

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 394 295

(51) Int. CI.:

C07D 213/85 (2006.01) C07D 405/04 (2006.01) C07D 409/04 (2006.01) C07D 401/04 (2006.01) A61K 31/4412 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 15.03.2007 E 07726932 (2) (97) Fecha y número de publicación de la solicitud europea: EP 1994004 26.11.2008
- (54) Título: Derivados de 3-ciano-piridona 1,4-disustituidos y su uso como moduladores alostéricos positivos de receptores MGLUR2
- (30) Prioridad:

15.03.2006 EP 06111215 07.03.2007 EP 07103654

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 30.01.2013

(73) Titular/es:

JANSSEN PHARMACEUTICALS, INC. (50.0%) 1125 Trenton-Harbourton Road Titusville, NJ 08560, US y **ADDEX PHARMA SA (50.0%)**

(72) Inventor/es:

CID-NÚÑEZ, JOSÉ, MARIA; ANDRÉS-GIL, JOSÉ, IGNACIO; TRABANCO-SUÁREZ, ANDRÉS, AVELINO; **OYARZABAL SANTAMARINA, JULEN;** DAUTZENBERG, FRANK, MATTHIAS; MACDONALD, GREGOR, JAMES; **PULLAN, SHIRLEY, ELIZABETH;** LÜTJENS, ROBERT, JOHANNES; **DUVEY, GUILLAUME, ALBERT, JACQUES;** NHEM, VANTHÉA; FINN, TERRY, PATRICK; **MELIKYAN, GAGIK y IMOGAI, HASSAN JULIEN**

(74) Agente/Representante:

PÉREZ BARQUÍN, Eliana

DESCRIPCIÓN

Derivados de 3-ciano-piridona 1,4-disustituidos y su uso como moduladores alostéricos positivos de receptores MGLUR2

Campo de la invención

5

10

15

40

60

La presente invención se refiere a compuestos nuevos, en concreto a derivados de 3-cianopiridona 1,4-disustituidos que son moduladores alostéricos positivos de receptores metabotrópicos del subtipo 2 ("mGluR2") que son útiles para el tratamiento o prevención de trastornos neurológicos y psiquiátricos asociados con la disfunción del glutamato y enfermedades en las que está implicado el subtipo mGluR2 de receptores metabotrópicos. La invención también está dirigida a las composiciones farmacéuticas, los procedimientos para preparar dichos compuestos y composiciones y al uso de dichos compuestos para la prevención y tratamiento de dichas enfermedades en las que participa mGluR2.

Antecedentes de la invención

El glutamato es el principal transmisor de aminoácidos del sistema nervioso central (SNC) de mamíferos. El glutamato desempeña un papel principal en numerosas funciones fisiológicas, como el aprendizaje y la memoria, pero también en la percepción sensorial, el desarrollo de plasticidad sináptica, el control motor, la respiración y la regulación de la función cardiovascular. Además, el glutamato está en el centro de varias enfermedades neurológicas y psiquiátricas, en las que hay un desequilibrio en la neurotransmisión glutamatérgica. El glutamato media en la neurotransmisión sináptica a través de la activación de canales de los receptores ionotrópicos de glutamato (iGluR), y los receptores de NMDA, AMPA y kainato que son responsables de una rápida transmisión excitadora (Nakanishi y col., (1998) Brain Res Brain Res Rev., 26:230-235).

Además el glutamato activa los receptores metabotrópicos de glutamato (mGluR) que tienen un papel más modulador que contribuye al ajuste fino de la eficacia sináptica.

30 Los mGluR son receptores acoplados a proteína G (GPCR) con siete dominios transmembrana que pertenecen a la familia 3 de GPCR junto con los receptores de detección de calcio, GABA y de feromonas.

El glutamato activa los mGluR a través de la unión al gran dominio extracelular amino-terminal del receptor, denominado en el presente documento el sitio de unión ortostérico. Esta unión induce en el receptor un cambio conformacional que da lugar a la activación de la proteína G y las vías de señalización intracelulares.

La familia de mGluR está constituida por ocho miembros. Se clasifican en tres grupos (el grupo I comprende mGluR1 y mGluR5; el grupo II comprende mGluR2 y mGluR23; el grupo III comprende mGluR4, mGluR6, mGluR7 y mGluR8) de acuerdo con la homología de secuencia, el perfil farmacológico y la naturaleza de las cascadas de señalización intracelular activadas (Schoepp y col. (1999) Neuropharmacology, 38:1431-76).

El documento WO 2005/080356 está dirigido a agonistas de receptores de mGluR del grupo I.

Entre los miembros de mGluR, el subtipo mGluR2 está acoplado de forma negativa a la adenilato ciclasa a través de la activación de la Gαi-proteína y su activación conduce a la inhibición de la liberación de glutamato en la sinapsis (Cartmell & Schoepp (2000) J Neurochem 75:889-907). En el SNC, los receptores mGluR2 son abundantes, principalmente a lo largo de la corteza, las regiones talámicas, el bulbo olfatorio accesorio, el hipocampo, la hipófisis, el núcleo caudado-putamen y el núcleo accumbens (Ohishi y col. (1998) Neurosci Res 30:65-82).

En ensayos clínicos se ha demostrado que mGluR2 era eficaz para atar trastornos de ansiedad (Levine y col. (2002) Neuropharmacology 43: 294; Holden (2003) Science 300:1866-68; Grillon y col. (2003) Psychopharmacology 168: 446-54; Kellner y col. (2005) Psychopharmacology 179: 310-15). Además, se mostró que la activación de mGluR2 era eficaz en diversos modelos animales, lo que representaba un posible nuevo enfoque terapéutico para el tratamiento de la esquizofrenia (revisado en Schoepp & Marek (2002) Curr Drug Targets. 1:215-25), la epilepsia (revsado en Moldrich y col. (2003) Eur J Pharmacol. 476:3-16), la migraña (Johnson y col. (2002) Neuropharmacology 43:291), la dependencia/adicción a drogas (Helton y col. (1997) J Pharmacol Exp Ther 284: 651-660), la enfermedad de Parkinson (Bradley y col. (2000) J Neurosci. 20(9):3085-94), el dolor (Simmons y col. (2002) Pharmacol Biochem Behav 73:419-27), trastornos del sueño (Feinberg y col. (2002) Pharmacol Biochem Behav 73:467-74) y la enfermedad de Huntington (Schiefer y col. (2004) Brain Res 1019:246-54).

Hasta la fecha, la mayoría de las herramientas farmacológicas dirigidas a los mGluR son ligandos ortostéricos que activan varios miembros de la familia, ya que son análogos estructurales del glutamato Schoepp y col. (1999) Neuropharmacology, 38:1431-76).

Una nueva senda para desarrollar compuestos selectivos que actúen en mGluR es identificar moléculas que actúen a través de mecanismos alostéricos, modulando el receptor mediante la unión a un sitio diferente del sitio de unión

ortostérico muy conservado.

Recientemente han surgido moduladores alostéricos positivos de mGluR como nuevas entidades farmacológicas que ofrecen esta atractiva alternativa. Este tipo de molécula se ha descubierto para varios mGluR (revisado en Mutel (2002) Expert Opin. Ther. Patents 12:1-8). En concreto se han descrito moléculas como moduladores alostéricos positivos de mGluR2 (Johnson MP y col. (2003) J Med Chem. 46:3189-92; Pinkerton y col. (2004) J Med Chem. 47:4595-9).

En los documentos WO 2004/09213 (NPS & Astra Zeneca), WO 2004/018386, WO 2006/01491 y WO 2006/015158 (Merck) y WO 2001/56990 (Eli Lilly) se describen, respectivamente, derivados de fenilsulfonamida, acetofenona, indanona, piridilmetilsulfonamida y piridinona como moduladores alostéricos positivos de mGluR2. Sin embargo, ninguno de los compuestos específicamente divulgados está estructuralmente relacionado con los compuestos de la presente invención.

Se demostró que dichas moléculas no activan el receptor por sí mismas (Johnson MP y col. (2003) J Med Chem. 46:3189-92; Schaffhauser y col. (2003) Mol Pharmacol. 64:798-810). En vez de ello, permiten que el receptor produzca una respuesta máxima a una concentración de glutamato que provoca por sí una respuesta mínima. Un análisis mutacional ha demostrado inequívocamente que la unión de moduladores alostéricos positivos de mGluR2 no tiene lugar en el sitio ortostérico, sino en un sitio alostérico situado dentro de la región de siete dominios transmembranales del receptor (Schaffhauser y col. (2003) Mol Pharmacol. 64:798-810).

Los datos en animales sugieren que los moduladores alostéricos positivos de mGluR2 ejercen efectos en modelos de ansiedad y psicosis, similares a los obtenidos con agonistas ortostéricos. Se ha demostrado que los moduladores alostéricos de mGluR2 son activos en el sobresalto potenciado por el miedo (Johnson y col. (2003) J Med Chem. 46:3189-92; Johnson y col. (2005) Psychopharmacology 179:271-83), y en modelos de ansiedad con hipertermia provocada por estrés.(Johnson y col. (2005) Psychopharmacology 179:271-83). Además, se demostró que dichos compuestos son activos en la inversión de la hiperlocomoción provocada por ketamina (Govek y col. (2005) Bioorg Med Chem Lett 15(18):4068-72) anfetamina (Galici y col. (2005) J Pharm Exp Ther 315(3), 1181-1187) y en la inversión de la alteración provocada por anfetamina de la inhibición prepulso de los modelos de esquizofrenia con efecto de sobresalto acústico (Galici y col. (2005) J Pharm Exp Ther 315(3),1181-1187).

Los moduladores alostéricos positivos permiten la potenciación de la respuesta del glutamato, pero también se ha mostrado que potencian la respuesta a agonistas ortostéricos de mGluR2 tal como LY379268 (Johnson y col. (2004) Biochem Soc Trans 32:881-87) o DCG-IV (Poisik y col. (2005) Neuropharmacology 49:57-69). Estos datos proporcionan pruebas para otro nuevo enfoque terapéutico para tratar las enfermedades neurológicas mencionadas anteriormente en las que está implicado el mGluR2, que usaría una combinación de un modulador alostérico positivo de mGluR2 junto con un agonista ortostérico de mGluR2. El documento WO 2006/030032 divulga derivados de piridiona útiles como moduladores alostéricos de la posición de receptores de mamífero.

40 Descripción de la invención

25

30

35

45

50

La presente invención se refiere a compuestos que tienen actividad de modulador del receptor 2 metabotrópico de glutamato. En su aspecto de compuesto más general, la presente invención proporciona un compuesto de acuerdo con la Fórmula general (I),

una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica de los mismos, una forma N-óxido de los mismos o una sal de amonio cuaternaria de los mismos, en la que:

V¹ se selecciona del grupo de un enlace covalente y un radical hidrocarburo bivalente saturado o insaturado, de cadena lineal o ramificada que tiene de 1 a 6 átomos de carbono;

55 M¹ se selecciona del grupo de hidrógeno; cicloalquilo C₃-7: arilo; alquilcarbonilo; alquiloxi; ariloxi; arilaquiloxi; arilcarbonilo; hexahidrotiopiranilo y Het¹.

L se selecciona del grupo de un enlace covalente; -O-; -OCH $_2$ CH $_2$ C; -OCH $_2$ CH $_2$ O-; -OCH $_2$ CH $_2$ O-; -OCH $_2$ CH $_2$ OCH $_2$; -S-; -NR 7 -; -NR $_7$ CH $_2$ -; -NR 7 Ciclo C $_3$ - $_7$;-NR 7 CH $_2$ -CH $_2$ -; -OCH $_2$ CH $_2$ N(R 7)CH $_2$ -; -CH $_2$ -; -CH $_2$ CH $_2$ -; -C=C-; y -C(R 8)-; en los que cada uno de R 7 , independientemente uno de otro, se selecciona del grupo de hidrógeno, alquilo C1 $_3$; y en los que R 8 y R 9 , independientemente uno de otro, se selecciona del grupo de hidrógeno, halo y alquilo C1-3.

R² y R³ se seleccionan independientemente uno de otro de hidrógeno, halo o alquilo;

15

20

25

30

35

55

60

65

A se selecciona del grupo de piperacinilo y piperidinilo, en el que cada radical está opcionalmente sustituido con n 10 radicales R⁴, en el que n es un número entero igual a cero, 1, 2 o 3;

R⁴ se selecciona del grupo de halo; cianohidroxi; oxo; formulo; etanoílo; carboxilo; nitro; tio; alquilo; alquiloxi; alquiloxialquilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxi; polialquilo C₁₋₃; polihaloalquiloxi C₁₋₃, polihaloalquiltio C₁₋₃, alquiltio; alquilsulfonilo; Het³-alquilo; Het³-alquilo; Het³-oxialquilo; Het³-oxialquiloxi; Het³-carbonilo: Het³-carbonilaurilo; Het³-tio; Het³-tioalquilo; Het³-sulfonilo; ariloxi; ariloxialquilo; arilalquiloxi; arilalquenilo; arilcarbonilalquilo; ariltioalquilo; arilsulfonilo; -NR^aR^b; alquil-NR^aR^b; O-alquil-NR^aR^b; -C(=O)-NR^aR^b; -C(=O)-alquil-NR^aR^b; y O-alquil-C(=O)-NR^aR^b; en los que R^a y R^b se seleccionan del grupo de hidrógeno, alquilo, alquilcarbonilo, arilalquilo, alquiloxialquilo, Het³, Het³alquilo, alquiloxialquilo, Alquiloxialquilo, Het³, Het³alquilo, alquilocarbonilo; o dos radicales R⁴ pueden combinarse para formar un radical bivalente -X¹-C₁₋₆-X²- en el que C₁₋₆ es un radical hidrocarburo saturado o insaturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono y X¹ y X² son, cada uno de forma independiente, C, O o NH; en el que cada radical bivalente está sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo y etanoílo;

Het¹ se selecciona del grupo de tetrahidropiranilo y piridinilo; en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C_{1-3} , polihaloalquilo C_{1-3} , polihaloalquiloxi C_{1-3} , ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo y alquiloxi C_{1-3} ;

Het³ se selecciona del grupo de piridinilo; pirimidinilo; piridazinilo; pirazinilo; piperidinilo; pirrolido; pirrolido; pirrolido; pirrolido; pirrolido; pirrolido; pirrolido; pirrolido; pirrolido; tetrazolilo; pirazolilo; pirazolilo; benzolilo; benzolilo; pirazolilo; benzolilo; pirazolilo; tetrahidro-isoquinolinilo; tionaftilo; indolinilo; quinolilo; soquinolilo; quinoxalilo; benzolilo; benzolilo; y quinazolilo; en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes cada uno independientemente de otro, seleccionado del grupo de halo, alquilo C₁₋₆, polihaloalquiloC₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, tetanoílo, fenilo, pirrolidinilo, piridinilo, morfolinilo, mono y di(alquil)amino y alquiloxi C₁₋₃;

arilo se selecciona del grupo de tetrahidropiranilo y piridinilo; en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C₁₋₃, polihaloalquilo C₁₋₃, polihaloalquiloxiC₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo y alquiloxi C₁₋₃;

alquilo es un radical hidrocarburo saturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono; o es un radical hidrocarburo saturado cíclico que tiene de 3 a 7 átomos de carbono; o es un radical hidrocarburo saturado de 4 a 12 átomos de carbono, que comprende al menos un radical hidrocarburo saturado lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico saturado que tiene de 3 a 7 átomos de carbono; en los que cada átomo de carbono puede estar sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanolílo, carbamoílo, fenilo y un radical bivalente -OCH₂CH₂O-; y

alquenilo es un radical hidrocarburo lineal o ramificado que tiene hasta 6 átomos de carbono que contiene uno o más dobles enlaces; o es un radical hidrocarburo cíclico que tiene de 3 a 7 átomos de carbono que contiene uno o más dobles enlaces; o es un radical hidrocarburo que tiene de 4 a 12 átomos de carbono que contiene uno o más dobles enlaces, que comprende al menos un radical hidrocarburo lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico que tiene de 3 a 7 átomos de carbono; en los que opcionalmente cada átomo de carbono puede estar sustituido con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, carbamoílo, fenilo y un radical bivalente - OCH₂CH₂O-.

La invención también se refiere a una composición farmacéutica que comprende un vehículo o diluyente farmacéuticamente aceptable y, como ingrediente activo, una cantidad terapéuticamente eficaz de un compuesto de acuerdo con la invención, en particular un compuesto de acuerdo con la Fórmula (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isómera del mismo, un N-óxido o una sal de amonio cuaternario del mismo.

La invención también se refiere al uso de un compuesto de acuerdo con la invención como medicamento y para la preparación de un medicamento para la prevención y/o tratamiento de una afección en un mamífero, incluido un ser humano, cuyo tratamiento o prevención se ve afectada o facilitada por el efecto neuromodulador de moduladores alostéricos positivos a mGluR2.

En concreto, la invención también se refiere al uso de un compuesto de acuerdo con la invención para la preparación de un medicamento para tratar o prevenir, mejorar, controlar o reducir el riesgo de diversos trastornos neurológicos y psiquiátricos asociados con una disfunción por glutamato en un mamífero, incluyendo un ser humano, cuyo tratamiento o prevención se ve afectado o facilitado por el efecto neuromodulador de moduladores alostéricos positivos a mGluR2.

Descripción detallada de la invención

10

20

25

30

45

60

En una realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable, una forma estereoquímicamente isomérica del mismo, un *N*-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que V1 se selecciona del grupo de un enlace covalente, - CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-; -CH₂-CH₂-CH₂-CH₂-CH₂-cH₂-CH₂-cH₂-cH₂-CH₂-cH₂-

En una realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable, una forma estereoquímicamente isomérica del mismo, un N-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que M_1 se selecciona del grupo de hidrógeno, cicloalquilo C_{3-7} ; fenilo; bifenilo; feniloxi; benciloxi y piridinilo; en la que M_1 está opcionalmente sustituido con uno o más radicales seleccionados del grupo de halo; alquilo C_{1-3} ; polihaloalquilo C_{1-3} ; polihaloalquiloxi C_{1-3} ; ciano; hidroxi; amino; oxo; carboxilo; nitro; tio; formilo; etanoílo y alquiloxi C_{1-3} .

En una realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable, una forma estereoquímicamente isomérica del mismo, un *N*-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que M₁ se selecciona del grupo de hidrógeno, cicloalquilo C₃₋₇; fenilo; bifenilo; feniloxi; benziloxi y piridinilo; en la que M₁ está opcionalmente sustituido con uno o más radicales seleccionados del grupo de halo; alquilo C₁₋₃; polihaloalquilo C₁₋₃; polihaloalquiloxi C₁₋₃, y alquiloxi C₁₋₃.

En una realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable, una forma estereoquímicamente isomérica del mismo, un *N*-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que V¹-M¹ se selecciona del grupo de CH₂-CH₂-CH₂-CH₃;-CH₂-CH (CH₃)-CH₃; -CH₂-CH₂-CH₂-CH₃; -CH₂-CH₃; -CH₂-CH

En una realización, la invención se refiere a compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que R² y R³ son, cada uno de forma independiente, hidrógeno, cloro, flúor o metilo. En realización concreta, R² y R³ son, cada uno de forma independiente, hidrógeno o metilo. En otra realización, R² y R³ son, cada uno, hidrógeno. En otra realización concreta, R² es metilo y R³ es hidrógeno.

En una realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable, una forma estereoquímicamente isomérica del mismo, un *N*-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que L se selecciona del grupo de un enlace covalente; O-; - CH₂-; -OCH₂CH₂-; -OCH₂CH₂O-; -OCH₂CH₂OCH₂-; -NR⁷-; -NR⁷CH₂-; -N-R⁷ciclo C₃-r; -OCH₂CH₂N(R⁷)CH₂-; - CH₂CH₂-; -C≡C-; -C=O-; y -CH=CH-; en la que cada uno de R⁷, independientemente uno de otro, se selecciona del grupo de hidrógeno y alquilo C₁-₃.

En otra realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable, una forma estereoquímicamente isomérica del mismo, un *N*-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que A se selecciona del grupo de fenilo, piperazinilo y piperidinilo; en el que cada uno de dichos radicales está opcionalmente sustituido con n radicales R⁴, en la que n es un número entero igual a cero, 1, 2 o 3. En una realización concreta, n es igual a cero o 1. En otra realización concreta, n es igual a 1.

En una realización, la invención se refiere a un compuesto de acuerdo con la fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que R⁴ se selecciona del grupo de halo;

En otra realización, la invención se refiere a compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que dos radicales R⁴ se pueden combinar para formar un radical bivalente seleccionado del grupo de -CH₂CH₂-O-; -O-CH₂-O-; y -O-CH₂CH₂-O-.

10

15

20

25

30

35

En una realización, la invención se refiere a compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que Het¹ se selecciona del grupo de tetrahidropiranilo y piridinilo; en la que cada radical Het¹ está opcionalmente sustituido con 1, 2 o 3 sustituyentes de polihaloalquilo C₁₋₃.

En una realización, la invención se refiere a compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternaria del mismo, en la que Het³ se selecciona del grupo de piridinilo; pirimidinilo; piridazinilo; pirazinilo; piperidinilo; pirrolidinilo; piperazinilo; tetrahidro-tiopiran-1,1-dióxido; tiazolilo; oxazolilo; morfolinilo; oxadiazolilo; imidazolilo; benzoxazolilo; benzosazolilo; benzofuranilo; 1,2,3,4-tetrahidro-isoquinolinilo; indolinilo; indolinilo; ftalazinilo y benzo[1,3]dioxolilo. En una realización, cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C₁₋₆, polihaloalquiloC₁₋₃, ciano, hidroxi, oxo, etanolílo, fenilo, pirrolidinilo, piperidinilo, morfolinilo, mono y di(alquil)amino y alquiloxi C₁₋₃.

En otra realización, la invención se refiere a compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxidodel mismo o una sal de amonio cuaternario del mismo, en el que:

 V^1 se selecciona del grupo de un enlace covalente,, -CH₂-; -CH₂-CH₂-; -

M¹ se selecciona del grupo de hidrógeno, cicloalquilo C₃-7, fenilo; bifenilo; feniloxi; benciloxi; y piridinilo; en el que M¹ está opcionalmente sustituido con uno o más radicales seleccionados del grupo de halo, alquilo C₁-₃; polihaloalquiloxi C₁-₃; y alquiloxi C₁-₃;

L se selecciona del grupo de un enlace covalente; -O-; -OCH₂-; -OCH₂CH₂-; -OCH₂CH₂O-; -OCH₂CH₂OCH₂; -NR⁷-; -NR

R² y R³ se seleccionan independientemente uno de otro de hidrógeno, halo o alquilo;

A se selecciona del grupo de piperazinilo y piperidinilo, en el que cada radical está opcionalmente sustituido con n radicales R⁴, en el que n es un número entero igual a cero o 1;

R⁴ se selecciona del grupo de halo; ciano, hidroxi; etanoílo; alquiloxi; alquiloxi; alquiloxialquilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxi; polialquilo C₁₋₃; polihaloalquiloxiC₁₋₃, polihaloalquiltio C₁₋₃, alquiltio; alquilsulfonilo; Het³; Het³-alquilo; Het³-oxi; Het³-oxialquilo; Het³-alquiloxi; Het³-oxialquilo; arilaquilo; arilaquiloxi; Het³-carbonilo: Het³-carbonilaurilo; Het³-tio; Het³-tioalquilo; Het³-sulfonilo; arilaquilo; arilaquilo; arilaquiloxi; arilaquiloxi; arilaquiloxi; arilaquilo; arilaquilo; arilaquilo; arilaquiloxi; arilaquiloxi; arilaquilo; arilaquilo; arilaquilo; arilaquilo; arilaquilo; -NRaRb; alquil-NRaRb; O-alquilNRaRb; -C(=O)-NRaRb; -C(=O)-alquil-NRaRb; y O-alquil-C(=O)-NRaRb; en los que Ray Rb se seleccionan del grupo de hidrógeno, alquilo, alquilcarbonilo, arilalquilo, alquiloxialquilo, Het³, Het³alquilo, alquilsulfonilo, alquil-NRaRb; en los que Ray Rb; en los que Ray Rb; en los que Ray Rb; en los que Rb; y Rb; y Rb; en los que Rb; y Rb; en los que Rb; y Rb;

Het¹ se selecciona del grupo de tetrahidropiranilo y piridinilo; en el que cada radical Het¹ está opcionalmente sustituido con 1, 2 o 3 sustituyentes de polohaloalquilo C₁₋₃;

Het³ se selecciona del grupo de piridinilo; pirimidinilo; piridazinilo; pirazinilo; piperidinilo; piperidinilo; piperazinilo; triazolilo; tetrahidropiranilo; tetrahidrotiopiran-1,1-dióxiodo; tiazolilo; oxazolilo; morfolinilo; oxadiazolilo; imidazolilo; benzoxazolilo, benzotienilo; benzofuranilo; 1,2,3,4-tetrahidro-isoquinolinilo; indolilo; indolinilo; ftalazinilo y benzo[1,3]dioxolilo, en los que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes cada uno independientemente de otro, seleccionado del grupo de halo, alquilo C_{1-6} , polihaloalquilo C_{1-3} , ciano, hidroxi, oxo, etanoílo, fenilo, pirrolidinilo, piperidinilo, morfolinilo, mono y di(alquil)amino y alquiloxi C_{1-3} ;

arilo es fenilo o bifenilo; en los que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C_{1-3} , polihaloalquilo C_{1-3} , polihaloalquiloxi C_{1-3} , ciano, nitro, etoxicarbonilo y alquiloxi C_{1-3} ; y

alquilo es un radical hidrocarburo saturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono; o es un radical hidrocarburo saturado cíclico que tiene de 3 a 7 átomos de carbono; o es un radical hidrocarburo saturado de 4 a 12 átomos de carbono, que comprende al menos un radical hidrocarburo saturado lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico saturado que tiene de 3 a 7 átomos de carbono; en los que cada átomo de carbono puede estar sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C_{1-3} , ciano, hidroxi, caborxilo, carbamoílo, fenilo y un radical bivalente -OCH₂CH₂O-.

En otra realización, la invención se refiere a un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternario del mismo, en la que el compuesto se selecciona del grupo de:

10

15

20

25

30

35

45

55

(Compuesto 2-006); y 3-ciano-1-ciclopropilmetil-4-(4-fenil-piperidin-1-il)-piridina-2(1H)-ona (compuesto 4-047).

En la estructura de esta solicitud, alquilo es un radical hidrocarburo saturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono; o es un radical hidrocarburo saturado cíclico que tiene de 3 a 7 átomos de carbono; o es un radical hidrocarburo saturado de 4 a 12 átomos de carbono, que comprende al menos un radical hidrocarburo saturado lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico saturado que tiene de 3 a 7 átomos de carbono; en los que cada átomo de carbono puede estar sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, carbamoílo, fenilo y un radical bivalente -OCH₂CH₂O-. En una realización, alquilo es metilo, etilo, n-propilo, isopropilo, butilo, ventilo, hexilo, ciclopropilo, ciclobutilo, ciclopentilo y ciclohexilo. En una realización, cada átomo de carbono está opcionalmente sustituido con uno o más radicales seleccionados del grupo de ciano, hidroxi, carboxilo, carbamoílo, fenilo y el radical bivalente -OCH₂CH₂O-.

La notación alquilo C₁₋₆ define un radical hidrocarburo saturado, lineal o ramificado, que tiene de 1 a 6 átomos de carbono, tal como alquilo C₆, alquilo C₅, alquilo C₄, alquilo C₃, alquilo C₂ y alquilo C₁. Ejemplos de alquilo C₁₋₆ son metilo, etilo, n-propilo, isopropilo, butilo, isobutilo, ventilo y heptilo.

La notación cicloalquilo C_{3-7} define un radical hidrocarburo cíclico, saturado que tiene de 3 a 7 átomos de carbono, tal como cicloalquilo C_7 , cicloalquilo C_6 , cicloalquilo C_5 , cicloalquilo C_4 , cicloalquilo C_3 , y cicloalquilo C_3 . Entre los ejemplos de cicloalquilo C_{3-7} se incluyen ciclopropilo, ciclobutilo, ciclopentilo, cicloheptilo y ciclohexilo.

La notación alquilo C_{1-3} define un radical hidrocarburo saturado, lineal o ramificado, que tiene de 1 a 3 átomos tales como metilo, etilo, n-propilo e isopropilo.

50 En una realización preferida, alquilo es alquilo C₁₋₆; en otra realización preferida, alquilo es cicloalquilo C₃₋₇.

En la estructura de esta solicitud, alquenilo es un radical hidrocarburo lineal o ramificado que tiene hasta 6 átomos de carbono que contiene uno o más dobles enlaces; o es un radical hidrocarburo cíclico que tiene de 3 a 7 átomos de carbono que contiene uno o más dobles enlaces; o es un radical hidrocarburo que tiene de 4 a 12 átomos de carbono, que contiene uno o más dobles enlaces, que comprende al menos un radical hidrocarburo lineal o

ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico que tiene de 3 a 7 átomos de carbono; en los que cada átomo de carbono puede estar sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquilo $C_{1:3}$, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, carbamoílo, fenilo y un radical bivalente -OCH₂CH₂O-.

5

En la estructura de esta solicitud, arilo es nafitlo, fenilo o bifenilo, en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C_{1-3} , polihaloalquilo C_{1-3} , polihaloalquiloxi C_{1-3} , ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, etiloxicarbonilo y alquiloxi C_{1-3} . De forma más preferida, arilo es fenilo o bifenilo. Más preferido, arilo está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionado del grupo de halo, alquilo C_{1-3} , polihaloalquilo C_{1-3} , polihaloalquiloxi C_{1-3} , ciano, nitro, etoxicarbonilo y alquiloxi C_{1-3} . Más preferido, arilo es fenilo o bifenilo, opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionado del grupo de halo, alquilo C_{1-3} , polihaloalquilo C_{1-3} , polihaloalquiloxi C_{1-3} , ciano, nitro, etoxicarbonilo y alquiloxi C_{1-3} .

15

En la estructura de esta solicitud, halo es un sustituyente seleccionado del grupo flúor, cloro, bromo y yodo. Preferentemente, halo es bromo, flúor o cloro.

20

En la estructura de esta solicitud, polihaloalquilo C_{1-3} es un radical hidrocarburo saturado lineal o ramificado que tiene de 1 a 3 átomos de carbono, en el que uno o más átomos está sustituido con uno o más haloátomos. Preferentemente, polihaloalquilo es trifluorometilo.

25

En la estructura de esta solicitud, con "compuestos de acuerdo con la invención" se quiere decir un compuesto de acuerdo con la Fórmula general (I), una sal de adición de ácido o base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, una forma N-óxido del mismo o una sal de amonio cuaternaria del mismo

30

Las sales de adición de ácido farmacéuticamente aceptable del mismo se definen para comprender las formas de sales de adición de ácido no tóxicas terapéuticamente activas que son capaces de formar los compuestos de acuerdo con la Fórmula (I). Dichas sales se pueden obtener tratando la forma de base de los compuestos de acuerdo con la Fórmula (I) con ácidos adecuados, por ejemplo ácidos inorgánicos, por ejemplo ácidos hidrohálicos, en particular ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido nítrico y ácido fosfórico; ácidos orgánicos por ejemplo, ácido acético, ácido hidroxiacético, ácido propanoico, ácido láctico, ácido pirúvico, ácido oxálico, ácido malónico, ácido succínico, ácido maleico, ácido fumárico, ácido málico, ácido tartárico, ácido cítrico, ácido metanosulfónico, ácido etanosulfónico, ácido bencenosulfónico, ácido p-toluenosulfónico, ácido ciclámico, ácido salicílico, ácido p-aminosalicílico y ácido pamoico.

35

Por el contrario, dichas formas de sal de adición de ácido pueden convertirse en la forma de base libre mediante tratamiento con una base adecuada.

40

Los compuestos de acuerdo con la Fórmula (I) que contienen protones ácidos pueden también convertirse en sus formas de sales por adición de metal o amina, atóxicas y terapéuticamente activas (sales de adición de base), mediante tratamiento con bases orgánicas e inorgánicas adecuadas. Las formas de sales por adición de base adecuada comprenden, por ejemplo, las sales de amonio, las sales de metales alcalinos y alcalinotérreos, en particular las sales de litio, sodio, potasio, magnesio y calcio, las sales con bases orgánicas, por ejemplo, las sales de benzatina, N-metil-D-glucamina e hibramina, y las sales con aminoácidos, por ejemplo, con arginina y lisina.

45

Por el contrario, dichas formas de sal pueden convertirse en las formas libres mediante tratamiento con un ácido adecuado.

50

Las sales de amonio cuaternarias de los compuestos de acuerdo con la Fórmula (I) define dichos compuestos que son capaces de formarse mediante una reacción entre un nitrógeno básico de un compuesto de acuerdo con la Fórmula (I) y un agente cuaternizante adecuado, tal como, por ejemplo, un alquilhaluro, arilhaluro o arilalquilhaluro opcionalmente sustituido, en concreto yoduro de metilo y yoduro de bencilo. También se pueden usar otros reactantes con buenos grupos salientes, tales como, por ejemplo, trifluorometanosulfonatos de alquilo, metanosulfonatos de alquilo y p-toluenosulfonatos de alquilo. Una sal de amonio cuaternaria tiene un nitrógeno con carpa positiva. Contrapones farmacéuticamente aceptables incluyen los iones de cloro, bromo, yodo, trifluoroacetato y acetato.

60

55

La expresión sal de adición, como se usa en la estructura de la presente solicitud, también comprende los solvatos que los compuestos de acuerdo con la Fórmula () así como sus sales son capaces de formar. Dichos solvatos son, por ejemplo, hidratos y alcoholatos.

65

Con las formas N-óxido de los compuestos de acuerdo con la Fórmula (I) se pretende que comprendar los compuestos de Fórmula (I), en los que uno o más átomos de nitrógeno se oxidan en el denominado N-óxido, particularmente los N-óxidos en los que uno o más nitrógenos terciarios (p. ej., del radical piperazinilo o piperidinilo)

están N-oxidados. Un experto en la técnica puede obtener dichos N-óxidos son ninguna habilidad en la invención y son alternativas obvias para los compuestos de acuerdo con la Fórmula (I), ya que estos compuestos son metabolitos que se forman mediante oxidación en el cuerpo humano tras captación. Como se sabe en general, la oxidación normalmente es la primera etapa implicada en e metabolismo de los fármacos (Textbook of Organic Medicinal and Pharmaceutical Chemistry, 1977, páginas 70-75). También se sabe en general que la forma de metabolito de un compuesto también se puede administrar a un ser humano en lugar del compuesto *per se*, con gran parte los mismos efectos.

Los compuestos de la Fórmula (I) se pueden convertir en las formas de N-óxido correspondientes siguiendo procedimientos conocidos en la técnica para convertir un nitrógeno trilvalente en su forma N-óxido. Dicha reacción de N-oxidación puede llevarse cabo, en general, haciendo reaccionar el material de partida de Fórmula (I) con un peróxido orgánico o inorgánico adecuado. Peróxidos inorgánicos adecuados comprende, por ejemplo, peróxido de hidrógeno, peróxidos de metal alcalino o de metal alcalinotérreo, por ejemplo peróxido de sodio, peróxido de potasio; peróxidos orgánicos adecuados pueden comprender peroxiácidos tales como, por ejemplo, ácido bencenocaroperoxoico o ácido bencenocaroperoxoico sustituido con halo, por ejemplo ácido 3-clorobecenocarboperoxoico, ácidos peroxoalcanoicos, por ejemplo ácidos peroxoacético, alquilhidroperóxidos, por ejemplo hidroperóxido de terc-butilo. Disolventes adecuados son, por ejemplo, agua, alcanoles inferiores, por ejemplo etanol y similares, hidrocarburo, por ejemplo tolueno, cetonas, por ejemplo 2-butanona, hidrocarburos halogenados, por ejemplo diclorometano y mezclas de dichos disolventes.

La expresión "formas estereoquímicamente isómeras", como se utilizó anteriormente en el presente documento, define todas las posibles formas isómeras que pueden poseer los compuestos de Fórmula (I). A menos que se mencione o indique otra cosa, la denominación química de compuestos representa la mezcla de todas las posibles formas estereoquímicamente isoméricas, en los que dichas mezclas contienen todos los diastereómeros y enantiómeros de la estructura molecular básica. Más en concreto, los centros estereogénicos pueden tener la configuración R o S; los sutituyentes en radicales cíclicos bivalentes saturados (parcialmente) pueden tener la configuración cis o trans. Los compuestos que albergan dobles enlaces pueden tener una estereoquímica E o Z en dicho doble enlace. Las formas esteroquímicamente isoméricas de los compuestos Fórmula (I) obviamente entran dentro del alcance de la presente invención.

Siguiendo las convenciones de la nomenclatura del CAS, cuando en una molécula están presentes dos centros estereogénicos de configuración absoluta conocida, se asigna un elemento descriptivo R o S (basándose en la regla de secuencias de Cahn-Ingold-Prelog) al centro quiral de numeración más baja, el centro de referencia. La configuración del segundo centro estereogénico se indica usando elementos descriptivos relativos [R*,R*] o [R*,S*], en que R* es siempre especificado como el centro de referencia, y [R*,R*] indica centros con la misma quiralidad y [R*,S*] indica centros de quiralidad diferente. Por ejemplo, si el centro quiral de numeración más baja en la molécula tiene una configuración S y el segundo centro es R, el elemento estereodescriptivo sería especificado como S-[R*,S*]. Si se utilizan " α " y " β ": la posición del sustituyente de mayor prioridad en el átomo de carbono asimétrico del sistema anular que tiene el menor número de anillo está siempre arbitrariamente en la posición " α " del plano medio determinado por el sistema anular. La posición del sustituyente de mayor prioridad en el otro átomo de carbono asimétrico del sistema anular (un átomo de hidrógeno en los compuestos de acuerdo con la Fórmula (I)) con respecto a la posición del sustituyente de mayor prioridad en el átomo de referencia es denominada " α ", si está en la misma cara del plano medio determinado por el sistema anular.

La invención también comprende compuestos derivados (normalmente denominados "profármacos") de los compuestos farmacológicamente activos de acuerdo con la invención, que se degradan in vivo para dar los compuestos de acuerdo con la invención. Normalmente (pero no siempre). los profármacos tienen menor potencia en el receptor diana que los compuestos a los que degradan. Los profármacos son particularmente útiles cuando el compuesto deseado tiene las propiedades químicas o físicas que hacen su administración difícil o ineficiente. Por ejemplo, el compuesto deseado puede ser solo muy poco soluble, puede transportarse mal a través del epitelio de la mucosa o puede tener una semivida en plasma indeseablemente corta. Más debates sobre profármacos se pueden encontrar en Stella, V. J. y col., "Prodrugs", Drug Delivery Systems, 1985, pág. 112-176, y Drugs, 1985, 29, pp. 455-473.

Las formas de profármacos de los compuestos farmacológicamente activos de acuerdo con la invención serán, en general, compuestos de acuerdo con la Fórmula (I), las sales de adición de ácido o base farmacéuticamente aceptables de los mismos, las formas estereoquímicamente isoméricas de los mismos y la forma N-óxido de los mismos, que tienen un grupo ácido que se esterifica o amida. Incluidos en dichos grupos esterificados se encuentran los grupos de la fórmula -COOR^x, en la que R^x es un alquilo C₁₋₆, fenilo, bencilo o uno de los grupos siguientes:

5

10

15

20

25

30

35

50

55

Los grupos amidados incluyen grupos de la fórmula -CONR y R z , en la que R y es H, alquilo C₁₋₆, fenilo o bencilo y R z es OH. H, alquilo C₁₋₆ (fenilo o bencilo). Los compuestos de acuerdo con la invención que tienen un grupo amino pueden derivarse con una cetona o con un aldehído tal como, por ejemplo, formaldehído, para formar una base de Mannich. Esta base se hidrolizará con una cinética de primer orden en solución acuosa.

En el marco de esta solicitud, con "compuestos de acuerdo con la invención" se quiere decir un compuesto de acuerdo con la Fórmula general (I), sales de adición de ácido o base farmacéuticamente aceptables del mismo, las formas estereoquímicamente isoméricas del mismo, la forma N-óxido del mismo y un profármaco del mismo.

En el marco de esta solicitud, un elemento, en concreto cuando se menciona en relación con un compuesto de acuerdo con la Fórmula (I), comprende todos los isótopos y mezclas isotópicas de este elemento, naturales o sintéticos, con abundancia natural o en forma isotópicamente enriquecida. En concreto, cuando se menciona un hidrógeno se entiende que hace referencia a ¹H, ²H, ³H y mezclas de los mismos; cuando se menciona carbono, se entiende que se hace referencia a ¹³C, ¹²C, ¹³C, ¹⁴C y mezclas de los mismos; cuando se menciona el nitrógeno, se entiende que se hace referencia a ¹³N, ¹⁴N, ¹⁵N y mezclas de los mismos; cuando se menciona el oxígeno, se entiende que se hace referencia a ¹⁴O, ¹⁵O, ¹⁶O, ¹⁷O, ¹⁸O y mezclas de los mismos; y cuando se menciona el flúor, se entiende que se hace referencia a ¹⁸F, ¹⁹F y mezclas de los mismos.

Por tanto, los compuestos de acuerdo con la invención también comprenden compuestos con uno o más isótopos de uno o más elementos, y mezclas de los mismos, incluidos compuestos radioactivos, también denominados compuestos radiomarcados, en los que uno o más átomos no radioactivos se han sustituido con uno o más de sus isótopos radioactivos. Con el término "compuesto radiomarcado" se quiere decir cualquier compuesto de acuerdo con la Fórmula (I), una forma N-óxido, una sal de adición farmacéuticamente aceptable o una forma estereoquímicamente isomérica, que contiene al menos un átomo radioactivo. Por ejemplo, los compuestos se pueden marcar con isótopos radioactivos emisores de positrones o de gamma. Para las técnicas de unión a radioligando (ensayo de receptor de membrana), el átomo ³H o el átomo ¹²¹I es el átomo de elección que se va a sustituir. Para la obtención de pruebas, los isótopos radioactivos de emisión de positrones (PET) son ¹¹C, ¹⁸F, ¹⁵O y ¹³N, todos los cuales se producen en acelerador y tienen semividas de 20, 100, 2 y 100 minutos respectivamente. Dado que las semividas de estos isótopos radioactivos son tan cortas, solo es factible usarlos en centros que tengan un acelerador instalado para su producción, lo que limita su uso. Los más usados de estos son ¹⁸F, ⁹⁹mTc, ²⁰¹TI y ¹²³I. Un experto en la técnica conoce la manipulación de estos isótopos radioactivos, su producción, aislamiento e incorporación en una molécula.

En concreto, el átomo radioactivo se selecciona del grupo de hidrógeno, carbono, nitrógeno, azufre, oxígeno y halógeno. Preferentemente, el átomo radioactivo se selecciona del grupo de hidrógeno, carbono y halógeno de ³H, ¹¹C, ¹⁸F, ¹²²I, ¹²³I, ¹²⁵I-

40 En concreto, el isótopo radioactivo se selecciona del grupo de ¹³¹I, ⁷⁵Br, ⁷⁶Br, ⁷⁷Br y ³²Br. Preferentemente, el isótopo radioactivo se selecciona del grupo de ³H, ¹¹C y ¹⁸F.

A. Preparación de los compuestos finales

45 Procedimiento Experimental 1 (L es un enlace covalente)

Los compuestos finales de acuerdo con la Fórmula (I-a), en la que L es un enlace covalente, se pueden preparar haciendo reaccionar un compuesto intermedio de Fórmula (II) con un compuesto de Fórmula (III) de acuerdo con el esquema de reacción (I), una reacción que se realiza en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, 1,4-dioxano o mezclas de disolventes inertes, tales como, por ejemplo, 1,4-dioxano /DMF, en presencia de una base adecuada, tal como, por ejemplo, NaHCO₃ o Na₂CO₃, un catalizador de complejo-Pd, tal como, por ejemplo, Pd(PPh₃)₄ en condiciones térmicas tales como, por ejemplo, calendar la mezcla de reacción a 150 °C en irradiación con microondas, por ejemplo durante 10 minutos. En una reacción adecuada para acoplamiento mediado por Pd con ácidos borónicos o esteres borónicos, tales como, por ejemplo, un halo, triflato o resto piridinio. Dichos compuestos intermedios se pueden preparar de acuerdo con los esquemas de reacción 8), (9) y (10) (sec. más adelante). R⁵ y R⁶ pueden ser hidrógeno o alquilo, o pueden tomarse juntos para formar, por ejemplo, el radical bivalente de fórmula -CH₂CH₂-, -CH₂CH₂CH₂-, o -C (CH₃)₂C(CH₃)₂-.

Esquema de reacción 1

Procedimiento Experimental 2 (L es un oxígeno o azufre)

Los compuestos finales de acuerdo con la Fórmula (I-b), en la que L es oxígeno o azufre, se pueden preparar haciendo reaccionar un compuesto intermedio de Fórmula (II) con un compuesto de Fórmula (IV) de acuerdo con el esquema de reacción (2), una reacción que se realiza en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, THF, en presencia de una base adecuada, tal como, por ejemplo, NaH, en condiciones térmicas tales como, por ejemplo, calentar la mezcla de reacción a, por ejemplo, 80 °C en irradiación con microondas durante 10 minutos. En el esquema de reacción (2), todas las variables se definen como en la Fórmula (I), R¹ es V¹-M¹ e Y es un grupo saliente adecuado, tal como, por ejemplo, piridinio.

Esquema de reacción 2

5

10

15

20

25

30

35

Procedimiento Experimental 3 (L es un aminoalquilo)

Los compuestos finales de acuerdo con la Fórmula (I-c), en la que L es NR7-; -NR7CH₂-; o -NR⁷CH₂-CH₂-, en los que cada R⁷ se selecciona de forma independiente uno de otro del grupo de hidrógeno y alquilo, se pueden preparar haciendo reaccionar un compuesto intermedio de Fórmula (II) con un compuesto de Fórmula (V) de acuerdo con el esquema de reacción (3), una reacción que se realiza en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, 1,4-dioxano, en presencia de una base adecuada, tal como, por ejemplo, K₃PO₄, un catalizador de complejo-Pd tal como, por ejemplo,

Bull Pingon

en condiciones térmicas tales como, por ejemplo, calentar la mezcla de reacción por ejemplo a 80 °C durante 12 horas. En el esquema de reacción (3), todas las variables se definen como en la Fórmula (I), R¹ es V¹-M¹ e Y es un grupo adecuado para acoplamiento con Pd con aminas, tal como, por ejemplo, halo.

Como alternativa, los compuestos finales de acuerdo con la Fórmula (I-c), se pueden preparar haciendo reaccionar un compuesto intermedio de Fórmula (II) con un compuesto de Fórmula (V) de acuerdo con el esquema de reacción (3), una reacción que se realiza en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, dimetoxietano o acetonitrilo, en presencia de una base adecuada, tal como, por ejemplo, Cs₂CO₃ o N,N-diisopropiletilamina, en condiciones térmicas tales como, por ejemplo, calentar la mezcla de reacción a, por ejemplo, 160 °C en irradiación con microondas durante 30 minutos.

Esquema de reacción 3

Procedimiento Experimental 4 (L es alguinilo)

Los compuestos finales de acuerdo con la Fórmula (I-d), en la que L es -C≡C-, se pueden preparar haciendo reaccionar un compuesto intermedio de Fórmula (II) con un compuesto de Fórmula (VI) de acuerdo con el esquema de reacción (4), una reacción que se realiza en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, THF, en presencia de una base adecuada, tal como, por ejemplo, NEt₃, un catalizador de complejo-Pd tal como, por ejemplo, PdCl₂(PPh₃)₂, una fosfina tal como, por ejemplo, PPh₃, una sal de cobre tal como, por ejemplo, CuI, y en condiciones térmicas tales como, por ejemplo, calentar la mezcla de reacción a, por ejemplo, 80 °C durante 12 horas. En el esquema de reacción (4), todas las variables se definen como en la Fórmula (I), R¹ es V¹-M¹ e Y es un grupo adecuado para acoplamiento con Pd con alquinilos, tal como, por ejemplo, halo.

15 Esquema de reacción 4

5

10

Procedimiento Experimental 5 (L es alquenilo)

Los compuestos finales de acuerdo con la Fórmula (I-e), en la que L es -C(R⁸)=C(R⁹)-, se pueden preparar mediante reacción de un intermedio de Fórmula (II) con un intermedio de Fórmula (VII) en un disolvente inerte, tal como, por ejemplo, 1,4-dioxano, en presencia de una base adecuada, tal como, por ejemplo, NaHCO₃ o Na₂CO₃, un catalizador de complejo-Pd, tal como, por ejemplo, Pd(PPh₃)₄, en condiciones térmicas tales como, por ejemplo, calentar la mezcla de reacción a, por ejemplo, 85 °C durante 8 horas. En el esquema de reacción (5), todas las variables se definen como en la Fórmula (I), Y es un grupo adecuado para acoplamiento con Pd con ácidos borónicos o ésteres borónicos, tales como, por ejemplo, un resto halo, trifluoromeranosulfonio o piridinio. Dichos compuestos intermedios se pueden preparar de acuerdo con los esquemas de reacción 8), (9) y (10) (véase. más adelante). R⁵ y R⁶ pueden ser hidrógeno o alquilo, o pueden tomarse juntos para formar, por ejemplo, el radical bivalente de fórmula -CH₂CH₂-, -CH₂CH₂-CH₂-, o -C (CH₃)₂C(CH₃)₂-. En el esquema de reacción (5), todas las variables se definen como en la Fórmula (I) y R¹ es V¹-M¹.

Esquema de reacción 5

Procedimiento experimental 6

Los compuestos finales de acuerdo con la Fórmula (I-e2), en la que L es -CH=CH, y con la Fórmula (1-f2), en la que L es -CH₂CH₂-, se pueden preparar mediante procedimientos conocidos en la técnica, tales como, por ejemplo, hidrogenación de un compuesto final de Fórmula (I-d) preparado de acuerdo con el esquema de reacción (6). Adicionalmente, los compuestos finales de la Fórmula (I-f1) y la Fórmula (If2) se pueden preparar a partir de los compuestos finales de la Fórmula (I-e1) y la Fórmula (I-e2) mediante procedimientos de hidrogenación conocidos en la técnica de acuerdo con el esquema de reacción (6). Adicionalmente, los compuestos finales de acuerdo con la Fórmula (I-e2)se pueden preparar mediante reducción parcial de triple enlace de los compuestos finales de Fórmula (I-d) mediante procedimientos conocidos. En el esquema de reacción (6), todas las variables se definen como en la Fórmula (I) y R¹ es V¹-M¹.

Esquema de reacción 6

10

15

20

30

$$(\mathbb{R}^4)_{\text{fi}} \qquad (\mathbf{I-d}) \qquad (\mathbb{R}^4)_{\text{fi}} \qquad$$

Procedimiento experimental 7

Los compuestos finales de acuerdo con la Fórmula (I) se pueden preparar mediante procedimientos conocidos haciendo reaccionar un compuesto de Fórmula (VIII) con un agente alquilante de Fórmula (IX), tales como, por ejemplo, isopentilbromuro, usando una base adecuada, tal como, por ejemplo, K₂CO₃, y una sal de yodo tal como, por ejemplo, KI, en un disolvente inerte tal como, por ejemplo, acetonitrilo, a una temperatura moderadamente alta, tal como, por ejemplo, 120 °C. En el esquema de reacción (7), todas las variables se definen como en la Fórmula I), R¹ es¹-M¹ y Z es un grupo saliente adecuado tal como, por ejemplo, halo.

25 Esquema de reacción 7

Adicionalmente, un experto en la técnica puede preparar los compuestos finales de acuerdo con la Fórmula (I) mediante procedimientos conocidos haciendo modificaciones adicionales de los compuestos finales de fórmula (I-a), (I-b), (I-c), (I-d), (I-c) y (I-f), tales como, por ejemplo:

- Alquilación de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura

uno o más sustituyentes hidroxi o amino con un agente alquilante adecuado en condiciones térmicas usando una base adecuada.

- Saponificación de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura uno o más funciones de alquiloxicarbonilo usando un agente de saponificación adecuado tal como, por ejemplo, NaOH o LiOH.
- Reacción de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura uno o más funciones de ácido carboxílico con amoniaco o una amina primaria o secundaria usando un agente de acoplamiento adecuado, tal como, por ejemplo, hexafluorofosfato de O-(7-azabenzotriazol-1-il)-N,N,N',N'-tetrametiuronio, para dar los correspondientes compuestos finales de Fórmula (I), portadores de una función carboxamida primaria, secundaria o terciaria en sus estructuras..
- Reacción de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura una función amina primaria o secundaria con un ácido carboxílico usando un agente de acoplamiento adecuado, tal como, por ejemplo, hexafluorofosfato de O-(7-azabenzotriazol-1-il)-N,N,N',N'-tetrametiuronio, para dar los correspondientes compuestos finales de Fórmula (I), portadores de una función carboxamida primaria, secundaria o terciaria en sus estructuras.
- Aminación reductora de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura uno o más sustituyentes amino con un aldehído adecuado en condiciones térmicas usando un agente reductor adecuado, tal como, por ejemplo, cianoborohidruro sódico.
- Reacción de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura uno o más sustituyentes hidroxi con un derivado de alcohol usando un sistema de acoplamiento adecuado, tal como, por ejemplo diterc-bitulazodicarboxilato/trifenilfosfina en condiciones térmicas.
 - Cicloadición 1,3-dipolar de los compuestos finales de Fórmula (I-a), (I-b), (I-c), (I-d), (I-e) y (I-f) que contienen en su estructura un enlace reactivo doble o triple con un dipolo adecuado, para dar los correspondientes compuestos finales de aducto [3+2].

B. Preparación de los compuestos intermedios

Procedimiento experimental 8

5

10

30

35

40

50

Los compuestos intermedios de Fórmula (II-a) se pueden preparar haciendo reaccionar un intermedio de Fórmula (X) con un agente de halogenación adecuado tal como, por ejemplo, P(=O)Br₃, una reacción que se realice en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, DMF, a una temperatura moderadamente elevada, tal como, por ejemplo, 110 °C. En el esquema de reacción (), todas las variables se definen en la fórmula (I) y R¹ es V¹-M¹.

Esquema de reacción 8

45 Procedimiento experimental 9

Los compuestos intermedios de Fórmula (II-b) se pueden preparar haciendo reaccionar un intermedio de Fórmula (X) con anhídrido tríflico (también denominado anhídrido trifluorometanosulfónico), una reacción que se realiza en un disolvente inerte-de reacción adecuado, tal como, por ejemplo, diclorometano, en presencia de una base, tal como, por ejemplo, piridina, a una temperatura baja, tal como, por ejemplo, -78 °C. En el esquema de reacción (9), todas las variables se definen en la fórmula (I) y R¹ es V¹-M¹.

Esquema de reacción 9

Procedimiento experimental 10

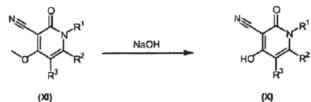
Los compuestos intermedios de Fórmula (II-c) se pueden preparar haciendo reaccionar un intermedio de Fórmula (II-b) con piridina, a una temperatura moderadamente baja, tal como, por ejemplo, 40 °C. En el esquema de reacción (10), todas las variables se definen en la fórmula (I) y R¹ es V¹-M¹.

10 Esquema de reacción 10

5

20

25


30

$$F_3C$$
 R^1
 R^2
 CF_3SO_3
 R^2
 R^2
 R^2

Procedimiento experimental 11

Los compuestos intermedios de Fórmula (X) se pueden preparar mediante procedimientos conocidos haciendo reaccionar un intermedio de Fórmula (XI) con un reactivo adecuado para escisión de metiléter, tal como, por ejemplo, NaOH, en un disolvente, tal como, por ejemplo, agua, a una temperatura moderadamente elevada, tal como, por ejemplo, 100 °C. En el esquema de reacción (11), todas las variables se definen en la fórmula (I) y R¹ es V¹-M¹.

Esquema de reacción 11

Procedimiento experimental 12

Los compuestos intermedios de Fórmula (XI) se pueden preparar mediante procedimientos conocidos haciendo reaccionar un intermedio de Fórmula (XII) con un agente alquilante de Fórmula (IX), tales como, por ejemplo, isopentilbromuro, usando una base, tal como, por ejemplo, K₂CO₃, y, opcionalmente, una sal de yodo, tal como, por ejemplo, KI, en un disolvente inerte tal como, por ejemplo, acetonitrilo, a una temperatura moderadamente alta, tal como, por ejemplo, 120 °C. En el esquema de reacción (12), todas las variables se definen como en la Fórmula I), R¹ es V¹-M¹ y Z es un grupo saliente adecuado tal como, por ejemplo, halo.

Esquema de reacción 12

35

Procedimiento experimental 13

Los compuestos intermedios de Fórmula (III) se pueden preparar mediante procedimientos conocidos haciendo reaccionar un intermedio de Fórmula (XIII) con una fuente de boro adecuado, tal como, por ejemplo, bis(pinacolato)diboro en presencia de un catalizador de paladio, tal como, por ejemplo, dicloruro de 1,1'-bis(difenilfosfino)ferrocenopaladio (II) en un disolvente inerte, tal como, por ejemplo, diclorometano, en presencia de una sal adecuada tal como, por ejemplo, acetato potásico a una temperatura moderadamente elevada, tal como, por ejemplo, 110 °C durante, por ejemplo, 16 horas. Adicionalmente, los compuestos de Fórmula (III) se pueden preparar mediante procedimientos conocidos en la técnica de intercambio de metales-halógenos y la posterior reacción con una fuente de boro adecuada de los compuestos de Fórmula (XIII) Por tanto, por ejemplo, la reacción de un compuesto intermedio de Fórmula (XIII) con un compuesto de organolitio tal como, por ejemplo, n-butillitio a una temperatura moderadamente baja tal como, por ejemplo, -40 °C, en un disolvente inerte, tal como, por ejemplo, THF, seguido de la consiguiente reacción con una fuente de boro adecuada tal como, por ejemplo, trimetoxiborano. En el esquema de reacción (3), todas las variables se definen como en la Fórmula (I) y R⁵ y R⁶ pueden ser hidrógeno o alquilo, o pueden tomarse juntos para formar, por ejemplo, el radical bivalente de fórmula -CH₂CH₂-, -CH₂CH₂-, o -C(CH₃)₂-C(CH₃)₂-.

Esquema de reacción 13

10

15

20

25

30

35

40

45

50

55

Los materiales de partida de Fórmula (X) y los compuestos intermedios de acuerdo con la Fórmula III), (IV), (VI), (VII), (IX), (XII) y (XIII) son compuestos que están disponibles comercialmente o se pueden preparar de acuerdo con los procedimientos de reacción convencionales conocidos generalmente en la técnica.

Es evidente que en las reacciones anteriores y en las siguientes, se pueden aislar los productos de reacción a partir del medio de reacción y, en caso necesario, se pueden purificar además de acuerdo con las metodologías conocidas en general en la técnica, tal como, por ejemplo, extracción, cristalización y cromatografía. Es también evidente que los productos de reacción que existen en más de una forma enantiomérica se pueden aislar de su mezcla mediante técnicas conocidas, en concreto cromatografía preparativa, tal como, por ejemplo, HPLC preparativa.

Farmacología

Los compuestos proporcionados en la presente invención son moduladores alostéricos positivos de receptores metabotrópicos; en particular, son moduladores alostéricos positivos para mGluR2. No parece que los compuestos de la presente invención se unan al sitio de reconocimiento del glutamato, el sitio del ligando ortostérico, sino a un sitio alostérico dentro de la región de siete dominios transmembranales del receptor. En presencia de glutamato o un agonista de mGluR2, los compuestos de la presente invención aumentan la respuesta de mGluR2. Se espera que los compuestos proporcionados en la presente invención ejerzan su efecto en mGluR2 en virtud de su capacidad para aumentar la respuesta de dichos receptores al glutamato o a agonistas de mGluR2, potenciando la respuesta del receptor. Por lo tanto, la presente invención se refiere a un compuesto para usar como medicamento, así como al uso de un compuesto de acuerdo con la invención o una composición farmacéutica de acuerdo con la invención para la fabricación de un medicamento para tratar o prevenir una afección en un mamífero, incluyendo un ser humano, cuyo tratamiento o prevención se ve afectado o facilitado por el efecto neuromodulador de moduladores alostéricos de mGluR2, en particular de moduladores alostéricos positivos para mGluR2.

Asimismo, la presente invención se refiere al uso de un compuesto de acuerdo con la invención o una composición farmacéutica de acuerdo con la invención para la fabricación de un medicamento para tratar o prevenir, mejorar, controlar o reducir el riesgo de diversos trastornos neurológicos y psiquiátricos asociados con una disfunción por glutamato en un mamífero, incluyendo un ser humano, cuyo tratamiento o prevención se ve afectado o facilitado por el efecto neuromodulador de moduladores alostéricos positivos a mGluR2.

Cuando se dice que la invención se refiere al uso de un compuesto o composición de acuerdo con la invención para la fabricación de un medicamento para, por ejemplo, el tratamiento de un mamífero, se entiende que dicho uso va a ser interpretado en ciertas jurisdicciones como un procedimiento de, por ejemplo, tratamiento de un mamífero, que comprende administrar al mamífero que necesita dicho, por ejemplo, tratamiento, una cantidad eficaz de un compuesto o composición de acuerdo con la invención.

En concreto, los trastornos neurológicos y psiquiátricos asociados con una disfunción por glutamato incluyen uno o

más de las siguientes afecciones o enfermedades: trastornos neurológicos y psiquiátricos agudos tales como, por ejemplo, déficits cerebrales subsiguientes a cirugía de derivación coronaria e injertos cardiacos, accidente cerebrovascular, isquemia cerebral, trauma en la médula espinal, trauma craneal, hipoxia perinatal, parada cardíaca, daño neuronal hipoglucémico, demencia (incluyendo demencia provocada por el sida), enfermedad de Alzheimer, corea de Huntington, esclerosis lateral amiotrófica, daño ocular, retinopatía, trastornos cognitivos, enfermedad de Parkinson idiopática y provocada por fármacos, espasmos musculares y trastornos asociados con la espasticidad muscular que incluyen temblores, epilepsia, convulsiones, migraña (incluyendo dolor de cabeza por migraña), incontinencia urinaria, tolerancia a sustancias, abstinencia de sustancias (incluyendo sustancias tales como, por ejemplo, opiáceos, nicotina, productos del tabaco, alcohol, benzodiacepinas, cocaína, sedantes, hipnóticos, etc.), psicosis, esquizofrenia, ansiedad (incluyendo trastorno de ansiedad generalizada, trastorno de pánico y trastorno obsesivo compulsivo), trastornos del estado de ánimo (incluyendo depresión, manía y trastornos bipolares), neuralgia del trigémino, pérdida de audición, acúfenos, degeneración macular del ojo, emesis, edema cerebral, dolor (incluyendo estados agudos y crónicos, dolor grave, dolor intratable, dolor neuropático, y dolor postraumático), discinesia tardía, trastornos del sueño (incluyendo narcolepsia), trastorno de déficit de atención/hiperactividad y trastorno de la conducta.

En concreto, la afección o enfermedad es un trastorno del sistema nervioso central seleccionado del grupo de trastornos de ansiedad, trastornos psicóticos, trastornos de personalidad, trastornos relacionados con sustancias, trastornos de la alimentación, trastornos del estado de ánimo, migraña, epilepsia o trastornos convulsivos, trastornos de la infancia, trastornos cognitivos, neurodegeneración, neurotoxicidad e isquemia.

Preferentemente, el sistema nervioso central es un trastorno de ansiedad seleccionado del grupo de agorafobia, trastorno de ansiedad generalizada (GAD), trastorno obsesivo compulsivo (TOC), trastorno de pánico, trastorno por estrés postraumático (PTSD), fobia social y otras fobias.

Preferentemente, el trastorno del sistema nervioso central es un trastorno psicótico seleccionado del grupo de esquizofrenia, trastorno delirante, trastorno esquizoafectivo, trastorno esquizofreniforme y trastorno psicótico provocado por sustancias.

30 Preferentemente, el trastorno del sistema nervioso central es un trastorno de la personalidad seleccionado del grupo de trastorno obsesivo compulsivo de la personalidad y trastorno esquizotípico, esquizoide.

Preferentemente, el trastorno del sistema nervioso central es un trastorno relacionado con sustancias seleccionado del grupo de abuso de alcohol, dependencia de alcohol, abstinencia de alcohol, delirio por abstinencia de alcohol, trastorno psicótico provocado por alcohol, dependencia de anfetamina, abstinencia de anfetamina, dependencia de cocaína, abstinencia de cocaína, dependencia de nicotina, abstinencia de opioides y abstinencia de opioides;

Preferentemente, el trastorno del sistema nervioso central es un trastorno de la alimentación seleccionado del grupo de anorexia nerviosa y bulimia nerviosa.

Preferentemente, el trastorno del sistema nervioso central es *trastorno del estado de ánimo seleccionado del* grupo de trastornos bipolares (I y II), trastorno ciclotímico, depresión, trastorno distímico, trastorno depresivo mayor y trastorno del estado de ánimo inducido por sustancias;

Preferentemente, el trastorno del sistema nervioso central es migraña.

10

15

20

25

45

50

65

Preferentemente, el trastorno del sistema nervioso central es epilepsia o un trastorno convulsivo seleccionado del grupo de epilepsia no convulsiva generalizada, epilepsia convulsiva generalizada, estado epiléptico de pequeño mal, estado epiléptico de gran mal, epilepsia parcial con o sin deterioro de la consciencia, espasmos infantiles, epilepsia parcial continua y otras formas de epilepsia.

Preferentemente, el trastorno del sistema nervioso central es un trastorno de déficit de atención/hiperactividad.

Preferentemente, el trastorno del sistema nervioso central es un trastorno cognitivo seleccionado del grupo de delirio, delirio persistente provocado por sustancias, demencia, demencia debida a enfermedad por VIH, demencia debida a la enfermedad de Huntington, demencia debida a la enfermedad de Parkinson, demencia del tipo Alzheimer, demencia persistente provocada por sustancias y deterioro cognitivo leve.

De entre los trastornos anteriormente mencionados, son particularmente importantes los tratamientos de la ansiedad, la esquizofrenia, la migraña, la depresión y la epilepsia.

En la actualidad, la cuarta edición del "Diagnostic & Statistical Manual of Mental Disorders" (DSM-IV) de la American Psychiatric Association proporciona una herramienta diagnóstica para la identificación de los trastornos descritos en el presente documento. El experto en la técnica reconocerá que existen nomenclaturas, nosologías y sistemas de clasificación alternativos para los trastornos neurológicos y psiquiátricos descritos en el presente documento y que

estos evolucionan con los progresos médicos y científicos.

Puesto que dichos moduladores alostéricos positivos para mGluR2, incluyendo los compuestos de Fórmula (I), potencian la respuesta de mGluR2 al glutamato, es una ventaja que en los métodos presentes se utilice glutamato endógeno.

Puesto que los moduladores alostéricos positivos para mGluR2, incluyendo los compuestos de Fórmula (I), potencian la respuesta de mGluR2 a agonistas, se entiende que la presente invención se extiende al tratamiento de trastornos neurológicos y psiquiátricos asociados con una disfunción por glutamato al administrar una cantidad eficaz de un modulador alostérico positivo para mGluR2, incluyendo los compuestos de Fórmula (I), en combinación con un agonista de mGluR2.

Los compuestos de la presente invención se pueden usar en combinación con uno o más de otros fármacos en el tratamiento, prevención, control, alivio o reducción del riesgo de enfermedades o afecciones para las que los compuestos de Fórmula (I) u otros fármacos son útiles, en los que la combinación de los fármacos juntos es más segura o más eficaz que cualquiera de los fármacos por separado.

los otros fármacos pueden ser útiles, cuando la combinación de los fármacos es más segura o más eficaz que el fármaco solo.

Composiciones farmacéuticas

5

10

15

20

25

30

35

45

50

55

60

La invención también se refiere a una composición farmacéutica que comprende un vehículo o diluyente farmacéuticamente aceptable y, como ingrediente activo, una cantidad terapéuticamente eficaz de un compuesto de acuerdo con la invención, en particular un compuesto de acuerdo con la Fórmula (I), una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica del mismo, un N-óxido o una sal de amonio cuaternario del mismo.

Los compuestos de acuerdo con la invención, en concreto los compuestos de acuerdo con la Fórmula (I), la sal de adición de ácido o de base farmacéuticamente aceptable de los mismos., una forma estereoquímicamente isomérica de los mismos., una forma N-óxido de los mismos. o una sal de amonio cuaternaria de los mismos., o cualquier subgrupo o combinación de los mismos. se pueden formular en varias formas farmacéuticas con fines de administración. Como composiciones adecuadas se pueden citar todas las composiciones que normalmente se emplean para fármacos de administración sistémica,

Para preparar composiciones farmacéuticas de la presente invención, se combina una cantidad eficaz del compuesto concreto, opcionalmente en forma de sal de adición, como ingrediente activo, en mezcla exhaustiva con un vehículo farmacéuticamente aceptable, en el que el vehículo puede tomar una amplia variedad de formas según la forma de preparación deseada para la administración. Estas composiciones farmacéuticas son deseables en una forma de dosificación unitaria, en particular para administración por vía oral, rectal percutánea, mediante inyección parenteral o mediante inhalación. Por ejemplo, al preparar las composiciones en forma de dosificación oral, se pueden usar cualquiera de los medios farmacéuticos habituales como, por ejemplo, agua, glicoles, aceites, alcoholes y similares, en el caso de las preparaciones líquidas orales, tales como, por ejemplo, suspensiones, jarabes, elixires, emulsiones y soluciones, o vehículos sólidos tales como, por ejemplo, almidones, azúcares, caolín, diluyentes, lubricantes, aglutinantes, agentes disgregantes y similares, en el caso de polvos, píldoras, cápsulas y comprimidos. Por su facilidad de administración, los comprimidos y cápsulas representan la formas de monodosis oral más ventajosa en cuyo caso, obviamente se emplean transportadores farmacéuticos sólidos. Para las composiciones parenterales, el vehículo normalmente comprenderá agua estéril, al menos en gran parte, aunque se pueden añadir otros ingredientes para, por ejemplo, incrementar la solubilidad. Se pueden preparar, por ejemplo, soluciones inyectables en las que el vehículo comprende solución salina, solución de glucosa o una mezcla de solución salina y solución de glucosa. También se pueden preparar suspensiones inyectables, en cuyo caso se pueden emplear vehículos líquidos adecuados, agentes de suspensión y similares. También se incluyen preparaciones de formas sólidas que están destinadas a convertirse, poco antes de usar, en preparaciones en forma líquida. En las composiciones adecuadas para administración percutánea, el vehículo comprende opcionalmente un agente de potenciación de la penetración y/o un agente humectante adecuado, opcionalmente combinado con aditivos adecuados de cualquier naturaleza en proporciones minoritarias, en las que los aditivos no introducen un efecto perjudicial significativo sobre la piel. Dichos aditivos pueden facilitar la administración en la piel y/o pueden ser útiles para preparar las composiciones deseadas. Estas composiciones se pueden administrar de varios modos, por ejemplo un parche transdérmico, como unción puntual, como pomada.

Es especialmente ventajoso formular las composiciones orales farmacéuticas mencionadas anteriormente en forma de unidad de dosificación para facilidad de administración y uniformidad de la dosificación. La forma de unidad de dosificación como se usa en el presente documento se refiere a unidades físicamente pequeñas adaptadas como dosificaciones unitarias, en las que cada unidad contiene una cantidad predeterminada de ingrediente activo calculada para producir el efecto terapéutico deseado en asociación con el transportador farmacéutico requerido. Ejemplos de dichas formas de dosificación unitaria son comprimidos (incluidos comprimidos ranurados o

recubiertos), cápsulas, píldoras, sobres de polvos, obleas, supositorios, soluciones inyectables o suspensiones y similares, y múltiples segregadas de las mismas. Dado que los compuestos de acuerdo con la invención son potentes antagonistas dopaminérgicos de administración oral, en los que las composiciones farmacéuticas que comprenden dichos compuestos para administración oral son especialmente ventajosos.

Como ya se ha mencionado, la presente invención también se refiere a una composición farmacéutica que comprende los compuestos de acuerdo con la invención y uno o más fármacos distintos en el tratamiento, prevención, control, alivio o reducción del riesgo de enfermedades o afecciones para las que los compuestos de la Fórmula (I) o los otros fármacos pueden tener utilidad, así como al uso de dicha composición para la fabricación de un medicamento.

Con los ejemplos siguientes se pretende ilustrar, pero no limitar, el alcance de la presente invención.

Parte experimental

15

10

5

En los siguientes ejemplos se ilustran varios procedimientos para preparar los compuestos de la presente invención. A menos que se indique otra cosa, todos los materiales de partida se obtuvieron de proveedores comerciales y se usan sin purificación adicional.

Específicamente, en los ejemplos y a lo largo de toda la memoria se pueden usar las abreviaturas siguientes:	
EtOAc (acetato de etilo)	M (molar)
AcOH ácido acético	MeOH (metanol)
BBr ₃ (Tribromuro de boro)	mg (miligramos)
BINAP (6)-1,1'-Bi(2-naftol)	MgSO ₄ (sulfato de magnesio)
Br ₂ (bromo)	MHz (megahertzios)
CDCl ₃ (deutero-cloroformo)	min (minutos)
CCl ₄ (tetracloruro de carbono)	μl (microlitros)
DCM (diclorometano)	ml (mililitros)
MCPBA (ácido 3-cloroperbenzoico)	mmol (milimol)
DEAD (azodicarboxilato de dietilo)	P.f. (punto de fusión)
DIBAL (hidruro de diisobutil aluminio)	NaBH(OAC) ₃ (triacetoxiboro-hidruro de sodio)
DME (dimetoxietano)	Na ₂ CO ₃ (carbonato sódico)
DMF (dimetilformamida)	NaH (hidruro sódico)
DMSO (dimetilsulfóxido)	NaHCO ₃ (bicarbonato sódico)
Dppf (1,1'-bis(difenilfosfano)ferroceno)	NaHMOS (hexametildisilazano sódico)
EDCI.HCl (1-3(dimetilaminopropil)-3-etilcarbodiimida, clorhidrato)	NI (yoduro sódico)
Et ₃ N (trietilamina)	NaO¹Bu (terc-butóxido sódico)
Et ₂ O = (éter dietílico)	Na ₂ SO ₄ (sulfato sódico)
EtOH (etanol)	NBS (N-bromosuccinimida)
g (gramos)	NH ₄ Cl (cloruro amónico)
1H (protón)	NH ₄ OH (hidróxido amónico)
H ₂ (hidrógeno)	RMN (Resonancia Magnética Nuclear)
HCI (ácido clorhídrico)	Pd ₂ (dba) ₃ (dibencilidenacetona de paladio (II))
	2()6(
	PdGl ₂ (dppf) ₂ (dicloruro Bis(1,1'-bis(difenilfosfanil)ferroceno de paladio (II))
HPLC (Cromatograna de liquidos de presion alta)	PdGl ₂ (dppf) ₂ (dicloruro Bis(1,1'-bis(difenilfosfanil)ferroceno
Hz (Hertzios)	PdGl ₂ (dppf) ₂ (dicloruro Bis(1,1'-bis(difenilfosfanil)ferroceno de paladio (II))

KOAc (acetato de potasio)	P(=O)Br ₃ oxibromurofosforoso)
KI (yoduro potásico)	PPH ₃ (trifenilfosfina)
KOtBu (terc-butóxido potásico)	TFA (ácido trifluoroacético)
KOH (hidróxido potásico)	THF (tetrahidrofurano)
K ₃ PO ₄ (fosfato de potasio)	TLC (cromatografía en capa fina)
CLEM (cromatografía de líquidos con espectroscopia de masas)	Tf ₂ O (anhídrido de trifluorometanosulfónico)
LiAHI₄ (hidruro de litio-aluminio)	Xantfos (4,5-bis(difenilfosfino)-9,9-dimetilxanteno
Bu PRO OAC ([577971-19-8] CAS)	

Todas las referencias a salmuera son a una solución acuosa saturada de NaCl. A menos que se indique lo contrario, todas las temperaturas se expresan en °C (grados centígrados). Todas las reacciones se llevaron a cabo en una atmósfera inerte a temperatura ambiente a menos que se indique lo contrario.

Las reacciones asistidas por microondas se realizaron en un reactor de modo único: Emrys™ Reactor de microondas Optimizer (Personal Chemistry A.B., actualmente Biotage). La descripción del instrumento se puede encontrar en www.personalchemistry.com. Y en un reactor de multimodos: MicroSYNTH Labstation (Milestone, Inc.). La descripción del instrumento se puede encontrar en www.milestonesci.com.

A. Preparación de los compuestos intermedios

A1. Compuesto intermedio 1

10

15

30

35

Compuesto intermedio 1

La reacción se llevó a cabo en atmósfera de N₂. A una solución de 4-metoxi-2-oxo1,2-dihidro-piridin-3-carbonitrilo (1,00 g, 6,60 mmol, 1 eq.) en acetonitrilo (45 ml) se añadió K₂CO₃ (2,73 g, 19,8 mmol, 3 eq.) e isopentilbromuro (441 mg, 8,65 mmol, 1,3 eq.). La solución resultante se calentó a 100°C durante 12 horas. Después, la reacción se enfrió hasta la temperatura ambiente y se filtró a través de un lecho de celite. El filtrado se concentró al vacío. Después, el residuo bruto obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, eluyendo con una elución por gradiente de entre 0 - 2 % de MeOH en DCM), para dar el compuesto I intermedio como un sólido cremoso (82 %, 5,40 mmol).

A2. Compuestos intermedios 2 y 2'

Compuesto intermedio 2

Una solución de este compuesto 1 (1,5 g, 6,81 mmol) en NaOH acuoso (0,1 N, 75 ml) y THF (20 ml) y MeOH (20 ml) se calentó hasta 100 °C durante 1 hora. La reacción se enfrió hasta 0° C y se acidificó mediante la adición de HCl 1M ajustando el pH hasta aproximadamente 3, punto en el cual precipitó un sólido blanco. El sólido se filtró y se secó *al vacío* para dar el compuesto intermedio 2 sustituido con N-isopentilo en forma de un sólido blanco (1,3 g, 6,30 mmol). De igual modo se preparó el compuesto intermedio 2' sustituido con *N-n*-butilo.

A3. Compuestos intermedios 3, 3' y 3"

Compuesto intermedio 3

La reacción se llevó a cabo en atmósfera de N_2 . A una solución del compuesto intermedio 2 (2,00 g, 9,66 mmol, 1 eq.) en DMF (10 ml) se añadió con precaución $P(=O)Br_3$ (5,54 g, 19,0 mmol, 2 eq.), la solución resultante se calentó a 100 °C en un tubo sellado durante 2 horas. Después, la reacción se enfrió hasta la temperatura ambiente y se diluyó con H_2O (30 ml), la solución resultante se extrajo después con EtOAc (3 x 30 ml). La capa orgánica se secó sobre Na_2SO_4 y se concentró al vacío para dar un aceite. El producto bruto se purificó mediante cromatografía ultrarrápida (SiO₂, eluyendo con DCM) para dar el compuesto intermedio 3 sustituido con N-isopentilo como un sólido cremoso (2,13 g, 82 %, 7,92 mmol). De igual modo se preparó el compuesto intermedio 3' sustituido con *N-n*-butilo y el compuesto intermedio 3' sustituido con N-metilciclopropilo.

A4. Compuesto intermedio 4

5

10

15

20

25

30

Compuesto intermedio 4

En un matraz redondo que contiene el compuesto intermedio 2 (100 mg, 0,48 mmol) en DC, (5 ml) se añadieron 3 eq. de piridina (0,118 ml, 1,44 mmol). La mezcla e enfrió hasta -78 °C y lentamente se añadió Tf₂O (0,217 ml, 0,528 mmol). La solución se calentó hasta la temperatura ambiente y se agitó durante 1/2 hora. La mezcla se hidrolizó con agua fría, se extrajo con DCM (3 x 10 ml), se lavó dos veces con salmuera, se secó sobre Na₃SO₄, se filtró y se evaporó a presión reducida, para dar el compuesto intermedio 4 (133 mg).

A6. Compuesto intermedio 6

Br N

Compuesto intermedio 6

La reacción se llevó a cabo en atmósfera de N₂. A una solución de N-(2-bromobencil)-acetamida (468 mg, 2,02 mmol) en acetonitrilo (45 ml) se añadió dicarbonato de di-terc-butilo (1,34 g, 6,15 mmol) y N,N-dimetaminopiridina (501 mg, 4,1 mmol). Después, la mezcla de reacción se agitó a temperatura ambiente durante 20 minutos, tras los cuales se diluyó con EtOAc (40 ml) y se lavó con una solución saturada de NaHCO₃ (2 x 40 ml) y una solución saturada de NH₄Cl (3 x 40 ml). Después, la capa orgánica se secó sobre Na₂SO₄ y se concentró al vacío para dar un sólido bruto. Esto se purificó mediante cromatografía de columna corta abierta (SiO₂, eluyendo con 2 % de MeOH en DCM) para dar el compuesto intermedio 6 como un aceite amarillo (590,00 mg, 89 %, 1,79 mmol).

A7. Compuesto intermedio 7

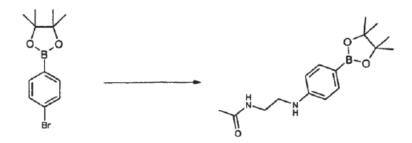
5

10

15

20

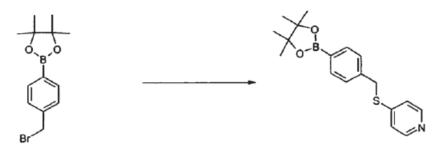
25


30

35

Compuesto intermedio 7

A una solución del compuesto intermedio 6 (200 mg, 0,61 mmol) en DMSO (4 ml) se añadió bis(pinacolato) de diboro (232 mg, 0,913 mmol) y KOAc de potasio (180 mg, 1,83 mmol), la solución se desgasificó después usando una corriente de nitrógeno y, después, a la mezcla de reacción se añadió dicloruro de 1,1'-bis(difenilfosfino)ferroceno de paladio (II), DCM (20,0 mg, 0,0183 mmol). La mezcla de reacción se calentó después a 110 °C en atmósfera de nitrógeno durante 16 horas. La reacción se enfrió después hasta la temperatura ambiente y se diluyó con EtOAc (30 ml) y la solución resultante se lavó con agua (3 x 15 ml), después, la fracción orgánica se secó sobre Na₂SO₄ y se concentró *al vacío* para dar el compuesto deseado. El producto se purificó mediante cromatografía de columna corta abierta (SiO₂, eluyendo con DCM) para dar el compuesto intermedio 7 como un aceite amarillo (149,0 mg, 89 %, 0,054 mmol).


A8. Compuesto intermedio 8

Compuesto intermedio 8

La reacción se llevó a cabo en atmósfera de N₂. A una mezcla de 1,4-dioxano (5,88 ml) y DMF (0,12 ml) a temperatura ambiente se añadieron éster cíclico de pinacol de ácido 4-bromobencenoborónico (300 mg, 1,06 mmol), N-acetiletilendiamina (0,155 ml, 1,59 mmol), xantfos (123 mg, 0,21 mmol) y Cs₂CO₃ (518 mg, 1,59 mmol) y se introdujo un flujo de N₂ a través de la mezcla durante 5 minutos. Se añadió Pd(OAc)₂ (24 mg, 0,1 mmol) y la mezcla se irradió en condiciones de microondas a 170 °C durante 10 minutos en un tubo sellado. Después, la reacción se enfrió hasta la temperatura ambiente y se filtró a través de un lecho de celite. Los volátiles se evaporaron al vacío y los residuos obtenidos de este modo se purificaron mediante cromatografía en columna corta abierta (SiO₂, eluyendo con DCM/MeOH(NH₃) para dar el compuesto intermedio 8 (80 mg).

A9. Compuesto intermedio 9

Compuesto intermedio 9

A una solución de 4-piridintiol (149 mg, 1,35 mmol) en dimetilformamida (5 ml) se añadió K₂CO₃ (186 mg, 1,35 mmol); la solución resultante se agitó durante 12 minutos y, a ésta, se añadió después una solución de 2-(4-bromometil-fenil)-4,4,5,5-tetrametil-[1,3,2]dioxaborolano (400 mg, 1,35 mmol) y la solución resultante se agitó

ES 2 394 295 T3

durante 2 horas. La mezcla se diluyó después mediante la adición de agua (30 ml) y se extrajo con EtOAc (3 x 15 ml); la capa orgánica se secó después sobre Na_2SO_4 y se concentró *al vacío* para dar el producto bruto. La mezcla de reacción en bruto se purificó después mediante purificación Biotage (eluyendo con DCM) para dar el compuesto intermedio 9 (406,0 mg, 92 %, 1,24 mmol).

A10. Compuesto intermedio 10

5

15

25

30

35

40

10 Compuesto intermedio 10

Los compuestos 4-metoxi-2-oxo1,2-dihidro-piridin-3-carbonitrilo (4,70 g, 31,29 mmol, 1 eq.), 4-(trifluorometoxi)bencilbromuro (5,44 ml, 32,86 mmol,,05 eq) y K_2CO_3 (12,9 g, 93,8 mmol, 3 eq.) disponibles comercialmente se mezclaron en acetonitrilo (200 ml). La mezcla se calentó a 140 $^{\circ}$ C durante 16 horas en un tubo sellado. Después, la reacción se enfrió hasta la temperatura ambiente y los disolventes se evaporaron *al vacío*. El residuo resultante se disolvió en DCM y se filtró a través de un lecho de celite. El filtrado se concentró al vacío. Posteriormente, el sólido blanco obtenido de este modo se trituró con éter dietílico para dar e compuesto intermedio 10 como un sólido blanco (9,20 g, 91 %).

20 A11. Compuesto intermedio 11

Compuesto intermedio 11

A una solución del compuesto intermedio 10 (9,20 g, 28,37 mmol) en THF (100 ml) se añadió NaOH (0,1 N, 300 ml). La mezcla de reacción se calentó a 100 °C durante 4 horas. Después, la reacción se enfrió hasta la temperatura ambiente y el THF se evaporó *al vacío*. La fase acuosa básica resultante se acidificó mediante la adición de HCl 2N ajustando el pH hasta aproximadamente 3, punto en el cual precipitó un sólido blanco. El sólido se filtró, se lavó con éter dietílico y se secó *al vacío* para dar el compuesto intermedio 11 como un sólido blanco (8,05 g, 91 %).

A12. Compuesto intermedio 12

Compuesto intermedio 12

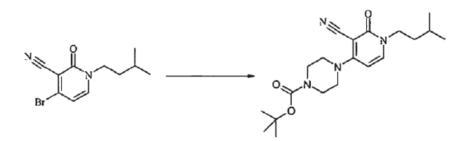
El compuesto intermedio 11 (6,57 g, 21,19 mmol, 1 eq.) y (=O)Br $_3$ (12,15 g, 42,39 mmol, 2 eq) se mezclaron en DMF (125 ml) y la mezcla resultante se calentó después a 110 $^{\circ}$ C durante 1 hora. Después, la reacción se enfrió hasta la temperatura ambiente y se diluyó con H $_2$ O (200 ml), la solución resultante se extrajo después con EtOAc (3 x 75 ml). La capa orgánica se secó sobre MgSO4 y se concentró al *vacío*. El producto bruto se purificó mediante cromatografía ultrarrápida (SiO $_2$, eluyendo con DCM) para dar el compuesto intermedio 12 como un sólido cremoso (6,75 g). De un modo similar se realizó el compuesto intermedio 12', en el que el resto fenilo en la posición para está sustituido con un flúor en lugar de un resto trifluorometoxi.

A13. Compuesto intermedio 13

Compuesto intermedio 13

A una mezcla de 4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)fenol (500 mg, 2,72 mmol), N-(2-hidroxietil) morfolina (330,8 mg, 2,72 mmol) y polímero de PPH₃ unido (carga 2, 15 mmol/g) (2,11 g, 4,54 mmol) en DCM seco (30 ml) a 0 °C se añadió di-terc-butilazodicarboxilato (784,0 mg, 3,40 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 2 horas. Después, la resina se filtró, se lavó con DCM y el filtrado se concentró *al vacío*. El residuo (756,45 mg) se usó en la siguiente etapa de reacción sin purificación adicional.

A14. Compuesto intermedio 14


5

10

15

30

35

Compuesto intermedio 14

El compuesto intermedio 3 ((200 mg, 0,74 mmol), 1-terc-butoxicarbonilpiperazina (151 mg, 0,81 mmol), K₃PO₄ (236 mg, 1,1 mmol) y el catalizador nº CAS [577971-19-8] (10 mg) se mezclaron en 1,4-dioxano (3 ml) a temperatura ambiente. La mezcla correspondiente se calentó a 85 °C en un tubo sellado durante 16 horas. La mezcla se enfrió hasta la temperatura ambiente, se filtró a través de un lecho de celite y se lavó con DCM. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto intermedio 14 (200 mg a 72 %).

A16. Compuesto intermedio 16

Compuesto intermedio 16

Una mezcla de 5-(4-bromofenil)-1,3-oxazol (220 mg, 0,98 mmol), bis(pinacolato)-diboro (372 mg, 1,47 mmol), dicloruro de 1,1'-bis(difenilfosfino)ferrocenopaladio (II), DCM (24 mg, 0,0294 mmol), KOAc (288 mg, 2,93 mmol) en DMSO (7 ml) se calentó a 110 °C durante 16 horas. La mezcla se enfrió hasta la temperatura ambiente, se diluyó con EtOAc (30 ml) y se lavó con agua (3 x 15 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se

evaporaron al vacío y el residuo obtenido de este modo (200 mg) se usó en la siguiente etapa de reacción sin purificación adicional.

A17. Compuesto intermedio 17

5

20

25

30

NH NH NH

Compuesto intermedio 17

Una solución de 4-metoxi-2-oxo1,2-dihidro-piridin-3-carbonitrilo (4,0 g, 0,0266 mmol), beta-bromofenetol (5,62 g, 0,0279 mol) y K₂CO₃ (11,0 g, 0,0799 mmol) en CH₃CN (150 ml) se calentó a reflujo durante 16 horas. La mezcla de reacción se filtró después y el filtrado se concentró *al vacío*. El residuo se recristalizó en éter etílico para dar el compuesto intermedio 17 (7 g, 97 %).

15 A18. Compuesto intermedio 18

Compuesto intermedio 18

A una solución del compuesto intermedio 17 (7,0 g, 0,0259 mmol) en MeOH (100 ml) se añadió NaOH acuoso.

(0,1 N, 200 ml). La mezcla de reacción se calentó a 100°C durante 3 horas. Después, la reacción se enfrió hasta la temperatura ambiente y el MeOH se evaporó *al vacío*. La fase acuosa básica resultante se acidificó mediante la adición de HCl 2N ajustando el pH hasta aproximadamente 3, punto en el cual precipitó un sólido blanco. El sólido se recogió usando un embudo sinterizado, se lavó con éter dietílico y se secó *al vacío* para dar el compuesto intermedio 18 como un sólido blanco (5,78 g, 87 %).

A19. Compuesto intermedio 19

Compuesto intermedio 19

El compuesto intermedio 18 (7,10 g, 0,027 mmol) y P(=O)Br₃ (15,886 g, 0,055 mmol) se mezclaron en DMF (150 ml) y la mezcla resultante se calentó después a 110 °C durante 3 horas. Después, la reacción se enfrió hasta la temperatura ambiente y se diluyó con H₂O (100 ml), la solución resultante se extrajo después con EtOAc (3 x 150 ml). La capa orgánica se secó sobre Na₂SO₄ y se concentró al *vacío*. El producto bruto se purificó mediante cromatografía ultrarrápida (SiO₂, eluyendo con DCM) para dar el compuesto intermedio 19 (7,67 g, 89 %).

A20. Compuesto intermedio 20

Compuesto intermedio 20

En un matraz redondo que contiene 3-(trifluorometil)benzaldehído N° CAS ([454-89-7] (0,872 ml, 0,0065 mol) y 4-piperidinmetanol (0,5 g, 0,0043 mol) en DCE (20-30 ml) y unas gotas de AcOH, se añadió NaBH(OAc)₃ (2,2 g, 0,0107 mol). La mezcla se agitó durante la noche a temperatura ambiente, tras lo cual se lavó con una solución saturada de NaHCO₃ y se extrajo con DCM. Las capas orgánicas combinadas se secaron sobre Na_2SO4 y se concentraron *al vacío*. El producto bruto se purificó mediante cromatografía ultrarrápida para dar el compuesto intermedio 20 (0,610 g, 56 %).

A23. Compuesto intermedio 23

10

25

30

35

40

45

Compuesto intermedio 23

En un matraz redondo que contiene metil-4-formilbenzoato (5,6 g, 0,034 mol) y morfolina (2 g, 0,023 mol) en DCE (20 ml) se añadieron unas gotas de AcOH y filtros moleculares (4A). La mezcla de reacción se agitó a temperatura ambiente durante 40 minutos y se añadió NaBH(OAc)₃ (5 g, 0,023 mol). La mezcla se agitó durante la noche a temperatura ambiente, tras lo cual se añadió otro equivalente de NaBH(OAc)₃ (5 g, 0,023 mol). La mezcla se agitó a temperatura ambiente durante 5 horas y después se lavó con HCl (1N) y se extrajo con DCM. La capa orgánica se lavó finalmente con una solución saturada de NaHCO₃. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron *al vacío*. El producto bruto se purificó mediante cromatografía ultrarrápida (mezclas de DCM / McOH(NH₃) para dar el compuesto intermedio 23 (3 g, 60 %).

A24. Compuesto intermedio 24

Compuesto intermedio 24

La reacción se llevó a cabo en atmósfera de N₂. A una solución del compuesto intermedio 23 (2 g, 0,0085 mmol) en THF (12 ml) se añadió lentamente hidruro de aluminio (1 M en THF) (17 ml, 0,017 mol). La mezcla de reacción se agitó a temperatura ambiente durante 2 horas. Después, se añadió cuidadosamente una solución saturada de NaHCO₃ y la mezcla se extrajo con DCM. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron al vacío para dar el compuesto intermedio 24 (1,75 g, 100 %), que se usó en la siguiente etapa de reacción sin purificación adicional.

A28. Compuesto intermedio 28

Compuesto intermedio 28

Una mezcla del compuesto intermedio 3 (250 mg, 0,93 mmol), tributil(vinil)estaño (0,325 ml, 1,11 mmol) y Pd (PPH₃)₄ (22 mg, 0,0186 mmol) en tolueno desgasificado (10 ml) se sometió a microondas a 130 °C durante 25 minutos. Después, la mezcla se enfrió hasta la temperatura ambiente y los disolventes se evaporaron al vacío. El residuo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / McOH(NH₃) para dar el compuesto intermedio 28 (100 mg, 50 %) como un sólido amarillo claro.

A29 Compuesto intermedio 29

5

10

15

30

35

Compuesto intermedio 29

A una solución de 4-piridilcarbinol (15 g, 137,4 mmol) en DCM (200 ml) se añadió cloruro de tionilo (43,6 ml) y la mezcla de reacción resultante se agitó a temperatura ambiente durante 4 horas. La mezcla se enfrió hasta la temperatura ambiente y el disolvente se enfrió al vacío. El residuo se diluyó con DCM y se lavó con una solución saturada de NaHCO₃. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron *al vacío* para dar el compuesto intermedio 29 (17,18 g, 99 %).

A30. Compuesto intermedio 30

Compuesto intermedio 30

A una mezcla de NaH (60 %, en aceite mineral (0,718 g, 17,96 mmol) en THF (20 ml) se añadió, gota a gota. 5-bromoindol (2,34 g, 11,8 mmol) en THF (17 ml). La mezcla resultante se agitó a temperatura ambiente durante 1 hora. Después se añadió el compuesto intermedio 29 (,81 g, 14,2 mmol) y la mezcla se calentó a 80 °C durante la noche. La mezcla de reacción combinada se lavó con H₂O y se extrajo con EtOAc. Las capas orgánicas combinadas se secaron sobre Na₂SO4 y se evaporaron *al vacío*. El residuo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH) para dar el compuesto intermedio 30 (2,73 g, 80 %).

A31. Compuesto intermedio 31

Compuesto intermedio 31

A una solución del compuesto intermedio 30 (2,73 g, 9,5 mmol) en DMSO (27 ml) se añadió bis(pinacolato) diboro (2,414 g, 9,5 mmol) y KOAc (2,8 g, 28,5 mmol). La solución se desgasificó después usando una corriente de nitrógeno y, después, a la mezcla de reacción se añadió dicloruro de (1,1'-bis(difenilfosfino)ferroceno)paladio (II), DCM (0,23 g, 0,28 mmol). La mezcla de reacción se calentó después a 110 °C en atmósfera de nitrógeno durante la noche. La reacción se enfrió después hasta la temperatura ambiente y se añadieron cantidades adicionales de bis(pinacolato)diboro (1,63 g, 6,4 mmol), KOAc (1,89 g, 19,2 mmol) y dicloruro de 1,1'-bis(difenilfosfino)ferrocenopaladio (II), DCM (0,155 g, 0,19 mmol) y la mezcla se calentó a 130 °C durante la noche. La mezcla de reacción enfriada se diluyó con EtOAc, se filtró a través de un lecho de celite y el filtrado se lavó con agua. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron al vacío para dar el compuesto intermedio 31 (4,5 g, cuant.), que se usó en la siguiente etapa de reacción sin purificación adicional.

A32. Compuesto intermedio 32

Compuesto intermedio 32

A una mezcla de solución de éster de pinacol de ácido (N-terc-butoxicarbonil)-1,2,3,6-tetrahidropiridin-4-borónico ([286961-14-6] CAS) (1,5 g, 4,8 mmol) en una mezcla de 1,4-dioxano (8 ml) y DMF (2 ml) se añadió 4-cloro-2-picolina (0,308 g, 2,4 mmol), dicloruro de 1,1'-bis(difenilfosfino)ferrocenpaladio (II) (0,993 g, 7,2 mmol). La mezcla se desgasificó después usando una corriente de nitrógeno y después se sometió a microondas a 160 °C durante 90 minutos. La mezcla de reacción enfriada se filtró a través de un lecho de celite y el filtrado se concentró al vacío. El residuo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto intermedio 32 (0,5 g, 38 %).

A33. Compuesto intermedio 33

5

10

15

20

25

35

Compuesto intermedio 33

Una solución del compuesto intermedio 32 (0,5 g, 1,82 mmol) en una solución al 20 % de TFA en DCM (10 ml) se agitó a temperatura ambiente durante 4 horas, tras lo cual se evaporó el disolvente. El residuo (0,5 g) se usó en la siguiente etapa de reacción sin purificación adicional.

A35. Compuesto intermedio 35

30 Compuesto intermedio 2'

Compuesto intermedio 35

A una solución del compuesto intermedio 2' (1,5 g, 7,8 mmol) en acetonitrilo (13 ml) se añadió éster de pinacol de ácido (4-bromometilfenil)borónico (3,0 g, 9,76 mmol) ([138500-85-3] CAS) y carbonato de cesio (5,92 g, 15,6 mmol). La mezcla de reacción se sometió a microondas a 160 °C durante 30 minutos. Después, se evaporaron los disolventes y el residuo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH) para dar el compuesto intermedio 35 (2,93 g, 92 %).

A36. Compuesto intermedio 36

Compuesto intermedio 36

Una mezcla del compuesto intermedio 3 (0,366 g, 1.361 mmol),

5

10

15

20

25

(compuesto descrito en el documento US 2005187277 Al) (0,436 g, 1,63 mmol, Pd(PPH₃)₄ (0,157 g, 0,136 mmol) en 1,4-dioxano (2 ml) y una solución saturada de Na₂CO₃ (2 ml) se sometió a microondas a 150 °C durante 10 minutos. La mezcla de reacción resultante se filtró después a través de un lecho de celite y el filtrado se evaporó al vacío. El residuo se purificó después mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto intermedio 36 (0,55 g, 98 %).

A39. Compuesto intermedio 39

Compuesto intermedio 39

A una solución del éster de pinacol del ácido 4-aminometilfenilborónico (Nº CAS 138500-88-6) (1,2 g, 5,14 mmol) y Et₃N (1,42 ml, 10,28 mmol) en DCM (50 ml) agitada a temperatura ambiente se añadió di-terc-butildicarbonato (1,68 g, 7,72 mmol). La mezcla se agitó a temperatura ambiente durante 2 horas. El disolvente se evaporó al vacío para dar un residuo, que se trató con éter dietílico para dar el compuesto intermedio 39 (1,7 g) como un sólido, 99 %), que se usó en la siguiente etapa sin posterior purificación.

30 A40. Compuesto intermedio 40

Compuesto intermedio 40

A una solución del compuesto intermedio 39 (1,7 g, 5,14 mmol) en 1,4-dioxano (3 ml) y una solución saturada de THF (3 ml) y NaCO₃ (3 ml) se añadió el compuesto intermedio (1,15 g, 4,28 mmol). La solución resultante se

35

desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (485,0 mg, 0,42 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y el filtrado se concentró al vacío. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida (SiO₂, DCM / MeOH(NH₃) 9:1) para dar el compuesto intermedio 40 (1,3 g, 77 %).

A41. Compuesto intermedio 41

5

10

15

20

25

30

35

40

45

Compuesto intermedio 41

A una solución del compuesto intermedio 40 (0,125 g, 0,316 mmol) en DMF (seco, 5 ml) a 0 °C se añadió NaH (60 %, en aceite mineral 0,019 mg, 0,474 mmol). La suspensión resultante se agitó a 0 °C (en atmósfera de nitrógeno) durante 30 minutos. Después se añadió 3-fluorobencilbromuro (0,059 ml, 0,474 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 3 horas. Después se añadió agua y la mezcla acuosa resultante se extrajo con EtOAc. La capa orgánica se lavó con solución saturada de NaCl. Las capas orgánicas combinadas se secaron sobre Na₂SO₄. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida (SiO₂, DCM / MeOH(NH₃) 9:1) para dar el compuesto intermedio 41 (0,082 g, 51 %) como un aceite amarillo.

A42. Compuesto intermedio 42

Compuesto intermedio 42

A una mezcla de 4-bromo-2-fluoroanilina (0,6 g, 3,15 mmol), tetrahidro-4H-piran-4-ona (0,68 g, 6,31 mmol) y NaBH(OAc)₃ (0,96 g, 4,72 mmol) en DCE (20 ml) se añadieron tamices moleculares (4A) (1g). La mezcla se agitó a temperatura ambiente durante 16 horas. Después se añadieron cantidades adicionales de tetrahidro-4H-piran-4-ona (0,34 g, 3,15 mmol) y NaBH (OAc)₃ (0,66 g, 3,15 mmol) y la mezcla se agitó a temperatura ambiente durante 48 horas. Después, la mezcla de reacción se filtró a través de un lecho de celite y se lavó con DCM. El filtrado se concentró al vacío para dar el compuesto intermedio 42 (0,86 g, cuant.), que se usó en la siguiente etapa de reacción sin purificación adicional.

A43. Compuesto intermedio 43

Compuesto intermedio 43

A una solución del compuesto intermedio 42 (0,86 g, 3,15 mmol) en DMSO (3 ml) se añadió bis(pinacolato) de diboro (0,80 g, 3,15 mmol) y KOAc (0,93 g, 9,45 mmol), la solución se desgasificó después usando una corriente de nitrógeno y, después, a la mezcla de reacción se añadió dicloruro de 1,1'-bis(difenilfosfino)ferroceno de paladio (II), DCM (0,07 g, 0,09 mmol). La mezcla de reacción se calentó después a 120 °C en atmósfera de nitrógeno durante 16 horas. La reacción se enfrió después hasta la temperatura ambiente y se diluyó con EtOAc (50 ml) y la solución

resultante se extrajo con EtOAc, después la fracción orgánica se secó sobre Na₂SO₄ y se concentró *al vacío* para dar el compuesto intermedio 43 (1,01 g, 100 %) usado en la siguiente etapa de reacción sin purificación adicional.

A44. Compuesto intermedio 44

5

20

25

30

35

40

45

HO Br NO NO B

Compuesto intermedio 44

A una solución de NaH (60 % en aceite mineral) (0,13 g, 3,25 mmol) en DMF (5 ml) se añadió 4-bromofenol (0,50 g, 2,89 mmol) disponible comercialmente y la reacción se agitó a temperatura ambiente durante 10 minutos. Después se añadió 4-cloro-2-picolina (0,30 g, 2,40 mmol) y la mezcla de reacción resultante se sometió a microondas a 150 °C durante 10 minutos. Después de enfriar, la mezcla se diluyó con agua y se extrajo con Et₂O. Las capas orgánicas combinadas se secaron sobre Na₂SO4 y se concentraron *al vacío*. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (DCM) para dar el compuesto intermedio 44 (0,52 g, 81%).

A45. Compuesto intermedio 45

NO Br NO BOOK

Compuesto intermedio 45

A una solución del compuesto intermedio 44 (0,50 g, 1,89 mmol) en DMSO (5 ml) se añadió bis(pinacolato) de diboro (0,72 g, 2,84 mmol) y KOAc (0,56 g, 5,68 mmol), la solución se desgasificó después usando una corriente de nitrógeno y, después, a la mezcla de reacción se añadió dicloruro de 1,1'-bis(difenilfosfino)ferroceno de paladio (II), DCM (0,05 g, 0,06 mmol). La mezcla de reacción se calentó después a 110 °C en atmósfera de nitrógeno durante 16 horas. La reacción se enfrió después hasta la temperatura ambiente y se diluyó con EtOAc y la solución resultante se extrajo con EtOAc, después la fracción orgánica se secó sobre Na₂SO₄ y se concentró *al vacío* para dar el compuesto intermedio 45 (0,58 g, 100 %) usado en la siguiente etapa de reacción sin purificación adicional.

B. Preparación de los compuestos finales

B1. Compuesto final 1-110 (compuesto de referencia)

Compuesto final 1-110

A una solución de ácido 3,4-dimetoxifenilborónico (740,0 mg, 4,08 mmol) en 1,4-dioxano (14 ml) y una solución saturada de NaHCO₃ (14 ml) se añadió el compuesto intermedio 3 (1,00 g, 3,70 mmol). La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (641,0 mg, 0,55 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y el filtrado se concentró al vacío. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida (eluyendo con un gradiente de disolvente de 0-2 % de MeOH en DCM) para dar el compuesto deseado. El compuesto se recristalizó después en éter dietílico para dar el compuesto final 1-110 (940,0 mg, 2,88 mmol, 78 %).

B2. Compuesto final 1-179 (compuesto de referencia)

Compuesto final 1-179

5

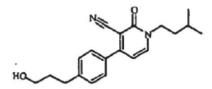
15

25

30

35

40


El compuesto intermedio 4 (150 mg, 0,44 mmol) y ácido 4-(acetamidometil)fenilborónico (1290 mg, 0,67 mmol) se mezclaron en 1,4-dioxano (5 ml) y Et $_3$ N (0,12 ml, 0,89 mmol) a temperatura ambiente y se introdujo N $_2$ a través de la mezcla durante 5 minutos. Se añadió Pd(PPH $_3$) $_4$ (77 mg, 0,067 mmol) y la mezcla resultante se calentó a 90 °C durante 2 horas. La mezcla se enfrió hasta la temperatura ambiente, se diluyó con EtOAc y salmuera. La fase acuosa se extrajo con EtOAc (3 x 20ml). Las capas orgánicas combinadas se secaron sobre Na $_2$ SO $_4$, se evaporaron al vacío y el residuo obtenido de este modo se purificó mediante cromatografía en columna (SiO $_2$, DCM / EtOAc) para dar 16 mg del compuesto final 1-179 como un sólido blanco.

B3. Compuesto final 1-114 (compuesto de referencia)

20 Compuesto final 1-114

El compuesto intermedio 4 (150 mg, 0,44 mmol), ácido 3-fluoro-4-metoxifenilborónico (110 mg, 0,67 mmol) se mezclaron en 1,4-dioxano (5 ml) y Et $_3$ N (0,12 ml, 0,89 mmol) a temperatura ambiente y se introdujo N $_2$ a través de la mezcla durante 5 minutos. Se añadió Pd(PPH $_3$) $_4$ (77 mg, 0,067 mmol) y la mezcla resultante se calentó a 90 °C durante 2 horas. La mezcla se enfrió hasta la temperatura ambiente, se diluyó con EtOAc y salmuera. La fase acuosa se extrajo con EtOAc (3 x 20ml). Las capas orgánicas combinadas se secaron sobre Na $_2$ SO $_4$, se evaporaron al vacío y el residuo obtenido de este modo se purificó mediante cromatografía en columna (SiO $_2$, DCM / EtOAc) para dar 43 mg del compuesto final 1-114 como un sólido amarillo.

B4. Compuesto final 1-095 (compuesto de referencia)

Compuesto final 1-095

El compuesto intermedio 4 (150 mg, 0,44 mmol) y ácido 4-(3-hidroxipropil)-fenilborónico (120 mg, 0,67 mmol) se mezclaron en 1,4-dioxano (5 ml) y Et₃N (0,12 ml, 0,89 mmol) a temperatura ambiente y se introdujo N₂ a través de la mezcla durante 5 minutos. Se añadió Pd(PPH₃)₄ (77 mg, 0,067 mmol) y la mezcla resultante se calentó a 90 °C durante 2 horas. La mezcla se enfrió hasta la temperatura ambiente, se diluyó con EtOAc y salmuera. La fase acuosa se extrajo con EtOAc (3 x 20 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se evaporaron al vacío y el residuo obtenido de este modo se purificó mediante cromatografía en columna (SiO₂, DCM / EtOAc) para dar 40 mg del compuesto final 1-095 como un sólido blanco.

B5. Compuesto final 1-103 (compuesto de referencia)

Compuesto final 1-103

5

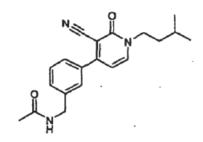
10

15

20

25

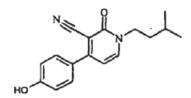
30


35

40

El compuesto intermedio 4 (150 mg, 0,44 mmol) y ácido 4-(metoximetil)fenilborónico (110 mg, 0,67 mmol) se mezclaron en 1,4-dioxano (5 ml) y Et₃N (0,12 ml, 0,89 mmol) a temperatura ambiente y se introdujo N₂ a través de la mezcla durante 5 minutos. Se añadió Pd(PPH₃)₄ (77 mg, 0,067 mmol) y la mezcla resultante se calentó a 90 °C durante 2 horas.

La mezcla se enfrió hasta la temperatura ambiente, se diluyó con EtOAc y salmuera. La fase acuosa se extrajo con EtOAc (3 x 20 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se evaporaron al vacío y el residuo obtenido de este modo se purificó mediante cromatografía en columna (SiO₂, DCM / EtOAc) para dar 52 mg del compuesto final 1-103 como un sólido blanco.


B6. Compuesto final 1-178 (compuesto de referencia)

Compuesto final 1-178

A una solución del compuesto intermedio 7 (220,0 mg, 0,58 mmol) en 1,4-dioxano (6 ml) y una solución saturada de NaCO₃ (6 ml) se añadió el compuesto intermedio 3 (173 mg, 0,65 mmol). La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPh)₄ (101,0 mg, 0,088 mmol). Después, la reacción se sometió a microondas a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y el filtrado se concentró al vacío. La mezcla de reacción en bruto se purificó después mediante HPLC preparativa para dar el compuesto final 1-178 (51 mg, 0,15 mmol, 26 %).

B7. Compuesto final 1-097 (compuesto de referencia)

Compuesto final 1-097

A una solución de ácido 4-hidroxifenilborónico (336 mg, 2,44 mmol) en 1,4-dioxano (20 ml) y una solución saturada de NEt₃ (0,615 ml, 4,43 mmol) se añadió el compuesto intermedio 5-652 (750 mg, 1,79 mmol). La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (384 mg, 0,33 mmol). La mezcla se calentó a 90 °C durante 2 horas en un tubo sellado. La mezcla de reacción resultante se enfrió hasta la temperatura ambiente, se diluyó con agua y salmuera, y se extrajo con EtOAc. La capa orgánica se secó sobre Na₂SO₄ y se concentró al vacío. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida (SiO₂, eluyendo con mezclas de heptano/EtOAc) para dar el compuesto intermedio 1-097 (230 mg, 45 %).

B8. Compuesto final 1-274 (compuesto de referencia)

Compuesto final 1-274

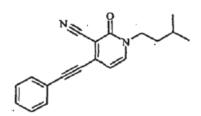
5

10

20

25

30


A una solución del fenol (0,042 ml, 0,48 mmol) en DMF seco (3 ml) a temperatura ambiente se añadió NaOH (60%, en aceite mineral, 13,83 mg, 0,96 mmol). La mezcla resultante se agitó a temperatura ambiente durante 5 minutos. Se añadió el compuesto final 5-052 (100 mg, 0,24 mmol). La mezcla se sometió a microondas en un tubo sellado durante 10 minutos a 80 °C. La mezcla se enfrió hasta la temperatura ambiente, los disolventes se evaporaron al vacío y el residuo obtenido de este modo se purificó mediante cromatografía de columna (SiO₂, mezclas de DCM / MeOH) para dar 55 mg del compuesto final 1-274 como un sólido blanco.

15 B9. Compuesto final 1-298 (compuesto de referencia)

Compuesto final 1-298

El compuesto intermedio 3 (100 mg, 0,371 mmol), anilina 0(0,067 ml, 0,743 mmol), K₃PO₄ (158 mg, 0,745 mmol) y el catalizador nº CAS [577971-19-8] (10 mg) se mezclaron en 1,4-dioxano (15 ml) a temperatura ambiente. La mezcla correspondiente se agitó a 80 °C (temperatura del baño de aceite) en un tubo sellado durante 12 horas. La mezcla se enfrió hasta la temperatura ambiente y a la mezcla de reacción se añadieron EtOAc (30 ml) y NaHCO₃ (10 ml, solución saturada acuosa). Se separaron las capas y la orgánica se secó sobre Na₂SO₄, se evaporaron los disolventes al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto final 1-298 (50 mg).

B10. Compuesto final 1-267 (compuesto de referencia)

Compuesto final 1-267

Reacción en atmósfera de nitrógeno. El compuesto intermedio 3 (150 mg, 0,557 mmol), fenilacetileno (0,064 ml, 0,580 mmol), PdCl₂(PPH₃)₂ (19,6 mg, 0,028 mmol) PPH₃ (3,7 mg, 0,014 mmol) y NEt₃ (0,078 ml, 2,23 mmol) se mezclaron en THF (6 ml) a temperatura ambiente y se introdujo N₂ a través de la mezcla durante 5 minutos. Se añadió Cul (1,3 mg, 0,007 mmol) y la mezcla resultante se calentó a 90 °C (temperatura del baño de aceite) en un tubo sellado durante 10 horas. La mezcla de reacción se enfrió hasta la temperatura ambiente y se añadió Na₂S₂O₄ (solución saturada). Se añadió DCM (30 ml) y se separaron las capas. La capa orgánica, se lavó con NaHCO₃ acuoso (solución saturada), se secó sobre Na₂SO₄ y se concentró *al vacío*. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto final 1-267 1 (57 mg).

B11. Compuesto final 1-260 (compuesto de referencia)

Compuesto final 1-260

5

10

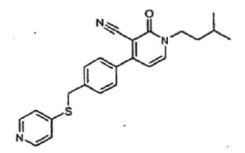
15

25

30

35

40


A una solución del compuesto final 1-267 (45 mg, 0,155 mmol) y 1,4-ciclohexadieno (0,22 ml, 2,32 mmol) en MeOH (5 ml) se añadió Pd/C al 10 % (10 mg) a temperatura ambiente. La mezcla resultante se agitó en un tubo sellado durante 12 horas. El catalizador se filtró y se evaporaron los disolventes al vacío. El residuo obtenido de este modo se suspendió en MeOH (15 ml) y se añadió Pd/C al 10 % (10 mg)- La mezcla resultante se hidrogenó con hidrógeno (20 psi) durante 3 horas. El catalizador se filtró y se evaporó el disolvente. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) y, después, mediante cromatografía HPLC de fase inversa para dar el compuesto final 1-260 (1,63 mg) como sólido blanco.

B12. Compuesto final 1-182 (compuesto de referencia)

20 Compuesto final 1-182

A una solución del compuesto intermedio 8 (80 mg, 0,62 mmol) en 1,4-dioxano (1 ml) y una solución saturada de $NaCO_3$ (1 ml) se añadió el compuesto intermedio 3 (64,34 mg, 0,239 mmol). La solución resultante se desgasificó después usando una corriente de nitrógeno y a esta solución se añadió $Pd(PPH_3)_4$ (41,4 mg, 0,035 mmol). Después, la reacción se sometió a microondas a 140 °C durante 5 minutos. La reacción resultante se filtró después a través de un lecho de celite y se añadió EtOAc (10 ml). Se añadió EtOAc (10 ml) y se separaron las capas. Las capas orgánicas se secaron (EtOAc (10 ml) y se concentraron al vacío. El residuo resultante se purificó después mediante cromatografía en columna (EtOAc (30), mezclas de EtOAc (10 ml)) para dar el compuesto final 1-182 1 (28 mg) como un sólido amarillo brillante.

B13. Compuesto final 1-258 (compuesto de referencia)

Compuesto final 1-258

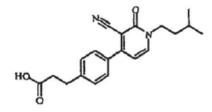
A una solución del compuesto intermedio 9 (121 mg, 0,371 mmol) en 1,4-dioxano (3 ml) y una solución saturada de NaHCO₃ (3 ml) se añadió el compuesto intermedio 3 (100 g, 3,71 mmol). La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (64,0 mg, 0,056 mmol). Después, la reacción se sometió a microondas a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de

un lecho de celite y el filtrado se concentró al vacío. La mezcla de reacción en bruto se purificó después mediante purificación con HPLC para dar el compuesto final 1-258 (13,0 mg, 0,034 mmol, 10 %).

B14. Compuesto final 1-239 (compuesto de referencia)

Compuesto final 1-239

5


20

25

30

El compuesto intermedio 4 (150 mg, 0,44 mmol) y ácido 4-(metil-3-propanoato)-fenilborónico (140 mg, 0,67 mmol) se mezclaron en 1,4-dioxano (5 ml) y Et₃N (0,12 ml, 0,89 mmol) a temperatura ambiente y se introdujo N₂ a través de la mezcla durante 5 minutos. A la mezcla se añadió Pd(PPH₃)₄ (77 mg, 0,06 mmol) y la mezcla resultante se calentó a 90 °C durante 2 horas. La mezcla se enfrió hasta la temperatura ambiente, se diluyó con EtOAc y salmuera. La fase acuosa se extrajo con EtOAc (3 x 20 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se evaporaron al vacío y el residuo obtenido de este modo se purificó mediante cromatografía en columna (SiO₂, DCM / EtOAc) para dar 63 mg del compuesto final 1-239 como un sólido amarillo.

B15. Compuesto final 1-240 (compuesto de referencia)

Compuesto final 1-14

A una solución del compuesto intermedio 1-239 (20 mg, 0,057 mmol) en THF/H₂O 1:1 (4 ml) a 0 °C se añadió hidróxido de litio (24 mg, 0,57 mmol). La mezcla de reacción se agitó durante 30 minutos y la solución se concentró. El pH se ajustó hasta un pH = 2 con una solución 1N de HC y el precipitado formado de este modo se filtró y se secó para dar 10 mg del compuesto 1-240 como un sólido blanco.

B16. Compuesto final 2-043

N O CF,

Compuesto final 2-043

El compuesto intermedio 12 (300 mg, 0,804 mmol), 1-(2-feniletil)piperazina (0,176 ml., 0,964 mmol), K₃PO₄ (341 mg, 1,60 mmol) y el catalizador nº CAS [577971-19-8] (10 mg) se mezclaron en 1,4-dioxano (6 ml) a temperatura ambiente. La mezcla correspondiente se calentó a 110 °C en un tubo sellado durante 16 horas. La mezcla se enfrió hasta la temperatura ambiente, se filtró a través de un lecho de celite y se lavó con EtOAc. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto final 2-043 (349 mg, 90 %) como un sólido amarillo claro.

B17. Compuesto final 1-037 (compuesto de referencia)

Compuesto final 1-037

5

10

20

25

El compuesto intermedio 12 (350 mg, 0,938 mmol) y el compuesto intermedio 13 (375 mg, 1,12 mmol) se mezclaron en 1,4-dioxano (3 ml) y una solución saturada de Na₂CO₃ (3 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (108,3 mg, 0,093 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y se lavó con EtOAc. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto final 1-037 (305,6 mg a 65 %).

15 B18. Compuesto final 2-022

Compuesto final 2-022

Una mezcla del compuesto final 2-056 (150 mg, 0,55 mmol), bromuro de 3-cloro-4-(trifluorometoxi)bencilo (0,16 ml, 0,55 mmol) y K₂CO₃ (150 mg, 1,1 mmol) en DMF (2 ml) se filtró durante la noche a temperatura ambiente. La mezcla de reacción resultante se filtró después a través de un lecho de celite y se lavó con EtOAc. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto deseado. El compuesto se recristalizó después en éter dietílico para dar el compuesto final 2-022 (170 mg, 64 %).

B19. Compuesto final 1-250 (compuesto de referencia)

Compuesto final 1-250

El compuesto intermedio 3 (198 mg, 0,74 mmol) y el compuesto intermedio 16 (200 mg, 0,74 mmol) se mezclaron en 1,4-dioxano (5 ml) y una solución saturada de Na₂CO₃ (5 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (128 mg, 0,115 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y se lavó con EtOAc. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto final 1-037 (63,9 mg a 26 %, rendimiento basado en dos etapas de reacción posteriores).

30

35

B20. Compuesto final 1-223 (compuesto de referencia)

Compuesto final 1-223

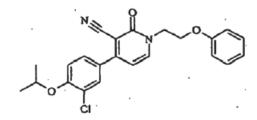
5

10

15

20

25


30

35

40

El compuesto intermedio 3 (727 mg, 2,70 mmol) y el ácido 4-(morfolino)fenilborónico (560 mg, 2,70 mmol) comercialmente disponible se mezclaron en 1,4-dioxano (10 ml) y una solución saturada de Na₂CO₃ (10 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (468 mg, 0,405 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La mezcla resultante se filtró después a través de un lecho de celite y se lavó con agua (10 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO4 y se evaporaron *al vacío*. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida para dar el compuesto deseado. El compuesto se recristalizó después en éter dietílico para dar el compuesto final 1-223 (620 mg, 65 %).

B21. Compuesto final 1-049 (compuesto de referencia)

Compuesto final 1-049

El compuesto intermedio 19 (250 mg, 0,783 mmol) y el ácido 3-cloro-4-isopropoxífenilborónico (159 mg, 0,86 mmol) se mezclaron en 1,4-dioxano (2,5 ml) y una solución saturada de Na₂CO₃ (2,5 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (130 mg, 0,11 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y el filtrado se evaporó al vacío. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida para dar el compuesto deseado. El compuesto se recristalizó después en éter dietílico para dar el compuesto final 1-049 (65 mg, 21 %) como un sólido blanco.

B22. Compuesto final 4-020

F₃C O

Compuesto final 4-020

El compuesto intermedio 3 (100 mg, 0,37 mmol), 4-(3-trifluorometilbenciloxi)piperidina (115,11 mg, 0,444 mmol), K_3PO_4 (150 mg, 0,70 mmol) y el catalizador nº CAS [577971-19-8] (10 mg) se mezclaron en 1,4-dioxano (5 ml) a temperatura ambiente. La mezcla correspondiente se calentó a 85 $^{\circ}$ C en un tubo sellado durante 16 horas. La mezcla se enfrió hasta la temperatura ambiente y se filtró a través de un lecho de celite. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto final

4-020 como un sólido gomoso blanco (90 mg, 55 %).

B23. Compuesto final 4-044

Compuesto final 4-044

5

10

15

25

30

35

40

El compuesto intermedio 3 (150 mg, 0,406 mmol), 4,4-(fenilpiperidin-4-il)-morfolina (113,3 mg, 0,46 mmol), K₃PO₄ (200 mg, 0,94 mmol) y el catalizador nº CAS [577971-19-8] (10 mg) se mezclaron en 1,4-dioxano (4 ml) a temperatura ambiente. La mezcla correspondiente se calentó a 85 °C en un tubo sellado durante 36 horas. La mezcla se enfrió hasta la temperatura ambiente y se filtró a través de un lecho de celite. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante HPLC prep. para dar el compuesto final 4-044 como un sólido amarillo claro (123 mg, 51 %).

B24. Compuesto final 2-028

20 Compuesto final 2-028

El compuesto intermedio 3 (226 mg, 0,84 mmol), 1-(2-pirimidil)piperazina diclorhidrato (228 mg, 0,96 mmol), K₃PO₄ (612 mg, 2,88 mmol) y el catalizador nº CAS [577971-19-8] (10 mg) se mezclaron en 1,4-dioxano (5 ml) a temperatura ambiente. La mezcla correspondiente se calentó a 85 °C en un tubo sellado durante 36 horas. La mezcla se enfrió hasta la temperatura ambiente y se filtró a través de un lecho de celite. El filtrado se concentró al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida para dar el compuesto final 2-028 como un sólido amarillo cremoso (258 mg, 87 %).

B25. Compuesto final 3-009

Compuesto final 3-009

Una mezcla del compuesto intermedio 20 (0,223 g, 0,00081 mol, 1,1 eq.) y NaH (60 % dispersión en aceite mineral, 0,035 g, 0,00088 mol, 1,2 eq.) en DME (1,5 ml) se agitó a temperatura ambiente durante 10 minutos. Después se añadió lentamente el compuesto intermedio 3 (0,20 g, 0,00074 mol, 1 eq.). La mezcla de reacción resultante se sometió a microondas a 130 °C durante 20 minutos. La mezcla se enfrió hasta la temperatura ambiente y los disolventes se evaporaron al vacío. El residuo se suspendió en DCM, se filtró y el filtrado se concentró *al vacío*. La mezcla de reacción en bruto se purificó después mediante cromatografía ultrarrápida para dar el compuesto final 3-009 (146 mg, 47 %).

B26. Compuesto final 3-008

Compuesto final 3-008

5

10

15

25

30

35

A una solución del compuesto final 3-016 (346 mg, 1,19 mmol) y 3-(trifluorometil)benzaldehído Nº CAS ([454-89-7] (262 mg, 1,5 mmol) en DCE (40 ml), se añadió NaBH(OAc)₃ (760 mg, 3,6 mmol) en porciones. La mezcla de reacción se agitó a temperatura ambiente durante 3 horas. Después, la mezcla se inactivó con una solución de NH₄Cl acuosa. Las capas orgánicas combinadas se concentraron al vacío. El producto bruto se purificó mediante cromatografía ultrarrápida para dar el compuesto final 3-008 (370 mg) como un sólido marrón claro.

B27. Compuesto final 1-271 (compuesto de referencia)

N O O CF

Compuesto final 1-271

A una mezcla del compuesto intermedio 11 (200 mg, 0,64 mmol), el compuesto intermedio 24 (267 mg, 1,28 mmol) y PPH₃ (309 mg, 1,15 mmol) en THF (5 ml) se añadió di-terc-butilazodicarboxilato (279 mg, 1,21 mmol). La mezcla de reacción se sometió a microondas a 120 °C durante 20 minutos. La mezcla se enfrió después hasta la temperatura ambiente y se concentró al vacío. El residuo se purificó mediante cromatografía ultrarrápida (eluyendo con un gradiente de disolventes del 10-20 % de DCM / MeOH(NH₃), para dar el compuesto final 1-271 (219,7 mg, 70 %).

B28. Compuesto final 3-014

F₃C N

Compuesto final 3-014

A una solución del compuesto final 3-018 (191 mg, 0,70 mmol) y 3-(trifluorometil)benzaldehído Nº CAS ([454-89-7] (174 mg, 1 mmol) en DCE (16 ml), se añadió NaBH(OAc)₃ (443 mg, 2,1 mmol) en porciones. La mezcla se agitó a temperatura ambiente durante 3 horas, tras lo cual se inactivó con una solución saturada de NH₄Cl. Las capas orgánicas combinadas se secaron sobre Na₂SO4 y se concentraron *al vacío*. El producto bruto se purificó mediante cromatografía ultrarrápida para dar el compuesto final 3-014 (270 mg, 89 %).

B29. Compuesto final 2-036

Compuesto final 2-036

5

10

20

25

30

35

A una mezcla del compuesto intermedio 2 (0,2 g, 0,971 mmol), K₂CO₃ (0,268 g, 1,942 mmol) y Nal (cat.) en acetonitrilo (12 ml) se añadió 1-(2-cloroetil)-4-piridin-2-il-piperazin (0,393 g, 1,748 mmol). La mezcla de reacción se sometió a microondas dos veces a 150 °C durante 10 minutos. Después se añadió DCM y la mezcla se filtró. El filtrado se lavó finalmente con una solución saturada de NaHCO₃. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron *al vacío*. El residuo se purificó mediante cromatografía ultrarrápida (mezclas de DCM / MeOH(NH₃) para dar el compuesto final 2-036 (152,5 mg, 40 %) como un sólido blancuzco.

15 B30. Compuesto final 5-007 (compuesto de referencia)

Compuesto final 1-131

A una solución del compuesto intermedio 28 (35 mg, 0,161 mmol) en DCM (6 ml) se añadió una gota de TFA. Después, lentamente se añadió N-(metoximetil)-N-(trimetilsililmetil)-bencilamina (46 mg, 0,193 mmol) y la mezcla de reacción resultante se agitó a temperatura ambiente durante 2 horas. Después, se evaporaron los disolventes al vacío y el residuo se purificó mediante cromatografía ultrarrápida (SiO_2 , mezclas de DCM / $MeOH(NH_3)$) para dar el compuesto final 1-131 (6 mg, 10 %).

B31. Compuesto final 2-055

Compuesto final 2-055

Una mezcla del compuesto intermedio 12' (250 mg, 0,81 mmol), 1-(2-piridil)-piperazina (0,129 ml, 0,85 mmol) y diisopropiletilamina (0,416 ml, 2,4 mmol) en acetonitrilo (5 ml) se sometió a microondas a 160 °C durante 30 minutos. La mezcla se enfrió hasta la temperatura ambiente y los disolventes se evaporaron al vacío. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH) para dar el compuesto final 2-055 (192 mg, 61 %) como un sólido blanco.

B32. Compuesto final 5-020 (compuesto de referencia)

Compuesto final 5-020

5

10

15

20

25

30

35

El compuesto intermedio 3 (0,6 g, 2,20 mmol) y el compuesto intermedio 31 (3,69 g, 3,79 mmol) se mezclaron en 1,4-dioxano (7 ml) y una solución saturada de Na₂CO₃ (6 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (0,39 g, 0,33 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 140 °C durante 5 minutos. La mezcla de reacción resultante se diluyó después con EtOAc, se filtró a través de un lecho de celite y el filtrado se lavó con agua (10 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se evaporaron al vacío. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida para dar el compuesto deseado. El compuesto se recristalizó después en éter dietílico para dar el compuesto final 5-020 (0,39 g, 44 %).

B33. Compuesto final 4-047

Compuesto final 4-047

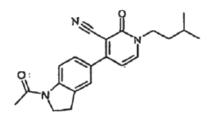
Una mezcla del compuesto intermedio 3" (0,3 g, 1,18 mmol), 4-fenilpiperidina (0,286 g, 1,77 mmol) y diisopropiletilamina (0,615 ml, 3,54 mmol) en acetonitrilo (5 ml) se sometió a microondas a 150 °C durante 20 minutos. La mezcla se enfrió hasta la temperatura ambiente y los disolventes se evaporaron al vacío. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto deseado. El compuesto se recristalizó después en éter dietílico para dar el compuesto final 4-047 (0,29 g, 73 %).

B34. Compuesto final 4-003

Compuesto final 1-196

Una mezcla del compuesto final 5-054 (0,37 g, 1,05 mmol) y paladio (10 % sobre carbón activado) (cantidad catalítica) en EtOH (10 ml) se agitó en atmósfera de hidrógeno a 50 psi durante 3 horas. El catalizador se filtró

después y el filtrado se concentró al vacío. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto final 4-003 (0,21 g57 %).


B35. Compuesto final 1-306 (compuesto de referencia)

Compuesto final 1-306

5

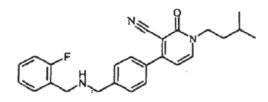
El compuesto intermedio 35 (0,25 g, 0,61 mmol) y 2-bromo-6-metilpiridina (0,158 g, 0,92 mmol) comercialmente disponible se mezclaron en 1,4-dioxano (2 ml) y una solución saturada de NaHCO₃ (2 ml). La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (0,10 g, 0,09 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La mezcla resultante se filtró después a través de un lecho de celite y se lavó con agua (10ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se evaporaron al vacío. La mezcla de reacción en bruto se purificó después mediante cromatografía ultrarrápida para dar el compuesto final 1-306 (0,078 g, 34 %).

B36. Compuesto final 5-015 (compuesto de referencia)

Compuesto final 5-015

20

25


30

35

40

A una solución del compuesto final 5-014 (0,04 g, 0,130 mmol) preparada mediante la vía de reacción B1 y diisopropiletilamina (0,068 ml, 0,392 mmol) en DCM (2 ml) se añadió cloruro de acetilo (0,014, 0,196 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 12 horas. Después, se evaporaron los disolventes al vacío y el residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto final 5-015 (0,045 g, 99 %).

B37. Compuesto final 1-198 (compuesto de referencia)

Compuesto final 1-198

A una solución de compuesto intermedio 41 (0,082 mg, 0,163 mmol) en DCM (10 ml) se añadió TFA (5 ml). La solución resultante se agitó a temperatura ambiente durante 3 horas. Después, el disolvente se evaporó al vacío y el residuo se disolvió en DCM, se lavó con una solución saturada de NaHCO₃ y NaCl. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron al vacío. El residuo se purificó mediante cromatografía ultrarrápida (mezclas DCM / MeOH) para dar el compuesto final 1-198 (17 mg, 26 %) como un sólido blanco.

B38. Compuesto final 1-185 (compuesto de referencia)

Compuesto final 1-185

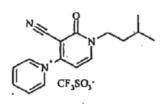
5

10

15

25

30


A una mezcla del compuesto final 1-308 (0,2 g, 0,533 mmol) en 1,4-dioxano (10 ml) se añadieron N-metil-2-metoxietilamina (0,0711 mg, 0,8 mmol), diacetato de paladio (0,0118 mg, 0,053 mmol) y xantfos (0,0616 mg, 0,8 mmol). La mezcla de reacción se agitó en un tubo sellado a 120 °C durante 16 horas. La mezcla de reacción resultante se filtró después a través de un lecho de celite, se lavó con EtOAc. El filtrado se lavó con solución saturada de NaCl. Las capas orgánicas combinadas se secaron sobre Na₂SO4 y se concentraron *al vacío*. El residuo se purificó mediante cromatografía ultrarrápida (mezclas de DCM / MeOH 9:1) para dar el compuesto final 1-185 (24 mg, 12 %) como un sólido amarillo.

B39. Compuesto final 1-226 (compuesto de referencia)

20 Compuesto final 1-226

A una solución del compuesto final 1-224 (0,147 mg, 0,385 mmol) en DCM (20 ml) a 0 °C se añadió PBr₃ (0,182 ml, 1,92 mmol). La solución resultante se calentó hasta la temperatura ambiente y se agitó durante 16 horas. Después se añadió una solución acuosa de NH₄OH. La solución resultante se extrajo con metilencloro, se lavó con una solución saturada de NaCl. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se concentraron al vacío. El residuo se purificó mediante cromatografía ultrarrápida (mezclas DCM / MeOH(NH₃) 9:1) para dar el compuesto final 1-226 (28 mg, 20 %) como un sólido amarillo.

B40. Compuesto final 5-052 (compuesto de referencia)

Compuesto final 5-502

La reacción se llevó a cabo en atmósfera de N₂. El compuesto intermedio 4 (26 mg, 0,077 mmol) se disolvió en piridina (1 ml, 12,26 mmol). La solución resultante se calentó durante 1 hora a 40 °C. La mezcla se enfrió hasta la temperatura ambiente y los disolventes se evaporaron al vacío. El residuo obtenido de este modo se trató con 1,4dioxano para dar un sólido blanco que se filtró, se secó al vacío y se identificó como el compuesto final 5-052 (25 mg; sólido blanco).

40

B41. Compuesto final 2-056

Compuesto final 2-056

5

10

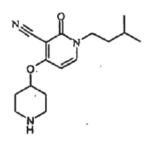
15

20

25

30

35


Una solución del compuesto intermedio 14 (200 mg, 0,53 mmol) en una mezcla de TFA/DCM (20 %) (5 ml) se agitó durante la noche a temperatura ambiente. La mezcla se basificó mediante la adición de K₂CO₃ (solución saturada). La capa orgánica se secó después sobre MgSO4 y se concentró al *vacío*. El residuo se identificó como el compuesto final 2-056 (150 mg) y se usó en la siguiente etapa de reacción sin purificación adicional.

B42. Compuesto final 3-015

Compuesto final 3-015

A una mezcla de 1-terc-butoxicarbonil-4-hidroxipiperidina (447 mg, 2,22 mmol) en DME (8 ml) se añadió NaH (60 % en aceite mineral) y la mezcla de reacción se agitó a temperatura ambiente durante 5 minutos. Después, se añadió el compuesto intermedio 3 (500 mg, 1,85 mmol) y la mezcla de reacción resultante se sometió a microondas a 130 °C durante 30 minutos. Después, la reacción se enfrió hasta la temperatura ambiente y se filtró. El filtrado se concentró *al vacío* para dar el compuesto final 3-015 en forma de un aceite marrón (460 mg).

B43. Compuesto final 3-016

Compuesto final 3-016

A una solución del compuesto final 3-015 (460 mg, 1,18 mmol) en MeOH (50 ml) se añadió un polímero amberlyst-15 unido (carga 4,6 mmol) (0,77 g, 3,54 mmol). La mezcla resultante se agitó a temperatura ambiente durante 12 horas. Después, la resina se filtró y se desechó el disolvente. La resina se suspendió en MeOH/NH₃ (50 ml) y se agitó a temperatura ambiente durante 3 horas. La resina se filtró y el filtrado se concentró al vacío para dar el compuesto final 3-016 (350 mg) en forma de un sólido marrón claro.

B44. Compuesto final 5-053 (compuesto de referencia)

Compuesto final 5-053

5

10

20

25

35

Una mezcla del compuesto intermedio 3 (1 g, 3,71 mmol), éster de pinacol de ácido (N-terc-butoxicarbonil)-1,2,3,6-tetrahidropiridin-4-borónico (1,26 g, 4,08 mmol) y Pd(PPH₃)₄ (0,642 g, 0,556 mmol) en 1,4-dioxano (6 ml) y una solución saturada de NaHCO₃ (6 ml) se sometió a microondas a 150 °C durante 10 minutos. La mezcla de reacción resultante se filtró después a través de un lecho de celite y el filtrado se evaporó al vacío. La mezcla de reacción bruta se purificó después mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM /MeOH(NH₃) para dar el compuesto final 5-053 (0,57 g, 41 %) como un sólido blanco.

15 B45. Compuesto final 3-017

Compuesto final 3-017

Una mezcla del compuesto final 5-053 (530 mg, 1,42 mmol) y paladio (10 % sobre carbón activado) (cantidad catalítica) en EtOH (50 ml) se agitó en atmósfera de hidrógeno a 50 psi durante 4 horas. El catalizador se filtró después y el filtrado se concentró al vacío para dar el compuesto final 3-017 en forma de un aceite incoloro (540 mg, cuant.). El compuesto obtenido de este modo se usó en la siguiente etapa de reacción sin purificación adicional.

B46. Compuesto final 3-018

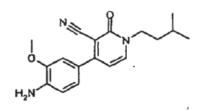
30 Compuesto final 3-018

A una solución del compuesto final 3-017 (540 mg, 1,44 mmol) en MeOH (50 ml) se añadió un polímero amberlyst-15 (carga 4,6 mmol/g) (1 g, 4,6 mmol). La mezcla resultante se agitó a temperatura ambiente durante 12 horas. Después, la resina se filtró y se desechó el disolvente. La resina se suspendió en MeOH/NH₃ (50 ml) y se agitó a temperatura ambiente durante 3 horas. La resina se filtró y el filtrado se concentró al vacío para dar el compuesto final 3-018 (198 mg) en forma de un sólido aceite amarillo.

B47. Compuesto final 5-054 (compuesto de referencia)

Compuesto final 5-054

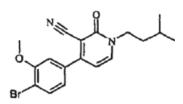
5


15

25

35

Una mezcla del compuesto intermedio 3' (0,34 g, 1,33 mmol), el compuesto intermedio 33 (0,5 g, 1,73 mmol) y diisopropiletilamina (0,925 ml, 5,32 mmol) en acetonitrilo (3 ml) se sometió a microondas a 150 °C durante 20 minutos. La mezcla se enfrió hasta la temperatura ambiente y los disolventes se evaporaron al vacío. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (SiO₂, mezclas de DCM / MeOH(NH₃)) para dar el compuesto final 5-054 1 (0,37 g, 79 %).


B48. Compuesto final 1-307 (compuesto de referencia)

Compuesto final 1-307

A una solución del compuesto intermedio 36 (0,55 mg, 1,76 mmol) en DCM (20 ml) se añadió TFA (10 ml). La solución resultante se agitó a temperatura ambiente durante 2 horas. Después, el disolvente se evaporó al vacío y el residuo se disolvió en DCM, se lavó con una solución saturada de NaHCO₃ y NaCl. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron al vacío para dar el compuesto final 1-307 (0,310 g, 74 %), que se usó en la siguiente etapa de reacción sin purificación adicional.

B49. Compuesto final 1-308 (compuesto de referencia)

30 Compuesto final 1-308

A una suspensión de bromuro de cobre (II) (0,2 g, 0,89 mmol) y terc-butilnitrilo (0,178ml, 1,48 mmol) en acetonitrilo (29 ml) a 0 °C se añadió, gota a gota, el compuesto final 1-307 (0,31 g, 0,99 mmol) en 5 minutos a 0 °C. La mezcla se agitó a 0 °C durante 1 hora, después se calentó hasta la temperatura ambiente y se calentó gradualmente a 65 °C durante 1 hora. La mezcla de reacción resultante se filtró después a través de un lecho de celite, se lavó con acetonitrilo y el filtrado se evaporó al vacío para dar el compuesto final 1-308 (0,464 g) que se usó en la siguiente etapa de reacción sin purificación adicional.

B50. Compuesto final 1-190 (compuesto de referencia)

Compuesto final 1-190

5

10

15

El compuesto intermedio 43 (0,30 g, 1,11 mmol) y el compuesto intermedio 3 (0,43 g, 1,33 mmol) se mezclaron en 1,4-dioxano (3 ml) y una solución saturada de Na₂CO₃ (3 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (0,12 g, 0,1 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y se lavó con EtOAc. El filtrado se lavó con salmuera. Las capas orgánicas combinadas se secaron sobre MgSO4 y se concentraron *al vacío*. El residuo obtenido de este modo se purificó con HPLC prep. para dar el compuesto final 1-190 (0,04 g, 9 %)..

B51. Compuesto final 1-064 (compuesto de referencia)

20 Compuesto final 1-064

El compuesto intermedio 3 (0,48 g, 1,89 mmol) y el compuesto intermedio 45 (0,59 g, 1,89 mmol) se mezclaron en 1,4-dioxano (4 ml) y una solución saturada de NaHCO₃ (4 ml).. La solución resultante se desgasificó después usando una corriente de nitrógeno y a esto se añadió Pd(PPH₃)₄ (0,22 g, 0,19 mmol). Después, la reacción se sometió a microondas en un tubo sellado a 150 °C durante 10 minutos. La reacción resultante se filtró después a través de un lecho de celite y se lavó con EtOAc. El filtrado se lavó con salmuera. Las capas orgánicas combinadas se secaron sobre MgSO4 y se concentraron *al vacío*. El residuo obtenido de este modo se purificó mediante cromatografía ultrarrápida (mezclas de DCM / MeOH) para dar el compuesto final 1-064 (0,16 g, 25 %).

30 Los compuestos finales en las Tablas siguientes se han sintetizado de acuerdo con los ejemplos anteriores, como se indica en la columna llamada "Nº de Ej". El compuesto indicado con el asterisco está en los Ejemplos.

Tabla 1A: Compuestos en los que L es un enlace covalente.

Tabla 171. Compac	Tabla TA. Compuestos en los que E es un enlace covalente.						
N N N N N N N N N N N N N N N N N N N							
N⁰ de Comp.	Nº de Comp. Nº de Ej. V¹ M¹ -L-A						
Compuesto de referencia 1-001	B2	cb	Ò				
Compuesto de referencia 1-002							

Compuesto de referencia 1-003	B1	CH₂ -		
Compuesto de referencia 1-004	В3	CH₂ -	∇	
Compuesto de referencia 1-005	В3	CH₂ -		
Compuesto de referencia 1-006	В3	CH₂ -	, \	
Compuesto de referencia 1-007	B1	CH ₂ -	, O	CF ₃
Compuesto de referencia 1-008	B2	CH₂ -		· · · · · · · · · · · · · · · · · · ·
Compuesto de referencia 1-009	B2	CH₂ -	Ď	Ŏ
Compuesto de referencia 1-010	B1	CH₂ -	\bigcirc	, CH ³
Compuesto de referencia 1-011	B1	CH₂ -		, P
Compuesto de referencia 1-012	B1	CH₂ -	\bigcirc	``CH3
Compuesto de referencia 1-013	B1	CH₂ -	CH ₃	CH₃
Compuesto de referencia 1-014	B1	CH₂ -	, CH3	CF ₀ -CF ₃
Compuesto de referencia 1-015	B2	CH₂ -	H ₃ C	···s

Compuesto de referencia 1-016	B1	CH₂ -	O ^c H	, H2
Compuesto de referencia 1-017	B1	CH₂ -	CH ₃	CH ₃
Compuesto de referencia 1-018	B2	CH₂ -	CH ₃	
Compuesto de referencia 1-019	B2	CH ₂ -	`. CH3	····s
Compuesto de referencia 1-020	B2	CH₂ -	``CH ₃	
Compuesto de referencia 1-021	B1	CH₂ -	CH ₃	CH ₃
Compuesto de referencia 1-022	B1	CH₂ -	, C	CH ₃
Compuesto de referencia 1-023	B2	CH₂ -		
Compuesto de referencia 1-024	B1	CH₂ -	CF3	CH ₃
Compuesto de referencia 1-025	B1	CH₂ -		CH2 CH3
Compuesto de referencia 1-026	B1	CH₂ -	, o	CH ₃
Compuesto de referencia 1-027	B1	CH₂ -	, Co	CH3
Compuesto de referencia 1-028	B2	CH₂ -	Ç	s S
Compuesto de referencia 1-029	B2	CH₂ -	CH₃	
Compuesto de referencia 1-030	B1	CH₂ -	, C C C C C C C C C C C C C C C C C C C	
Compuesto de referencia 1-031	B1	CH ₂ -	OCF ₃	

Compuesto de referencia 1-032	B1	CH₂ -	OCF ₃	
Compuesto de referencia 1-033	B1	CH₂ -	OCF,	
Compuesto de referencia 1-034	B1	CH₂ -		Mezcla racémica CIS
Compuesto de referencia 1-035	B1	CH₂ -	CF ₃	Mezcla racémica CIS
Compuesto de referencia 1-036	B1	CH₂ -		Mezcla racémica TRANS
Compuesto de referencia 1-037	B17*	CH₂ -	OCF,	
Compuesto de referencia 1-038	B1	CH₂ -	, OCF,	
Compuesto de referencia 1-039	B1	CH₂ -	· CF ₃	CH3
Compuesto de referencia 1-040	B1	CH₂ -	``CF3	`. О
Compuesto de referencia 1-041	B1	CH₂ -	``CF3	
Compuesto de referencia 1-042	B1	CH₂ -		
Compuesto de referencia 1-043	B2	CH ₂ -	,	
Compuesto de referencia 1-044	B1	CH ₂ -		
Compuesto de referencia 1-045	B1	CH₂ -	N N	

	1	T	T	
Compuesto de referencia 1-046	B2	CH ₂ -	N F F	· S
Compuesto de referencia 1-047	B2	CH ₂ -CH ₂ -	0	Ö
Compuesto de referencia 1-048	B1	CH ₂ -CH ₂ -	0	, CH³
Compuesto de referencia 1-049	B21*	CH ₂ CH ₂ -	0	
Compuesto de referencia 1-050	B2	CH ₂ -CH ₂ CH ₂ -	H	· S
Compuesto de referencia 1-051	B2	CH ₂ -CH ₂ -CH ₂ -		``
Compuesto de referencia 1-052	B2	CH ₂ -CH ₂ -CH ₂ -	. O	`
Compuesto de referencia1-053	B1	CH ₂ -CH ₂ -CH ₂ -		· O
Compuesto de referencia 1-054	B2	CH ₂ -CH=CH-	``	· ` _ s
Compuesto de referencia* 1-055	B1	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	Н	CF ₃
Compuesto de referencia 1-056	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-057	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-058	B1	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-059	B2	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	· S
Compuesto de referencia 1-060	B1	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	H ₃ C N
Compuesto de referencia 1-061	В3	CH ₂ -CH ₂ -CH ₂ CH ₂ -	H	

Compuesto de referencia* 1-062	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-063	B1	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	Н	
Compuesto de referencia 1-064	B51*	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	H ₃ C ×
Compuesto de referencia 1-065	В3	CH ₂ CH ₂ -CH ₂ -CH ₂ -	H	H ₃ C Z
Compuesto de referencia 1-066	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	,
Compuesto de referencia 1-067	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	, N CF3
Compuesto de referencia 1-068	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-069	B29	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	F ₃ C N
Compuesto de referencia 1-070	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂	H	
Compuesto de referencia 1-071	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-072	В3	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	, N CN

В3	CH ₂ CH ₂ -CH ₂ -CH ₂ -	Н	
ВЗ	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
ВЗ	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	Н	
ВЗ	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	Н	("LoC")
B2	CH ₂ CH(CH3)-CH ₂ -	Н	`. _S
В3	CH ₂ -CH(CH3)-CH ₂ -	H	
B2	CH (CH3)-CH ₂ -CH ₂ -CH ₂ -	H	·. [\$]
B2	CH ₂ -CH (CH3)-CH ₂ -CH ₂ -	H	
B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	··_s
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	· s a
B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂	Н	СН
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	СН ₃ С-СН ₃
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	F
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	· O _F
B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	C1
	B3 B3 B3 B3 B2 B2 B2 B2 B1 B1 B1 B1 B1	B3CH ₂ -CH ₂ -CH ₂ -CH ₂ - B3CH ₂ -CH ₂ -CH ₂ -CH ₂ - B3CH ₂ -CH ₂ -CH ₂ -CH ₂ - B2CH ₂ -CH(CH3)-CH ₂ - B3CH ₂ -CH(CH3)-CH ₂ - B2CH (CH3)-CH ₂ -CH ₂ -CH ₂ - B2CH ₂ -CH (CH3)-CH ₂ -CH ₂ - B2CH ₂ -CH (CH3)-CH ₂ - B2CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ - B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	B3CH ₂ -CH ₂ -CH ₂ -CH ₂ H B3CH ₂ -CH ₂ -CH ₂ -CH ₂ H B3CH ₂ -CH ₂ -CH ₂ -CH ₂ H B2CH ₂ CH(CH ₃)-CH ₂ H B3CH ₂ -CH(CH ₃)-CH ₂ H B2CH (CH ₃)-CH ₂ -CH ₂ -CH ₂ H B2CH ₂ -CH (CH ₃)-CH ₂ H B2CH ₂ -CH (CH ₃)-CH ₂ H B2CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H B1CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ H

	1			
Compuesto de referencia 1-091	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	, Ca
Compuesto de referencia 1-092	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	Br
Compuesto de referencia 1-093	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	00
Compuesto de referencia 1-094	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂	H	
Compuesto de referencia 1-095	B4*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	О
Compuesto de referencia 1-096	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	ОН
Compuesto de referencia 1-097	B7*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	ОН
Compuesto de referencia 1-098	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	ОН
Compuesto de referencia 1-099	B37	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	`` О о ~ он
Compuesto de referencia 1-100	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	O-CH3
Compuesto de referencia 1-101	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	. Сн,
Compuesto de referencia 1-102	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	О-СН3
Compuesto de referencia 1-103	B5*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	, O-CH ³
Compuesto de referencia 1-104	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	``\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Compuesto de referencia 1-105	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-106	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	, O O CH ³
Compuesto de referencia* 1-107	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O-CH3

Compuesto de referencia 1-108	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	OH OH
Compuesto de referencia 1-109	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-110	B1*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	O CH3
Compuesto de referencia 1-111	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CH3
Compuesto de referencia 1-112	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	, CH ²
Compuesto de referencia 1-113	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	FLO-CH3
Compuesto de referencia 1-114	B3*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	O-CH3
Compuesto de referencia 1-115	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CH ₃
Compuesto de referencia 1-116	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	F CH ₃
Compuesto de referencia 1-308	B49*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	H ₃ C O
Compuesto de referencia 1-117	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	20 20 40 40 40
Compuesto de referencia 1-118	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	°FHD
Compuesto de referencia 1-119	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	· O F
Compuesto de referencia 1-120	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O_CF,
Compuesto de referencia 1-121	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CI F
Compuesto de referencia 1-122	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CI F

Compuesto de referencia 1-123	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CI OCF3
Compuesto de referencia 1-124	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CI
Compuesto de referencia 1-125	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	н ₃ с-О Сн ₃
Compuesto de referencia 1-126	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	О СН3
Compuesto de referencia 1-127	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	Do H. CH
Compuesto de referencia 1-128	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	TO ON HyCH
Compuesto de referencia 1-129	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O, CH ³ CH ³
Compuesto de referencia 1-130	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	NH ₂
Compuesto de referencia 1-131	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	°CN O^CN
Compuesto de referencia 1-132	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	``_OCN
Compuesto de referencia 1-133	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-134	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-135	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O.D
Compuesto de referencia 1-136	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	`. O
Compuesto de referencia 1-137	ВЗ	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	

Compuesto de referencia 1-138	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	H ₂ C. O
Compuesto de referencia 1-139	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-140	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	0.0
Compuesto de referencia 1-141	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-142	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	H ₃ C O
Compuesto de referencia 1-143	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	. Ch,
Compuesto de referencia 1-144	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	H ₃ C-O
Compuesto de referencia 1-145	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O CH3
Compuesto de referencia 1-146	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-147	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-148	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-149	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-150	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-151	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	

Compuesto de referencia 1-152	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CoCO
Compuesto de referencia 1-153	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	COCO
Compuesto de referencia 1-154	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-155	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-156	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-157	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-158	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-159	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-160	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-161	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-162	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	" Z
Compuesto de referencia 1-163	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	- 42 V
Compuesto de referencia 1-164	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-165	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-166	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	H,C'O
Compuesto de referencia 1-167	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	H ₃ C'O
Compuesto de referencia 1-168	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	

Compuesto de referencia 1-169	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O N CH ₃
Compuesto de referencia 1-170	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	· · · NH ₂
Compuesto de referencia 1-305	B37	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	.CF ₃ COOH
Compuesto de referencia 1-171	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	у сня
Compuesto de referencia 1-172	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CH ₃
Compuesto de referencia 1-173	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CH ₃
Compuesto de referencia 1-174	B37	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	D o ch
Compuesto de referencia 1-307	B48*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	, MH²
Compuesto de referencia 1-175	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	L L CH3
Compuesto de referencia 1-176	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	H CH'
Compuesto de referencia 1-177	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CH ₃ CH ₃
Compuesto de referencia 1-178	B6*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	, NH CH3
Compuesto de referencia 1-179	B2*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CH3
Compuesto de referencia 1-180	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	"Chy chy
Compuesto de referencia 1-181	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	" O N'CH,
Compuesto de referencia 1-182	B12*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	TO HOCH
Compuesto de referencia 1-183	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	H ₃ C NH CH ₃

Compuesto de referencia 1-184	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	H ₃ C, O HN—CH ₃
Compuesto de referencia 1-185	B38*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O, C. E. D. E. C. E. E. C. E. E. C. E. E. C. E. C. E. E. C. E. C. E. C. E. E.
Compuesto de referencia 1-186	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	, E CN
Compuesto de referencia 1-187	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-188	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	¥
Compuesto de referencia 1-189	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-190	B50*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-191	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-192	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	N SCH,
Compuesto de referencia 1-193	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	Opo
Compuesto de referencia 1-194	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-195	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CH ₃
Compuesto de referencia 1-196	ВЗ	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-197	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CH ₃ F
Compuesto de referencia 1-198	B37*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	122

Compuesto de referencia 1-199	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-200	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-201	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	The second
Compuesto de referencia 1-202	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-203	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	"Charles or care
Compuesto de referencia 1-204	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	. Charles
Compuesto de referencia 1-205	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	" N O o cF,
Compuesto de referencia 1-206	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	, Con
Compuesto de referencia 1-207	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	C H Ls
Compuesto de referencia 1-208	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-209	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-210	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -		
Compuesto de referencia 1-211	B28	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	. Cr. Cr.
Compuesto de referencia 1-212	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CH ₂
Compuesto de referencia 1-213	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-214	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	. CH3
Compuesto de referencia 1-215	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	HN-S-CH

Compuesto de referencia 1-216	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	0=%=0
Compuesto de referencia 1-217	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-218	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-219	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-220	В9	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	NOOH
Compuesto de referencia 1-221	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-222	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-223	B20*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-224	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-225	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-226	B39*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-227	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	Mezcla racémica TRANS 80:20
Compuesto de referencia 1-228	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-229	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-230	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	N-N-CH3

Compuesto de referencia 1-231	B38	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	{\rightarrow} \rightarrow \
Compuesto de referencia 1-232	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-233	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	<>\(\sigma\)
Compuesto de referencia 1-234	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-235	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-236	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-237	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-238	B2	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	CH
Compuesto de referencia 1-239	B14*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	O.CH3
Compuesto de referencia 1-240	B15*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	OH OH
Compuesto de referencia 1-241	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	Н	O CH3
Compuesto de referencia 1-242	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O, CH3
Compuesto de referencia 1-243	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	CH3 CH3
Compuesto de referencia 1-244	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O CH,
Compuesto de referencia 1-245	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	ÇH ₂
Compuesto de referencia 1-246	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	O

Compuesto de referencia 1-247	В3	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-248	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-249	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-250	B19*	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-251	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	. Oto
Compuesto de referencia 1-252	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-253	B1	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂ -	H	(,)
Compuesto de referencia 1-254	B1	CH ₂ -CH ₂ -CH(CH ₃) CH ₂ -	H	CN
Compuesto de referencia 1-255	B1	CH ₂ -CH ₂ -CH(CH ₃) CH ₂ -	H	CN CN CN CN CN
Compuesto de referencia 1-256	B1	CH ₂ -CH ₂ -CH(CH ₃) CH ₂ -	H	·· Ch ₃
Compuesto de referencia 1-257	B1	CH ₂ -CH ₂ -CH(CH ₃) CH ₂ -	H	0=5=CH ₃
Compuesto de referencia 1-258	B13*	CH ₂ -CH ₂ -CH(CH ₃) CH ₂ -	H	S CN
Compuesto de referencia 1-259	1	CH ₂ -CH ₂ -CH(CH ₃) CH ₂ -	H	· CCS

^{*} Referencia

Tabla 1B: Compuestos en los que L es una cadena de alquilo saturado o insaturado.

N V'M'				
Nº de Comp.	N⁰ de Ej.	A-L V ¹	M ¹	-L-A
Compuesto de referencia 1-260	B11*	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	, C
Compuesto de referencia 1-261	B11	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	
Compuesto de referencia 1-262	B11	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	, CH ³
Compuesto de referencia 1-263	B11	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	CH ₃
Compuesto de referencia 1-264	B11	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	, CH2, O
Compuesto de referencia 1-265	B11	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	CH3
Compuesto de referencia 1-266	B11	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	CH2,
Compuesto de referencia 1-267	B10*	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	
Compuesto de referencia 1-268	B10	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	CH
Compuesto de referencia 1-269	10	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	, Z-D, Z-D
Compuesto de referencia 1-270	10	CH ₂ -CH ₂ -CH(CH ₃)CH ₂ -	H	, r.

Tabla 1C Compuestos en los que L contiene un átomo O.

Nº de Comp.

Nº de Ej.

V¹

Compuesto de referencia 1-271

B27*

N° de Comp.

B27*

N° de Ej.

Compuesto de referencia 1-272	B29	CH₂ -	``CF3	
Compuesto de referencia 1-273	B8	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	Br
Compuesto de referencia 1-306	B35*	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	
Compuesto de referencia 1-274	B8*	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	Н	
Compuesto de referencia 1-275	B29	CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	0^0
Compuesto de referencia 1276	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	, , , , , , , , , , , , , , , , , , ,
Compuesto de referencia 1-277	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	CF3
Compuesto de referencia 1-178	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	o o
Compuesto de referencia 1-279	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	`-O^-CF3
Compuesto de referencia 1-280	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-281	B29	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂	H	·
Compuesto de referencia 1-282	B8	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	Н	O CH ₃
Compuesto de referencia 1-283	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-284	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	`'0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Compuesto de referencia 1-285	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	`'O^
Compuesto de referencia 1-286	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	, o CN
Compuesto de referencia 1-287	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	-'0\
Compuesto de referencia 1-288	B27	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	, o , o ,

Compuesto de referencia 1-289	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-290	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	0 CH ₃
Compuesto de referencia 1-291	B8	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	Н	
Compuesto de referencia 1-292	B27	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-293	B29	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	.HCI

^{*}Compuesto de referencia

Tabla 1D: Compuestos en los que L contiene un átomo N.

Tabla 1D: Compuestos en los que L contiene un atomo N.				
N⁰ de Comp.	Nº de Ej.	V^1	M ¹	-L-A
Compuesto de referencia 1-294	B31	CH₂ -	, \rangle	NH Mezcla racémica TRANS
Compuesto de referencia 1-295	В9	CH₂ -	,	TI.
Compuesto de referencia 1-296	B29	CH ₂ -CH ₂ -CH ₂ -CH ₂	H	HCI
Compuesto de referencia 1-297	B31	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	H	Mezcla racémica TRANS

Compuesto de referencia 1-298	B9*	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	HN
Compuesto de referencia 1-299	B9	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	, it
Compuesto de referencia 1-300	В9	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	
Compuesto de referencia 1-301	В9	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	ä.
Compuesto de referencia 1-302	B9	CH ₂ -CH ₂ -CH (CH ₃)-CH ₂	H	, NEW YORK
Compuesto de referencia 1-303	В9	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	. N CH3
Compuesto de referencia 1-304	В9	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H	Mezcla racémica TRANS

^{*}Compuesto de referencia

Tabla 2: Compuestos preparados de acuerdo con los Ejemplos en los que A es piperazinilo.

2-006	B33	CH ₂ -CH ₂ -CH ₂ -CH ₃	cb	c. N
2-007	B33	CH ₂ -CH ₂ -CH ₂ -CH ₃	cb	CH3
2-008	B33	-CH ₂ -CH ₂ -CH ₃	cb	TZ Z Z
2-009	B33	CH ₂ -CH ₂ -CH ₂ -CH ₃	cb	, z z z z z z z z z z z z z z z z z z z
2-010	B18	CH ₂ CH(CH ₃) ₂	cb	C CF3
2-056	B41*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	_
2-011	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	٠٠٠
2-012	B23	-CH ₂ -CH ₃ -CH (CH ₃) ₂	cb	ی کی
2-013	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	C CH₃
2-014	B33	-CH ₂ -CH ₃ -CH (CH ₃) ₂	cb	CF ₃
2-015	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c F
2-016	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	·
2-017	B33	-CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	
2-018	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c ·
2-019	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c ·· · · · · · · · · · · · · · · · · ·
2-020	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c CF3
2-021	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c CH ₃
L	<u> </u>		1	

2-022	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CC CCE3
2-023	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	٠٠٠
2-024	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c · N
2-025	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N CH ₃
2-026	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N
2-027	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c . CN
2-028	B24*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c c
2-029	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	C P F
2-030	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N
2-031	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N N
2-032	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c NN CH₃
2-033	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N N
2-034	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
2-035	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	· N
2-036	B29*	CH ₂ -CH ₂ -CH (CH ₃) ₂ O(CH ₂) ₂ -		, , , , , , , , , , , , , , , , , , ,
2-037	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂ (C=O)-		c N N N N N N N N N N N N N N N N N N N

2-038	B28		cb	c F
2-039	B28	<i>∴</i> △	cb	C CI CF3
2-040	B28		cb	0
2-041	B33	Δ	cb	b CH ₃ d H ₃ C N N Mezcla racémica CIS
2-042	B23	OCF ₃	cb	٠٠٠
2-043	B16*	OCF ₃	cb	· · ·
2-044	B23	OCF ₃	cb	c · · · · · · · · · · ·
2-045	B33	OCF ₃	cb	aCII ₃ cF
2-046	B18	OCF ₃	cb	
2-047	B23	OCF ₃	cb	, , , , , , , , , , , , , , , , , , ,
2-048	B23	OCF ₃	cb	Z= GF"
2-049	B18*	F	cb	٠
2-050	B18	·. JF	cb	c · · · · F

2-051	B18		cb	c · · · · F
2-052	B18	, J F	cb	E F
2-055	B31*	F	cb	c N
2-053	B18		cb	c ·
2-054	B18	.~	cb	c ·

Tabla 3: Compuestos preparados de acuerdo con los Ejemplos en los que A es 4-piperidinilo.

 $-V^{1}-M^{1}$ R^4 Nº de Comp. Nº de Ej. -L 3-001 B10 --CH₂-CH₂-CH₂-CH₃ cb 3-002 B18 --O---CH₂-CH₂-CH₃ 3-018 B46* --CH₂-CH₂-CH(CH₃)₂ cb 3-017 B45* --CH₂-CH₂-CH(CH₃)₂ cb 3-014 B28* --CH₂-CH₂-CH(CH₃)₂ cb 3-003 B23 --CH₂-CH₂-CH(CH₃)₂ --NH-3-004 B18 --CH2-CH2-CH(CH3)2 --NH-3-005 B23 --CH₂-CH₂-CH(CH₃)₂ --N(CH₃)-

--N(CH₃)-

--CH₂-CH₂-CH(CH₃)₂

3-006

B23

3-016	B43*	CH ₂ -CH ₂ -CH(CH ₃) ₂	0	-
3-007	B25	CH ₂ -CH ₂ -H(CH ₃) ₂	O-	
3-015	B42*	-CH ₂ -CH ₂ -CH(CH ₃) ₂	O-	CH3 CH3
3-008	B26*	-CH ₂ -CH ₂ -CH(CH ₃) ₂	O-	_C CF ₃
3-009	B25*	-CH ₂ -CH ₂ -CH(CH ₃) ₂	OCH₂-	c · CF ₃
3-010	B18	\triangle	NH-	CI CF3
3-011	B33		NH-	c N
3-012	B18	Δ	O-	_c ···CF ₃
3-013	B23	OCF ₃	N(CH ₃)-	°. Č

Tabla 4: Compuestos preparados de acuerdo con los Ejemplos en los que A es 1-piperidinilo. R^4 N⁰ de Comp. N⁰ de Ej. $-V^1-M^1$ -L 4-001 --CH₂CH₂CH₂CH₃ cb B10 4-002 B10 --CH₂CH₂CH₂CH₃ cb 4-003 B34* --CH₂CH₂CH₂CH₃ cb 4-004 B27 --CH₂CH₂CH₂CH₃ cb 4-005 B25 --CH₂CH₂CH₂CH₃ cb 4-006 B33 --CH₂CH₂CH₂CH₃ cb

4-007	B27	CH₂CH₂CH₂CH₃	cb	c N
4-008	B27	CH ₂ CH ₂ CH ₂ CH ₃	cb	c .IICI
4-009	B33	CH ₂ CH ₂ CH ₂ CH ₃	cb	c CN
4-010	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	cCF3
4-012	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	0=0,
4-013	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	b RS
4-014	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	
4-015	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c
4-016	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CF ₃
4-017	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CH₃
4-018	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c F
4-019	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	, O F
4-020	B22*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CF.°
4-021	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c H ₃ C
4-022	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	C CF ₃
4-023	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	b RS
4-024	B23	-CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c . N CF3

4-025	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c .HCI
4-026	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	C N
4-027	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	C -N F
4-028	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CF3
4-029	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CH ₃ CF ₃
4-030	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c · · · · · · · · · · · · · · · · · · ·
4-031	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CF ₃
4-032	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CF ₃
4-033	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CF ₃ CH ₃ .HCI
4-034	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N
4-035	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	
4-036	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c N
4-037	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c - N
4-038	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	c · N

4-039	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	
4-040	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	CH ₃ CH ₃ CH ₃ CCH ₃
4-041	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N O O
4-042	B25	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	C
4-043	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	bCH ₃ c Mezcla racémica CIS
4-044	B23*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	
4-045	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	cOCH ₃
4-046	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	0=s=0
4-047	B33*	^	cb	
4-048	B33		cb	
4-049	B23	OCF ₃	cb	CH ₃
4-050	B23	OCF ₃	cb	CH ₃ RI O S CH ₃
4-051	B23	· · · · · · · · · · · · · · · · · · ·	cb	c N
4-052	B25	·. COCF3	cb	c .HCI

4-053	B33	·. COCF3	cb	cOH
4-054	B33		cb	c N F
4-055	B37		cb	.CF ₃ COOH
4-056	B23		cb	c N CH ₃
4-057	B26		cb	C - N F
4-058	B23	F	cb	CF ₃
4-059	B26	, J	cb	c N F
4-060	B26	, , ,	cb	.HCI
4-061	B23		cb	N F
4-062	B33	O CF3	cb	·
4-063	B33	O CF3	cb	cOH
4-064	B23	·	cb	C - N
4-065	B23	·	cb	CF ₃
4-066	B33		cb	c

Tabla 5: Compuestos de referencia preparados de acuerdo con los ejemplos en los que a es un heterociclo que contiene N

	N V'M'								
	R ⁴ A								
		a-A-b: a es el la	ateral con el re	esto R ⁴ ; b es el lateral con el re	sto L				
Nº de Comp.	Nº de Ej.	-V ¹ -M ¹	-L	a-A-b	R ⁴				
5-054	B47*	CH ₂ CH ₂ CH ₂ CH ₃	cb	N b	Z H				
5-023	B1	CH₂CH₂CH₂CH₃	cb	a. N	, ,				
5-001	B11	CH₂CH₂CH₂CH₃	cb	N.N.a	N a ₁ CH ₃				
5-002	B1	CH₂CH₂CH₂CH₃	cb	a ₁ N b					
5-003	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N	-				
5-004	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a _ N S					
5-005	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a RS Nb	CH ₃ CF ₃				
5-006	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a RS Nb	CH ₃				
5-007*	B30	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	b. RS Na					
5-008	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a b	``O^				
5-009	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	aN N b					

5-053	B44*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a b	CH ₃
5-052	B40*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	NH	Ácido trifluorometilsulfónico (forma de sal)
5-010	B1	-CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a b	O-CH₃
5-011	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	ab	(CH ₂)3OH
5-012	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	HN D	-
5-013	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a N	
5-014	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	HN b	-
5-015	B36*	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a ,N b	`.`
5-016	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	HN b	-
5-017	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	HN b	-
5-018	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a, N b	CH₃
5-019	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a,.N	Ċ
5-020	B32	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	b N	
5-021	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	HNp	-
5-022	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	HN b	-
5-024	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a`N	. C
5-025	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a , N b	
		·		·	

5-026	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a , N — b	CH ₃
5-027	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a ₁ N b a ₂ '	a ₁
5-028	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a ₁ N N a ₂	a ₁ CH ₃
5-029	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N. N D	-
5-030	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N b	-
5-031	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N b	-
5-032	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a ₂ b	a1OCH ₃ a2OCH ₃
5-033	B23	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N b	-
5-034	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a N N b	Z=,
5-035	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	RS RS	OCH₃
5-036	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N b	-
5-037	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	ORS N b	-
5-038	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	ab	F
5-039	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N b	-

5-040	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a ₁ , N b	a1CH₃ a2F
5-041	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	N b	-
5-042	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a, b	CI
5-043	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a	
5-044	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	cb	a Nb	O-CH₃
5-045	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	OCH₂ -	N b	a ₁ CH ₃
5-046	B29	CH ₂ -CH ₂ -CH (CH ₃) ₂	O(CH ₂) ₂ -	a - Nb	F
5-047	B1	CH ₂ -CH ₂ -CH (CH ₃) ₂	NH-	a N-O	
5-048	B33	CH ₂ -CH ₂ -CH (CH ₃) ₂	N(CH ₃)-	aNp	
5-049	B10			N	-
5-050	B33	cb	N(CH ₃) ₂	a - , RS N b	N(CH3)2
5-051	B1	cb	-	HN b	-

Tabla 6: Compuestos de referencia preparados de acuerdo con los Ejemplos en los que R² no es hidrógeno.

$\begin{array}{c c} & & & \\ & & & &$							
Nº de Comp.	Nº de Comp. Nº de Ej. V¹ M¹ R²L- A						
6-001	B1	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	H -	-CH₃	O_CH ₃		

C. Datos fisicoquímicos

Métodos de CLEM:

5

10

15

20

30

40

45

50

55

60

65

CLEM - Procedimiento general A

El gradiente de HPLC fue suministrado por Alliance 2795XE que comprende una bomba cuaternaria con desgasificador, un automuestreador, un hormo de columna, un detector de matriz de fotodiodos (PDA 2996) y una columna, como se especifica en los respectivos procedimientos siguientes. El flujo de la columna se dividió en un detector de EM. Los detectores de EM se configuraron con una fuente de ionización por electropulverización. Como gas nebulizador se usó nitrógeno. Los espectros de masas se adquirieron de 50 a 600 en 0,5 segundos. La tensión en aguja capilar fue 3,5 kV y la temperatura fuente se mantuvo a 140 °C. La adquisición de datos se realiza con un sistema de datos Waters-Micromass MassLynx-Openlynx.

CLEM - Procedimiento general B

El gradiente de HPLC fue suministrado por HP 1100 de Agilent Technologies que comprende una bomba (cuaternaria o binaria) con desgasificador, un automuestreador, un horno de columna, un detector de matriz de fotodiodos (DAD) y una columna, como se especifica en los respectivos procedimientos siguientes. El flujo de la columna se dividió en un detector de EM. Los detectores de EM se configuraron con una fuente de ionización por electropulverización. Como gas nebulizador se usó nitrógeno. La temperatura fuente se mantuvo a 140 °C. La adquisición de datos se realizó con un software MassLynx-Openlynx.

25 CLEM - Procedimiento general C

El gradiente CL fue suministrado por un sistema Acquity UPLC (Waters) que comprende una bomba binaria, un organizador de muestras, un calentador de la columna (fijada a 55 °C) y un detector de matriz de diodos (DAD). El flujo de la columna se dividió en un detector de EM. El detector de EM se configuró con una fuente de ionización por electropulverización. Los espectros de masas se adquirieron mediante barrido de 100 a 1.000 en 0,18 segundos usando un tiempo de permanencia de 0,02 segundos. La tensión en aguja capilar fue 3,5 kV y la temperatura fuente se mantuvo a 140 °C. Se usó nitrógeno como gas nebulizador. La adquisición de datos se realizó con un sistema de datos Waters-Micromass MassLynx-Openlynx.

35 Método 1

Además del procedimiento general A: La HPLC de fase inversa se llevó a cabo en un cartucho Zorbax-C18 (3,5 mm, 4,6 x 50 mm) de Agilent Technologies, con un caudal de 1 ml/min. El horno de columna se fijó a 25 °C. Se usaron dos fases móviles (fase móvil A: agua + 0,5% de ácido fórmico; fase móvil B: acetonitrilo + 0,5 % de ácido fórmico). En primer lugar, se retuvieron el 95 % de A y el 5 % de B durante 0,1 minutos. Después se aplicó un gradiente hasta al 100 % de B 5 minutos, se mantuvo durante 6,0 minutos y se equilibro en condiciones iniciales a 6,5 minutos hasta 7,0 minutos. Se usaron los volúmenes de inyección habituales de 5-20 ml. Se usó el detector de ES EM, adquiriendo en modos de ionización tanto positivo como negativo. La tensión de cono fue de 30 V para el modo de ionización positivo y 63 V para el negativo.

Método 2

Además del procedimiento general A: La HPLC de fase inversa se llevó a cabo en un cartucho Zorbax-C18 (1,8 mm, 4,6 x 30 mm) de Agilent Technologies, con un caudal de 1,5 ml/min. El horno de columna se fijó a 30 °C. Se usaron dos fases móviles (fase móvil A: agua + 0,05% de ácido fórmico; fase móvil B: acetonitrilo + 0,05 % de ácido fórmico). Las condiciones del gradiente usadas son: 90 % de a y 10 % de B a 3,5 minutos, se mantuvo hasta 3,7 minutos y se equilibró en condiciones iniciales a 3,8 minutos hasta 4,5 minutos. Se usaron los volúmenes de inyección habituales de 5-20 ml. Se usó el detector de ES EM, adquiriendo en modos de ionización tanto positivo como negativo. La tensión de cono fue de 30 V para el modo de ionización positivo y 63 V para el negativo.

Método 3

Además del procedimiento general B: La HPLC de fase inversa se llevó a cabo en una columna ACE-C18 (3,0 mm, 4,6 x 30 mm) de Advanced Chromatography Technologies, con un caudal de 1,5 ml/min a 40 °C. Las condiciones del gradiente usadas son: 80 % de A (0,5 g/l de solución de acetato amónico), 10 % de B (acetonitrilo), 10 % de C (metanol) a 50 % de B y 50 % de C en 6,5 minutos, a 100 % de B a 7 minutos, y equilibrada en condiciones iniciales a 7,5 minutos hasta 9,0 minutos. Volumen de inyección 5 μl. Los espectros de masas de alta resolución (Tiempo de vuelo, TOF) se adquirieron únicamente en modo de ionización positivo mediante barrido de 100 a 750 en 0,5 segundos usando un tiempo de permanencia de 0,1 segundos. La tensión en la aguja de capilar fue 2,5 kV para el modo de ionización positivo y la tensión de cono fue 20 V. La sustancia patrón usada para la calibración de la masa de bloqueo fue leucina-encefalina.

Método 4

Además del procedimiento general B: Igual que el procedimiento 3 pero usando un volumen de inyección de 10 μl.

Método 5

5

10

Además del procedimiento general B: La HPLC de fase inversa se llevó a cabo en una columna ACE-C18 (3,0 mm, 4,6 x 30 mm) de Advanced Chromatography Technologies, con un caudal de 1,5 ml/min a 40 °C. Las condiciones del gradiente usadas son: 80 % de A (0,5 g/l de solución de acetato amónico), 10 % de B (acetonitrilo), 10 % de C (metanol) a 50 % de B y 50 % de C en 6,5 minutos, a 100 % de B a 7 minutos, y equilibrada en condiciones iniciales a 7,5 minutos hasta 9,0 minutos. Volumen de inyección 5 µl. Los espectros de masas de baja resolución se adquirieron mediante barrido de 100 a 1.000 en 1,0 segundo usando un tiempo de permanencia de 0,3 segundos. La tensión de la aguja del capilar fue 3 kV. La tensión de cono fue 20 V y 50 V para el modo de ionización positivo y 20 V para el modo de ionización negativo.

Método 6

Además del procedimiento general C: La HPLC de fase inversa se llevó a cabo en una columna C18 en puente de etilsiloxano/sílice (BEH) (1,7 μm, 2,1 x 50 mm) con un caudal de 0,8 ml/min. Se usaron dos fases móviles (fase móvil A: 0,1 % de ácido fórmico en H₂O/metanol 95/5; fase móvil B: metanol) para una condición de gradiente de 95 % de A a 5 % de B en 1,3 minutos y retener durante 0,2 minutos. Se usó un volumen de inyección de 0,5 μl. La tensión de cono fue de 10 V para el modo de ionización positivo y 20 V para el modo de ionización negativo.

25 Método 7

30

35

40

45

50

60

Además del procedimiento general B: La HPLC de fase inversa se llevó a cabo en un cartucho XDB-C18 (1,8 mm, 2,1 x 30 mm) de Advanced Agilent, a 60 °C con un caudal de 1 ml/min a 60 °C. Las condiciones del gradiente usadas son: 90 % de A (0,5 g/l de solución de acetato amónico), 5 % de B (acetonitrilo), 5 % de C (metanol) a 50 % de B y 50 % de C en 6,5 minutos, a 100 % de B a 7 minutos, y equilibrada en condiciones iniciales a 7,5 minutos hasta 9,0 minutos. Volumen de inyección 2 μl. Los espectros de masas de alta resolución (Tiempo de vuelo, TOF) se adquirieron únicamente en modo de ionización positivo mediante barrido de 100 a 750 en 0,5 segundos usando un tiempo de permanencia de 0,1 segundos. La tensión en la aguja de capilar fue 2,5 kV y la tensión de cono fue 20 V. La sustancia patrón usada para la calibración de la masa de bloqueo fue leucina-encefalina.

Método 8

Además del procedimiento general B: La HPLC de fase inversa se llevó a cabo en un cartucho XDB-C18 (1,8 mm, 4,6 x 30 mm) de Agilent, con un caudal de 1,5 ml/min a 60 °C. Las condiciones del gradiente usadas son: 80 % de A (0,5 g/l de solución de acetato amónico), 20 % de B (mezcla de acetonitrilo/metanol, 1/1)) a 100 % de B en 6,5 minutos, mantenido hasta 7 minutos y equilibrada en condiciones iniciales a 7,5 minutos hasta 9,0 minutos. Volumen de inyección 5 µl. Los espectros de masas de baja resolución se adquirieron mediante barrido de 100 a 1.000 en 1,0 segundo usando un tiempo de permanencia de 0,3 segundos. La tensión de la aguja del capilar fue 3 kV. La tensión de cono fue 20 V y 50 V para el modo de ionización positivo y 20 V para el modo de ionización negativo.

Método 9

Además del procedimiento general B: La HPLC de fase inversa se llevó a cabo en una columna ACE-C18 (3,0 mm, 4,6 x 30 mm) de Advanced Chromatography Technologies, con un caudal de 1,5 ml/min a 40 °C. Las condiciones del gradiente usadas son: 80 % de A (0,5 g/l de solución de acetato amónico), 10 % de B (acetonitrilo), 10 % de C (metanol) a 50 % de B y 50 % de C en 6,5 minutos, a 100 % de B a 7 minutos, y equilibrada en condiciones iniciales a 7,5 minutos hasta 9,0 minutos. Volumen de inyección 5 µl. Los espectros de masas de alta resolución (Tiempo de vuelo, TOF) se adquirieron mediante barrido de 100 a 750 en 0,5 segundos usando un tiempo de permanencia de 0,3 segundos. La tensión de la aguja del capilar fue de 2,5 V para el modo de ionización positivo y 2,9 V para el modo de ionización negativo. La tensión de cono fue de 20 V para los modos de ionización positivo y negativo. La sustancia patrón usada para la calibración de masa de bloqueo fue leucina-encefalina.

La determinación del punto de fusión se realizó en tubos capilares abiertos en un Buchi B-540 o un Mettler FP62.

Tabla 7: Datos fisicoquímicos para los compuestos. Para las formas en sal, se indicó el [MH+] de la base libre.

Nº de Comp.	Punto de fusión (°C)	[MH+]	TA (min)	Método de CLEM	Forma física
1-003		339	4,38	Método 3	Sólido blanco
1-004		378	4	Método 3	Sólido blanco

84

	<u> </u>				
1-005		413	4,54	Método 3	Sólido amarillo claro
1-006		427	4,43	Método 8	Sólido amarillo claro
1-007	159	363	2,92	Método 2	Sólido amarillo claro
1-008	148	299	4,59	Método 1	Sólido blanco
1-009	149	293	4,43	Método 3	Sólido amarillo
1-010	descompone	336	5	Método 5	Sólido amarillo
1-011	60	323	4,43	Método 3	Sólido amarillo
1-012	descompone	323	4,55	Método 3	Sólido amarillo
1-013	128	337	2,95	Método 2	Sólido blanco
1-014	143	391	3,22	Método 2	Sólido amarillo
1-015		307		Método 1	Sólido
1-016		331	2,56	Método 2	Sólido amarillo claro
1-017		331	2,6	Método 2	Sólido marrón claro
1-018	155	291	4,19	Método 1	Sólido amarillo
1-019	118	307	4,45	Método 1	Sólido blanco
1-021		331	2,59	Método 2	Sólido amarillo claro
1-022		335	3,92	Método 3	Sólido marrón claro
1-023		295	1,15	Método 6	Sólido beige
1-024	181	385	2,7	Método 2	Sólido amarillo claro
1-025		397	4,92	Método 3	Sólido marrón claro
1-026		351	2,62	Método 2	Sólido blanco
1-027		351	2,63	Método 2	Sólido amarillo claro
1-028	180	327	4,54	Método 1	Sólido rosa
1-030	153	371	2,76	Método 2	Sólido blanco
1-031	167	468	4,62	Método 3	Sólido blanco
1-032	190	456	2,7	Método 2	Sólido amarillo
1-033	97	470	4,47	Método 3	Sólido blanco
1-034		498	4,53	Método 8	Sólido blanco
1-035	136	498	4,52	Método 8	Sólido blanco
1-036		498	5,19	Método 3	Sólido blanco
1-037	184	500	4,47	Método 3	Sólido blanco
1-038	140	514	4,64	Método 3	Sólido blanco
1-039	169	401	2,78	Método 2	Sólido blanco
1-040	180	429	2,47	Método 2	Sólido blanco
1-041	155	463	3,17	Método 2	Sólido beige
1-042	185	363	2,9	Método 2	Sólido blanco
1-043	185	288	2,71	Método 1	Sólido beige
1-044	141	288	3,34	Método 1	Sólido blanco
1-045	160	288	2,81	Método 1	Sólido
1-046	185	362	3,96	Método 1	Sólido blanco
1-047		317	4,09	Método 3	Sólido amarillo claro

1-048	188	347	4,2	Método 4	Sólido blanco
1-049	descompone	409	5,13	Método 3	Sólido blanco
1-050	135	245	3,85	Método 1	Sólido amarillo
1-051		305	4,29	Método 1	Sólido amarillo
1-052	118	321	4,4	Método 1	Sólido amarillo
1-053	descompone	315	4,25	Método 3	Sólido blanco
1-055	123	337	2,73	Método 2	Sólido blanco
1-056	195	352	3,64	Método 7	Sólido amarillo brillante
1-057	136	371	4,04	Método 3	Sólido blanco
1-058	122	336	4,72	Método 7	Sólido amarillo
1-059	103	259	4,18	Método 1	Sólido amarillo
1-060		347	3	Método 3	Sólido marrón claro
1-061		346	3,93	Método 3	Sólido amarillo claro
1-062		346	3,61	Método 7	Sólido blanco
1-063	102	374	4,16	Método 3	Sólido blanco
1-064	121	360	3,97	Método 7	Sólido blanco
1-065		360	4,22	Método 7	Sólido blanco
1-066		364	3,79	Método 3	Sólido blanco
1-067		414	4,68	Método 7	Sólido blanco
1-068	descompone	414	4,67	Método 7	Sólido blancuzco
1-069		414	4,4	Método 7	Sólido blancuzco
1-070		380	4,1	Método 7	Sólido blancuzco
1-071		371	3,86	Método 7	Sólido blanco
1-072		371	3,9	Método 7	Sólido blanco
1-073		431	4,32	Método 3	Sólido blancuzco
1-074		347	3,32	Método 7	Sólido blanco
1-075		347	3,36	Método 7	Sólido blanco
1-076		347	3,55	Método 7	Sólido blanco
1-077	108	259	3,92	Método 1	Sólido beige
1-078	170	346	3,06	Método 8	Sólido blanco
1-079	103	273	4,22	Método 1	Sólido blanco
1-080	149	267	4,45	Método 1	Sólido blanco
1-081		257	4,13	Método I	Sólido amarillo
1-082	123	273	4,29	Método 1	Sólido amarillo
1-083		307	4,66	Método 4	Sólido amarillo
1-084	142	267	4,25	Método 1	Sólido blanco
1-085	102	281	2,72	Método 2	Sólido blanco
1-086	168	323	3,16	Método 2	Sólido naranja
1-087	125	285	3,97	Método 3	Sólido amarillo claro
1-088	161	285	4,09	Método 4	Sólido blanco
1-089	descompone	285	4,07	Método 3	Sólido blanco

1-090	123	301	2,74	Método 2	Sólido blanco
1-091	137	301	2,76	Método 2	Sólido amarillo
1-092		423	5,01	Método 3	Sólido blanco
1-093	172	343	3,05	Método 2	Sólido blancuzco
1-094	131	343	3,03	Método 2	Sólido amarillo claro
1-095	85	325	3,76	Método 1	Sólido blanco
1-096	201	283	3,72	Método 1	Sólido marrón claro
1-097	210	283	3,66	Método I	Sólido blanco
1-098	145	297	2,04	Método 2	Sólido blanco
1-099		327	3,35	Método 3	Sólido beige
1-100		297	4,11	Método 5	Aceite amarillo
1-101	96	297	4,31	Método 1	Sólido blanco
1-102	99	270	4,07	Método 1	Sólido amarillo claro
1-103	91	311	4,22	Método 1	Sólido blanco
1-104		311	4,52	Método 3	Sólido crema
1-105	107	325	2,96	Método 2	Sólido naranja claro
1-106		339	4,54	Método 3	Sólido amarillo claro
1-107	67	311	2,51	Método 2	Sólido amarillo claro
1-108		313	3,51	Método 3	Sólido crema
1-109		357	3,35	Método 3	Sólido blanco
1-110	52	327	4,03	Método 3	Sólido amarillo
1-111	129	325	2,89	Método 2	Sólido amarillo claro
1-112	149	331	4,33	Método 7	Sólido blanco
1-113	65	315	4,35	Método 1	Sólido blanco
1-114	133	315	4,3	Método 1	Sólido amarillo
1-115	154	357	3,06	Método 2	Sólido blanco
1-116		333	2,69	Método 2	Aceite blanco
1-117	166	359	5,21	Método 5	Sólido blanco
1-118	descompone	339	3,68	Método 3	Sólido blanco
1-119	descompone	333	4,39	Método 5	Sólido crema
1-120	122	351	4,74	Método 3	Sólido amarillo
1-121		363	4,67	Método 3	Sólido blanco
1-122	131	381	4,61	Método 3	Sólido blanco
1-123	189	399	4,92	Método 3	Sólido blanco
1-124		385	5,88	Método 3	Sólido amarillo claro
1-125		355	4	Método 3	Sólido blanco
1-126	descompone	353	4,08	Método 5	Sólido crema
1-127	156	354	3,52	Método 1	Sólido blanco
1-128	107	368	2,05	Método 1	Sólido blanco
1-129		384	3,23	Método 3	Sólido crema
1-130	159	340	3,06	Método 3	Sólido blanco

1-131	132	322	2,42	Método 2	Sólido rosa
1-132		336	3,98	Método 3	Sólido blanco
1-133		337	4,72	Método 7	Sólido blanco
1-134	294	371	5,4	Método 3	Sólido crema
1-135		351	5,33	Método 4	Sólido blanco
1-136		397	4,64	Método 5	Sólido crema
1-137		411	4,78	Método 3	Sólido blanco
1-138		441	4,7	Método 3	Sólido crema
1-139		396	3,95	Método 3	Sólido marrón claro
1-140		359	5,13	Método 3	Sólido blanco
1-141		373	5,38	Método 3	Sólido blanco
1-142		403	5,01	Método 3	Sólido blanco
1-143	118	389	3,07	Método 2	Sólido blanco
1-144	100	403	3,03	Método 2	Sólido blanco
1-145	212	403	3,02	Método 2	Sólido blanco
1-146	139	391	3,07	Método 2	Sólido blanco
1-147	146	391	3,07	Método 2	Sólido blanco
1-148	173	391	3,06	Método 2	Sólido amarillo
1-149	120	407	3,23	Método 2	Sólido blanco
1-150	177	407	3,18	Método 2	Sólido blanco
1-151	154	398	2,89	Método 2	Sólido blanco
1-152	193	384	2,86	Método 2	Sólido blanco
1-153	171	398	2,89	Método 2	Sólido amarillo
1-154		360	4,23	Método 3	Sólido blanco
1-155	132	360	4,07	Método 7	Sólido blancuzco
1-156	139	360	4,09	Método 3	Sólido blancuzco
1-157	162	374	4,36	Método 5	Sólido blanco
1-158	142	374	4,23	Método 5	Sólido crema
1-159	171	374	4,25	Método 5	Sólido blanco
1-160		374	4,18	Método 3	Sólido crema
1-161		378	4,17	Método 3	Sólido blanco
1-162	156	392	4,21	Método 3	Sólido marrón claro
1-163	202	442	2,94	Método 2	Sólido blanco
1-164	165	408	2,82	Método 2	Sólido blanco
1-165		408	2,15	Método 2	Sólido blanco
1-166		404	4,05	Método 3	Sólido crema
1-167		404	4,05	Método 3	Sólido blanco
1-168	descompone	364	3,27	Método 5	Liofilizado
1-169	144	3,94	2,62	Método 2	Sólido beige
1-170		282	3,1	Método 3	Sólido amarillo
1-171	189	296	3,97	Método 3	Sólido amarillo brillante

		1	1		
1-172	137	310	4,51	Método 1	Sólido verde
1-173	130	324	1,81	Método 2	Sólido gris
1-174		340	4,02	Método 9	Sólido amarillo
1-175	75	324	3,54	Método 1	Sólido marrón
1-176	198	324	3,55	Método I	Sólido blanco
1-177	112	352	2,13	Método 2	Sólido blanco
1-178	157	338	3,39	Método 1	Sólido beige
1-179	144	338	3,39	Método 1	Sólido blanco
1-180					Sólido amarillo
1-181	descompone	353	2,79	Método 3	Sólido amarillo claro
1-182		367	3,31	Método 3	Sólido amarillo brillante
1-183		354	5,04	Método 3	Sólido amarillo claro
1-184		368	3,3	Método 3	Sólido blanco
1-185		384	4,45	Método 4	Sólido amarillo
1-186	269	321	3,47	Método 3	Sólido marrón claro
1-187		322	4,52	Método 3	Amarillo
1-188		364	5,66	Método 3	Sólido amarillo brillante
1-189		384	4,22	Método 3	Sólido amarillo
1-190		384	4,21	Método 7	Sólido amarillo
1-191	descompone	400	4,48	Método 7	Sólido amarillo claro
1-192	119				Sólido amarillo brillante
1-193		358	5,21	Método 3	Sólido marrón
1-194		372	5,17	Método 3	Sólido amarillo
1-195		372	5,35	Método 3	Aceite amarillo brillante
1-196		386	5,33	Método 3	Sólido amarillo
1-197		418	5,47	Método 3	Sólido blanco
1-198		404	4,71	Método 3	Sólido blanco
1-199	136	390	2,93	Método 2	Sólido amarillo
1-200	162	390	2,94	Método 2	Sólido amarillo
1-201		342	3,35	Método 3	Sólido crema
1-202	146	406	3,07	Método 2	Sólido amarillo
1-203	173	402	2,9	Método 2	Sólido amarillo
1-204	157	397	2,75	Método 2	Sólido amarillo
1-205		456	5,69	Método 3	Sólido amarillo
1-206	209	397	2,74	Método 2	Sólido amarillo
1-207		379	2,68	Método 3	Sólido amarillo
1-208		359	3,35	Método 7	Sólido amarillo claro
1-209		373	4,08	Método 3	Sólido amarillo
1-210	73	373	4,01	Método 3	Sólido amarillo
1-211	142	401	4,53	Método 3	Sólido amarillo claro
1-212	294	401	4,44	Método 3	Sólido amarillo claro

1-213	96	401	1,61	Método 2	Sólido blanco
1-214		326	4,26	Método 3	Sólido marrón
1-215	70	360	3,7	Método I	Sólido blanco
1-216	191	360	3,67	Método 1	Sólido blanco
1-217		414	3,49	Método 7	Sólido amarillo brillante
1-218		336	5,1	Método 3	Sólido amarillo
1-219		350	5,32	Método 5	Sólido amarillo brillante
1-220	213	366	3,79	Método 3	Sólido amarillo
1-221		380	4,6	Método 4	Sólido amarillo
1-222		352	4,17	Método 5	Sólido amarillo
1-223	171	352	4,09	Método 3	Sólido amarillo
1-224	descompone	368	3,67	Método 4	Sólido amarillo
1-225	151	382	4,08	Método 3	Sólido amarillo
1-226	118	430	4,8	Método 3	Sólido amarillo
1-227	162	380	4,79	Método 3	Sólido amarillo
1-228	148	400	5,19	Método 3	Sólido amarillo brillante
1-229	148	366	3,94	Método 3	Sólido blanco
1-230	143	393	3,98	Método 3	Sólido amarillo
1-231	descompone	393	3,68	Método 3	Sólido amarillo
1-232		391	4,77	Método 3	Sólido amarillo
1-233		427	5,45	Método 4	Sólido naranja
1-234		428	3,94	Método 3	Sólido naranja
1-235	151	333	3,57	Método 5	Sólido blanco
1-236	descompone	334	3,5	Método 5	Sólido amarillo claro
1-237					Sólido amarillo
1-238	130	309	4,02	Método 1	Sólido beige
1-239	120	353	4,34	Método 1	Sólido amarillo
1-240	169	339	3,73	Método 1	Sólido blanco
1-241	172	338	1,94	Método 2	Sólido blanco
1-242	(aceite)	325	2,54	Método 2	Aceite negro
1-243	166	338	2,05	Método 2	Sólido blancuzco
1-244	122	352	2,1	Método 2	Sólido blanco
1-245	135-140	414	2,62	Método 2	Sólido blanco
1-246		350	3,5	Método 3	Sólido crema
1-247	217	587	5,02	Método 8	Sólido blanco
1-248		347	3,44	Método 3	Sólido blanco
1-249		350	3,68	Método 7	Sólido amarillo
1-250		334	3,89	Método 3	Sólido blanco
1-251	117	309	4,09	Método 3	Sólido blancuzco
1-252	120-121	311	4,24	Método 1	Sólido beige
1-253		325	4,14	Método 3	Sólido blanco

1-254	122	306	2,37	Método 2	Sólido blanco
1-255	233	494	2,78	Método 2	Sólido amarillo
1-256	128	313	4,55	Método 1	Sólido amarillo
1-257	181	345	3,69	Método 1	Sólido blanco
1-258		390	4,35	Método 4	Aceite incoloro
1-259		323	4,62	Método 3	Sólido gris claro
1-260		295	4,46	Método 4	Sólido blanco
1-261		293	4,7	Método 3	Sólido amarillo
1-262		338	4,75	Método 3	Sólido blanco
1-263	descompone	338	4,83	Método 5	Sólido verde cremoso
1-264		325	4,46	Método 3	Sólido blanco
1-265	88	325	4,52	Método 5	Sólido blanco
1-266		323	4,51	Método 3	Sólido amarillo
1-267		291	4,78	Método 3	Sólido marrón
1-268		321	4,85	Método 3	Sólido crema
1-269		334	5,24	Método 3	Sólido blanco
1-270	166	334	5,24	Método 5	Sólido naranja
1-271		500	4,41	Método 3	Sólido blanco
1-272		401	4,78	Método 3	Sólido blanco
1-273		347	4,15	Método 7	Sólido blanco
1-274	descompone	283	4,05	Método 3	Sólido blanco
1-275	174	297	4,1	Método 5	Sólido blanco
1-276		311	4,33	Método 5	Blanco
1-277		365	4,65	Método 3	Sólido blanco
1-278		375	4,54	Método 3	Sólido blanco
1-279	116	381	4,69	Método 3	Sólido blanco
1-280		327	4,18	Método 5	Sólido blanco
1-281	83	341	4,21	Método 5	Sólido blanco
1-282	153	313	4,12	Método 3	Sólido blanco
1-283		345	4,08	Método 3	Sólido rosa claro
1-284	190	363	4,32	Método 5	Sólido blanco
1-285	200	381	4,83	Método 5	Sólido blanco
1-286		322	3,73	Método 3	Sólido amarillo claro
1-287		397	4,99	Método 3	Sólido amarillo claro
1-288	169	323	4,3	Método 3	Sólido blanco
1-289		403	5,02	Método 3	Amarillo claro
1-290	148	445	5,24	Método 3	Sólido blanco
1-291		352	5,16	Método 3	Sólido amarillo claro
1-292	154	396	3,82	Método 3	Sólido blanco
1-293	209	372	4,43	Método 3	Sólido blanco
1-294		306	3,97	Método 3	Sólido blanco

	_	1			
1-295		359	3,31	Método 3	Sólido amarillo
1-296	151	361	3,57	Método 7	Sólido blancuzco
1-297		350	4,78	Método 7	Sólido amarillo claro
1-298	descompone	282	3,97	Método 3	Sólido crema
1-299		296	4	Método 3	Aceite marrón claro
1-300	descompone	367	3,91	Método 3	Sólido blanco
1-301	descompone	374	5,13	Método 3	Sólido amarillo
1-302		375	4,01	Método 3	Sólido amarillo
1-303		310	4,14	Método 3	Sólido blanco
1-304		322	4,51	Método 7	Sólido blanco
1-306		374	4,22	Método 7	
2-001	183	437	4,95	Método 3	Sólido amarillo claro
2-002	127	469	5,26	Método 3	Sólido blanco
Compuesto de referencia 2-003	134	455	5,13	Método 3	Sólido amarillo claro
2-004		338	3,36	Método 3	Sólido amarillo claro
2-005		367	4,07	Método 3	Sólido blanco
2-006		379	4,08	Método 3	Sólido amarillo claro
2-007		369	3,76	Método 3	Sólido blancuzco
2-008		382	3,45	Método 3	Sólido amarillo claro
2-009		424	3,34	Método 3	Sólido amarillo claro
2-010	112	469	5,21	Método 3	Sólido blanco
2-011		351	4,4	Método 3	Sólido amarillo
2-012		365	4,44	Método 3	Sólido blanco
2-013		381	4,32	Método 3	Sólido amarillo claro
2-014		433	5,04	Método 3	Sólido blanco
2-015	descompone	401	4,66	Método 3	Sólido beige
2-016		409	4,33	Método 3	Sólido blanco
2-017		379	4,55	Método 3	Sólido marrón claro
2-018		391	4,75	Método 3	Aceite amarillo claro
2-019		413	4,49	Método 3	Goma amarilla
2-020		463	5,05	Método 3	Sólido amarillo claro
2-021		379	4,99	Método 3	Sólido amarillo claro
2-022	256	483	5,49	Método 3	Sólido blanco
2-023		366	3,32	Método 3	Goma amarilla
2-024		352	3,83	Método 3	Sólido amarillo
2-025		366	4,17	Método 3	Sólido amarillo
2-026	135	420	4,69	Método 3	Sólido blanco
2-027		377	3,72	Método 3	Sólido blancuzco
2-028		353	3,56	Método 3	Sólido cremoso claro
2-029	155	421	4,71	Método 3	Sólido marrón claro
2-030		353	2,8	Método 3	Sólido amarillo

				1	
2-031	245	387	3,38	Método 3	Sólido amarillo
2-032		383	3,4	Método 3	Sólido amarillo
2-033		429	4,23	Método 3	Goma amarilla
2-034	descompone	417	3,89	Método 3	Sólido amarillo claro
2-035	288	392	4,15	Método 3	Sólido blanco
2-036	159	396	3,67	Método 3	Sólido blancuzco
2-037	223				Sólido blanco
2-038	140	435	4,73	Método 3	Sólido blanco
2-039	125	467	5,05	Método 3	Sólido blanco
2-040	157				Sólido amarillo claro
2-041	descompone	365	3,38	Método 3	Sólido marrón claro
2-042	descompone	469	4,91	Método 3	Sólido blanco
2-043	110	483	4,97	Método 3	Sólido amarillo claro
2-044	156	487	4,93	Método 4	Sólido blanco
2-045	descompone	519	5,47	Método 3	Sólido amarillo claro
2-046	92	497	3,96	Método 8	Sólido amarillo
2-047		470	3,94	Método 3	Sólido amarillo
2-048	258	524	5,04	Método 3	Sólido blanco
2-049		403	4,27	Método 4	Sólido marrón claro
2-050		421	4,39	Método 3	Sólido blanco
2-051	239	439	4,49	Método 3	Sólido blanco
2-052		439	4,59	Método 3	Sólido blanco
2-053		415	4,48	Método 3	Sólido blanco
2-054		429	4,42	Método 3	Aceite amarillo
2-055		390	3,59	Método 3	Sólido blanco
3-001	124	338	3,57	Método 7	Sólido amarillo claro
3-002					Sólido blanco
3-003	125	379	4,41	Método 3	Sólido blanco
3-004	188	434	4,9	Método 3	Sólido blancuzco
3-005		393	4,47	Método 3	Sólido blanco
3-006	131	461	5,22	Método 3	Sólido blanco
3-007	208	380	4,35	Método 3	Sólido blanco
3-008		448	5,1	Método 3	Sólido marrón claro
3-009	117	462	5,2	Método 3	Sólido blancuzco
3-010	187				Sólido blanco
3-011	descompone	351	2,55	Método 3	Sólido blanco
3-012		432	4,6	Método 3	Sólido crema
3-013	211	497	4,95	Método 3	Sólido blanco
3-014		432	5,35	Método 3	Sólido blanco
4-001		337	3,28	Método 3	Sólido blanco
4-002		337	3,22	Método 7	Sólido blanco

	1				
4-003	132	351	3,33	Método 7	
4-004	188	353	3,2	Método 3	Sólido crema
4-005		353	3,87	Método 3	Sólido crema
4-006		367	3,94	Método 7	Sólido blanco
4-007		367	3,51	Método 7	Sólido amarillo claro
4-008		381	3,79	Método 7	Sólido blanco
4-009		377	3,91	Método 7	Sólido blanco
4-010		342	4,19	Método 3	Sólido blanco
4-012	296	378	4,48	Método 3	Sólido blanco
4-013		350	5,06	Método 3	Sólido blanco
4-014	descompone	350	4,76	Método 3	Sólido blanco
4-015		364	5,33	Método 3	Aceite amarillo
4-016	112	418	5,09	Método 7	Sólido blanco
4-017		380	5,18	Método 3	Sólido blanco
4-018		384	4,94	Método 3	Sólido blanco
4-019	100	412	5,18	Método 3	Sólido blanco
4-020		448	5,43	Método 3	Sólido gomoso blanco
4-021	descompone	410	4,82	Método 3	Sólido blanco
4-022		464	5,3	Método 3	Sólido blanco
Compuesto de referencia 4-023		365	4,43	Método 3	Sólido beige
4-025	283	447	4,63	Método 3	Sólido blanco
4-026		393	4,41	Método 3	Sólido marrón
4-027	113	411	4,57	Método 3	Sólido blanco
4-028		461	5,25	Método 3	Sólido blanco
4-029	91	461	5,28	Método 3	Sólido blanco
4-030		425	5,09	Método 3	Espuma blanca
Compuesto de referencia 4-031	141	447	5,31	Método 3	Sólido blanco
4-032		475	5,02	Método 3	
4-033		475	5,03	Método 3	Sólido amarillo
4-034	253	405	4,4	Método 3	Sólido marrón claro
4-035		389	4,93	Método 3	Sólido amarillo claro
4-036		405	5,29	Método 3	Aceite gomoso marrón
4-037	78	407	4,86	Método 3	Sólido amarillo
4-038	214	391	4,35	Método 3	Sólido beige
4-039	123	408	5,09	Método 3	Sólido blanco
4-040	113	412	4,91	Método 3	Sólido cremoso claro
4-041	-	418	4,82	Método 3	Sólido marrón claro
4-042	descompone	433	4,13	Método 7	Sólido amarillo
Compuesto de referencia 4-043	138	379	4,64	Método 7	Sólido blanco
4-044		435	4,53	Método 3	Sólido amarillo claro
4-045		380	4,93	Método 3	Sólido blanco

282	414	3.73	Método 3	Sólido blanco
			-	Sólido blanco
120				Sólido blancuzco
138			-	Sólido blanco
				Sólido blanco
				Sólido marrón claro
descompone				Sólido marrón claro
				Sólido amarillo
	700	3,03	Wetodo 7	Sólido crema
155	435	3.85	Método 3	Sólido crema
100				Sólido crema
2/12				Sólido crema
242				Sólido blanco
157				Sólido blanco
	473	5,21	Wetodo 3	Sólido blancuzco
	117	12	Método 3	Sólido crema
		-		Sólido crema Sólido blanco
139				Sólido blancuzco
150				Sólido blanco
159				Sólido blanco
			-	Sólido blanco
descompone			-	Sólido blancuzco
-				Sólido blanco
				Sólido blanco
descompone				Goma cremosa clara
96				Sólido blanco
			+	Sólido blanco
100				Aceite incoloro
102				Sólido blanco
102				Sólido blanco
118			-	Sólido blanco
110			+	Sólido marrón claro
				Sólido blanco
				Sólido blanco
				Sólido biarico
				Sólido amarillo claro
descompono			-	Sólido marrón claro
-				Sólido marron ciaro
•				Sólido verde ciaro Sólido amarillo claro
201	382	5,31	Método 3	Sólido amarillo claro
	282 128 138 descompone descompone 155 242 157 96 175 139 159 descompone 164,7 descompone 100 102 118 descompone 281	128 334 138 497 descompone 491 descompone 509 499 485 155 435 431 431 242 449 96 471 159 443 159 443 164,7 398 descompone 322 377 96 447 100 397 350 350 102 436 473 118 298 326 257 347 308 descompone 306 descompone 306	128 334 4,05 378 4,38 138 497 4,89 descompone 491 4,2 descompone 509 4,88 499 4,39 485 3,85 155 435 3,85 431 4,16 242 449 4,54 499 5,05 157 475 5,27 96 471 3,56 159 443 4,43 511 5,24 400 4,83 descompone 384 3,31 164,7 398 3,24 descompone 322 4,33 377 4,2 96 447 5,16 100 397 4,71 350 4,75 118 298 2,37 326 2,96 257 2,72 347 4,26 308 3,92 350 3,75 descompone	128 334 4,05 Método 7 378 4,38 Método 3 descompone 491 4,2 Método 3 descompone 509 4,88 Método 7 485 3,85 Método 7 485 3,85 Método 3 431 4,16 Método 3 499 5,05 Método 3 499 5,05 Método 3 157 475 5,27 Método 3 96 471 3,56 Método 3 139 454 5,06 Método 3 471 3,56 Método 3 471 3,56 Método 3 400 4,83 Método 3 400 4,83 Método 3 46escompone 322 4,33 Método 3 46escompone 322 4,33 Método 3 100 397 4,71 Método 3 102 436 5,11 Método 3 102 436 5,11 Método 3 102 436 5,11 <t< td=""></t<>

5-021	descompone	307	3,31	Método 3	Jarabe
5-022		307	2,93	Método 3	Sólido beige
5-023	descompone	384	3,51	Método 3	Sólido crema
5-024	284	398	3,53	Método 3	Sólido crema
5-025		398	3,72	Método 3	Sólido crema
5-026	descompone	338	4,43	Método 5	Sólido amarillo brillante
5-027	descompone	347	4,08	Método 7	Sólido blanco
5-028	docompone	364	4,87	Método 3	Sólido blanco
5-029	234	307	3,89	Método 3	Sólido amarillo claro
5-030	204	324	4,4	Método 3	Sólido crema
5-031	134	322	4,72	Método 3	Sólido crema Sólido amarillo
	134				
5-032		382	4,04	Método 3	Sólido blanco
5-033		376	5,35	Método 3	Sólido blanco
5-034	122	421	4,44	Método 3	Sólido cremoso claro
5-035	169	406	5,04	Método 3	Sólido blanco
5-036		394	4,96	Método 3	Sólido blanco
5-037	217	380	4,57	Método 3	Sólido crema
5-038	141				Sólido crema
5-039	276	361	4,52	Método 3	Sólido blanco
5-040	111	393	4,87	Método 3	Sólido crema
5-041	130	362	4,85	Método 3	Sólido blanco
5-042		412	5,73	Método 3	Amarillo claro
5-043	descompone	365	4,57	Método 3	Sólido amarillo claro
5-044		395	4,51	Método 3	Sólido gomoso marrón
5-045		378	4,06	Método 3	Sólido blanco
5-046		370	4,08	Método 4	Sólido blanco
5-047	5-047	349	4,37	Método 3	Sólido blanco
5-048		441	5,22	Método 3	Aceite incoloro
5-049		318	4,39	Método 3	Sólido gris claro
5-050		407	3,66	Método 3	Sólido blanco
5-051	166	410	2,63	Método 2	Sólido gris
6-001	175	341	5,54	Método 2	Sólido beige

descompone = el producto se descompone durante la determinación.

D. Ejemplos farmacológicos

Los compuestos proporcionados en la presente invención son modulares alostéricos de mGluR2. Estos compuestos parecen potenciar las respuestas al glutamato uniéndose a un sitio alostérico distinto al sitio de unión del glutamato. La respuesta de mGluR2 a una concentración de glutamato aumenta cuando están presentes los compuestos de Fórmula (I). Se espera que los compuestos de Fórmula (I) ejerzan sustancialmente su efecto en mGluR2 en virtud de su capacidad para potenciar la función del receptor. En la Tabla 4 se muestra el comportamiento de los moduladores alostéricos positivos analizados en mGluR2 usando el método de ensayo de unión de [35S]GTPγS descrito más adelante y que es adecuado para la identificación de dichos compuestos y, más particularmente, de los compuestos de acuerdo con la Fórmula (I).

Ensayo de unión de [³⁵S]GTPγS

5

10

25

30

35

40

45

50

60

65

El ensayo de unión de [35 S]GTPγS es un ensayo funcional basado en membranas, usado para estudiar la función de un receptor acoplado a proteína G (GPCR), mediante el cual se mide la incorporación de una forma no hidrolizable de GTP, [35S]GTPγS (guanosina 5'-trifosfato, marcado con 35S que emite radiación gamma). La subunidad α de la proteína G cataliza el intercambio de guanosina 5'-difosfato (GDP) por guanosina trifosfato (GTP) y, tras la activación del GPCR por un agonista, [35S]GTPγS, se incorpora y no puede ser escindida para continuar el ciclo de intercambio (sharper (1998) Current Protocols in Pharmacology 2,6,1-10, John Wiley & Sons, Inc.). La cantidad de incorporación de [35 S]GTP γ S radiactivo es una medida directa de la actividad de la proteína G y, de este modo, se puede determinar la actividad del agonista. Se ha mostrado que los receptores mGluR2 se acoplan preferentemente a una proteína $G\alpha i$, un acoplamiento preferente para este procedimiento, y, por lo tanto, se usa mucho éste para estudiar la activación de los receptores mGluR2 tanto en líneas celulares recombinantes como en tejidos (Schaffhauser y col 2003, Pinkerton y col., 2004, Mutel y col. (1998) Journal of Neurochemistry. 71:2558-64; 15 Schaffhauser y col. (1998) Molecular Pharmacology 53:228-33). En el presente documento se describe el uso del ensayo de unión de [³⁵S]GTPγS utilizando membranas de células transfeccionadas con el receptor mGluR2 humano y adaptadas de Schaffhauser y col((2003) Molecular Pharmacology 4:798-810) para la detección de las propiedades de modulación alostérica positiva (PAM) de los compuestos de la presente invención.

20 Preparación de membrana

Se cultivaron células CHO hasta preconfluencia y se estimularon con butirato 5 mM durante 24 horas, antes de un lavado en PBS, y luego se recogieron por raspado en tampón de homogeneización (tampón de Tris 50 mM-HCl, pH de 7,4, 4 °C), os lisados celulares se homogeneizaron brevemente (15 s) usando un homogeneizador Ultra-Turrax. Se centrifugó el producto de homogeneización a 23.500 x g durante 10 minutos y se desechó el sobrenadante. Se resuspendió el sedimento en Tris 5 mM-HCl, pH de 7,4, y se centrifugó de nuevo (30.000 x g, 20 minutos, 4 °C). Se resuspendió el sedimento final en HEPES 50 mM, pH de 7.4, y se almacenó la suspensión a -80 °C en partes alícuotas apropiadas antes de su uso. La concentración de la proteína se determinó usando el método de Bradford (Bio-Rad, EE.UU.) con un patrón de seroalbúmina bovina.

Ensayo de unión de [35S]GTPγS

La medición de los moduladores alostéricos positivos de mGluR2 en membranas que contienen mGluR2 humano se llevó a cabo usando membranas congeladas que se descongelaron y se homogeneizaron brevemente antes de una preincubación en microplacas de 96 pocillos (15 µg/pocillo de ensayo, 30 minutos, 30 °C) en tampón de ensayo (HEPES 50 mM, pH de 7,4, NaCl 100 mM, MgCl₂ 3 mM, GDP 50 μM, 10 μg/ml de saponina) con concentraciones crecientes de modulador alostérico positivo (de 0,3 nM a 50 brevemente M) y, o bien una concentración predeterminada mínima de glutamato (ensayo de PAM) o bien sin glutamato añadido. Para el ensayo de PAM, se preincubaron las membranas con glutamato en una concentración CE25, es decir, una concentración que origina el 25% de la respuesta máxima del glutamato, y está de acuerdo con los datos publicados (Pin y col. (1999) Eur. J. Pharmacol. 375:277-294). expuse de la adición de [35S]GTPγS (0,1 nM, f.c.) para alcanzar un volumen de reacción total de 200 µl, las microplacas se agitaron brevemente y se incubaron adicionalmente para permitir la incorporación de [35S]GTP_YS tras la activación (30 minutos, 30 °C). La reacción se detuvo mediante filtración rápida al vacío sobre una microplaca de placas filtrantes de fibra de vidrio (placas filtrantes GF/B de 96 pocillos Unifilter, Perkin-Elmer, Downers Grove, EE.UU.) usando un recolector celular para placas de 96 pocillos (Filtermate, Perkin-Elmer, EE.UU.), v lavando luego tres veces con 300 µl de tampón de lavado (Na₂PO₄, 2H₂O 10 mM, NaH₂PO₄, H₂O 10 mM, pH = 7,4) enfriado con hielo. Después se dejaron secar los filtros al aire, se añadieron 40 µl de cóctel para centelleo en estado líquido (Microscint-O) a cada pocillo y se midió el [³⁵S]GTPγS unido a la membrana en un lector de placas para centelleo de 96 pocillos (Top-Count, Perkin-Elmer, EE.UU.). La unión inespecífica de [³⁵S]GTPγS se determina en presencia de GTP 10 µM frío. Cada curva se realiza al menos una vez usando una muestra por duplicado por punto de datos y en 11 concentraciones.

Análisis de datos

55 Se generaron las curvas de concentración-respuesta de compuestos representativos de la presente invención en presencia de una CE₂₅ añadida de glutamato agonista de mGluR2 para determinar la modulación alostérica positiva (PAM), utilizando el software Prism GraphPad (Graph Pad Inc., San Diego, EE.UU.). Las curvas se ajustaron a una ecuación logística de cuatro parámetros (Y = Parte Inferior + (Parte Superior-Parte Inferior)/(1+10^((logCE₅₀-X)*pendiente de Hill), lo que permite la determinación de valores de CE₅₀.

Tabla 8. Datos farmacológicos de compuestos de acuerdo con la invención.

Todos los compuestos se examinaron en presencia de agonista de mGluR2, glutamato en una concentración CE25 predeterminada, para determinar la modulación alostérica positiva (GTPγS-PAM). Los valores mostrados son promedios de valores duplicados de 11 curvas de concentración-respuesta procedentes de al menos un

experimento. Todos los compuestos mostraron un valor de p CE_{50} superior a 5,0, de 1 a 7,6 (actividad muy alta) El error de determinación de un valor de p CE_{50} para un único experimento se estima que es de aproximadamente 0,3 unidades logarítmicas.

Nº de Col.	GTPgS - hR2 PAM pEC50
1-093	7,6
5-020	7,6
1-204	7,6
1-202	7,5
4-065	7,5
4-066	7,5
1-140	7,4
1-196	7,4
5-033	7,4
4-062	7,4
4-039	7,4
1-151	7,4
1-145	7,4
1-268	7,3
4-016	7,3
1-188	7,3
1-124	7,3
5-041	7,3
1-153	7,3
1-149	7,3
5-019	7,3
4-022	7,3
1-148	7,3
1-206	7,3
4-060	7,3
1-194	7,2
1-141	7,2
1-117	7,2
4-014	7,2
1-287	7,2

T	
Nº de Col.	GTPgS - hR2 PAM pEC50
1-086	7,2
1-092	7,2
1-144	7,2
1-146	7,2
1-199	7,2
4-031	7,2
1-267	7,1
1-289	7,1
5-039	7,1
1-134	7,1
2-048	7,1
4-019	7,1
1-147	7,1
1-228	7,1
1-143	7,1
1-200	7,1
1-165	7,1
1-163	7,1
1-150	7,1
1-010	7,0
1-270	7,0
1-014	7,0
1-115	7,0
4-015	7,0
4-035	7,0
4-028	7,0
1-152	7,0
1-025	7,0
1-172	6,9
1-285	6,9

5

Nº de Col,	GTPgS - hR2
in de Coi,	PAM pEC50
1-187	6,9
1-024	6,9
1-013	6,9
1-195	6,9
1-272	6,9
4-020	6,9
4-045	6,9
4-017	6,9
4-037	6,9
5-018	6,9
4-041	6,9
1-226	6,9
1-049	6,9
4-064	6,9
4-029	6,9
1-256	6,8
1-290	6,8
1-269	6,8
1-042	6,8
1-039	6,8
1-123	6,8
1-164	6,8
3-009	6,8
2-022	6,8
1-271	6,8
2-003	6,8
1-004	6,8
2-006	6,8
1-067	6,8
1-083	6,7

N⁰ de Col,	GTPgS - hR2 PAM pEC50
1-218	6,7
5-026	6,7
1-219	6,7
1-133	6,7
3-014	6,7
2-026	6,7
1-301	6,7
1-259	6,7
1-040	6,7
5-042	6,7
1-261	6,7
5-038	6,7
4-021	6,7
4-049	6,7
5-048	6,7
2-017	6,7
1-297	6,7
1-008	6,6
5-016	6,6
5-003	6,6
1-277	6,6
5-051	6,6
1-041	6,6
1-205	6,6
5-036	6,6
5-008	6,6
4-036	6,6
2-029	6,6
1-183	6,6
2-043	6,6

Nº de Col.	GTPgS - hR2 PAM pEC50
4-058	6,6
1-197	6,6
4-059	6,6
3-004	6,6
1-068	6,6
1-258	6,5
1-112	6,5
1-180	6,5
1-266	6,5
5-028	6,5
1-142	6,5
1-030	6,5
1-278	6,5
5-027	6,5
1-111	6,5
5-040	6,5
1-203	6,5
1-022	6,5
3-008	6,5
2-002	6,5
4-047	6,5
1-006	6,5
1-058	6,5
1-191	6,5
4-032	6,4
1-012	6,4
1-157	6,4
1-007	6,4
1-279	6,4
1-105	6,4

Nº de Col.	GTPgS - hR2 PAM pEC50
4-012	6,4
4-038	6,4
5-037	6,4
1-237	6,4
4-040	6,4
1-221	6,4
1-162	6,4
4-033	6,4
5-025	6,4
5-034	6,4
1-190	6,4
1-247	6,4
1-005	6,4
1-073	6,4
1-064	6,4
1-120	6,3
2-011	6,3
1-026	6,3
1-027	6,3
1-158	6,3
1-159	6,3
1-192	6,3
1-253	6,3
1-167	6,3
5-013	6,3
1-171	6,3
1-291	6,3
1-094	6,3
1-230	6,3
4-018	6,3

Nº de Col.	GTPgS - hR2 PAM pEC50
1-121	6,3
1-156	6,3
1-154	6,3
4-043	6,3
5-047	6,3
1-227	6,3
4-051	6,3
1-169	6,3
2-040	6,3
1-066	6,3
2-045	6,3
4-005	6,3
4-006	6,3
4-009	6,3
1-155	6,3
1-095	6,2
1-113	6,2
1-021	6,2
1-136	6,2
1-284	6,2
1-126	6,2
1-119	6,2
1-106	6,2
1-160	6,2
1-233	6,2
2-042	6,2
1-116	6,2
2-053	6,2
1-211	6,2
2-016	6,2

Nº de Col.	GTPgS - hR2 PAM pEC50
1-161	6,2
1-003	6,2
1-036	6,2
2-005	6,2
1-057	6,2
1-273	6,2
1-071	6,2
4-052	6,2
1-070	6,2
1-019	6,1
1-239	6,1
1-214	6,1
1-085	6,1
1-170	6,1
5-017	6,1
1-282	6,1
1-283	6,1
2-028	6,1
2-013	6,1
1-138	6,1
2-025	6,1
1-255	6,1
1-032	6,1
1-245	6,1
1-090	6,1
1-186	6,1
1-038	6,1
2-020	6,1
2-014	6,1
1-035	6,1

Nº de Col.	GTPgS - hR2 PAM
	pEC50
2-039	6,1
5-023	6,1
1-114	6,0
1-210	6,0
1-017	6,0
1-263	6,0
1-135	6,0
1-137	6,0
1-099	6,0
2-035	6,0
5-043	6,0
1-122	6,0
1-288	6,0
5-044	6,0
4-042	6,0
1-185	6,0
1-212	6,0
4-057	6,0
1-048	6,0
2-037	6,0
2-010	6,0
1-060	6,0
2-007	6,0
1-063	6,0
5-001	6,0
1-065	6,0
1-046	5,9
1-260	5,9
1-251	5,9
1-275	5,9

Nº de Col.	GTPgS - hR2 PAM pEC50
1-265	5,9
5-032	5,9
1-208	5,9
1-209	5,9
1-055	5,9
1-234	5,9
1-220	5,9
1-224	5,9
2-015	5,9
2-021	5,9
1-198	5,9
5-007	5,9
4-027	5,9
4-030	5,9
1-292	5,9
1-302	5,9
3-002	5,9
3-012	5,9
1-034	5,9
1-102	5,8
1-097	5,8
1-096	5,8
1-009	5,8
1-274	5,8
1-174	5,8
1-280	5,8
5-015	5,8
1-250	5,8
1-166	5,8
1-264	5,8

Nº de Col.	GTPgS - hR2 PAM pEC50
1-262	5,8
5-049	5,8
1-091	5,8
5-035	5,8
4-026	5,8
5-021	5,8
2-049	5,8
2-044	5,8
4-061	5,8
1-189	5,8
3-010	5,8
1-231	5,8
2-008	5,8
4-007	5,8
1-072	5,8
4-008	5,8
1-296	5,8
1-082	5,7
1-052	5,7
1-103	5,7
1-223	5,7
1-011	5,7
1-118	5,7
1-104	5,7
5-014	5,7
1-016	5,7
1-236	5,7
2-024	5,7
4-010	5,7
2-033	5,7

Nº de Col.	GTPgS - hR2 PAM pEC50
1-300	5,7
1-304	5,7
4-013	5,7
1-132	5,7
1-225	5,7
1-037	5,7
5-005	5,7
5-009	5,7
2-004	5,7
4-001	5,7
4-048	5,7
1-018	5,6
1-110	5,6
1-047	5,6
1-088	5,6
1-276	5,6
1-254	5,6
2-018	5,6
1-031	5,6
1-033	5,6
1-131	5,6
4-044	5,6
3-006	5,6
2-050	5,6
5-024	5,6
1-293	5,6
1-056	5,6
1-069	5,6
1-217	5,6
1-179	5,5

Nº de Col.	GTPgS - hR2 PAM pEC50
1-101	5,5
1-215	5,5
1-238	5,5
1-128	5,5
1-182	5,5
1-089	5,5
1-303	5,5
1-248	5,5
1-107	5,5
4-034	5,5
2-051	5,5
2-001	5,5
2-046	5,5
1-294	5,5
2-041	5,5
4-004	5,5
4-053	5,5
1-067	5,4
1-015	5,4
1-087	5,4
1-298	5,4
1-201	5,4
1-246	5,4
1-184	5,4
1-286	5,4
2-034	5,4
1-249	5,4
1-139	5,4
1-177	5,4
1-242	5,4

Nº de Col.	GTPgS - hR2 PAM pEC50
2-055	5,4
1-306	5,4
5-045	5,4
5-006	5,4
3-013	5,4
2-052	5,4
1-295	5,4
1-078	5,4
4-002	5,4
1-076	5,4
4-003	5,4
1-079	5,3
1-059	5,3
1-176	5,3
1-053	5,3
5-004	5,3
1-125	5,3
1-109	5,3
1-193	5,3
4-023	5,3
2-047	5,3
2-054	5,3
4-056	5,3
2-038	5,3
1-074	5,3
1-075	5,3
4-063	5,3
1-081	5,2
1-252	5,2
1-178	5,2

Nº de Col.	GTPgS - hR2 PAM pEC50
1-108	5,2
5-011	5,2
2-019	5,2
1-172	5,2
5-030	5,2
5-031	5,2
1-244	5,2
4-024	5,2
3-007	5,2
2-027	5,2
1-061	5,2
2-009	5,2
5-002	5,2
1-062	5,2
1-084	5,1
1-050	5,1
5-010	5,1
1-127	5,1
1-098	5,1
1-181	5,1
1-281	5,1
1-222	5,1
1-235	5,1
5-029	5,1
1-129	5,1
1-229	5,1
1-213	5,1
3-011	5,1

E. Ejemplos de composición

Como se usa en estos ejemplos, "ingrediente activo" se refiere a un compuesto final de la Fórmula general (i), sales de adición de ácido o base farmacéuticamente aceptables del mismo, las formas estereoquímicamente isoméricas del mismo, la forma N-óxido del mismo, una sal de amonio cuaternaria y profármacos del mismo.

Ejemplos típicos de recetas para la formulación de la invención son los siguientes:

1. Comprimidos

10

Ingrediente activo de 5 a 50 mg

Fosfato dicálcico 20 mg
Lactosa 30 mg
Talco 10 mg

Estearato de magnesio 5 mg

Almidón de patata añadir 200 mg

En este ejemplo, el ingrediente activo puede ser reemplazado por la misma cantidad de cualquiera de los compuestos de acuerdo con la presente invención, en particular por la misma cantidad de cualquiera de los compuestos de ejemplo.

2. Suspensión

5

10

Se prepara una suspensión acuosa para administración oral, de modo que cada 1 ml contiene de 1 a 5 mg de uno de los compuestos activos, 50 mg de carboximetilcelulosa sódica, 1 mg de benzoato sódico, 500 mg de sorbitol y agua, añadir 1 ml.

3. Invectables

Una composición parenteral se prepara agitando 1,5 % en peso del ingrediente activo de la invención en 10 % en volumen de propilenglicol y agua.

4. Pomada

Ingrediente activo de 5 a 1.000 mg

Alchol estearílico 3 g Lanolina 5 g Petróleo blanco 15 g

Agua añadir 100 g

20 En este ejemplo, el ingrediente activo puede ser reemplazado por la misma cantidad de cualquiera de los compuestos de acuerdo con la presente invención, en particular por la misma cantidad de cualquiera de los compuestos de ejemplo.

Las variaciones razonables no se deben considerar una desviación del alcance de la invención. Por tanto, para los expertos en la técnica será obvio que la invención descrita puede variar de muchos modos.

REIVINDICACIONES

1. Compuesto de acuerdo con la Fórmula general (I),

5

10

20

30

40

45

50

55

una sal de adición de ácido o de base farmacéuticamente aceptable del mismo, una forma estereoquímicamente isomérica de los mismos, una forma N-óxido de los mismos o una sal de amonio cuaternaria de los mismos, en la que:

 V^1 se selecciona del grupo de un enlace covalente y un radical hidrocarburo bivalente saturado o insaturado, de cadena lineal o ramificada que tiene de 1 a 6 átomos de carbono;

M¹ se selecciona del grupo de hidrógeno; cicloalquilo C₃-7: arilo; alquilcarbonilo; alquiloxi; ariloxi; arilalquiloxi; arilcarbonilo; hexahidrotiopiranilo y Het¹.

L se selecciona del grupo de un enlace covalente; -O-; -OCH $_2$ CH $_2$ C; -OCH $_2$ CH $_2$ O-; -OCH $_2$ CH $_2$ O-; -OCH $_2$ CH $_2$ OCH $_2$; -S-; -NR 7 -; -NR 7 CH $_2$ -; -NR 7 CH $_2$ -; -NR 7 CH $_2$ -; -OCH $_2$ CH $_2$ -; -CH $_2$ CH $_2$ -; -CH $_2$ -; -CH $_2$ -; -CH $_2$ CH $_2$ -; -CH $_2$ -CH $_2$ -; -

R² y R³ se seleccionan cada uno independientemente uno de otro de hidrógeno, halo o alquilo;

A se selecciona del grupo de piperazinilo y piperidinilo, en el que cada radical está opcionalmente sustituido con n radicales R⁴, en el que n es un número entero igual a cero, 1, 2 o 3;

R⁴ se selecciona del grupo de halo; ciano, hidroxi; oxo; formilo; etanoílo; carboxilo; nitro; tio; alquilo; alquiloxi; alquiloxiaquilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxi; polialquilo C₁₋₃; polihaloalquiloxiC₁₋₃, polihaloalquiltio C₁₋₃, alquiltio; alquilsulfonilo; Het³-alquilo; Het³-alquilo; Het³-oxialquilo; Het³-oxialquiloxi; Het³-carbonilo: Het³-carbonilaurilo; Het³-tioalquilo; Het³-sulfonilo; ariloxi; ariloxialquilo; arilalquiloxi; arilalquenilo; arilcarbonilalquilo; ariltioalquilo; arilsulfonilo; -NR^aR^b; alquil-NR^aR^b; O-alquilNR^aR^b; -C(=O)-NR^aR^b; -C(=O)-alquil-NR^aR^b y O-alquilo-C(=O)-NR^aR^b; en los que R^a y R^b se seleccionan del grupo de hidrógeno, alquilo, alquilcarbonilo, arilalquilo, alquiloxialquilo, Het³, Het³alquilo, alquiloxialquilo, NR^cR^d y C(=O)alqui-NR^cR^d, en los que R^c y R^d se seleccionan del grupo de hidrógeno, alquilo y alquilocarbonilo; o dos radicales R⁴ pueden combinarse para formar un radical bivalente -X¹-C₁₋₆-X²- en el que C₁₋₆ es un radical hidrocarburo saturado o insaturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono y X¹ y X² son, cada uno de forma independiente, C, O o NH; en el que cada radical bivalente está sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquiloC₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo y etanoílo;

Het¹ se selecciona del grupo de tetrahidropiranilo y piridinilo; en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C1-3, polihaloalquiloC1-3, polihaloalquiloC1-3, polihaloalquiloxiC1-3, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo y alquiloxiC1-3;

Het³ se selecciona del grupo de piidinilo; pirimidinilo; piridazinilo; pirazinilo; piperidinilo; pirrolidinilo; piperazinilo; tetrazolilo; tetrazolilo; indolilo; tienilo; furanilo; tetrahidropiranilo; tetrahidrotiopiran-1,1-dioxide; tiazolilo; tiadiazolilo; isotiazolilo; oxazolilo; morfolinilo; oxadiazolilo; isoxazolilo; pirazolilo; benzoimidazolilo; benzoimidazolilo; benzoimidazolilo; benzoimidazolilo; benzoimidazolilo; benzoimidazolilo; benzoimidazolilo; benzoimidazolilo; indolilo; indolinilo; quinolilo; quinoxalilo; quinoxalilo; ftalazinilo; benzoimidazolilo; y quinazolilo; en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes cada uno independientemente de otro, seleccionado del grupo de halo, alquilo C_{1-6} , polihaloalquilo C_{1-3} , ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, tetanoílo, fenilo, pirrolidinilo, piperidinilo, morfolinilo, mono y di(alquil)amino y alquiloxi C_{1-3} ;

arilo es naftilo, fenilo o bifenilo; en el que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C_{1-3} , polihaloalquiloxi C_{1-3} , ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, etiloxicarbonilo y alquiloxi C_{1-3} ;

alquilo es un radical hidrocarburo saturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono; o es un radical hidrocarburo saturado cíclico que tiene de 3 a 7 átomos de carbono; o es un radical hidrocarburo saturado de 4 a 12 átomos de carbono, que comprende al menos un radical hidrocarburo saturado lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico saturado que tiene de 3 a 7 átomos de carbono; en los que cada átomo de carbono puede estar sustituido opcionalmente con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, carbamoílo, fenilo y un radical bivalente -OCH₂CH₂O-; y

- alquenilo es un radical hidrocarburo lineal o ramificado que tiene hasta 6 átomos de carbono que contiene uno o más dobles enlaces; o es un radical hidrocarburo cíclico que tiene de 3 a 7 átomos de carbono que contiene uno o más dobles enlaces; o es un radical hidrocarburo que tiene de 4 a 12 átomos de carbono, que contiene uno o más dobles enlaces, que comprende al menos un radical hidrocarburo lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico que tiene de 3 a 7 átomos de carbono; en los que opcionalmente cada átomo de carbono puede estar sustituido con uno o más radicales seleccionados del grupo de halo, polihaloalquilo C₁₋₃, ciano, hidroxi, amino, oxo, carboxilo, nitro, tio, formilo, etanoílo, carbamoílo, fenilo y un radical bivalente OCH₂CH₂O-.
- 2. Compuesto de acuerdo con la reivindicación 1, que se caracteriza porque V¹ se selecciona del grupo de un enlace covalente,, -CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; -CH₂-CH₂-; y -CH₂-; y -CH
- El compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 2 en el que M¹ s selecciona del grupo de hidrógeno, cicloalquilo C₃₋₇, fenilo; bifenilo; feniloxi; benciloxi; y piridinilo; en el que uno cualquiera de dichos radicales está opcionalmente sustituido con uno o más radicales seleccionados del grupo de halo, alquilo C₁₋₃; polihaloalquilo C₁₋₃; y alquiloxi C₁₋₃;
- 35 5. El compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 4, en el que R² y R³ son, cada uno de forma independiente, hidrógeno o metilo.
- - 7. El compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 6, que se caracteriza porque:
- R⁴ se selecciona del grupo de halo; ciano, hidroxi; etanoílo; alquiloxi; alquiloxi; alquiloxialquilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarboniloxi; alquiloxi; polialquilo C₁₋₃; polihaloalquiloxiC₁₋₃, polihaloalquiltio C₁₋₃, alquiltio; alquilsulfonilo; Het³; Het³-alquilo; Het³-oxi; Het³-oxialquilo; Het³-alquiloxi; Het³-oxialquiloxi; Het³-carbonilo: Het³-carbonilaurilo; Het³-tio; Het³-tioalquilo; Het³-sulfonilo; arilalquilo; Alquil-NR^aR^b; O-alquil-NR^aR^b; -C(=O)-Alquil-NR^aR^b; -C(=O)-Alquil-NR^aR^b; O-alquiloxialquilo, Het³, Het³-alquilo, alquiloxialquilo, alquiloxialquilo, Het³, Het³-alquilo, alquiloxialquilo, alquiloxialquiloxialquilo, alquiloxixialquiloxialquiloxialquiloxialquiloxialquiloxialquiloxialquiloxi
- dos radicales R^4 se pueden combinar para formar un radical bivalente $-X^1$ - C_{1-6} $-X^2$ -, en el que C_{1-6} es un radical hidrocarburo saturado o insaturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono, y X^1 y X^2 son, cada uno de forma independiente, C u O.
- 8. El compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 7, que se caracteriza porque dos radicales R^4 se pueden combinar para formar un radical bivalente seleccionado del grupo de - CH_2CH_2 -O-; - $O-CH_2CH_2$ -O-, y - $O-CH_2CH_2$ -O-.
- 9. El compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 8, que se caracteriza porque Het¹ se selecciona del grupo de tetrahidropiranilo y piridinilo; en el que cada radical Het¹ está opcionalmente sustituido con 1,
 2 o 3 sustituyentes de polihaloalquilo C_{1:3}.

- 10. El compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 9, que se caracteriza porque Het³ se selecciona del grupo de piridinilo; pirimidinilo; piridazinilo; pirazinilo; piperidinilo; pirrolidinilo; piperazinilo; tetrahidrotiopiran-1,1-dióxido; tiazolilo; oxazolilo; morfolinilo; oxadiazolilo; imidazolilo; benzoxazolilo, benzotienilo; benzofuranilo; 1,2,3,4-tetrahidro-isoquinolinilo; indolinilo; indolinilo; ftalazinilo y benzo[1,3]dioxolilo, en los que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes cada uno independientemente de otro, seleccionado del grupo de halo, alquilo C1₋₆, polihaloalquiloC1₋₃, ciano, hidroxi, oxo, etanoílo, fenilo, pirrolidinilo, pirridinilo, morfolinilo, mono y di(alquil)amino y alquiloxi C1-3.
- 11. El compuesto de acuerdo con la reivindicación 1, que se caracteriza porque:

10

20

30

45

- V^1 se selecciona del grupo de un enlace covalente,, -CH₂-; -CH₂-CH₂-; -
- M¹ se selecciona del grupo de hidrógeno, cicloalquilo C₃₋₇, fenilo; bifenilo; feniloxi; benciloxi; y piridinilo; en el que M¹ está opcionalmente sustituido con uno o más radicales seleccionados del grupo de halo, alquilo C₁₋₃; polihaloalquiloxi C₁₋₃; polihaloalquiloxi C₁₋₃; y alquiloxi C₁₋₃;
 - L se selecciona del grupo de un enlace covalente; -O-; -OCH₂-; -OCH₂CH₂-; -OCH₂CH₂O-; -OCH₂CH₂OCH₂; -NR⁷-; -NR₇CH₂-; -NR⁷ ciclo C₃₋₇; -OCH₂CH₂N(R⁷)CH₂-; -CH₂CH₂-; -C≡C-; -C-O-; y -CH=CH-; en los que cada uno de R⁷, independientemente uno de otro, se selecciona del grupo de hidrógeno y alquilo C₁₋₃;
 - R² y R³ se seleccionan cada uno independientemente uno de otro de hidrógeno, halo o alquilo;
- A se selecciona del grupo de piperazinilo y piperidinilo, en el que cada radical está opcionalmente sustituido con n 25 radicales R⁴, en el que n es un número entero igual a cero o 1;
 - R^4 se selecciona del grupo de halo; ciano, hidroxi; etanoílo; alquiloxi; alquiloxi; alquiloxialquilo; alquiloxicarbonilo; alquiloxicarbonilo; alquiloxicarboniloxi; alquiloxicarbonilalquiloxi; polialquilo $C_{1\text{-}3}$; polihaloalquiloxi $C_{1\text{-}3}$, polihaloalquiltio $C_{1\text{-}3}$, alquiltio; alquilsulfonilo; Het^3 -alquilo; Het^3 -oxi; Het^3 -oxialquilo; Het^3 -alquiloxi; Het^3 -carbonilo: Het^3 -carbonilaurilo; Het^3 -tio; Het^3 -tioalquilo; Het^3 -sulfonilo; Het^3 -sulfonilo; arilalquilo; arilalquiloxi; arilalquiloxi; arilalquiloxi; arilalquiloxi; arilalquiloxi; arilalquiloxi; arilalquiloxi, arilalq
- en el que R^a y R^b se seleccionan del grupo de hidrógeno, alquilo, alquilcarbonilo, arilalquilo, alquiloxialquilo, Het³, Het³alquilo, alquilsulfonilo, alquil-NR^cR^d y C(=O)alquilo-NR^cR^d, en el que R^c y R^d se seleccionan del grupo de hidrógeno, alquilo y alquilcarbonilo; o dos radicales R⁴ pueden combinarse para formar un radical bivalente seleccionado del grupo -CH₂CH₂-O-; -O-CH₂-O-; y -O-CH₂CH₂-O-;
- Het¹ se selecciona del grupo de tetrahidropiranilo y piridinilo; en el que cada radical Het¹ está opcionalmente sustituido con 1, 2 o 3 sustituyentes de polihaloalquilo C₁₋₃;
 - Het³ se selecciona del grupo de piridinilo; pirimidinilo; piridazinilo; pirazinilo; piperidinilo; piperazinilo; triazolilo; tetrahidropiranilo; tetrahidrotiopiran-1,1-dióxido; tiazolilo; oxazolilo; morfolinilo; oxadiazolilo; imidazolilo; benzoxazolilo, benzotienilo; benzofuranilo; 1,2,3,4-tetrahidro-isoquinolinilo; indolino; indolino; ftalazinilo y benzo[1,3]dioxolilo, en los que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes cada uno independientemente de otro, seleccionado del grupo de halo, alquilo C1-6, polihaloalquiloC1-3, ciano, hidroxi, oxo, etanoílo, fenilo, pirrolidinilo, pirridinilo, morfolinilo, mono y di(alquil)amino y alquiloxi C1-3;
- arilo es fenilo o bifenilo; en los que cada radical está opcionalmente sustituido con 1, 2 o 3 sustituyentes, cada uno independientemente del otro, seleccionados del grupo de halo, alquilo C₁₋₃, polihaloalquiloC₁₋₃, polihaloalquiloxiC₁₋₃, ciano, nitro, etiloxicarbonilo y alquiloxi C₁₋₃; y
- alquilo es un radical hidrocarburo saturado, lineal o ramificado que tiene de 1 a 6 átomos de carbono; o es un radical hidrocarburo saturado cíclico que tiene de 3 a 7 átomos de carbono; o es un radical hidrocarburo saturado de 4 a 12 átomos de carbono, que comprende al menos un radical hidrocarburo saturado lineal o ramificado que tiene de 1 a 6 átomos de carbono y al menos un radical hidrocarburo cíclico saturado que tiene de 3 a 7 átomos de carbono; en los que cada átomo de carbono puede estar sustituido opcionalmente con uno o más radicales seleccionados del grupo de ciano, hidroxi, carboxilo, carbamoílo, fenilo y un radical bivalente -OCH₂CH₂O-.
- 12. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 11, en el que dicho compuesto es

(compuesto 2-006).

10

20

25

30

35

45

50

5 13. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 11, en el que dicho compuesto es 3-ciano-1-ciclopropilmetil-4-(4-fenil-piperidin-1-il)-piridin-2(1H)-ona (compuesto 4-047).

14. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 13 que existe como isómeros ópticos, en el que dicho compuesto es una mezcla racémica o el isómero óptico individual.

15. Una composición farmacéutica que comprende una cantidad terapéuticamente eficaz de un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 14 y un vehículo y/o excipiente farmacéuticamente aceptable.

15 16. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 14 para su uso como medicamento.

17. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 14 o una composición farmacéutico de acuerdo con la reivindicación 14 para usar en el tratamiento o prevención de una afección en un mamífero, incluido un ser humano, cuyo tratamiento o prevención se ve afectado o facilitado por el efecto neuromodulador de los moduladores alostéricos positivos para mGluR2.

18. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 14 o una composición farmacéutico de acuerdo con la reivindicación 14 para usar en el tratamiento o prevención, mejora, control o reducción del riesgo de varios trastornos neurológicos y psiquiátricos asociados con la disfunción de glutamato en un mamífero, incluido un ser humano, cuyo tratamiento o prevención se ve afectado o facilitado por el efecto neuromodulador de los moduladores alostéricos positivos para mGluR2.

19. Un compuesto para usar de acuerdo con una cualquiera de las reivindicaciones 17 a 18, en el que la afección o trastorno es un trastorno del sistema nervioso central seleccionado del grupo de trastornos de ansiedad, trastornos psicóticos, trastornos de personalidad, trastornos relacionados con sustancias, trastornos de la alimentación, trastornos del estado de ánimo, migraña, epilepsia o trastornos convulsivos, trastornos de la infancia (p. ej., trastorno de déficit de atención/hiperactividad), trastornos cognitivos, neurodegeneración, neurotoxicidad e isquemia.

20. Un compuesto para usar de acuerdo con la reivindicación 19, en que el trastorno del sistema nervioso central es:

un trastorno de ansiedad seleccionado del grupo de agorafobia, trastorno de ansiedad generalizada (GAD), trastorno obsesivo compulsivo (TOC), trastorno de pánico, trastorno por estrés postraumático (PTSD), fobia social y otras fobias:

40 un trastorno psicótico seleccionado del grupo de esquizofrenia, trastorno delirante, trastorno esquizoafectivo, trastorno esquizofreniforme y trastorno psicótico provocado por sustancias;

un trastorno de la personalidad seleccionado del grupo de trastorno obsesivo compulsivo de la personalidad y trastorno esquizotípico, esquizoide;

un trastorno relacionado con sustancias seleccionado del grupo de abuso de alcohol, dependencia de alcohol, abstinencia de alcohol, trastorno psicótico provocado por alcohol, dependencia de anfetamina, abstinencia de anfetamina, dependencia de cocaína, abstinencia de cocaína, dependencia de nicotina, abstinencia de nicotina, dependencia de opioides y abstinencia de opioides;

un trastorno de la alimentación seleccionado del grupo de anorexia nerviosa y bulimia nerviosa;

un trastorno del estado de ánimo seleccionado del grupo de trastornos bipolares (I y II), trastorno ciclotímico,

depresión, trastorno distímico, trastorno depresivo mayor y trastorno del estado de ánimo inducido por sustancias; migraña;

- 5 epilepsia o un trastorno convulsivo seleccionado del grupo de epilepsia no convulsiva generalizada, epilepsia convulsiva generalizada, estado epiléptico de pequeño mal, estado epiléptico de gran mal, epilepsia parcial con o sin deterioro de la consciencia, espasmos infantiles, epilepsia parcial continua y otras formas de epilepsia;
- un trastorno cognitivo seleccionado del grupo de delirio, delirio persistente provocado por sustancias, demencia, demencia debida a enfermedad por VIH, demencia debida a la enfermedad de Huntington, demencia debida a la enfermedad de Parkinson, demencia del tipo Alzheimer, demencia persistente provocada por sustancias y deterioro cognitivo leve.
- 21. Un compuesto para usar de acuerdo con la reivindicación 19, en el que trastorno del sistema nervioso central se selecciona del grupo de ansiedad, esquizofrenia, migraña, depresión y epilepsia.
 - 22. Un compuesto para usar de acuerdo con una cualquiera de las reivindicaciones 17 a 21, en el que el modulador alostérico positivo para mGluR2 tiene una CE_{50} de aproximadamente $1\mu M$ o inferior.
- 20 23. Uso de un compuesto de acuerdo con las reivindicaciones 1 a 14 para la preparación de un marcador para la obtención de imágenes de un receptor mGluR2.
- 24. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1 a 14 en combinación con un agonista ortostérico de mGluR2 para tratar o prevenir una afección como se cita en una cualquiera de las reivindicaciones 16
 a 20, en un mamífero, incluido un ser humano, cuyo tratamiento o prevención se ve afectado o facilitado por el efecto neuromodulador de los moduladores alostéricos mGluR2.