-22]					
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)	
Compuesto 148		426	428		
Compuesto 149	S JANH CONTRACTOR	390	392		
Compuesto 150		457	459		
Compuesto 151	O HARRING O	464	466		
Compuesto 152	HIT AND	473	475		
Compuesto 153	inda A	538	540		
Compuesto 154		514	516		

[Tabla 1-23]

		[Tabla 1-23]		
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 155	A THE STATE OF THE	418	420	
Compuesto 156		444	446	

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 157		533	535	
Compuesto 158		486	488	57,0
Compuesto 159		512	514	
Compuesto 160		556	558	
Compuesto 161	A CONTRACTOR OF THE CONTRACTOR	426	428	71,2

[Tabla 1-24]

	Į.	Tabla 1-24]		
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻)	EM APCI (M+H) ⁺	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 162		452	454	70,2
Compuesto 163		485	487	
Compuesto 164		485 487	487	

Compuesto Nº	Estructura química	EM APCI (M-H) ⁻)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 165		489	491	
Compuesto 166	Some Property	442	444	80,7
Compuesto 167	S NH CO	456	458	
Compuesto 168	Trapa -	432	434	

[Tabla 1-25]

[Tabla 1-25]				
Compuesto Nº	Estructura química	EM APCI (M-H) ⁻	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 169	SINH CO	435	437	62,0
Compuesto 170		520	522	
Compuesto 171		. 5,30, 532	532, 534	
Compuesto 172		530, 532	532, 534	75,9

Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 μΜ)
Compuesto 173	ST. SHIP	530, 532	532, 534	
Compuesto 174		385	387	
Compuesto 175		470	472	

[Tabla 1-26]

[1808 1-20]				
Compuesto Nº	Estructura química	EM APCI (M-H)	EM APCI (M+H) [†]	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 176	E STATE OF THE STA	534	538	
Compuesto 177	THE STATE OF THE S	440	442	77,7
Compuesto 178		440	442	64,2

5 ______ [Tabla 1-27]

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 179	C T T T T T T T T T T T T T T T T T T T	133,0-134,5	95,9
Compuesto 180	C C C C C C C C C C C C C C C C C C C	114,0-115,0	

(Continuacion)				
Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 μM)	
Compuesto 181	CI NH NH	154,5-155,5		
Compuesto 182	CI C	137,5-138,5		
Compuesto 183	CI NH CI	122,5-123,5		
Compuesto 184	C NH NH	164,5-165,5	95,3	
Compuesto 185		205,5-206-0	100,3	

[Tabla 1-28]

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 186	C NH NH	156,0-157,0	99,8
Compuesto 187	CI C	138,0-141,0	101,3
Compuesto 188	S S S S S S S S S S S S S S S S S S S	119,5-120,5	100,0
Compuesto 189	CITATION	153,0-157,0	97,2

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 μΜ)
Compuesto 190	C C C C C C C C C C C C C C C C C C C	167,0-169,0	100,6
Compuesto 191		137,5-138,5	100,5
Compuesto 192	CI NH	118,0-120,0	101,2

[Tabla 1-29]

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 μΜ)
Compuesto 193		114,5-115,5	98,6
Compuesto 194		172,5-174,0	93,0
Compuesto 195	CI NH CI	174,0-175,0	96,1
Compuesto 196		123,5-124,0	88,9
Compuesto 197		166,0-167,0	95,3
Compuesto 198	CI NH NH	171,0-172,0	97,8

Comp	ouesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 μM)
Comp	uesto 199		145,5-146,5	97,3

[Tabla 1-30]				
Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)	
Compuesto 200		175,0-176,0	97,1	
Compuesto 201 Compuesto.	CI NH NH	157,5-158,0		
Compuesto 202		171,5-172,5	69,3	
Compuesto 203	CHANN	146,5-148,0	102,1	
Compuesto 204	CI NH	166,5-167,5	95,7	
Compuesto 205		155,5-156,5	94,4	
Compuesto 206	C NIM CONTRACTOR OF THE CONTRA	172,0-173,0	98,5	

[Tabla 1-31]

[Tabla 1-31]			
Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 207	C NH NH C N	161,0-163,5	100,6
Compuesto 208	C T T T T T T T T T T T T T T T T T T T	169,5-170,5	99,6
Compuesto 209	CL C	170,0-171,0	98,9
Compuesto 210	C NH	154,0-155,0	90,6
Compuesto 211	c C C C C C C C C C C C C C C C C C C C	179,5-180,5	92,2
Compuesto 212	GI AH AH	134,0-135,0	92,0
Compuesto 213	C NH	185,5-187,5	99,6

[Tabla 1-32]

[1808 1-32]			
Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 214	CI JUNE	167,0-168,0	101,9
Compuesto 215	Cr Optio	179,0-180,0	100,4

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana)
Compuesto 216	CI NH	100,0-181,0	% de inhibición (10 μM) 92,0
Compuesto 217	C C C C C C C C C C C C C C C C C C C	146,0-148,0	96,3
Compuesto 218	C D D D D D D D D D D D D D D D D D D D	102,5-107,5	101,4
Compuesto 219	Z Z Z	195,0-196,0	83,2
Compuesto 220		79,0-80,0	68,3

[Tabla 1-33]

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 221		101,0-102,0	52,6
Compuesto 222	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	178,0-180,0	87,6
Compuesto 223	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	181,0-183,0	92,1
Compuesto 224	C NH C	133,5-134,5	87,0

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 225	C C C C	122,0-124,0	98,9
Compuesto 226	C NH NH C NH	172,5-173,5	91,5
Compuesto 227	C N N N N N N N N N N N N N N N N N N N	216,5-217,5	

[Tabla 1-34]

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 228	CI NH NH	160,5-162,5	96,0
Compuesto 229		106,0-107,0	99,0
Compuesto 230	C NH	102,0-103,0	90,7
Compuesto 231	C NH NH	162,0-163,0	97,4
Compuesto 232	CI NH	128,5-129,5	92,3
Compuesto 233	CI NH NH2		

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 234	CL C		98,1

[Tabla 1-35]

	[Tabla 1-35]		
Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 235		137,5-142,5	94,0
Compuesto 236		213,5-215,5	96,8
Compuesto 237	CI OFFICE OF THE STATE OF THE S	152,5-152,5	93,1
Compuesto 238		117,0-118,0	
Compuesto 239	CI NH NH	151,5-152,5	95,9
Compuesto 240	CINH	199,0-200,0	
Compuesto 241*	CI NH S	173,0-174,0	82,6
*Compuesto de referencia			

[Tabla 1-36]

5

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 242		175,0-177,0	94,5

(Continuación)			
Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 243		135,0-136,0	97,4
Compuesto 244		160,0-162,0	98,3
Compuesto 245		141,0-143,0	98,9
Compuesto 246		220,0-223,0	100,6
Compuesto 247	The state of the s	196,0-198,0	99,9
Compuesto 248		142,0-144,0	90,2
Compuesto 249	CC ON NH		100,1

[Tabla 1-37]

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 μM)
Compuesto 250	CI NH	150,5-153,5	101,4
Compuesto 251	CI C	167,5-168,6	96,3
Compuesto 252 Compuesto de referencia	CI NH O'O	180,0-183,0	52,5

Compuesto Nº	Estructura química	Punto de fusión (°C)	Ensayo de unión (membrana) % de inhibición (10 µM)
Compuesto 253	ABS C C C C C C C C C C C C C C C C C C C		100,3
Compuesto 254	ABS		68,6
*Compuesto de referencia			

A continuación, se darán ejemplos de preparación para intermedios de fórmula (II) de acuerdo con la presente invención. Partiendo de los materiales de partida correspondientes, se repitieron los mismos procedimientos que se muestran en el Ejemplo 1-(1) a (5), Ejemplo 2-(1) a (7), Ejemplo 4-(1) a (5), Ejemplo 5-(1) a (8), Ejemplo 7-(1) a (8). Ejemplo 9-(1) a (4), Ejemplo 11-(1) y (2), Ejemplo 16-(1) y Ejemplo 17-(1) a (4), seguido de formación de sal según se necesite para obtener compuestos intermedios o sales de los mismos, que son útiles en la preparación de los compuestos de fórmula (I) de acuerdo con la presente invención. Los intermedios preparados de esta manera se muestran en la Tabla 2, junto con los intermedios obtenidos en los ejemplos mostrados anteriormente.

10

[Tabla 2-1]

Compuesto Nº	Estructura química	bla 2-1] RMN ¹ H
Intermedio 1	H,N N	(200 MHz, CDCl ₃) δ ppm : 1,37 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,6 Hz, 3H), 2,32 (s, 3H), 3,82-4,12 (m, 3H), 6,53 (d, J = 0,9 Hz, 1 H) 7,04-7,20 (m, 4H)
Intermedio 2	NH ₂	(200 MHz, CDCl ₃) δ ppm : 1,30 (t, J = 7,3 Hz, 33H), 1,53 (d, J = 6,8 Hz, 3H), 232 (s, 3 H), 3,77-4,16 (m, 3H), 6,44 (s, 1H), 6,90-7,00 (m, 2H), 7,06-7,16 (m, 2H)
Intermedio 3	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,26 (t, J = 7,3 Hz, 3H), 1,52 (d, J = 6,9 Hz, 3H), 2,31 (s, 3H), 3,79-3,96 (m, 2H),4,03-4,10 (m, 1 H), 6,82-6,88 (m, 2H), 7,08-7,15 (m, 2H)
Intermedio 4	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,36 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,4 Hz, 3H), 2,35 (s, 3H), 2,53-2,60 (m, 4H), 3,19-3,25 (m, 4H), 3,90-4,11 (m, 3H), 6,55-6,56 (m, 1 H), 6,63-6,71 (m, 2H), 6,76-6,79 (m, 1H), 7,15-7,25 (m, 1H)
Intermedio 5	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,38 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,9 Hz, 3H), 3,94-4,12 (m, 3H), 6,52 (s, 1 H), 6,99-7,09 (m, 2H), 7,17-7,23 (m, 2H)
Intermedio 6	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,33 (t, J = 7,1 Hz, 3H), 1,48 (d, J = 6,9 Hz, 3 H), 2,16 (s, 3 H), 3,92 - 4,14 (m, 2 H), 4,27 (c, J = 6,9 Hz, 1H), 6,99 - 7,05 (m, 2 H), 7,14 - 7,21 (m, 2H)
Intermedio 7	NH ₂	(200 MHz, CDCl ₃) δ ppm: 1,36 (t, J = 7,0 Hz, 3H), 1,50 (d, J = 6,6 Hz, 3H), 3,79-4,12 (m, 3H), 6,55 (d, J = 0,9 Hz, 1H), 7,12-7,36 (m, 4H)

Compuesto Nº	Estructura química	RMN ¹ H
Intermedio 8	NH ₂	(600 MHz, CDCI ₃) δ ppm: 1,36 (t, J = 7,1 Hz, 3H), 1,30ld J=6,9 Hz, 3H), 3,12-3,20 (m, 4H), 3,81-3,88 (m, 4H), 3,91-4,08 (m, 3H), 6,54-6,60 (m, 1H), 6,63-6,73 (m, 2H), 6,75-6,79 (m, 1H), 7,19-7,25 (m, 1H)
Intermedio 9	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,00 (t, J = 7,3 Hz, 3H), 1,37 (t, J = 7,1 Hz, 3H), 1,63-1,73 (m, 1H), 1,84-1,94 (m, 1H), 3,70 (t, J = 6,9 Hz, 1 H), 3,93-4,10 (m, 2H), 6,50 (s, 1 H), 7,01-7,07 (m, 2H), 7,17-7-24 (m, 2H)

[Tabla 2-2]

	[Tabla 2-2]			
Intermedio 10	NM,	(600 MHz, CDCl ₃) δ ppm: 1,34 (t, J = 7,1 Hz, 3H), 2,85 (dd, J = 13,4, 9,4 Hz, 1 H), 3,23 (dd, J = 13,4, 4,6 Hz, 1H), 3,89-4,09 (m, 3H), 6,62 (s, 1H), 7,01-7,09 (m, 2H), 7,14-7,41 (m, 7H)		
Intermedio 11	NH ₂	600 MHz, CDCI ₃) δ ppm: 1,39 (t, J = 6,9 Hz, 3H), 1,49 (d, J = 6,0 Hz, 3H), 2,54 (s, 3H), 3,93-4,17 (m, 3H), 6,52 (s, 1H), 7,11-7,20 (m, 1H), 7,54-7,64 (m, 1H), 8,43 (s, 1H)		
Intermedio 12		(600 MHz, CDCI ₃) δ ppm: 1,33 (t, J = 7,3 Hz, 3H) 2,34 (s, 3H), 2,91 (dd, J = 13,6, 9,4 Hz, 1H), 3,23 (dd, J = 13,6-4,6 Hz, 1H), 3,83-3,92 (m, 1H), 3,98-4,05 (m, 2H), 6,66 (s, 1H), 6,73-6,81 (m, 1H), 7,01-7,08 (m, 2H), 7,11-7,25 (m, 5H)		
Intermedio 13	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,36 (t, J = 7,3 Hz, 3H), 1,48 (d, J = 6,4 Hz, 3H), 2,93 (s, 6H), 3,90-4,07 (m, 2H), 4,12-4,21 (m, 1H), 6,45-6,53 (m, 2H), 6,52-6,57 (m, 2H), 7,12-721 (m, 1H)		
Intermedio 14		(600 MHz, CDCl ₃) δ ppm: 1,24 (t, J = 6,9 Hz, 3H), 2,87-3,31 (m, 2H), 3,69-4,04 (m, 3H), 6,65-1,40 (m, 9H)		
Intermedio 15	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,04 (t, J = 7,1 Hz, 3H), 3,68-3,86 (m, 2H), 3,89 (s, 1H), 6,57 (s, 1H), 6,99-7,42 (m, 9H)		
Intermedio 16	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,36 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,9 Hz, 3H), 3,79 (s, 3H), 3,93-4,10 (m, 2H), 4,13-4,21 (m, 1H), 6,50 (s, 1H), 6,86-6,93 (m, 2H), 7,12-7,18 (m, 2H)		
Intermedio 17	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,35-1,39 (m, 3H), 1,47-1,50 (m, 3H), 3,94-4,20 (m, 3H), 6,55 (d, J = 0,9 Hz, 1H), 7,13-7,18 (m, 1H), 7,20-7,23 (m, 2H), 7,33-7,38 (m, 2H)		
Intermedio 18	S NME	(600 MHz, CDCl ₃) δ ppm: 1,31 (t, J = 7,3 Hz, 3H), 2,88 (dd, J = 13,4, 8,9 Hz, 1H), 3,18 (dd, J = 13,4, 5,3 Hz, 1H), 3,85-3,93 (m, 1 H), 3,96-4,04 (m, 2H), 6,64 (s, 1H), 7,02-7,31 (m, 8H)		

[Tabla 2-3]

[Tabla 2-3]		
Intermedio 19	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,40 (t, J = 7,1 Hz, 3H), 1,51 (d, J = 6,4 Hz, 3H), 3,98-4,20 (m, 3H), 6,69 (d, J = 0,9 Hz, 1H), 7,37-7,48 (m, 3H), 7,65 (d, J = 2,8 Hz, 1 H), 7,75-7,86 (m, 3H)
Intermedio 20	NH ₂	(600 MHz, CDCI ₃) δ ppm: 1,34-1,38 (m, 3H), 1,48-1,51 (m, 3H), 1,78-1,86 (m, 4H), 1,99-2,08 (m, 2H), 2,31 (s, 3H), 2,44-2,50 (m, 1H), 2,93-2,99 (m, 2H), 3,92-4,20 (m, 3H), 6,65 (s, 1 H), 6,95-7,07 (m, 3H), 7,25-7,30 (m, 1H)
Intermedio 21	NH ₂	(600 MHz, CDCI ₃) δ ppm: 1,36 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,9 Hz, 3H), 1,53-1,71 (m, 6H), 3,11-3,18 (m, 4H), 3,91-4,07 (m, 3H), 6,56 (s, 1H), 6,58-6,61 (m, 1H), 6,68-6,72 (m, 1H), 6,74-6,77 (m, 1H); 7,15-7,20 (m, 1H)
Intermedio 22	NH ₂	(600 MHz, CDCl ₃) δ ppm : 1,35-1,42 (m, 3H), 1,48-1,52 (m, 3H), 3,97-4,06 (m, 2H), 4,08-4,21 (m, 1H), 6,58 (s, 1 H), 7,18-7,36 (m, 5H), 7,45-7,48 (m, 1H), 7,86 (s, 1H)
Intermedio 23	NH ₂	(600 MHz, CDCl ₃) δ ppm : 1,29 (t, J = 7,3 Hz, 3H), 3,89(s a, 2H), 3,95 (c, J = 7,3 Hz, 2H), 6,73 (s,1H), 7,00-7,04 (m, 2H), 7,14-7,18 (m, 2H)
Intermedio 24	NH ₂	(600 MHz, CDCI ₃) δ ppm: 1,48 (d, J = 6,9 Hz, 3H, 3,58 (s, 3H), 3,98-4,05 (m, 1H), 6,50-6,54 (m, 1H), 7,01-7,09 (m, 2H), 7,17-7,22 (m, 2H)
Intermedio 25	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,41 (t, J = 7,1 Hz, 3H), 1,52 (d, J = 6,4 Hz, 3H), 3,99-4,20 (m, 3H), 6,60 (d, J = 0,9 Hz, 1H), 7,61-7,65 (m, 2H), 7,83-7,87 (m, 2H), 8,49 (d, J = 6,5 Hz, 1 H), 9,20 (s, 1 H)
Intermedio 26	NM.	$\begin{array}{l} (600 \text{ MHz}, \text{CDCl}_3) \ \delta \text{ ppm}: 1,38 \ (t, \ J=7,1 \ \text{Hz}, \ 3\text{H}), \ 1,48 \ (d, \ J=6,4 \ \text{Hz}, \ 3\text{H}), \ 2,55\text{-}2,60 \ (m, \ 4\text{H}), \ 2,79 \ (t, \ J=5,7 \ \text{Hz}, \ 2\text{H}), \ 3,72\text{-}3,75 \ (m, \ 4\text{H}), \ 3,94\text{-}4,10 \ (m, \ 3\text{H}),4,09 \ (t, \ J=5,7 \ \text{Hz}, \ 2\text{H}), \ 6,49 \ (s, \ 1\text{H}), \ 6,87\text{-}6,91 \ (m, \ 2\text{H}), \ 7,13\text{-}7,16 \ (m, \ 2\text{H}) \end{array}$
Intermedio 27	NH ₂	(600 MHz, CDCI ₃) δ ppm : 1,29-1,53 (m, 6H), 2,49 (s, 6H), 3,89-4,36 (m, 3H), 6,60-6,84 (m, 3H)

[Tabla 2-4]

	[.∞	bia 2-4j
Intermedio 28	NH ₂	(600 MHz, CDCI ₃) δ ppm: 1,34-1,41 (m, 3H), 1,47-1,60 (m, 3H), 3,91 (s, 3H), 3,88-4,11 (m, 3H), 6,53 (d, J = 0,9 Hz, 1 H), 6,65 (s, 1H)
Intermedio 29	NH ₂	(600 MHz, CDCI ₃) δ ppm: 1,35-1,39 (m, 3H), 1,46-1,60 (m, 3H), 2,22 (s, 3H), 2,24 (s, 3H), 3,93-4,08 (m, 3H), 6,51 (d, J = 0.9 Hz, 1 H), 6,91-6,95 (m, 1H), 6,97-7,00 (m, 1H), 7,10 (d J=8,3 Hz, 1H)
Intermedio 30	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,28 (t, J = 7,1 Hz, 3H), 1,39 (t, J = 7,1 Hz, 3H), 1,44 (d, J = 6,4 Hz, 3H), 3,79-3,97 (m, 3H), 4,35-4,41 (m, 2H), 6,44 (s, 1H)

Intermedio 31	NH ₂	(600 MHz, CDCl ₃) δ ppm:0,87-0-91 (m, 3H), 1,24-1,87 (m, 13H), 3,76-3,79 (m, 1H), 3,95-4,07 (m, 2H), 6,51 (s, 1H), 7,01-7,06 (m, 2H), 7,18-7,25 (m, 2H)
Intermedio 32	NH ₂	(600 MHz, CDCl ₃) δ ppm: 0,95 (d, J = 6,9 Hz, 3H), 1,04 (d, J = 6,4 Hz, 3H), 1,36 (t, J = 7,1 Hz, 3H), 1,92-1,99 (m, 1H), 3,53 (d, J = 7,3 Hz, 1H), 3,95-4,03 (m, J = 2 H), 6,51 (s, 1H), 7,02-7,06 (m, 2H), 7,19-7,22 (m, 2H)
Intermedio 33	NH ₂	(600 MHz, CDCl ₃) δ ppm: 127 (t, J = 7,1 Hz, 3H), 1,37 (d, J = 6,4 Hz, 6H). 1,45 (d, J = 6,9 Hz, 3H), 3,77-3,91 (m, 2H), 3,92-3,97 (m, 1H), 5,04-5,11 (m, 1H), 6,45 (s, 1H)
Intermedio 34	NH ₂	$\begin{array}{l} (600~\text{MHz},~\text{CDCI}_3)~\delta~\text{ppm:}~1,01~(t,~J=7,3~\text{Hz},~3\text{H}),~1,29~(t,~J=7,1~\text{Hz},~3\text{H}),~1,45~(d,~J=8,4~\text{Hz},~3\text{H}),~1,76-1,83~(m,~2\text{H}),~3,79-3,97~(m,~3\text{H}),4,26-4,30~(m,~2\text{H}),~6,43~(d,~J=0,9~\text{Hz},~1~\text{H}) \end{array}$
Intermedio 35	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,32 (t, J = 7,1 Hz, 3H), 1,46 (d, J = 6,9 Hz, 3H), 3,82-4,03 (m, 3H), 4,69-4,78 (m, 2H), 6,45 (s, 1 H)
Intermedio 36	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,13 (t, J = 7,6 Hz, 3H), 1,24-1,29 (m, 3H), 1,47 (d, J = 6,9 Hz, 3H), 2,43-2,54 (m, 2H), 3,87-4,11 (m, 2H), 4,24-4,31 (m, 1H), 6,96,7,40 (m, 2H)

(600 MHz, CDCI₃) δ ppm: 1,29 (t, J = 7,1 Hz, 3H), 1,45 (d, J = 6,9 Hz, 3H), 1,97 (t, J = 2,8 Hz, 1H), 1,99-2,05 (m, 2H), 2,34-2,39 (m, 2H), 3,79-3,97 (m, 3H), 4,43 (t, J = 6,2 Hz, 1), 2,34 (t, J = 6,2 Hz, 1), 3,79 (t Intermedio 37 2H), 6,44 (s, 1 H) (600 MHz CDCl₃) δ ppm: 1.43 (t. J = 7.1 Hz. 3H), 1.52 (d. J

[Tabla 2-5]

Intermedio 38	NH.	(600 MHz, CDCl ₃) 8 ppm: 1,43 (t, J = 7,1 Hz, 3H), 1,52 (d, J = 6,9 Hz, 3H), 4,11-4,39 (m, 2H), 4,62-4,68 (m, 1H), 6,97-7,50 (m, 9H)
Intermedio 39	NH ₂	$ \begin{array}{l} (600 \text{ MHz}, \text{CDCl}_3) \ \delta \text{ ppm: 1,27 (t, J = 7,1 Hz, 3H), 1,54 (d, J = 6,9 Hz, 3H), 2,01-2,05 (m, 2H), 2,62-2,62 (m, 6H), 3,74-3,79 (m, 4H), 3,80-3,94 (m, 2H), 4,03-4,09 (m, 1H), 4,39 (t, J = 6,4 Hz, 2H), 6,64(8, 1H) \end{array} $
Intermedio 40	NOTE TO SERVICE AND ADDRESS OF THE PARTY OF	$\begin{array}{l} (600~\text{MHz},~\text{CDCI}_3)~\delta~\text{ppm:}~1,34\text{-}1,40~\text{(m, 3H)},~1,46\text{-}1,50~\text{(m, 3H)},2,34\text{-}2,39~\text{(m, 2H)},2,36~\text{(s, 6H)},2,72\text{-}2,78~\text{(m, 2H)},\\ 3,95\text{-}4,09~\text{(m, 2H)},~4,13\text{-}4,20~\text{(m, 1H)},~6,50~\text{(s, 1H)},\\ 6,88\text{-}6,91~\text{(m, 2H)},~7,14\text{-}7,16~\text{(m, 2H)} \end{array}$
Intermedio 41	NH ₂	(600 MHz, CDCl ₃) δ ppm : 1,29 (t, J = 7,3 Hz, 3 H), 1,46 (d, J = 6,4 Hz, 3H), 3,82-399 (m, 3H), 5,38 (s, 2H), 6,48 (s, 1 H), 731-7,45 (m, 5H)
Intermedio 42	NH ₂	(600 MHz, CDCl ₃) δ ppm : 1,28 (t, J = 7,1 Hz, 3H), 1,50 (d, J = 6,4 Hz, 3H), 138-1,68 (m, 1H), 1,77-1,86 (m, 1H), 2,08-2,19 (m, 2H), 2,41-2,51 (m, 2H), 3,80-3,91 (m, 2H), 3,99-4,05 (m, 1H), 5,07-5,14 (m, 1H), 6,52 (s, 1H)

Intermedio 43	Br NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,37 (t, J = 7,1 Hz, 3H), 1,50 (d, J = 6,9 Hz, 3H), 4,00-4,22 (m, 2H), 4,31 (c, J = 6,9 Hz, 1H), 7,00-7,06 (m, 2H), 7,18-7,24 (m, 2H)
Intermedio 44	NH ₂	$ \begin{array}{l} (600 \text{ MHz}, \text{DMSO-D}_6) \ \delta \ \text{ppm:} \ 1,19\text{-}1,24 \ (\text{m}, 3\text{H}), \ 1,35 \ (\text{d}, \ J=8,4 \ \text{Hz}, 3\text{H}), \ 3,80\text{-}4,00 \ (\text{m}, 3\text{H}), \ 6,19\text{-}5,24 \ (\text{m}, 2\text{H}), \ 6,19\text{-}6,22 \ (\text{m}, 1\text{H}), \ 6,29\text{-}6,33 \ (\text{m}, 2\text{H}), \ 6,43 \ (\text{d}, \ J=0,9 \ \text{Hz}, \ 1 \ \text{H}), \ 6,93\text{-}6,98 \ (\text{m}, 1\text{H}) \end{array} $
Intermedio 45	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,26-1,55 (m, 12H), 1,75-1,81 (m, 2H), 2,23-2,35 (m, 8H), 3,79-3,87 (m, 3H), 4,31 (t, J = 6,6 Hz, 2H), 6,43 (d, J = 0,9 Hz, 1H)

[Tabla 2-6]

Intermedio 46	NH ₂	(600 MHz, CDCl ₃) δ ppm : 1,29 (t, J = 7,1 Hz, 3H), 1,45 (d, J = 6,9 Hz, 3H), 1,85-1,91 (m, 2H), 2,18-2,23 (m, 2H), 3,80-3,97 (m, 3H), 4,34 (t, J = 6,4 Hz, 2H), 4,98-501 (m, 1H), 5,03-5,08 (m, 1H), 5,81-5,89 (m, 1H), 6,44 (s, 1H)
Intermedio 47	₹	(600 MHz, CDCl ₃) δ ppm : 0,88 (t, J = 6,0 Hz, 3H), 1,20-1,36 (m, 31 H), 1,38-1,44 (m, 2H), 1,58 (d, J = 6,9 Hz, 3 H), 1,72-1,79 (m, 2H), 3:83-3,88 (m, 2H), 4,10-4,15 (m, 1H), 4,26-4,34 (m, 2H), 6,62 (s, 1H)
Intermedio 48	NH ₂	$\begin{array}{l} (600 \text{ MHz}, \text{CDCl}_3) \ \delta \text{ ppm}: 1,27 \ (t, \ J=7,1 \ \text{Hz} \ 3\text{H}), \ 1,54 \ (d, \ J=6,9 \ \text{Hz}, \ 3\text{H}), \ 2,02\text{-}2,07 \ (m, \ 2\text{H}), \ 3,34 \ (s, \ 3\text{H}), \ 3,52 \ (t, \ J=6,4 \ \text{Hz}, \ 2\text{H}), \ 3,81\text{-}3,91 \ (m, \ 2\text{H}), \ 4,05\text{-}4,10 \ (m, \ 1\text{H}) \ 4,38\text{-}4,43 \ (m, \ 2\text{H}), \ 6,56 \ (s, \ 1\text{H}) \end{array}$
Intermedio 49	NH ₂	(600 MHz, CDCl ₃) δ ppm:1,27 (t, J = 7,1 Hz, 3H), 1,37 (d, J = 6,4 Hz, 3H), 3,21 (s, 3H), 3,69-3,84 (m, 2H), 3,87-3,93 (m, 1H), 6,00 (s, 1H)
Intermedio 50	NH ₂	(600 MHz, CDCI ₆) δ ppm: 1,40 (t, J = 7,1 Hz, 3H), 1,49 (d, J = 6,4 Hz, 3H), 3,97-4,12 (m, 3H), 6,46-6,49 (m, 1H), 6,54 (s. 1H), 6,96 (dd, J = 8,5, 2,1 Hz, 1H), 7,11-7,14 (m, 1H), 7,30-7,34 (m, 1H), 7,56 (d, J = 8,7 Hz, 1H), 8,42(s a, 1H)
Intermedio 51	NH ₂	(600 MHz, CDCl ₃) δ ppm: 1,28 (t, J = 7,1 Hz; 3H), 1,45 (d, J = 6,9 Hz, 3H), 1,95-2,02 (m, 2H), 2,36-2,85 (m, 13H), 3,78-3,98 (m, 3H), 4,37 (t, J = 6,4 Hz, 2H), 6,44 (d, J = 0,9 Hz, 1 H)

Aplicabilidad industrial

5

10

Puesto que los compuestos de la presente invención son excelentes ligandos de Edg-1(SIP₁), son útiles como agentes terapéuticos y/o profilácticos para enfermedad autoinmune tal como enfermedad de Crohn, colitis irritable, síndrome de Sjogren, esclerosis múltiple y lupus eritematoso sistémico, así como otras enfermedades tales como artritis reumatoide, asma, dermatitis atópica, rechazo después de trasplante de órgano, cáncer, retinopatía, psoriasis, osteoartritis, degeneración macular relacionada con la edad, etc.

REIVINDICACIONES

1. Un compuesto representado por la fórmula (I) o una sal farmacéuticamente aceptable del mismo:

[Fórmula 1]

5 {en la que Ar representa un anillo heterocíclico monocíclico representado por la siguiente fórmula:

[Fórmula 6]

que puede estar sustituido con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C_1 - C_6 , un grupo fenilo y un átomo de halógeno,

cada uno de Y¹, Y² e Y³ representa un átomo de carbono o un átomo de nitrógeno,

A representa un átomo de oxígeno,

10

15

20

25

30

35

40

 R^1 representa un átomo de hidrógeno, un grupo alquilo C_1 - C_6 que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo hidroxilo, un átomo de halógeno, un grupo alcoxi C_1 - C_6 (en el que dicho grupo alcoxi puede estar sustituido con un grupo fenilo) y un grupo fenilo (en el que dicho grupo fenilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C_1 - C_6)], un grupo cicloalquilo C_3 - C_8 , un grupo alquenilo C_2 - C_8 , un grupo alquinilo C_2 - C_8 o un grupo fenilo,

R² representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ o un grupo cicloalquilo C₃-C₆,

 R^3 representa (i) un átomo de hidrógeno, (ii) un grupo alquilo C_1 - C_{18} , (iii) un grupo alquenilo C_2 - C_8 que puede estar sustituido con un grupo fenilo o un grupo benciloxi, (iv) un grupo alquinilo C_2 - C_8 que puede estar sustituido con un grupo fenilo, (v) un grupo cicloalquilo C_3 - C_8 que puede estar condensado con un anillo de benceno, (vi) un grupo alquilo C_1 - C_6 sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un átomo de halógeno, un grupo fenilo (en el que dicho grupo fenilo puede estar sustituido con 1 a 5 sustituyentes seleccionados entre el grupo que consiste en un grupo fenilo, un grupo ciano, un átomo de halógeno, un grupo alquilo C_1 - C_6 , un grupo alcoxi C_1 - C_6 , un grupo trifluorometilo, un grupo metoxicarbonilo, un grupo alquiltio C_1 - C_6 , un grupo dimetilamino, un grupo nitro y un grupo acetamido), un grupo cicloalquilo C_3 - C_8 , un grupo hidroxilo, un grupo alquiltio C_1 - C_6 , un grupo alcoxi C_1 - C_6 , un grupo bencenosulfonilo, un grupo naftilo, un grupo tricicloalquilo C_7 - C_{10} , un grupo carbometoxi(fenil)metilo, un grupo difenilmetilo, un grupo oxolanilo, un grupo metilpiperidinilo, un grupo piperazino que puede estar sustituido con uno o más grupos alquilo C_1 - C_6 , un grupo bencilpiperidinilo, un grupo morfolino, un grupo 2-oxopirrolidin-1-ilo, un grupo 2-oxoimidazolidin-1-ilo, un grupo representado por la fórmula:

(en la que R^{11} representa un átomo de hidrógeno o un grupo alquilo C_1 - C_6), un grupo representado por la fórmula:

[Fórmula 2]

(en la que cada uno de R¹² y R¹³ representa un átomo de hidrógeno o un grupo alquilo C₁-C₆), un grupo representado por la fórmula:

[Fórmula 3]

(en la que cada uno de R^{24} y R^{15} representa un átomo de hidrógeno, un grupo alquilo C_1 - C_6 , un grupo fenilo o un grupo 4-piridilcarbonilo) y la fórmula:

-COR¹⁶

5

10

15

20

25

35

40

45

50

(en la que R^{16} representa un grupo alquilo C_1 - C_6 o un grupo fenilo)], (vii) un grupo oxolanilo, un grupo metilpiperidinilo o un grupo representado por la fórmula:

[Fórmula 4]

o (viii) un grupo arilo opcionalmente sustituido, seleccionándose B entre un grupo fenilo, un grupo naftilo, un grupo pirazolilo, un grupo piridilo, un grupo indolilo, un grupo benzotiazolilo, un grupo benzotiadiazolilo, un grupo pirazolopirimidinilo, un grupo quinolinilo, un grupo isoquinolinilo, un grupo benzotienilo o un grupo dihidroquinolinonilo, en el que cada uno de estos grupos puede estar sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en los sustituyentes enumerados a continuación: un grupo alquilo C₁-C₆ que puede estar sustituido con un átomo de flúor (s), un grupo cicloalquilo C₃-C₈, un átomo de halógeno, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de flúor, un grupo fenilo, un grupo amino sustituido con dos grupos C₁-C₄ alquilo y un grupo morfolino), un grupo fenoxi, un grupo fenilo, un grupo carboxilo, un grupo alcoxicarbonilo C2-C10, un grupo hidroxilo, un grupo hidrocarburo monocíclico C2-C7 saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆), un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno, un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo formilo, un grupo alcanoílo C2-C7, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C1-C4, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alquilsulfonilo C₁-C₆) y la fórmula:

 $-NR^{7}R^{8}$

en la que cada uno de R^7 y R^8 representa un átomo de hidrógeno, un grupo alquilo C_1 - C_6 (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , un grupo hidroxilo o un grupo alcoxi C_1 - C_6), un grupo alcanoílo C_1 - C_6 , un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_4 , un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 o un grupo alquilsulfonilo C_1 - C_6 , o como alternativa, R^7 y R^8 forman opcionalmente, junto con el átomo de nitrógeno al que R^7 y R^8 están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo],

 R^4 representa un átomo de hidrógeno, o un grupo alquilo C_1 - C_6 que puede estar sustituido con un grupo carboxilo, y

 R^5 representa un grupo alquilo C_1 – C_6 sustituido con un grupo naftilo, un grupo alquenilo C_2 – C_6 sustituido con un grupo fenilo, un grupo fenilo sin sustituir, un grupo fenilo sustituido con 1 a 5 sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo metilo, un grupo metoxi y un átomo de halógeno), un grupo fenilo que está sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo y al menos una de sus posiciones 3 y 4 está sustituida (en el que dicho grupo consiste en un grupo alquilo C_1 – C_6 , un átomo de halógeno, un grupo metoxi, un grupo trifluorometoxi, un grupo difluorometoxi, un grupo trifluorometilo, un grupo alquenilo C_1 – C_6 , un grupo metilsulfonilo, un grupo acetilo, un grupo metoxicarbonilo y un grupo ciano), un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un átomo de halógeno, un grupo alquilsulfonilo C_1 – C_6 , un grupo furanilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo trifluorometilo y un átomo de halógeno o

un grupo benzotienilo, benzoxadiazolilo, benzodioxolilo, dihidrobenzodioxinilo, dihidrobenzofuranilo, indanilo o benzotiadiazolilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆ y un átomo de halógeno.

- 2. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la reivindicación 1, en el que, en la fórmula (I),
 - R¹ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ o un grupo alquilo C₁-C₆ sustituido con un grupo
 - R² representa un grupo alquilo C₁-C₆ o un grupo cicloalquilo C₃-C₈,

10


20

30

35

- R³ representa un grupo alguilo C₁-C₆, o el grupo arilo opcionalmente sustituido como se define en la reivindicación 1, y R^4 representa un átomo de hidrógeno o un grupo alquilo $C_1\text{-}C_6$.
- 3. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la reivindicación 1, en el que Ar es un 15 sustituyente representado por la siguiente fórmula:

[Fórmula 71

que puede estar sustituido con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo fenilo y un átomo de halógeno.

4. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con la reivindicación 1, en el que Ar es un sustituyente representado por la siguiente fórmula:

[Fórmula 8]

- que puede estar sustituido con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un 25 grupo fenilo y un átomo de halógeno.
 - 5. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 y 3 a 4, en el que R1 es un grupo alquilo C1-C6 que puede estar sustituido con uno o más átomos de halógeno, o un grupo bencilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C₁-C₆.
 - 6. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 y 3 a 4, en el que R¹ es un grupo metilo, un grupo etilo o un grupo bencilo que puede estar sustituido con uno o más átomos de halógeno.
 - 7. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 4, en el que R¹ es un grupo metilo o un grupo etilo.
- 8. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 7, en el que R⁴ es un átomo de hidrógeno. 40
 - 9. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 8, en el que R² es un grupo alquilo C₁-C₆ o un grupo cicloalquilo C₃-C₆.
- 45 10. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 8, en el que R² es un grupo etilo o un grupo ciclopropilo.
- 11. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 10, en el que R⁵ es un grupo fenilo cuyas posiciones 3 y 4 están cada una sustituida con un átomo de halógeno, o un grupo naftilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en 50 un átomo de halógeno, un grupo alquilo C₁-C₆ y un grupo ciano.
 - 12. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones

1 a 11, en el que R³ es un grupo 2-naftilo (en el que dicho grupo naftilo grupo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C₁-C₆), un grupo (en el que dicho grupo pirazolilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo trifluorometilo y un átomo de halógeno), o un grupo 5-benzotiazolilo, 5-benzotiadiazolilo, 7-dihidroquinolinonilo, 7-isoquinolinilo, 7-quinolinilo, 3-piridilo o indolilo, que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo sin sustituir o un grupo fenilo sustituido que se muestra en (A) a (C) a continuación:

- (A) un grupo fenilo cuya posición 4 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo cicloalquilo C₃-C₈, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), un átomo de halógeno, un grupo trifluorometoxi, un grupo fenoxi, un grupo fenilo, un grupo 1-pirrolilo y -NR A R B (en el que cada uno de R A y R B es un grupo alquilo C₁-C₆ o R A y R B forman opcionalmente, junto con el átomo de nitrógeno al que R A y R B están unidos, un anillo hidrocarburo saturado de 3 a 5 miembros), y además, cuya posición 3 puede estar sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un átomo de halógeno y un grupo alcoxi C₁-C₆, (B) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo hidroxilo, un grupo alquilo C₁-C₆ y un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), y además, que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o cuya posición 4 puede estar sustituida con un átomo de halógeno, y
 - (C) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición 4 puede estar sustituida con un átomo de halógeno:
 - (i) un grupo hidrocarburo C2-C7 monocíclico saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆),
 - (ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno.
 - (iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆,
 - (iv) un grupo piperazino [en el que dicho grupo piperazino puede estar sustituido con un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino) o un grupo alcanoílo C₂-C₇] y (v) la fórmula -NR⁷R⁸

10

15

20

25

30

35

40

45

50

55

65

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ forman opcionalmente, junto con el átomo de nitrógeno al que R⁷y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituventes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.

- 13. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 11, en el que R³ es un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición 4 puede estar sustituida con un átomo de halógeno:
 - (i) un grupo hidrocarburo C2-C7 monocíclico saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más
 - (ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno,
 - (iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆,
 - (iv) un grupo piperazino [en el que dicho grupo piperazino puede estar sustituido con un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino sustituido con dos grupos alquilo C2-C4 y un grupo morfolino) o un grupo alcanoílo C_2-C_7], y
- (v) la fórmula -NR⁷R⁸ 60

en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ forman opcionalmente, junto con el átomo de nitrógeno al que R⁷ y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.

- 14. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 11, en el que R³ es un grupo fenilo cuya posición 4 está sustituida con un átomo de flúor o un átomo de cloro.
 - 15. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 17, en el que R³ es un grupo 6-indolilo.
 - 16. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 y 3 a 11, en el que R^3 es un grupo alquilo $C_{1^-}C_{16}$ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un átomo de halógeno, un grupo amino que puede estar sustituido con uno o dos grupos alquilo $C_{1^-}C_6$, un grupo alcoxi $C_{1^-}C_6$, un grupo piperazino que puede estar sustituido con uno o más grupos alquilo $C_{1^-}C_6$, un grupo fenilo y un grupo morfolino), un grupo alquenilo $C_{2^-}C_8$, un grupo alquinilo $C_{2^-}C_8$ o un grupo cicloalquilo $C_{3^-}C_8$.
- 17. El compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 y 3 a 11, en el que R³ es un grupo alquilo C₁-C₆ sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alcoxi C₁-C₆) o un grupo cicloalquilo C₃-C₅.
 - 18. Una preparación farmacéutica que comprende el compuesto o sal farmacéuticamente aceptable del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 17.
 - 19. La preparación farmacéutica de acuerdo con la reivindicación 18, que es una agente terapéutico para una enfermedad autoinmune tal como enfermedad de Crohn, colitis irritable, síndrome de Sjogren, esclerosis múltiple o lupus eritematoso sistémico, artritis reumatoide, asma, dermatitis atópica, rechazo después de trasplante de órgano, cáncer, retinopatía, psoriasis, osteoartritis o degeneración macular relacionada con la edad.
 - 20. Un compuesto representado por la fórmula (II) o una sal del mismo:

10

15

25

30

35

40

45

50

[Fórmula 9]

(en la que R¹ y R² son como se han definido anteriormente en la reivindicación 1.

 \dot{R}^3 representa (ii) un grupo alquilo C_1 - C_{18} , (iii) un grupo alquenilo C_2 - C_8 que puede estar sustituido con un grupo fenilo, (v) un grupo benciloxi, (iv) un grupo alquinilo C_2 - C_8 que puede estar sustituido con un grupo fenilo, (v) un grupo cicloalquilo C_3 - C_8 que puede estar condensado con un anillo de benceno, (vi) un grupo alquilo C_1 - C_6 sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un átomo de halógeno, un grupo fenilo (en el que dicho grupo fenilo puede estar sustituido con 1 a 5 sustituyentes seleccionados entre el grupo que consiste en un grupo fenilo, un grupo ciano, un átomo de halógeno, un grupo alquilo C_1 - C_6 , un grupo alcoxi C_1 - C_6 , un grupo trifluorometilo, un grupo metoxicarbonilo, un grupo alquiltio C_1 - C_6 , un grupo dimetilamino, un grupo nitro y un grupo acetamido), un grupo cicloalquilo C_3 - C_8 , un grupo hidroxilo, un grupo alquiltio C_1 - C_6 , un grupo alcoxi C_1 - C_6 , un grupo bencenosulfonilo, un grupo naftilo, un grupo tricicloalquilo C_7 - C_{10} , un grupo carbometoxi(fenil)metilo, un grupo difenilmetilo, un grupo naftilo, un grupo imidazolilo, un grupo piperazino que puede estar sustituido con uno o más grupos alquilo C_1 - C_6 , un grupo bencilpiperidinilo, un grupo morfolino, un grupo 2-oxopirrolidin-1-ilo, un grupo 2-oxopimidazolidin-1-ilo, un grupo representado por la fórmula:

(en la que R¹¹ representa un átomo de hidrógeno o un grupo alguilo C₁-C₆), un grupo representado por la fórmula:

[Fórmula 2]

(en la que cada uno de R^{12} y R^{13} representa un átomo de hidrógeno o un grupo alquilo C_1 - C_6), un grupo representado por la fórmula:

[Fórmula 3]

(en la que cada uno de R¹⁴ y R¹⁵ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆, un grupo fenilo o un grupo 4-piridilcarbonilo), y la fórmula:

-COR16

(en la que R^{16} representa un grupo alquilo C_1 - C_6 o un grupo fenilo)], (vii) un grupo oxolanilo, un grupo metilpiperidinilo o un grupo representado por la fórmula:

[Fórmula 4]

10

15

20

25

o (viii) un grupo arilo opcionalmente sustituido, cuyo B se selecciona entre un grupo fenilo, un grupo naftilo, un grupo pirazolilo, un grupo piridilo, un grupo indolilo, un grupo benzotiazolilo, un grupo benzotiadiazolilo, un grupo pirazolopirimidinilo, un grupo quinolinilo, un grupo isoquinolinilo, un grupo benzotienilo o un grupo dihidroquinolinonilo, en el que cada uno de estos grupos puede estar sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en los sustituyentes enumerados a continuación: un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más átomos de flúor, un grupo cicloalquilo C₃-C₈, un átomo de halógeno, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de flúor, un grupo fenilo, un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino), un grupo fenoxi, un grupo fenilo, un grupo carboxilo, un grupo alcoxicarbonilo C2-C10, un grupo hidroxilo, un grupo hidrocarburo monocíclico C₂-C₇ saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆), un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno, un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₂-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo formilo, un grupo alcanoílo C₂-C₇, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alquilsulfonilo C₁-C₆) y la fórmula:

30

-NR7R8

35

40

45

en la que cada uno de R^7 y R^8 representa un átomo de hidrógeno, un grupo alquilo C_1 - C_6 (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , un grupo hidroxilo o un grupo alcoxi C_1 - C_6), un grupo alcanoílo C_1 - C_6 , un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_4 , un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , o un grupo alquilsulfonilo C_1 - C_6 , o como alternativa, R^7 y R^8 forman opcionalmente, junto con el átomo de nitrógeno al que R^7 y R^8 están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo],

el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo], y cada uno de Y⁴ e Y⁵ representa un átomo de nitrógeno o la fórmula CR¹⁷ (en la que R¹⁷ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆, un grupo fenilo o un átomo de halógeno), con la condición de que Y⁴ e Y⁵ sean ambos un átomo de nitrógeno).

ambos un atomo de mitogeno)

21. El compuesto o sal del mismo de acuerdo con la reivindicación 20, en el que, en la fórmula (II), Y⁴ es CH, e Y⁵ es un

átomo de nitrógeno.

15

40

45

- 22. El compuesto o sal del mismo de acuerdo con la reivindicación 20 ó 21, en el que R^1 es un grupo alquilo C_1 - C_6 que puede estar sustituido con uno o más átomos de halógeno, o un grupo bencilo que puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C_1 - C_6 .
- 23. El compuesto o sal del mismo de acuerdo con la reivindicación 20 ó 21, en el que R¹ es un grupo metilo, un grupo etilo o un grupo bencilo que puede estar sustituido con uno o más átomos de halógeno.
- 24. El compuesto o sal del mismo de acuerdo con la reivindicación 20 ó 21, en el que R¹ es un grupo metilo o un grupo etilo.
 - 25. El compuesto o sal del mismo de acuerdo una cualquiera de las reivindicaciones 20 a 24, en el que R^2 es un grupo alquilo C_1 - C_6 o un grupo cicloalquilo C_3 - C_8 .
 - 26. El compuesto o sal del mismo de acuerdo con una cualquiera de las reivindicaciones 20 a 24, en el que R² es un grupo etilo o un grupo ciclopropilo.
- 27. El compuesto o sal del mismo de acuerdo con una cualquiera de las reivindicaciones 20 a 26, en el que R³ es un 20 grupo fenilo, un grupo naftilo, un grupo pirazolilo, un grupo piridilo, un grupo indolilo, un grupo benzotiazolilo, un grupo benzotiadiazolilo, un grupo pirazolopirimidinilo, un grupo quinolinilo, un grupo isoquinolinilo, un grupo benzotienilo o un grupo dihidroquinolinonilo, donde cada uno de estos grupos puede estar sustituido con 1 a 3 sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en los sustituyentes enumerados a continuación: un grupo alquilo C₁-C₆ que puede estar sustituido con uno o más átomos de flúor, un grupo cicloalquilo C₃-C₈, un átomo de halógeno, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más 25 sustituyentes seleccionados entre el grupo que consiste en un átomo de flúor, un grupo fenilo, un grupo amino sustituido con dos grupos alquilo C₁-C₄ y un grupo morfolino), un grupo fenoxi, un grupo fenilo, un grupo carboxilo, un grupo alcoxicarbonilo C₂-C₁₀, un grupo hidroxilo, un grupo hidrocarburo monocíclico C₂-C₇ saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado 30 puede estar sustituido con uno o más grupos alquilo C₁-C₆), un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno, un grupo morfolinilo que puede estar sustituido con uno o más grupos alguilo C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo [en el que dicho grupo consiste en un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo formilo, un grupo alcanoílo C₂-C₇, un grupo carbamoílo que puede estar sustituido con uno o 35 dos grupos alquilo C₁-C₄, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ y un grupo alquilsulfonilo C₁-C₆] y la fórmula:

-NR⁷R⁸

- en la que cada uno de R^7 y R^8 representa un átomo de hidrógeno, un grupo alquilo C_1 - C_6 (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , un grupo hidroxilo o un grupo alcoxi C_1 - C_6), un grupo alcanoílo C_1 - C_6 , un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_4 , un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C_1 - C_6 , o un grupo alquilsulfonilo C_1 - C_6 , o como alternativa, R^7 y R^8 forman opcionalmente, junto con el átomo de nitrógeno al que R^7 y R^8 están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo].
- 28. El compuesto o sal del mismo de acuerdo con una cualquiera de las reivindicaciones 20 a 26, en el que R³ es un grupo 2-naftilo (en el que dicho grupo naftilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un átomo de halógeno y un grupo alquilo C₁-C₆), un grupo 3-pirazolilo (en el que dicho grupo pirazolilo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo trifluorometilo y un átomo de halógeno), o un grupo 5-benzotiazolilo, 5-benzotiadiazolilo, 7-dihidroquinolinonilo, 7-isoquinolinilo, 7-quinolinilo, 3-piridilo o indolilo, que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo sin sustituir o un grupo fenilo sustituido que se muestra en (A) a (C) a continuación:
- (A) un grupo fenilo cuya posición 4 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un grupo cicloalquilo C₃-C₈, un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alquilo C₁-C₄, un grupo morfolino y un grupo fenilo), un átomo de halógeno, un grupo trifluorometoxi, un grupo fenoxi, un grupo fenilo, un grupo 1-pirrolilo y -NR^AR^B (en la que cada uno de R^A y R^B es un grupo alquilo C₁-C₆, o R^A y R^B forman opcionalmente, junto con el átomo de nitrógeno al que R^A y R^B están unidos, un anillo hidrocarburo saturado de 3 a 5 miembros), y además, cuya posición 3 puede estar sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo alquilo C₁-C₆, un átomo de halógeno y un grupo alcoxi C₁-C₆,

ES 2 393 621 T3

- (B) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en un grupo hidroxilo, un grupo alquilo C₁-C₆ y un grupo alcoxi C₁-C₆ (en el que dicho grupo alcoxi puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo amino sustituido con dos grupos alguilo C₁-C₄, un grupo morfolino y un grupo fenilo), y además, que puede estar sustituido con uno o dos grupos alquilo C₁-C₆ o cuya posición 4 puede estar sustituida con un átomo de halógeno, y
- (C) un grupo fenilo cuya posición 3 está sustituida con un sustituyente seleccionado entre el grupo que consiste en grupos que contienen nitrógeno mostrados en (i) a (v) a continuación, y además, cuya posición adicional 4 puede estar sustituida con un átomo de halógeno:
- 10 (i) un grupo hidrocarburo C2-C7 monocíclico saturado que contiene uno o más átomos de nitrógeno en forma de uno o más miembros del anillo (en el que dicho grupo hidrocarburo saturado puede estar sustituido con uno o más grupos alquilo C₁-C₆),
 - (ii) un grupo hidrocarburo insaturado monocíclico que contiene nitrógeno.
 - (iii) un grupo morfolinilo que puede estar sustituido con uno o más grupos alquilo C₁-C₆,
- (iv) un grupo piperazino [en el que dicho grupo piperazino puede estar sustituido con un grupo alquilo C₁-C₀ que 15 puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un grupo amino sustituido con dos grupos alguilo C₁-C₄ y un grupo morfolino) o un grupo alcanoílo C₂-C₇], y (v) la fórmula -NR⁷R⁸

5

20

25

- en la que cada uno de R⁷ y R⁸ representa un átomo de hidrógeno, un grupo alquilo C₁-C₆ (en el que dicho grupo alquilo puede estar sustituido con un grupo amino que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, un grupo morfolino, un grupo hidroxilo o un grupo alcoxi C₁-C₆), un grupo alcanoílo C₁-C₆, un grupo carbamoílo que puede estar sustituido con uno o dos grupos alquilo C₁-C₄, un grupo morfolinocarbonilo, un grupo aminosulfonilo que puede estar sustituido con uno o dos grupos alquilo C₁-C₆, o un grupo alquilsulfonilo C₁-C₆, o como alternativa, R⁷ y R⁸ forman opcionalmente, junto con el átomo de nitrógeno al que R⁷ y R⁸ están unidos, un anillo hidrocarburo saturado de 3 a 8 miembros, en el que dicho anillo puede estar sustituido con uno o más sustituyentes seleccionados entre el grupo que consiste en un grupo dimetilendioxi, un grupo oxo y un grupo hidroxilo.
- 30 29. El compuesto o sal del mismo de acuerdo con una cualquiera de las reivindicaciones 20 a 26, en el que R³ es un grupo alquilo C₁-C₁₈ que puede estar sustituido con uno o más sustituyentes seleccionados entre el siguiente grupo (en el que dicho grupo consiste en un átomo de halógeno, un grupo amino que puede estar sustituido con uno o dos C₁-C₆ alquilo grupos, un grupo alcoxi C₁-C₆, un grupo piperazino que puede estar sustituido con uno o más grupos alquilo C₁-C₆, un grupo fenilo y un grupo morfolino), un grupo alquenilo C₂-C₈, un grupo alquinilo C₂-C₈, o un grupo cicloalquilo 35 C₃-C₈.