

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 394 508

51 Int. Cl.:

C12N 15/53 (2006.01)
C12N 15/54 (2006.01)
C12N 15/60 (2006.01)
C12N 15/61 (2006.01)
C12N 1/21 (2006.01)
C12P 7/66 (2006.01)
C12P 17/06 (2006.01)
C12P 23/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea:
 (97) Fecha y número de publicación de la solicitud europea:
 (97) Fecha y número de publicación de la solicitud europea:
 (98) Decha y número de publicación de la solicitud europea:
 (97) Decha y número de publicación de la solicitud europea:
 (98) Decha y número de publicación de la solicitud europea:
 (98) Decha y número de publicación de la solicitud europea:
 (98) Decha y número de publicación de la solicitud europea:
 (98) Decha y número de publicación de la solicitud europea:
 (98) Decha y número de publicación de la solicitud europea:
- (54) Título: Producción de isoprenoides
- (30) Prioridad:

19.08.2004 EP 04019646

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 01.02.2013

(73) Titular/es:

DSM IP ASSETS B.V. (100.0%) HET OVERLOON 1 6411 TE HEERLEN, NL

(72) Inventor/es:

BERRY, ALAN; MANHART, CHRISTIAN y SIMIC, PETRA

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Producción de isoprenoides

50

- La presente invención se refiere a un procedimiento para la producción de isoprenoides, en particular coenzima Q-10, por parte de microorganismos. Más particularmente, la presente invención se refiere a un procedimiento para la producción incrementada de coenzima Q-10 por parte de microorganismos del género *Rhodobacter*, preferiblemente de la especie *R. sphaeroides*, que han sido transformados con uno o más genes del operón mevalonato (*mev*) procedente de un microorganismo diferente, preferiblemente del género *Paracoccus*, más preferiblemente de la especie *P. zeaxanthinifaciens*, en donde el operón *mev* está mutado, conduciendo a una producción incrementada de coenzima Q-10. También se incluyen secuencias que portan una mutación de este tipo, así como un microorganismo que porta un operón *mev* mutado de este tipo.
- Coenzima Q-10 (2,3-dimetoxi-dimetil-6-decaprenil-1,4-benzoquinona), también conocida como ubiquinona-10, es una benzoquinona soluble en lípidos con una cadena lateral de isoprenoide compuesta por diez unidades de isoprenoide C-5. La coenzima Q-10 (abreviada aquí en lo que sigue como CoQ10) se encuentra en microorganismos y plantas, así como en animales. Es la forma más frecuente de ubiquinona en seres humanos y en la mayoría de los mamíferos. Se establece y existe una evidencia creciente de que CoQ10 es un factor importante en el estado de salud de seres humanos y de su protección frente a enfermedades. Los efectos beneficiosos médicos y de salud de CoQ10 han sido asociados con sus dos funciones fisiológicas principales, a saber el funcionar como un cofactor esencial de la cadena de transporte mitocondrial de electrones (que está acoplada a la síntesis de adenosina trifosfato) y de actuar como un antioxidante soluble en lípidos.
- Los beneficios de salud de CoQ10 han conducido a una importancia comercial incrementada de este compuesto.

 CoQ10 se puede producir por síntesis química o mediante fermentación utilizando microorganismos. Estos microorganismos pueden ser productores naturales de CoQ10 que han sido mejorados para la producción de CoQ10 mediante ingeniería genética, o pueden no producir de forma natural CoQ10, sino haber sido manipulados mediante ingeniería genética para ser capaces de sintetizarla.
- En bacterias, el anillo quinoide de ubiquinonas se deriva de corismato, un compuesto intermedio principal en la biosíntesis de compuestos aromáticos, mientras que la cola isoprenoide de ubiquinonas se deriva del compuesto C-5 pirofosfato de isopentenilo (IPP siglas en inglés). La longitud de la cola isoprenoide añadida al anillo quinoide depende de la enzima preniltransferasa particular que existe en la bacteria. Por ejemplo, en *Escherichia coli*, la octaprenil pirofosfato sintasa cataliza la formación de pirofosfato de octaprenilo (C-40) a partir de pirofosfato de farnesilo (FPP siglas en inglés, C-15) y cinco unidades IPP. La adición de esta molécula al anillo quinoide resulta en la formación de ubiquinona-8. En especies de *Paracoccus* y *Rhodobacter*, la decaprenil pirofosfato (DPP- siglas en inglés) sintasa cataliza la formación de DPP (C-50) a partir de FPP (C-15) y siete unidades IPP. La adición de DPP al anillo quinoide resulta entonces en la formación de ubiquinona-10 (CoQ10).
- En la naturaleza se conocen dos vías diferentes para la biosíntesis de IPP (Figura 1). La vía del mevalonato, como su nombre implica, utiliza mevalonato como compuesto intermedio principal y ha sido bien estudiada en eucariotas. Se pensó durante muchos años que la vía del mevalonato era la vía universal de la síntesis de IPP en la naturaleza. Sin embargo, en la última década se descubrió una segunda vía de la biosíntesis de IPP, la denominada vía del no mevalonato o la vía MEF (ya que tiene 2C-metil-D-eritritol-4-fosfato como un compuesto intermedio). La vía del MEF ha demostrado hasta ahora existir en muchas eubacterias y en el compartimiento plástido de plantas superiores.
 - En base a la presencia en *R. spheroides* del gen *yaeM* (ahora denominado *ispC*) que codifica 1-desoxi-D-xilulosa-5-fosfato reductoisomerasa, y la tras la inspección de la secuencia del genoma casi completada de *R. sphaeroides*, parece que esta bacteria utiliza exclusivamente la vía del MEF para la biosíntesis de iPP. Una evidencia adicional que sustenta el uso exclusivo de la vía del MEF en *R. sphaeroides* es el hallazgo de que una especie estrechamente relacionada, *Rhodobacter capsulatus*, utiliza sólo la vía del MEF para la biosíntesis de isoprenoides.
- El documento WO 02/26933 A1 describe métodos para aumentar la producción de CoQ10 en *Rhodobacter sphaeroides*, sobre-expresando unos pocos genes nativos y/o heterólogos que codifican algunas de las enzimas de la vía del MEF. Sin embargo, la sobre-expresión de estos genes resultó en sólo una mejora muy modesta en la producción de CoQ10.
 - Tal como se ha mencionado arriba, algunas bacterias utilizan solamente la vía del mevalonato para la biosíntesis de IPP. *Paracoccus zeaxanthinifaciens* es un ejemplo de una bacteria de este tipo. En *P. zeaxanthinifaciens*, los genes

que codifican las cinco enzimas de la vía del mevalonato, más el gen que codifica la IPP isomerasa (véase la Figura 1) están formando racimos juntos en una sola unidad de transcripción en el cromosoma, es decir, un operón denominado aquí en lo que sigue el operón mevalonato (mev) (Hümbelin et al., Gene 297, 129-139, 2002).

Se ha encontrado ahora que la producción de isoprenoides, en particular CoQ10 puede aumentarse significativamente mediante la introducción de un operón *mev* mutado en un microorganismo que es por naturaleza deficiente en uno o más genes del operón *mev*, es *decir*, que utiliza de forma natural la vía del no mevalonato para la producción de isoprenoides, en donde se puede introducir el operón *mev* completo o uno o más genes de dicho operón *mev* que comprenden una o más mutaciones. La una o más mutaciones pueden ser, por ejemplo, en uno o en la totalidad de los siguientes genes: *mvaA* que codifica hidroximetilglutaril-CoA reductasa, *idi* que codifica isopentenil difosfato isomerasa, *hcs* que codifica hidroximetilglutaril-CoA sintasa, *mvk* que codifica mevalonato quinasa, *pmk* que codifica fosfomevalonato quinasa y *mvd* que codifica difosfomevalonato descarboxilasa.

Además de ello, se ha encontrado que la producción de isoprenoides, en particular CoQ10 puede ser adicionalmente incrementada mediante la introducción de una secuencia de ADN que codifica una proteína con una actividad de decaprenil difosfato sintasa en dicho microorganismo recombinante.

15

20

25

40

45

50

55

60

Así, la presente invención proporciona un procedimiento para la producción de isoprenoides de acuerdo con la reivindicación 1, que comprende las etapas: a. Introducir en un microorganismo seleccionado del género *Rhodobacter* una secuencia de ADN que codifica una enzima con actividad de decaprenil difosfato sintasa y una secuencia de polinucleótidos que comprende genes del operón *mev* de acuerdo con SEQ ID NO: 23, b. cultivar el microorganismo de la etapa (a) bajo condiciones que permitan la producción de isoprenoides.

La mejora en la producción de isoprenoides se puede medir, por ejemplo, mediante una comparación de la producción en un microorganismo de tipo salvaje que no porta dichas secuencias de polinucleótidos, es decir, no utilizando la vía del *mev*, con el microorganismo que porta una secuencia de polinucleótidos tal como de la presente invención.

En una realización, la presente invención está dirigida a una secuencia de polinucleótidos que se puede obtener de SEQ ID NO: 1 ó 2, es decir, que comprende genes del operón *mev* de tipo salvaje, o un fragmento del mismo, en donde el fragmento tiene la actividad de al menos uno de los genes del operón *mev*, *p. ej., mvaA* que codifica hidroximetilglutaril-CoA reductasa, *idi* que codifica isopentenil difosfato isomerasa, *hcs* que codifica hidroximetilglutaril-CoA sintasa, *mvk* que codifica mevalonato quinasa, *pmk* que codifica fosfomevalonato quinasa y *mvd* que codifica difosfomevalonato descarboxilasa. Preferiblemente, la secuencia de polinucleótidos mutada se representa por SEQ ID NO: 23 o un fragmento de la misma, que conduce a un incremento, *p. ej.*, en la producción de CoQ10 cuando está presente en un microorganismo.

En un aspecto, la presente invención se refiere a una secuencia de ADN que comprende un operón *mev* que porta una mutación, estando representada dicha secuencia de ADN por SEQ ID NO:23.

La expresión "producción mejorada de isoprenoides", en particular producción mejorada de CoQ10, tal como se utiliza en esta memoria, significa un incremento de al menos aproximadamente 10% obtenido mediante un microorganismo que porta un polinucleótido que comprende una o más mutaciones según se describe arriba, cuando se compara con el microorganismo respectivo que porta el polinucleótido de tipo salvaje respectivo. La producción de los isoprenoides se mide por métodos convencionales, *p. ej.* HPLC (véase el Ejemplo 2) y se puede expresar en mg/l o como mg/ml/DO₆₀₀ (véase el Ejemplo 5).

El operón *mev* completo o uno o más genes del mismo que portan una o más mutaciones puede, por ejemplo, ser sintetizado totalmente o puede ser aislado parcialmente y sintetizado. Un operón *mev* aislado o uno o más genes del mismo pueden proceder de cualquier microorganismo utilizando la vía del mevalonato, es decir, en donde uno o más genes incluidos dentro de dicho operón se producen de forma natural. Preferiblemente, el microorganismo pertenece al género *Paracoccus*, más preferiblemente de *Paracoccus zeaxanthinifaciens*, tal como, *p. ej., Parcoccus sp* R114 o *P. zeaxanthinifaciens* ATCC 21588. Por la expresión anterior quedan también comprendidas variaciones alélicas y mutantes de la secuencia de ADN del operón que son totalmente funcionales. El operón *mev* completo de *P. zeaxanthinifaciens* ATCC 21588 se muestra en SEQ ID NO: 1, el operón *mev* completo de *Paracoccus sp*. R114 se muestra en SEQ ID NO: 2 (véase también la SEQ ID NO: 42 del documento WO 02/099095).

La cepa *Paracoccus sp.* R114 es un derivado de *P. zeaxanthinifaciens* ATCC 21588 y ha sido depositada bajo los términos del Tratado de Budapest ante la ATCC bajo la Designación de Depósito de Patente PTA-3335 el 24 de abril de 2001. Con respecto a especies y cepas de *Paracoccus* que pueden utilizarse para la presente invención y para la

reclasificación taxonómica de *Flavobacterium sp.* como *Paracoccus* se hace referencia al documento WO 02/099095, páginas 47 y siguientes. Ejemplos de especies de este tipo que se pueden utilizar son *P. marcusii, P. carotinifaciens, P. solventivarans, P. zeaxathinifaciens o Paracoccus sp.* R114.

- 5 El operón *mev* de la presente invención porta una o más mutaciones que pueden estar localizadas en cualquier posición dentro del operón, lo que conduce a una alteración de la actividad de uno o más genes dentro de dicho operón, dando como resultado una producción mejorada de isoprenoides dentro de un microorganismo que porta un polinucleótido de este tipo.
- En una realización, el operón *mev* porta al menos una mutación que preferentemente está localizada en el gen *hcs* del operón *mev*, por ejemplo en el gen *hcs* del operón *mev* de *Paracoccus zeaxanthinifaciens*, *p. ej.* en el gen *hcs* del operón *mev* de *Paracoccus sp.* R114 o *P. zeaxanthinifaciens* ATCC 21588. Más preferiblemente, el operón *mev* mutado, tal como se utiliza en la presente invención, se representa por SEQ ID NO: 23. Las secuencias del gen *hcs* de tipo salvaje y la respectiva proteína de *Paracoccus sp.* R114 se muestran en SEQ ID NO: 3 y 4, respectivamente.

En una realización, la presente invención está dirigida a un polinucleótido que comprende una o más mutaciones en el gen *hcs*, preferiblemente un polinucleótido mostrado en SEQ ID NO: 5 que codifica una proteína que tiene hidroximetilglutaril-CoA sintasa mostrada en SEQ ID NO: 6, en donde una glutamina presente en la posición 90 en SEQ ID NO: 4 está reemplazada por una lisina.

Así, es un objeto de la presente invención proporcionar una secuencia de polinucleótidos según se describe antes que comprende uno o más genes de operón *mev*, seleccionándose dicho polinucleótido del grupo que consiste en:

- (a) polinucleótidos que codifican un polipéptido que comprende la secuencia de aminoácidos de acuerdo con SEQ ID NO: 6,
- (b) polinucleótidos que comprenden la secuencia de nucleótidos de acuerdo con SEQ ID NO: 5,

15

20

25

30

40

45

50

55

60

- (c) polinucleótidos que comprenden una secuencia de nucleótidos que codifican un fragmento o derivado de un polipéptido codificado por un polinucleótido (a) o (b), en donde en dicho derivado uno o más residuos aminoácido están sustituidos de forma conservativa en comparación con dicho polipéptido, y dicho fragmento o derivado tiene la actividad de hidroximetilglutaril-CoA sintasa (Hcs);
- (d) polinucleótidos, cuya cadena complementaria se hibrida bajo condiciones rigurosas a un polipéptido según se define en uno cualquiera de los apartados (a) a (c), y que codifica una proteína Hcs.
- Los polipéptidos y polinucleótidos de la presente invención se proporcionan preferiblemente en una forma aislada, y preferiblemente se purifican hasta homogeneidad.

El término "aislado" significa que el material se separa de su entorno original (p. ej. el entorno natural si se produce de forma natural), Por ejemplo, un polinucleótido o polipéptido que se produce de forma natural, presente en un microorganismo vivo, no está aislado, pero el mismo polinucleótido o polipéptido, separado de algunos o de todos los materiales coexistentes en el sistema natural, está aislado. Polinucleótidos de este tipo podrían ser parte de un vector y/o polinucleótidos o polipéptidos de este tipo podrían ser parte de una composición y todavía ser aislados de manera que dicho vector o composición no es parte de su entorno natural.

Un polinucleótido o ácido nucleico aislado, tal como se utiliza en esta memoria, puede ser un ADN o ARN que no es inmediatamente contiguo tanto a la secuencia codificante a la que está inmediatamente contiguo (uno en el extremo 5' y uno en el extremo 3') en el genoma que se produce de forma natural del organismo del que se deriva. Así, en una realización, un ácido nucleico incluye alguna o la totalidad de la secuencias 5' no codificantes (*p. ej.* promotoras) que son inmediatamente contiguas a la secuencia codificante. La expresión "polinucleótido aislado" incluye, por lo tanto, por ejemplo, un ADN recombinante que está incorporado en un vector, en un plásmido o virus de replicación autónoma o en el ADN genómico de un procariota o eucariota, o que existe en forma de una molécula separada (*p. ej.* un ADNc o un fragmento de ADN genómico producido mediante PCR o tratamiento con endonucleasa de restricción) independiente de otras secuencias. También incluye un ADN recombinante que es parte de un gen híbrido que codifica un polipéptido adicional que está esencialmente exento de material celular, material viral o medio de cultivo (cuando se produce mediante técnicas de ADN recombinante), o precursores químicos u otros productos químicos (cuando se sintetizan químicamente). Además de ello, un "fragmento de ácido nucleico aislado" es un fragmento de ácido nucleico que no se produce de forma natural en forma de un fragmento y que no se encontraría en el estado natural.

Un gen puede incluir secuencias codificantes, secuencias no codificantes tales como, por ejemplo, secuencias no traducidas situadas en los extremos 3' y 5' de la región codificante de un gen, y secuencias reguladoras. Además de

ello, un gen se refiere a una molécula de ácido nucleico aislada tal como se define en esta memoria. Además de ello, se aprecia por parte de la persona experta que dentro de una población pueden existir polimorfismos de la secuencia de ADN que conducen a cambios en las secuencias de aminoácidos de proteínas.

- 5 El operón *mev* mutado o uno o más genes del mismo según se describen antes y la secuencia de ADN que codifica una proteína con actividad de decaprenil difosfato sintasa se pueden introducir, por ejemplo, en un microorganismo del género *Rhodobacter*.
- Preferiblemente, el operón *mev* mutado o fragmentos del mismo de un microorganismo que pertenece al género *Paracoccus* se introduce en un microorganismo que pertenece al género *Rhodobacter*. Más preferiblemente, un polinucleótido que comprende una o más mutaciones en el gen que codifica hidroximetilglutaril-CoA sintasa se introduce en dicho microorganismo, y la más preferida es la introducción de una secuencia de polinucleótidos representada por SEQ ID NO: 23.
- En particular, microorganismos del género *Rhodobacter* se pueden utilizar para la introducción de un polinucleótido mutado tal como de la presente invención, tal como, por ejemplo, *R. sphaeroides*, *R. adriaticus*, *R. capsulatus*, *R. sulfidophilus* o *R. veldkampii*. Una cepa preferida es *R. sphaeroides*, incluso más preferida es *R. sphaeroides* ATCC 35053.
- Ha de entenderse que los microorganismos tal como se nombran en esta memoria incluyen también sinónimos o basónimos de dichas especies que tienen las mismas propiedades físico-químicas según se define por el Código Internacional de Nomemclatura de Procariotas.
- La presente invención proporciona, además, microorganismos recombinantes que tienen introducido un polinucleótido tal como se describe arriba, que conduce a una producción mejorada de isoprenoides, particularmente ubiquinonas, preferiblemente CoQ10, en comparación con el respectivo microorganismo de tipo salvaje.

30

35

55

- La secuencia de ADN que codifica una proteína con actividad de decaprenil difosfato sintasa se puede obtener, preferiblemente, a partir de un microorganismo del género *Paracoccus, p. ej., P. zeaxanthinifaciens*, en particular *P. zeaxanthinifaciens* ATCC 21588. La más preferida es una secuencia de nucleótidos según SEQ ID NO: 7 o un polinucleótido que codifica una proteína según SEQ ID NO: 8.
- Así, es un aspecto de esta invención proporcionar un procedimiento para la producción CoQ10, que comprende (1) introducir tanto un operón mevalonato (*mev*) como una secuencia de ADN que codifica una proteína con actividad de decaprenil difosfato sintasa de un microorganismo perteneciente al género *Paracoccus* en un microorganismo perteneciente al género *Rhodobacter*, en donde dicho operón *mev* porta una o más mutaciones y (2) cultivar la cepa de *Rhodobacter* modificada.
- La expresión "introducir en" se utiliza en la presente memoria descriptiva y reivindicaciones en relación con la 40 transformación de un microorganismo u otro organismo hospedante, p. ej. del género Rhodobacter, de modo que comprenda cualquier método bien conocido por una persona experta en la técnica que pueda ser utilizado para incorporar eficazmente material genético, en particular el operón mevalonato mutado o uno o más genes del mismo en el organismo hospedante, es decir, de una manera que sea expresado por el organismo. La introducción se puede efectuar, p. ej., mediante vectores, preferiblemente plásmidos de expresión o mediante integración en el 45 genoma del hospedante de acuerdo con métodos convencionales. Un método preferido es la introducción de genes a través de plásmidos tales como, por ejemplo, genes que se clonan en el plásmido de expresión pBBR-K-PcrtE (la construcción de este plásmido ha sido descrita en detalle en el Ejemplo 6, página 91, líneas 12-27 del documento WO 02/099095) bajo el control del promotor PcrtE. Un método preferido para introducir el ADN tal como, por ejemplo, el plásmido de expresión en un microorganismo del género Rhodobacter es la transferencia conjugada de plásmidos tal como, por ejemplo, la transferencia conjugacional de un plásmido de E. coli S17-1 a una cepa de 50 Rhodobacter (Nishimura et al., Nucl. Acids Res. 18, 6169, 1990; Simon et al., Bio/Technology 1983, 784-91).
 - La o las mutaciones del operón *mev* o uno o más genes del mismo se pueden generar, por ejemplo, mediante mutagénesis dirigida al sitio por PCR utilizando un método que es familiar para una persona experta en la técnica y que no necesita de una explicación específica. Métodos de mutagénesis adicionales que también pueden utilizarse para los fines de la presente invención y que son conocidos por la persona experta incluyen, por ejemplo, irradiación UV, transposición o mutagénesis química. El método de rastreo para la identificación de mutantes que muestran una productividad incrementada de isoprenoides, *p. ej.* CoQ10, se puede seleccionar, por ejemplo, de la medición directa de isoprenoides, *p. ej.* CoQ10, mediante luz UV, HPLC, RMN o cromatografía de capa fina. La producción de isoprenoides, *p. ej.* CoQ10, también se puede medir indirectamente, midiendo un incremento en la intensidad del

color carotenoide, que le resulta familiar a una persona experta en la técnica.

5

10

15

20

25

30

35

40

El hospedante transformado con el operón *mev* mutado o uno o más genes del mismo tal como de la presente invención se puede cultivar de acuerdo con métodos conocidos, a saber en un medio que contiene, por ejemplo, fuentes de carbono y nitrógeno, sales inorgánicas, etc., que pueden ser asimiladas por el hospedante y bajo condiciones de temperatura, pH y ventilación adecuadas para un crecimiento y expresión eficaces del producto deseado, en particular CoQ10.

El aislamiento a partir del caldo de fermentación y/o el transformante, es decir, el microorganismo en el que se ha introducido el operón mevalonato mutado de un microorganismo perteneciente, p. ej., al género Paracoccus y, opcionalmente, la purificación y el procesamiento ulterior del isoprenoide obtenido, en particular CoQ10, incluidas, por ejemplo, formulaciones de CoQ10 producido de esta forma para el uso humano o animal se puede efectuar de acuerdo con métodos bien conocidos en la técnica. Para uso en la salud y nutrición de los animales, sin embargo, puede no ser necesaria una purificación específica. En este caso, los isoprenoides producidos tales como CoQ10, junto con la biomasa y/u otros componentes del caldo de fermentación, se pueden procesar ulteriormente para proporcionar un producto comercialmente atractivo.

El procedimiento de la presente invención resulta en rendimientos de isoprenoides más elevados tales como, por ejemplo, CoQ10. El incremento puede ser, por ejemplo, de al menos aproximadamente el 10% en comparación con procedimientos que utilizan una cepa no recombinante de, por ejemplo, *Rhodobacter*, o que utilizan una cepa recombinante tal como, por ejemplo, *Rhodobacter* que porta el operón *mev* de tipo salvaje de, *p. ej.*, una cepa de *Paracoccus*.

La Figura 1 representa la vía para la biosíntesis de CoQ10 en *R. sphaeroides*, la cual utiliza la vía del MEF para la formación de IPP. La región enmarcada indica la secuencia de reacción que comprende la vía del mevalonato (que conduce a la formación de IPP), más la etapa de IPP isomerasa. La vía del mevalonato no se produce de forma natural en *R. sphaeroides*. En *P. zeaxanthinifaciens*, los genes que codifican las cinco enzimas de la vía del mevalonato más IPP isomerasa forman un operón denominado aquí en lo que sigue el operón mevalonato.

Los siguientes Ejemplos ilustran la invención sin restringirla de modo alguno.

Ejemplo 1: Bacterias y condiciones de cultivo

La cepa ATCC 35053 de *Rhodobacter sphaeroides* (obtenida de American Type Culture Collection, Manassas, VA, EE.UU.) se utilizó como el hospedante base para la construcción de cepas recombinantes con producción mejorada de CoQ10. Todas las cepas de *R. sphaeroides* se desarrollaron a 30°C en medio RS100. La composición y preparación de medio RS100 se resume en la Tabla 1. Cincuenta mg/l de canamicina se añadieron al medio para el desarrollo de las cepas recombinantes. Cepas de *E. coli* se desarrollaron a 37°C en medio LB (Becton Dickinson, Sparks, MD, EE.UU.). Para el mantenimiento de plásmidos en cepas de *E. coli* recombinantes se añadieron al medio de cultivo ampicilina (100 mg/l) y/o canamicina (25-50 mg/l, dependiendo del plásmido). Cultivos líquidos de *E. coli* y *R. sphaeroides* se desarrollaron de forma rutinaria en condiciones aerobias en un agitador rotatorio a 200 rpm. Cuando se requerían medios sólidos, se añadió agar (concentración final de 1,5%).

Tabla 1. Composición y preparación de medio RS100

Medio RS100	
Componente	Cantidad (por litro de agua destilada)
Extracto de levaduras	10 g
Peptona	10 g
NaCl	0,5 g
MgSO ₄ · 7 H ₂ O	0,5 g
D-glucosa monohidrato	33 g

Los componentes 1-5 se mezclan juntos, el volumen final se ajusta a 1 litro y el pH se ajusta a 7,4 con NaOH 0,5 M. El medio base resultante se esteriliza luego mediante filtración a través de una membrana de 0,22 micras. Se añaden dos ml de cada uno de disolución estéril de microelementos y disolución estéril de CaFe (véase más abajo) para dar el medio RS100 final. Para el medio sólido, los componentes 1-5 más 15 g de agar se mezclan primero juntos y se someten a autoclave. Después de enfriar el medio hasta aproximadamente 60°C, se añaden las disoluciones estériles de microelementos y de CaFe (2 ml cada una) y el medio fundido se mezcla bien y se dispensa a placas de Petri estériles.

Disolución de microelementos	
Componente	Cantidad por litro de agua destilada
$(NH_4)_2Fe(SO_4)_2 \cdot 6 H_2O$	80 g
ZnSO ₄ · 7 H ₂ O	6 g
$MnSO_4 \cdot H_2O$	2 g
NiSO ₄ · 6 H ₂ O	0,2 g
EDTA	6 g

- Esterilizar mediante filtración a través de una membrana de 0,22 micras, almacenar a 4°C.

Disolución de café	
Componente	Cantidad por litro de agua destilada
CaCl ₂ · 2 H ₂ O	75 g
FeCl ₃ · 6 H ₂ O	5 g
HCI (al 37%)	3,75 ml
- Esterilizar mediante filtración a través de	una membrana de 0.22 micras, almacenar a 4°C.

5 Ejemplo 2: Ensayo analítico para CoQ10

400 µl de caldo de cultivo completo (véase el Ejemplo 5) se transfirieron a un tubo de centrífuga de polipropileno de 15 ml desechable. Se añadieron 4 ml de disolución de extracción estabilizada (0,5 g/l de BHT en 1:1 (v/v) de DMSO/THF) y las muestras se mezclaron durante 20 min en un agitador de laboratorio (IKA, Alemania) para potenciar la extracción. Finalmente, las muestras se centrifugaron y los sobrenadantes se transfirieron a viales de vidrio ámbar para el análisis mediante HPLC de fase inversa. Este método se desarrolló para la determinación simultánea de ubiquinonas y sus correspondientes hidroquinonas, con una clara separación de CoQ10 a partir de los carotenoides fitoeno, esferoidenona, esferoideno y neurosporeno. La cromatografía se realizó utilizando un sistema Agilent 1100 HPLC (Agilent Technologies, EE.UU.), equipado con un dispositivo automático para la toma de muestras, controlado en temperatura, y un detector de la disposición de diodos. Los parámetros del método eran como sigue:

Columna YMC Carotenoid C30

3 micras, acero, 150 mm x 3,0 mm D.I. (YMC, parte N°. CT99S031503QT)

Columna de protección Security Guard C18 (ODS, octadecilo)

4 mm de longitud x 3,0 mm D.I. (Phenomenex, Parte N° AJO-4287)

Presión típica de la columna 60 bar al comienzo

Caudal 0,5 ml/min

7

10

15

20

mezcla de acetonitrilo (A):metanol (B):TBME (C)

			()		` '	(-)			
	Perfil de gradientes	Tiempo (min)	<u>%A</u>	<u>%B</u>	<u>%C</u>				
		0	60	15	25				
		13	60	15	25				
5		20	00	100					
		22	60	15	25				
		25	60	15	25				
10	Tiempo de arranque	4 min							
10	Volumen de inyección	10 μΙ							
	Temperatura de la columna	15°C							
15	Detección	Se utilizaron tre específicos de ac				para la	detección	de	compuestos

Tabla 2. Tiempos de retención por HPLC y longitudes de onda utilizados

Compuesto	Longitud de onda (nm)	Tiempos de retención (min)
Fitoeno	280	7,9
Ubiquinol-10	210	11,3
CoQ10	210	12,6
Esferoidenona (isómeros Z)	450	10,6, 13,0, 14,6, 18,7
E-esferoidenona	450	19,1
E-neurosporeno	450	20,4
E-esferoideno	450	20,6

Cálculos:

Fase móvil

Los cálculos se basaron en áreas de pico

Ejemplo 3: Clonación del operón mev mutado a partir de P. zeaxanthinifaciens

Construcción de plásmidos pBBR-K-mev-op-wt y pBBR-K-mev-op-R114

La construcción del plásmido pBBR-K-*mev*-op-up-4 (plásmido que contiene los primeros 4 genes del operón mevalonato) se describen en detalle en el Ejemplo 13 (página 105, línea 10 a página 106, línea 8) del documento WO 02/099095.

Utilizando ADN genómico de *P. zeaxanthinifaciens* R114 como molde, se realiza la PCR con cebadores hcs-5326 (SEQ ID NO: 9) y mvd-9000 (SEQ ID NO: 10). El cebador hcs-5326 corresponde a la secuencia del operón *mev* de *P. zeaxanthinifaciens* desde el nucleótido 3321 a 3340 de SEQ ID NO: 2, mientras que el cebador mvd-9000 corresponde al complemento inverso de la secuencia desde los nucleótidos 6977 a 6996 de SEQ ID NO: 2. El producto de PCR obtenido de 3675 pb se clona en pCR2.1-TOPO (Invitrogen, Carlsbad, CA, EE.UU.), dando como resultado el plásmido TOPO-pCR2.1-*mev*-op-d-3wt. Así, este plásmido contiene la mitad situada aguas abajo del operón mevalonato, incluido el extremo 3' de *hcs* y los últimos tres genes, *mvk*, *pmk* y *mvd*.

Los plásmidos pBBR-K-*mev*-op-up-4 y TOPO-pCR2.1-*mev*-op-d-3wt se digieren con las endonucleasas de restricción *Sacl* y *Ndel*, y el fragmento de 3319 pb resultante de TOPO-pCR2.1-*mev*-op-d-3wt se liga con el fragmento de 8027 pb procedente de pBBR-K-*mev*-op-up-4. El plásmido resultante, pBBR-K-*mev*-op-R114, contiene el operón mevalontao completo procedente de *P. zeaxanthinifaciens* R114, incluido su promotor (putativo).

Construcción de los plásmidos pBBR-K-mev-op-wt-PcrtE-crtE y pBBR-K-mev-op-R114-PcrtE-crtE

La construcción del plásmido pBBR-K-P*crtE-crtE* se describe en detalle en el Ejemplo 6 (página 92, líneas 10-17) del documento WO 02/099095. El plásmido pBBR-K-P*crt*E-*crt*E se cortó con *Nae*I, y el fragmento de 1,33 kb se aisló e insertó en el sitio *Ecl*136II de pBBR-K-*mev*-op-up-4. Se verificó la orientación del inserto, y el plásmido que portaba el gen *crt*E en la misma orientación que los genes del operón mevalonato se designó pBBR-K-*mev*-op-up-4-*PcrtE-crtE*-2

El plásmido pBBR-K-mev-op-up-4-PcrtE-crtE-2 se cortó con Sphl y Spel y se aisló el fragmento de 5566 pb

8

30

20

25

35

45

resultante que contenía el gen *crtE*. Este fragmento se ligó con el fragmento *SphI-SpeI* de 7132 pb obtenido después de una digestión por restricción de pBBR-K-*mev*-op-wt o pBBR-K-*mev*-op-R114, utilizando las mismas enzimas, resultando en el plásmido pBBR-K-*mev*-op-wt-P*crtE-crtE* y pBBR-K-*mev*-op-R114-P*crtE-crtE*, respectivamente.

5 <u>Construcción de los plásmidos pBBR-K-mev-op-wt-PcrtE-ddsA_{wt} y pBBR-K-mev-op-R114-PcrtE-ddsA_{wt}</u>

La construcción del plásmido pBBR-K-PcrtE se describe en detalle en el Ejemplo 6 (página 91, líneas 12-27) del documento WO 02/099095.

- El gen ddsA de la cepa ATCC 21588 de P. zeaxanthinifaciens (designada ddsA_{wt}) se amplificó mediante PCR (sistema PCR rico en GC, Roche Molecular Biochemicals, Mannheim, Alemania) utilizando los cebadores dds-Nde (SEQ ID NO: 11) y dds-Bam (SEQ ID NO: 12) y se clonó en pCR2.1-TOPO (invitrogen, Carlsbad, CA, EE.UU.) para dar como resultado el plásmido TOPO-ddsA_{wt}.
- El plasmido TOPO-ddsA_{wt} se cortó con Ndel y BamHI, y el fragmento de 1005 pb obtenido, que contenía el gen ddsA, se clonó en el plásmido pBBR-K-PcrtE cortado con Ndel y BamHI, dando como resultado el plásmido pBBR-K-PcrtE-ddsA_{wt}. Se eliminó un sitio de reconocimiento para la endonucleasa EcoRI dentro del gen ddsA introduciendo una mutación silenciosa con el kit de mutagénesis dirigida al sitio QuikChange XL (Stratagene, La Jolla, CA, EE.UU.) utilizando los oligonucleótidos dds-R-1 (SEQ ID NO: 13) y dds-R-2 (SEQ ID NO: 14). El plásmido pBBR-K-PcrtE-ddsA_{wt}-R resultante se cortó con EcoRI y MamI, y el fragmento de 1278 pb que contenía el gen ddsA se insertó en TOPO-ddsA_{wt}, cortado con EcoRI y EcoRV, dando como resultado el plásmido pCR2.1-TOPO-ddsA_{wt}-R. Este plásmido se cortó con Ce/II y XbaI, y el fragmento de 1211 pb obtenido que contenía el gen ddsA se ligó con un fragmento de restricción de 11,6 kb obtenido de la digestión de pBBR-K-mev-op-wt-PcrtE-crtE y pBBR-K-mev-op-Wt-PcrtE-crtE, respectivamente, con Ce/II y BInI. Los plásmidos resultantes se denominaron pBBR-K-mev-op-wt-PcrtE-ddsA_{wt} y pBBR-K-mev-op-R114-PcrtE-ddsA_{wt}, respectivamente.

Construcción del plásmido pBBR-K-mev-op-4-89-PcrtE-ddsA_{wt}

El plásmido pBBR-K-mev-op-4-89-PcrtE-ddsA_{wt} se obtiene mediante dos rondas de mutagénesis dirigida al sitio por 30 PCR utilizando el kit de mutagénesis dirigida al sitio QuikChange XL (Stratagene, La Jolla, CA, EE.UU.) y los cebadores mut4-89-1-fw (SEQ ID NO: 15) y mut4-89-1-rev (SEQ ID NO: 16). Ambos cebadores son complementarios uno con otro y contienen la mutación A deseada en lugar de C en la posición 2949 de SEQ ID NO: 23, correspondiente a la posición 268 de SEQ ID NO: 4. La primera reacción de mutagénesis se ajusta como sigue de acuerdo con las instrucciones del fabricante: 5 µl de tampón de reacción 10x, 10 ng de ADN de plásmido pBBR-35 K-mev-op-wt-PcrtE-ddsA_{wt}. 125 ng del cebador mut4-89-1-fw, 125 ng de mut4-89-1-rev, 1 μl de mezcla de dNTP, 3 μl de QuikSolution y 2,5 U de ADN polimerasa Pfu Turbo se mezclan en un volumen final de 50 µl. La ciclación se lleva a cabo utilizando los siguientes parámetros: 1 ciclo: 95°C durante 1 min; 18 ciclos: 95°C durante 50 s, 60°C durante 50 s, 68°C durante 30 min; 1 ciclo: 68°C durante 7 min. Después de enfriar la mezcla de reacción hasta 37°C, se añaden 10 U de la endonucleasa de restricción Dpnl, y la reacción se incuba a 37°C durante 2 horas. Células de 40 Escherichia coli XL10-Gold Ultracompetent (Stratagene, La Jolla, CA, EE.UU.) se transforman con el ADN tratado con *Dpn*I de acuerdo con el protocolo del fabricante.

El plásmido pBBR-K-*mev*-op-4-89-1-P*crtE-ddsA_{wt}* resultante se aísla y se utiliza como ADN de molde para una segunda ronda de mutagénesis dirigida al sitio por PCR, utilizando los cebadores mut4-89-2-fw (SEQ ID NO: 17) y mut4-89-2-rev (SEQ ID NO: 18) que contienen la mutación deseada C en lugar de T en la posición 6948 de SEQ ID NO: 23. La mutagénesis se lleva a cabo como se describe anteriormente. El plásmido pBBR-K-*mev*-op-4-89-P*crtE-ddsA_{wt}* obtenido se aisló y secuenció en Microsynth GmbH (Balgach, Suiza). La secuencia completa del operón *mev* mutado se representa en la SEQ ID NO: 23, que comprende los siguientes genes: *mvaA* (que codifica la hidroximetilglutaril-CoA reductasa) en la posición 617 a 1639, *idi* (que codifica la isopentenil difosfato isomerasa) en la posición 1636 a 2685, *hcs* (que codifica la hidroximetilglutaril-CoA sintasa) en la posición 2682 a 3848, *mvk* (que codifica la mevalonato quinasa) en la posición 3829 a 4965, *pmk* (que codifica la fosfomevalonato quinasa) en la posición 4965 a 5882 y *mvd* (que codifica la difosfomevalonato descarboxilasa) en la posición 5875 a 6873.

Ejemplo 4: Introducción del operón mev mutado en R. sphaeroides ATCC 35053

La transformación de *E. coli* S17-1 (Simon *et al.*, Bio/Technology 11, 784-791, 1983) con plásmidos que portan el operón *mev* mutado y la subsiguiente transferencia de plásmidos de *E. coli* S17-1 a *R. sphaeroides* ATCC 35053 mediante conjugación, se realizaron utilizando procesos convencionales (Nishimuira *et al.*, Nucl. Acids Res. 18, 6169, 1990; Simon et al., Bio/Technology 1983, 784-91).

60

45

50

Un mutante de R. sphaeroides ATCC 35053 resistente a rifampicina, espontáneo, se aisló primero desarrollando la cepa ATCC 35053 en medio líquido RS100 suplementado con 100 mg/l de rifampicina, extendiendo las células en placas de RS100 que contenían 100 mg/l de rifampicina y aislando una colonia individual. Para la conjugación, se sedimentaron mediante centrifugación partes alícuotas de un mililitro de cultivos de las células receptoras (R. sphaeroides ATCC 35053 resistente a rifampicina) desarrolladas en medio RS100 que contenía 100 mg/l de rifampicina y las células donantes (E. coli S17-1 que portan el plásmido a transferir, desarrolladas en caldo LB que contenía 50 mg/l de canamicina). El sobrenadante se desechó y las células se lavaron dos veces con medio RS100 reciente para separar los antibióticos. Cada uno de los sedimentos se resuspendió luego en 1 ml de medio RS100 reciente. Cincuenta microlitros de células donantes y 0,45 ml de células receptoras se mezclaron, se sedimentaron mediante centrifugación, se resuspendieron en 0,03 ml de medio RS100 reciente y se esparcieron sobre una placa de RS100. Después de incubación durante una noche a 30°C, las células fueron recolectadas con un asa de inoculación y se resuspendieron en 0,3 ml de medio RS100. Diluciones de esta suspensión se esparcieron sobre placas de RS100 que contenían 100 mg/l de rifampicina y 50 mg/l de canamicina y se incubaron a 30°C. Las colonias (células putativas transformadas de R. sphaeroides ATCC 35053) se recogieron de las placas, se desarrollaron en medio líquido RS100 que contenía 50 mg/l de canamicina y se sometió a ensayo la presencia del plásmido en una reacción de PCR con una temperatura de re-asociación de 56°C y un tiempo de alargamiento de 1 min, 15 s, utilizando los siguientes dos pares de cebadores diferentes:

pBBR-K-up (SEQ ID NO: 19)/PcrtE-2442 (SEQ ID NO: 20) Kan3out (SEQ ID NO: 21)/mvaA3256 (SEQ ID NO: 22)

5

10

15

20

25

30

35

40

Clones positivos se extendieron sobre placas de RS100 que contenían 50 mg/l de canamicina para obtener colonias individuales. Una colonia individual procedente de cada uno de los clones se desarrolló de nuevo en medio líquido RS100 que contenía 50 mg/l de canamicina, y la presencia del plásmido esperado se confirmó mediante PCR según se describe arriba. La cepa recombinante resultante se denominó ATCC 35053/pBBR-K-*mev*-op-4-89-P*crtE-ddsA_{wt}*.

Ejemplo 5: Producción de CoQ10 en cepas transformadas de R. sphaeroides ATCC 35053

Las cepas de *R. sphaeroides* ATCC 35053, ATCC 35053/pBBR-K-*mev*-op-R114-P*crtE-ddsA_{wt}*, y ATCC 35053/pBBR-K-*mev*-op-4-89-P*crtE-ddsA_{wt}* se desarrollaron en cultivos en matraces agitados en medio RS100. Los cultivos que contenían la *R. sphaeroides* recombinante contenían 50 mg/l de canamicina. Cultivos de veinticinco mililitros se desarrollaron a 30°C en matraces Erlenmeyer con deflectores de 250 ml con agitación a 200 rpm. Para someter a ensayo la producción de CoQ10, se utilizaron cultivos patrón glicerolizados congelados de las cepas de *R. sphaeroides* para inocular cultivos de siembra de 25 ml. Después del desarrollo de los cultivos de siembra durante 24-28 horas, se utilizaron volúmenes adecuados de los cultivos para inocular los matraces experimentales de modo que la densidad óptica inicial a 660 nanómetros (DO₆₆₀) era 0,16. Se tomaron asépticamente muestras de dos mililitros a intervalos de 24 horas. Los análisis incluían el desarrollo (medido como DO₆₆₀), pH, glucosa, en el sobrenadante del cultivo y CoQ10 y carotenoides (determinados mediante HPLC) según se describe en el Ejemplo 2. Los resultados se resumen en la Tabla 3. Estos resultados demuestran claramente que la expresión del operón mevalonato mutado clonado procedente de *P. zeaxanthinifaciens* mejoraba significativamente la producción de CoQ10 en *R. sphaeroides*.

Tabla 3. Producción de CoQ10 en cepas ATCC 35053 de R. sphaeroides transformadas

			CoQ10
Сера	Tiempo (h)	mg/l	Formación específica 1
ATCC 35053	24	34,4	1,2
ATCC 35053/pBBR-K-mev-op-R114-	24	49,5	2,1
PcrtE-ddsA _{wt}			
ATCC 35053/pBBR-K-mev-op-4-89-	24	57,7	2,3
PcrtE-ddsA _{wt}			
ATCC 35053	48	56,0	2,0
ATCC 35053/pBBR-K-mev-op-R114-	48	128,4	3,8
PcrtE-ddsA _{wt}			
ATCC 35053/pBBR-K- <i>mev</i> -op-4-89-	48	148,9	4,4
PcrtE-ddsA _{wt}			
ATCC 35053	72	62,3	2,2
ATCC 35053/pBBR-K-mev-op-R114-	72	150,3	4,6
PcrtE-ddsA _{wt}			
ATCC 35053/pBBR-K-mev-op-4-89-	72	166,4	5,0
PcrtE-ddsA _{wt}			

¹La formación específica se expresa como mg/l de CoQ10 producida/DO₆₆₀.

LISTADO DE SECUENCIAS

	<110>	DSM IP Assets B.V.
5	<120>	Producción de isoprenoides
	<130>	Case 22259
40	<160>	23
10	<170>	PatentIn version 3.2
15	<211> <212>	
	<400>	1 gggtg tggcggaceg ctateaggac atagegttgg etaceegtga tattgetgaa
	gaget	tggcg gcgaatgggc tgaccgcttc ctcgtgcttt acggtategc cgctcccgat
	tcgca	gegea tegeetteta tegeettett gaegagttet tetgageggg actetggggt

ggcggggtcg	ctgcgcagtg	cgaacgcgca	tttcgccaac	atgctgctgg	gcttctacct	1320
ggcgacgggg	caggacgcgg	ccaacatcat	cgaggccagc	cagggcttcg	tccattgcga	1380
ggcccgcggc	gaggatctgt	atttctcgtg	cacgctgccc	aacctcatca	tgggctcggt	1440
cggtgccggc	aagggcatcc	cctcgatcga	ggagaacctg	tegeggatgg	gctgccgcca	1500
geegggegaa	cccggcgaca	acgcgcgccg	tcttgcggcg	atctgcgcgg	gegtegtget	1560
gtgtggtgaa	ttgtcgctgc	ttgcggccca	gaccaacccc	ggagagttgg	teegeaceca	1620
catggagatg	gagcgatgac	cgacagcaag	gatcaccatg	tegeggggeg	caagctggac	1680
catctgcgtg	cattggacga	cgatgcggat	atcgaccggg	gcgacagcgg	cttcgaccgc	1740
atcgcgctga	cccatcgcgc	cctgcccgag	gtggatttcg	acgccatcga	cacggcgacc	1800
agcttcctgg	gccgtgaact	gtectteeeg	ctgctgatct	cgtccatgac	cggeggcacc	1860
ggcgaggaga	tcgagegcat	caaccgcaac	ctggccgctg	gtgccgagga	ggcccgcgtc	1920
gccatggcgg	tgggctcgca	gegegtgatg	ttcaccgacc	cctcggcgcg	ggccagcttc	1980
gacctgcgcg	cccatgcgcc	caccgtgccg	ctgctggcca	atateggege	ggtgeagetg	2040
aacatggggc	tggggctgaa	ggaatgcctg	gccgcgatcg	aggtgctgca	ggcggacggc	2100
ctgtatctgc	acctgaaccc	cctgcaagag	gccgtccagc	ccgaggggga	tcgcgacttt	2160
gccgatctgg	gcagcaagat	cgcggccatc	gcccgcgacg	ttecegtgcc	cgtectgctg	2220
aaggaggtgg	getgeggeet	gtcggcggcc	gatatcgcca	tegggetgeg	cgcegggatc	2280
cggcatttcg	acgtggccgg	tegeggegge	acatectgga	gccggatcga	gtatcgccgc	2340
cgccagcggg	ccgatgacga	cctgggcctg	gtcttccagg	actggggcct	gcagaccgtg	2400
gacgccctgc	gegaggegeg	gcccgcgctt	gcggcccatg	atggaaccag	cgtgctgatc	2460
gccagcggcg	gcateegcaa	cggtgtcgac	atggcgaaat	gcgtcatcct	gggggccgac	2520
atgtgcgggg	tegeegegee	cctgctgaaa	geggeccaaa	actcgcgcga	ggcggttgta	2580
tccgccatcc	ggaaactgca	tctggagttc	cggacagcca	tgttcctcct	gggttgcggc	2640
acgettgeeg	acctgaagga	caattcctcg	cttatccgtc	aatgaaagtg	cctaagatga	2700
ccgtgacagg	aatcgaagcg	atcagcttct	acacccccca	gaactacgtg	ggactggata	2760
tccttgccgc	gcatcacggg	atcgaccccg	agaagttctc	gaaggggatc	gggcaggaga	2820
aaatcgcact	gcccggccat	gacgaggata	tcgtgaccat	ggccgccgag	geegegetge	2880
cgatcatcga	acgcgcgggc	acgcagggca	tcgacacggt	tetgttegee	accgagageg	2940
ggatcgacca	gtcgaaggcc	gccgccatct	atctgcgccg	cctgctggac	ctgtcgccca	3000

actgccgttg	cgtcgagctg	aagcaggcct	gctattccgc	gacggcggcg	ctgcagatgg	3060
cctgcgcgca	tgtcgcccgc	aagcccgacc	gcaaggtgct	ggtgatcgcg	tccgatgtcg	3120
cgcgctatga	ccgcgaaagc	tcgggcgagg	cgacgcaggg	tgcgggcgcc	gtcgccatcc	3180
ttgtcagcgc	cgatcccaag	gtggccgaga	tcggcaccgt	ctcggggctg	ttcaccgagg	3240
atatcatgga	tttctggcgg	ccgaaccacc	gccgcacgcc	cctgttcgac	ggcaaggcat	3300
cgacgctgcg	ctatctgaac	gcgctggtcg	aggcgtggaa	cgactatcgc	gcgaatggcg	3360
gccacgagtt	cgccgatttc	gcgcatttct	gctatcacgt	gccgttctcg	cggatgggcg	3420
agaaggcgaa	cagccacctg	gccaaggcga	acaagacgcc	ggtggacatg	gggcaggtgc	3480
agacgggcct	gatctacaac	cggcaggtcg	ggaactgcta	taccgggtcg	atctacctgg	3540
cattcgcctc	gctgctggag	aacgctcagg	aggaeetgae	eggegegetg	gtcggtctgt	3600
tcagctatgg	ctcgggtgcg	acgggcgaat	tcttcgatgc	gcggatcgcg	ceeggttace	3660
gcgaccacct	gttcgcggaa	cgccatcgcg	aattgctgca	ggatcgcacg	cccgtcacat	3720
atgacgaata	cgttgccctg	tgggacgaga	tcgacctgac	gcagggcgcg	cccgacaagg	3780
cgcgcggtcg	tttcaggctg	gcaggtatcg	aggacgagaa	gcgcatctat	gtcgaccggc	3840
aggeetgaag	caggcgccca	tgccccgggc	aagctgatec	tgtccgggga	acattccgtg	3900
ctctatggtg	cgcccgcgct	tgccatggcc	atcgcccgct	ataccgaggt	gtggttcacg	3960
ccgcttggca	ttggcgaggg	gatacgcacg	acattcgcca	atctctcggg	cggggcgacc	4020
tattcgctga	agetgetgte	ggggttcaag	tcgcggctgg	accgccggtt	cgagcagttc	4080
ctgaacggcg	acctaaaggt	gcacaaggtc	ctgacccatc	ccgacgatct	ggcggtctat	4140
gcgctggcgt	cgcttctgca	cgacaagccg	ccggggaccg	ccgcgatgcc	gggcatcggc	4200
gcgatgcacc	acctgccgcg	accgggtgag	ctgggcagec	ggacggagct	gcccatcggc	4260
gcgggcatgg	ggtcgtctgc	ggccatcgtc	gcggccacca	eggteetgtt	cgagacgctg	4320
ctggaccggc	ccaagacgcc	cgaacagcgc	ttcgaccgcg	teegettetg	cgagcggttg	4380
aagcacggca	aggccggtcc	catcgacgcg	gccagcgtcg	tgegeggegg	gcttgtccgc	4440
gtgggcggga	acgggccggg	ttcgatcagc	agcttcgatt	tgcccgagga	tcacgacctt	4500
gtcgcgggac	gcggctggta	ctgggtactg	cacgggcgcc	ccgtcagcgg	gaccggcgaa	4560
tgcgtcagcg	cggtcgcggc	ggcgcatggt	cgcgatgcgg	cgctgtggga	cgccttcgca	4620
gcctgcaccc	gcgcgttgga	ggccgcgctg	ctgtctgggg	gcagccccga	cgccgccatc	4680
accgagaacc	agcgcctgct	ggaacgcatc	ggcgtcgtgc	cggcagcgac	gcaggccctc	4740
gtggcccaga	tcgaggaggc	gggtggcgcg	gccaagatct	gcggcgcagg	ttccgtgcgg	4800

ggcgatcacg	gcggggcggt	cctcgtgcgg	attgacgacg	cgcaggcgat	ggcttcggtc	4860
atggcgcgcc	atcccgacct	cgactgggcg	cccctgcgca	tgtcgcgcac	gggggcggca	4920
cccggccccg	cgccgcgtgc	gcaaccgctg	ccggggcagg	gctgatggat	caggtcatcc	4980
gcgccagcgc	gccgggttcg	gtcatgatca	cgggcgaaca	tgeegtggte	tatggacacc	5040
gcgccatcgt	cgccgggatc	gagcagcgeg	cccatgtgac	gategteeeg	cgtgccgacc	5100
gcatgtttcg	catcacctcg	cagatcgggg	cgccgcagca	ggggtcgctg	gacgatctgc	5160
ctgcgggcgg	gacctatcgc	ttcgtgctgg	ccgccatcgc	gcgacacgcg	ccggacctgc	5220
cttgcgggtt	cgacatggac	atcacctcgg	ggatcgatcc	gaggctcggg	cttggatcct	5280
cggcggcggt	gacggtcgcc	tgcctcggcg	cgctgtcgcg	gctggcgggg	cgggggaccg	5340
aggggctgca	tgacgacgcg	ctgcgcatcg	tccgcgccat	ccagggcagg	ggcagcgggg	5400
ccgatctggc	ggccagcctg	catggcggct	tcgtcgccta	tegegegeee	gatggcggtg	5460
ccgcgcagat	cgaggcgctt	ccggtgccgc	cggggccgtt	cggcctgcgc	tatgcgggct	5520
acaagacccc	gacagccgag	gtgctgcgcc	ttgtggccga	tcggatggcg	ggcaacgagg	5580
ccgctttcga	cgcgctctac	tcccggatgg	gcgcaagcgc	agatgccgcg	atccgcgcgg	5640
cgcaagggct	ggactgggct	gcattccacg	acgcgctgaa	cgaataccag	cgcctgatgg	5700
agcagctggg	cgtgtccgac	gacacgctgg	acgcgatcat	ccgcgaggcg	cgcgacgcgg	5760
gcgccgcagt	cgccaagatc	teeggetegg	ggctggggga	ttgegtgetg	gcactgggcg	5820
accagcccaa	gggtttcgtg	cccgcaagca	ttgccgagaa	gggacttgtt	ttcgatgact	5880
gatgccgtcc	gcgacatgat	cgcccgtgcc	atggcgggcg	cgaccgacat	ccgagcagcc	5940
gaggcttatg	cgcccagcaa	catcgcgctg	tcgaaatact	ggggcaagcg	cgacgccgcg	6000
cggaaccttc	cgctgaacag	cteegteteg	atctegttgg	cgaactgggg	ctctcatacg	6060
cgggtcgagg	ggteeggeae	gggccacgac	gaggtgcatc	acaacggcac	getgetggat	6120
ccgggcgacg	ccttcgcgcg	ccgcgcgttg	gcattcgctg	acctgttccg	gggggggagg	6180
cacctgccgc	tgcggatcac	gacgcagaac	tegatecega	cggcggcggg	gcttgcctcg	6240
teggeetegg	ggttcgcggc	gctgacccgt	gcgctggcgg	gggcgttcgg	gctggatctg	6300
gacgacacgg	atctgagccg	categeeegg	atcggcagtg	gcagcgccgc	cegctcgatc	6360
tggcacggct	tegteegetg	gaaccggggc	gaggccgagg	atgggcatga	cagccacggc	6420
gtcccgctgg	acctgcgctg	geceggette	cgcatcgcga	tcgtggccgt	ggacaagggg	6480
cccaagectt	tcagttcgcg	cgacggcatg	aaccacacgg	tcgagaccag	cccgctgttc	6540

ccgccctggc	ctgcgcaggc	ggaagcggat	tgccgcgtca	tcgaggatgc	gatcgccgcc	6600
cgcgacatgg	cegecetggg	teegegggte	gaggcgaacg	cccttgcgat	gcacgccacg	6660
atgatggccg	cgcgcccgcc	gctctgctac	ctgacgggcg	gcagctggca	ggtgctggaa	6720
cgcctgtggc	aggcccgcgc	ggacgggctt	gcggcctttg	cgacgatgga	tgccggcccg	6780
aacgtcaagc	tgatcttcga	ggaaagcagc	gccgccgacg	tgctgtacct	gtteceegae	6840
gccagcctga	tegegeegtt	cgaggggcgt	tgaacgcgta	agacgaccac	tgggtaaggt	6900
tctgccgcgc	gtggtctcga	ctgcctgcaa	agaggtgctt	gagttgctgc	gtgactgcgg	6960
cggccgactt	cgtgggactt	gcccgccacg	ctgacgaagg	gcgaattcca	gcacactggc	7020
ggccgttact	agttctagag	cggccgccac	cgcggtggag	ggcggcacct	cgctaacgga	7080
ttcaccgttt	ttatca					7096

<210> 2 <211> 7096 <212> ADN <213> Paracoccus sp. R114

<400> 2

cggctgggtg	tggcggaccg	ctatcaggac	atagcgttgg	ctacccgtga	tattgctgaa	60
gagcttggcg	gcgaatgggc	tgaccgcttc	ctcgtgcttt	acggtatcgc	cgctcccgat	120
tcgcagcgca	tcgccttcta	tegeettett	gacgagttct	tctgagcggg	actctggggt	180
tcgaaatgac	cgaccaagcg	acgcccaacc	tgccatcacg	agatttcgat	tccaccgccg	240
ccttctatga	aaggttgggc	ttcggaatcg	ttttccggga	cgccggctgg	atgatectec	300
agcgcgggga	tctcatgctg	gagttcttcg	cccaccccca	tgggcaaata	ttatacgcaa	360
ggcgacaagg	tgctgatgcc	gctggcgatt	caggttcatc	atgeegtttg	tgatggette	420
catgtcggca	gaatgettaa	tgaattacaa	cagtttttat	gcaacgcgtc	gaaccgcccg	480
tccgacgccg	gtttccgcac	ggaaacgcgc	ggcaagttga	cataacttgc	acgcgacgtc	540
tcgattctgc	ccgcgaagaa	tgcgatgcat	ccagatgatg	cagaacgaag	aagcggaagc	600
gcccgtgaaa	gaccagatga	tttcccatac	cccggtgccc	acgcaatggg	teggeeegat	660
cctgttccgc	ggccccgtcg	tcgagggccc	gatcagegeg	ccgctggcca	cctacgagac	720
gccgctctgg	ccctcgaccg	cgcggggggc	aggggtttcc	cggcattcgg	gegggateca	780
ggtctcgctg	gtcgacgaac	gcatgagccg	ctcgatcgcg	ctgcgggcgc	atgacggggc	840
ggcggcgacc	gccgcctggc	agtcgatcaa	ggcccgccag	gaagaggtcg	eggeegtggt	900
רמכראכראיי	agecgettes	cccaccttat	ccacctcaat	caccadated	taggcaacct	960

gctttacatc	cgcatcgaat	gcgtgacggg	cgacgcctcg	ggtcacaaca	tggtcaccaa	1020
ggccgccgag	gccgtgcagg	gctggatcct	gtcggaatac	ccgatgctgg	cctattccac	1080
gatctcgggg	aacctgtgca	ccgacaagaa	ggcgtcggcg	gtcaacggca	teetgggeeg	1140
cggcaaatac	geegtegeeg	aggtcgagat	cccgcgcaag	atcctgaccc	gegtgetgeg	1200
caccagcgcc	gagaagatgg	teegeetgaa	ctacgagaag	aactatgtcg	ggggtacgct	1260
ggcggggtcg	ctgcgcagtg	cgaacgcgca	tttcgccaac	atgctgctgg	gcttctacct	1320
ggcgacgggg	caggacgcgg	ccaacatcat	cgaggccagc	cagggcttcg	tccattgega	1380
ggcccgcggc	gaggatctgt	atttctcgtg	cacgetgeec	aacctcatca	tgggctcggt	1440
cggtgccggc	aagggcatcc	cctcgatcga	ggagaacctg	tegeggatgg	gctgccgcca	1500
gccgggcgaa	cccggcgaca	acgcgcgccg	tattgaggag	atctgcgcgg	gcgtcgtgct	1560
gtgtggtgaa	ttgtcgctgc	ttgcggccca	gaccaacccc	ggagagttgg	tecgeaceca	1620
catggagatg	gagcgatgac	cgacagcaag	gatcaccatg	tegeggggeg	caagctggac	1680
catctgcgtg	cattggacga	cgatgcggat	atcgaccggg	gcgacagcgg	cttcgaccgc	1740
atcgcgctga	cccatcgcgc	cctgcccgag	gtggatttcg	acgccatcga	cacggegace	1800
agcttcctgg	gccgtgaact	gteetteeeg	ctgctgatct	cgtccatgac	cggcggcacc	1860
ggcgaggaga	tcgagcgcat	caaccgcaac	ctggccgctg	gtgccgagga	ggcccgcgtc	1920
gccatggcgg	tgggctcgca	gcgcgtgatg	ttcaccgacc	cctcggcgcg	ggccagcttc	1980
gacctgcgcg	cccatgcgcc	caccgtgccg	ctgctggcca	atatcggcgc	ggtgcagctg	2040
aacatggggc	tggggctgaa	ggaatgcctg	gccgcgatcg	aggtgctgca	ggcggacggc	2100
ctgtatctgc	acctgaaccc	cctgcaagag	gccgtccagc	ccgaggggga	tcgcgacttt	2160
gccgatctgg	gcagcaagat	cgcggccatc	gcccgcgacg	ttcccgtgcc	cgtcctgctg	2220
aaggaggtgg	gctgcggcct	gtcggcggcc	gatategeca	tegggetgeg	cgccgggatc	2280
cggcatttcg	acgtggccgg	tcgcggcggc	acatectgga	gccggatcga	gtatcgccgc	2340
cgccagcggg	ccgatgacga	cctgggcctg	gtcttccagg	actggggcct	gcagaccgtg	2400
gacgccctgc	gcgaggcgcg	gecegegett	geggeecatg	atggaaccag	cgtgctgatc	2460
gccagcggcg	gcatccgcaa	cggtgtcgac	atggcgaaat	gcgtcatcct	gggggccgac	2520
atgtgcgggg	tegeegegee	cctgctgaaa	gcggcccaaa	actcgcgcga	ggcggttgta	2580
tccgccatcc	ggaaactgca	tctggagttc	cggacagcca	tgttcctcct	gggttgegge	2640
acgcttgccg	acctgaagga	caattcctcg	cttatccgtc	aatgaaagtg	cctaagatga	2700
ccgtgacagg	aatcgaagcg	atcagcttct	acaccccca	gaactacgtg	ggactggata	2760

tecttgccgc	gcatcacggg	atcgaccccg	agaagttctc	gaaggggatc	gggcaggaga	2820
aaatcgcact	gcccggccat	gacgaggata	tcgtgaccat	ggcegecgag	gccgcgctgc	2880
cgatcatcga	acgcgcgggc	acgcagggca	tcgacacggt	tetgttegee	accgagagcg	2940
ggatcgacca	gtcgaaggcc	gccgccatct	atctgegeeg	cctgctggac	ctgtcgccca	3000
actgccgttg	cgtcgagctg	aagcaggcct	gctattccgc	gacggcggcg	ctgcagatgg	3060
cctgcgcgca	tgtcgcccgc	aagcccgacc	gcaaggtgct	ggtgatcgcg	tccgatgtcg	3120
cgcgctatga	ccgcgaaagc	tcgggcgagg	cgacgcaggg	tgcgggcgcc	gtcgccatcc	3180
ttgtcagcgc	cgatcccaag	gtggccgaga	teggeacegt	ctcggggctg	ttcaccgagg	3240
atatcatgga	tttctggcgg	ccgaaccacc	gccgcacgcc	cctgttcgac	ggcaaggcat	3300
cgacgctgcg	ctatctgaac	gcgctggtcg	aggcgtggaa	cgactatcgc	gcgaatggcg	3360
gccacgagtt	cgccgatttc	gcgcatttct	gctatcacgt	gccgttctcg	cggatgggcg	3420
agaaggcgaa	cagccacctg	gccaaggcga	acaagacgcc	ggtggacatg	gggcaggtgc	3480
agacgggcct	gatctacaac	cggcaggtcg	ggaactgcta	taccgggtcg	atctacctgg	3540
cattcgcctc	gctgctggag	aacgctcagg	aggacctgac	eggegegetg	gtcggtctgt	3600
tcagctatgg	ctcgggtgcg	acgggcgaat	tettegatge	gcggatcgcg	cccggttacc	3660
gcgaccacct	gttcgcggaa	cgccatcgcg	aattgctgca	ggatcgcacg	cccgtcacat	3720
atgacgaata	cgttgccctg	tgggacgaga	tcgacctgac	gcagggcgcg	cccgacaagg	3780
cgcgcggtcg	tttcaggctg	gcaggtatcg	aggacgagaa	gcgcatctat	gtcgaccggc	3840
aggcctgaag	caggcgccca	tgccccgggc	aagctgatcc	tgtccgggga	acattccgtg	3900
ctctatggtg	cgcccgcgct	tgccatggcc	atcgcccgct	ataccgaggt	gtggttcacg	3960
ccgcttggca	ttggcgaggg	gatacgcacg	acattcgcca	ateteteggg	cggggcgacc	4020
tattcgctga	agctgctgtc	ggggttcaag	tegeggetgg	accgccggtt	cgageagttc	4080
ctgaacggcg	acctaaaggt	gcacaaggte	ctgaeccate	ccgacgatct	ggeggtetat	4140
gcgctggcgt	cgcttctgca	cgacaagccg	ccggggaccg	ccgcgatgcc	gggcatcggc	4200
gcgatgcacc	acctgccgcg	accgggtgag	ctgggcagcc	ggacggagct	gcccatcggc	4260
gcgggcatgg	ggtcgtctgc	ggccatcgtc	geggeeacea	eggteetgtt	cgagacgctg	4320
ctggacegge	ccaagacgcc	cgaacagcgc	ttcgaccgcg	teegettetg	cgagcggttg	4380
aagcacggca	aggccggtcc	catcgacgcg	gccagcgtcg	tgcgcggcgg	gcttgtccgc	4440
gtgggcggga	acgggccggg	ttcgatcagc	agcttcgatt	tgcccgagga	tcacgacctt	4500

gtcgcgggac	gcggctggta	ctgggtactg	cacgggcgcc	ccgtcagcgg	gaccggcgaa	4560
tgcgtcagcg	cggtcgcggc	ggcgcatggt	cgcgatgcgg	cgctgtggga	cgccttcgca	4620
gtctgcacec	gcgcgttgga	ggccgcgctg	ctgtctgggg	gcagccccga	cgccgccatc	4680
accgagaacc	agcgcctgct	ggaacgcatc	ggcgtcgtgc	cggcagcgac	gcaggccctc	4740
gtggcccaga	tcgaggaggc	gggtggcgcg	gccaagatct	gcggcgcagg	ttccgtgcgg	4800
ggcgatcacg	gcggggcggt	cctcgtgcgg	attgacgacg	cgcaggcgat	ggcttcggtc	4860
atggcgcgcc	atcccgacct	cgactgggcg	cccctgcgca	tgtcgcgcac	gggggcggca	4920
cecggccccg	cgccgcgtgc	gcaaccgctg	ccggggcagg	gctgatggat	caggtcatcc	4980
gcgccagcgc	gccgggttcg	gtcatgatca	cgggcgaaca	tgccgtggtc	tatggacacc	5040
gcgccatcgt	cgccgggatc	gagcagcgcg	cccatgtgac	gatcgtcccg	cgtgccgacc	5100
gcatgtttcg	catcacctcg	cagatcgggg	egeegeagea	ggggtcgctg	gacgatctgc	5160
ctgcgggcgg	gacctatcgc	ttcgtgctgg	ccgccatcgc	gcgacacgcg	ccggacctgc	5220
cttgcgggtt	cgacatggac	atcacctcgg	ggatcgatcc	gaggctcggg	cttggatcct	5280
cggcggcggt	gacggtcgcc	tgcctcggcg	cgctgtcgcg	gctggcgggg	cgggggaccg	5340
aggggctgca	tgacgacgeg	ctgcgcatcg	teegegeeat	ccagggcagg	ggcagcgggg	5400
ccgatctggc	ggccagcctg	catggcggct	tegtegeeta	tegegegeee	gatggcggtg	5460
ccgcgcagat	cgaggcgctt	ceggtgccgc	cggggccgtt	cggcctgcgc	tatgcgggct	5520
acaagacccc	gacagccgag	gtgctgcgcc	ttgtggccga	tcggatggcg	ggcaacgagg	5580
ccgctttcga	cgcgctctac	teceggatgg	gcgcaagcgc	agatgccgcg	atccgcgcgg	5640
cgcaagggct	ggactgggct	gcattccacg	acgcgctgaa	cgaataccag	cgcctgatgg	5700
agcagctggg	cgtgtccgac	gacacgctgg	acgcgatcat	ccgcgaggcg	cgcgacgcgg	5760
gcgccgcagt	cgccaagatc	teeggetegg	ggctgggggá	ttgcgtgctg	gcactgggcg	5820
accagcccaa	gggtttcgtg	cccgcaagca	ttgccgagaa	gggacttgtt	ttcgatgact	5880
gatgccgtcc	gcgacatgat	cgcccgtgcc	atggcgggcg	cgaccgacat	ccgagcagcc	5940
gaggcttatg	cgcccagcaa	catcgcgctg	tcgaaatact	ggggcaagcg	cgacgccgcg	6000
cggaaccttc	cgctgaacag	ctccgtctcg	atctcgttgg	cgaactgggg	ctctcatacg	6060
cgggtcgagg	ggtccggcac	gggccacgac	gaggtgcatc	acaacggcac	gctgctggat	6120
ccgggcgacg	ccttcgcgcg	ccgcgcgttg	gcattcgctg	acctgttccg	gggggggagg	6180
cacctgccgc	tgcggatcac	gacgcagaac	tegatecega	cggcggcggg	gettgeeteg	6240
teggeetegg	ggttcgcggc	gctgacccgt	gcgctggcgg	gggcgttegg	gctggatctg	6300

gacgacacgg	atctgagccg	categeeegg	atcggcagtg	gcagcgccgc	ccgctcgatc	6360
tggcacggct	tcgtccgctg	gaaccggggc	gaggccgagg	atgggcatga	cagccacggc	6420
gtcccgctgg	acctgcgctg	geceggette	cgcatcgcga	tegtggeegt	ggacaagggg	6480
cccaagcctt	tcagttcgcg	cgacggcatg	aaccacacgg	tcgagaccag	cccgctgttc	6540
ccgccctggc	ctgcgcaggc	ggaagcggat	tgccgcgtca	tcgaggatgc	gatcgccgcc	6600
cgcgacatgg	ccgccctggg	tccgcgggtc	gaggcgaacg	cccttgcgat	gcacgccacg	6660
atgatggccg	cgcgcccgcc	gctctgctac	ctgacgggcg	gcagctggca	ggtgctggaa	6720
cgcctgtggc	aggcccgcgc	ggacgggctt	gcggcctttg	cgacgatgga	tgccggcccg	6780
aacgtcaagc	tgatcttcga	ggaaagcagc	gccgccgacg	tgctgtacct	gttccccgac	6840
gccagcctga	tcgcgccgtt	cgaggggcgt	tgaacgcgta	agacgaccac	tgggtaaggt	6900
tetgeegege	gtggtctcga	ctgcctgcaa	agaggtgctt	gagttgctgc	gtgactgcgg	6960
cggccgactt	cgtgggactt	gcccgccacg	ctgacgaagg	gcgaattcca	gcacactggc	7020
ggccgttact	agttctagag	cggccgccac	cgcggtggag	ggcggcacct	cgctaacgga	7080
ttcaccgttt	ttatca					7096
<210> 3 <211> 1167 <212> ADN <213> Paraco	ccus sp. R114					
<211> 1167 <212> ADN <213> Paraco <400> 3	·	cgtgacagga	atcgaagcga	tcagcttcta	cacccccag	60
<211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc	ctaagatgac		atcgaagcga catcacggga			60 120
<211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg	ctaagatgac	ccttgccgcg		tegacecega	gaagttctcg	
<211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aaggggatcg	ctaagatgac gactggatat ggcaggagaa	ccttgccgcg	catcacggga	tegacecega	gaagttctcg	120
<211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aaggggatcg gccgccgagg	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc	ccttgccgcg aatcgcactg gatcatcgaa	catcacggga	tegacecega acgaggatat egcagggeat	gaagttctcg cgtgaccatg cgacacggtt	120 180
<pre><211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aaggggatcg gccgccgagg ctgttcgcca</pre>	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc ccgagagcgg	ccttgccgcg aatcgcactg gatcatcgaa gatcgaccag	catcacggga cccggccatg cgcgcgggca	tegacecega acgaggatat egcagggeat ecgceateta	gaagttotog cgtgaccatg cgacacggtt totgegeege	120 180 240
<211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aagggatcg gccgccgagg ctgttcgcca ctgctggacc	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc ccgagagcgg	ccttgccgcg aatcgcactg gatcatcgaa gatcgaccag ctgccgttgc	catcacggga cccggccatg cgcgcgggca tcgaaggccg	tegacecega acgaggatat egcagggeat ecgceateta agcaggeetg	gaagttctcg cgtgaccatg cgacacggtt tctgcgccgc ctattccgcg	120 180 240 300
<pre><211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aagggatcg gccgccgagg ctgttcgcca ctgctggacc acggcggcgc</pre>	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc ccgagagcgg tgtcgcccaa tgcagatggc	ccttgccgcg aatcgcactg gatcatcgaa gatcgaccag ctgccgttgc ctgcgcgcat	catcacggga cccggccatg cgcgcgggca tcgaaggccg gtcgagctga	tegacecega acgaggatat egcagggeat ecgceateta agcaggeetg agcecgaceg	gaagttctcg cgtgaccatg cgacacggtt tctgcgccgc ctattccgcg caaggtgctg	120 180 240 300 360
<pre><211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aagggatcg gccgccgagg ctgttcgcca ctgctggacc acggcggcgc gtgatcgcgt</pre>	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc ccgagagcgg tgtcgcccaa tgcagatggc	ccttgccgcg aatcgcactg gatcatcgaa gatcgaccag ctgccgttgc ctgcgcgcat gcgctatgac	catcacggga cccggccatg cgcgcgggca tcgaaggccg gtcgagctga gtcgcccgca	tegacecega acgaggatat egcagggeat ecgceateta agcaggeetg agcecgaeeg egggegagge	gaagttctcg cgtgaccatg cgacacggtt tctgcgccgc ctattccgcg caaggtgctg gacgcagggt	120 180 240 300 360 420
<pre><211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aaggggatcg gccgccgagg ctgttcgcca ctgctggacc acggcggcgc gtgatcgcgt gcggcgcgcg</pre>	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc ccgagagegg tgtcgcccaa tgcagatggc ccgatgtcgc	ccttgccgcg aatcgcactg gatcatcgaa gatcgaccag ctgccgttgc ctgcgcgcat gcgctatgac tgtcagcgcc	catcacggga cccggccatg cgcgcgggca tcgaaggccg gtcgagctga gtcgcccgca cgcgaaagct	tegacecega acgaggatat cgcagggcat ccgccatcta agcaggcctg agcccgaccg cgggcgaggc	gaagtteteg cgtgaccatg cgacacggtt tetgcgccgc ctattccgcg caaggtgctg gacgcagggt	120 180 240 300 360 420 480
<pre><211> 1167 <212> ADN <213> Paraco <400> 3 atgaaagtgc aactacgtgg aaggggatcg gccgccgagg ctgttcgcca ctgctggacc acggcggcgc gtgatcgcgt gcggccggt tcggggctgt</pre>	ctaagatgac gactggatat ggcaggagaa ccgcgctgcc ccgagagcgg tgtcgcccaa tgcagatggc ccgatgtcgc tcgccatcct tcaccgagga	ccttgccgcg aatcgcactg gatcatcgaa gatcgaccag ctgccgttgc ctgcgcgcat gcgctatgac tgtcagcgcc tatcatggat	catcacggga cccggccatg cgcgcgggca tcgaaggccg gtcgagctga gtcgcccgca cgcgaaagct gatcccaagg	tegacecega acgaggatat cgcagggcat ccgcateta agcaggcetg agcccgaceg cgggcgaggc tggccgagat cgaaccaceg	gaagttctcg cgtgaccatg cgacacggtt tctgcgccgc ctattccgcg caaggtgctg gacgcagggt cggcaccgtc ccgcacgcc	120 180 240 300 360 420 480 540

cegttetege	ggatgggcga	gaaggcgaac	agccacctgg	ccaaggegaa	caagacgccg	780
gtggacatgg	ggcaggtgca	gacgggcctg	atctacaacc	ggcaggtcgg	gaactgctat	840
accgggtcga	tctacctggc	attcgcctcg	ctgctggaga	acgctcagga	ggacctgacc	900
ggcgcgctgg	tcggtctgtt	cagctatggc	tcgggtgcga	cgggcgaatt	cttcgatgcg	960
cggatcgcgc	ccggttaccg	cgaccacctg	ttcgcggaac	gccatcgcga	attgctgcag	1020
gatcgcacgc	ccgtcacata	tgacgaatac	gttgccctgt	gggacgagat	cgacctgacg	1080
cagggcgcgc	ccgacaaggc	gcgcggtcgt	ttcaggctgg	caggtatcga	ggacgagaag	1140
cgcatctatg	tcgaccggca	ggcctga				1167

<210> 4

<211> 388 <212> PRT <213> Paracoccus sp. R114

<400> 4

Met Lys Val Pro Lys Met Thr Val Thr Gly Ile Glu Ala Ile Ser Phe

Tyr Thr Pro Gln Asn Tyr Val Gly Leu Asp Ile Leu Ala Ala His His 20 25

Gly Ile Asp Pro Glu Lys Phe Ser Lys Gly Ile Gly Gln Glu Lys Ile

Ala Leu Pro Gly His Asp Glu Asp Ile Val Thr Met Ala Ala Glu Ala 55

Ala Leu Pro Ile Ile Glu Arg Ala Gly Thr Gln Gly Ile Asp Thr Val

Leu Phe Ala Thr Glu Ser Gly Ile Asp Gln Ser Lys Ala Ala Ile 90 85

Tyr Leu Arg Arg Leu Leu Asp Leu Ser Pro Asn Cys Arg Cys Val Glu 105 100

Leu Lys Gln Ala Cys Tyr Ser Ala Thr Ala Ala Leu Gln Met Ala Cys 115 120 125

Ala His Val Ala Arg Lys Pro Asp Arg Lys Val Leu Val Ile Ala Ser 135

Asp 145	Val	. Ala	Arg	г Тух	150		r Glu	Ser	: Ser	: Gly 155		ı Ala	1 Thr	Glr	160
Ala	Gly	Ala	Val	. Ala 165		Leu	Val	Ser	Ala 170		Pro	Lys	. Val	. Ala 175	
Ile	e Gly	Thr	Val 180		Gly	Leu	Phe	Thr 185		. Asp	Ile	Met	190		Trp
Arg	Pro	Asn 195		Arg	Arg	Thr	Pro 200	Leu	Phe	Asp	Gly	Lys 205		Ser	Thr
Leu	Arg 210		Leu	Asn	Ala	Leu 215		Glu	Ala	Trp	Asn 220		Туг	Arg	Ala
Asn 225	Gly	Gly	His	Glu	Phe 230	Ala	Asp	Phe	Ala	His 235	Phe	Cys	Tyr	His	Val 240
Pro	Phe	Ser	Arg	Met 245	Gly	Glu	Lys	Ala	Asn 250	Ser	His	Leu	Ala	Lys 255	
Asn	Lys	Thr	Pro 260	Val	Asp	Met	Gly	Gln 265	Val	Gln	Thr	Gly	Leu 270	Ile	Tyr
Asn	Arg	Gln 275	Val	Gly	Asn	Cys	Tyr 280	Thr	Gly	Ser	Ile	Tyr 285	Leu	Ala	Phe
Ala	Ser 290	Leu	Leu	Glu	Asn	Ala 295	Gln	Glu	Asp	Leu	Thr 300	Gly	Ala	Leu	Val
Gly 305	Leu	Phe	Ser	Tyr	Gly 310	Ser	Gly	Ala	Thr	Gly 315	Glu	Phe	Phe	Asp	Ala 320
Arg	Ile	Ala	Pro	Gly 325	Tyr	Arg	Asp	His	Leu 330	Phe	Ala	Glu	Arg	His 335	Arg
Glu	Leu	Leu	Gln 340	Asp	Arg	Thr	Pro	Val 345	Thr	Tyr	Asp	Glu	Tyr 350	Val	Ala
Leu	Trp	Asp 355	Glu	Ile	Asp	Leu	Thr 360	Gln	Gly	Ala	Pro	Asp 365	Lys	Ala	Arg
Gly	Arg	Phe	Arg	Leu	Ala	Gly	Ile	Glu	Asp	Glu	Lys	Ara	Ile	Tvr	Val

370 375 380

Asp Arg Gln Ala 385

<210> 5

<211> 1167

<212> ADN

<213> Paracoccus sp. R114

<400> 5

atgaaagtgc ctaagatgac cgtgacagga atcgaagcga tcagcttcta caccccccag 60 aactacgtgg gactggatat ccttgccgcg catcacggga tcgaccccga gaagttctcg 120 aaggggatcg ggcaggagaa aatcgcactg cccggccatg acgaggatat cgtgaccatg 180 240 gccgccgagg ccgcgctgcc gatcatcgaa cgcgcgggca cgcagggcat cgacacggtt ctgttcgcca ccgagagcgg gatcgacaag tcgaaggccg ccgccatcta tctgcgccgc 300 360 ctgctggacc tgtcgcccaa ctgccgttgc gtcgagctga agcaggcctg ctattccgcg acggcggcgc tgcagatggc ctgcgcgcat gtcgcccgca agcccgaccg caaggtgctg 420 gtgatcgcgt ccgatgtcgc gcgctatgac cgcgaaaget cgggcgaggc gacgcagggt 480 540 gegggegeeg tegecatect tgtcagegee gateceaagg tggeegagat eggeacegte 600 teggggetgt teacegagga tateatggat ttetggegge egaaceaeeg eegeaegeee ctgttcgacg gcaaggcatc gacgctgcgc tatctgaacg cgctggtcga ggcgtggaac 660 gactatcgcg cgaatggcgg ccacgagttc gccgatttcg cgcatttctg ctatcacgtg 720 ccgttctcgc ggatgggcga gaaggcgaac agccacctgg ccaaggcgaa caagacgccg 780 gtggacatgg ggcaggtgca gacgggcctg atctacaacc ggcaggtcgg gaactgctat 840 900 accgggtcga tetacctggc attcgcctcg ctgctggaga acgctcagga ggacctgacc 960 ggcgcgctgg tcggtctgtt cagctatggc tcgggtgcga cgggcgaatt cttcgatgcg cggatcgcgc ccggttaccg cgaccacctg ttcgcggaac gccatcgcga attgctgcag 1020 1080 gategeaege cegteaeata tgacgaatae gttgeeetgt gggacgagat egacetgaeg cagggegege cegacaagge gegeggtegt tteaggetgg caggtatega ggacgagaag 1140 cgcatctatg tcgaccggca ggcctga 1167

<210> 6

<211> 388

<212> PRT

<213> Paracoccus sp. R114

<400>	• 6														
Met	Lys	Val	Pro	Lys	Met	Thr	Val	Thr	Gly	Ile	Glu	Ala	Ile	Ser	Phe
1				5					10					15	

- Tyr Thr Pro Gln Asn Tyr Val Gly Leu Asp Ile Leu Ala Ala His His 20 25 30
- Gly Ile Asp Pro Glu Lys Phe Ser Lys Gly Ile Gly Gln Glu Lys Ile 35 40 45
- Ala Leu Pro Gly His Asp Glu Asp Ile Val Thr Met Ala Ala Glu Ala
 50 55 60
- Ala Leu Pro Ile Ile Glu Arg Ala Gly Thr Gln Gly Ile Asp Thr Val 65 70 75 80
- Leu Phe Ala Thr Glu Ser Gly Ile Asp Lys Ser Lys Ala Ala Ala Ile 85 90 95
- Tyr Leu Arg Arg Leu Leu Asp Leu Ser Pro Asn Cys Arg Cys Val Glu 100 105 110
- Leu Lys Gln Ala Cys Tyr Ser Ala Thr Ala Ala Leu Gln Met Ala Cys 115 120 125
- Ala His Val Ala Arg Lys Pro Asp Arg Lys Val Leu Val Ile Ala Ser 130 135
- Asp Val Ala Arg Tyr Asp Arg Glu Ser Ser Gly Glu Ala Thr Gln Gly 145 150 155 160
- Ala Gly Ala Val Ala Ile Leu Val Ser Ala Asp Pro Lys Val Ala Glu 165 170 175
- Ile Gly Thr Val Ser Gly Leu Phe Thr Glu Asp Ile Met Asp Phe Trp
 180 185 190
- Arg Pro Asn His Arg Arg Thr Pro Leu Phe Asp Gly Lys Ala Ser Thr 195 200 205
- Leu Arg Tyr Leu Asn Ala Leu Val Glu Ala Trp Asn Asp Tyr Arg Ala 210 215 220
- Asn Gly Gly His Glu Phe Ala Asp Phe Ala His Phe Cys Tyr His Val

230

225

Pro	Phe	Ser	Arg	Met 245	Gly	Glu	Lys	Ala	Asn 250		His	Leu	Ala	Lys 255	Ala	
Asn	Lys	Thr	Pro 260	Val	Asp	Met	Gly	Gln 265	Val	Gln	Thr	Gly	Leu 270	Ile	Tyr	
Asn	Arg	Gln 275	Val	Gly	Asn	Cys	Tyr 280	Thr	Gly	Ser	Ile	Tyr 285	Leu	Ala	Phe	
Ala	Ser 290	Leu	Leu	Glu	Asn	Ala 295	Gln	Glu	Asp	Leu	Thr 300	Gly	Ala	Leu	Val	
Gly 305	Leu	Phe	Ser	Tyr	Gly 310	Ser	Gly	Ala	Thr	Gly 315	Glu	Phe	Phe	Asp	Ala 320	
Arg	Ile	Ala	Pro	Gly 325	Tyr	Arg	Asp	His	Leu 330	Phe	Ala	Glu	Arg	His 335	Arg	
Glu	Leu	Leu	Gln 340	Asp	Arg	Thr	Pro	Val 345	Thr	Тух	Asp	Glu	Tyr 350	Val	Ala	
Leu	Trp	Asp 355	Glu	Ile	Asp	Leu	Thr 360	Gln	Gly	Ala	Pro	Asp 365	Lys	Ala	Arg	
Gly	Arg 370	Phe	Arg	Leu	Ala	Gly 375	Ile	Glu	Asp	Glu	Lys 380	Arg	Ile	Tyr	Val	
Asp 385	Arg	Gln	Ala		•											
<210> <211> <212> <213>	100 AD	N	us zea	axanth	inifaci	ens A ⁻	TCC 2	1588								
<400>	7															
atga	acgt	gc a	ggaa	gacgt	ceg	gcaaa	acca	ctgg	raccg	gc t	ggcc	gagg	e get	ggca	accc	60
gaga	tgga	gg c	cgtg	aacgo	c gct	gato	cgc	gaac	gcat	gg c	cagc	aggca	a tgo	gccg	gege	120
atco	ccga	gg t	gacc	gccca	a cct	gato	gag	gccg	gcgg	ca a	gege	ctgcg	g ccc	gate	gctg	180
accc	tggc	cg c	ggcg	aagct	gct	tggc	tat	ggcg	gccc	ct a	tcac	gtgca	a tet	ggc	gcg	240
acgg	tcga	at t	catco	cacac	cac	gaco	cta	ctac	atqa	cg a	cata	atca	a coa	aaaa	cac	300

cagcgccgcg	ggcgtccgac	ggcgaacctg	ctgtgggaca	acaagtccag	cgtgctggtc	360
ggcgattacc	tgttcgcgcg	cagcttccag	ctgatggtcg	aacccggcag	catgcgcacg	420
ctcgagatcc	tgtcgaacgc	cgccgccacc	atcgccgagg	gcgaggtgct	gcagctgacc	480
gcggcgcagg	atctggccac	gaacgaggac	atctatctgc	aggtcgtgcg	cggcaagacg	540
gcagcgctgt	tctcggccgc	gaccgaggtg	ggcggcgtca	tegegggegt	ccccgatgcg	600
caggtccgcg	cgctgttcga	ttacggcgac	gcgcttggca	tegeetteea	gategtggae	660
gacctgctgg	attacggcgg	caccgccgag	gcgatcggca	agaataccgg	cgacgatttc	720
cgcgaacgca	agctgacgct	gccggtgatc	aaggccgtgg	cccgcgccac	ccccgaggaa	780
cgcgccttct	ggtcgcgcac	catcgagaag	ggcgaccaga	aggacggcga	ccttgaacac	840
gcgctggaac	tgctggcccg	ccacggcgcg	atggccgatg	cccgccgcga	cgcgctggac	900
tgggcggcca	gggcccgcgc	ctccctgcag	atcctgcccg	agcatccgat	ccgcgacatg	960
ctgtcggacc	tggccgattt	cgtggtcgaa	egcategeet	ga		1002

<210> 8

<211> 333

<212> PRT

<213> Paracoccus zeaxanthinifaciens ATCC 21588

<400> 8

Met Asn Val Gln Glu Asp Val Arg Lys Pro Leu Asp Arg Leu Ala Glu 1 5 10 15

Ala Leu Ala Pro Glu Met Glu Ala Val Asn Ala Leu Ile Arg Glu Arg 20 25 30

Met Ala Ser Arg His Ala Pro Arg Ile Pro Glu Val Thr Ala His Leu 35 40 45

Ile Glu Ala Gly Gly Lys Arg Leu Arg Pro Met Leu Thr Leu Ala Ala 50 55 60

Ala Lys Leu Leu Gly Tyr Gly Gly Pro Tyr His Val His Leu Ala Ala 65 70 75 80

Thr Val Glu Phe Ile His Thr Ala Thr Leu Leu His Asp Asp Val Val 85 90 95

Asp Glu Ser Arg Gln Arg Arg Gly Arg Pro Thr Ala Asn Leu Leu Trp
100 105 110

Asp	Asn	Lys 115	Ser	Ser	Val	Leu	Val 120	Gly	Asp	Tyr	Leu	Phe 125	Ala	Arg	Ser
Phe	Gln 130	Leu	Met	Val	Glu	Pro 135		Ser	Met	Arg	Thr 140	Leu	Glu	Ile	Leu
Ser 145	Asn	Ala	Ala	Ala	Thr 150	Ile	Ala	Glu	Gly	Glu 155	Val	Leu	Gln	Leu	Thr 160
Ala	Ala	Gln	Asp	Leu 165	Ala	Thr	Asn	Glu	Asp 170	Ile	Tyr	Leu	Gln	Val 175	Val
Arg	Gly	Lys	Thr 180	Ala	Ala	Leu	Phe	Ser 185	Ala	Ala	Thr	Glu	Val 190	Gly	Gly
Val	Ile	Ala 195	Gly	Val	Pro	Asp	Ala 200	Gln	Val	Arg	Ala	Leu 205	Phe	Asp	Tyr
Gly	Asp 210	Ala	Leu	Gly	Ile	Ala 215	Phe	Gln	Ile	Val	Asp 220	Asp	Leu	Leu	Asp
Tyr 225	Gly	Gly	Thr	Ala	Glu 230	Ala	Ile	Gly	Lys	Asn 235	Thr	Gly	Asp	Asp	Phe 240
Arg	Glu	Arg	Lys	Leu 245	Thr	Leu	Pro	Val	Ile 250	Lys	Ala	Val	Ala	Arg 255	Ala
Thr	Pro	Glu	Glu 260	Arg	Ala	Phe	Trp	Ser 265	Arg	Thr	Ile	Glu	Lys 270	Gly	Ąsp
Gln	Lys	Asp 275	Gly	Asp	Leu	Glu	His 280	Ala	Leu	Glu	Leu	Leu 285	Ala	Arg	His
Ġly	Ala 290	Met	Ala	Asp	Ala	Arg 295	Arg	Aap	Ala	Leu	Asp 300	Trp	Ala	Ala	Arg
Ala 305	Arg	Ala	Ser	Leu	Gln 310	Ile	Leu	Pro	Glu	His 315	Pro	Ile	Arg	Asp	Met 320
Leu	Ser	Asp	Leu	Ala 325	Asp	Phe	Val	Val	Glu 330	Arg	Ile	Ala			

<210> 9 <211> 20 <212> ADN <213> Artificial

²⁷

	<220> <223>	Cebador	
5	<400> gcgctgg	9 tcg aggcgtggaa	20
10	<210> <211> <212> <213>	20	
	<220> <223>	Cebador	
15	<400> cgtcago	10 gtg gcgggcaagt	20
20	<210> <211> <212> <213>	30	
25	<220> <223>	Cebador	
25	<400> aaggcc	11 tcat atgaacgtgc aggaagacgt	30
30	<210> <211> <212> <213>	28	
35	<220> <223>	Cebador	
	<400> cgggato	12 cctc aggcgatgcg ttcgacca	28
40	<210> <211> <212> <213>	31	
45	<220> <223>	Cebador	
50	<400> ggccgc(13 gacg gtcgattca tccacaccgc g	31
	<210><211><211><212><213>	31	
55	<220> <223>	Cebador	
60	<400>	14 Itag atgaactcga cogtogogg c	31

	<210> <211> <212> <213>		
5	<220> <223>	Cebador	
10	<400> agagcg	15 ggat cgacaagtcg aaggccg	27
15	<210> <211> <212> <213>	27	
	<220> <223>	Cebador	
20		16 cga cttgtcgatc ccgctct	27
25	<210> <211> <212> <213>	26	
30	<400>	Cebador 17 agt tgccgcgtga ctgcgg	26
35	<210> <211> <212> <213>	26	
40	<220> <223>	Cebador	
45	<400> ccgcag	18 tcac gcggcaactc aagcac	26
	<210><211><211><212><213>	20	
50	<220>	Cebador	
55	<400> cgtcaat	19 tat tacctccacg	20
60	<210> <211> <212> <213>	20	

<220>

	<223>	Cebado	or					
	<400>	20						
5	ggccatg	ccc gtga	cgcgat	20				
	<210>	21						
	<211> <212>	20 ADN						
10		Artificia	al					
	<220>							
	<223>	Cebado	or					
15	<400>	21		00				
	gagttctto	ct gagcg	ggact	20				
	<210> <211>	22 20						
20	<212>							
		Artificia	ıl					
	<220>							
25	<223>	Cebado	or					
	<400>	22						
	ccgacat	agt tcttct	tcgta	20				
	<210>	23						
30	<211> <212>	7096						
			ccus sp. R114					
	<400>	23						
35	cggct	gggtg	tggcggaccg	ctatcaggac	atagcgttgg	ctacccgtga	tattgctgaa	60
			gcgaatgggc				_	120
			•					
	tcgca	gcgca	tegeetteta	tegeettett	gacgagttct	tctgagcggg	actctggggt	180
	tcgaa	atgac	cgaccaagcg	acgcccaacc	tgccatcacg	agatttcgat	tccaccgccg	240
	ccttc	tatga	aaggttgggc	ttcggaatcg	ttttccggga	cgccggctgg	atgatectec	300
	agcgc	gggga	tctcatgctg	gagttcttcg	cccaccccca	tgggcaaata	ttatacgcaa	, 360
	ggcga	caagg	tgctgatgcc	gctggcgatt	caggttcatc	atgccgtttg	tgatggcttc	420
	catgt	cggca	gaatgcttaa	tgaattacaa	cagtttttat	gcaacgcgtc	gaaccgcccg	480
			gtttccgcac				•	540
			ccgcgaagaa					600
	gcccg	tgaaa	gaccagatga	tttcccatac	cccggtgccc	acgcaatggg	teggeeegat	660
	cctgt	tccgc	ggccccgtcg	tcgagggccc	gatcagcgcg	ccgctggcca	cctacgagac	720
	gccgc	tctgg	ccctcgaccg	cgcggggggc	aggggtttcc	eggeattegg	gcgggatcca	780

ggtctcgctg	gtcgacgaac	gcatgagccg	ctcgatcgcg	ctgegggege	atgacggggc	840
ggcggcgacc	gccgcctggc	agtcgatcaa	ggcccgccag	gaagaggtcg	cggccgtggt	900
cgccaccacc	agccgcttcg	cccgccttgt	cgagctgaat	cgccagatcg	tgggcaacct	960
gctttacatc	cgcatcgaat	gcgtgacggg	cgacgcctcg	ggtcacaaca	tggtcaccaa	1020
ggccgccgag	gccgtgcagg	gctggatcct	gtcggaatac	ccgatgctgg	cctattccac	1080
gatctcgggg	aacctgtgca	ccgacaagaa	ggcgtcggcg	gtcaacggca	tectgggeeg	1140
cggcaaatac	gccgtcgccg	aggtcgagat	cccgcgcaag	atcctgaccc	gcgtgctgcg	1200
caccagegee	gagaagatgg	tccgcctgaa	ctacgagaag	aactatgtcg	ggggtacgct	1260
ggcggggtcg	ctgcgcagtg	cgaacgcgca	tttcgccaac	atgctgctgg	gcttctacct	1320
ggcgacgggg	caggacgcgg	ccaacatcat	cgaggccagc	cagggcttcg	tccattgcga	1380
ggcccgcggc	gaggatctgt	atttctcgtg	cacgctgccc	aacctcatca	tgggctcggt	1440
cggtgecggc	aagggcatcc	cctcgatcga	ggagaacctg	tegeggatgg	gctgccgcca	1500
gccgggcgaa	cccggcgaca	acgcgcgccg	tcttgcggcg	atctgcgcgg	gegtegtget	1560
gtgtggtgaa	ttgtcgctgc	ttgcggccca	gaccaacccc	ggagagttgg	teegeaceca	1620
catggagatg	gagcgatgac	cgacagcaag	gatcaccatg	tegeggggeg	caagctggac	1680
catctgcgtg	cattggacga	cgatgcggat	atcgaccggg	gcgacagcgg	cttcgaccgc	1740
atcgcgctga	cccatcgcgc	cctgcccgag	gtggatttcg	acgccatcga	cacggcgacc	1800
agcttcctgg	gccgtgaact	gtccttcccg	ctgctgatct	cgtccatgac	cggcggcacc	1860
ggcgaggaga	tcgagcgcat	caaccgcaac	ctggccgctg	gtgccgagga	ggcccgcgtc	1920
gccatggcgg	tgggctcgca	gegegtgatg	ttcaccgacc	cctcggcgcg	ggccagcttc	1980
gacctgcgcg	cccatgcgcc	caccgtgccg	ctgctggcca	atateggege	ggtgcagctg	2040
aacatggggc	tggggctgaa	ggaatgcctg	gccgcgatcg	aggtgctgca	ggcggacggc	2100
ctgtatctgc	acctgaaccc	cctgcaagag	gccgtccagc	ccgagggga	tcgcgacttt	2160
gccgatctgg	gcagcaagat	cgcggccatc	gcccgcgacg	ttcccgtgcc	cgtcctgctg	2220
aaggaggtgg	gctgcggcct	gtcggcggcc	gatatcgcca	tegggetgeg	cgccgggatc	2280
cggcatttcg	acgtggccgg	tcgcggcggc	acatcctgga	gccggatcga	gtatcgccgc	2340
cgccagcggg	ccgatgacga	cctgggcctg	gtcttccagg	actggggcct	gcagaccgtg	2400
gacgccctgc	gcgaggcgcg	gcccgcgctt	gcggcccatg	atggaaccag	cgtgctgatc	2460
gccagcggcg	gcatccgcaa	cggtgtcgac	atggcgaaat	gcgtcatcct	gggggccgac	2520
atgtgcgggg	tegeegegee	cctgctgaaa	gcggcccaaa	actcgcgcga	ggcggttgta	2580

teegecatee	ggaaactgca	tctggagttc	cggacagcca	tgttcctcct	gggttgegge	2640
acgettgeeg	acctgaagga	caattecteg	cttatccgtc	aatgaaagtg	cctaagatga	2700
ccgtgacagg	aatcgaagcg	atcagettet	acacccccca	gaactacgtg	ggactggata	2760
tccttgccgc	gcatcacggg	atcgaccccg	agaagttctc	gaaggggatc	gggcaggaga	2820
aaatcgcact	gcccggccat	gacgaggata	tcgtgaccat	ggccgccgag	geegegetge	2880
cgatcatcga	acgcgcgggc	acgcagggca	tegacacggt	tctgttcgcc	accgagagcg	2940
ggatcgacaa	gtcgaaggcc	gccgccatct	atctgcgccg	cctgctggac	ctgtcgccca	.3000
actgccgttg	cgtcgagctg	aagcaggcct	gctattccgc	gacggcggcg	ctgcagatgg	3060
cctgcgcgca	tgtcgcccgc	aagcccgacc	gcaaggtgct	ggtgatcgcg	tccgatgtcg	3120
cgcgctatga	ccgcgaaagc	tcgggcgagg	cgacgcaggg	tgcgggcgcc	gtcgccatcc	3180
ttgtcagcgc	cgatcccaag	gtggccgaga	teggcaccgt	ctcggggctg	ttcaccgagg	3240
atatcatgga	tttctggcgg	ccgaaccacc	gccgcacgcc	cctgttcgac	ggcaaggcat	3300
cgacgctgcg	ctatctgaac	gcgctggtcg	aggcgtggaa	cgactatcgc	gcgaatggcg	3360
gccacgagtt	cgccgatttc	gcgcatttct	gctatcacgt	geegtteteg	cggatgggcg	3420
agaaggcgaa	cagccacctg	gccaaggcga	acaagacgcc	ggtggacatg	gggcaggtgc	3480
agacgggcct	gatctacaac	cggcaggtcg	ggaactgcta	taccgggtcg	atctacctgg	3540
cattcgcctc	gctgctggag	aacgctcagg	aggacctgac	cggcgcgctg	gtcggtctgt	3600
tcagctatgg	ctcgggtgcg	acgggcgaat	tcttcgatgc	gcggatcgcg	cccggttacc	3660
gcgaccacct	gttcgcggaa	cgccatcgcg	aattgctgca	ggategeaeg	cccgtcacat	3720

atgacgaata	cgttgccctg	tgggacgaga	tcgacctgac	gcagggcgcg	cccgacaagg	3780
cgcgcggtcg	tttcaggctg	gcaggtatcg	aggacgagaa	gcgcatctat	gtcgaccggc	3840
aggcctgaag	caggcgccca	tgccccgggc	aagctgatcc	tgtccgggga	acattccgtg	3900
ctctatggtg	cgcccgcgct	tgccatggcc	atcgcccgct	ataccgaggt	gtggttcacg	3960
ccgcttggca	ttggcgaggg	gatacgcacg	acattcgcca	atctctcggg	cggggcgacc	4020
tattcgctga	agctgctgtc	ggggttcaag	tegeggetgg	accgccggtt	cgagcagttc	4080
ctgaacggcg	acctaaaggt	gcacaaggtc	ctgacccatc	ccgacgatct	ggcggtctat	4140
gegetggegt	cgcttctgca	cgacaagccg	ccggggaccg	ccgcgatgcc	gggcategge	4200
gcgatgcacc	acctgccgcg	accgggtgag	ctgggcagcc	ggacggagct	gcccatcggc	4260
gcgggcatgg	ggtcgtctgc	ggccatcgtc	gcggccacca	eggteetgtt	cgagacgctg	4320
ctggaccggc	ccaagacgcc	cgaacagcgc	ttcgaccgcg	tecgettetg	cgagcggttg	4380
aagcacggca	aggccggtcc	catcgacgcg	gccagcgtcg	tgcgcggcgg	gcttgtccgc	4440
gtgggcggga	acgggccggg	ttcgatcagc	agcttcgatt	tgcccgagga	tcacgacett	4500
gtcgcgggac	gcggctggta	ctgggtactg	cacgggcgcc	ccgteagegg	gaccggcgaa	4560
tgcgtcagcg	cggtcgcggc	ggcgcatggt	cgcgatgcgg	cgctgtggga	egeettegea	4620
gtctgcaccc	gegegttgga	ggccgcgctg	ctgtctgggg	gcagccccga	cgccgccatc	4680
accgagaacc	agcgcctgct	ggaacgcatc	ggcgtcgtgc	cggcagcgac	gcaggccctc	4740
gtggcccaga	tcgaggaggc	gggtggcgcg	gccaagatct	gcggcgcagg	tteegtgegg	4800
ggcgatcacg	gcggggcggt	cctcgtgcgg	attgacgacg	cgcaggcgat	ggcttcggtc	4860
atggcgcgcc	atcccgacct	cgactgggcg	ccctgcgca	tgtcgcgcac	gggggcggca	4920
cccggccccg	cgccgcgtgc	gcaaccgctg	ccggggcagg	gctgatggat	caggtcatcc	4980
gcgccagcgc	gccgggttcg	gtcatgatca	cgggcgaaca	tgccgtggtc	tatggacacc	5040
gcgccatcgt	cgccgggatc	gagcagcgcg	cccatgtgac	gatcgtcccg	cgtgccgacc	5100
gcatgtttcg	catcacetcg	cagatcgggg	cgccgcagca	ggggtegetg	gacgatetge	5160
ctgcgggcgg	gacctatcgc	ttcgtgctgg	ccgccatcgc	gcgacacgcg	ccggacctgc	5220
cttgcgggtt	cgacatggac	atcacctcgg	ggatcgatcc	gaggeteggg	cttggatect	5280
cggcggcggt	gacggtcgcc	tgcctcggcg	cgctgtcgcg	gctggcgggg	cgggggaccg	5340
aggggctgca	tgacgacgcg	ctgcgcatcg	teegegeeat	ccagggcagg	ggcagcgggg	5400
ccgatctggc	ggccagcctg	catggcggct	togtogoota	tegegegeee	gatggcggtg	5460

ccgcgcagat	cgaggcgctt	ccggtgccgc	cggggccgtt	cggectgcgc	tatgcgggct	5520
acaagacccc	gacagccgag	gtgctgcgcc	ttgtggccga	tcggatggcg	ggcaacgagg	5580
ccgctttcga	cgcgctctac	tcccggatgg	gcgcaagcgc	agatgccgcg	atccgcgcgg	5640
cgcaagggct	ggactgggct	gcattccacg	acgcgctgaa	cgaataccag	cgcctgatgg	5700
agcagctggg	cgtgtccgac	gacacgctgg	acgcgatcat	ccgcgaggcg	cgcgacgcgg	5760
gcgccgcagt	cgccaagatc	teeggetegg	ggctggggga	ttgcgtgctg	gcactgggcg	5820
accagcccaa	gggtttcgtg	cccgcaagca	ttgccgagaa	gggacttgtt	ttcgatgact	5880
gatgccgtcc	gcgacatgat	cgcccgtgcc	atggcgggcg	cgaccgacat	ccgagcagcc	5940
gaggcttatg	cgcccagcaa	catcgcgctg	tcgaaatact	ggggcaagcg	cgacgccgcg	6000
cggaaccttc	cgctgaacag	ctccgtctcg	atctcgttgg	cgaactgggg	ctctcatacg	6060
cgggtcgagg	ggtceggcac	gggccacgac	gaggtgcatc	acaacggcac	gctgctggat	6120
ccgggcgacg	ccttegegeg	cegegegttg	gcattcgctg	acctgttccg	gggggggagg	6180
cacctgccgc	tgcggatcac	gacgcagaac	tegatecega	eggeggeggg	gettgeeteg	6240
teggeetegg	ggttegegge	gctgacccgt	gegetggegg	gggcgttcgg	gctggatctg	6300
gacgacacgg	atctgagccg	categeeegg	atcggcagtg	gcagcgccgc	ccgctcgatc	6360
tggcacggct	tegteegetg	gaaccggggc	gaggccgagg	atgggcatga	cagccacggc	6420
gtcccgctgg	acctgcgctg	geeeggette	cgcatcgcga	tegtggcegt	ggacaagggg	6480
cccaagcctt	tcagttcgcg	cgacggcatg	aaccacacgg	tcgagaccag	cccgctgttc	6540
cegecetgge	ctgcgcaggc	ggaagcggat	tgccgcgtca	tcgaggatgc	gategeegee	6600
cgcgacatgg	ccgccctggg	tccgcgggtc	gaggcgaacg	eccttgcgat	gcacgccacg	6660
atgatggccg	cgcgcccgcc	gctctgctac	ctgacgggcg	gcagctggca	ggtgctggaa	6720
egeetgtgge	aggcccgcgc	ggacgggctt	gcggcctttg	cgacgatgga	tgceggcccg	6780
aacgtcaagc	tgatcttcga	ggaaagcagc	gccgccgacg	tgctgtacct	gttccccgac	6840
gccagcctga	tegegeegtt	cgaggggcgt	tgaacgcgta	agacgaccac	tgggtaaggt	6900
ctgccgcgc	gtggtctcga	ctgcctgcaa	agaggtgctt	gagttgccgc	gtgactgcgg	6960
eggeegaett	cgtgggactt	gcccgccacg	ctgacgaagg	gcgaattcca	gcacactggc	7020
ggccgttact	agttctagag	cggccgccac	cgcggtggag	ggcggcacct	cgctaacgga	7080
tcaccgttt	ttatca					7096

REIVINDICACIONES

1.- Un procedimiento para la producción de isoprenoides, que comprende

- a. introducir en un microorganismo seleccionado del género *Rhodobacter* una secuencia de ADN que codifica una enzima que tiene actividad de decaprenil difosfato sintasa y una secuencia de polinucleótidos que comprende genes del operón mev de acuerdo con SEQ ID NO: 23,
- b. cultivar el microorganismo de la etapa (a) bajo condiciones que permiten la producción de isoprenoides.
- 2.- Un procedimiento de acuerdo con la reivindicación 1, en el que la secuencia de ADN que codifica una enzima con
 actividad de decaprenil difosfato sintasa se representa por SEQ ID NO: 7.
 - 3.- El procedimiento de acuerdo con la reivindicación 1 ó 2, en el que el microorganismo en el que se introduce el polinucleótido es *Rhodobacter sphaeroides*.

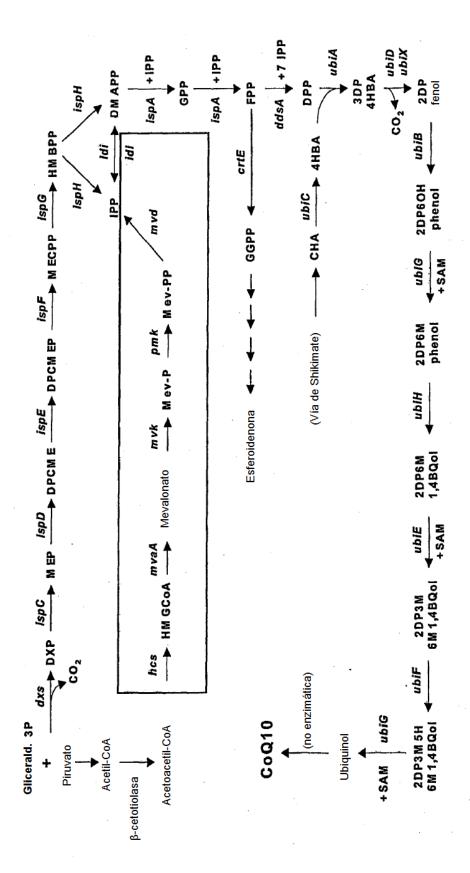


Figura 1