

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 394 793

(51) Int. CI.:

H04L 27/34 (2006.01) H04L 1/00 (2006.01) H04L 5/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 03.06.2009 E 11194090 (4)
 (97) Fecha y número de publicación de la solicitud europea: 21.03.2012 EP 2432185
- (54) Título: Aparato para transmitir y recibir una señal y método para transmitir y recibir una señal
- (30) Prioridad:

29.01.2009 US 14835709 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.02.2013**

(73) Titular/es:

LG ELECTRONICS INC. (100.0%) 20 Yeouido-dong Yeongdeungpo-gu Seoul 150-721, KR

(72) Inventor/es:

KO, WOO SUK; HONG, HO TAEK y MOON, SANG CHUL

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Aparato para transmitir y recibir una señal y método para transmitir y recibir una señal.

ANTECEDENTES DE LA INVENCIÓN

CAMPO DE LA INVENCIÓN

La presente invención se refiere a un método para transmitir y recibir una señal y un aparato para transmitir y recibir una señal, y más particularmente, a un método para transmitir y recibir una señal y un aparato para transmitir y recibir una señal, que son capaces de mejorar la eficiencia de transmisión de datos.

DESCRIPCIÓN DE LA TÉCNICA RELACIONADA

A medida que la tecnología digital de difusión se ha desarrollado, los usuarios han recibido una imagen en movimiento de alta definición (HD). Con el desarrollo continuo de un algoritmo de compresión y un alto rendimiento de los componentes físicos, se proporcionará un entorno mejor a los usuarios en el futuro. Un sistema de televisión digital (DTV) puede recibir una señal de difusión digital y proporcionar una variedad de servicios complementarios a los usuarios así como una señal de vídeo y una señal de audio. El documento TM 3980 DVB-T2 (ORGANIZACIÓN DVB), publicado el 17 de marzo de 2008, revela un sistema de Difusión de Vídeo Digital (DVB) de acuerdo con la técnica anterior.

La Difusión de Video Digital (DVB)-C2 es la tercera especificación que se une a la familia DVB de sistemas de transmisión de segunda generación. Desarrollada en 1994, hoy DVB-C está desplegada en más de 50 millones de sintonizadores de cable en todo el mundo. En línea con los otros sistemas DVB de segunda generación, DVB-C2 usa una combinación de códigos de comprobación de paridad de Baja densidad (LDPC) y BCH. Esta potente corrección de error sin canal de retorno (FEC) proporciona una mejora de alrededor de 5 dB de relación portadora a ruido sobre DVB-C. Esquemas apropiados de intercalado de bits optimizan la robustez general del sistema de FEC. Extendidas por una cabecera, estas tramas se llaman Conductos de Capa Física (PLP). Uno o más de estos PLP se multiplexan en un segmento de datos. El intercalado de dos dimensiones (en los dominios del tiempo y de la frecuencia) se aplica a cada segmento permitiendo al receptor eliminar el impacto de los deterioros de ráfagas y la interferencia de frecuencia selectiva tal como una entrada de frecuencia única.

Con el desarrollo de estas tecnologías digitales de difusión, aumentó un requisito de un servicio tal como una señal de vídeo y señal de audio y aumentó gradualmente el tamaño de los datos deseados por los usuarios o el número de canales de difusión.

RESUMEN DE LA INVENCIÓN.

20

25

40

45

Por consiguiente, la presente invención se dirige a un método para transmitir y recibir una señal y un aparato para transmitir y recibir una señal que sustancialmente obvia uno o más problemas debidos a las limitaciones y desventajas de la técnica relacionada.

Un objeto de la presente invención es proporcionar un método para transmitir y recibir una señal y un aparato para transmitir y recibir una señal, que son capaces de mejorar la eficiencia de transmisión de datos.

Otro objeto de la presente invención es proporcionar un método para transmitir y recibir una señal y un aparato para transmitir y recibir una señal, que son capaces de mejorar la capacidad de corrección de errores de bits que configuran un servicio.

Las ventajas, objetos y rasgos adicionales de la invención se establecerán en adelante en parte en la descripción que sigue y en parte llegarán a ser evidentes a aquéllos que tienen experiencia habitual en la técnica tras el examen de lo siguiente. Los objetivos y otras ventajas de la invención se pueden realizar y alcanzar por la estructura particularmente señalada en la descripción escrita y las reivindicaciones de la misma así como por los dibujos adjuntos.

DESCRIPCIÓN DE LAS REALIZACIONES PREFERENTES.

Los dibujos anexos, que se incluyen para proporcionar una comprensión adicional de la invención y se incorporan en y constituyen una parte de esta solicitud, ilustran realización(es) de la invención y junto con la descripción sirven para explicar el principio de la invención. En los dibujos:

La Fig. 1 es un ejemplo de modulación de amplitud en Cuadratura -64 (QAM) que se usa en el DVB-T europeo.

La Fig. 2 es un método de Código Gray Reflejado Binario (BRGC).

La Fig. 3 una salida cercana a Gaussiana modificando la 64-QAM usada en DVB-T.

- La Fig. 4 es la distancia Hamming entre un par Reflejado en BRGC.
- La Fig. 5 es características en QAM donde existe un par Reflejado para cada eje I y eje Q.
- La Fig. 6 es un método para modificar la QAM usando un par Reflejado de BRGC.
- La Fig. 7 es un ejemplo de 64/256/1024/4096-QAM modificada.
- 5 Las Fig. 8-9 son un ejemplo de 64-QAM modificada usando un Par Reflejado de BRGC.
 - Las Fig. 10-11 son un ejemplo de 256-QAM modificada usando un Par Reflejado de BRGC.
 - Las Fig. 12-13 son un ejemplo de 1024-QAM modificada usando un Par Reflejado de BRGC (0 ~ 511).
 - Las Fig. 14-15 son un ejemplo de 1024-QAM modificada usando un Par Reflejado de BRGC (512 ~ 1023).
 - Las Fig. 16-17 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (0 ~ 511).
- 10 Las Fig. 18-19 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (512 ~ 1023).
 - Las Fig. 20-21 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (1024 ~1535).
 - Las Fig. 22-23 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (1536 ~ 2047).
 - Las Fig. 24-25 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (2048~2559).
 - Las Fig. 26-27 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (2560 ~ 3071).
- 15 Las Fig. 28-29 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (3072 ~ 3583).
 - Las Fig. 30-31 son un ejemplo de 4096-QAM modificada usando un Par Reflejado de BRGC (3584 ~4095).
 - La Fig. 32 es un ejemplo de correlación de bits de la QAM Modificada donde 256-QAM se modifica usando BRGC.
 - La Fig. 33 es un ejemplo de transformación de MQAM en una constelación no uniforme.
 - La Fig. 34 es un ejemplo de un sistema de transmisión digital.
- 20 La Fig. 35 es un ejemplo de un procesador de entrada.
 - La Fig. 36 es una información que se puede incluir en banda Base (BB).
 - La Fig. 37 es un ejemplo de BICM.
 - La Fig. 38 es un ejemplo de codificador acortado/perforado.
 - La Fig. 39 es un ejemplo de aplicar varias constelaciones.
- La Fig. 40 es otro ejemplo de los casos en que se considera la compatibilidad entre sistemas convencionales.
 - La Fig. 41 es una estructura de trama que comprende el preámbulo para la señalización de L1 y el símbolo de datos para los datos de PLP.
 - La Fig. 42 es un ejemplo de formador de tramas.
 - La Fig. 43 es un ejemplo de inserción de piloto (404) mostrado en la Fig. 4.
- 30 La Fig. 44 es una estructura de SP.
 - La Fig. 45 es una nueva estructura de SP o Patrón Piloto (PP) 5'.
 - La Fig. 46 es una estructura PP5' sugerida.
 - La Fig. 47 es una relación entre el símbolo de datos y el preámbulo.
 - La Fig. 48 es otra relación entre el símbolo de datos y el preámbulo.
- La Fig. 49 es un ejemplo de perfil de retardo del canal de cable.
 - La Fig. 50 es una estructura de piloto dispersa que usa z=56 y z=112.

- La Fig. 51 es un ejemplo de modulador basado en OFDM.
- La Fig. 52 es un ejemplo de estructura de preámbulo.
- La Fig. 53 es un ejemplo de descodificación de Preámbulo.
- La Fig. 54 es un proceso para diseñar un preámbulo más optimizado.
- 5 La Fig. 55 es otro ejemplo de estructura de preámbulo.
 - La Fig. 56 es otro ejemplo de descodificación de Preámbulo.
 - La Fig. 57 es un ejemplo de estructura de Preámbulo.
 - La Fig. 58 es un ejemplo de descodificación de L1.
 - La Fig. 59 es un ejemplo de procesador analógico.
- 10 La Fig. 60 es un ejemplo de sistema receptor digital.
 - La Fig. 61 es un ejemplo de procesador analógico usado en el receptor.
 - La Fig. 62 es un ejemplo de demodulador.
 - La Fig. 63 es un ejemplo de analizador sintáctico de tramas.
 - La Fig. 64 es un ejemplo de demodulador BICM.
- 15 La Fig. 65 es un ejemplo de descodificación LDPC que usa acortamiento/perforación.
 - La Fig. 66 es un ejemplo de procesador de salida.
 - La Fig. 67 es un ejemplo de la tasa de repetición de bloque de L1 de 8 MHz.
 - La Fig. 68 es un ejemplo de la tasa de repetición de bloque de L1 de 8 MHz.
 - La Fig. 69 es una nueva tasa de repetición de bloque de L1 de 7,61 MHz.
- 20 La Fig. 70 es un ejemplo de señalización de L1 que se transmite en la cabecera de la trama.
 - La Fig. 71 es el resultado del preámbulo y la simulación de la Estructura de L1.
 - La Fig. 72 es un ejemplo de intercalador de símbolos.
 - La Fig. 73 es un ejemplo de una transmisión de bloque de L1.
 - La Fig. 74 es otro ejemplo de señalización de L1 transmitida dentro de una cabecera de trama.
- La Fig. 75 es un ejemplo de intercalado/desintercalado en frecuencia o tiempo.
 - La Fig. 76 es una tabla de análisis de sobrecarga de la señalización de L1 que se transmite en la cabecera de FECFRAME en la Inserción de Cabecera ModCod (307) en el trayecto de datos del módulo de BICM mostrado en la Fig. 3.
 - La Fig. 77 está mostrando una estructura de cabecera FECFRAME para minimizar la sobrecarga.
- 30 La Fig. 78 está mostrando un rendimiento de la tasa de error de bit (BER) de la protección de L1 anteriormente mencionada.
 - La Fig. 79 está mostrando ejemplos de una trama de transmisión y una estructura de trama FEC.
 - La Fig. 80 está mostrando un ejemplo de señalización de L1.
 - La Fig. 81 está mostrando un ejemplo de señalización de L1 previa.
- La Fig. 82 está mostrando una estructura de bloque de señalización de L1.
 - La Fig. 83 está mostrando un intercalado en el tiempo de L1.
 - La Fig. 84 está mostrando un ejemplo de extraer modulación e información de código.

- La Fig. 85 está mostrando otro ejemplo de la señalización de L1 previa.
- La Fig. 86 está mostrando un ejemplo de programación del bloque de señalización de L1 que se transmite en el preámbulo.
- La Fig. 87 está mostrando un ejemplo de señalización de L1 previa donde se considera aumentar la potencia.
- 5 La Fig. 88 está mostrando un ejemplo de señalización de L1.
 - La Fig. 89 está mostrando otro ejemplo de extraer modulación e información de código.
 - La Fig. 90 está mostrando otro ejemplo de extraer modulación e información de código.
 - La Fig. 91 está mostrando un ejemplo de sincronización de L1 previa.
 - La Fig. 92 está mostrando un ejemplo de señalización de L1 previa.
- 10 La Fig. 93 está mostrando un ejemplo de señalización de L1.
 - La Fig. 94 está mostrando un ejemplo del trayecto de señalización de L1.
 - La Fig. 95 es otro ejemplo de la señalización de L1 transmitida dentro de una cabecera de trama.
 - La Fig. 96 es otro ejemplo de la señalización de L1 transmitida dentro de una cabecera de trama.
 - La Fig. 97 es otro ejemplo de la señalización de L1 transmitida dentro de una cabecera de trama.
- 15 La Fig. 98 muestra un ejemplo de señalización de L1.
 - La Fig. 99 es un ejemplo de intercalador de símbolos.
 - La Fig. 100 está mostrando un rendimiento de intercalado del intercalador en el tiempo de la Fig. 99.
 - La Fig. 101 es un ejemplo de intercalador de símbolos.
 - La Fig. 102 está mostrando un rendimiento de intercalado del intercalador en el tiempo de la Fig. 101.
- 20 La Fig. 103 es un ejemplo de desintercalador de símbolos.
 - La Fig. 104 es otro ejemplo de intercalador en el tiempo.
 - La Fig. 105 es un resultado de intercalado que usa el método mostrado en la Fig. 104.
 - La Fig. 106 es un ejemplo de método de direccionamiento de la Fig. 105.
 - La Fig. 107 es otro ejemplo de intercalado en el tiempo de L1.
- 25 La Fig. 108 es un ejemplo de desintercalador de símbolos.
 - La Fig. 109 es otro ejemplo de desintercalador.
 - La Fig. 110 es un ejemplo de desintercalador de símbolos.
 - La Fig. 111 es un ejemplo de direcciones de fila y columna para desintercalado en el tiempo.
- La Fig. 112 muestra un ejemplo de intercalado general de bloques en un dominio de símbolo de datos donde no se usan pilotos.
 - La Fig. 113 es un ejemplo de un transmisor OFDM que usa segmentos de datos.
 - La Fig. 114 es un ejemplo de un receptor OFDM que usa segmento de datos.
 - La Fig. 115 es un ejemplo de intercalador en el tiempo y un ejemplo de desintercalador en el tiempo.
 - La Fig. 116 es un ejemplo de la formación de símbolos OFDM.
- La Fig. 117 es un ejemplo de un Intercalador en el Tiempo (TI).
 - La Fig. 118 es un ejemplo de un Intercalador en el Tiempo (TI).

La Fig. 119 es un ejemplo de una estructura de preámbulo en un transmisor y un ejemplo de un proceso en un receptor.

La Fig. 120 es un ejemplo de un proceso en un receptor para obtener L1 XFEC FRAME desde el preámbulo.

La Fig. 121 es un ejemplo de una estructura de preámbulo en un transmisor y un ejemplo de un proceso en un receptor.

- La Fig. 122 es un ejemplo de un Intercalador en el Tiempo (TI).
- La Fig. 123 es un ejemplo de un transmisor OFDM que usa segmentos de datos.
- La Fig. 124 es un ejemplo de un receptor OFDM que usa segmentos de datos.
- La Fig. 125 es un ejemplo de un Intercalador en el Tiempo (TI).
- 10 La Fig. 126 es un ejemplo de un Desintercalador en el Tiempo (TDI).
 - La Fig. 127 es un ejemplo de un Intercalador en el Tiempo (TI).
 - La Fig. 128 es un ejemplo de flujo de intercalado y desintercalado en el tiempo de preámbulo.
 - La Fig. 129 es un parámetro de profundidad de Intercalado en el Tiempo en la señalización de cabecera de L1.
 - La Fig. 130 es un ejemplo de una señalización de cabecera de L1, estructura de L1, y un método de relleno.
- 15 La Fig. 131 es un ejemplo de señalización de L1.
 - La Fig. 132 es un ejemplo de dslice ti depth.
 - La Fig. 133 es un ejemplo de dslice type.
 - La Fig. 134 es un ejemplo de plp type.
 - La Fig. 135 es un ejemplo de Plp payload type.
- 20 La Fig. 136 es un ejemplo de Plp modcod.
 - La Fig. 137 es un ejemplo de GI.

30

35

40

- La Fig. 138 es un ejemplo de PAPR.
- La Fig. 139 es un ejemplo de señalización de L1.
- La Fig. 140 es un ejemplo de plp_type.
- 25 La Fig. 141 es un ejemplo de señalización de L1.
 - La Fig. 142 es un ejemplo de una señalización de cabecera de L1, estructura de L1, y un método de relleno.
 - DESCRIPCIÓN DE LAS REALIZACIONES PREFERENTES.

Se hará ahora referencia en detalle a las realizaciones preferentes de la presente invención, ejemplos de las cuales se ilustran en los dibujos anexos. Siempre que sea posible, los mismos números de referencia se usarán a lo largo de los dibujos para referirse a las partes iguales o similares.

En la siguiente descripción, el término "servicio" es indicativo de cualquiera de los contenidos de difusión que se pueden transmitir/recibir mediante el aparato de transmisión/recepción de señal.

La "Modulación de Amplitud de Cuadratura" (QAM) que usa el Código Binario Reflejado Gray (BRGC) se usa como modulación en un entorno de transmisión de difusión donde se usa la Modulación Codificada de Intercalado de Bits (BICM) convencional. La Fig. 1 muestra un ejemplo de 64-QAM usada en la DVB-T europea.

El BRGC se puede hacer usando el método mostrado en la Fig. 2. Un BRGC de n bits se puede hacer añadiendo un código inverso de BRGC de (n-1) bits (es decir, código reflejado) a la parte de atrás de (n-1) bits, añadiendo 0 a una parte delantera de BRGC de (n-1) bits original, y añadiendo 1 a una parte delantera de código reflejado. El código BRGC hecho mediante este método tiene una distancia de Hamming entre códigos adyacentes de uno (1). Además, cuando se aplica el BRGC a la QAM, la distancia de Hamming entre un punto y los cuatro puntos que están más estrechamente adyacentes al punto, es uno (1) y la distancia de Hamming entre el punto y otros cuatro puntos que

son los segundos más estrechamente adyacentes al punto, es dos (2). Tales características de las distancias de Hamming entre un punto específico de la constelación y otros puntos adyacentes pueden ser denominadas como regla de correlación de Gray en QAM.

Para hacer un sistema robusto contra el Ruido Gaussiano Blanco Aditivo (AWGN), la distribución de las señales transmitidas desde un transmisor se pueden hacer cercanas a la distribución Gaussiana. Para ser capaces de hacer eso, las ubicaciones de puntos en la constelación se pueden modificar. La Fig. 3 muestra una salida próxima a Gaussiana modificando la 64-QAM usada en DVB-T. Tal constelación puede ser denominada como QAM no uniforme (NU-QAM).

5

10

15

20

25

30

35

40

45

50

Para hacer una constelación de QAM no uniforme, se puede usar la Función de Distribución Acumulativa Gaussiana (CDF). En el caso de 64, 256 o 1024 QAM, es decir, 2^N AM, la QAM se puede dividir en dos N-PAM independientes. Dividiendo la CDF Gaussiana en N secciones de probabilidad idéntica y permitiendo un punto de señal en cada sección para representar la sección, se puede hacer una constelación que tiene una distribución Gaussiana. En otras palabras, se puede definir la coordenada xj de N-PAM no uniforme nuevamente definida como sigue:

$$\int_{-\infty}^{x_j} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx = p_j, \qquad p_j \in \left\{ \frac{1}{2N}, \frac{3}{2N}, \dots, \frac{2N-1}{2N} \right\}$$
(Ec. 1)

La Fig. 3 es un ejemplo de transformación de 64QAM de DVB-T en NU-64QAM usando los métodos anteriores. La Fig. 3 representa un resultado de modificar las coordenadas de cada eje I y eje Q usando los métodos anteriores y correlacionar los puntos de la constelación previos a las coordenadas nuevamente definidas. En el caso de 32, 128, o 512 QAM, es decir, QAM cruzada, que no es 2^N QAM, modificando adecuadamente Pj, se puede encontrar una nueva coordenada.

Una realización de la presente invención puede modificar la QAM que usa el BRGC usando las características del BRGC. Como se muestra en la Fig. 4, la distancia de Hamming entre pares Reflejados en el BRGC es uno debido a que difiere sólo en un bit que se añade a la parte frontal de cada código. La Fig. 5 muestra las características en QAM donde el par Reflejado existe para cada eje I y eje Q. En esta figura, el par reflejado existe en cada lado de la línea negra de puntos.

Usando pares Reflejados existentes en QAM, una potencia media de una constelación QAM se puede reducir mientras que se mantiene la regla de correlación de Gray en QAM. En otras palabras, en una constelación donde una potencia media está normalizada como 1, la distancia Euclideana mínima en la constelación se puede aumentar. Cuando esta QAM modificada se aplica a los sistemas de difusión o de comunicación, es posible implementar o bien un sistema más robusto al ruido usando la misma energía que un sistema convencional o bien un sistema con el mismo rendimiento que un sistema convencional pero que usa menos energía.

La Fig. 6 muestra un método para modificar la QAM usando un par Reflejado del BRGC. La Fig. 6a muestra una constelación y la Fig. 6b muestra un diagrama de flujo para modificar la QAM usando un par Reflejado del BRGC. Primero, se tiene que encontrar un punto objetivo que tiene la potencia más alta entre los puntos de la constelación. Los puntos candidatos son puntos donde ese punto objetivo se puede mover y son los puntos colindantes más cercanos del par reflejado del punto objetivo. Entonces, se necesita encontrar un punto vacío (es decir, un punto que aún no está tomado por otros puntos) que tiene la potencia más pequeña entre los puntos candidatos y se comparan la potencia del punto objetivo y la potencia de un punto candidato. Si la potencia del punto candidato es más pequeña, el punto objetivo se mueve al punto candidato. Estos procesos se repiten hasta que una potencia media de los puntos en la constelación alcanza un mínimo mientras que se mantiene la regla de correlación de Gray.

La Fig. 7 muestra un ejemplo de 64/256/1024/4096-QAM modificada. Los valores correlacionados de Gray corresponden a las Fig. 8 ~ 31 respectivamente. Además de estos ejemplos, se pueden realizar otros tipos de QAM modificada que permiten la optimización de potencia idéntica. Esto es debido a que un punto objetivo se puede mover a múltiples puntos candidatos. La QAM modificada sugerida se puede aplicar a, no sólo 64/256/1024/4096-QAM, sino también a QAM cruzada, QAM de mayor tamaño, o modulaciones que usan otros BRGC distintos de

La Fig. 32 muestra un ejemplo de correlación de bits de QAM Modificada donde 256-QAM se modifica usando el BRGC. La Fig. 32a y la Fig. 32b muestran correlaciones de los Bits Más Significativos (MSB). Los puntos designados como círculos rellenos representan correlaciones de unos y puntos designados como círculos en blanco representan correlaciones de ceros. De la misma manera, cada bit se correlaciona como se muestra en las figuras desde (a) hasta (h) en la Fig. 32, hasta que se correlacionan los Bits Menos Significativos (LSB). Como se muestra en la Fig. 32, la QAM Modificada se puede permitir una decisión de bits que usa sólo los ejes I y Q como la QAM convencional,

excepto para un bit que está próximo al MSB (Fig. 32c y Fig. 32d). Usando estas características, se puede hacer un receptor simple modificando parcialmente un receptor para QAM. Un receptor eficiente se puede implementar comprobando tanto los valores I como Q sólo cuando se determina el bit próximo al MSB y calculando sólo I o Q para el resto de bits. Este método se puede aplicar a LLR Aproximada, LLR Exacta, o una decisión Firme.

Mediante el uso de la QAM Modificada o MQAM, que usa las características del BRGC anterior, se puede hacer una constelación no uniforme o NU-MQAM. En la ecuación anterior donde se usa la CDF Gaussiana, Pj puede ser modificada para adaptarse a la MQAM. Al igual que la QAM, en la MQAM, se pueden considerar dos PAM que tienen eje I y eje Q. Sin embargo, a diferencia de la QAM donde una serie de puntos que corresponden a un valor de cada eje PAM son idénticos, el número de puntos cambia en la MQAM. Si un número de puntos que corresponde al valor de orden j de la PAM se define como nj en una MQAM donde existen un total de M puntos de la constelación, entonces Pi se puede definir como sigue:

$$\int_{-\infty}^{x_f} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = p_f$$

$$p_f = \frac{\sum_{i=0}^{i=j-1} n_i + \frac{n_f}{2}}{M}, \quad n_0 = 0$$
(Ec. 2)

Usando la Pj nuevamente definida, la MQAM se puede transformar en una constelación no-uniforme. Pj se puede definir como sigue para el ejemplo de 256-MQAM

$$p_j \in \left\{ \frac{2.5}{256}, \frac{10}{256}, \frac{22}{256}, \frac{36}{256}, \frac{51}{256}, \frac{67}{256}, \frac{84}{256}, \frac{102}{256}, \frac{119.5}{256}, \frac{136.5}{256}, \frac{154}{256}, \frac{172}{256}, \frac{189}{256}, \frac{205}{256}, \frac{234}{256}, \frac{246}{256}, \frac{253.5}{256} \right\}$$

15

20

25

30

35

40

La Fig. 33 es un ejemplo de transformación de la MQAM en la constelación no uniforme. La NU-MQAM hecha usando estos métodos puede conservar características de los receptores de MQAM con coordenadas modificadas de cada PAM. De esta manera, se puede implementar un receptor eficiente. Además, se puede implementar un sistema más robusto al ruido que la NU-QAM previa. Para un sistema transmisión de difusión más eficiente, es posible la hibridización de MQAM y NU- MQAM. En otras palabras, un sistema más robusto al ruido se puede implementar usando la MQAM para un entorno donde se usa un código de corrección de errores con una tasa de código alta y mediante el uso de NU-MQAM de otra manera. Para tal caso, un transmisor puede dejar a un receptor tener información de la tasa de código de un código de corrección de errores usada actualmente y un tipo de modulación usado actualmente tal que el receptor puede demodular de acuerdo con la modulación usada actualmente.

La Fig. 34 muestra un ejemplo de sistema de transmisión digital. Las entradas pueden comprender una serie de flujos MPEG-TS o flujos GSE (Encapsulación General de Flujo). Un módulo de procesador de entrada 101 puede añadir parámetros de transmisión al flujo de entrada y realizar una programación para un módulo de la BICM 102. El módulo de la BICM 102 puede añadir redundancia e intercalar datos para la corrección de errores del canal de transmisión. Un formador de tramas 103 puede construir tramas añadiendo información de señalización de la capa física y pilotos. Un modulador 104 puede realizar la modulación en símbolos de entrada en métodos eficientes. Un procesador analógico 105 puede realizar diversos procesos para convertir las señales digitales de entrada en señales analógicas de salida.

La Fig. 35 muestra un ejemplo de un procesador de entrada. El flujo MPEG-TS o GSE de entrada se puede transformar mediante el preprocesador de entrada en un total de n flujos que se procesarán de forma independiente. Cada uno de estos flujos puede ser o bien un trama de TS completa que incluye componentes de servicios múltiples o una trama de TS mínima que incluye el componente de servicio (es decir, vídeo o audio). Además, cada uno de esos flujos puede ser un flujo de GSE que transmite o bien servicios múltiples o bien un servicio único.

El módulo de interfaz de entrada 202-1 puede asignar un número de bits de entrada igual a la capacidad máxima del campo de datos de una trama en Banda Base (BB). Un relleno se puede insertar para completar la capacidad de bloque de código LDPC/BCH. El módulo de sincronización de flujo de entrada 203-1 puede proporcionar un mecanismo para regenerar, en el receptor, el reloj del Flujo de Transporte (o Flujo Genérico Empaquetado), a fin de garantizar las tasas de bit y el retardo extremo a extremo constantes.

Para permitir que el Flujo de Transporte se recombine sin requerir memoria adicional en el receptor, los Flujos de Transporte de entrada se retardan mediante los compensadores de retardo 204-1 ~ n considerando parámetros de intercalado de los datos de los PLP en un grupo y el PLP común correspondiente. Los módulos de eliminación de paquetes nulos 205-1 ~ n pueden aumentar la eficiencia de transmisión mediante la eliminación del paquete nulo insertado para un caso de servicio de VBR (tasa variable de bit). Los módulos de codificador de Comprobación de

Redundancia Cíclica (CRC) 206-1 ~ n pueden agregar paridad de CRC para aumentar la fiabilidad de la transmisión de la trama en BB. Los módulos de inserción de cabecera en BB 207-1 ~ n pueden añadir una cabecera de trama en BB a la parte inicial de la trama en BB. La información que se puede incluir en la cabecera en BB se muestra en la Fig. 36.

Un módulo de Fusionador/segmentador 208 puede realizar la segmentación de la trama en BB de cada PLP, fusionando las tramas en BB a partir de múltiples PLP, y programando cada trama en BB dentro de una trama de transmisión. Por lo tanto, el módulo fusionador/segmentador 208 puede sacar la información de señalización de L1 que se refiere a la asignación del PLP en la trama. Por último, un módulo aleatorizador en BB 209 puede aleatorizar los flujos de bits de entrada para minimizar la correlación entre los bits dentro de los flujos de bits. Los módulos sombreados de la Fig. 35 son módulos usados cuando el sistema de transmisión usa un único PLP, los otros módulos en la Fig. 35 son módulos usados cuando el dispositivo de transmisión usa múltiples PLP.

La Fig. 37 muestra un ejemplo de módulo de BICM. La Fig. 37a muestra el trayecto de datos y la Fig. 37b muestra el trayecto de L1 del módulo de BICM. Un módulo codificador externo 301 y un módulo codificador interno 303 pueden añadir redundancia a los flujos de bits de entrada para corrección de errores. Un módulo intercalador externo 302 y un módulo intercalador interno 304 pueden intercalar bits para evitar error de ráfaga. El módulo intercalador Externo 302 se puede omitir si la BICM es específicamente para DVB-C2. Un módulo demultiplexor de bits 305 puede controlar la fiabilidad de cada salida de bit desde el módulo intercalador interior 304. Un módulo correlacionador de símbolos 306 puede correlacionar flujos de bits de entrada en flujos de símbolos. En este momento, es posible usar cualquiera de una QAM convencional, una MQAM que usa el BRGC antes mencionado para mejorar el rendimiento, una NU-QAM que usa modulación no uniforme, o una NU-MQAM que usa modulación no uniforme aplicada al BRGC para mejorar el rendimiento. Para construir un sistema que es más robusto frente al ruido, se pueden considerar combinaciones de modulaciones que usan MQAM y/o NU MQAM dependiendo de la tasa de código del código de corrección de errores y la capacidad de la constelación. En este momento, el módulo correlacionador de Símbolos 306 puede usar una constelación adecuada de acuerdo con la tasa de código y la capacidad de la constelación. La Fig. 39 muestra un ejemplo de tales combinaciones.

El Caso 1 muestra un ejemplo de usar solamente NU-MQAM a una tasa de código baja para la implementación del sistema simplificada. El Caso 2 muestra un ejemplo de usar la constelación optimizada a cada tasa de código. El transmisor puede enviar información sobre la tasa de código del código de corrección de errores y la capacidad de la constelación al receptor de manera que el receptor puede usar una constelación apropiada. La Fig.40 muestra otro ejemplo de casos en que se considera la compatibilidad entre sistemas convencionales. Además de los ejemplos, son posibles combinaciones adicionales para optimizar el sistema.

El módulo de inserción de Cabecera ModCod 307 mostrado en la Fig. 37 puede tomar información de realimentación de codificación y modulación Adaptativa (ACM)/codificación y modulación Variable (VCM) y añadir información de parámetros usada en la codificación y la modulación para un bloque FEC como cabecera. La cabecera de tipo de Modulación/Tasa de código (ModCod) puede incluir la siguiente información:

- * Tipo FEC (1 bit) LDPC larga o corta
- * Tasa de código (3 bits)

15

20

25

30

35

- * Modulación (3 bits) hasta 64K QAM
- * PLP identificador (8 bits)
- 40 El módulo intercalador de Símbolos 308 puede realizar el intercalado en el dominio de símbolos para obtener efectos de intercalado adicionales. Procesos similares realizados en el trayecto de datos se pueden realizar en el trayecto de señalización de L1 pero con parámetros posiblemente diferentes (301-1 ~ 308-1). En este punto, un módulo de código acortado/perforado (303-1) se puede usar para código interno.
- La Fig. 38 muestra un ejemplo de codificación LDPC que usa acortamiento/perforación. El proceso de acortamiento se puede realizar en los bloques de entrada que tienen menos bits que un número de bits requerido para la codificación LDPC tantos bits cero requeridos para codificar LDPC se puede rellenar (301c). Los flujos de bits de entrada Rellenados con Ceros pueden tener bits de paridad a través de la codificación LDPC (302c). En este momento, para flujos de bits que corresponden a flujos de bits originales, los ceros se pueden eliminar (303c) y para flujos de bits de paridad, se puede realizar la perforación (304c) de acuerdo con las tasas de código. Estos flujos de bits de información y flujos de bits de paridad procesados se pueden multiplexar en secuencias originales y sacar (305c).

La Fig. 41 muestra una estructura de trama que comprende el preámbulo para la señalización de L1 y símbolo de datos para los datos del PLP. Se puede ver que el preámbulo y los símbolos de datos se generan cíclicamente, usando una trama como una unidad. Los símbolos de datos comprenden un PLP de tipo 0 que se transmite usando

una modulación/codificación fija y un PLP de tipo 1 que se transmite usando una modulación/codificación variable. Para un PLP de tipo 0, información tal como la modulación, el tipo de FEC, y la tasa de código FEC se transmiten en el preámbulo (ver la Inserción de cabecera de Trama 401n de la Fig. 42). Para un PLP de tipo 1, la información correspondiente se puede transmitir en la cabecera de bloque FEC de un símbolo de datos (ver la Inserción de cabecera ModCod 307de la Fig. 37). Mediante la separación de los tipos de PLP, la sobrecarga ModCod se puede reducir en un 3 ~ 4% de una tasa de transmisión total, para un PLP de tipo 0 que se transmite a una tasa de bit fija. En un receptor, para PLP de modulación/codificación fija de un PLP de tipo 0, el extractor de cabecera de Trama r401 mostrado en la Fig. 63 puede extraer información sobre la Modulación y la tasa de código FEC y proporcionar la información extraída a un módulo de descodificación de BICM. Para un PLP de modulación/codificación variable de un PLP de tipo 1, módulos de extracción ModCod, r307 y r307-1 mostrados en la Fig. 64 se pueden extraer y proporcionar los parámetros necesarios para la descodificación de BICM.

La Fig. 42 muestra un ejemplo de un formador de tramas. Un módulo de inserción de cabecera de trama 401 puede formar una trama a partir de los flujos de símbolos de entrada y puede añadir una cabecera de trama en la parte delantera de cada trama transmitida. La cabecera de trama puede incluir la siguiente información:

- * Número de canales unidos (4 bits)
 - * Intervalo de guarda (2 bits)
 - * PAPR (2 bits)

10

- * Patrón de Piloto (2 bits)
- * Identificación del Sistema Digital (16 bits)
- 20 * Identificación de la Trama (16 bits)
 - * Longitud de la trama (16 bits) número de símbolos de Multiplexación por División de Frecuencia Ortogonal (OFDM) por trama
 - * Longitud de supertrama (16 bits) número de tramas por supertrama
 - * número de los PLP (8 bits)
- 25 * para cada PLP

identificación del PLP (8 bits)

Identificador de unión de canales (4 bits)

inicio del PLP (9 bits)

tipo de PLP (2 bits) - PLP común u otros

30 tipo de carga útil de PLP (5 bits)

tipo de MC (1 bit) - modulación y codificación fija/variable

si el tipo de MC = modulación y codificación fija

tipo de FEC (1 bit) - LDPC larga o corta

Tasa de código (3 bits)

Modulación (3 bits) - hasta 64K QAM

final sí;

35

Número de canales de muesca (2 bits)

para cada muesca

inicio de muesca (9 bits)

40 anchura de muesca (9 bits)

final para;

anchura de PLP (9 bits) - número máximo de bloques FEC de PLP

tipo de intercalado en el tiempo de PLP (2 bits)

final para,

5 * CRC-32 (32 bits)

10

20

40

45

50

El entorno de unión de canales se supone para la información de L1 transmitida en la cabecera de Trama y los datos que corresponden a cada segmento de datos se definen como un PLP. Por lo tanto, la información tal como el identificador del PLP, el identificador de unión de canales, y la dirección de inicio del PLP se requieren para cada canal usado en la unión. Una realización de esta invención sugiere transmitir el campo ModCod en la cabecera de trama FEC si el tipo de PLP soporta modulación/codificación variable y transmitir el campo ModCod en la cabecera de Trama si el tipo de PLP soporta modulación /codificación fija para reducir la sobrecarga de señalización. Además, si existe una banda de Muesca para cada PLP, mediante la transmisión de la dirección de inicio de la Muesca y su anchura, pueden llegar a ser innecesarias las portadoras correspondientes en el receptor.

La Fig. 43 muestra un ejemplo de Patrón Piloto 5 (PP5) aplicado en un entorno de unión de canales. Como se muestra, si las posiciones de SP son coincidentes con las posiciones piloto preámbulo, puede producirse una estructura piloto irregular.

La Fig. 43a muestra un ejemplo de módulo de inserción de pilotos 404 como se muestra en la Fig. 42. Como se representa en la Fig. 43, si se usa una banda de frecuencia única (por ejemplo, 8 MHz), el ancho de banda disponible es 7,61 MHz, pero si se unen múltiples bandas de frecuencia, las bandas de guarda se pueden eliminar, de esta manera, la eficiencia de frecuencia puede aumentar en gran medida. La Fig. 43b es un ejemplo de módulo de inserción de preámbulo 504 como se muestra en la Fig. 51 que se transmite a la parte delantera de la trama e incluso con la unión de canales, el preámbulo tiene la tasa de repetición de 7,61 MHz, que es el ancho de banda del bloque de L1. Esta es una estructura que considera el ancho de banda de un sintonizador que realiza el barrido inicial de canales.

Los Patrones Piloto existen tanto para el Preámbulo como para los Símbolos de Datos. Para el símbolo de datos, se pueden usar patrones de piloto disperso (SP). El Patrón Piloto 5 (PP5) y el Patrón Piloto 7 (PP7) de T2 pueden ser buenos candidatos para la interpolación sólo en frecuencia. PP5 tiene x=12, y=4, z=48 para Gl=1/64 y PP7 tiene x=24, y=4, z=96 para Gl=1/128. La interpolación en el tiempo adicional también es posible para una mejor estimación del canal. Los patrones piloto para el preámbulo pueden cubrir todas las posiciones piloto posibles para la adquisición inicial de canales. Además, las posiciones piloto del preámbulo deberían ser coincidentes con las posiciones SP y se desea un único patrón piloto tanto para el preámbulo como para el SP. Los pilotos preámbulo también se podrían usar para interpolación en el tiempo y cada preámbulo podría tener un patrón piloto idéntico. Estos requisitos son importantes para la detección de C2 en el barrido y necesarios para la estimación del desplazamiento de frecuencia con la correlación de secuencia de aleatorización. En un entorno de unión de canales, la coincidencia en las posiciones piloto también se debería mantener para la unión de canales porque la estructura piloto irregular puede degradar el rendimiento de interpolación.

En detalle, si una distancia z entre los pilotos dispersos (SP) en un símbolo OFDM es de 48 y si una distancia y entre los SP correspondientes a una portadora de SP específica a lo largo del eje del tiempo es de 4, una distancia efectiva x después de la interpolación en el tiempo llega a ser de 12. Esto es cuando una fracción del intervalo de guarda (GI) es 1/64. Si la fracción de GI es 1/128, se puede usar x=24, y=4 y z=96. Si se usa la unión de canales, las posiciones SP se pueden hacer coincidentes con las posiciones piloto de preámbulo generando puntos no continuos en la estructura piloto dispersa.

En este momento, las posiciones piloto de preámbulo pueden ser coincidentes con todas las posiciones SP del símbolo de datos. Cuando se usa unión de canales, el segmento de datos donde se transmite un servicio, se puede determinar con independencia de la granularidad del ancho de banda de 8 MHz. Sin embargo, para reducir la sobrecarga para el direccionamiento del segmento de datos, se puede elegir comenzar la transmisión a partir de la posición del SP y terminar en la posición del SP.

Cuando un receptor recibe dichos SP, si es necesario, el módulo de estimación de canal r501 mostrado en la Fig. 62 puede realizar la interpolación en el tiempo para obtener los pilotos mostrados en líneas discontinuas en la Fig. 43 y realizar la interpolación en frecuencia. En este momento, para puntos no continuos de los que se designan intervalos como 32 en la Fig. 43, o bien realizando interpolaciones en la izquierda y derecha de manera separada o realizando interpolaciones en un sólo lado luego se puede implementar realizar la interpolación en el otro lado mediante el uso de las posiciones piloto ya interpoladas de las que el intervalo es de 12 como un punto de referencia. En este momento, la anchura del segmento de datos puede variar dentro de 7,61 MHz, de esta manara, un receptor puede

minimizar el consumo de potencia mediante la realización de una estimación de canal y descodificando sólo las subportadoras necesarias.

La Fig. 44 muestra otro ejemplo de PP5 aplicado en el entorno de unión de canales o una estructura de SP para el mantenimiento de la distancia efectiva x como 12 para evitar la estructura de SP irregular mostrada en la Fig. 43 cuando se usa la unión de canales. La Fig. 44a es una estructura de SP para el símbolo de datos y la Fig. 44b es una estructura de SP para el símbolo de preámbulo.

5

10

15

20

35

40

45

Como se muestra, si la distancia del SP se mantiene coherente en el caso de unión de canales, no habrá ningún problema en la interpolación en frecuencia pero las posiciones piloto entre el símbolo de datos y el preámbulo no pueden ser coincidentes. En otras palabras, esta estructura no requiere una estimación de canal adicional para una estructura del SP irregular, sin embargo, las posiciones del SP usadas en la unión de canales y posiciones piloto del preámbulo llegan a ser diferentes para cada canal.

La Fig. 45 muestra una nueva estructura de SP o PP5' para proporcionar una solución a los dos problemas anteriormente mencionados en el entorno de unión de canales. En concreto, una distancia piloto de x=16 puede resolver esos problemas. Para conservar la densidad del piloto o para mantener la misma sobrecarga, un PP5' puede tener x=16, y=3, z=48 para Gl=1/64 y un PP7' puede tener x=16, y=6, z=96 para Gl=1/128. La capacidad de interpolación solamente en frecuencia todavía se puede mantener. Las posiciones de piloto se representan en la Fig. 45 para la comparación con la estructura PP5.

La Fig. 46 muestra un ejemplo de un nuevo Patrón SP o estructura PP5' en el entorno de unión de canales. Como se muestra en la figura 46, si se usa o bien un solo canal o bien una unión de canales, se puede proporcionar una distancia piloto efectiva de x=16. Además, debido a que las posiciones de SP pueden ser coincidentes con las posiciones piloto del preámbulo, se puede evitar el deterioro de estimación de canal causado por la irregularidad del SP o posiciones SP no coincidentes. En otras palabras, no existe posición SP irregular para el interpolador en frecuencia y se proporciona una coincidencia entre el preámbulo y las posiciones del SP.

En consecuencia, los nuevos patrones SP propuestos pueden ser ventajosos porque un único patrón SP se puede usar tanto para el canal individual como unido; no se puede provocar una estructura piloto irregular, de esta manera es posible una buena estimación de canal; tanto el preámbulo como las posiciones piloto SP se pueden mantener coincidentes; la densidad piloto se puede mantener la misma que para PP5 y PP7, respectivamente; y la capacidad de interpolación solamente en Frecuencia también se puede conservar.

Además, la estructura del preámbulo puede cumplir los requisitos de manera que las posiciones piloto del preámbulo deberían cubrir todas las posiciones SP posibles para la adquisición del canal inicial; el número máximo de portadoras debería ser de 3409 (7,61 MHz) para el barrido inicial; exactamente se deberían usar los mismos patrones piloto y secuencia de aleatorización para la detección de C2; y no se requiere un preámbulo de detección específica como P1 en T2.

En términos de relación con la estructura de trama, la granularidad de la posición del segmento de datos puede ser modificada a 16 portadoras más que 12, de esta manera, puede ocurrir menos sobrecarga de direccionamiento de posición y ningún otro problema con respecto a la condición de segmento de datos, condición de segmento Nulo etc., se puede esperar.

Por lo tanto, en el módulo de estimación de canal r501 de la Fig. 62, se pueden usar pilotos en cada preámbulo cuando se realiza la interpolación en el tiempo del SP del símbolo de datos. Por lo tanto, se pueden mejorar la adquisición de canal y la estimación de canal en los límites de la trama.

Ahora, con respecto a los requisitos relacionados con el preámbulo y la estructura del piloto, hay consenso en que las posiciones de los pilotos de preámbulo y de los SP deberían coincidir con independencia de la unión de canales; el número de portadoras totales en el bloque de L1 debería ser divisible por la distancia del piloto para evitar la estructura irregular en el borde de la banda; los bloques de L1 se deberían repetir en el dominio de la frecuencia; y los bloques de L1 deberían ser siempre descodificables en una posición de ventana de sintonizador arbitraria. Requisitos adicionales serían que las posiciones y los patrones piloto deberían ser repetidos durante un período de 8 MHz; el desplazamiento correcto de frecuencia portadora debería ser estimado sin el conocimiento de unión de canales; y la descodificación de L1 (reordenamiento) es imposible antes de que se compense el desplazamiento de frecuencia.

La Fig. 47 muestra una relación entre el símbolo de datos y el preámbulo cuando se usan las estructuras de preámbulo como se muestra en la Fig. 52 y la Fig. 53. El bloque de L1 se puede repetir durante un período de 6 MHz. Para la descodificación de L1, se deberían encontrar tanto el desplazamiento de frecuencia como el patrón de desplazamiento del Preámbulo. La descodificación de L1 no es posible en una posición arbitraria del sintonizador sin la información de unión de canales y un receptor no puede diferenciar entre el valor de desplazamiento del preámbulo y el desplazamiento de frecuencia.

De esta manera, un receptor, específicamente para el extractor de cabecera de Trama r401 mostrado en la Fig. 63 para realizar la descodificación de la señal de L1, necesita que sea obtenida la estructura de unión de canales. Debido a que se conoce la cantidad de desplazamiento de preámbulo esperada en dos regiones sombreadas verticalmente en la Fig. 47, el módulo de sincronización en tiempo/frecuencia de r505 en la Fig. 62 puede estimar el desplazamiento de la frecuencia portadora. En base a la estimación, el trayecto de señalización de L1 (r308-1 ~ r301-1) en la Fig. 64 puede descodificar la L1.

La Fig. 48 muestra una relación entre el símbolo de datos y el preámbulo cuando se usa la estructura del preámbulo como se muestra en la Fig. 55. El bloque de L1 se puede repetir durante un período de 8 MHz. Para la descodificación de L1, solamente se necesita que sea encontrado el desplazamiento de frecuencia y puede no ser requerido el conocimiento de la unión de canales. El desplazamiento de frecuencia se puede estimar fácilmente mediante el uso de una Secuencia Binaria Pseudo-Aleatoria (PRBS) conocida. Como se muestra en la Fig. 48, el preámbulo y los datos de símbolos están alineados, de esta manera, la búsqueda de sincronización adicional puede llegar a ser innecesaria. Por lo tanto, para un receptor, específicamente para el módulo extractor de cabecera de Trama r401 mostrado en la Fig. 63, es posible que sólo el pico de correlación con la secuencia de aleatorización piloto necesite ser obtenido para realizar la descodificación de la señal de L1. El módulo de sincronización en tiempo/frecuencia r505 en la Fig. 62 puede estimar el desplazamiento de frecuencia portadora desde la posición de pico.

La Fig. 49 muestra un ejemplo de perfil de retardo del canal de cable.

5

10

15

30

45

50

55

Desde el punto de vista del diseño del piloto, el GI actual ya protege en exceso la dispersión del retardo del canal de cable. En el caso peor, el rediseño del modelo de canal puede ser una opción. Para repetir el patrón exactamente cada 8 MHz, la distancia piloto debería ser un divisor de 3584 portadoras (z=32 o 56). Una densidad de piloto de z=32 puede aumentar la sobrecarga del piloto, de esta manera, se puede elegir z=56. La cobertura de retardo ligeramente menor puede no ser importante en el canal de cable. Por ejemplo, puede ser de 8 μs para PP5' y 4 μs para PP7' comparado con 9,3 μs (PP5) y 4,7 μs (PP7). Los retrasos significativos pueden ser cubiertos por ambos patrones piloto incluso en el caso peor. Para la posición piloto del preámbulo, no son necesarias más que todas las posiciones de SP en el símbolo de datos.

Si se puede ignorar el trayecto de retardo de -40 dB, la dispersión de retardo real puede llegar a ser de 2,5 μ s, 1/64 GI = 7 μ s, o 1/128 GI = 3,5 μ s. Esto muestra que el parámetro de distancia piloto, z=56 puede ser un valor lo suficientemente bueno. Además, z=56 puede ser un valor conveniente para la estructuración del patrón piloto que permite la estructura de preámbulo mostrada en la Fig. 48.

La Fig. 50 muestra la estructura piloto dispersa que usa z=56, z=112 que se construye en el módulo de inserción del piloto 404 en la Fig. 42. Se proponen PP5' (x=14, y=4, z=56) y PP7' (x=28, y=4, z=112). Se podrían insertar portadoras de borde para cerrar el borde.

Como se muestra en la Fig. 50, los pilotos se alinean a 8 MHz de cada borde de la banda, cada posición de piloto y estructura de piloto se puede repetir cada 8 MHz. De esta manera, esta estructura puede soportar la estructura de preámbulo mostrada en la Fig. 48. Además, se puede usar una estructura piloto común entre el preámbulo y los símbolos de datos. Por lo tanto, el módulo de estimación de canal r501 en la Fig. 62 puede realizar la estimación de canal usando interpolación en el preámbulo y los símbolos debido a que no puede ocurrir ningún patrón piloto irregular, con independencia de la posición de la ventana que se decide por las ubicaciones del segmento de datos.

40 En este momento, usar solamente la interpolación en frecuencia puede ser suficiente para compensar la distorsión de canal a partir de la dispersión de retardo. Si se realiza adicionalmente interpolación en el tiempo, se puede realizar una estimación de canal más precisa.

En consecuencia, en el nuevo patrón piloto propuesto, la posición y el patrón piloto se pueden repetir en base a un período de 8 MHz. Un patrón piloto único se puede usar tanto para el preámbulo como los símbolos de datos. La descodificación de L1 siempre puede ser posible sin el conocimiento de la unión de canales. Además, el patrón piloto propuesto puede no afectar el común de los casos con T2 porque se puede usar la misma estrategia piloto del patrón piloto disperso; T2 ya usa 8 patrones piloto diferentes; y no se puede aumentar la complejidad del receptor significativamente por patrones piloto modificados. Para una secuencia de aleatorización de piloto, el período de la PRBS puede ser 2047 (secuencia m), la generación de la PRBS se puede restablecer cada 8 MHz, de la cual el período es de 3584; la tasa de repetición del piloto de 56 puede ser también coprincipal con 2047; y no se puede esperar ningún problema de PAPR.

La Fig. 51 muestra un ejemplo de un modulador basado en OFDM. Los flujos de símbolos de entrada pueden ser transformados en el dominio del tiempo mediante el módulo IFFT 501. Si es necesario, la relación de potencia pico a promedio (PAPR) se puede reducir en el módulo de reducción de PAPR 502. Para los métodos de PAPR, se puede usar la extensión de constelación Activa (ACE) o la reserva de tono. El módulo de inserción de GI 503 puede copiar una última parte del símbolo efectivo OFDM para llenar el intervalo de guarda en forma de prefijo cíclico.

El módulo de inserción de preámbulo 504 puede insertar el preámbulo en la parte delantera de cada trama transmitida de manera que un receptor puede detectar la señal de digital, la trama y adquirir la adquisición de desplazamiento de tiempo/frecuencia. En este momento, la señal de preámbulo puede realizar la señalización de capa física tal como el tamaño FFT (3 bits) y el tamaño del intervalo de Guarda (3 bits). El módulo de inserción de Preámbulo 504 se puede omitir si el modulador es específicamente para DVB-C2.

La Fig. 52 muestra un ejemplo de una estructura de preámbulo para unión de canales, generada en el módulo de inserción de preámbulo 504 en la Fig. 51. Un bloque completo de L1 debería ser "siempre descodificable" en cualquier posición arbitraria de ventana de sintonización de 7,61 MHz y no debería ocurrir ninguna pérdida de señalización de L1 con independencia de la posición de la ventana del sintonizador. Como se muestra, los bloques de L1 se pueden repetir en el dominio de la frecuencia por período de 6 MHz. El símbolo de datos puede ser de unión de canales para cada 8 MHz. Si, para la descodificación de L1, el receptor usa un sintonizador como el sintonizador de r603 representado en la Fig. 61 que usa un ancho de banda de 7,61 MHz, el extractor de cabecera de Trama r401 en la Fig. 63 necesita reasignar el bloque de L1 desplazado cíclico recibido (Fig. 53) a su forma original. Esta reasignación es posible debido a que el bloque de L1 se repite para cada bloque de 6MHz. La Fig. 53a se puede reordenar en la Fig. 53b.

10

15

45

50

55

La Fig. 54 muestra un proceso para diseñar un preámbulo más optimizado. La estructura del preámbulo de la Fig. 52 usa solamente 6MHz del ancho de banda total de sintonizador de 7,61 MHz para la descodificación de L1. En términos de eficiencia espectral, el ancho de banda del sintonizador de 7,61 MHz no se usa plenamente. Por lo tanto, puede haber una optimización adicional en eficiencia espectral.

20 La Fig. 55 muestra otro ejemplo de la estructura de preámbulo o la estructura de los símbolos de preámbulo para eficiencia espectral total, generada en el módulo de Inserción de Cabecera de Trama 401 en la Fig. 42. Al igual que el símbolo de datos, los bloques de L1 se pueden repetir en el dominio de la frecuencia por período de 8 MHz. Un bloque completo de L1 es aún "siempre descodificable" en cualquier posición arbitraria de la ventana de sintonización de 7.61 MHz. Después de la sintonización, los datos de 7.61 MHz se pueden considerar como un 25 código virtualmente perforado. Tener exactamente el mismo ancho de banda tanto para el preámbulo como los símbolos de datos y exactamente la misma estructura piloto tanto para el preámbulo como los símbolos de datos puede maximizar la eficiencia espectral. Otras características tales como la propiedad desplazada cíclica y no enviar el bloque de L1 en caso de no segmentación de datos se pueden mantener sin cambios. En otras palabras, el ancho de banda de los símbolos de preámbulo puede ser idéntico al ancho de banda de los símbolos de datos o, como se 30 muestra en la Fig. 57, el ancho de banda de los símbolos de preámbulo puede ser el ancho de banda del sintonizador (aquí, es de 7,61 MHz). El ancho de banda del sintonizador se puede definir como un ancho de banda que corresponde a un número total de portadoras activas cuando se usa un canal único. Es decir, el ancho de banda del símbolo de preámbulo puede corresponder al número de portadoras activas totales (aquí, es de 7,61 MHz).

La Fig. 56 muestra un código virtualmente perforado. Los datos de 7,61 MHz entre el bloque de L1 de 8 MHz se pueden considerar como codificados perforados. Cuando un sintonizador r603 mostrado en la Fig. 61 usa un ancho de banda de 7,61 MHz para la descodificación de L1, el extractor de cabecera de trama r401 en la Fig. 63 necesita reasignar el bloque de L1 recibido, desplazado cíclico en la forma original como se muestra en la Fig. 56. En este momento, la descodificación de L1 se realiza usando el ancho de banda entero del sintonizador. Una vez que el bloque de L1 se reasigna, un espectro del bloque de L1 reasignado puede tener una región en blanco dentro del espectro como se muestra en la parte superior derecha de la Fig. 56 debido a que un tamaño original del bloque de L1 tiene un ancho de banda de 8 MHz.

Una vez que la región en blanco se rellena de ceros, o bien después del desintercalado en el dominio de símbolos mediante el desintercalador en frecuencia r403 en la Fig. 63 o bien por el desintercalador de símbolos r308-1 en la Fig. 64 o después del desintercalado en el dominio de bits mediante el descorrelacionador de símbolos r306-1, el multiplexor de bits r305-1, y el desintercalador interior r304-1 en la Fig. 64, el bloque puede tener una forma que parece estar perforada como se muestra en la parte inferior derecha de la Fig. 56.

Este bloque de L1 se puede descodificar en el módulo de descodificación perforado/acortado r303-1 en la Fig. 64. Mediante el uso de estas estructuras preámbulo, se puede usar el ancho de banda del sintonizador entero, de esta manera se pueden aumentar la eficiencia espectral y la ganancia de codificación. Además, un ancho de banda idéntico y una estructura de piloto se pueden usar para el preámbulo y los símbolos de datos.

Además, si el ancho de banda del preámbulo o el ancho de banda de los símbolos de preámbulo se establece como un ancho de banda del sintonizador como se muestra en la Fig. 58, (es de 7,61 MHz en el ejemplo), se puede obtener un bloque de L1 completo después de la reasignación incluso sin perforar. En otras palabras, para una trama que tenga símbolos de preámbulo, en la que los símbolos de preámbulo tengan al menos un bloque de capa 1 (L1), se puede decir que, el bloque de L1 tiene 3408 subportadoras activas y las 3408 subportadoras activas corresponden a 7,61 MHz de la banda de Radiofrecuencia (RF) de 8MHz.

De esta manera, se pueden maximizar la eficiencia espectral y el rendimiento de descodificación de L1. En otras palabras, en un receptor, la descodificación se puede realizar en el módulo de descodificación perforado/acortado r303-1 en la Fig.64, después de realizar sólo el desintercalado en el dominio de símbolos.

En consecuencia, la nueva estructura de preámbulo propuesta puede ser ventajosa porque es totalmente compatible con el preámbulo usado previamente excepto que el ancho de banda es diferente; los bloques de L1 se repiten durante un período de 8 MHz; el bloque de L1 puede ser siempre descodificable con independencia de la posición de la ventana del sintonizador; se puede usar el ancho de banda completo del sintonizador para la descodificación de L1; la eficiencia espectral máxima puede garantizar más ganancia de codificación; el bloque de L1 incompleto puede ser considerado como codificado perforado; la misma y simple estructura de piloto se puede usar tanto para el preámbulo como los datos; y el ancho de banda idéntico se puede usar tanto para el preámbulo como para los datos

5

10

40

45

50

55

La Fig. 59 muestra un ejemplo de un procesador analógico. Un módulo DAC 601 puede convertir la entrada de señal digital en señal analógica. Después el ancho de banda de frecuencia de transmisión se convierte ascendentemente (602) y la señal filtrada analógica (603) se puede transmitir.

La Fig. 60 muestra un ejemplo de un sistema de receptor digital. La señal recibida se convierte en señal digital en un módulo de proceso analógico r105. Un demodulador r104 puede convertir la señal en datos en el dominio de la frecuencia. Un analizador sintáctico de tramas r103 puede quitar los pilotos y las cabeceras y permitir la selección de la información de servicio que necesita ser descodificada. Un demodulador de BICM r102 puede corregir errores en el canal de transmisión. Un procesador de salida r101 puede restaurar el flujo de servicio y la información de tiempo originalmente transmitidos.

La Fig. 61 muestra un ejemplo de procesador analógico usado en el receptor. Un módulo sintonizador/AGC r603 puede seleccionar el ancho de banda de frecuencia deseado desde la señal recibida. Un módulo de conversión descendente r602 puede restaurar la banda base. Un módulo ADC r601 puede convertir la señal analógica en señal digital.

La Fig. 62 muestra un ejemplo de demodulador. Un módulo de detección de tramas r506 puede detectar el preámbulo, comprobar si una señal digital correspondiente existe, y detectar un comienzo de una trama. Un módulo de sincronización de tiempo/frecuencia r505 puede realizar la sincronización en los dominios del tiempo y de la frecuencia. En este momento, para la sincronización en el dominio del tiempo, se puede usar una correlación del intervalo de guarda. Para la sincronización en el dominio de la frecuencia, se puede usar la correlación o se puede estimar el desplazamiento a partir de la información de la fase de una subportadora que se transmite en el dominio de la frecuencia. Un módulo de extracción de greámbulo r504 puede quitar el preámbulo de la parte delantera de la trama detectada. Un módulo de extracción de GI r503 puede quitar el intervalo de guarda. Un módulo de FFT r501 puede transformar la señal en el dominio del tiempo en la señal en el dominio de la frecuencia. Un módulo de estimación/ecualización de canal r501 puede compensar los errores estimando la distorsión en el canal de transmisión usando el símbolo piloto. El módulo de extracción del Preámbulo r504 se puede omitir si el demodulador es específicamente para DVB-C2.

La Fig. 63 muestra un ejemplo de analizador sintáctico de tramas. Un módulo de extracción piloto r404 puede extraer el símbolo piloto. Un módulo de desintercalado de frecuencia r403 puede realizar el desintercalado en el dominio de la frecuencia. Un fusionador de símbolos OFDM r402 puede restaurar una trama de datos a partir de los flujos de símbolos transmitidos en símbolos OFDM. Un módulo de extracción de cabecera de tramas r401 puede extraer la señalización de la capa física de la cabecera de cada trama transmitida y quitar la cabecera. La información extraída se puede usar como parámetros para los siguientes procesos en el receptor.

La Fig. 64 muestra un ejemplo de un demodulador de BICM. La Fig. 64a muestra un trayecto de datos y la Fig. 64b muestra un trayecto de señalización de L1. Un desintercalador de símbolos r308 puede realizar el desintercalado en el dominio de símbolos. Un extractor ModCod r307 puede extraer parámetros ModCod desde la parte delantera de cada trama en BB y hacer que los parámetros estén disponibles para los siguientes procesos de demodulación y de descodificación adaptativa/variable. Un descorrelacionador de símbolos r306 puede descorrelacionar los flujos símbolos de entrada en flujos de Relación de Probabilidad de Registro (LLR) de bits. Los flujos LLR de bits de Salida se pueden calcular usando una constelación usada en un correlacionador de Símbolos 306 del transmisor como punto de referencia. En este punto, cuando se usa la MQAM o NU-MQAM anteriormente mencionada, calculando tanto el eje I como el eje Q cuando se calcula el bit más cercano del MSB y calculando o bien el eje I o bien el eje Q cuando se calculan los bits restantes, se puede implementar un descorrelacionador de símbolos eficiente. Este método se puede aplicar a, por ejemplo, la LLR Aproximada, la LLR exacta, o la decisión Firme.

Cuando se usa una constelación optimizada de acuerdo con la capacidad de la constelación y la tasa de código del código de corrección de errores en el correlacionador de Símbolos 306 del transmisor, el descorrelacionador de Símbolos r306 del receptor puede obtener una constelación que usa la tasa de código y la información de la capacidad de la constelación transmitida desde el transmisor. El multiplexor de bits r305 del receptor puede realizar una función inversa del demultiplexor de bits 305 del transmisor. El desintercalador Interior r304 y el desintercalador

exterior r302 del receptor pueden realizar funciones inversas del intercalador interno 304 y el intercalador externo 302 del transmisor, respectivamente para obtener el flujo de bits en su secuencia original. El desintercalador externo r302 se puede omitir si el demodulador de BICM es específicamente para DVB-C2.

El descodificador interno r303 y el descodificador externo r301 del receptor pueden realizar los procesos de descodificación correspondientes al codificador interno 303 y el codificador externo 301 del transmisor, respectivamente, para corregir errores en el canal de transmisión. Procesos similares realizados en el trayecto de datos se pueden realizar en el trayecto de señalización de L1, pero con diferentes parámetros (r308-1 ~ r301-1). En este punto, como se explica en la parte del preámbulo, se puede usar un módulo de código acortado/perforado r303-1 para la descodificación de señal de L1.

5

20

25

30

35

40

45

50

55

La Fig. 65 muestra un ejemplo de descodificación de LDPC usando acortamiento/perforación. Un demultiplexor r301a puede sacar separadamente la parte de la información y parte de paridad del código sistemático a partir de los flujos de bits de entrada. Para la parte de información, se puede realizar un relleno de ceros (r302a) de acuerdo con una serie de flujos de bits de entrada del descodificador de LDPC, para la parte de paridad, los flujos de bits de entrada (r303a) para el descodificador de LDPC se pueden generar mediante la desperforación de la parte perforada. La descodificación de LDPC (r304a) se puede realizar sobre los flujos de bits generados, los ceros en la parte de información se pueden extraer y sacar (r305a).

La Fig. 66 muestra un ejemplo de procesador de salida. Un desaleatorizador en BB r209 puede restaurar los flujos de bits aleatorizados (209) en el transmisor. Un Divisor r208 puede restaurar las tramas en BB que corresponden a múltiples PLP que se multiplexan y se transmiten desde el transmisor de acuerdo con el trayecto de PLP. Para cada trayecto de PLP, un extractor de cabecera en BB r207-1~n puede extraer la cabecera que se transmite en la parte delantera de la trama en BB. Un descodificador de CRC r206-1~n puede realizar la descodificación de CRC y hacer que las tramas en BB fiables estén disponibles para una selección. Unos módulos de inserción de paquetes Nulos r205-1~n pueden restaurar los paquetes nulos que fueron extraídos para mayor eficiencia de transmisión en su ubicación original. Unos módulos de recuperación de Retardos r204-1~n pueden restaurar un retardo que existe entre cada trayecto de PLP.

Unos módulos de recuperación de reloj de salida r203-1~n pueden restaurar la temporización original del flujo de servicios a partir de la información de tiempo transmitida desde los módulos de sincronización de flujo de entrada 203-1~n. Unos módulos de interfaz de salida r202-1~n pueden restaurar los datos en el paquete de TS/GS a partir de los flujos de bits de entrada que están segmentados en la trama en BB. Unos módulos de proceso posterior de salida r201-1~n pueden restaurar múltiples flujos de TS/GS en un flujo de TS/GS completo, si es necesario. Los bloques sombreados mostrados en la Fig. 66 representan módulos que se pueden usar cuando un PLP único se procesa en un momento y el resto de los bloques representan los módulos que se pueden usar cuando múltiples PLP se procesan al mismo tiempo.

Los patrones piloto del preámbulo se diseñaron cuidadosamente para evitar un aumento de la PAPR, de esta manera, si la tasa de repetición de L1 puede aumentar la PAPR necesita ser considerada. El número de bits de información de L1 varía dinámicamente de acuerdo con la unión de canales, el número de los PLP, etc. En concreto, es necesario considerar cosas tales como que el tamaño de bloque de L1 fijo puede introducir una sobrecarga innecesaria; la señalización de L1 debería ser protegida más fuertemente que los símbolos de datos; y el intercalado en el tiempo del bloque de L1 puede mejorar la robustez sobre el deterioro de canal tal como la necesidad ruido impulsivo.

Para una tasa de repetición de bloque de L1 de 8 MHz, como se muestra en la Fig. 67, la eficiencia espectral completa (26,8% de aumento de BW) se presenta con la perforación virtual pero la PAPR se puede aumentar dado que el ancho de banda de L1 es el mismo que aquél de los símbolos de datos. Para la tasa de repetición de 8 MHz, se puede usar un intercalado en frecuencia de 4K-FFT DVB-T2 para el común de los casos y el mismo patrón puede repetirse a sí mismo en un período de 8 MHz después del intercalado.

Para una tasa de repetición de bloque de L1 de 6 MHz, como se muestra en la Fig. 68, la eficiencia espectral reducida se puede presentar sin perforado virtual. Un problema similar de PAPR que para el caso de 8 MHz puede ocurrir dado que los anchos de banda de L1 y de símbolos de datos comparten LCM=24 MHz. Para la tasa de repetición de 6 MHz, el intercalado de frecuencia de 4K-FFT DVB-T2 se puede usar para el común de los casos y el mismo patrón puede repetirse a sí mismo en un período de 24 MHz después del intercalado.

La Fig. 69 muestra una nueva tasa de repetición del bloque de L1 de 7,61 MHz o de ancho de banda sintonizador completo. La eficiencia espectral completa (26,8% de aumento de BW) se puede obtener sin la perforación virtual. Puede no haber un problema de PAPR dado que los anchos de banda de L1 y de símbolos de datos comparten LCM \approx 1704 MHz. Para la tasa de repetición de 7,61 MHz, se puede usar el intercalado en frecuencia de 4K-FFT DVB-T2 para el común de los casos y el mismo patrón puede repetirse a sí mismo por período de alrededor de 1704 MHz después del intercalado.

La Fig. 70 es un ejemplo de señalización de L1 que se transmite en la cabecera de trama. Cada información en la señalización de L1 se puede transmitir al receptor y se puede usar como un parámetro de descodificación. En especial, la información se puede usar en el trayecto de señal de L1 mostrado en la Fig. 64 y los PLP se pueden transmitir en cada segmento de datos. Se puede obtener un aumento de robustez para cada PLP.

La Fig. 72 es un ejemplo de un intercalador de símbolos 308-1 como se muestra en el trayecto de señalización de L1 en la Fig. 37 y también puede ser un ejemplo de su correspondiente desintercalador de símbolos r308-1 como se muestra en el trayecto de señalización de L1 en la Fig. 64. Los bloques con líneas inclinadas representan bloques de L1 y bloques de líneas continuas representan las portadoras de datos. Los bloques de L1 se pueden transmitir no sólo dentro de un preámbulo único, sino que también se pueden transmitir en múltiples bloques OFDM.

Dependiendo de un tamaño del bloque de L1, el tamaño del bloque de intercalado puede variar. En otras palabras, el num_L1_sym y la extensión de L1 pueden ser diferentes uno respecto al otro. Para minimizar sobrecarga innecesaria, los datos se pueden transmitir dentro del resto de portadoras de los símbolos OFDM donde se transmite el bloque de L1. En este punto, la eficiencia espectral completa se puede garantizar debido a que el ciclo de repetición del bloque de L1 es todavía un ancho de banda de sintonizador completo. En la Fig. 72, los números en los bloques con líneas inclinadas representan el orden de los bits dentro de un único bloque de LDPC.

En consecuencia, cuando los bits están escritos en una memoria de intercalado en la dirección de la fila de acuerdo con un índice de símbolos como se muestra en la Fig. 72 y se leen en la dirección de la columna de acuerdo con un índice de portadora, se puede obtener un efecto de intercalado de bloque. En otras palabras, un bloque de LDPC se puede intercalar en el dominio del tiempo y el dominio de la frecuencia y luego se puede transmitir. El num_L1_sym puede ser un valor predeterminado, por ejemplo, se puede fijar un número entre 2~4 como un número de símbolos OFDM. En este punto, para aumentar la granularidad del tamaño de bloque de L1, se puede usar un código de LDPC perforado/acortado que tiene una longitud mínima de la palabra de código para la protección de L1.

20

25

30

50

55

La Fig. 73 es un ejemplo de una transmisión de un bloque de L1. La Fig. 73 ilustra la Fig. 72 en el dominio de la trama. Como se muestra en la Fig. 73a, los bloques de L1 se pueden extender en el ancho de banda del sintonizador completo o como se muestra en la Fig. 73b, los bloques de L1 pueden estar parcialmente extendidos y el resto de las portadoras se pueden usar para la portadora de datos. En cualquier caso, se puede ver que la tasa de repetición del bloque de L1 puede ser idéntica a un ancho de banda de sintonizador completo. Además, para los símbolos OFDM que usan señalización de L1 incluyendo el preámbulo, sólo se puede realizar el intercalado de símbolos mientras que no se permita la transmisión de datos en esos símbolos OFDM. En consecuencia, para el símbolo OFDM usado para la señalización de L1, un receptor puede descodificar la L1 realizando el desintercalado sin descodificación de datos. En este punto, el bloque de L1 puede transmitir señalización de L1 de la trama actual o señalización de L1 de una trama posterior. En el lado del receptor, los parámetros de L1 descodificados a partir del trayecto de descodificación de señalización de L1 mostrados en la Fig. 64 se pueden usar para descodificar el proceso para el trayecto de datos a partir del analizador sintáctico de tramas de la trama posterior.

En resumen, en un transmisor, el intercalado de bloques de la región de L1 se puede realizar escribiendo bloques en una memoria en una dirección de la fila y leyendo los bloques escritos de la memoria en una dirección de la columna. En un receptor, el desintercalado de los bloques de la región L1 se puede realizar escribiendo bloques en una memoria en una dirección de la columna y leyendo los bloques escritos de la memoria en una dirección de la fila. Las direcciones de lectura y escritura del transmisor y receptor se pueden intercambiar.

Cuando la simulación se realiza con suposiciones tales como CR=1/2 para la protección de L1 y el común de los casos T2; correlación de símbolos 16-QAM; densidad de piloto de 6 en el Preámbulo; número de LDPC corto implica que está hecha la cantidad requerida de perforación/acortamiento, resultados o conclusiones tales que solamente el preámbulo para la transmisión de L1 puede no ser suficiente; el número de símbolos OFDM depende de la cantidad del tamaño de bloque de L1; la palabra de código de LDPC más corta (por ejemplo, información de 192 bits) entre el código acortado/perforado se puede usar para flexibilidad y granularidad fina; y se puede añadir Relleno si se requiere con una sobrecarga insignificante, se pueden obtener. El resultado se resume en la Fig. 71.

En consecuencia, para una tasa de repetición de bloque de L1, un ancho de banda de sintonizador completo sin perforación virtual puede ser una buena solución y aún puede no surgir un problema de PAPR con la eficiencia espectral completa. Para la señalización de L1, la estructura de señalización eficiente puede permitir la configuración máxima en un entorno de unión de 8 canales, 32 muescas, 256 segmentos de datos, y 256 PLP. Para la estructura de bloque de L1, la señalización de L1 flexible se puede implementar de acuerdo con el tamaño de bloque de L1. El intercalado en el tiempo se puede realizar para mejor robustez para el común de los casos T2. Menos sobrecarga puede permitir la transmisión de datos en el preámbulo.

El intercalado de bloques del bloque de L1 se puede realizar para mejor robustez. El intercalado se puede realizar con un número predefinido fijo de símbolos de L1 (num_L1_sym) y un número de portadoras extendido por la L1 como un parámetro (L1_span). La misma técnica se usa para el intercalado de preámbulo de P2 en DVB-T2.

Se puede usar el bloque de L1 de tamaño variable. El tamaño puede ser adaptable a la cantidad de bits de señalización de L1, provocando una sobrecarga reducida. La eficiencia espectral completa se puede obtener sin

problema de PAPR. Menos de 7,61 MHz de repetición puede significar que se puede enviar más redundancia pero no utilizada. Pueden no surgir problemas de PAPR debido a la tasa de repetición de 7,61 MHz para el bloque de L1.

La Fig. 74 es otro ejemplo de señalización de L1 transmitida dentro de una cabecera de trama. Esta Fig. 74 es diferente de la Fig. 70 en que el campo L1_span que tiene 12 bits está dividido en dos campos. En otras palabras, el campo L1_span está divido en una L1_column que tiene 9 bits y una L1_row que tiene 3 bits. La L1_column representa el índice de portadora que extiende la L1. Debido a que el segmento de datos empieza y termina en cada 12 portadoras, que es la densidad del piloto, los 12 bits de sobrecarga se pueden reducir en 3 bits para alcanzar 9 bits

5

35

40

45

- La L1_row representa el número de símbolos OFDM donde L1 se extiende cuando se aplica el intercalado en el tiempo. En consecuencia, el intercalado en el tiempo se puede realizar dentro de un área de L1_columns multiplicada por L1_rows. Alternativamente, un tamaño total de bloques de L1 se puede transmitir de manera que L1_span mostrada en la Fig. 70 se puede usar cuando el intercalado en el tiempo no se realiza. Para tal caso, el tamaño de bloque de L1 es 11.776 x 2 bits en el ejemplo, de esta manera es suficiente 15 bits. En consecuencia, el campo L1 span puede estar compuesto de 15 bits.
- La Fig. 75 es un ejemplo de intercalado/desintercalado en frecuencia o en el tiempo. La Fig. 75 muestra una parte de una trama de transmisión entera. La Fig. 75 también muestra la unión de múltiples anchos de banda de 8 MHz. Una trama puede constar de un preámbulo que transmite bloques de L1 y un símbolo de datos que transmite datos. Los diferentes tipos de símbolos de datos representan segmentos de datos para diferentes servicios. Como se muestra en la Fig. 75, en el preámbulo transmite bloques de L1 por cada 7,61 MHz.
- Para el preámbulo, el intercalado en frecuencia o en el tiempo se realiza dentro de los bloques de L1 y no se realiza entre bloques de L1. Es decir, para el preámbulo, se puede decir que el intercalado se realiza a nivel del bloque de L1. Esto permite la descodificación de los bloques de L1 mediante la transmisión de bloques de L1 dentro de un ancho de banda de la ventana de sintonizador incluso cuando la ventana del sintonizador se ha movido a una ubicación aleatoria dentro de un sistema de unión de canales.
- Para descodificar símbolos de datos en un ancho de banda de ventana del sintonizador aleatorio, no debería ocurrir el intercalado entre segmentos de datos. Es decir, para segmentos de datos, se puede decir que el intercalado se realiza a nivel de segmento de datos. En consecuencia, el intercalado en frecuencia y el intercalado en el tiempo se deberían realizar dentro de un segmento de datos. Por lo tanto, un intercalador de símbolos 308 en un trayecto de datos de un módulo de BICM del transmisor como se muestra en la Fig. 37 puede realizar el intercalado de símbolos para cada segmento de datos. Un intercalador de símbolos 308-1 en un trayecto de señal de L1 puede realizar el intercalado de símbolos para cada bloque de L1.

Un intercalador de frecuencia 403 mostrado en la Fig.42 necesita realizar el intercalado en el preámbulo y los símbolos de datos por separado. Específicamente, para el preámbulo, el intercalado de frecuencia se pueden realizar para cada bloque de L1 y para el símbolo de datos, el intercalado en frecuencia se pueden realizar para cada segmento de datos. En este punto, el intercalado en el tiempo en el trayecto de datos o el trayecto de la señal de L1 puede no ser realizado considerando el modo de baja latencia.

La Fig. 76 es una tabla que analiza la sobrecarga de la señalización de L1 que se transmite en una cabecera FECFRAME en el módulo de Inserción de Cabecera ModCod 307 en el trayecto de datos del módulo de BICM como se muestra en la Fig. 37. Como se ve en la Fig. 76, para el bloque de LDPC corto (tamaño = 16200), puede ocurrir una sobrecarga máxima del 3,3% que puede no ser insignificante. En el análisis, se asumen 45 símbolos para la protección de FECFRAME y el preámbulo es una señalización de L1 específica de la trama C2 y la cabecera FECFRAME es señalización de L1 específica de FECFRAME, es decir, Mod, Cod, y el identificador del PLP.

Para reducir la sobrecarga de L1, se pueden considerar planteamientos de acuerdo con dos tipos de segmentos de datos. Para el tipo ACM/VCM y casos de múltiples PLP, la trama se puede mantener la misma que para la cabecera FECFRAME. Para el tipo ACM/VCM y casos de PLP único, el identificador de PLP se puede extraer a partir de la cabecera FECFRAME, provocando una reducción de la sobrecarga de hasta un 1,8%. Para el tipo de CCM y casos de múltiples PLP, el campo de Mod/Cod se puede eliminar de la cabecera FECFRAME, provocando una reducción de la sobrecarga de hasta un 1,5%. Para el tipo de CCM y casos de PLP único, no se requiere una cabecera FECFRAME, de esta manera, se puede obtener hasta un 3,3% de reducción de la sobrecarga.

- En una señalización de L1 acortada, se puede transmitir o bien Mod/Cod (7 bits) o bien el identificador de PLP (8 bits), pero puede ser demasiado corto para obtener alguna ganancia de codificación. Sin embargo, es posible no requerir sincronización porque los PLP puede estar alineados con la trama de la transmisión de C2; cada ModCod de cada PLP se puede conocer a partir del preámbulo; y un cálculo simple puede permitir la sincronización con la FECFRAME específica.
- La Fig. 77 está mostrando una estructura para una cabecera FECFRAME para minimizar la sobrecarga. En la Fig. 77, los bloques con líneas inclinadas y el Formador de FECFRAME representan un diagrama de bloques de detalle

del módulo de Inserción de Cabecera de ModCod 307 en el trayecto de datos del módulo de BICM como se muestra en la Fig. 37. Los bloques de líneas continua representan un ejemplo de módulo de codificación interno 303, intercalador interno 304, demultiplexor de bits 305, y correlacionador de símbolos 306 en el trayecto de datos del módulo de BICM como se muestra en la Fig. 37. En este punto, se puede realizar la señalización acortada de L1 porque la CCM no requiere un campo de Mod/Cod y el PLP único no requiere un identificador de PLP. En esta señal de L1 con un número reducido de bits, la señal de L1 se puede repetir tres veces en el preámbulo y se puede realizar la modulación BPSK, de esta manera, es posible una señalización muy robusta. Finalmente, el módulo de Inserción de Cabecera de ModCod 307 puede insertar la cabecera generada en cada trama de FEC. La Fig. 84 está mostrando un ejemplo del módulo de extracción de ModCod r307 en el trayecto de datos del módulo de demodulación de BICM mostrado en la Fig. 64.

Como se muestra en la Fig. 84, la cabecera FECFRAME se puede analizar sintácticamente (r301b), entonces los símbolos que transmiten información idéntica en símbolos repetidos se pueden retardar, alinear, y luego combinar (combinación Rake r302b). Finalmente, cuando se realiza la demodulación BPSK (r303b), el campo de señal de L1 recibida se puede restaurar y este campo de la señal de L1 restaurado se puede enviar al controlador del sistema para ser usado como parámetros para la descodificación. La FECFRAME analizada sintácticamente se puede enviar al descorrelacionador de símbolos.

10

15

35

45

La Fig. 78 está mostrando un rendimiento de la tasa de error de bit (BER) de la protección de L1 anteriormente mencionada. Se puede ver que se obtienen alrededor de 4,8 dB de ganancia de SNR a través de una repetición de tres veces. La SNR requerida es de 8,7 dB a una BER=1E-11.

La Fig. 79 está mostrando ejemplos de tramas de transmisión y estructuras de trama FEC. Las estructuras de trama FEC mostradas en la parte superior derecha de la Fig. 79 representan la cabecera FECFRAME insertada mediante el módulo de Inserción de Cabecera ModCod 307 de la Fig. 37. Se puede ver que dependiendo de diversas combinaciones de condiciones es decir, tipo de CCM o ACM/VCM y PLP únicas o múltiples, se pueden insertar diferentes tamaños de cabeceras. O bien, se puede no insertar una cabecera. Las tramas de transmisión formadas de acuerdo con los tipos de segmento de datos y mostradas en el lado inferior izquierdo de la Fig. 79 se pueden formar por el módulo de inserción de cabecera de Trama 401 del formador de tramas como se muestra en la Fig. 42 y el módulo fusionador/segmentador 208 del procesador de entrada mostrado en la Fig. 35. En este punto, la FECFRAME se puede transmitir de acuerdo con diferentes tipos de segmento de datos. Usando este método, se puede reducir un máximo de un 3,3% de sobrecarga. En el lado superior derecho de la Fig. 79, se muestran cuatro tipos diferentes de estructuras, pero una persona experta en la técnica entendería que éstos son solamente ejemplos, y cualquiera de estos tipos o sus combinaciones se pueden usar para el segmento de datos.

En el lado receptor, el módulo de extracción de cabecera de Tramas r401 del módulo analizador sintáctico de Tramas como se muestra en la Fig. 63 y el módulo de extracción de ModCod r307 del módulo de demodulación de BICM mostrado en la Fig. 64 pueden extraer un parámetro del campo ModCod que se requiere para la descodificación. En este punto, de acuerdo con los tipos de segmento de datos de transmisión se pueden extraer los parámetros de la trama. Por ejemplo, para el tipo de CCM, los parámetros se pueden extraer a partir de la señalización de L1 que se transmite en el preámbulo y para el tipo ACM/VCM, los parámetros se pueden extraer a partir de la cabecera FECFRAME.

Como se muestra en el lado superior derecho de la Fig. 79, la estructura fecframe se puede dividir en dos grupos, en los que el primer grupo es las tres estructuras de trama superiores con cabecera y el segundo grupo es la última estructura de trama sin cabecera.

La Fig. 80 está mostrando un ejemplo de señalización de L1 que se puede transmitir dentro del preámbulo mediante el módulo de inserción de cabecera de Trama 401 del módulo formador de Tramas mostrado en la Fig. 42. Esta señalización de L1 es diferente de la señalización de L1 previa en que el tamaño del bloque de L1 se puede transmitir en bits (L1_size, 14 bits); es posible encender/apagar el intercalado en el tiempo en el segmento de datos (dslice_time_intrlv, 1 bit); y mediante la definición del tipo de segmento de datos (dslice_type, 1 bit), la sobrecarga de señalización de L1 se reduce. En este punto, cuando el tipo de segmento de datos es de CCM, el campo de Mod/Cod se puede transmitir dentro del preámbulo más que dentro de la cabecera FECFRAME (plp_mod (3 bits), plp fec type (1 bit), plp cod (3 bits)).

50 En el lado receptor, el descodificador interno acortado/perforado r303-1 de la demodulación de BICM como se muestra en la Fig. 64 puede obtener el primer bloque de LDPC, que tiene un tamaño de bloque fijo de L1, transmitido dentro del preámbulo, a través de la descodificación. Los números y el tamaño del resto de los bloques de LDPC también se pueden obtener.

El intercalado en el tiempo se puede usar cuando se necesitan múltiples símbolos OFDM para la transmisión de L1 o cuando hay un segmento de datos de intercalado en el tiempo. Un encendido/apagado flexible del intercalado en el tiempo es posible con una bandera de intercalado. Para el intercalado en el tiempo del preámbulo, una bandera de intercalado en el tiempo (1 bit) y una serie de símbolos OFDM intercalados (3 bits) se pueden requerir, de esta manera, un total de 4 bits se pueden proteger de una forma similar a una cabecera FECFRAME acortada.

La Fig. 81 está mostrando un ejemplo de señalización previa de L1 que se puede realizar en el módulo de Inserción de Cabecera ModCod 307-1 en el trayecto de datos del módulo de BICM mostrado en la Fig. 37. Los bloques con líneas inclinadas y el Formador de Preámbulo son ejemplos del módulo de Inserción de Cabecera ModCod 307-1 en el trayecto de señalización de L1 del módulo de BICM mostrado en la Fig. 37. Los bloques de líneas continuas son ejemplos del módulo de inserción de cabecera de Tramas 401 del formador de Tramas como se muestra en la Fig. 42

5

30

35

40

45

50

55

También, los bloques de líneas continuas pueden ser ejemplos de módulo de código interno acortado/perforado 303-1, intercalador interno 304-1, demultiplexor de bits 305-1, y correlacionador de símbolos 306-1 en el trayecto de señalización L1 del módulo de BICM mostrado en la Fig. 37.

Como se ve en la Fig. 81, la señal L1 que se transmite en el preámbulo se puede proteger usando codificación LDPC acortada/perforada. Se pueden insertar parámetros relacionados en la Cabecera en forma de L1 previa. En este punto, sólo los parámetros de intercalado en el tiempo se pueden transmitir en la Cabecera del preámbulo. Para asegurar más robustez, se puede realizar una repetición de cuatro veces. En el lado receptor, para ser capaz de descodificar la señal de L1 que se transmite en el preámbulo, el módulo de extracción de ModCod r307-1 en el trayecto de señalización de L1 de la demodulación de BICM como se muestra en la Fig. 64 necesita usar el módulo de descodificación mostrado en la Fig. 84. En este punto, debido a que hay una repetición de cuatro veces a diferencia de la cabecera de descodificación FECFRAME anterior, se requiere un proceso de recepción Rake que sincroniza los símbolos repetidos cuatro veces y que añade los símbolos.

La Fig. 82 muestra una estructura de L1 del bloque de señalización que se transmite desde el módulo de inserción de la cabecera de Trama 401 del módulo formador de la Trama como se muestra en la Fig. 42. Está mostrando un caso donde no se usa el intercalado en el tiempo en un preámbulo. Como se muestra en la Fig. 82, se pueden transmitir diferentes tipos de bloques de LDPC en el orden de las portadoras. Una vez que un símbolo OFDM se forma y se transmite entonces se forma y se transmite un siguiente símbolo OFDM. Para que el último símbolo OFDM sea transmitido, si hay alguna portadora pendiente, esas portadoras se pueden usar para la transmisión de datos o se pueden rellenar de forma ficticia. El ejemplo de la Fig. 82 muestra un preámbulo que consta de tres símbolos OFDM. En un lado receptor, para este caso no intercalado, se puede omitir el desintercalador de símbolos r308-1 en el trayecto de señalización de L1 del demodulador de BICM como se muestra en la Fig. 64.

La Fig. 83 muestra un caso en que se realiza el intercalado en el tiempo de L1. Como se muestra en la Fig. 83, el intercalado de bloques se puede realizar de una manera que forma un símbolo OFDM para índices de portadora idénticos que luego forman unos símbolos OFDM para los siguientes índices de portadora. Como en el caso en que no se realiza ningún intercalado, si hay alguna portadora pendiente, esas portadoras se pueden usar para la transmisión de datos o se pueden rellenar de forma ficticia. En un lado receptor, para este caso de no intercalado, el desintercalador de símbolos r308-1 en el trayecto de señalización de L1 del demodulador de BICM mostrado en la Fig. 64 puede realizar el desintercalado del bloque mediante la lectura de bloques de LDPC en orden creciente de los números de los bloques de LDPC.

Además, puede haber al menos dos tipos de segmentos de datos. El segmento de datos de tipo 1 tiene dslice_type = 0 en los campos de señalización de L1. Este tipo de segmento de datos no tiene cabecera de XFECFrame y tiene sus valores mod/cod en los campos de señalización de L1. El tipo de segmento de datos 2 tiene dslice_type = 1 en los campos de señalización de L1. Este tipo de segmento de datos tiene una cabecera de XFECFrame y tiene sus valores mod/cod en la cabecera de XFECFrame.

XFECFrame significa Trama de XFEC (Corrección de Errores sin canal de retorno Compleja) y mod/Cod significa el tipo de modulación/tasa de código.

En un receptor, un analizador sintáctico de tramas puede formar una trama a partir de señales demoduladas. La trama tiene símbolos de datos y los símbolos de datos pueden tener un primer tipo de segmento de datos que tiene una XFECFrame y una cabecera de XFECFrame y un segundo tipo de segmento de datos que tiene la XFECFrame sin cabecera de XFECFrame. También, un receptor puede extraer un campo para indicar si realizar desintercalado en el tiempo en los símbolos de preámbulo o no realizar el desintercalado en el tiempo en los símbolos de preámbulo, a partir de la L1 de los símbolos preámbulo.

En un transmisor, un formador de tramas puede construir una trama. Los símbolos de datos de la trama comprenden un primer tipo de segmento de datos que tiene una XFECFrame y una cabecera de XFECFrame y un segundo tipo de segmento de datos que tiene una XFECFrame sin cabecera de XFECFrame. Además, un campo para indicar si realizar el intercalado en el tiempo en los símbolos de preámbulo o no realizar el intercalado en el tiempo en los símbolos de preámbulo.

Por último, para el código acortado/perforado para el módulo de inserción de cabecera de Trama 401 del formador de Tramas mostrado en la Fig. 42, se puede determinar un tamaño mínimo de la palabra de código que puede obtener ganancia de codificación y se puede transmitir en un primer bloque de LDPC. De esta manera, para el resto de tamaños de los bloques de LDPC se pueden obtener de aquél tamaño de bloque de L1 transmitido.

La Fig. 85 está mostrando otro ejemplo de la señalización de L1 previa que se puede transmitir desde el módulo de Inserción de Cabecera ModCod 307-1 en el trayecto de señalización de L1 del módulo de BICM mostrado en la Fig. 37. La Fig.85 es diferente de la Fig. 81 en que el mecanismo de protección de parte de cabecera se ha modificado. Como se ve en la Fig. 85, la información de tamaño de bloque de L1 L1_size (14 bits) no se transmite en el bloque de L1, sino que se transmite en la Cabecera. En la Cabecera, también se puede transmitir la información de intercalado en el tiempo de 4 bits. Para un total de 18 bits de entrada, el código de BCH (45, 18) que saca 45 bits se usa y se copia a los dos trayectos y finalmente, se correlacionan en QPSK. Para el trayecto Q, se puede realizar un desplazamiento cíclico de 1 bit para ganancia de diversidad y se puede realizar la modulación de PRBS de acuerdo con la palabra de sincronización. Un total de 45 símbolos QPSK se pueden sacar de estas entradas de trayecto I/Q. En este punto, si la profundidad del intercalado en el tiempo se establece como un número de preámbulos que se requiere para transmitir el bloque L1, L1_span (3bits) que indica que la profundidad de intercalado en el tiempo puede no necesitar ser transmitida. En otras palabras, solamente se puede transmitir la bandera de encendido/apagado (1 bit) del intercalado en el tiempo. En un lado receptor, comprobando solamente un número de los preámbulos transmitidos, sin usar la L1 span, se puede obtener la profundidad de desintercalado en el tiempo.

10

25

40

45

50

55

La Fig. 86 está mostrando un ejemplo de programación del bloque de señalización de L1 que se transmite en el preámbulo. Si el tamaño de la información de L1 que se puede transmitir en un preámbulo es Nmax, cuando el tamaño de L1 es menor que Nmax, un preámbulo puede transmitir la información. Sin embargo, cuando el tamaño de L1 es más grande que Nmax, la información de L1 puede ser igualmente dividida de manera que el sub-bloque de L1 dividido sea menor que Nmax, entonces el sub-bloque de L1 dividido se puede transmitir en un preámbulo. En este punto, para una portadora que no se usa debido a que la información de L1 es más pequeña que Nmax, no se transmiten datos.

En su lugar, como se muestra en la Fig. 88, la potencia de las portadoras donde se transmite el bloque de L1 se puede aumentar para mantener una potencia total de la señal de preámbulo igual a la potencia de símbolo de datos. El factor de aumento de potencia se puede variar dependiendo del tamaño de L1 transmitido y un transmisor y un receptor pueden tener un valor fijo de este factor de aumento de potencia. Por ejemplo, si sólo se usan la mitad de las portadoras totales, el factor de aumento de potencia puede ser dos.

La Fig. 87 está mostrando un ejemplo de señalización de L1 previa donde se considera el aumento de potencia. Cuando se compara con la Fig. 85, se puede ver que la potencia del símbolo QPSK se puede aumentar y enviar al formador del preámbulo.

La Fig. 89 está mostrando otro ejemplo de módulo de extracción de ModCod r307-1 en el trayecto de señalización de L1 del módulo de demodulación de BICM mostrado en la Fig. 64. A partir del símbolo de preámbulo de entrada, la FECFRAME de señalización de L1 se puede sacar en el descorrelacionador de símbolos y solamente se puede descodificar parte de la cabecera.

Para el símbolo de cabecera de entrada, se puede realizar una descorrelación de QPSK y se puede obtener un valor de la Relación de Probabilidad de Registro (LLR). Para el trayecto Q, se puede realizar una demodulación de PRBS de acuerdo con la palabra de sincronización y se puede realizar un proceso inverso del desplazamiento cíclico de 1-bit para la restauración.

Estos dos valores de trayecto I/Q alineados se pueden combinar y se puede obtener la ganancia de SNR. La salida de la decisión firme se puede introducir en el descodificador de BCH. El descodificador de BCH puede restaurar 18 bits de la L1 previa a partir de los 45 bits de entrada.

La Fig. 90 está mostrando una contraparte, el extractor de ModCod de un receptor. Cuando se compara con la Fig. 89, el control de potencia se puede realizar en los símbolos de entrada del descorrelacionador QPSK para restaurar desde el nivel de potencia aumentado por el transmisor a su valor original. En este punto, el control de potencia se puede realizar considerando una serie de portadoras usadas para la señalización de L1 en un preámbulo y tomando un inverso del factor de aumento de potencia obtenido de un transmisor. El factor de aumento de potencia establece la potencia de preámbulo y la potencia de símbolo de datos una idéntica a la otra.

La Fig. 91 está mostrando un ejemplo de sincronización de L1 previa que se puede realizar en el módulo de extracción de ModCod r307-1 en el trayecto de señalización de L1 del módulo de demodulación de BICM mostrado en la Fig. 64. Este es un proceso de sincronización para obtener una posición de inicio de la Cabecera en un preámbulo. Los símbolos de entrada pueden ser descorrelacionados QPSK luego para el trayecto Q de salida, se puede realizar un inverso de un desplazamiento cíclico de 1 bit y se puede realizar la alineación. Dos valores de trayectos I/Q se pueden multiplicar y los valores modulados por la señalización de L1 previa se pueden demodular. De esta manera, la salida del multiplicador puede expresar sólo la PRBS que es una palabra de sincronización. Cuando la salida se correlaciona con una PRBS de secuencia conocida, se puede obtener un pico de correlación en la Cabecera. De esta manera, se puede obtener una posición de inicio de la Cabecera en un preámbulo. Si es necesario, el control de potencia que se realiza para restaurar el nivel de potencia original, como se muestra en la Fig. 90, se puede realizar en la entrada del descorrelacionador QPSK.

La Fig. 92 está mostrando otro ejemplo de campo de cabecera del bloque de L1 que se envía al módulo de Inserción de Cabecera 307-1 en el trayecto de señalización de L1 del módulo de BICM como se muestra en la Fig. 37. Esta Fig. 92 es diferente de la Fig. 85 en que L1_span que representa la profundidad de intercalado en el tiempo se reduce a 2 bits y los bits reservados se aumentan en 1 bit. Un receptor puede obtener el parámetro de intercalado en el tiempo de bloque de L1 a partir de la L1 span transmitida.

La Fig. 93 está mostrando procesos de dividir igualmente un bloque de L1 en tantas partes como un número de preámbulos que insertan entonces una cabecera en cada uno de los bloques de L1 divididos y luego asignando los bloques de L1 insertados de la cabecera en un preámbulo. Esto se puede realizar cuando un intercalado en el tiempo se realiza con un número de preámbulos donde el número de preámbulos es mayor que un número mínimo de preámbulos que se requiere para la transmisión del bloque de L1. Esto se puede realizar en el bloque de L1 en el trayecto de señalización de L1 del módulo de BICM como se muestra en la Fig. 37. El resto de las portadoras, después de la transmisión de bloques de L1 pueden tener patrones de repetición cíclicos en lugar de ser rellenados con ceros.

10

25

30

35

40

La Fig. 94 está mostrando un ejemplo del Descorrelacionador de Símbolos r306-1 del módulo de demodulación de BICM como se muestra en la Fig. 64. Para un caso en que los bloques de L1 de FEC se repiten como se muestra en la Fig. 93, cada punto de inicio de bloque de L1 de FEC se puede alinear, combinar (r301f), y luego descorrelacionar QAM (r302f) para obtener ganancia de diversidad y ganancia de SNR. En este punto, el combinador puede incluir procesos de alineación y adición de cada bloque de L1 de FEC y dividir el bloque de L1 de FEC añadido. Para un caso en que se repite sólo una parte del último bloque de FEC como se muestra en la Fig. 93, sólo la parte repetida se puede dividir en tantos como un número de cabecera de bloque de FEC y la otra parte se puede dividir por un valor que es uno menos que un número de cabecera de bloque de FEC. En otras palabras, el número de división corresponde a un número de portadoras que se añade a cada portadora.

La Fig. 98 muestra otro ejemplo de la programación de bloque de L1. La Fig. 98 es diferente de la Fig. 93 en que, en lugar de realizar el relleno de ceros o una repetición cuando los bloques de L1 no llenan un símbolo OFDM, el símbolo OFDM se puede llenar con redundancia de paridad realizando menos perforado en el código acortado/perforado en el transmisor. En otras palabras, cuando la perforación de paridad (304c) se realiza en la Fig. 38, la tasa de código efectiva se puede determinar de acuerdo con la relación de perforación, de esta manera, perforando tan pocos bits que tienen que ser rellenados a cero, la tasa de código efectiva se puede disminuir y se puede obtener una mejor ganancia de codificación. El módulo de desperforado de Paridad r303a de un receptor como se muestra en la Fig. 65 puede realizar el desperforado considerando la redundancia de paridad menos perforada. En este punto, debido a que un receptor y un transmisor pueden tener información del tamaño de bloque de L1 total, la relación de perforación se puede calcular.

La Fig. 95 está mostrando otro ejemplo de campo de señalización de L1. La Fig. 95 es diferente de la Fig. 74 en que, para un caso en que el tipo de segmento de datos es de CCM, se puede transmitir una dirección de inicio (21 bits) del PLP. Esto puede permitir a la FECFRAME de cada PLP formar una trama de transmisión, sin que la FECFRAME esté alineada con la posición de inicio de una trama de transmisión. De esta manera, la sobrecarga de relleno, que puede ocurrir cuando una anchura de segmento de datos es estrecha, se puede eliminar. Un receptor, cuando un tipo de segmento de datos es de CCM, puede obtener información ModCod del preámbulo en el trayecto de señalización de L1 del demodulador de BICM como se muestra en la Fig. 64, en lugar de obtenerlo de la cabecera FECFRAME. Además, incluso cuando ocurre un salto de canales en una ubicación aleatoria de la trama de transmisión, la sincronización de la FECFRAME se puede realizar sin retardo porque la dirección de inicio del PLP se puede obtener ya desde el preámbulo.

La Fig. 96 está mostrando otro ejemplo de campos de señalización de L1 que puede reducir la sobrecarga de direccionamiento de PLP.

La Fig. 97 está mostrando los números de símbolos QAM que corresponden a una FECFRAME dependiendo de los tipos de modulación. En este punto, un máximo común divisor del símbolo QAM es 135, de esta manera, una sobrecarga de log2 (135) ≈ 7 bits se puede reducir. De esta manera, la Fig. 96 es diferente de la Fig. 95 en que un número de bits del campo de PLP_start se puede reducir desde 21 bits a 14 bits. Este es el resultado de considerar 135 símbolos como un grupo único y direccionar el grupo. Un receptor puede obtener un índice de portadora OFDM en que comienza el PLP en una trama de transmisión después de obtener el valor del campo PLP_start y multiplicarlo por 135.

La Fig. 99 y la Fig. 101 muestran ejemplos del intercalador de símbolos 308 que puede intercalar en el tiempo símbolos de datos que se envían desde el módulo de Inserción de Cabecera ModCod 307 en el trayecto de datos del módulo de BICM como se muestra en la Fig. 37.

La Fig. 99 es un ejemplo de intercalador de Bloque que puede operar sobre una base de segmento de datos. El valor de la fila significa un número de celdas de carga útil en cuatro de los símbolos OFDM dentro de un segmento de datos. El intercalado en forma de símbolos OFDM puede no ser posible debido a que el número de celdas puede cambiar entre celdas OFDM adyacentes. El valor de la columna K significa una profundidad de intercalado en el

tiempo, que puede ser de 1, 2, 4, 8, o 16... La señalización de K para cada segmento de datos se puede realizar dentro de la señalización de L1. El intercalador en frecuencia 403 como se muestra en la Fig. 42 se puede realizar anterior al intercalador en el tiempo 308 como se muestra en la Fig. 37.

La Fig. 100 muestra un rendimiento de intercalado del intercalador en el tiempo como se muestra en la Fig. 99. Se supone que un valor de columna es de 2, un valor de la fila es de 8, una anchura de segmento de datos es de 12 celdas de datos, y que no están los pilotos continuos en los segmentos de datos. La figura de la parte superior de la Fig. 100 es una estructura de símbolo OFDM cuando no se realiza un intercalado en el tiempo y la figura inferior de la Fig. 100 es una estructura de símbolo OFDM cuando se realiza un intercalado en el tiempo. Las celdas de color negro representan un piloto disperso y las celdas que no son negras representan celdas de datos. El mismo tipo de celdas de datos representa un símbolo OFDM. En la Fig. 100, las celdas de datos que corresponden a un símbolo OFDM único se intercalan en dos símbolos. Se usa una memoria de intercalado que corresponde a ocho símbolos OFDM pero la profundidad de intercalado corresponde a sólo dos símbolos OFDM, de esta manera, no se obtiene una profundidad de intercalado completa.

5

10

30

35

40

45

La Fig. 101 se sugiere para alcanzar la profundidad de intercalado completa. En la Fig. 101, las celdas negras representan pilotos dispersos y las celdas que no son negras representan celdas de datos. El intercalador en el tiempo como se muestra en la Fig. 101 se puede implementar en forma de intercalador de bloques y puede intercalar segmentos de datos. En la Fig. 101, un número de columna, K representa una anchura de segmento de datos, un número de la fila, N representa la profundidad de intercalado en el tiempo y el valor, K puede ser valores aleatorios es decir, K=1, 2, 3,.. El proceso de intercalado incluye escribir una celda de datos de una manera de trenzado de columna y leer en una dirección de la columna, excluyendo las posiciones piloto. Es decir, se puede decir que el intercalado se realiza de forma trenzada fila-columna.

Además, en un transmisor, las celdas que se leen de una manera trenzada de columna de la memoria de intercalado corresponden a un símbolo OFDM único y las posiciones piloto de los símbolos OFDM se pueden mantener mientras se intercalan las celdas.

También, en un receptor, las celdas que se leen de una manera trenzada de columna de la memoria de desintercalado corresponden a un símbolo OFDM único y las posiciones piloto de los símbolos OFDM se pueden mantener mientras que se desintercalan en el tiempo las celdas.

La Fig. 102 muestra el rendimiento del intercalado en el tiempo de la Fig. 101. Por comparación con la Fig. 99, se supone que un número de filas es 8, una anchura de segmento de datos es de 12 celdas de datos, y que no están pilotos continuos en el segmento de datos. En la Fig. 102, las celdas de datos que corresponden a un símbolo OFDM único se intercalan en ocho símbolos OFDM. Como se muestra en la Fig. 102, se usa una memoria de intercalado que corresponde a ocho símbolos OFDM y la profundidad de intercalado resultante corresponde a ocho símbolos OFDM, de esta manera, se obtiene una profundidad de intercalado completa.

El intercalador en el tiempo como se muestra en la Fig. 101 puede ser ventajoso porque se puede obtener una profundidad de intercalado completa usando una memoria idéntica; la profundidad de intercalado puede ser flexible, a diferencia de la Fig. 99; en consecuencia, una longitud de la trama de transmisión puede ser demasiado flexible, es decir, las filas no necesitan ser múltiplos de cuatro. Adicionalmente, el intercalador en el tiempo usado para el segmento de datos, puede ser idéntico al método de intercalado usado para el preámbulo y también pueden tener elementos comunes con un sistema de transmisión digital que usa OFDM general. En concreto, el intercalador en el tiempo 308 como se muestra en la Fig. 37 se puede usar antes del intercalador en frecuencia 403 como se muestra en la Fig. 42 que se usa. Con respecto a una complejidad del receptor, no se puede requerir ninguna memoria adicional más que la lógica de control de dirección adicional que puede requerir una complejidad muy pequeña.

La Fig. 103 muestra un desintercalador de símbolos correspondiente r308 en un receptor. Se puede realizar el desintercalado después de recibir la salida del módulo de Extracción de Cabecera de Trama r401. En los procesos de desintercalado, comparado con la Fig. 99, los procesos de escritura y lectura de intercalado de bloques se invierten. Usando información de posición de piloto, el desintercalador en el tiempo puede realizar el desintercalado virtual mediante la no escritura en o lectura desde una posición de piloto en la memoria del intercalador y mediante la escritura en o lectura desde una posición de celda de datos en la memoria del intercalador. La información desintercalada se puede sacar en el módulo de Extracción ModCod r307.

La Fig. 104 muestra otro ejemplo de intercalado en el tiempo. Se puede realizar una escritura en dirección diagonal y lectura fila por fila. Como en la Fig. 101, el intercalado se realiza teniendo en cuenta las posiciones del piloto. La lectura y la escritura no se realizan para las posiciones del piloto pero se accede a la memoria de intercalado considerando sólo las posiciones de celda de datos.

La Fig. 105 muestra un resultado del intercalado usando el método mostrado en la Fig. 104. Cuando se compara con la Fig. 102, las celdas con los mismos patrones se dispersan no sólo en el dominio del tiempo, sino también en el dominio de la frecuencia. En otras palabras, la profundidad de intercalado completa se puede obtener tanto en el dominio del tiempo como en el de la frecuencia.

La Fig. 108 muestra un desintercalador de símbolos r308 de un receptor correspondiente. La salida del módulo de Extracción de Cabecera de Trama r401 se puede desintercalar. Cuando se compara con la Fig. 99, el desintercalado ha conmutado el orden de lectura y escritura. El desintercalador en el tiempo puede usar la información de la posición del piloto para realizar el desintercalado virtual de forma que ninguna lectura o escritura se realiza en posiciones de piloto sino de manera que la lectura o escritura se pueda realizar sólo en las posiciones de celdas de datos. Los datos desintercalados se pueden sacar en el módulo de Extracción ModCod r307.

La Fig. 106 muestra un ejemplo del método de direccionamiento de la Fig. 105. NT significa profundidad de intercalado en el tiempo y ND significa anchura de segmento de datos. Se supone que un valor de fila, N es de 8, una anchura de segmento de datos es de 12 celdas de datos, y los pilotos no continuos están en segmentos de datos. La Fig. 106 representa un método de generación de direcciones para escribir datos en una memoria de intercalado en el tiempo, cuando un transmisor realiza el intercalado en el tiempo. El direccionamiento se inicia a partir de una primera dirección con la Dirección de Fila (RA)=0 y la Dirección de Columna (CA)=0. En cada aparición de direccionamiento, RA y CA se aumentan. Para la RA, se puede realizar un módulo de operación con los símbolos OFDM usados en el intercalador en el tiempo. Para CA, se puede realizar una operación de módulo con un número de portadoras que corresponde a una anchura de segmento de datos. La RA se puede aumentar en 1 cuando las portadoras que corresponden a un segmento de datos están escritas en una memoria. Se puede realizar la escritura en una memoria sólo cuando una ubicación de la dirección actual no es una ubicación de un piloto. Si la ubicación de la dirección actual es una ubicación de un piloto, sólo se puede aumentar el valor de la dirección.

10

15

20

30

35

55

En la Fig. 106, un número de columna, K representa la anchura del segmento de datos, un número de fila, N representa la profundidad del intercalado en el tiempo y el valor, K puede ser unos valores aleatorios es decir, K=1, 2, 3,... El proceso de intercalado puede incluir escribir las celdas de datos de una manera de trenzado de columna y la lectura en dirección de la columna, excluyendo las posiciones de piloto. En otras palabras, la memoria de intercalado virtual puede incluir posiciones piloto pero las posiciones piloto se pueden excluir en el intercalado real.

La Fig. 109 muestra el desintercalado, un proceso inverso del intercalado en el tiempo como se muestra en la Fig. 104. La escritura fila por fila y la lectura en dirección diagonal pueden restaurar las celdas en las secuencias originales.

El método de direccionamiento usado en un transmisor se puede usar en un receptor. El receptor puede escribir los datos recibidos en una memoria del desintercalador en el tiempo fila por fila y puede leer los datos escritos usando los valores de dirección generados y la información de ubicación del piloto que se pueden generar de una manera similar con aquélla de un transmisor. Como una manera alternativa, los valores de dirección generados y la información del piloto que se usó para escribir se pueden usar para leer fila por fila.

Estos métodos se pueden aplicar en un preámbulo que transmite la L1. Debido a que cada símbolo OFDM que comprende el preámbulo puede tener pilotos en ubicaciones idénticas, ya sea intercalado con referencia a los valores de dirección que tienen en cuenta las ubicaciones de pilotos o pueden ser realizados intercalando con referencia a los valores de dirección sin tener en cuenta las ubicaciones de pilotos. Para el caso de referirse a valores de dirección sin tener en cuenta las ubicaciones del piloto, el transmisor almacena datos en una memoria de intercalado en el tiempo cada vez. Para tal caso, un tamaño de memoria requerido para realizar los preámbulos de intercalado/desintercalado en un receptor o un transmisor llega a ser idéntico a un número de celdas de carga útil existentes en los símbolos OFDM usados para el intercalado en el tiempo.

La Fig. 107 es otro ejemplo de intercalado en el tiempo de L1. En este ejemplo, el intercalado en el tiempo puede 40 colocar portadoras a todos los símbolos OFDM mientras que las portadoras estarían todas situadas en un símbolo OFDM único si no se realizó el intercalado en el tiempo. Por ejemplo, para los datos situados en un primer símbolo OFDM, la primera portadora del primer símbolo OFDM se situará en su ubicación original. La segunda portadora del primer símbolo OFDM se situará en un segundo índice de portadora del segundo símbolo OFDM. En otras palabras, la portadora de datos de orden i que se sitúa en el n-ésimo símbolo OFDM se situará en un i-ésimo índice de 45 portadora de símbolo OFDM de orden N mod (i + n), donde i = 0, 1, 2 ..., número del portadora-1, n = 0, 1, 2,..., N-1, y N es un número de símbolos OFDM usado en el intercalado en el tiempo de L1. En este método de intercalado en el tiempo de L1, se puede decir que el intercalado de todos los símbolos OFDM se realiza de una manera trenzada como se muestra en la Fig. 107. Incluso aunque las posiciones del piloto no se ilustran en la Fig. 107, tal como se 50 mencionó anteriormente, el intercalado se puede aplicar a todos los símbolos OFDM incluyendo los símbolos piloto. Es decir, se puede decir que el intercalado se puede realizar para todos los símbolos OFDM sin considerar las posiciones del piloto o con independencia de si los símbolos OFDM son símbolos piloto o no.

Si un tamaño de un bloque de LDPC usado en L1 es más pequeño que un tamaño de un símbolo OFDM único, las portadoras restantes puede tener copias de partes del bloque de LDPC o se pueden rellenar de ceros. En este punto, se puede realizar un mismo intercalado en el tiempo como anteriormente. Del mismo modo, en la Fig. 107, un receptor puede realizar el desintercalado mediante el almacenamiento de todos los bloques usados en el intercalado en el tiempo de L1 en una memoria y leyendo los bloques en el orden en el que se han intercalado, es decir, en el orden de los números escritos en los bloques mostrados en la Fig. 107.

Cuando se usa un intercalador de bloques como se muestra en la Fig. 106, se usan dos memorias intermedias. Específicamente, mientras que una memoria intermedia está almacenando símbolos de entrada, previamente los símbolos de entrada se pueden leer desde la otra memoria intermedia. Una vez que estos procesos se realizan para un bloque de intercalado de símbolos, el desintercalado se puede realizar conmutando el orden de lectura y de escritura, para evitar conflicto de acceso a la memoria. Este desintercalado de estilo "ping-pong" puede tener una lógica de generación de direcciones simple. Sin embargo, la complejidad de los componentes físicos se puede aumentar cuando se usan dos memorias intermedias de intercalado de símbolos.

La Fig. 110 muestra un ejemplo de un desintercalador de símbolos r308 o r308-1 como se muestra en la Fig. 64. Esta realización propuesta de la invención puede usar sólo una única memoria intermedia para realizar el desintercalado. Una vez que se genera un valor de dirección por la lógica de generación de direcciones, el valor de dirección se puede sacar desde la memoria intermedia y la operación de colocación se puede realizar mediante el almacenamiento de un símbolo que se introduce en la misma dirección. Mediante estos procesos, se puede evitar un conflicto de acceso a la memoria mientras se lee y se escribe. Además, el desintercalado de símbolos se puede realizar usando sólo una única memoria intermedia. Se pueden definir parámetros para explicar esta regla de generación de direcciones. Como se muestra en la Fig. 106, un número de filas de una memoria de desintercalado se puede definir como la profundidad del intercalado en el tiempo, D y un número de columnas de la memoria de desintercalado se puede definir como la anchura del segmento de datos, W. Entonces el generador de direcciones puede generar las siguientes direcciones.

la i-ésima muestra en el j-ésimo bloque, incluyendo el piloto

5

10

15

30

35

40

45

50

Las direcciones incluyen posiciones del piloto, de esta manera, los símbolos de entrada se supone que incluyen las posiciones del piloto. Si los símbolos de entrada que incluyen sólo símbolos de datos necesitan ser procesados, se puede requerir una lógica de control adicional que salta las direcciones correspondientes. En este punto, i representa un índice de símbolos de entrada, j representa un índice de bloque de intercalado de entrada, y N=D*W representa una longitud de bloque de intercalado. La operación Mod representa la operación de módulo que saca el resto después de la división. La operación Div representa la operación de división que saca el cociente después de la división. Ri,j y Ci,j representan la dirección de la fila y la dirección de la columna de la entrada de símbolo i-ésimo del bloque de intercalado j-ésimo, respectivamente. Tw representa el valor de trenzado de la columna para las direcciones donde se sitúan los símbolos. En otras palabras, cada columna se puede considerar como una memoria intermedia donde se realiza el trenzado independiente de acuerdo con los valores de Tw. Li,j representa una dirección cuando la única memoria intermedia se implementa en una memoria secuencial de una dimensión, no en dos dimensiones. Li,j puede tener valores de 0 a (N-1). Dos métodos diferentes son posibles. Li,j (1) se usa cuando la matriz de la memoria se conecta columna por columna.

La Fig. 111 muestra un ejemplo de direcciones de fila y columna para el desintercalado en el tiempo cuando D es 8 y W es 12. J empieza desde j = 0 y para cada valor de j, una primera fila puede representar la dirección de la fila y una segunda fila puede representar la dirección de la columna. La Fig. 111 muestra sólo las direcciones de los primeros 24 símbolos. Cada índice de columna puede ser idéntico al índice del símbolo de entrada i.

La Fig. 113 muestra un ejemplo de un transmisor OFDM que usa un segmento de datos. Como se muestra en la Fig. 113, el transmisor puede comprender un trayecto de PLP de datos, un trayecto de señalización de L1, un formador de tramas, y una parte de modulación OFDM. El trayecto de PLP de datos se indica mediante bloques con líneas horizontales y verticales. El trayecto de señalización de L1 se indica mediante bloques con líneas inclinadas. Los módulos del proceso de entrada 701-0, 701-N, 701-K, y 701-M pueden comprender bloques y secuencias del

módulo de interfaz de entrada 202-1, el módulo de sincronización de flujo de entrada 203-1, el módulo de compensación de retardo 204-1, el módulo de eliminación de paquetes nulos 205-1, el codificador CRC 206-1, el módulo de inserción de cabecera en BB 207-1, y aleatorizador en BB 209 realizado para cada PLP como se muestra en la Fig. 35. Los módulos FEC 702-0, 702-N, 702-K, y 702-M pueden comprender bloques y secuencias del codificador externo 301 y del codificador interno 303 como se muestra en la Fig. 37. Unos módulos FEC 702-L1 usados en el trayecto de L1 pueden comprender bloques y secuencias del codificador externo 301-1 y un codificador interno acortado/perforado 303-1 como se muestra en la Fig. 37. El módulo de señal de L1 700-L1 puede generar información de L1 requerida para comprender una trama.

Los módulos de intercalado de bits 703-0, 703-N, 703-K, y 703-M pueden comprender bloques y secuencias del intercalador interno 304 y el demutiplexor de bits 305 como se muestra en la Fig. 37. El intercalador de bits 703-L1 usado en el trayecto de L1 puede comprender bloques y secuencias del intercalador interno 304-1 y el demultiplexor de bits 305-1 como se muestra en la Fig. 37. Los módulos de correlacionador de símbolos 704-0, 704-N, 704-K, y 704-M pueden realizar funciones idénticas a las funciones del correlacionador de símbolos 306 mostrado en la Fig. 37. El módulo correlacionador de símbolos 704-L1 usado en el trayecto de L1 puede realizar funciones idénticas a las funciones del correlacionador de símbolos 306-1 mostrado en la Fig. 37. Los módulos de cabecera FEC 705-0, 705-N, 705-K, y 705-M pueden realizar funciones idénticas a las funciones del módulo de inserción de Cabeceras ModCod 307 mostrado en la Fig. 37. El módulo de cabecera FEC 705-L1 para el trayecto de L1 puede realizar funciones idénticas a las funciones del módulo de inserción de Cabecera ModCod 307-1 mostrado en la Fig. 37.

Los módulos de correlacionador de segmentos de datos 706-0 y 706-K pueden programar bloques de FEC a segmentos de datos correspondientes y pueden transmitir los bloques FEC programados, donde los bloques de FEC corresponden a los PLP que se asignan a cada segmento de datos. El bloque de correlacionador de preámbulos 707-L1 puede programar bloques de FEC de señalización de L1 a los preámbulos. Los bloques de FEC de señalización de L1 se transmiten en preámbulos. Los módulos de intercalador en el tiempo 708-0 y 708-K pueden realizar funciones idénticas a las funciones del intercalador de símbolos 308 mostrado en la Fig. 37 que pueden intercalar segmentos de datos. El intercalador en el tiempo 708-L1 usado en el trayecto de L1 puede realizar funciones idénticas a las funciones del intercalador de símbolos 308-1 mostrado en la Fig. 37.

Alternativamente, el intercalador en el tiempo 708-L1 usado en el trayecto de L1 puede realizar funciones idénticas al intercalador de símbolos 308-1 mostrado en la Fig. 37, pero sólo en los símbolos del preámbulo.

Los intercaladores en frecuencia 709-0 y 709-K pueden realizar intercalados en frecuencia en los segmentos de datos. El intercalador en frecuencia 709-L1 usado en el trayecto de L1 puede realizar el intercalado en frecuencia de acuerdo con el ancho de banda del preámbulo.

El módulo de generación de pilotos 710 puede generar pilotos que son adecuados para el piloto continuo (CP), el piloto disperso (SP), el borde de segmento de datos, y el preámbulo. Una trama puede ser construida (711) a partir de la programación del segmento de datos, el preámbulo, y el piloto. Los bloques del módulo de IFFT 712 y el módulo de inserción de GI 713 pueden realizar funciones idénticas a las funciones de los bloques del módulo IFFT 501 y el módulo de inserción de GI 503 mostrados en la Fig. 51, respectivamente. Por último, el módulo DAC 714 puede convertir señales digitales en señales analógicas y las señales convertidas se pueden transmitir.

35

40

La Fig. 114 muestra un ejemplo de un receptor OFDM que usa un segmento de datos. En la Fig. 114, el sintonizador r700 puede realizar las funciones del módulo sintonizador/AGC r603 y las funciones del módulo de conversión descendente r602 mostrado en la Fig. 61. El ADC r701 puede convertir las señales analógicas recibidas en señales digitales. El módulo de sincronización de tiempo/frecuencia r702 puede realizar funciones idénticas a las funciones del módulo de sincronización de tiempo/frecuencia r505 mostrado en la Fig. 62. El módulo de detección de tramas r703 puede realizar funciones idénticas a las funciones del módulo de detección de tramas r506 mostrado en la Fig. 62.

45 En este punto, después de que se realiza una sincronización de tiempo/frecuencia, la sincronización se puede mejorar mediante el uso de un preámbulo en cada trama que se envía desde el módulo de detección de tramas r703 durante el proceso de seguimiento.

El módulo de eliminación de GI r704 y el módulo FFT r705 pueden realizar funciones idénticas a las funciones del módulo de eliminación de GI r503 y el módulo de FFT r502 mostrados en la Fig. 62, respectivamente.

El módulo de estimación del canal r706 y módulo de Ecualización del canal r707 pueden realizar una parte de la estimación de canal y una parte de la ecualización del canal del módulo de Est/Ec del canal r501 como se muestra en la Fig. 62. El analizador sintáctico de tramas r708 puede sacar un segmento de datos y el preámbulo donde se transmiten los servicios seleccionados por un usuario. Los bloques indicados por líneas inclinadas procesan un preámbulo. Los bloques indicados por líneas horizontales que pueden incluir PLP común, procesan segmentos de datos. El desintercalador de frecuencia r709-L1 usado en el trayecto de L1 puede realizar el desintercalado de frecuencia dentro del ancho de banda del preámbulo. El desintercalador en frecuencia r709 usado en el trayecto del segmento de datos. El descodificador

de cabecera FEC r712-L1, el desintercalador en el tiempo r710-L1, y descorrelacionador de símbolos r713-L1 usados en el trayecto de L1 pueden realizar funciones idénticas a las funciones del módulo de extracción ModCod r307-1, el desintercalador de símbolos r308-1, y el descorrelacionador de símbolos r306-1 mostrados en la Fig. 64.

El desintercalador de bits r714-L1 puede comprender bloques y secuencias de demultiplexor de bits r305-1 y el desintercalador interior r304-1 como se muestra en la Fig. 64. El descodificador FEC r715-L1 puede comprender bloques y secuencias del codificador interno acortado/perforado r303-1 y del descodificador externo r301-1 mostrados en la Fig. 64. En este punto, la salida del trayecto de L1 puede ser la información de señalización de L1 y se puede enviar a un controlador del sistema para restaurar los datos de PLP que se transmiten en segmentos de datos.

5

20

25

30

35

50

El desintercalador en el tiempo r710 usado en el trayecto del segmento de datos puede realizar funciones idénticas a las funciones del desintercalador de símbolos r308 mostrado en la Fig. 64. El analizador sintáctico de segmentos de datos r711 puede sacar los PLP seleccionados por el usuario de los segmentos de datos y, si es necesario, el PLP común asociado con el PLP seleccionado por el usuario. Los descodificadores de cabecera FEC r712-C y r712-K pueden realizar funciones idénticas a las funciones del módulo de extracción ModCod r307 mostrado en la Fig. 64.

Los descorrelacionadores de símbolos r713-C y r713- K pueden realizar funciones idénticas a las funciones del descorrelacionador de símbolos r306 mostrado en la Fig. 64.

El desintercalador de bits r714-C y r714-K puede comprender bloques y secuencias del demultiplexor de bits r305 y el desintercalador interno r304 como se muestra en la Fig. 64. Los descodificadores FEC r715-C y r715-K pueden comprender bloques y secuencias del descodificador interno r303 y del descodificador externo r301 como se muestra en la Fig. 64. Por último, los módulos de proceso de salida r716-C y r716-K pueden comprender bloques y secuencias del desaleatorizador en BB r209, el módulo de eliminación de cabeceras en BB r207-1, el descodificador de CRC r206-1, el módulo de inserción de paquetes nulos r205-1, el recuperador de retardos r204-1, el recuperador del reloj de salida r203-1, y una interfaz de salida r202-1 que se realizan para cada PLP en la Fig. 35. Si se usa un PLP común, el PLP común y el PLP de datos asociado con el PLP común se pueden transmitir a un recombinador de TS y se puede transformar en un PLP seleccionado por el usuario.

Se debería señalar a partir de la Fig. 114, que en un receptor, los bloques en el trayecto de L1 no están simétricamente secuenciados a un transmisor en contraposición al trayecto de datos en que los bloques son colocados simétricamente o en secuencia inversa de un transmisor. En otras palabras, para el trayecto de datos, se colocan el desintercalador en Frecuencia r709, el desintercalador en el Tiempo r710, el analizador sintáctico de segmentos de Datos r711, y el descodificador de cabecera FEC r712-C y r712-K. Sin embargo, para el trayecto de L1, se colocan el desintercalador en Frecuencia r709-L1, el descodificador de cabeceras FEC r712-L1, y el desintercalador en el tiempo r710-L1.

La Fig. 112 muestra un ejemplo de intercalado de bloques general en un dominio de símbolos de datos donde los pilotos no se usan. Como se ve a partir de la Fig. 112a, la memoria de intercalado se puede llenar sin pilotos negros. Para formar una memoria rectangular, se pueden usar celdas de relleno si es necesario. En la Fig. 112a, las celdas de relleno se indican como celdas con líneas inclinadas. En el ejemplo, debido a que un piloto continuo puede solaparse con un tipo de patrón de piloto disperso, se requieren un total de tres celdas de relleno durante cuatro de la duración de símbolos OFDM. Finalmente, en la Fig. 112b se muestran los contenidos de la memoria intercalada.

Como en la Fig. 112a, se puede realizar cualquiera de los dos escribir fila por fila y realizar trenzado de la columna; o escribir de una manera trenzada desde el principio. La salida del intercalador puede comprender leer fila por fila desde la memoria. Los datos de salida que se han leído se pueden colocar como se muestra en la Fig. 112c cuando se considera una transmisión OFDM. En este momento, por simplicidad, el intercalado en frecuencia se puede ignorar. Como se ve en la Fig. 112, la diversidad de frecuencia no es tan alta como aquélla de la Fig. 106, pero se mantiene en un nivel similar. Por encima de todo, puede ser ventajoso porque se pueda optimizar la memoria requerida para realizar el intercalado y el desintercalado. En el ejemplo, el tamaño de la memoria se puede reducir de W * D a (W-1) * D. A medida que la anchura del segmento de datos llega a ser más grande, el tamaño de la memoria se puede reducir más.

Para las entradas del desintercalador en el tiempo, un receptor debería restaurar los contenidos de la memoria intermedia en una forma del medio de la figura de la Fig. 112 mientras que se consideran las celdas de relleno. Básicamente, los símbolos OFDM se pueden leer símbolo por símbolo y se pueden guardar fila por fila. El destrenzado correspondiente al trenzado de columna entonces se puede realizar. La salida del desintercalador se puede sacar en forma de lectura fila por fila a partir de la memoria de la Fig. 112a. De esta forma, cuando se compara con el método mostrado en la Fig. 106, la sobrecarga del piloto se puede minimizar, y consecuentemente la memoria de intercalado/desintercalado se puede minimizar.

55 La Fig. 115 muestra el intercalado en el tiempo (Fig. 115a) y el desintercalado en el tiempo (Fig. 115b).

La Fig. 115a muestra un ejemplo de un intercalador en el tiempo 708-L1 para el trayecto de L1 de la Fig. 113. Como se muestra en la Fig. 115a, el intercalado en el tiempo en el preámbulo donde se transmite la L1, puede incluir

celdas de datos de L1 de intercalado, excluyendo los pilotos que normalmente se transmiten en el preámbulo. El método de intercalado puede incluir la escritura de los datos de entrada en una dirección diagonal (líneas continuas) y la lectura de los datos fila por fila (líneas discontinuas), usando métodos idénticos a los que se muestran en referencia a la Fig. 106.

La Fig. 115b muestra un ejemplo de un desintercalador en el tiempo r712-L1 en el trayecto de L1 como se muestra en la Fig. 114. Como se muestra en la Fig. 115b, para un preámbulo donde se transmite la L1, se puede realizar el desintercalado de la celda de datos de L1, excluyendo los pilotos que se transmiten regularmente en el preámbulo. El método de desintercalado puede ser idéntico al método que se muestra en la Fig. 109 donde los datos de entrada se escriben fila por fila (línea continua) y se leen en una dirección diagonal (líneas discontinuas). Los datos de entrada no incluyen ningún piloto, consecuentemente, los datos de salida tienen celdas de datos de L1 que no incluyen ningún piloto tampoco. Cuando un receptor usa una memoria intermedia única en un desintercalador en el tiempo para el preámbulo, se puede usar la estructura del generador de direcciones que tiene una memoria de desintercalador como se muestra en la Fig. 110.

El desintercalador (r712-L1) se puede realizar usando las operaciones de dirección como sigue:

15 la i-ésima muestra en el j-ésimo bloque, incluyendo el piloto

```
    i = 0,1,2,..., N-1;
    N = D*W;
    Ci, j = i mod W;
    Tw = ((Ci, j mod D) * j) mod D;
    Ri,j = ((i div W) + Tw) mod D;
    Li,j (1) = Ri,j * W + Ci,j;
    O
    Li,j (2) = Ci,j * D + Ri,j;
```

30

35

40

45

50

En las operaciones anteriores, una longitud de una fila, W es la longitud de una fila de una memoria de intercalado como se muestra en la Fig. 115. La longitud de la columna, D es una profundidad de intercalado en el tiempo del preámbulo, que es un número de símbolos OFDM que se requieren para la transmisión de los preámbulos.

La Fig. 116 muestra un ejemplo de la formación de símbolos OFDM mediante la programación de pilotos y los preámbulos de entrada a partir del formador de tramas 711 como se muestra en la Fig. 113. Las celdas en blanco forman una cabecera de L1 que es una señal de salida del módulo de cabecera FEC 705-L1 en el trayecto de L1, como se muestra en la Fig. 113. Las celdas grises representan pilotos continuos para el preámbulo que se generan por el módulo de generación de pilotos 710 como se muestra en la Fig. 113. Las celdas con patrones representan las celdas de señalización de L1 que son una señal de salida del correlacionador de preámbulos 707-L1 como se muestra en la Fig. 113. La Fig. 116a representa los símbolos OFDM cuando el intercalado en el tiempo está apagado y la Fig. 116b representa los símbolos OFDM cuando el intercalado en el tiempo está encendido. La cabecera de L1 se puede excluir del intercalado en el tiempo porque la cabecera de L1 transmite una longitud del campo de señalización de L1 y una información de bandera encendida/apagada de intercalado en el tiempo. Ello es porque la cabecera de L1 se añade antes del intercalado en el tiempo. Como se mencionó anteriormente, el intercalado en el tiempo se realiza excluyendo las celdas piloto. El resto de las celdas de datos de L1 se puede intercalar como se muestra en la Fig. 115, entonces se pueden asignar a subportadoras OFDM.

La Fig. 117 muestra un ejemplo de unos Intercaladores en el Tiempo $708-0 \sim 708$ -K que pueden intercalar símbolos de datos que se envían desde los Correlacionadores de Segmentos de Datos $706-0 \sim 706$ -K en el trayecto de datos de un transmisor OFDM usando el segmento de datos mostrado en la Fig. 113. El intercalado en el tiempo se puede realizar para cada segmento de datos. Los símbolos intercalados en el tiempo se pueden sacar en los Intercaladores en Frecuencia $709-0 \sim 709$ -K.

La Fig. 117 también muestra un ejemplo de un intercalador en el tiempo simple que usa una única memoria intermedia. La Fig. 117a muestra una estructura de símbolos OFDM antes del intercalado en el Tiempo. Los bloques con los mismos patrones representan el mismo tipo de símbolos OFDM. La Fig. 117b y la Fig. 117c muestran estructuras de símbolos OFDM después del intercalado en el Tiempo. El método de intercalado en el Tiempo se

puede dividir en Tipo 1 y Tipo 2. Cada tipo se puede realizar alternativamente para símbolos pares y símbolos impares. Un receptor puede realizar el desintercalado en consecuencia. Una de las razones de usar de forma alternativa el tipo 1 y el tipo 2 es reducir la memoria requerida en un receptor mediante el uso de una única memoria intermedia durante el desintercalado en el tiempo.

La Fig. 117b muestra un intercalado en el tiempo que usa intercalado de tipo 1. Los símbolos de entrada se pueden escribir en dirección en diagonal hacia abajo y se pueden leer en dirección de la fila. La Fig. 117c muestra un intercalado en el tiempo que usa el intercalado de tipo 2. Los símbolos de entrada se pueden escribir en dirección diagonal hacia arriba y se pueden leer en dirección de la fila. La diferencia entre el tipo 1 y tipo 2 es si una dirección de escritura del símbolo de entrada es hacia arriba o hacia abajo. Los dos métodos son diferentes en una manera de escribir los símbolos, sin embargo, los dos métodos son idénticos en términos de presentar profundidad de intercalado en el tiempo completa y diversidad de frecuencia completa. Sin embargo, usar estos métodos puede causar un problema durante una sincronización en un receptor debido al uso de dos esquemas de intercalado.

Puede haber dos posibles soluciones. La primera solución puede ser la señalización de 1 bit de un tipo de intercalado de un primer bloque de intercalado que llega primero después de cada preámbulo, a través de la señalización de L1 del preámbulo. Este método es realizar un intercalado correcto a través de la señalización. La segunda solución puede ser la formación de una trama que tenga una longitud de un número par de bloques de intercalado. Usando este método, un primer bloque intercalado de cada trama puede tener un tipo idéntico, de esta manera, se puede resolver el problema de la sincronización de bloques de intercalado. Por ejemplo, el problema de sincronización se puede resolver mediante la aplicación de un intercalado de tipo 1 a un primer bloque de intercalado y la aplicación de forma secuencial a los siguientes bloques de intercalado dentro de cada trama, luego finalizando un último bloque de intercalado de cada trama con intercalado de tipo 2. Este método requiere a una trama estar compuesta de dos bloques de intercalado pero puede ser ventajoso porque no se requiere señalización adicional como en el primer método.

15

20

25

30

35

40

45

50

55

La Fig. 122 muestra una estructura de un desintercalador en el Tiempo r710 de un receptor mostrado en la Fig. 114. El desintercalador en el Tiempo se puede realizar en las salidas del desintercalador en Frecuencia r709. El desintercalador en el Tiempo de la Fig. 122 representa un esquema de desintercalado que es un proceso inverso de un intercalado en el tiempo mostrado en la Fig. 117. El desintercalado, en comparación con la Fig. 117, tendrá una manera opuesta en la lectura y la escritura. En otras palabras, el desintercalador de tipo 1 puede escribir los símbolos de entrada en una dirección de fila y puede leer los símbolos escritos en una dirección diagonal hacia abajo. El desintercalador de tipo 2 puede escribir los símbolos de entrada en la dirección diagonal hacia abajo y puede leer los símbolos escritos en la dirección de la fila. Estos métodos pueden permitir la escritura de los símbolos recibidos donde los símbolos son leídos previamente haciendo una dirección de escritura de símbolos del desintercalador de tipo 2 idéntica a una dirección de lectura de símbolos del desintercalador de tipo 1. De esta manera, un receptor puede realizar el desintercalado usando una única memoria intermedia. Además, se puede realizar una implementación simple debido a que los métodos de desintercalado de tipo 1 y tipo 2 se realizan o bien mediante escritura y lectura de símbolos en una dirección diagonal o bien en una dirección de la fila.

Sin embargo, el uso de estos métodos puede causar un problema en la sincronización en un receptor debido a que se usan dos esquemas de intercalado. Por ejemplo, el desintercalado de símbolos intercalados de tipo 1 en una manera de tipo 2 puede causar un deterioro en el rendimiento. Puede haber dos posibles soluciones. La primera solución puede ser determinar un tipo de un bloque de intercalado que llega después de un preámbulo, usando 1 bit de un tipo de intercalado de una parte de señalización de L1 transmitida. La segunda solución se puede realizar desintercalando usando un tipo de acuerdo con un primer bloque de intercalado dentro de una trama, si un número de bloques de intercalado dentro de una trama es un número par. El símbolo desintercalado se puede sacar en un Analizador Sintáctico de Segmento de Datos r711.

La Fig. 118 muestra una lógica de generación de direcciones que es idéntica a una lógica de generación de direcciones de una única memoria intermedia, cuando un intercalador de bloques usa dos memorias intermedias como en la Fig. 106. La lógica de generación de direcciones puede realizar funciones idénticas a las funciones mostradas en la Fig. 106. Mediante la definición de una profundidad de intercalado en el tiempo D como un número de filas de una memoria de desintercalado y definiendo una anchura de segmento de datos W como un número de columnas, las direcciones mostradas en la Fig. 118 se pueden generar mediante un generador de direcciones. Las direcciones pueden incluir posiciones piloto. Para intercalar en el tiempo los símbolos de entrada que incluyen sólo símbolos de datos, se puede requerir una lógica de control que pueda saltarse las direcciones. Las direcciones usadas en los preámbulos de intercalado pueden no requerir posiciones del piloto y el intercalado se puede realizar usando bloques de L1. La i representa un índice de un símbolo de entrada, N = D*W representa una longitud de bloque intercalado. Ri y Ci representa una dirección de fila y una dirección de columna de un símbolo de entrada i-ésimo, respectivamente. Tw representa un valor de trenzado de columna o parámetro de trenzado de una dirección donde se sitúa un símbolo. Li representa las direcciones cuando se implementa una memoria de una dimensión que tiene una única memoria intermedia. Los valores de Li pueden ser desde 0 a (N-1). En esta memoria de unidimensional, son posibles al menos dos métodos. Li (1) está acoplando una matriz de memoria fila por fila y Li (2)

está acoplando una matriz de memoria columna por columna. Un receptor puede usar la lógica de generación de direcciones en símbolos de lectura durante un desintercalado.

La Fig. 119 muestra otro ejemplo de un preámbulo. Para un caso cuando se usa un símbolo OFDM que tiene un tamaño de 4K-FFT en un ancho de banda de 7.61MHz y una sexta portadora dentro de un símbolo OFDM y las portadoras en ambos extremos se usan como pilotos, un número de portadoras que se pueden usar en la señalización de L1 se pueden suponer que sea de 2840. Cuando los múltiples canales están unidos, pueden existir múltiples anchos de banda de preámbulos. El número de portadoras puede cambiar dependiendo de un tipo de pilotos a ser usado, un tamaño de FFT, un número de canales unidos, y otros factores. Si un tamaño de una L1_XFEC_FRAME que incluye L1_header (H) que se va a ser asignado a un símbolo OFDM único y el bloque FEC de L1 (L1_FEC1) es menor que un símbolo OFDM único (5w-a-1), L1_XFEC_FRAME que incluye la L1_header se puede repetir para completar una parte restante del único símbolo OFDM (5w-a-2). Esto es similar a la estructura de preámbulo de la Fig. 93. Para un receptor para recibir un segmento de datos que está situado en un cierto ancho de banda de los canales unidos, una ventana de sintonizador del receptor se puede ubicar en un cierto ancho de banda.

5

10

- 15 Si una ventana de sintonizador de un receptor está situada como 5w-a-3 de la Fig. 119, un resultado incorrecto puede producirse durante la fusión de L1_XFEC_FRAMEs repetida. El caso 1 de la Fig. 119 puede ser tal ejemplo. Un receptor encuentra L1_Header (H) para ubicar la posición de inicio de una L1_Header (H) dentro de una ventana del sintonizador, pero la L1 Header encontrada puede ser una cabecera de una L1 XFEC FRAME incompleta (5wa-4). La información de señalización de L1 puede no ser obtenida correctamente si una longitud de 20 L1 XFEC FRAME se obtiene en base a que L1 Header y el resto de la parte (5w-a-5) se añade a una posición inicial de esa L1 Header. Para evitar tal caso, un receptor puede necesitar operaciones adicionales para encontrar una cabecera de una L1_XFEC_FRAME completa. La Fig. 120 muestra tales operaciones. En el ejemplo, para encontrar una cabecera de una L1_XFEC_FRAME completa, si existe una L1_XFEC_FRAME incompleta en un preámbulo, un receptor puede usar al menos dos L1 Headers para encontrar una ubicación de inicio de la L1 Header para la fusión de la L1 XFEC FRAME. En primer lugar, un receptor puede encontrar la L1 Header a 25 partir de un símbolo OFDM del preámbulo (5w-b-1). Entonces usando una longitud de una L1_XFEC_FRAME dentro de la L1 Header encontrada, el receptor puede comprobar si cada L1 XFEC FRAME dentro de un símbolo OFDM actual es un bloque completo (5w-b-2). Si no es así, el receptor puede encontrar otra L1 Header a partir del símbolo de preámbulo actual (5w-b-3). A partir de una distancia calculada entre una L1 Header recién encontrada y una L1 Header previa, se puede determinar (5w-b-4) si una cierta L1 XFEC FRAME es un bloque completo. Entonces, 30 una L1_Header de una L1_XFEC_FRAME completa se puede usar como punto inicial para la fusión. Usando el punto inicial, la L1_XFEC_FRAME se puede fusionar (5w-b-5). Usando estos procesos, el caso 2 o la fusión correcta mostrada en la Fig. 119 se puede esperar en un receptor. Estos procesos se pueden realizar en el Descodificador de Cabeceras FEC r712-L1 en el trayecto de señal de L1 de la Fig. 114.
- La Fig. 121 es un ejemplo de una estructura de preámbulo que puede eliminar las operaciones adicionales anteriormente mencionadas en un receptor. A diferencia de la estructura del preámbulo previa, cuando una parte restante de un símbolo OFDM está llena, sólo L1_FEC1 de una L1_XFEC_FRAME, excluyendo la L1_Header (H) se puede llenar repetidamente (5w-c-2). En este sentido, cuando un receptor encuentra una posición de inicio de una L1_Header (H) para fusionar la L1_XFEC_FRAME, la L1_Header de sólo una L1_XFEC_FRAME completa se puede encontrar (5w-c-4), de esta manera, sin operaciones adicionales, la L1_XFEC_FRAME se puede fusionar usando la L1_Header encontrada. Por lo tanto, los procesos tales como 5w-b-2, 5w-b-3 y 5w-b-4 mostrados en la Fig. 120 se pueden eliminar en un receptor. Estos procesos y los procesos de contraparte de los procesos se pueden realizar en el Descodificador de Cabecera FEC r712-L1 en el trayecto de la señal de L1 de un receptor de la Fig. 114 y en la Cabecera FEC 705-L1 en el trayecto de la señal de L1 de un transmisor de la Fig. 113.
- 45 El desintercalador en el tiempo r712-L1 en el trayecto de L1 de un receptor de la Fig. 114 puede desintercalar las celdas del bloque de L1 o las celdas con patrones, excluyendo otras celdas tales como la cabecera del preámbulo y las celdas piloto. Las celdas del bloque de L1 están representadas por celdas con patrones como se muestra en la Fig. 116. La Fig. 123 muestra otro ejemplo de un transmisor OFDM que usa segmentos de datos. Este transmisor puede tener una estructura idéntica y puede realizar una función idéntica a la del transmisor de la Fig. 113, excepto 50 los bloques añadidos y modificados. El correlacionador de preámbulo 1007-L1 puede correlacionar bloques de L1 y cabeceras de bloques de L1 que son salidas de la cabecera FEC 705-L1 en símbolos de preámbulo usados en una trama de transmisión. En concreto, la cabecera del bloque de L1 se puede repetir para cada preámbulo y el bloque de L1 se puede dividir tanto como un número de preámbulos usados. El intercalador en el tiempo 1008-L1 puede intercalar bloques de L1 que se dividen en los preámbulos. En este punto, la cabecera del bloque de L1 puede estar 55 o bien incluida en el intercalado o bien no incluida en el intercalado. Si la cabecera de bloque de L1 está incluida o no puede no cambiar una estructura de señal de una cabecera de bloque de L1 pero puede cambiar un orden de los bloques de L1 de intercalado y transmisión. El módulo de repetición L1 XFEC 1015-L1 puede repetir los bloques L1 XFEC intercalados en el tiempo dentro de un ancho de banda del preámbulo. En este punto, la cabecera de bloque de L1 se puede repetir o bien dentro de un preámbulo o bien no repetir dentro de un preámbulo.

La Fig. 124 muestra otro ejemplo de un receptor OFDM que usa segmentos de datos. Este receptor tiene una estructura idéntica y puede realizar una función idéntica a la del receptor de la Fig. 114, excepto los bloques añadidos y modificados. El descodificador de cabecera FEC r1012-L1 puede sincronizar las cabeceras de L1 dentro de un preámbulo. Si se repiten las cabeceras de L1, las cabeceras de L1 se pueden combinar para obtener una ganancia de SNR. Entonces, el descodificador de cabecera FEC r712-L1 de la Fig. 114 puede realizar una descodificación FEC. El proceso de sincronización puede dar una ubicación de una cabecera mediante la correlación de la palabra de sincronización de una cabecera y los preámbulos. Para desplazamientos de frecuencia de múltiplo de un entero, se puede determinar una gama de correlación a partir del direccionamiento circular.

El combinador L1_XFEC r1017-L1 puede combinar bloques L1_XFEC para obtener una ganancia SRN, cuando los bloques de L1 divididos se reciben dentro de un preámbulo. El desintercalador en el tiempo r1010-L1 puede desintercalar en el tiempo los bloques de L1 dentro de un preámbulo. Dependiendo de si las cabeceras de bloque de L1 están intercaladas en el tiempo en un transmisor o no, las cabeceras de bloque L1 pueden ser desintercaladas en un receptor en consecuencia. Un orden de desintercalado de los bloques de L1 se puede cambiar dependiendo de si las cabeceras de los bloques de L1 están intercaladas en el tiempo en un transmisor o no. Por ejemplo, cuando el intercalado en el tiempo está ENCENDIDO como en la Fig. 116, una ubicación de la celda número 33 que es una primera celda de bloque de L1 dentro de un primer preámbulo, puede cambiar. En otras palabras, cuando las cabeceras de bloque de L1 no se incluyen en un intercalado, se recibirá la señal intercalada que tiene las ubicaciones de las celdas como se muestra en la Fig. 116. Si las cabeceras de bloque de L1 se incluyen en un intercalado, una ubicación de la celda número 33 necesita ser cambiada para desintercalar las celdas que se intercalan en diagonal, usando una primera celda de una primera cabecera de bloque de L1 dentro de un primer preámbulo como referencia. El fusionador L1_FEC r1018-L1 puede fusionar bloques L1 que están divididos en muchos preámbulos en un bloque único de L1 para descodificación FEC.

Con 1 bit adicional, el campo PLP_type de los campos de señalización de L1 que se transmiten en un preámbulo pueden tener los siguientes valores.

25 PLP_type = 00 (PLP común)

10

15

20

30

35

40

45

50

55

PLP_type = 01 (PLP de datos normal)

PLP_type = 10 (PLP de datos demultiplexado)

PLP type = 11 (reservado)

Un PLP de datos normal representa un PLP de datos cuando un único servicio se transmite en un segmento de datos único. Un PLP de datos demultiplexado representa un PLP de datos cuando un único servicio es demultiplexado en múltiples segmentos de datos. Cuando un usuario cambia de servicio, si la señalización de L1 y la señalización de L2 se almacenan en un receptor, se puede eliminar la espera de una información de señalización de L1 dentro de una trama siguiente. Por lo tanto, un receptor puede cambiar los servicios de manera eficiente y un usuario puede tener el beneficio de menos retardo durante un cambio de servicio. La Fig. 128 muestra las estructuras de señal de bloque de L1 que se transmiten en un preámbulo, para el flujo de intercalado en el tiempo y el flujo de desintercalado en el tiempo. Como se ve en la Fig. 128, el intercalado y el desintercalado se pueden realizar no en un ancho de banda entero del preámbulo, sino en un bloque de L1 dividido.

La Fig. 129 es un ejemplo de un campo de intercalado en el tiempo de L1 de los campos de señalización de L1, procesados por el módulo de cabecera FEC 705-L1 en el trayecto de L1 mostrado en la Fig. 123. Como se muestra en la Fig. 129, un bit o dos bits se pueden usar para el parámetro de intercalado en el tiempo. Si se usa un bit, el intercalado no se realiza cuando el valor del bit es 0 y el intercalado que tiene una profundidad de símbolos OFDM usada en los símbolos del preámbulo se puede realizar cuando el valor del bit es 1. Si se usan dos bits, el intercalado con profundidad de intercalado de 0 o no intercalado se realiza cuando el valor de bit es 00 y el intercalado que tiene una profundidad de los símbolos OFDM usado en los símbolos del preámbulo se puede realizar cuando el valor de bit es 01. El intercalado que tiene profundidad de cuatro símbolos OFDM se puede realizar cuando el valor de bit es 10. El intercalado que tiene profundidad de ocho símbolos OFDM se puede realizar cuando el valor de bit es 11.

Un receptor, específicamente, el descodificador de cabecera FEC r1012-L1 en el trayecto de L1 mostrado en la Fig. 124 puede extraer los parámetros de Intercalado en el Tiempo (TI) mostrados en la Fig. 129. Usando los parámetros, el desintercalador en el Tiempo r1010-L1 puede realizar el desintercalado de acuerdo con la profundidad de intercalado. Los parámetros que se transmiten en la cabecera de L1 son el tamaño de la información de L1 (15bits), el parámetro de intercalado en el tiempo (máximo 2 bits), y la CRC (máximo 2 bits). Si un código Reed-Muller RM (16, 32) se usa para codificar el campo de señalización de cabecera de L1, debido a que los bits que pueden ser transmitidos son 16 bits, no existe un número suficiente de bits. La Fig. 130 muestra un ejemplo de campo de señalización de L1 que se puede usar para tal caso y un método de relleno.

La Fig. 130 muestra los procesos realizados en el módulo de cabecera FEC 705-L1 en el trayecto de L1 de la Fig. 123. En la Fig. 130a, L1 () en la columna de los campos de señalización representa el tamaño de L1 y TI () representa el tamaño para los parámetros de intercalado en el tiempo. Para el primer caso o cuando el tamaño de L1 (15 bits) y TI (1 bit) se transmiten, el relleno adicional puede no ser necesario y se puede obtener un rendimiento de descodificación considerable de la cabecera de L1, sin embargo, debido a que la información de si realizar o no un intercalado en el tiempo se transmite, para un bloque de L1 corto, el efecto del intercalado no se puede obtener.

5

10

15

20

50

55

Para el segundo caso o cuando el tamaño de L1 se reduce a 1/8 del tamaño original, la transmisión de información con números de bits tales como L1 (12 bits), TI (2 bits) y CRC (2 bits) llega a ser posible. De esta manera, para el segundo caso, se pueden esperar el mejor rendimiento de descodificación de L1 y el efecto de intercalado en el tiempo. Sin embargo, el segundo caso, requiere el proceso de relleno adicional para hacer el tamaño de L1 un múltiplo de ocho si el tamaño L1 no es un múltiplo de ocho. La Fig. 130b representa el método de relleno que se puede realizar en la señal de L1 (700-L1) de la Fig. 123. Se muestra que el relleno se sitúa después del bloque de L1 y se cubre con la codificación CRC. En consecuencia, en un receptor, el módulo BCH/LDPC de descodificación FEC r715-L1 en el trayecto de L1 de la Fig. 124 puede realizar la descodificación FEC, entonces si no hay error cuando se comprueba el campo de CRC, se puede realizar el análisis sintáctico de bits de acuerdo con el campo de señalización de L1, entonces se requiere un proceso que defina el resto de bits como relleno o CRC32 y que excluya el resto de bits de los parámetros.

Para el tercer caso o cuando el tamaño de L1 se expresa como un número de celdas correlacionadas QAM, no un número de bits, el número de bits se puede reducir. Para el cuarto caso, el tamaño de L1 se expresa no como un tamaño de un bloque de L1 entero, sino como un tamaño de L1 para cada símbolo OFDM. De esta manera, para que un receptor obtenga un tamaño de un bloque de L1 entero, se necesita que sea realizada la multiplicación del tamaño del bloque de L1 en un símbolo OFDM único por un número de símbolos OFDM usados en el preámbulo. En este caso, el tamaño de L1 real necesita excluir el relleno.

Para el quinto caso, expresando el bloque L1 no como un número de bits sino como un número de celdas correlacionadas QAM, es posible más reducción de bits. Para los casos tercero hasta el quinto, se muestran los parámetros TI, CRC, y un número de bits de relleno necesarios. Para un caso en que se expresa el tamaño de bloque de L1 como un número de celdas, para que un receptor obtenga el tamaño de L1 en bits, el receptor necesita multiplicar un número de bits donde sólo se transmiten las celdas por un tamaño de L1 recibido. Además, un número de bits de relleno necesita ser excluido.

El último caso muestra un aumento en el número total de bits a 32 bits mediante el uso de dos bloques de código RM en la cabecera. Unos campos CRC totales llegan a ser cuatro bits debido a que cada bloque de código RM necesita dos bits del campo CRC. Un receptor o descodificador de cabecera FEC r1012-L1 en el trayecto de L1 de la Fig. 124, necesita obtener los parámetros necesarios realizando la descodificación FEC en un total de dos bloques FEC. Usando los parámetros obtenidos, un receptor, específicamente el desintercalador en el tiempo r1010-L1 en el trayecto de L1 de la Fig. 124, puede determinar si realizar o no el desintercalado y puede obtener una profundidad de desintercalado, si se determina que el desintercalado sea realizado. Además, el módulo BCH/LDPC de descodificación FEC r715-L1 puede obtener la longitud del bloque de LDPC requerida para realizar la descodificación FEC y los parámetros de acortado/perforación. Los campos de relleno innecesarios requeridos para enviar la señal de L1 a un controlador del sistema se pueden eliminar.

La Fig. 125 muestra un ejemplo de un Intercalado en el Tiempo (TI) del segmento de datos. El proceso de TI supone que todas las posiciones de piloto son conocidas. El TI puede sacar solamente las celdas de datos, excluyendo los pilotos. Conocer las posiciones de pilotos permite un número correcto de celdas de salida para cada símbolo OFDM. También, el TI se puede implementar por una única memoria intermedia en un receptor.

La Fig. 126 muestra un ejemplo de una implementación eficiente de un Desintercalador en el Tiempo en un receptor.

La Fig. 126a muestra cuatro esquemas diferentes de desintercalado de acuerdo con una realización de la presente invención. La Fig. 126b muestra una única memoria intermedia que realiza el desintercalado. La Fig. 126c muestra un esquema ejemplar para dirigir los bloques de L1 en una matriz de 2D o una secuencia 1D.

Como se muestra en las Fig. 126a-c, usando un algoritmo de memoria intermedia único puede ser más eficiente la implementación del desintercalador en el tiempo. El algoritmo se puede caracterizar por la lectura de las celdas de salida desde la primera memoria, y luego escribir las celdas de entrada donde se leen las celdas de salida. El direccionamiento diagonal puede ser considerado como un direccionamiento circular en cada columna.

Más específicamente, con referencia a la Fig. 126a, estos cuatro métodos de escritura y lectura aplican secuencialmente a las tramas C2 que se reciben en un receptor. La primera trama recibida en un receptor está escrita en la memoria de desintercalado en la Fig. 126b en la forma para el bloque de orden 0 en la Fig. 126a y se lee en la forma para que el bloque 1º. La segunda trama recibida está escrita en la memoria del desintercalador en la Fig. 126b en la forma para el bloque 1º y se lee para el bloque 2º. La tercera trama recibida se escribe en la memoria del desintercalador en la Fig. 126b en la forma para el bloque 3º. La cuarta trama recibida se escribe en la memoria del desintercalador en la Fig. 126b en la forma para el bloque 3º y se lee en

la forma para el bloque de orden 0, y así sucesivamente. Es decir, los métodos de escritura y lectura de la Fig. 126a se pueden aplicar secuencialmente y cíclicamente a las tramas C2 que se reciben de forma secuencial.

El proceso de intercalado en el tiempo (TI) se puede realizar en los preámbulos como se muestra en la Fig. 127. Las posiciones piloto son periódicas y se eliminan fácilmente y no es necesario el intercalado para la cabecera de bloque de L1. Esto es porque la cabecera del preámbulo transporta parámetros de TI y tanto el intercalado como el no intercalado tienen los mismos resultados debido a la repetición. De esta manera, sólo se intercalan celdas de señalización de L1. La memoria intermedia única usada en el segmento de datos de TI se puede aplicar.

5

40

45

La Fig. 128 muestra el Flujo de Intercalado/Desintercalado en el Tiempo del preámbulo. El intercalado se puede realizar dentro de un bloque de L1, en lugar del preámbulo entero. En un transmisor, como se muestra en la Fig.

- 128a, el bloque de L1 se puede codificar entonces se puede realizar un intercalado dentro del bloque de L1 , y el bloque de L1 intercalado se puede repetir dentro de un preámbulo. En un receptor, como se muestra en la Fig. 128b, a partir de un preámbulo recibido , el bloque de L1 se puede combinar o sincronizar y se puede obtener un único período de bloque de L1 , y el bloque de L1 combinado se puede desintercalar .
- La Fig. 129 muestra unos parámetros de profundidad de intercalado en el Tiempo en la señalización de cabecera de L1. Para la estructura de cabecera de L1, el RM (16, 32) tiene una capacidad de 16 bits. Un máximo de 2 bits de la CRC pueden mejorar el rendimiento de la BER del RM. Los campos de señalización requeridos de la cabecera de L1 son L1_info_size (15 bits) que puede requerir un máximo de 5 símbolos OFDM y Tl_depth (2 bits o bit 1). Sin embargo, un total de 18 o 19 bits superan la capacidad de la cabecera de L1.
- La Fig. 131 muestra un ejemplo de una señalización de L1 transmitida en una cabecera de trama. La información de señalización de L1 se puede usar como parámetros de descodificación en un receptor. Especialmente, los módulos en el trayecto de la señal de L1 de la Fig. 124 pueden realizar la descodificación de señalización de L1 y los módulos en el trayecto del PLP de la Fig. 124 pueden usar parámetros, de esta manera, los servicios pueden ser descodificados. Un receptor puede obtener los parámetros de la señalización de L1 a partir de las señales del trayecto de L1 que se descodifican de acuerdo con un orden de cada campo y longitud de campo. A continuación se explica el significado de cada campo y su uso. Un nombre de cada campo, un número de bits para cada campo, o un ejemplo de cada campo se puede modificar.

Num_chbon: Este campo indica un número de canales usados en una unión de canales. Usando este campo, un receptor puede obtener un ancho de banda total de los canales usados. El canal puede tener 6MHz, 7MHz, 8MHz, u otros valores de ancho de banda.

- 30 Num_dslice: Este campo indica un número de segmentos de datos existentes en un canal unido. Después de la descodificación de señalización de L1, un receptor accede a un bucle donde está contenida la información de los segmentos de datos, para obtener información del segmento de datos. Usando este campo, un receptor puede obtener un tamaño del bucle para la descodificación.
- Num_notch: Este campo indica un número de bandas de muesca existentes en un canal unido. Después de la descodificación de señalización de L1, un receptor accede a un bucle donde está contenida la información de la banda de muesca, para obtener información de la banda de muesca. Usando este campo, un receptor puede obtener un tamaño del bucle para la descodificación.
 - Para cada segmento de datos, dslice_id, dslice_start, dslice_width, dslice_ti_depth, dslice_type, dslice_pwr_allocation, y la información de PLP se pueden transmitir en un preámbulo de una cabecera de trama. El segmento de datos puede ser considerado como un ancho de banda específico que contiene uno o más PLP. Los servicios pueden ser transmitidos en los PLP. Un receptor necesita acceder a un segmento de datos que contiene un PLP específico, para descodificar un servicio.
 - Dslice_id: Este campo puede ser usado para la identificación del segmento de datos. Cada segmento de datos en un canal unido puede tener un valor único. Cuando un receptor accede a uno de los PLP para descodificar servicios, este campo puede ser usado por el receptor para diferenciar un segmento de datos donde se ubica el PLP, a partir de otros segmentos de datos.
 - Dslice_start: Este campo indica una ubicación de inicio de un segmento de datos dentro de un canal unido. Usando este campo, un receptor puede obtener una frecuencia donde se inicia el segmento de datos. Además, la sintonización para acceder a un segmento de datos se puede realizar usando este campo.
- Dslice_width: Este campo indica un ancho de banda de un segmento de datos. Usando este campo, un receptor puede obtener un tamaño de un segmento de datos. Especialmente, este campo puede ser usado en el desintercalado en el tiempo para permitir la descodificación. Junto con el campo dslice_start, un receptor puede determinar qué frecuencia descodificar a partir de las señales recibidas de RF. Este proceso se puede realizar en el

Sintonizador r700 de la Fig. 124. Información tal como dslice_start y dslice_width se puede usar como una señal de control del Sintonizador r700.

Dslice_ti_depth: Este campo indica la profundidad del intercalador en el tiempo usado en segmentos de datos intercalados en el tiempo. Junto con dslice_width, un receptor puede obtener una anchura y una profundidad de un desintercalador en el tiempo y puede realizar el desintercalado en el tiempo. La Fig. 132 muestra un ejemplo de un dslice_ti_depth. En el ejemplo, se usan 1, 4, 8, o 16 símbolos OFDM en el intercalado en el tiempo. Esto se realiza en el desintercalador en el tiempo r710 de la Fig. 124. Dslice_width y dslice_ti_depth se pueden usar como señal de control.

5

20

30

35

40

45

50

Dslice_type: Este campo indica el tipo de un segmento de datos. El segmento de datos de tipo 1 tiene un único PLP dentro de él y el PLP es una CCM (codificación y modulación constante) aplicada. El segmento de datos de tipo 2 representa todos los otros tipos de segmentos de datos. Usando este campo, un receptor puede realizar la descodificación de acuerdo con el PLP. Un PLP de tipo 1 no tiene cabecera FECFRAME, de esta manera un receptor no busca la cabecera FECFRAME. Para el tipo 2, un receptor busca la cabecera FECFRAME del PLP para obtener información MODCOD. La Fig. 133 muestra un ejemplo de dslice_type. Usando este campo, el analizador sintáctico del segmento de datos r711 de la Fig. 124 puede controlar los descodificadores de cabecera FEC r712-c,

Dslice_pwr_allocation: Este campo indica una potencia de un segmento de datos. Cada segmento de datos puede tener una potencia diferente a partir de otros segmentos de datos. Es para la adaptación de enlace en el sistema de cable. Un receptor puede usar este campo para controlar la potencia del segmento de datos recibido. El sintonizador r700 de la Fig. 124 puede ajustar la ganancia de la señal usando este campo.

Num_plp: Este campo indica un número de PLP en un segmento de datos. Después de la descodificación de señalización de L1, un receptor accede a un bucle que incluye información del PLP. Usando este campo un receptor puede obtener un tamaño del bucle y descodificar los PLP.

Para cada PLP, un plp_id, plp_type, reprocesamiento PSI/SI, plp_payload_type, plp_modcod y plp_start_addr se pueden transmitir en una cabecera de trama (preámbulo). Cada PLP puede transmitir uno o más flujos o paquetes tales como TS y GSE. Un receptor puede obtener servicios mediante la descodificación de los PLP en que se transmiten los servicios.

Plp_id: Este campo es un identificador de PLP y tiene un valor único para cada PLP en un canal unido. Usando este campo, un receptor puede acceder a un PLP donde existe un servicio para descodificar. Este campo puede servir a un propósito idéntico al plp_id transmitido en una cabecera FECFRAME. Los descodificadores de Cabecera FEC r712-c, k de la Fig. 124 pueden acceder a un PLP necesario usando este campo.

Plp_type: Este campo indica si un tipo de PLP es un PLP común o un PLP de datos. Usando este campo, un receptor puede encontrar un PLP común y puede obtener la información requerida para la descodificación de un paquete TS a partir del PLP común. Además, el receptor puede descodificar un paquete de TS dentro de un PLP de datos. La Fig. 134 muestra un ejemplo de plp type.

Reprocesamiento PSI/SI: Este campo indica si una PSI/SI de una señal recibida se vuelve a procesar o no. Usando este campo, un receptor puede determinar si se refiere a la PSI/SI de un servicio específico a partir de un servicio transmitido. Si el receptor no puede referirse a una PSI/SI de un servicio específico a partir de un servicio transmitido, la PSI/SI que puede ser referida mediante un servicio específico se puede transmitir a través de un PLP común, por ejemplo. Usando esta información, un receptor puede descodificar servicios.

Plp_payload_type: Este campo indica el tipo de datos de carga útil que transmite el PLP. Un receptor puede usar este campo antes de descodificar datos dentro de los PLP. Si un receptor no puede descodificar un tipo específico de datos, se puede impedir la descodificación de un PLP que contenga ese tipo específico de datos. La Fig. 135 muestra un ejemplo de plp_payload_type. Si un segmento de datos tiene un PLP único y una CCM se aplica al segmento de datos es decir, el segmento de datos de tipo 1, los campos tales como plp_modcod y plp_start_addr se pueden transmitir de forma adicional.

Plp_modcod: Este campo indica el tipo de modulación y la tasa de código FEC usada en el PLP. Usando este campo, un receptor puede realizar una demodulación QAM y descodificación FEC. La Fig. 136 muestra un ejemplo de plp_modcod. Aquellos valores mostrados en la Fig. 136 se pueden usar en un modcod que se transmite en una cabecera de una FECFRAME. Los descorrelacionadores de símbolos r713-c, k y el módulo de BCH/LDPC de Descodificación FEC r715-c, k de la Fig. 124 pueden usar este campo para la descodificación.

Plp_start_addr: Este campo indica dónde aparece una primera FECFRAME de un PLP en una trama de transmisión. Usando este campo, un receptor puede obtener una ubicación de inicio de la FECFRAME y realizar la descodificación FEC. Usando este campo, el Analizador Sintáctico de segmentos de Datos r711 de la Fig. 124

puede sincronizar las FECFRAME para los PLP de tipo 1. Para cada banda de muesca, se puede transmitir información tal como notch start y notch width en una cabecera de trama (preámbulo).

Notch_start: Este campo indica una ubicación de inicio de una banda de muesca. Notch_width: Este campo indica una anchura de una banda de muesca. Usando notch_start y notch_width, un receptor puede obtener una ubicación y un tamaño de una banda de muesca dentro de un canal unido. Además, se puede obtener una ubicación de sintonización para una descodificación de servicios correcta y se puede comprobar la existencia de un servicio dentro de un cierto ancho de banda. El sintonizador r700 de la Fig. 124 puede realizar la sintonización usando esta información.

GI: Este campo indica la información del intervalo de guarda usada en un sistema. Un receptor puede obtener información del intervalo de guarda usando este campo. El módulo de Sincronización de Tiempo/Frecuencia r702 y el módulo de eliminación de GI r704 de la Fig. 124 pueden usar este campo. La Fig. 137 muestra un ejemplo.

Num_data_symbols: Este campo indica un número de símbolos OFDM de datos, excepto el preámbulo, usado en una trama. Se puede definir una longitud de trama de transmisión mediante este campo. Usando este campo, un receptor puede predecir una ubicación de un preámbulo siguiente, de esta manera, este campo puede ser usado para la descodificación de la señalización de L1. El Analizador Sintáctico de tramas r708 de la Fig. 124 puede usar este campo y predecir los símbolos OFDM que son preámbulo y enviar una señal a la trayectoria de descodificación del preámbulo.

Num_c2_frames: Este campo indica un número de tramas existentes en una supertrama. Usando este campo, un receptor puede obtener un límite de una supertrama y se puede predecir la información repetida por cada supertrama.

Frame_idx: Este campo es un índice de trama y se reinicia para cada supertrama. Usando este campo, un receptor puede obtener un número de trama actual y encontrar una ubicación de la trama actual dentro de una supertrama. Usando este campo, el analizador sintáctico de Tramas r708 de la Fig. 124 puede encontrar cuántas tramas están delante de una trama actual en una supertrama. Junto con num_c2_frames, se puede predecir el cambio que ocurre en una señalización de L1 y se puede controlar la descodificación de L1.

PAPR: Este campo indica si una reserva de tono para reducir una PAPR se usa o no. Usando este campo, un receptor puede procesar en consecuencia. La Fig. 138 muestra un ejemplo. Por ejemplo, si se usa una reserva de tono, un receptor puede excluir las portadoras usadas en una reserva de tono, de la descodificación. En concreto, el analizador sintáctico de segmentos de Datos r711 de la Fig. 124 puede usar este campo para excluir las portadoras de la descodificación.

Reserved: Este campo es los bits adicionales reservados para uso futuro.

5

15

20

25

30

35

La Fig. 139 muestra otro ejemplo de la señalización de L1 transmitida en una cabecera de trama. En la Fig. 139, la información añadida adicionalmente a la Fig. 131 puede hacer la descodificación del servicio mediante un receptor más eficiente. Los campos siguientes explican sólo la información adicional. Los otros campos son los mismos que en la Fig. 131.

Network_id: Este campo indica una red a la que pertenece la señal transmitida. Usando este campo, un receptor puede descubrir una red actual. Cuando un receptor sintoniza a otra red para encontrar un servicio en la red, el receptor se puede procesar más rápido porque usar sólo la descodificación de L1 es suficiente para tomar la decisión de si la red sintonizada es una red deseada o no.

40 C2_system_id: Este campo identifica un sistema al que pertenece una señal transmitida. Usando este campo, un receptor puede averiguar el sistema actual. Cuando un receptor sintoniza con otro sistema para encontrar un servicio en el sistema, el receptor puede procesar más rápido porque usar sólo la descodificación de L1 es suficiente para tomar la decisión de si el sistema sintonizado es un sistema deseado o no.

indica C2 signal start frequency: Este campo una frecuencia de inicio canales 45 C2 signal stop frequency: Este campo indica una frecuencia final de los canales unidos. c2_signal_start_frequency y c2_signal_stop_frequency, los anchos de banda de RF de todos los segmentos de datos se pueden encontrar mediante la descodificación de L1 de cierto ancho de banda dentro de los canales unidos. Además, este campo se puede usar para obtener una cantidad de desplazamiento de frecuencia requerida en la sincronización de las L1 XFEC FRAMEs. El combinador L1 XFEC r1017-L1 de la Fig. 124 puede usar este 50 campo. Además, cuando un receptor recibe segmentos de datos ubicados en ambos extremos de un canal unido, este campo se puede usar para sintonizar con una frecuencia adecuada. El sintonizador r700 de la Fig. 124 puede usar esta información.

Plp_type: Este campo indica si un PLP es un PLP común, un PLP de datos normal, o un PLP datos agrupados. Usando este campo, un receptor puede identificar un PLP común y puede obtener la información requerida para la

descodificación de paquetes de TS desde el PLP común, luego puede descodificar un paquete TS dentro de un PLP de datos agrupados. La Fig. 140 muestra un ejemplo de este campo. El PLP de datos normal es un PLP de datos que no tiene PLP común. En este caso, un receptor no necesita encontrar un PLP común. El PLP común o el PLP agrupado puede transmitir información tal como plp_group_id. Para los otros tipos de PLP, es posible una transmisión más eficiente porque no necesitan que sea transmitida información adicional.

Plp_group_id: Este campo indica un grupo al que pertenece un PLP actual. El PLP de datos agrupados puede transmitir parámetros de TS común usando un PLP común. Usando este campo, si un PLP actualmente descodificado es un PLP agrupado, un receptor puede encontrar un PLP común necesario, obtener los parámetros requeridos para un paquete de TS de un PLP agrupado, y formar un paquete de TS completo.

10 Reserved_1/reserved_2/reserved_3: Estos campos son bits adicionales reservados para uso futuro para un bucle de segmento de datos, un bucle de PLP, y una trama de transmisión, respectivamente.

15

20

25

30

35

40

45

50

La Fig. 141 muestra otro ejemplo de señalización de L1 transmitida en una cabecera de trama. Comparada con la Fig. 139, se puede transmitir información más optimizada, de esta manera, puede ocurrir menos sobrecarga de señalización. En consecuencia, un receptor puede descodificar servicios eficientemente. Especialmente, los módulos en el trayecto de señal de L1 de la Fig. 124 pueden realizar la descodificación de señalización de L1 y los módulos en el trayecto de PLP de la Fig. 124 pueden usar parámetros, de esta manera, se pueden descodificar los servicios. Un receptor puede obtener parámetros de señalización de L1 a partir de señales de trayecto de L1 que se descodifican de acuerdo con un orden de cada campo y la longitud de campo. Un nombre de cada campo, un número de bits para cada campo, o un ejemplo de cada campo se puede modificar. Las descripciones de los campos excepto dslice_width son idénticas a las descripciones de campos anteriormente mencionadas. Una función de dslice width de acuerdo con un ejemplo es como sique.

Dslice_width: Este campo indica un ancho de banda de un segmento de datos. Usando este campo, un receptor puede obtener un tamaño de un segmento de datos. Especialmente, este campo se puede usar en el desintercalado en el tiempo para permitir la descodificación. Junto con el campo dslice start, un receptor puede determinar qué frecuencia descodificar a partir de las señales de RF recibidas. Este proceso se puede realizar en el Sintonizador r700 de la Fig. 124. La información de tal dslice_start y dslice_width se puede usar como la señal de control del Sintonizador r700. En este punto, la anchura de un segmento de datos se puede extender hasta 64 MHz usando 12 bit para este campo de dslice_width. Usando este campo, un receptor puede determinar si un sintonizador disponible actualmente puede descodificar el segmento de datos actual. Si una anchura de un segmento de datos es mayor que un ancho de banda de un sintonizador legado de un receptor, para descodificar tal segmento de datos, un receptor puede usar o bien al menos dos sintonizadores legados o bien un sintonizador con un ancho de banda lo bastante grande. En el ejemplo, una granularidad de los valores usados en dslice start, dslice width, notch start, y notch width puede ser de 12 portadoras (celdas) OFDM. En otras palabras, un receptor puede encontrar una ubicación de una celda OFDM real multiplicando los valores transmitidos por 12. En el ejemplo, para una granularidad de Plp_start_addr, se puede usar una portadora (celda) OFDM. En otras palabras, un receptor puede averiguar cuántos símbolos OFDM y celdas OFDM están delante de una ubicación de inicio de un PLP dentro de un símbolo OFDM. Un dslice start y dslice width se pueden usar para este propósito. El Analizador Sintáctico de segmentos de datos r711 de la Fig. 124 puede realizar tal proceso.

La Fig. 142 muestra un ejemplo de procesos en el módulo de cabecera FEC 705-L1 en el trayecto de L1 de la Fig. 123. La Fig. 142a muestra una estructura de cabecera FEC y la Fig. 142b muestra ejemplos de profundidad de TI explicados en la Fig. 129. Se pueden transmitir un total de 16 bits en la cabecera FEC de un trayecto de L1. Se pueden asignar catorce bits para L1_info_size. Si L1_info_size tiene un valor que es una mitad de la longitud de bloque de L1 transmitida realmente, un receptor puede multiplicar el L1_info_size recibido por dos y obtener la longitud real del bloque de L1 e iniciar la descodificación de L1. Esta longitud obtenida del bloque de L1 es una longitud que incluye el relleno.

Para el bloque de L1 que se determina que no tenga errores hasta comprobar la CRC, un receptor puede considerar el resto de bits después de la descodificación de L1 según se rellena. Los dos últimos bits, similares como en métodos previos, se pueden usar para indicar la profundidad de intercalado en el tiempo de los preámbulos. El correlacionador de preámbulo 1007-L1 de la Fig. 123 puede determinar los símbolos OFDM requeridos para transmitir los bloques de L1. Más tarde, el intercalador en el tiempo 1008-L1 de la Fig. 123 puede realizar el intercalado en el tiempo. Usando la información de profundidad de intercalado en el tiempo y el L1_info_size, un receptor puede averiguar qué tamaño del bloque de L1 se transmite en cuántos símbolos de OFDM. La combinación, fusión, y desintercalado en el tiempo de bloques de L1 se puede realizar en el combinador L1 XFEC 1017-L1, el Fusionador L1 FEC 1018-L1, y el desintercalador en el Tiempo 1010-L1 de la Fig. 124, respectivamente.

En un receptor en la Fig. 124, se puede obtener una longitud de un bloque L1 XFEC dentro de un símbolo OFDM dividiendo una longitud de bloque de L1 total por un número de símbolos OFDM usados en un preámbulo. El número de símbolos OFDM se puede obtener a partir de un valor definido en ti_depth. El combinador de L1 XFEC 1017-L1 de un receptor puede obtener el bloque de L1 XFEC. Entonces, el desintercalado en el Tiempo 1010-L1 se puede

ES 2 394 793 T3

- realizar usando ti_depth. Finalmente, los bloques L1 XFEC se pueden fusionar para obtener un bloque L1_FEC. Después del Fusionador L1_FEC 1018-L1, el desintercalador de bit r714-L1, y el descodificador de LDPC/BCH r715-L1, se puede obtener el bloque de L1. El L1_info_size se puede multiplicar por dos, el bloque de L1 se puede comprobar CRC, y se puede descodificar la L1. Se puede descartar el relleno innecesario.
- 5 Usando los métodos y dispositivos sugeridos, entre otras ventajas es posible implementar un transmisor, receptor, y estructura digital de señalización de capa física eficientes.
 - Mediante la transmisión de la información ModCod en cada cabecera de trama en BB que es necesaria para ACM/VCM y transmitiendo el resto de la señalización de capa física en una cabecera de trama, se puede minimizar la sobrecarga de señalización.
- Se puede implementar una QAM modificada para una transmisión de energía más eficiente o un sistema de difusión digital más robusto al ruido. El sistema puede incluir un transmisor y receptor para cada ejemplo revelado y las combinaciones de los mismos.
- Se puede implementar una QAM no uniforme Mejorada para una transmisión de energía más eficiente o un sistema de difusión digital de transmisión más robusto al ruido. También se describe un método de uso de una tasa de código del código de corrección de errores de NU-MQAM y MQAM. El sistema puede incluir un transmisor y receptor para cada ejemplo revelado y las combinaciones de los mismos.
 - El método de señalización de L1 sugerido puede reducir la sobrecarga en un 3 ~ 4% minimizando la sobrecarga de señalización durante la unión de canales.
- Será evidente a aquellos expertos en la técnica que se pueden hacer diversas modificaciones y variaciones en la presente invención sin apartarse de la invención.

REIVINDICACIONES

1. Un transmisor para transmitir datos de difusión a un receptor, el transmisor que comprende:

unos medios de procesamiento de entrada (101) configurados para recibir flujos de entrada, para añadir al menos una cabecera en banda base a los flujos de entrada recibidos, y componer al menos una trama en banda base; y

unos primeros medios de BICM, Codificación y Modulación Intercalada de Bits, (102; 301 a 308) configurados para codificar datos BCH de la trama en banda base, para codificar LDPC los datos codificados BCH, y para el intercalado de bits de los datos codificados LDPC;

unos medios de intercalado en el tiempo (708-K) configurados para intercalar en el tiempo los datos de intercalado de bits;

unos medios de intercalado en frecuencia (709-K) configurados para intercalar en frecuencia los datos intercalados en el tiempo;

unos segundos medios BICM (301-1 a 308-1) configurados para codificar BCH datos de señalización de Capa 1, para codificar LDPC los datos de señalización de Capa 1 codificados BCH, y para el intercalado de bits de los datos de señalización de Capa 1 codificados LDPC;

el transmisor que se caracteriza porque además comprende:

5

10

15

20

25

30

40

45

unos medios de intercalado en el tiempo (1008-L1) configurados para intercalar en el tiempo los datos de señalización de Capa 1 de intercalado de bits en base a una profundidad de intercalado en el tiempo;

un formador de tramas (103) configurado para ensamblar los datos intercalados de frecuencia y los datos de señalización de Capa 1 intercalados en el tiempo para formar una trama de señal que incluye datos de preámbulo que transporta los datos de señalización de Capa 1; y

unos medios de generación OFDM (104) configurados para modular en OFDM la trama de señal formada, en el que la trama de señal modulada incluye al menos un símbolo preámbulo,

en el que al menos un símbolo de preámbulo incluye una cabecera de Capa 1, y la cabecera de Capa 1 incluye información del L1_INFO_Size e información de profundidad de intercalado en el tiempo de L1, en el que la información de L1_INFO_Size indica la mitad de tamaño de los datos de señalización de L1 y los datos de relleno de bloque de L1, y la información de profundidad de intercalado en el tiempo de L1 indica la profundidad de intercalado en el tiempo de los datos de señalización de Capa 1.

- 2. El transmisor de la reivindicación 1, en el que la información de profundidad de intercalado en el tiempo tiene un campo de 2 bit que indica un modo de intercalado en el tiempo de los datos de señalización de L1, que representa cualquiera de no intercalado en el tiempo, una profundidad de símbolos OFDM usada para los símbolos preámbulo, 4 símbolos OFDM y 8 símbolos OFDM.
 - 3. El transmisor de la reivindicación 1, en el que el tamaño de los datos de señalización de L1 se obtiene calculando mediante la adición de datos de CRC de 32 bit a dos veces un tamaño de la información del L1 INFO Size.
- 4. Un receptor para procesar datos de difusión, el receptor que comprende:

medios de recepción (r700) configurados para recibir datos de difusión que incluyen una trama de señal que incluye al menos un símbolo de preámbulo que transporta datos de señalización de Capa 1;

unos medios de desintercalado en frecuencia (r709) configurados para desintercalar en frecuencia datos en la trama de señal:

unos medios de desintercalado en el tiempo (r710) configurados para desintercalar en el tiempo datos desintercalados en frecuencia;

un descorrelacionador QAM (r713-C) configurado para descorrelacionar los datos desintercalados en frecuencia en palabras de celda y multiplexar las palabras de celda descorrelacionadas en datos de Conducto de Capa Física, PLP;

un desintercalador (r714-C) configurado para el desintercalado de bits de los datos de PLP multiplexados;

un descodificador LDPC (r715-C) configurado para descodificar LDPC los datos de PLP desintercalados de bits; y

un descodificador de BCH (r715-C) configurado para descodificar BCH los datos de PLP descodificados LDPC;

el receptor que se caracteriza porque además comprende:

5

10

15

20

25

30

35

40

45

unos medios de desintercalado en el tiempo (r710) configurados para desintercalar en el tiempo los datos de señalización de Capa 1 en base a una profundidad de intercalado en el tiempo;

un descorrelacionador QAM (r713-L1) configurado para descorrelacionar los valores de constelación correspondientes a los datos de señalización de Capa 1 desintercalados en el tiempo en las palabras de celda y para multiplexar las palabras de celda descorrelacionadas en los datos de señalización de Capa 1;

un desintercalador de bits (r714-L1) configurado para el desintercalado de bits de los datos de señalización de Capa 1 multiplexados;

unos medios de desperforación configurados para realizar la desperforación sobre los datos de señalización de Capa 1;

un descodificador de LDPC (r715-L1) configurado para descodificar LDPC los datos de señalización de Capa 1; y

un descodificador de BCH (r715-L1) configurado para descodificar BCH los datos de señalización de Capa 1 descodificados LDPC,

en el que el receptor está configurado para procesar el al menos un símbolo de preámbulo, el al menos un símbolo de preámbulo incluye una cabecera de Capa 1, y la cabecera de Capa 1 incluye información del L1_INFO_Size y la información de profundidad de intercalado en el tiempo de L1, en el que la información del L1_INFO_Size indica una mitad de tamaño de los datos de señalización de L1 y los datos de relleno de bloque de L1, y la información de profundidad de intercalado en el tiempo de L1 indica la profundidad de intercalado en el tiempo de los datos de señalización de Capa 1.

- 5. El receptor de la reivindicación 4, en el que la información de profundidad de intercalado en el tiempo tiene un campo de 2 bit que indica un modo de intercalado en el tiempo de los datos de señalización de L1, que representa cualquiera de no intercalado en el tiempo, una profundidad de símbolos OFDM usada para los símbolos preámbulo, 4 símbolos OFDM y 8 símbolos OFDM.
- 6. El receptor de la reivindicación 4, en el que un tamaño de los datos de señalización de L1 se obtiene calculando mediante la adición de datos de CRC de 32 bit a dos veces un tamaño de la información del L1_INFO_Size.
- 7. Un método para transmitir datos de difusión a un receptor, el método que comprende:

recibir flujos de entrada y añadir al menos una cabecera en banda base a los flujos de entrada recibidos para componer al menos una trama en banda base a partir de los flujos de entrada recibidos;

codificar BCH los datos de la trama de banda base, codificar LDPC los datos codificados BCH, y el intercalado de bits de los datos codificados LDPC:

el intercalado en el tiempo de los datos de intercalado de bits;

el intercalado en frecuencia de los datos de intercalado de bits;

codificar BCH los datos de señalización de Capa 1, codificar LDPC los datos de señalización de Capa 1 codificados BCH, y el intercalado de bits de los datos de señalización de Capa 1 codificados LDPC;

el método que se caracteriza porque además comprende:

intercalar en el tiempo los datos de señalización de Capa 1 intercalados en bits en base a una profundidad de intercalado en el tiempo;

ensamblar los datos intercalados en frecuencia y los datos de señalización de Capa 1 intercalados en el tiempo para formar una trama de señal que incluye al menos un símbolo de preámbulo que transporte los datos de señalización de Capa 1; y

modular OFDM la trama de señal formada, en el que la trama de señal modulada incluye al menos un símbolo de preámbulo,

en el que el al menos un símbolo de preámbulo incluye una cabecera de Capa 1, y la cabecera de Capa 1 incluye información del L1_INFO_Size e información de profundidad de intercalado en el tiempo de L1 en el

que la información del L1_INFO_Size indica la mitad de tamaño de los datos de señalización de L1 y los datos de relleno de bloque de L1, y la información de profundidad de intercalado en el tiempo de L1 indica la profundidad de intercalado en el tiempo de los datos de señalización de L1.

- 8. El método de la reivindicación 7, en el que la información de profundidad de intercalado en el tiempo tiene un campo de 2 bit que indica un modo de intercalado en el tiempo de los datos de señalización de L1, que representa cualquiera de no intercalado en el tiempo, una profundidad de símbolos OFDM usada en los símbolos preámbulo, 4 símbolos OFDM y 8 símbolos OFDM.
 - 9. El método de la reivindicación 7, en el que un tamaño de los datos de señalización de L1 se obtiene calculando mediante la adición de datos de CRC de 32 bit a dos veces un tamaño de la información del L1 INFO Size.
- 10. Un método para recibir datos de difusión, el método que comprende:

5

15

25

30

recibir datos de difusión que incluyen una trama de señal que incluye al menos un símbolo de preámbulo que transporta los datos de señalización de Capa 1;

desintercalar en frecuencia los datos en la trama de señal;

desintercalar en el tiempo los datos desintercalados en frecuencia;

descorrelacionar los datos desintercalados en frecuencia en palabras de celda y multiplexar las palabras de celda descorrelacionadas en los datos del Conducto de Capa Física, PLP;

el desintercalado de bits de los datos de PLP multiplexados;

descodificar LDPC los datos de PLP de desintercalado de bits; y

descodificar BCH los datos de PLP descodificados LDPC;

20 el método que se caracteriza porque además comprende:

desintercalar en el tiempo los datos de señalización de Capa 1 en base a una profundidad de intercalado en el tiempo;

descorrelacionar los valores de la constelación correspondientes a los datos de señalización de Capa 1 desintercalados en el tiempo en palabras de celda y multiplexar las palabras de celda descorrelacionadas en los datos de señalización de Capa 1;

desintercalado de bits de los datos de señalización de Capa 1 multiplexados:

realizar la desperforación en los datos de señalización de Capa 1;

descodificar LDPC los datos de señalización de Capa 1; y

descodificar BCH los datos de señalización de Capa 1 descodificados LDPC,

en el que el al menos un símbolo de preámbulo incluye una cabecera de Capa 1, y la cabecera de Capa 1 incluye información del L1_INFO_Size e información de la profundidad de intercalado en el tiempo de L1, en el que la información del L1_INFO_Size indica la mitad de tamaño de los datos de señalización de L1 y los datos de relleno de bloque de L1, y la información de profundidad de intercalado en el tiempo L1 indica la profundidad de intercalado en el tiempo de los datos de señalización de L1.

- 35 11. El método de la reivindicación 10, en el que la información de profundidad de intercalado en el tiempo tiene un campo de 2 bit que indica un modo de intercalado en el tiempo de los datos de señalización de L1, que representa cualquiera de no intercalado en el tiempo, una profundidad de símbolos OFDM usada en los símbolos preámbulo, 4 símbolos OFDM y 8 símbolos OFDM.
- 12. El método de la reivindicación 10, en el que un tamaño de los datos de señalización de L1 se obtiene calculando mediante la adición de datos de CRC de 32 bit a dos veces un tamaño de la información del L1 INFO Size.

Fig. 1

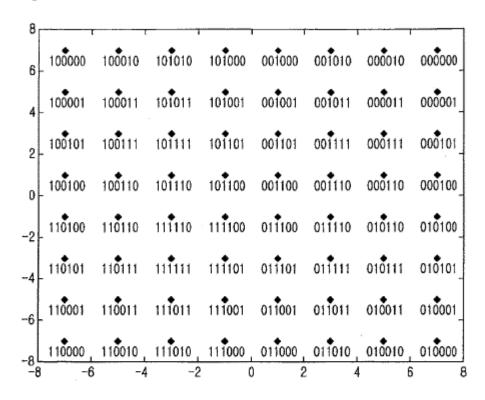
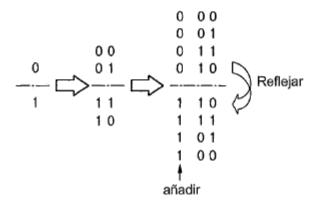



Fig. 2

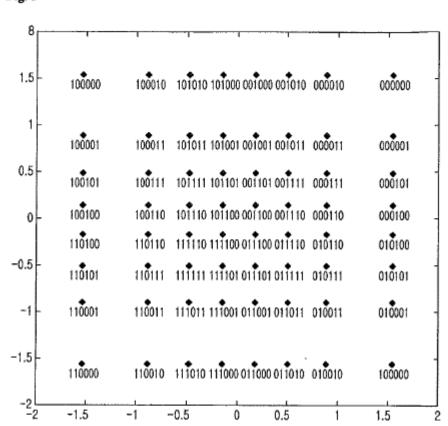


Fig. 4

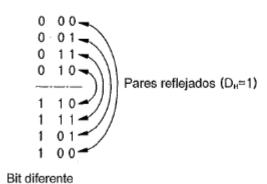


Fig. 5

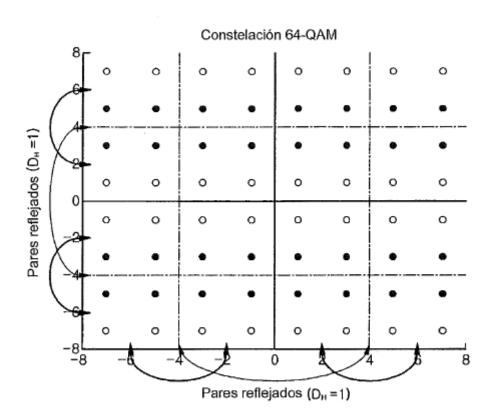
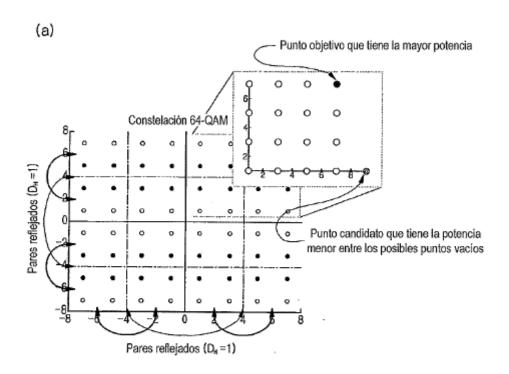



Fig. 6

(b)*El punto candidato es el punto vecino más próximo al par reflejado de puntos objetivo

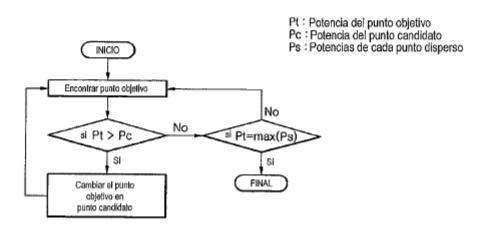


Fig. 7

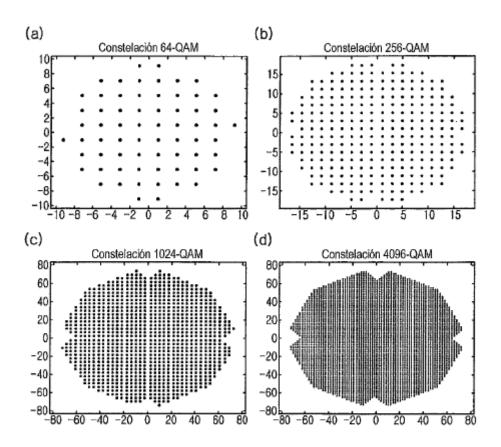


Fig. 8

Dispersión 9 + 1: 7 + 5: 5 + 7: 7 + 1:	7 + 3i 5 + 1i	1+7	3+7i 3+5i 1+1i	11 + 00 11 + 03	3+3i 1-9i 7-5i	5-7i 5-5i 7-1i	5-1i 5-3i 1-7i	3 - 5 3 - 5 3 - 5 3 - 1 3 - 1
Valor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S S	8 6	3.3	13-14	5 9 2	8 83 23	22 22 22	\$2 55 E

Fig. 9

3-3	-1 + 9	-7 + 5	5 + 71	-5+5	-7 + 1i	-7 + 3	-5+1)	-5 + 3:	-1 + 7	-1 + 33	-3+71	-3 + 5	-1+1	-1+3	-3 + 11	-3 + 33	-9 - 1i	-7 - 51	-5 - 71	-5 - 5i	-7 - 11	-7 - 31	-5-11	-5-3	-1 - 7	-1 - 51	-3 - 7i	-3 - 51	-1 - 1	-1 - 31	-3 - 11	-3-3
31	11821	22	B4	100	36	11321	1118 CHE	38	第146年	野畑	32	433	- 44	45	94	147	48	49.1	20	121	52		54	-88	95	S.	88	56	09	19	29	63

Fig. 10

Dispersión	-17 - 1i	-17 - 31	-3 - 17i	-13 - 13i	-15 - 91	-17 - 51	-13 - 9i	-13 - 11i	-9 - 15	-9 - 13	-5 - 17	-11 - 13i	i6 - 6-	-9 - 11i	-11 - 9i	-11 - 11i	-15 - 1i	-15 - 3i	-13 - 1i	-13 - 3i	-15 - 7i	-15 - 5i	-13 - 7i	-13 - 51	-9 - 1i	-6 - 3I	-11 - 11	-11 - 3i	-6 - 7i	-9 - 5	-11 - 7i
Valor	1192	193	194	#56·T#	96%	267	-86,1	66)	1000	201	- Z0Z	E02	204	205	902	12021	- 208	-60%	210	211	212	: 213	-514-	515	- 516	212	218	6121	07.7	221	222
Dispersión	-1 + 17	-17 + 3i	-3 + 17	-13 + 13	-15 + 9	-17 + 5	-13 + 9i	-13 + 11i	-9 + 15	-9 + 13	-5 + 17	-11 + 13	·6 + 6-	-9 + 11	-11+9	-11 + 11	-15 + 15	-15 + 3	-13 + 1i	-13 + 3	-15 + 71	-15 + 5	-13 + 7i	-13 + 5i	-9 + 1i	-9+3i	-11 + 1i	-11 + 3	-9 + 7i	-9 + 5i	-11+7;
Valor :	1873	153	OCE	報報	132	1331	1134E	132	136	123	183811	168.P	10#T	1100	1745	143	144	145	146	147	148	651	051	151	751	EST	154	155	951	153	158
Dispersión	1-17	17 - 3	3-17	13 - 13i	15 - 9i	17 - 5i	13 - 9	13 - 11i	9 - 15	9 - 13	5 - 17	11 - 13	9-9	9 - 11	11 - 9i	11 - 11i	15 - 1i	15 - 3	13 - 1	13-3	15 - 7i	15 - 51	13 - 7	13 - 5i	9 - 1i	9 - 3	11 - 1i	11 - 3	9 - 71	9 - 5	11 - 7
Valor	1.64	1159	99	129	63	69-	10611		- 7/	13		:5/::	- 26	-22	1.82	79:		87	+-Z8 ii	83	-84	-58	36	37	88	- 68	::06	16	- 25	Eő	8
Dispersión	17 + 1i	17 + 3	3+17	13 + 13i	15 + 9i	17 + 5i	13 + 9i	13 + 111	9 + 15i	9+13	5 + 17	11 + 13i	9+9	9 + 11i	11 + 9i	11 + 11i	15 + 1i	15 + 31	13 + 11	13 + 3	15 + 7i	15 + 51	13 + 71	13 + 51	9+11	9+3	11 + 16	11 + 3	9+7	9+5!	11 + 7
Valor	110111		. 2	3		111211	1119		. 8	6	101		12	1131	24	15	191	1	18	o,	- 26	171	22	. 23	- 24	25	.76	27	28	65	30

Fig. 11

-11 - 5i	-1 - 15i	-1 - 13i	-3 - 15i	-3 - 13i	-1 - 9i	-1 - 11i	.3 - 9	-3 - 11i	-7 - 15i	-7 - 13i	-5 - 15i	-5 - 13i	-7 - 9i	-7 - 11i	-5 - 9i	-5 - 11i	-1 - 1i	-1 - 3i	-3 - 1i	-3 - 3i	-1 - 7i	-1 - 5i	-3 - 7i	-3 - 5i	-7 - 1i	-7 - 3i	-5 - 1i	-5 - 3i	-7 - 7i	-7 - 5	-5 - 7	-5 - 5
223	224	225	226	227	228	229	230	231	232	233	234	235	236	737	238	239	240	147	242	243	244	245	246	247	248	546	250	251	252	.253	254	255
-11 + 5i	-1 + 15i	-1 + 13i	-3 + 15i	-3 + 13i	-1+9i	-1 + 11	-3 + 9i	-3 + 11i	-7 + 15i	-7 + 13i	-5 + 15i	-5 + 13i	-7 + 9i	-7 + 11i	-5 + 9i	-5 + 11i	-1 + 1i	-1+3i	-3 + 1i	-3 + 3i	-1 + 7i	-1 + 5i	-3 + 7i	-3 + 5i	-7 + 1i	-7 + 3i	-5 + 1i	-5 + 3i	-7 + 7i	-7 + Si	-5 + 7i	-5 + 5i
159	160	161	162	163	164	165	166	191	168	169	170	131	172	173	124	175	941	1,27	178	621	180	181	182	183	184	185	186	187	188	189	190	191
11 - 5i	1 - 15i	1-13	3 - 15i	3 - 13i	1 - 9i	1 - 11i	3 - 9i	3 - 11i	7 - 15i	7 - 13i	5 - 15	5 - 13i	7 - 9	7 - 11i	5 - 9	5 - 11i	1 - 1i	1 - 3i	3 - 1	3 - 3i	1 - 7i	1 - 5i	3 - 7i	3 - 5i	7 - 1i	7 - 3i	5 - 1i	1	7 - 7	7 - 5	5 - 7)	5 - Si
- 62	96	.65	-86	66	100	101	102	£01	104	105	106	107	108	601	110	111	711	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
11 + 5i	1 + 15i	1 + 13i	3 + 15i	3 + 13i	1 + 9i	1 + 11i	3 + 9i	3 + 11i	7 + 15i	7 + 13i	5 + 15i	5 + 13	7 + 9	7 + 11i	5 + 9i	5 + 11i	1 + 1i	1 + 3i	3 + 1i	3 + 31	1 + 7i	1 + 5i	3 + 7i	3 + 5i	7 + 1i	7 + 3i	5 + 1i	5 + 3	7 + 7i	7 + Si	5 + 7i	5 + 5
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	42	48	49	20	51	52	53	54		■ 26	45	58	65	90	19	62	63

Fig. 12

rsion	Ħ	. 3j	17	3	14.	ភេ	17.	ίζ	- 11	ñ	- 1:	ñ	i7	15	F	iā	151	- 13	- 15i	13	6	- 118	. 9 <u>.</u>	111	15!	- 13	151	- 13i	:6	7 - 11i	6
Dispe	-	-	3	3	н	+	3.	÷	7	<u>'</u>	2	'n	7-	7 -	'n	7,	4	-	Ė	in.		1.	÷	'n	-	7	5	ņ	7		S
Valor Dispersion	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	47.1	47.2	473	474	475	476	47.7	478
ispersión	1 - 31	1 - 29	3 - 31	3 - 29	1 - 251	1-27	3 - 25	3 - 271	7 - 311	7 - 29!	5 - 31i	5 - 29i	7 - 25i	7-27	5 - 25	5 - 27	1 - 17	1 - 19i	3 - 17	3 - 19i	1 - 23	1 - 21	3 - 23i	3 - 21	7 - 17	7 - 19	5 - 171	5 - 19	7 - 23i	7 - 21i	5 - 23
Valor	384	385	386	387	388	389	390	39.1	39.2	393	394	36E	396	39.7	398	399	400	461	402	403	404	405	406	407	408	409	410	411	412	413	4174
Dispersión Valor Dispersión	31 - 1i	31 - 3i	29 - 1i	29 - 3i	31 - 7	31 - 5	29 - 71	29 - 51	25 - 1i	25 - 3i	27 - 1i	27 - 3i	25 - 7ī	25 - 5i	27 - 71	27 - 51	31 - 15	31 - 13	29 - 15i	9 - 13	31 - 9i	31 - 11i	29 - 9i	29 - 11i	25 - 15i	25 - 131	27 - 15i	27 - 13	25 - 9i	25 - 11i	27 - 91
	320	321	322	323	524	325	926	327	328	329	330	33.0	332	333	33.4	335	336	337	338	. 5EE	340	146	342	343	344	345	346	347	348	31H2	350
Valor Dispersión Valor	1 - 33	33 - 31	3 - 33	3 - 351	33 - 7i	33 - 51	35 - 7i	35 - 5i	7 - 33i	7 - 35i	5 - 33i	5 - 35i	25 - 25	25 - 27	27 - 251	5 - 37	31 - 17	33 - 13	29 - 17	29 - 191	33 - 9i	33 - 11	35 - 9i	29 - 21i	25 - 17i	25 - 191	27 - 171	27 - 19	25 - 23i	25 - 21i	27 - 23
Valor	526	257	258	259	260	261	292	263	264	265	992	267	897	598	270	1/2	272	273	274	528	276	2/2	278	-279	280	281	282	283	284	582	286
Dispersión	1+1	1+3	3 + 1i	3+3	1 + 7i	1 + 5	3 + 71	3 + 54	7 + 11	7 + 3	5 + 1î	5 + 3	7 + 7i	7 + 5	5 + 71	5 + 5	1 + 15i	1 + 13	3 + 15i	3 + 13	1 + 9i	1 + 11i	3 + 9i	3 + 11i	7 + 15i	7 + 13i	5 + 15	5 + 13i	7 + 9i	7 + 11i	5 + 9
Valor	761	€61	194	195	964	261	861	661	007	102	502	203	204	502	206	207	208	209	210	112	212	213	23.4	215	917	21.7	812	612	220	221	222
Dispersión	1 + 31	1.+ 29	3 + 31	3 + 291	1 + 25i	1 + 27	3 + 25	3 + 27i	7 + 31i	7 + 29	5 + 31i	5 + 29	7 + 25i	7 + 27i	5 + 25i	5 + 27i	1 + 17	1 + 19i	3 + 17i	3 + 19i	1 + 23i	1 + 21[.	3 + 23i	3 + 21i	7 + 17i	7 + 19i	5 + 17i	5 + 19i	7 + 23i	7 + 21i	5 + 23i
Valor	128	129	130	191	132	133	134	135	981	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158
Dispersión	31 + 1i	31 + 3i	29 + 1i	29 + 3i	31 + 7i	31 + 5i	29 + 7i	29 + 51	25 + 1i	25 + 3i	27 + 1i	27 + 3i	25 + 7i	25 + 51	27 + 71	27 + 5i	31 + 15i	31 + 13	29 + 15	29 + 13	31 + 9i	31 + 11i	29 + 9i	29 + 11i	25 + 15i	25 + 13i	27 + 15i	27 + 13i	25 + 9i	25 + 11	27 + 9i
Valor	9	65	99	67	11.69	69	70	DI.	72	73	74	7.5	7.6	7.5	78	- 29	80	18	8.2	83	-84	85	-86	87	88	58	06	- 61	92	63	76
Dispersión	33 + 11	33 + 3	3 + 33i	35 + 31	33 + 71	33 + 5i	35 + 7i	35 + 5i	7 + 33i	7 + 35i	5 + 33i	5.+.35	25 + 25i	25 + 27	27 + 25i	37 + Si	31 + 17i	33 + 13i	29 + 17i	29 + 19	33 + 9i	33 + 11i	35 + 9i	29 + 21i	25 + 17i	25 + 19i	27 + 17	27 + 19i	25 + 23	25 + 21	27 + 23
Valor	O		2	e	4	5	9	7	8	6	10	17.7		13	174	1.5	. 91	1.7	18	19	20	21	22	23	24		56	2.7		67	30

Fig. 13

5 - 11	15 - 1)	15 - 3i	13 - 1i	13 - 3	15 - 71	15 - Si	13 - 7i	13 - Si	9 - 1i	9 - 3	11 - 1	11 - 3	9 - 7i	9 - 5	11 - 7	11 - 5i	15 - 15	15 - 13	13 - 15i	13 - 13	15 - 9i	15 - 11i	13 - 9i	13 - 11i	9 - 15	9 - 13i	11 - 15i	11 - 13i	i6 - 6	9 - 11i	11 - 9i	11 - 11
479	⊢	481	482	483	484	485	486	48.7	488	489	490	491	492	493	494	495	496 1	497	498 1	499 1	200	501 1	502	503 1	504	- 202	506 1	507 1	805	509	510	511
5 - 21i	15 - 31	15 - 29	13 - 31i	13 - 29i	15 - 25i	15 - 27	13 - 25	13 - 27	9 - 31i	9 - 29i	11 - 31	11 - 29	9 - 25	9 - 27	11 - 25	11 - 27	15 - 17	15 - 19i	13 - 17	13 - 19i	15 - 23i	15 - 21	13 - 23i	13 - 21i	9 - 17	9 - 19i	$11 \cdot 17i$	11 - 19i	9 - 23i	9 - 21	11 - 23i	11 - 21)
415	416	417	818	419	420	421	422	423	454	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447
27 - 11i	17 - 1i	17 - 31	19 - 1i	19 - 3	17 - 7i	17 - 51	19 - 7i	19 - 51	23 - 1i	23 - 3i	21 - 11	21 - 3i	23 - 71	23 - 51	21 - 7	21 - 5	17 - 15	17 - 13i	19 - 15	19 - 13	17 · 9i	17 - 11i	19 - 9i	11 - 61	23 - 15i	23 - 13i	21 - 15	21 - 13i	23 - 91	23 - 11i	21 - 9i	21 - 11
351	352	353	354	355	356	357	358	329	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383
27 - 21i	17 - 31i	17 - 29i	13 - 33i	19 - 29	17 - 25i	17 - 27	19 - 25	19 - 27	9 - 33	9 - 35i	11 - 33	21 - 29i	23 - 25	23 - 27i	21 - 25i	21 - 27	17 - 17i	17 - 19	19 - 17i	19 - 19i	17 - 23i	17 - 21i	19 - 23i	19 - 21	23 - 17	23 - 19i	21 - 17i	21 - 19	23 - 23i	23 - 21i	21 - 23i	21 - 21
- 282	887	289	290	291	292	::563:::	294	295	296	297	298	299	300	301	302	303	304	.305	306	307	308	303	310	311	312	313	.314	315	316	317	318	319
5 + 11i	15 + 11	15 + 3i	13 + 1i	13 + 3	15 + 7i	15 + Si	13 + 7i	13 + 5i	9 + 1i	9 + 3	11 + 1i	11 + 3i	9 + 7i	9 + 5i	11 + 7	11 + 5i	15 + 15i	15 + 13i	13 + 15i	13 + 13i	15 + 9i	15 + 11i	13 + 9	13 + 11i	9 + 15i	9 + 13i	11 + 15i	11 + 13i	i6 + 6	9 + 11i	11 + 9	11 + 11i
223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250.	251	252	253	254	255
5 + 21i	15 + 31	15 + 29i	13 + 31i	13 + 29i	15 + 25i	15 + 27i	13 + 25i	13 + 27i	9 + 31i	9 + 29	11 + 31i	11 + 29i	9 + 25i	9 + 27	11 + 25i	11 + 2万	15 + 17	15 + 19i	13 + 17i	13 + 19i	15 + 23i	15 + 21i	13 + 23i	13 + 21i	9 + 17i	9 + 19i	11 + 17	11 + 19i	9 + 23i	9 + 21i	11 + 23	11 + 21i
159	160	161	162	163	164	165	166	167	168	169	120	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
27 + 11i	17 + 1	17 + 3i	19 + 1i	19 + 3i	17 + 71	17 + 5i	19 + 7i	19 + Si	23 + 1i	23 + 3i	21 + 1i	21 + 3i	23 + 7i	23 + Si	21 + 7i	21 + 5i	17 + 15i	17 + 13i	19 + 15i	19 + 13i	17 + 9i	17 + 11i	19 + 9i	19 + 11i	23 + 15i	23 + 13i	21 + 15i	21 + 13i	23 + 9i	23 + 11i	21 + 9i	21 + 11i
95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
27 + 21i	17 + 31	17 + 29	13 + 33i	19 + 29i	17 + 25i	17 + 27	19 + 25i	19 + 27i	9 + 33i	9 + 35i	11 + 33	21 + 29i	23 + 25i	23 + 27i	21 + 25i	21 + 27i	17 + 17i	17 + 19i	19 + 17	19 + 19i	17 + 23i	17 + 21i	19 + 23i	19 + 21i	23 + 17i	23 + 19i	21 + 17i	21 + 19i	23 + 23i	23 + 21i	21 + 23i	21 + 21i
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	5.1	.52	53	54	55	26	. 22	58	-65		61	- 62	63

Fig. 14

-	_	1	_	_	_	Τ-	_	1	_	_	_	_	_	_	_	_	-						_	1	_	_		_	—
rsión	Ξ	ë	- 11	Ē	7	ίδ	-3 - 7	iñ	7	-7-3	5·1i	-5-3	-7 - 7	5	17	iñ	15.	<u>:</u>	- 15	- 13	- 3	111	į6 -	Ξ	- 15	- 13	- 15i	-5 - 13	55
Dispersión	7	7	ကု	ņ	7	7	ņ	۳	۴	-7	ů	è	7	7	3-	ųγ	ų	7	ή	ņ	-	-	€-	ņ	-2-	-2-	\$-		<u>;</u>
Valor =	960	961	- 362	963	954	965	996	296	. 896	696	970	97.1	972	973	974	975	926	977	8/6	626	980	981	282	-883	984	586	986	987	986
Sign S	蒯	-	-		_		***						1				11000	_	_	-									
Dispersión	- 31i	- 29	- 31	- 29	- 25	- 27	- 25i	- 27	-31	- 29	-31	- 29	- 25i	- 27	- 25i	- 27	- 17	- 19	- 17	- 19	- 23	- 21i	- 23	- 21i	171	- 19	- 17	- 19i	- 23
	귝	7	۳	ņ	7	7	m	ę	-7	-7	ī,	ιņ	-7	-	ċ.	'n	77	7	ņ	ę.	7	4	3	ņ	7	7	Ş	5	-
Valor	968	68	898	668	606	901	#206	903	904	905	909	907	908	606	910	911	912	913	914	915	916	91.7	918	919	920	921	922	923	924
	1		8		Ô	1107711		6	Hear	ိ		-	0	9	6		200	1.11.25.11	55016	HE	6		6	-		-	1	tajanah	_
Dispersión	Ŧ	ίΩ	Ŧ	<u>-</u>	į,	į	ŗ	ij	-25 - 11	<u>بن</u>	7	ij.	. 7ï	- 5	- 7i	- 5	- 15i	- 13	-29 - 15i	- 13	· 9i	-11	-29 - 9i	7	- 15	-25 - 13	- 15i	-27 - 13	9.
	-31	-31	-29	-29	-31	<u>-</u>	-29	-29		-25	-27	-27	-25	-25	-27	-27	-31	-31	-29	-29	-31	-31	-29	-29	-25	-25	-27	-27	-25
Valor	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	828	860
	811	-	8	8	8	8	_	8	8	8	8	8						-	-	_		2.25		_		Ī			
ersiôn	Ŧ	-3	33	ñ	7	- 5	į,	12.	- 33	- 35i	- 33	- 35i	- 25í	- 27i	- 25	.5	- 17	- 13	- 17	- 19	<u>.</u>	- 11	- 9	- 211	- 17	. 19i	- 17	- 13	53
Walor Dispersión	-33	ညှ	ņ	-35	-33	-33	-35	-35	7	-7	ŵ	2	-25	-25	-27	-37	-31	-33	-29	-29	-33	-33	-35	-29	-25	-25	-27	-57	-55
lo	892	694	270	1/1	772	773	774	775	37.6	777	844	6//	280	181	282	687	784	785	386	787	788	789	790	16/	262	£62	794	262	362
	繣	4	鑵			211			2	200	2	<u>Z</u>			2	2 =	2	2 :		2	Σ		rs.	Z	200	2	Ž	7	rs.
Dispersión	+ 11	بن	77	+ 3	+ 7	155	+ 7	+ 5	+	+ 3	;; +	÷ 3	+ 7	+ 5i	+ 7i	+ 5	15	13	+ 15!	13	i6 +	11	i6 +	+ 11	15	+ 13	15i	+ 13	1 6
Dispe	÷	÷	6	-3	7	7	ņ	÷	-7	-7	-5	-5	-2	-2	-5	-5	-1+	+	-3+	÷ ب	7	+1+	-3	÷	+ 4-	-7+	-5 +	÷.	Ļ
Valor	704	2	91	707	8	6	210		N	cc	714	- 2	9	E.	00	6	6	721	722	723	724	5	726	2	8	ďs	730		0
Na.	2	705	706	22	208	502	2	711	712	713	7	715	317	717	718	719	720	72	72	120	72	725	72	727	87/	729	7	731	733
-Si	33	295	31	291	25	27	25	27	31	29	31	29i	25i	271	25i	27	17	61	17	19i	23	21	23i	21i	17	13	17	19	23
isper	<u>-</u> -	+ 1	٠. +	÷ ب	+	+1+	+ 6-	+	-7 +	-7+	÷.	-5+	+ 4-	-7+	-5	+ 5-	-1 +	+ 1-	٠, 4	÷	+1+	+	÷ 6-	÷	-7+	-7+	+ 5-	÷	-7+
Valor Dispersión	0.180	ille:		lilite									五田道	465		!			33333	·	HEN	100			THE REAL PROPERTY.				
Valo	640	199	642	643	644	645	846	647	648	649	650	159	259	£59	654	655	959	657	859	629	099	199	862	663	664	999	.999	299	668
sión	÷ 1j	+ 3	11.4	+ 3	7	<u>.</u>	+ 71	2	+ 11	3	+ 1i	+ 3	+ 71.	+ 5	+ 7	+ 5	+ 15i	+ 13	15	+ 13i	+ 9i	+ 11	i 6+	11i	15i	+ 13	15i	13	õ
Dispersión	-31 +	-31 +	-29 +	-29 +	-31 +	-31 +	-29 +	-53 +	-25 +	-25 +	-27 +	-27 +	-25 +	-25 +	-27 +	-27 +	-31+	-31 +	-29 + 15	-29 +	-31	-31 +	-29	-29 + 11i	-25 +	-25 +	-27 +	-27 +	-52
									Heat	Abron	2000	einst)							and i			200711						_	
Valor	925	577	878	579	580	185	582	£83	584	285	286	285	588	589	590	591	285	593	594	595	-236	597	29 8	- 588	500	109	602	603	604
	33i	+ 3	33!	35!		5		+ 25	33				25i	-	+ 25i		+ 17	13i		19	i6+	+ 11i	1 6+					+ 19	+ 23i
Dispersión	+	-33 +	÷3 + 3	+3+3	-33 + 7i	-33 +	-35 + 7	-35 +	-7 + 3	-7 + 35i	5 + 331	-5 + 35	+	-25 + 27	+	5 + 37i		+	-29 + 17	+	-33 +	+ m	+32+	-29 + 21	-25 + 17	-25 + 19	-27 + 17		+
	-1			- 1			!	\Box			÷		-25	$\overline{}$	-27	ř	-31	-33		52		£.						-27	-25
Valor	512	513	51.4	515	516	11212日	518	519	520	175	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	625	540
-			COLUMN TWO	100101	14111111	41100	12111	1000000	HERE IN	9999		11111111	Acres 1219	10000	101107	1100000	100000	196611	1000	1665	WHO:	HORSES.	2004	1111111	1000	HERE'S	98699	merel like	mina Hill

Fig. 15

juo	311	562	31;	29	25i	27.	25	271	31;	29	31	29	25	271	251	271	F	55	ΪĒ	15	23	211	23	7.1	F	8	F	15	m	21i	23i
Dispersión	33 + 3	33 + 2	35+3	35 + 2	33 + 2	33 + 5	35 + 2	35 + 2	39 + 3	39 + 2	37 + 3	37 + 2	39 + 2	39 + 2	37 + 2	37 + 2	33+1	33+1	35 + 1	35+1	33+2	33 + 2	35 + 2	35 + 2	39 + 1	39+1	37 + 17	37 + 1	39 + 2	39 + 2	37 + 2
Valor	448	677	450	154	452	453	454	455	456	457	458	459	469	461	462	463	464	465	465		468	694	470	471	472	473	100	475	476	47.7	478
ĵu N	譜	3.	# 17	33	河	15	7	is	7	33.	4	31	強に	i2	開設	iš	畑	3,	i5	31 467				-	-		Si	3i 4	9	明期	5
Dispersión	33 + 1	33 + 3	35.+1	35 + 3	33 + 7	33 + 2	35 + 7	35 + 5	39 + 1	39 +	37 + 1	37 + 3	39 + 7	39 + 5	37 + 7	37 + 5	33 + 15	33 + 1	35 + 1	35 + 13	33 + 9i	33 + 11	35 + 9i	35 + 11i	39 + 15i	39 + 13	37 + 1	37 + 1	39 + 9	39 + 11	37 + 9
	384	385	386	38.7	388	389	390	391	392	393	394	395	966	397	398	366	200	401	402	403	404	405	406	407	408	409	410	411	412	413	414
Bión	311	162	31;	5 8i	25	27	25	271	311	29	311	29i	25	271	25	27	171	19	171	19	23i	21i	23	21i	17	19i	17	191	23i	211	23i
Disper	63+	63+	61+	61+	63+	63+	+19	61+	57 +	57+	59+	59+	57 +	57 +	59+	59 +	63+	63+	61+	61+	63 +	63+	61+	61+	57+	57+	59 ÷	29 +	57 +	57 +	29 +
Valor Dispersión Valor	320	321	322	-323	324	328	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350
Dispersión	+ 11	+ 3	+ 11	+ 3i	+ 7	+ 5	+ 7	+ 5	+ 1i	+ 3i	+ 1)	+ 31	+ 7	+ 5!	+ 7i	+ 5!	+ 15	+ 13	+ 15	+ 13	+ 9i	+ 11	<u>6</u>	+ 118	+ 15i	+13	+ 15i	+ 13	÷ 9.	+ 111	i 6
Disp	63	63	61	61	63	63	19	61	57	57	59	59	57	57	29	29	63	63	51	19	63	63	61	61	5	27	- 23	59 -	57	53	S
Valor	957	257	258	259	260	261	262	593	264	565	266	267	268	269	570	122	272	573	274	275	276	277	278	279	286	281	282	283	284	285	286
Dispersión	+ 33i	+ 35i	+ 33i	+ 35i	+ 39i	+ 37	+ 39i	+ 37	+ 33	+ 35i	+ 33i	+ 35i	+ 39	+ 37i	+ 39	+ 37i	+ 47	+ 45i	+ 47i	+ 45i	+ 4 <u>1</u> i	+ 43i	+ 41	+ 43i	+ 47	+ 45i	+ 47i	+ 45i	+ 41i	+ 43i	+ 41
Disp	33	33	35	35	33	33	35	32	33	33	37	37	39.	33	37	37	8	33	33	35	33	33	32	32	33	39	37	3	33	33	37
Valor	192	193	194	195	196	197	198	199	200	201	202	203	204	205	50e	202	208	505	210	211	212	213	214	215	216	217	218	219	220	221	222
Dispersión	+ 63i	+ 61i	+ 65	+ 61i	+ 57i	+ 59i	+ 57i	+ 591	+ 65i	+ 67i	+ 65	+ 61i	+ 571	+ 59	+ 57i	+ 59	+ 49	+ 51	+ 49	+ 51i	+ 55i	+ 53	+ 55i	+ 53	+ 49i	+ 51i	+ 49	+ 511	+ 55i	+ 53	+ 55i
Disp	33	33,	59	35	33	33	32	32	22	25.	27	37	33	33	37	37.	33	33	35	33	33	33	32	33	33	8	37	32	33		37
Valor	128	129	130			133	134	138	136	137	138	139	140	141	1.42	143	144	145	146	147	148	149	150	151	152	£	154	155	156	157	158
Dispersión	+ 33i	+ 29i	+ 33i	+ 35	+ 25i	+ 27i	+ 25i	+ 37i	+ 33	+ 35i	- 33i	+ 35i	+ 39i	F 37i	- 39i	+ 37i	65 + 17i	65 + 19i	F 17j	+ 19	65 + 23i	- 211	- 23i	- 21i	71 + 17i	+ 45i	171	69 + 19i	411	43	411
	63	-62	61	ם	65	8	67	61+	5	57	59+	59	57 +	57+	+ 65	59 +	- 1		+ 49	67	65	65 +	+ 69	67 +		57 +	+69	69	27 +		29 +
Valor	64	65	99	- 67	- 68	69	70	7	72	73	74	7.5	- 26	77	7.8	-26	80	18	82	83	84	85	86	87	-88	-89	- 06	:5	92	63	94
Dispersión		+ 3	3 + 65i	67 + 3i	<u>17</u>	- - -	67 + 7i	+ 2i	7 + 65i	7 + 67i	_	5 + 67i	71 + 71	7 + 69	+ 7;	69 + 5	65 + 15i	65 + 13i	67 + 15i	+ 13	65 + 91	65 + 11i	+ 9 <u>i</u>	+ 111	71 + 15i	71 + 13i	+ 15	69 + 13i	; <u>6</u>	+ 111	1 6
Disp		65			65	65 +	- 1	+ 49	- 1				_		+ 69					6	- 1		67	6			S	€69	71+	지	+ 69
Valor	9	J	2	3	4	'n	9	2	æ	6	O.	7	12	13	14	15	- 16	17	18	61	20	21	22	53	24	25	92	22	28-	29	30

Fig. 16

37 + 21	47 + 311	47 + 29i	45 + 31i	45 + 29i	47 + 25i	47 + 27	45 + 25i	45 + 27i	41 + 31i	41 + 29i	43 + 31i	43 + 29i	41 + 25i	41 + 27i	43 + 25i	43 + 27i	47 + 17i	47 + 19i	45 + 17i	45 + 19i	47 + 23i	47 + 21i	45 + 23i	45 + 21i	41 + 17	41 + 19i	43 + 17i	43 + 19i	41 + 23i	41 + 21i	43 + 23i	43 + 21i
479	480 4	481 4	482	483 4	484	485 4	486 4	487 4	488 4	489 4	490	491 4	492 4	493 4	494 4	495 4	496	497 4	498 4	499	500	50f 4	502	503 4	504 4	505 4	506 4	507 4	508 4	509 4	510 4	511
37 + 11i	47 + 1i	47 + 3i	45 + 1i	45 + 3i	47 + 71	47 + 51	45 + 7i	45 + Si	41 + 1i	41 + 3i	43 + 1i	43 + 31	41 + 7i	41 + 5i	43 + 7i	43 + Si	47 + 15i	47 + 13i	45 + 15i	45 + 13i	47 + 9i	47 + 11i	45 + 9i	45 + 11i	41 + 15i	41 + 13i	43 + 15i	43 + 13i	41 + 9i	41 + 11i	43 + 9	43 + 11i
415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447
59 + 21	49 + 31i	49 + 29i	51 + 31i	51 + 29	49 + 25i	49 + 27	51 + 25i	51 + 27	55 + 31i	55 + 29i	53 + 31i	53 + 29i	55 + 25i	55 + 27	53 + 25i	53 + 27i	49 + 17	49 + 19i	51 + 17	51 + 19i	49 + 23i	49 + 21i	51 + 23	51 + 21i	55 + 17	55 + 19	53 + 17	53 + 19i	55 + 23i	55 + 21	53 + 23	53 + 21i
351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	977	378	379	380	381	382	383
59 + 11i	49 + 1i	49 + 3i	51 + 1i	51 + 3	49 + 7i	49 + Si	51 + 7i	51 + 5i	55 + 1i	55 + 3i	53 + 1)	53 + 3i	55 + 7i	55 + 5i	53 + 7i	53 + 5i	49 + 15i	49 + 13i	51 + 15i	51 + 13i	49 + 91	49 + 11i	51 + 9	51 + 11i	55 + 15i	55 + 13i	53 + 15i	53 + 13i	55 + 9	55 + 11i	53 + 9i	53 + 11i
287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
37 + 43i	47 + 33i	47 + 35i	45 + 33	45 + 35	47 + 39i	47 + 37i	45 + 39	45 + 37	41 + 33	41 + 35i	43 + 33i	43 + 35i	41 + 39i	41 + 37i	43 + 39	43 + 37i	47 + 47	47 + 45i	45 + 47i	45 + 45i	47 + 41i	47 + 43i	45 + 41i	45 + 43i	41 + 47i	41 + 45i	43 + 47i	43 + 45i	41 + 41i	41 + 43i	43 + 41i	43 + 43i
223	224	.225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
37 + 53	17 + 65i	17 + 67i	19 + 65i	19 + 67i	17 + 71i	17 + 69i	45 + 57i	19 + 69i	23 + 65i	23 + 67i	21 + 65i	21 + 67i	41 + 57i	41 + 59i	43 + 57i	21 + 69i	47 + 49i	47 + 51i	45 + 49i	45 + 51i	47 + 55i	47 + 53i.	45 + 55i	45 + 53	41 + 49i	41 + 51i	43 + 49i	43 + 51i	41 + 55i	41 + 53	43 + 55i	43 + 53
159	160	161	162	E9I	164	165	166	167	168	169	170	171	172	:173	174	175	1.76	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
69 + 21	49 + 33	49 + 35i	51 + 33i	51 + 35	49 + 39	49 + 37i	51 + 39i	51 + 37i	55 + 33	55 + 35	53 + 33i	į,	ŝ	_	53 + 39	53 + 37	49 + 47i	49 + 45i	51 + 47i	51 + 45	49 + 41i	49 + 43i	51 + 41i	51 + 43i	55 + 47i	55 + 45i	53 + 47i	53 + 45i	55 + 41i	55 + 43i	53 + 41i	3 + 43i
95	96	- 65	86	66	100	101	102	103	104	105	106	107	108	109	110	-315c	1 12	113	· 姓	115	116	AL.	118	119	120	120	122	123	124:	125	126	127
69 + 11;	15 + 65	15 + 67i	13 + 65i	13 + 67i	15 + 711	15 + 69	13 + 71i	13 + 69i	9 + 65	9 + 67	11 + 65i	11 + 67i	9 + 71i	9 + 69	11 + 71i	11 + 69i	49 + 49i	49 + 51i	51 + 49i	51 + 51i	49 + 55i	49 + 53i	13 + 73	51 + 53i	55 + 49i	73 + 13i	53 + 49	53 + 51i	73 + 9i	73 + 11i	11 + 73i	53 + 53
31	32	33	34	32	36	37	38	39	40	41	42	.t	44	45	46	72	48 ₪	49	50	:1 5 30	52	53	KH1543H1	22	56	-4 57 /	58	- 29	- 60	61	62	10 E

Fig. 17

37 + 21i	47 + 31i	47 + 29i	45 + 31i	45 + 29	47 + 25i	47 + 27i	45 + 25i	45 + 27i	41 + 31i	41 + 29i	43 + 31i	43 + 29;	41 + 25i	41 + 27i	43 + 25i	43 + 27i	47 + 17i	47 + 19i	45 + 17i	45 + 19i	47 + 23i	47 + 21i	45 + 23i	45 + 21i	41 + 17i	41 + 19i	43 + 17i	43 + 19i	41 + 23i	41 + 21i	43 + 23i	43 + 21
479	480	481 4	482	483	484	485 4	486 4	487 4	488	489" 4	490	491 4	492	493: 4	494	495 4	496	497	498	499	500	501" 4	≣ 502 ≡ 4	503 4	504 4	≡505≡ 4	506	507	508	509	510	511
37 + 11i	47 + 1i	47 + 3i	45 + 1i	45 + 3i	47 + 7i	47 + 5i	45 + 7i	45 + 5i	41 + 1i	41 + 3i	43 + 1i	43 + 3i	41 + 7i	41 + 5i	43 + 7i	43 + 5	47 + 15i	47 + 13i	45 + 15i	45 + 13i	47 + 9i	47 + 11i	45 + 9i	45 + 11i	41 + 15i	41 + 13i	43 + 15i	43 + 13i	41 + 9i	41 + 11i	43 + 9i	43 + 111
415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432		434	435	436	437	438	439	440	441	442	443	444	445	446	447
59 + 21	49 + 31	49 + 29	51 + 31i	51 + 29	49 + 25	49 + 27i	51 + 25	51 + 27	55 + 31	55 + 29	53 + 31	53 + 29	55 + 25	55 + 27	53 + 25	53 + 27	49 + 17	49 + 19i	51 + 17i	51 + 19i	49 + 23i	49 + 21i	51 + 23i	51 + 21i	55 + 17i	55 + 19i	53 + 17i	53 + 19	55 + 23	55 + 21i	53 + 23	53 + 21
351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383
59 + 11	49 + 11	49 + 3i	51 + 1j	51 + 3i	49 + 7i	49 + Si	51 + 7i	51 + 5i	55 + 1i	55 + 3i	53 + 1i	53 + 3i	55 + 7i	55 + Si	53 + 7i	53 + Si	49 + 15i	49 + 13	51 + 15i	51 + 13i	49 + 9i	49 + 11i	51 + 9i	51 + 11i	55 + 15i	55 + 13i	53 + 15i	53 + 13i	55 + 9i	55 + 11i	53 + 9i	53 + 11i
287	288	289	290	291	292	293	294	295	296	297	298	299	300	≡301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
37 + 43i	47 + 33	47 + 35i	45 + 33	45 + 35i	47 + 39i	47 + 37i	45 + 39i	45 + 37i	41 + 33i	41 + 35i	43 + 33i	43 + 35i	41 + 39i	41 + 37i	43 + 39i	43 + 37i	47 + 47i	47 + 45i	45 + 47i	45 + 45i	47 + 41i	47 + 43i	45 + 41i	45 + 43i	41 + 47	41 + 45i	43 + 47i	43 + 45i	41 + 41i	41 + 43i	43 + 41i	43 + 43i
223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
37 + 53i	17 + 65i	17 + 67i	19 + 65i	19 + 67i	17 + 71i	17 + 69i	45 + 57i	19 + 69i	23 + 65i	23 + 67i	21 + 65i	21 + 67i	41 + 57i	41 + 59i	43 + 57i	21 + 69i	47 + 49i	47 + 51i	45 + 49i	45 + 51i	47 + 55i	47 + 53i	45 + 55i	45 + 53i	41 + 49i	41 + 51i	43 + 49i	43 + 51i	41 + 55i	41 + 53i	43 + 55i	43 + 53i
159	.091	161	162	163	164	165	166	167	168	169	02T	171	172	2 8KT	174	175	11 9 /01	421	178	#847 9 #	180	181	182	183	184	185	186	187	188	189	190	-161-
69 + 21i	49 + 33	49 + 35i	51 + 33i	51 + 35i	49 + 39	49 + 37i	51 + 39i	51 + 37i	55 + 33	55 + 35	53 + 33	53 + 35	55 + 39	55 + 37i	53 + 39	53 + 37i		49 + 45	51 + 47	51 + 45i	49 + 41i	49 + 43i	51 + 41i	51 + 43i	55 + 47i	55 + 45	53 + 47i	53 + 45i	55 + 41	55 + 43i	53 + 41i	53 + 43i
95	96	-1 92 1-	86	66	100	101	102	103	104	105	106	107	108	109	110	111	14 12	113	114	2115	116	411.	118	119	120	121	122	123	124	125	126	427
69 + 11	15 + 65	15 + 67i	13 + 65i	13 + 67i	15 + 71i	15 + 69i	13 + 71i	13 + 69i	9 + 65	9 + 67	11 + 65i	11 + 67i	9 + 71i	6 + 69	11 + 71i	11 + 69i	49 + 49i	49 + 51i	51 + 49i	51 + 51i	49 + 55i	49 + 53i	13 + 73i	51 + 53i	55 + 49	73 + 13i	53 + 49i	53 + 51i	73 + 9i	73 + 11i	11 + 73i	53 + 53
E	32	33	35	35	36	37	38	39	40	111	-142 Hz	43	44	-:45	46	47	48	49	20	-# 51 #*	52	53	. 24	55	56	57	58	29	± 09	61	62	10.1 63 3.01

Fig. 18

-5	F	55	F	ŏ	iš	F	ίö	12	ī	55	ä	5	iñ	ĸ	iñ	is.	7	5	12	i6	iii	Ħ	ĕ	Ħ	K	6	k	155	8
Dispersión	31 + 31	31 + 29i	29 + 31i	29 + 29	31 + 25i	31 + 27	29 + 25i	29 + 27	25 + 311	25 + 29	27 + 31ř	27 + 29	25 + 25	25 + 27	27 + 25i	27 + 27	31 + 17i	31 + 19i	29 + 17	29 + 19	31 + 23	31 + 21	29 + 23	29 + 21	25 + 17	25 + 19	27 + 17i	27 + 19i	25 + 23
	1—	_	ı	Ŀ	_	-		930	-	BHILL	_	1011E	data	1000	Hibia	_	anlie	977	978 2	1200		$\overline{}$	120	983	٠				
E (Sal	096	196	962	963	964	965	996	967	896	969	970	176	972	973	974	975	976	det		626	086	981	982		984	985	- 986	-987	988
Dispersion (Valor	31 + 11	31 + 3	29 + 1i	29 + 3	31 + 7	31 + 5	29 + 7	29 + 51	25.+ 1i	25 + 3i	27 + 1i	27 + 3	25 + 7i	25 + 51	27 + 7	27 + 5	31 + 15	31 + 13i	29 + 15i	29 + 13	31 + 9i	31 + 111	29.+ 91	29 + 11	25 + 15i	25 + 13i	27 + 15i	27 + 13i	25 + 9i
Valor 3	396	897	898	899	006	106	-206 -	563	206	905	906	2007	808	606	910	116	915	913	914	915	916	91.7	816	616	920	921	922	923	924
Dispersión	1.+31	1 + 29i	3 + 311	3 + 29	1 + 25i	1 + 27	3 + 25	3 + 27	7 + 31i	7 + 29i	5 + 31i	5 + 29	7 + 251	7 + 27i	5 + 25i	5 + 27	1 + 17i	1 + 19i	3 + 17i	3 + 19i	1 + 23i	1 + 21i	3 + 23	3 + 21i	7 + 17i	7 + 19	5 + 17	5 + 19	7 + 23i
Valor	ZE8	833	834	835	968	≡ 2€8≡	838	628	840	841	Z78	843	844	845	978	847	848	678	850	851	852	853	854	558	958	-659	828	658	860
Dispersión	1 + 1i	1+3	3+11	3+3	1+71	1+5	3+7	3+5	7+1	7+3	5:+ 1i	5+3	7 + 71	7 + 51	5+71	5 + 51	1 + 15i	1 + 13i	3 + 15	3+13	1+9	1 + 11i	3+9i	3+11	7 + 15	7 + 13	5 + 15i	5 + 13i	7+91
Valor	89/	692	2770	177	772	27.3	77.4	1775	77.6	7/2	778	77.9	780	781	782	783	784	785	786	782	788	-789	790	16/	-262	793	794	795	796
Dispersión	31 + 33i	31 + 35i	29 + 33	29 + 35	31 + 39i	31 + 37	29 + 396	29 + 37i	25 + 33	25 + 35i	27 + 33	27 + 35i	25 + 39i	25 + 37i	27 + 39i	27 + 37	31 + 47i	31 + 45i	29 + 47i	29 + 45i	31 + 41i	31 + 43i	29 + 41i	29 + 43i	25 + 47	25 + 45i	27 + 47i	27 + 45i	25 + 41
Valor	204	50Z	706	707	802	E02	210	71.5	71.2	713	7.14	715	716	71.7	718	219	723	721	722	723	724	725	726	727	728	729	730	731	732
Dispersión	31 + 63	31 + 61i	29 + 63	29 + 61i	31 + 57	31 + 59	29 + 57	29 + 59	25 + 63	25 + 61i	27 + 63	27 + 61i	25 + 57i	25 + 59	27 + 571	27 + 59i	31 + 49	31 + 51i	29 + 49	29 + 51i	31 + 551	31 + 53	29 + 55i	29 + 53i	25 + 49ì	25 + 51i	27 + 49i	27 + 51i	25 + 55
Valor	640	641	642	643	644	645	646	547	648	649	659	651	652	653	654	929	626	657	828	929	660	- 661	662	663	664	599	999	667	658
Dispersión	1 + 33	1+35	3 + 33	3 + 35i	1 + 39	1 + 37i	3 + 39	3 + 37	7 + 33	7 + 35i	5+33	5 + 35	7 + 39i	7 + 37	5 + 39	5 + 37i	1 + 47i	1 + 45	3 + 47	3+45	1 + 41i	1 + 43	3 + 41	3 + 43	7 + 47	7 + 45i	5 + 47	5 + 45	7 + 41i
Valor	576	57.7	578	5795	-580	581	582	583	584	585	586	587	588	589	=290=		592	293	594	595	596	597	598	599	600	109	602	603	604
Dispersión	1 + 63	1+61	3 + 63	3 + 61i	1 + 57	1 + 59	3 + 57	3 + 59	7 + 63i	7 + 61	5 + 63	5 + 61i	7 + 57i	7 + 59i	5 + 57	5 + 59	1 + 49	1 + 51	3 + 49	3 + 511	1+55	1 + 53	3 + 55	3 + 53	7 + 49i	7 + 51i	5 + 49	5 + 51	7 + 55
Valor	512	\$13	514	515	516	517	518	519	520	521	275	523	524	525	526	527	528	\$29	230	23	532	533	-534	535	-536	237	538	539	540

Fig. 19

25 + 21i	27 + 23i	27 + 21i	17 + 31i	17 + 29i	19 + 31i	19 + 29i	17 + 25i	17 + 27i	19 + 25i	19 + 27i	23 + 31i	23 + 29i	21 + 31i	21 + 29i	23 + 25i	23 + 27i	21 + 25i	21 + 27i	17 + 17i	17 + 19i	19 + 17i	19 + 19i	17 + 23i	17 + 21i	19 + 23i	19 + 21i	23 + 17i	23 + 19i	21 + 17i	21 + 19i	23 + 23i	23 + 21i	21 + 23i	21 + 21i
686	066	166	266	993	994	995	966	666	866	666	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023
25 + 11i	27 + 9i	27 + 11i	17 + 1i	17 + 3i	19 + 11	19 + 3i	17 + 7i	17 + 5i	19 + 7i	19 + Si	23 + 1i	23 + 3i	21 + 1i	21 + 3i	23 + 7i	23 + 5i	21 + 7i	21 + 5i	17 + 15i	17 + 13i	19 + 15i	19 + 13i	17 + 9i	17 + 11i	19 + 9i	19 + 11i	23 + 15	23 + 13	21 + 15i	21 + 13i	23 + 9i	23 + 11i	21 + 9i	21 + 11
925	926	927	928	929	930	931	932	933	934	935	936	937	938	626	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	926	957	958	626
7 + 21i	5 + 23i	5 + 21i	15 + 31i	15 + 29i	13 + 311	13 + 29i	15 + 25i	15 + 27i	13 + 25i	13 + 27i	9 + 31i	9 + 29i	11 + 31i	11 + 29i	9 + 25i	9 + 27i	11 + 25i	11 + 27	15 + 17i	15 + 19i	13 + 17i	13 + 19i	15 + 23i	15 + 21i	13 + 23i	13 + 21i	9 + 17i	9 + 19i	11 + 17i	11 + 19i	9 + 23i	9 + 21i	11 + 23i	11 + 21i
861	862	863	864	865	366	867	898	698	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	830	891	892	893	894	895
7 + 11i	5 + 9	5 + 11i	15 + 1i	15 + 3i	13 + 11	13 + 3i	15 + 7i	15 + 5i	13 + 7	13 + 5i	9 + 1	9 + 3	11 + 1i	11 + 3i	9 + 7	9 + 5	11 + 7i	11 + 5i	15 + 15i	15 + 13i	13 + 15i	13 + 13i	15 + 9i	15 + 11i	13 + 9i	13 + 11i	9 + 15i	9 + 13i	11 + 15i	11 + 13i	9 + 9	9+11	11 + 9i	11 + 11
797	798	664	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831
25 + 43i	27 + 41i	27 + 43i	17 + 33i	17 + 35i	19 + 33i	19 + 35i	17 + 39i	17 + 37i	19 + 39i	19 + 37i	23 + 33i	23 + 35i	21 + 33i	21 + 35i	23 + 39i	23 + 37i	21 + 39i	21 + 37i	17 + 47i	17 + 45i	19 + 47i	19 + 45i	17 + 41i	17 + 43i	19 + 41i	19 + 43i	23 + 47i	23 + 45i	21 + 47i	21 + 45i	23 + 41i	23 + 43i	21 + 41i	21 + 43i
733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	167
25 + 53i	27 + 55i	27 + 53i	17 + 63i	17 + 61i	19 + 63	19 + 61i	17 + 57i	17 + 59i	19 + 57i	19 + 59i	23 + 63i	23 + 61i	21 + 63i	21 + 61i	23 + 57i	23 + 59	21 + 57i	21 + 59i	17 + 49i	17 + 51i	19 + 49i	19 + 51i	17 + 55i	17 + 53i	19 + 55i	19 + 53i	23 + 49i	23 + 51i	21 + 49i	21 + 51i	23 + 55i	23 + 53i	21 + 55i	21 + 53i
699	670	1/9	672	673	674	529	9/9	449	678	629	680	681	682	683	684	685	686	289	889	689	690	169	692	693	P69	695	969	697	869	669	004	701	702	703
7 + 43	5 + 41i	5 + 43i	15 + 33i	15 + 35i	13 + 33i	13 + 35i	15 + 39i		13 + 39i	13 + 37i	9 + 33	9 + 35i	11 + 33	11 + 35i	9 + 39	9 + 37i	11 + 39i	11 + 37i	15 + 47i	15 + 45i	13 + 47i	13 + 45i	15 + 41i	15 + 43i	13 + 41i	13 + 43i	9 + 47i	9 + 45i	11 + 47i	11 + 45i	9 + 41i	9 + 43	11 + 41i	11 + 43
605	909	209	809	609	610	119	612	613	614	912	616	617	618	619	620	621	622	623	624	625	626	627	628	629	930	631	632	633	634	635	989	637	638	629
7 + 53i	5 + 55	5 +	15 + 63i	15 + 61i	13 + 63i	13 + 61i	15 + 57i	15 + 59i	13 + 57i	13 + 59i	9 + 63	9 + 61	11 + 63	11 + 61	9 + 57i	9 + 59i	11 + 57	11 + 59i	15 + 49	15 + 51	13 + 49i	13 + 51i	15 + 55i	15 + 53i	13 + 55i	13 + 53i	9 + 49i	9 + 51i	11 + 49i	11 + 51i	9 + 55i	9 + 53	11 + 55i	11 + 53i
541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	925	557	558	529	560	561	562	563	564	565	995	267	568	269	\$70	\$71	572	573	574	575

Fig. 20

rsión	311	291	- 31i	- 29i	- 25i	- 27i	. 25i	- 27i	- 31	- 29i	- 31ji	- 29i	. 25i	- 27i	- 25i	- 27i	- 17i	191	171	- 19	-23	- 21i	- 23i	- 21i	- 17i	- 191	- 17i	- 19	- 231	- 21i	23i	77
Dispe	33 -	33 -	32	32	33	33	32	32	33	33	37	37	33	39	37	37	33	33	32	35	8	ខ្ល	32	33	క్ట	33	37	37	င္တ	စ္က	37	33
Valor. Dispersión	1472	1473	17,47,4	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486.	1487	1438	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503
ersión	- 13	- 3i	- 11	.3	- 71	, Si	٠ 7	- 3	$-\frac{11}{4}$	<u>.</u>	9	33	٦.	Š	- 7i	- 23	- 15i	- 13i	- 15	- 13	· 9	- 111	9	- 11	- 15i	- 13	- 15i	- 13	6	- 11	6	- 111
Disp	33	33	35	35	33	33	35	32	33	33	37	37	39	33	37	37	33	33	32	35	33	33	35	35	33	39	37	37	33	33	37	37
Dispersión Valor Dispersión	11408	1409	1410	響流		1413	对幅	1415	1416	1417	1418	1419	1420	西知	422	11423	1424	1425	1426	1342万	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439
ersión	- 31i	- 29	- 311	- 291	- 25i	- 27i	- 25	- 27i	- 31	- 29i	- 311	- 29	- 25i	- 27i	- 25	- 27i	- 17i	- 19i	- 17i	- 19i	- 23i	- 21i	- 23	- 21	- 17i	- 19	- 17	- 19	- 23i	- 21	- 23	-21i
Disp	63	63	61	51	63	69	19	61	57	57	29	29	57	57	55	29	63	9.63	61	61	63	63	61	61	53	57	59	23	57	57	59	23
Valor	1344	1345	1346	1134元	378	1349	1932E	1351	1352	1353	1354	1355	1356	#38	8561	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	6961	1370	1371	1372	1373	1374	1375
-noisi	: 7	. 3	- 1i	- 31.	- 71	ij	- 71	5	- 1i	- 3	- 11	Ö	- 7i	- 5	- 7i	ij	- 15i	- 13	- 15i	- 13	· 6	- 11i	9	- 11	- 15i	- 13i	- 15	- 13	. 9i	- 11	9	11
Dispe	63	63	9	19	63	63	61	19	57	57	52	29	23	22	29	53	63	£9	19	61	63	63	61	61	22	57	59	23	57	57	59	29
Valor Dispersión	1280	1821	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1314
Dispersión	33i	35	33	- 35i	-39	37i	.39	37	33	- 35	- 33	35i	-39	- 37i	- 39	- 37	- 47	45	- 47i	- 45į	- 41	43	- 411	- 43į	- 47	- 45	- 47	-45	-41	- 43	- 41	-43
Disp	33,	33.	35	32	33	33	32	35	33	33	37	37	68	39	37	37	33	33	32	32	33	33	35	35	39	39	37	37	39	39	37	37
Valor	1216	2121	1218	5121	1220	1221	1222	1223	1224	1225	977.1	1227	1228	1229	1230	1871	783	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247
Dispersión	63	61)	65)	61i	571	59	578	. 59	- 65i	- 67i	- 65i	611	57	- 59	- 57	- 59	94	ž	- 49	- 51	- 55	- 53	- 55	53	- 49	- 51i	- 49i	. 51i	- 55	- 53	- 55	23
	33	33	59	35 -	33-	33-	32	32	25	25	27	37	39	39	37	37	33	33	32	32	33	33	35	35	39	39	37	37	39	39	37	37
S Valor	€11 52₫	1153	1154	1135	1156	1257	1158	6511	1160	19 1	1162	1163	1164	S9.1	9911	2911	8911	11.69	1170	1211	11.72	£111	1174	1175	1176	2211	1178	6/11	1180	1181	1182	1183
5	33	29i	33	35	25i	27i	25	37i	33i	35	33	35i	39	37	39	37	17	191	. <u>17i</u>	19	23	211	23	211	17i	45)	- 171	19	41	- 43	411	- 2 <u>1</u>
Dispe	63	- 59	- 19	- 19	65 -	65-	- 49	- 19	57 -	57 -	59	- 69	57 -	52	59	59	65-		- 29	- 29	65	- 59	- 29	- 29	71.	57 -	69	- 69		57		
Valor Dispersión Valor Dispers	1088	680	060	1091	1092	1093	1094	5601	9601	₹60¥	1098	6601	001	1011	1102	1103	1104	105	901T	1107	1108	1109	0111	1111	1115	EIG	1114	SIL	1116	1117	1118	1119
rsión	65i				•	_	_		•		65		_	Г.	- 71	5 - 69	151	131	67 - 1Si				· 9i	67 - 11i	71 - 15		69 - 15	69 - 13i	_	111	i6 - 69	
Dispe	1 - 65	65 - 3	3 - 65	3-67	65 - 7	65 - 51	67 - 71	67 - 51	7 - 65	7 - 67	5 - 65	5 - 67i	1	7 - 69	69 - 7	1	65 - 15			67 - 13	65		6 - 29			71 - 13				71 - 11		69 - 11
Valor	1024	1025	1,026	1027	1028	1029	1030	1031	1032	1033	1034	1035	9E01	K80	1038	1039	1040	104	1042	1043	3044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055

Fig. 21

- 31i	- 29i	- 31i	- 29i	- 25i	- 27i	- 25i	- 27i	- 31)	- 29i	- 31i	- 29i	- 25i	- 27i	- 25i	- 27i	- 17i	- 19i	- 17i	- 19i	- 23i	- 21i	- 23i	- 21i	- 17i	- 19i	- 17i	- 19i	- 23i	- 21i	- 23i	- 21i
4	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43	- 45	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43
1504	1505	1506	1507	1508	1509	1510	11211	1512	1513	1514	5151	1516	2151	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	6751	1530	1531	1532	1533	1534	1535
47 - 1i	47 - 3i	45 - 1i	45 - 3i	47 - 7i	47 - Si	45 - 7i	45 - Si	41 - 1)	41 - 3i	43 - 1i	43 - 3i	41 - 7i	41 - 51	43 - 7i	43 - Si	47 - 15i	47 - 13i	45 - 15i	45 - 13i	47 - 9i	47 - 11i	45 - 9i	45 - 11i	41 - 15i	41 - 13i	43 - 15i	43 - 13i	41 - 9i	41 - 11i	43 - 9i	43 - 11
1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456 4	1457 4	1458 4	1459 4	1460	1461 4	1462	1463. 4	1464. 4	1465 4	1466 4	1467 4	1468 4	1469 4	1470	1471 4
- 31i	- 29i	- 31i	- 29i	- 25i	- 27i	- 25i	- 27i	- 31i	- 29i	- 31	- 29	- 25i	- 27i	- 25i	- 27i	- 17i	- 19i	- 17i	- 19i	- 23i	- 211	- 23i	- 21i	- 17i	- 19i	- 17i	- 19i	- 23i	- 21i	- 23i	- 21i
49	49	51	51	49	49	51	51	25	55	23	53	55	55	53	53	49	49	51	51	49	49	51	51	55	22	53	53	25	55	23	71
1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407
49 - 1i	49 - 3i	51 - 1i	51 - 3i	49 - 7i	49 - Si	51 - 7i	51 - 5	55 - 1i	55 - 3i	53 - 1i	53 - 3i	55 - 7	55 - 5i	53 - 71	53 - Si	49 - 15i	49 - 13	51 - 15i	51 - 13	49 - 9i	49 - 11i	51 - 9i	51 - 11i	55 - 15i	55 - 13i	53 - 15	53 - 13	55 - 9i	55 - 11i	53 - 9i	53 - 11
1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343
- 33i	- 35i	- 33i	- 35i	- 391	- 37i "	- 39i	- 37i	- 33i	- 35i	- 33i	- 35i	- 39i	- 37i	- 39i	- 37i	- 47i	- 45i	- 47i	- 45i	- 41i	- 43i	- 41i	- 43i	- 47i	- 4Si	- 47i	- 45i	- 41)	- 43i	- 41i	- 43i
47	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43	47	47	45	45	47	47	45	45	41	41	43	43	41	4	43	43
1248	1249	1250	1221	1252	1253	1254	1255	9521	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279
7 - 65i	7 - 67i	9 - 65	9 - 67	7 - 71	7 - 69	5 - 57	9 - 69i	3 - 65i	3 - 67i	t - 65i	1 - 67i	1 - 57	1 - 59i	3 - 57i	I - 69i	7 - 49i	7 - 51i	5 - 49i	5 - 51i	7 - 55i	7 - 53i	5 - 55i	5 - 53i	l - 49i	l - 51i	3 - 49	3 - 51i	l - 55i	l - 53i	3 - 55i	3 - 53
17	3月 17	19	19	17	班 17	45	19	23	23	21	21	41	41	43	21	47	47	45	45	47	47	45	45	41	41	43	43	41	41	43	43
1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215
- 33	- 35i	- 33i	- 35i	- 39i	- 37i	- 39	- 37i	- 33	- 35i	- 33	- 35i	- 39	- 37i	- 39	- 37i	- 47i	- 45i	- 47i	- 45i	- 41i	- 43i	- 41i	- 43i	- 47i	- 45i	- 47i	- 45i	- 41	- 43	- 41i	- 43i
49	49	51	51	49	49	51	-	22	25	53	53	55	22	23	53	49	49	51	21	49	49	51	51	55	55	23	23	55	22	2	23
1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	113	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151
15 - 651	5 - 67i	3 - 65i	13 - 67i	5 - 71i	5 - 69i	3 - 71i	13 - 69i	9 - 65i) - 67i	1 - 65i	1 - 67i	9 - 71i	ı - 69i	1 - 71i	11 - 69i	9 - 49i	9 - 51i	51 - 49i	51 - 51i	49 - 55	49 - 53i	13 - 73	1 - 53i	5 - 49i	73 - 13i	53 - 49i	3 - 51i	ı - 73i	73 - 11i	- 73i	53 - 53i
-	37 15	8 13	-	15	ā. 15	13		Н	5	111	3. 11		6	0 11	-	2 49	3 49	\vdash		-	Н		9 51	0 55	7	-	3 53	9	- 1	6 11	-
1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087

Fig. 22

_	_	_	_	_	_		,	_	_		,	_	_	_	_		_	_		_	_	_	_	_	_	_	_			,		_	_	_	_
Dispersión	8	Š	1 .	- 29i	- 25	- 27i	- 25i	- 27	- 311	- 29	- 311	- 29i	- 25	- 27	+ 25i	· 27i	- 17	- 19	- 171	-191	- 23	-21	- 23	- 21i	- 171	iet	- 171	19	- 23	- 21	- 23	- 21	- 31	- 29i	19 - 31
			53	53	31	띪	29	29	25	25	27	27	25	25	27	27	쯢	31	59	29	31	31	8	8	52	55	27	27	25	25	2	27	17	17	
* Valor	1984	1985	1986	1880E	1988	1989	1990	1661	1992	1993	1994	566F	1996	1661	1998	666	2000	2001	2002	12003	2004	2002	2006	2002	2008	2009	2010	201	2012	2013	2014	2015	2016	410Z	2018
Dispersión	31 - 11		29 - 11	29 - 31	31 - 71	31 - 51	29 - 71	29 - Si	25 - 11	25 - 3i	27 - 11	27 - 3i	25 - 71	25 - 51	27 - 71	27 - 51	31 - 15	31 - 13	29 - 15i	29 - 131	31 - 9	31 - 111	29 - 91	29 - 11i	25 - 15i	25 - 13i	27 - 15	27 - 13	25 - 9i	25 - 11i	27 - 9i	27 - 11i	17 - 1i	17 - 31	19 - 11
Walor	1026	192	1922	11929	1768	1925	1926	1927	1928	626	3026	186	2860	1933	1934	1935	926	1937	11938	1939	940	187	1942	1943	1944	1945	1945	1947	1948	6 7 6I	1950	1961	2561	1953	1954
Dispersión Fivalor Dispersión Fivalor	1 - 31	=	3-31	3 - 29i	1 - 25	1-27	3 - 25i	3 - 27	7 - 31i	7 - 29!	5 - 31i	5 - 29i	7 - 25i	7 - 27i	5 - 25i	5 - 271	1-17	1 - 19	3 - 17	3 - 191	1 - 23	1-21	3 - 23	3 - 21	7 - 17	7 - 19i	5 - 171	5 - 19i	7 - 23i	7 - 21i	5 - 23i	5 - 21i	15 - 31i	15 - 29i	13 - 31)
Valor	1856	1652	1858	1859	1860	1981	1398B	€985	1864	598I	9981	1867	1868	6981	1870	1871	1872	第28時	1874	1875	1876	11877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1850
Valor Dispersión	1 - 1i	1 - 3	3-1	3 - 3i	1 - 7i	1 - 5!	3 - 7	3+5	7 - 11	7-3	5-11	5-3	7-7	7 - 5i	5-7	5 - 5	1-15	1-13	3-15	3 - 13	1-9i	1-11i	3-9	3-11i	7 - 15	7 - 13	5 15	5-13	7 - 9i	7 - 11i	5-9	S-11i	15 - 1i	15 - 31	13 - 11
Valor	1792	1793	1794	1798	1796	1797	1798	1799	1800	1800	1802	1803	1804	1805	1806	1802	1808	1809	1810	1813	1812	1813	1814	1818	1816	1817	1918	1819	1820	1821	1822	1823	1824	1825	1826
Dispersión	31 - 33	31 - 351	29 - 33	29 - 35	31-39	31 - 37i	29 - 39	29 - 37i	25 - 33	25 - 35i	27 - 33	27 - 35i	25 - 39	25 - 37i	27 - 39i	27 - 37i	31 - 47i	31 - 45i	29 - 477	29 - 45	3141i	31 - 43	29 - 411	29 - 43i	25 - 471	25 - 45i	27 - 47i	27 - 45i	25 - 41i	25 - 43i	27 - 41	27 - 43i	17 - 33i	17 - 35i	19 - 33
Valor	8223	1729	1730	1731	1,732	1733	1734	1735	1736	202	1738	1739	1740	1741	1742	1,743	1744	: 745	1,746	5747	1748	1749	1750	1751	1752	1753	17.54	1755	1,756	1757	1758	1759	1760	1761	1762
Valor Dispersión	31 - 63i	31 - 61i	29 - 63	29 - 61	31 - 57	31 - 59	29 - 57	29 - 59	25 - 63i	25 - 61i	27 - 63i	27 - 61i	25 - 57	25 - 59	27 - 57i	27 - 59i	31 - 49i	31 - 51i	29 - 49i	29 - 511	31 - 55	31 - 53	29 - 55	29 - 53	25 - 491	25 - 511	27 - 49i	27 - 511	25 - 55i	25 - 53i	27 - 551	27 - 53	17 - 63	17 - 61i	19 - 63
Valor	₩99T	1665	1666	166F	1668	1669	1670	167	1672	1673	1674	1675	1676	1673	1678	1679	1680	168	1683	1683	11684	1685	1686	1687	1688	1689	1690	1691	1692	1693	#69 1	1695	9691	1697	1698
Dispersión	1 - 33	1 - 35	3 - 33i	3 - 35	1 - 39	1-37	3 - 39	3-37	7 - 33	7 - 35!	5-33	5 - 35	7 - 39i	7-37	5 - 39	5 - 37	1-47	1 - 45	3 - 47	3 - 45	1-41	1 - 43i	3-41i	3 - 43i	7-471		\Box		7-41i	7-43i	5 - 41	5 - 43	- 33	- 35	13 - 33
Valor	1600	1601	1602	£091	1604	1605	1606	1.607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634
Dispersion	1 - 63	1 - 61		3 - 611	-1	• [3-57	3 - 59	7 - 63i	7 - 61	5 - 63	5 - 611	7 - 57i	7 - 59	5 - 57	5 - 59	1 - 49	1 - 51)	3 - 49	3 - 511	1 - 55	1 - 53	3 - 55	3 - 53	7 - 49	7 - 51	5 - 49	5 - 511	7 - 55	٠.	5 - 55	5 - 53	15 - 63i	15 - 61i	13 - 63
Valor	1536	1532	1538	1539	15.00	第54章	1542	1543	1544	1546	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1261	1562	1563	1564	1565	1566	1567	1568	1269	1570

Fig. 23

9	25i	27i	25i	27;	311	29i	31i	6	25i	7.	25i	7	i,	9	7.	9	ē	::	ĕ	::1	7.	6	i,	<u>8</u>	ī	:=	<u> </u>	Ē
19 - 29i	17 - 2	17 - 2	19 - 2	19 - 2	23 - 3	23 - 2	21 - 3	21 - 29	23 - 2	23 - 27	21 - 2	21 - 27	17 - 17	17 - 19i	19 - 17	19 - 19	17 - 23	17 - 21	19 - 23	19 - 21	23 - 17	23 - 19	21 - 17	21 - 19	23 - 23	23 - 21	21 - 23	1 - 21
_	Н	⊢	-		-		٠.	Н		_	-			┝-	-					ш		-			_	\vdash	-	Z: 21
2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047
- 3	- 71	- 5i	- 7i	- 5i	- 1i	- 3i	- 1i	- 3i	- 7i	- 5i	- 7i	- 5i	- 15i	- 13i	- 1Si	- 13i	- 9i	- 11i	- 9i	- 11i	- 15i	- 13i	- 15i	- 13i	- 9i	- 11i	- 9i	- 11i
19	17	17	19	19	23	23	21	21	23	23	21	21	- 41	17	19	- 61	17	- 11	19	19	- 23	23	7	2	23	33	21	72
1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
29i	25i	27i	25i	27i	31i	29i	31;	29;	25i	27	25i	27;	171	- 19i	17i	- 19	23i	21i	23i	211	17	- 19i	- 17i	- 19i	23i	21i	23i	2 1i
13 -	15 -	15 -	13 -	13 -	6	9	11 -	11 -	6	- 6	11 -	11	15 -	15 -	13 -	13 -	15 -	15 -	13 -	13 -	- 6	6	11.	11	- 6	- 6	11	=
1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
3	. 7i	ī	. 7i	ίζ	1i	3i	11	iπ	7,	2	7.	. Si	- 15i	- 13	15i	13	į6	11i	· 6	111	15i	13i	- 15i	13i	j6	11i	.6	111
13	15	15 -	13	13 -	- 6	- 6	11	11 -	6	- 6	11 -	11	15 -	15 -	13 -	13 -	15.	15 -	13	13 -	9-	6	11 -	11 -	- 6	6	11	11 -
1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855
35i	39i	37i	39i	37i	33i	35i	33;	35!	391	37.	39i	37i	47i	- 45i	47i	45i	411	43i	41i	43i	47i	42i	47i	42i	41i	43i	411	43
19 -	17 -	17 -	- 61	19 -	23 -	23 -	21 -	21 -	23 -	23 -	21 -	21 -	17 -	17 -	19 -	19 -	17 -	17 -	19 -	19 -	23 -	23 -	21 -	21 -	23 -	23 -	21 -	21 -
1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	16/1
61i	57i	59i	571	165	63i	61i	63i	61i	571	59i	57i	59i	16b	51i	49i	51i	551	53i	55i	53i	49i	51i	16t	51i	55	53i	SSi	53i
19 -	17 -	17 -	19-	19 -	23 - (23 - (21 - (21 - (23 -	23 - 3	21 -	21 - !	17 - 1	17 - !	19-	19 -	17 - 1	17 -	19 -	19 -	23 - 4	23 - 1	21 - 7	21 - 1	23 - 3	23 - (21 - 9	21 - (
1699	1700	1701	702	1703	1704	1705	1706	1707	904	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727
-		Н	E.	_			_	-	2.1		_			\vdash			-	,			-	461	Н		5-1	-		_
3 - 35	5 - 39	5 - 37	3 - 39	3 - 37	9 - 33	9 - 35	1 - 33	1 - 35i	9 - 39i	9 - 37	1 - 39	1 - 37	5 - 47	5 - 45	3 - 47	3 - 45	5 - 41	5 - 43	3 - 41i	3 - 43	9 - 47	- 45	1-47	1 - 45	- 41	- 43	1 - 41	1 - 43
5 1	***	-	1	1		9	1	1			1			-1	-1		-	7	-	-1		6	-	7	6	6	1	1
1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663
13 - 61i	- 57i	15 - 59	- 57i	13 - 59	- 63	9 - 61i	- 63i	11 - 61i	- 57i	9 - 5 9i	- 57i	11 - 59i	15 - 49i	15 - 51i	13 - 49i	13 - 51i	- 55i	- 53i	- 55i	13 - 53i	- 49i	9 - 51	- 49i	11 - 51i	55i	53i	11 - 55i	53
13	15	15	13	13	- 6	6	11.	11	- 6	6	11	11	15	15	13	13.	15	12	13	13	6	-6	11	11	- 6	9 - 53		11 - 53
1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599

Fig. 24

lión	31	29	31	29	25	27	25	27	31	53	표	29	25	27	25	27	17	19	17	13	23	21	23	21	17	19	17	19	23	21i	23	21	31
Dispersión	-33+	-33 +	-35 +	-35 +	-33 +	-33 +	-35 +	-35 +	-39 +	+ 65-	-37 +	-37 +	+ 68-	+ 65-	-37 +	-37 +	-33 +	-33 +	-35 +	-35 +	-33 +	-33 +	-35 +	-35 +	-39 +	-39 +	-37 +	-37 +	-39 +	+ 66-	-37 +	-37 +	47 +
Valor	2496	2497	2498	2499	2500	2503	3 1/2/2014	2503	2504	2505	2506	2507		2509	2510	25.11	2512	2513	2514	2515	2516	2517	2518	2519	2520	1252	2522	2523	2524	2525	5256	2527	2528
ión	I٦	κñ	=	33	7	ίŚ	×	ίō	Ŧ	3i	11	3	7	ίŞ	ï	Şi	15	13週	15	5	9	1	9	11開	15個	13(1)	15	擅(6)	9	11瞳	<u>≇</u> i6	11體	1
Dispersión	-33+	-33+	-35+	-35+	-33+	-33+	-35+	-35+	+39+	+39+	-37 +	-37+	+ 65-	+39+	-37+	-37+	+33+	+33+	-35+	-35 +	-33 +	-33 +	-35 +	-35 +	+ 65-	+ 66-	-37 +	+37 +	-39+	+ 66-	-37 +	-37 +	47+
Wajor III	2432	2433	2434	2435	2436	2437	2438	2439	2440	2441	2442	2443	2444	影響器	2446	2447	2448	2449	2450		2452	2453	2454	2455	2456	2457	2458	2459	2460	2461	2462	2463	2464
rsión	31	-	+ 31	+ 29	- 25	27	+ 25	27	31	+ 29	- 31	- 29	25	27	+ 253	278	+ 17	+ 19	+ 17	+ 19	+ 230	21 i	+ 23	+ 211	+ 17	19	- 17	19	23i	211	23i	+ 21	33
Dispersión	-63+	-63	-61	-61	-63+	+63+	-61	-61+	-57 +	ç	+ 65-	+ 65-	-57 +	-27 +		-59 +	63	63	φ	φ	-63+	-63+		51	ķ	-52	+ 65-	-59 +	-57 +	+ 25-	-59 +	- 65-	49+
Valor	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2882 -59	2383 -59	2384	2385	2386	2387	2388	2389	2390 61	1682	2382	2393	2394	2395	2396	2397	2398	5366	2400
Dispersion	+ 11	+ 3	+ 11	+ 3	+ 7i	+ 5!	+ 7	+ 5	+ 1	+ 33	17.+	+ 3	+ 7	÷	+ 71	iš +	+ 15	+ 13	+ 15	F 13	+ 9	F 11	į6 +	+ 11	+ 15	+ 13	+ 15	+ 13	+ 9	+ 11	+ 9i	+ 11	+
Disp	φ	-63	-61	-61	-63	-63	-61	-61	-57	-57	-59	-59	-57	-57	-59	-59	-63	63	-61	-61	-63	-63+	-61	-61	-57	-57	-59	-29	-57	-57	-59	-59	49
Valor	2304	2305	2306	230%	2308	5082	2310	231	2182	2313	記2314	2315	2316	7187	2318	2319	2320	2321	Z352	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336
Dispersión	+ 33	+ 35	+ 33i	+ 351	+ 39	+ 37	+ 39i	+ 37i	+ 33i	+ 35i	+ 33i	+ 35i	+ 39i	+ 37i	+ 39	+ 37i	÷ 47i	+ 45	+ 47	+ 45i	+ 41	+.43	+ 41i	+ 43	+ 47	+ 45ī	± 47ī	+ 45	+ 411	+ 43	+ 41i	+ 43	33
Dispe	-33	-33	-35	-35	-33	-33	-35	-35	-39	-39	-37	-37	65	-39	-37	-37	533	-33	-32	-35	-33	-33	-35	35	-39	-39	-37	-37	-39	-39	-37	-37	4
Valor	2240	2241	2242	2243	2244	224E	2246	477	8772	5776	2250	2251	2252	2253	PS 22	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	22.70	2271	2272
Dispersión	+:63	+ 61	+ 65	+ 61	+ 57	+ 59	+ 57	+ 59i	+ 65!	+ 67	+ 651	+ 61i	+ 57i	+ 59	+ 57	+ 59;	+ 49	+ 511	+ 49i	+ 511	+ 55	+ 53	+ 55i	+ 53	+ 49	+ 51	+ 49	+ 511	+ 55	+ 53	+ 55	+ 53	+ 65i
Dispe	33	ၾ	-29	-35	នុ	-33	-35	8	-25	-25	-27	-37	ଞ୍ଚ	-33	-37	-37	ဗု	ညှ	-32	55	-33	-33	ξ	8	-39	65	33	-37	-39	-39	-37	-37	4
EValor F	2176	21.77	21.78	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	21.98	2199	2280	2201	2202	2203	2204	2205	2206	2207	2208
rsión	+ 33i	t 29i	+ 33	33	F 25i	F 27i	+ 25i	1.37	₽ 33ï	+ 35	+ 33	+ 35	+ 39i	F 37i	+ 39	F 37i	r 17i	⊦ 19i	+ 17;	+ 19	r 23i	F 21i	r 23i	r 21i	171	+ 45 <u>i</u>	i 17i	19	411	43	411	77	+ 33
Dispersión	-63	-65	5	-61	-65	-65 + 27	-67	-61	-57	-57	-59	<u>5</u>	-57	-57	-59 + 39	-59	-65	-65	-67 + 17	-67	-65 + 23	-65 + 21	-67	-67	-71	-57	-69 + 17	-69 + 19	-57 + 41	-57 + 43	-59	-69	49
Valor	乙酰乙二-63 + 33	控制法 -65 + 29	2114 -61 + 33	之115 -61 + 35	2116 -65 + 25	2117	2担8 -67	2119 -61 + 37	2120 -57 + 33	2224 -57 + 35	2122 -59 + 33	2123 -59 + 35	2124 -57 + 39	2125 -57 + 37	2126	2127 -59 + 37	2128 -65 + 17	2029 -65 + 19	2130	2131	2132	21.33	2134 -67 + 23	2135 -67 + 21	211年17	2137 -57 + 45	2138	2139	2140	2141	2342 -59 + 41	2143 -69+	2144
rsión	· 65i		-3 + 65		\neg														15				_		_				$\overline{}$	_			
Dispersión	-1 + 65i	-65 + 3		-3 + 67i	-65 + 71	-65 + 5i	-67 + 7i		-7 + 65	-7 + 57	-5 + 65	-5 + 67i	-7 + 71i	-7 + 69	-69 + 7	-5+69	-65	-65	-67	-67 + 13	-65 + 9i	-65	-67 + 9i	-67	-71	-71.	69-	-69 + 13i	-71 + 9	-71 + 11i	-69 + 91	-69	-15
Walor 3	2048	2049	2050	2051	2052	2053	2054	2055	-2056	2057	2058	2059	2060	2061	2062	2063	2064 -65 + 15	2065 -65 + 13	2066 -67 + 15		2068	2069 -65 + 111	2070	2071 -67 + 111	2072 -71	2073 -71 + 13	2074 -69 + 15	2075	2076	2077	2078	2079 -69 + 11i	2080 -15 + 65

Fig. 25

29	31	. 29	25i	27	25	27	311	59	311	29	25	27	25	27	17	19	17	19	23i	+ 21	23	21i	17	19	+ 17	19	23	210	23	21
+ 7+	-45 +	-45 +	-47 +	-47 +	-45+	-45 +	-41+	-41+	-43 +	-43 +	-41+	-41+	-43+	-43+	-42 +	-47 +	-45+	-45+	-47 +	-47 +	-45+	-45+	-41 +	-41+	-43+	-43 +	-41+	-41+	-43 +	-43 +
2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559
+ 3	+ 1i	+ 3i	+ 7i	+ 5	+ 7i	+ 5i	+ 1i	+ 3i	+ 1:	+ 3i	+ 7i	+ 5i	+ 7i	+ 5i	+ 150	+ 13	+ 150	+ 130	+ 9i	+ 11	+ 9	+ 11i	+ 15	+ 138	+ 15	+ 13	i6 +	+ 116	+ 9i	+ 11
-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	-43	-47	-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	43	-41	4	-43	43
2465	2466	2467	2468	2469	2470	2471	2472	2413	2474	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494	2495
+ 29	+ 31	+ 29	+ 25	+ 27	+ 25	+ 27i	+ 31	+ 29	+ 31	+ 29	+ 25i	+ 27	+ 25	+ 27	+ 17	+ 19	+ 17	+ 19	+ 23	+ 21	+ 23	+ 21	+ 17	+ 19	+ 17	+ 19	+ 23	+ 21	+ 23	+ 21
49	-51	-51	49	-49	-51	-51	-55	-55	-53	-53	-55	-55	-53	-53	-49	49	-51	-51	-49	49	-51	-21	-55	-55	-53	-53	-55	-55	-53	-53
2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431
+ 3	+ 1i	+ 3i	+ 7i	+ 5	+ 7i	+ 25	+ 1i	+ 3	+ 1i	+ 3i	+ 7i	+ 5	+ 7i	+ 5	+ 15	+ 13	+ 15	+ 13	+ 9i	+ 11	+ 9	+ 11i	+ 15	+ 13	+ 15	+ 13	- 6	+ 11	i6 +	+ 11
49	-51	-51	-49	49	-51	-51	-55	-55	-53	-53	-55	-55	-53	-53	-46	49+	-51	-51	-49	-46	-51	-51	-55	-55	-53	-53	-55	-52	-53	-53
2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367
+ 35i	+ 33i	+ 35i	+ 39	+ 37	+ 39	+ 37ï	+ 33i	+ 35	+ 33	+ 35i	+ 39i	+ 37	+ 39i	+ 37	+ 47	+ 45	+ 47	+ 45i	+ 41	+ 43i	+ 41i	+ 43	+ 47i	+ 45	+ 47i	+ 45i	+ 41i	+ 43	+ 41	+ 43
47	-45	45	-47	47	-45	45	4	-41	-43	-43	-41	-41	-43	-43	-47	-42	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	- 15-	-43	-43
2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	1622	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303
+ 67	+ 65i	+ 67i	+ 71	+ 69	+ 57	+ 69	+ 65i	+ 67i	+ 65i	+ 67i	+ 57i	+ 59	F 57i	+ 69	49i	F 51i	+ 49	+ 51	F 55i	F 53i	+ 55i	F 53i	49	511	· 49i	- 51 i	55	- 53	- 55	- 53
-17	-19	-19	-17	-17	45	-19	-23	-23	-21	-21	-41	-41	-43 +	-21	-47 +	-47 +	-45	-45 +	-47 +	-47 +	-45	-45+	-41 +	-41+	-43 +	-43 +	-41+	-41+	-43 +	-43+
2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239
+ 35	+ 33i	+ 35i	+ 39	+ 37	+ 39	+ 37	+ 33i	+ 35i	+ 33i	+ 35i	+ 39i	+ 37i	+ 39i	+ 37i	+ 47i	+ 45i	+ 47i	+ 45i	41i	+ 43	+ 41	+ 4 3i	- 47i	+ 45i	47i	45i	- 41i	43i	+ 41	43
-49	-51	-51	-49	-49	-51	-51	-55	-55	-53	-53	-55	-55		-53	-49	-49+	-51	-51	-46+	-49	-51		_	-55	-53 +	-53 +	-55 +	-55 +		-53 +
2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	1912	2912	2163	2164	2165	2166	2167	2168	2169	2170	1/12	2172	2173	2174	2111 -53 + 53 2175 -53
+ 67	+ 65i	-13 + 67i	+ 71i	+ 69	-13 + 71i	-13 + 69i	. 65	67	+ 65i	-11 + 67i	. 71i	· 69i	+ 71i	+ 69	+ 49i	+ 51i	+ 49i		+ 55i	-49 + 53i	+ 73i	+ 53		+ 13		+ 51i	73	+ 11)	+ 73	+ 53
-15 + 67	-13 + 65i		-15 + 71i	-15	-13	-13	9 + 6-	29 + 6-	-11	-11	-9 + 71	-9 + 69	-11 + 71	-11 + 69i	-49	-49 + 51	-51 + 49i	-51	-49 + 55i	-49	-13 + 73	-51 + 53	-55 + 49	-73 + 13i	-53 + 49i	-53 + 51i	-9 + 73	-73 + 11	-11	-53
2081	2082	2083	2084	2085 -15 + 69	2086	2087	2088	2089	2090 -11 + 65	2091	2092	2093	2094	2095	2096 -49 + 49i	2097	2098	2099 -51 + 51	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110 -11 + 73 2174 -53	2111

Fig. 26

							_																		_	_		_		_	
rsión	+ 31	+ 29	. 31i	- 29	+ 25i	+ 27i	+ 25i	F 27i	+ 31i	+ 29	F 31i	+ 29i	+ 25	F 27i	+ 25i	+ 27	+ 17	+ 19	+ 17	+ 19	+ 23i	+ 21	-29 + 23i	-29 + 21	+ 17	-25 + 19	+ 17	+ 19	-25 + 23	+ 21	+ 23
Dispersión	-31	-31	-29 + 31	-29+	-31-	-31	-29	-29+	-52-	-25	-27 +	-22-	-25	-25 + 27	-27	-27-	-31	-31	-29	-29	-31	-31 + 21	-53	_	-25+		-27.+	-27		-25 +	-27 +
Valor	3008	9009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	\$203	3024	3035	3026	3027	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	3038
Dispersión	-31 + 1i	-31 + 31	-29 + 1i	-29 + 31	-31 + 71	-31 + 5i	-29 + 7i	-29 + 5i	-25 + 1i	-25 + 3i	-27 + 11	-27 + 3i	-25 + 7i	-25 + 5i	-27 + 7i	-27 + 5i	-31 + 15i	-31 + 13i	-29 + 15i	-29 + 13i	-31 + 9i	-31 + 11i	-29 + 9i	-29 + 11i	-25 + 15i	-25 + 13i	-27 + 15i	-27 + 13i	-25 + 9i	-25 + 111	-27 + 91
Valor	176 2	5762	2946	2947	2948	2949	2950	2951	2382	£36Z	2954	2952	2956	2957	2958	2959	2960	2961	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974
Dispersión	-1 + 31i	-1 + 29i	-3 + 31i	-3 + 29	-1 + 25i	-1 + 27	-3 + 25	-3 + 271	-7 + 31i	-7 + 29i	-5 + 31	-5 + 29i	-7 + 25i	-7 + 27i	-5 + 25	-5 + 27i	-1 + 17	-1 + 19	-3 + 17i	-3 + 19i	-1 + 23	-1 + 21	-3 + 23	-3 + 21i	-7 + 17i	-7 + 19i	-5 + 17i	-5 + 19	-7 + 23	-7 + 21i	-5 + 23
Valor	2880	1887	Z88Z	2883	7887	2885	5882	2887	2888	2889	2890	1682	2882	2893	768C	2882	9587	7687	2898	2899	2900	2901	2062	2503	2904	2905	2906	2907	2908	2909	2910
Dispersión	-1+1i	-1+3	-3 + 1i	-3 + 31	-1+7	-1 + 5	-3 + 71	-3 + 5i	-7 + 1i	-7 + 3i	-5 + 1i	-5 + 3i	17 + 7-	-7 + 51	-5 + 7i	-5 + 51	-1 + 15	-1 + 13	-3 + 15i	-3 + 13i	-1 + 9i	-1 + 11	-3 + 8	-3 + 11i	-7 + 15i	-7 + 13i	-5 + 15i	-5 + 13i	-7 + 9i	-7 + 11i	-5 + 9i
Valor	2816	4187	8182	5187	0282	2821	282	2823	\$282	2825	3882	2827	2828	5826	2830	2831	2832	2833	2834	2835	5836	2837	2838	2839	2840	2841	2842	2843	2844	2845	2846
Dispersión	-31 + 33i	-31 + 35i	-29 + 33	-29 + 35i	-31 + 39i	-31 + 37	-29 + 39	-29 + 37	-25 + 33	-25 + 35i	-27 + 33i	-27 + 35i	-25 + 39i	-25 + 37i	-27 + 39i	-27 + 37	-31 + 47i	-31 + 45	-29 + 47	-29 + 45	-31 + 41i	-31 + 43	-29 + 41i	-29 + 43i	-25 + 47	-25 + 45	-27 + 47	-27 + 45	-25 + 41i	-25 + 43	-27 + 41j
"Valor	2752	2753	2754	55/2	95/7	2757	2758	2759	2760	2761	7927	2763	1975	2765	2766	79/2	2768	59/2	2770	1/2/2	71.12	84/2	14.17	5222	92.22	11/17	8212	5223	0847	2781	2782
Dispersión	-31 + 63	-31 + 61i	-29 + 63i	-29 + 61	-31 + 571	-31 + 59i	-29 + 57	-29 + 59	-25 + 63	-25 + 61i	-27 + 63	-27 + 61i	-25 + 57i	-25 + 59i	-27 + 57	-27 + 59	-31 + 49	-31 + 511	-29 + 49i	-29 + 51i	-31 + 551	-31 + 53i	-29 + 55	-29 + 53i	-25 + 49	-25 + 51i	-27 + 49i	-27 + 51i	-25 + 55	-25 + 53	-27 + 55i
Valor	2688	2689	2690	1697	7697	2693	2694	2692	5692	2697	2698	5692	2200	10/2	2702	2703	2704	2705	2706	2707	2708	6022	01/2	2711	21.42	2713	2714	2715	2716	2717	2718
Dispersión	-1 + 33	-1+35	-3 + 33i	-3 + 35	-1 + 39i	-1+37i	-3 + 39	-3 + 37i	-7 + 33i	-7 + 35i	-5 + 33	-5 + 35i	-7 + 39i	-7 + 37i	-5 + 39		-1 + 47i	-1 + 45	-3 + 47	-3 + 45i	-1 + 41	-1 + 43i	-3 + 41i	-3 + 43i	-7 + 47	-7 + 45	-5 + 47i	-5 + 45	-7 + 41i	-7 + 43i	-5 + 41i
Valor	2624	2625	2626	2627	8297	6797	0897	2631	2632	2633	2634	2635	2636	2637	8892	2639	2640	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654
Dispersión	-1 + 63i	-1 + 61i	-3 + 63i	-3+61	-1 + 57i	-1+59	-3+57i	-3 + 59	-7 + 63i	-7 + 61i	5+63	-5 + 61i	-7 + 571	-7 + 59	-5 + 57i	-5 + 59	-1 + 49	-1 + 51	-3 + 49	-3 + 51	-1 + 55i	-1 + 53i	-3 + 55i	-3 + 53	-7 + 49i	-7 + 51i	-5 + 49	-5 + 51i	-7 + 55i	-7 + 53i	-5 + 55i
Valor	2560	1957	2562	2563	2564	2565	5566	2567	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2852	2583	2584	2585	2586	2587	2588	2589	2590

Fig. 27

-27 + 21i	-17 + 31i	-17 + 29i	-19 + 31i	-19 + 29i	-17 + 25i	-17 + 27i	-19 + 25i	-19 + 27i	-23 + 31i	-23 + 29i	-21 + 31i	-21 + 29i	-23 + 25i	-23 + 27i	-21 + 25i	-21 + 27i	-17 + 17i	-17 + 19i	-19 + 17i	-19 + 19i	-17 + 23i	-17 + 21i	-19 + 23i	-19 + 21i	-23 + 17i	-23 + 19i	-21 + 17i	-21 + 19i	-23 + 23i	-23 + 21i	-21 + 23i	-21 + 21i
3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	3054	3025	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3006	3067	3068	3069	3070	3071
-27 + 11i	-17 + 1i	-17 + 3i	-19 + 1i	-19 + 31	-17 + 7i	-17 + 5i	-19 + 7i	-19 + 5i	-23 + 1i	-23 + 3i	-21 + 1i	-21 + 3i	-23 + 7i	-23 + 5i	-21 + 7	-21 + 5i	-17 + 15i	-17 + 13i	-19 + 15i	-19 + 13i	-17 + 9i	-17 + 11i	-19 + 9i	-19 + 11i	-23 + 15i	-23 + 13i	-21 + 15i	-21 + 13i	-23 + 9i	-23 + 11i	-21 + 9i	-21 + 11i
2975	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987.	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003	3004	3005	3006	3007
-5 + 21i	-15 + 31i	-15 + 29i	-13 + 31i	-13 + 29i	-15 + 25i	-15 + 27i	-13 + 25i	-13 + 27i	-9 + 31i	-9 + 29i	-11 + 31i	-11 + 29i	-9 + 25i	-9 + 27i	-11 + 25i	-11 + 27i	-15 + 17i	-15 + 19i	-13 + 17i	-13 + 19i	-15 + 23i	-15 + 21i	-13 + 23i	-13 + 21i	-9 + 17i	-9 + 19i	-11 + 17i	-11 + 19i	-9 + 23i	-9 + 21i	-11 + 23i	-11 + 21i
2911	2912	2913	2914	2915	2916	2917	2918	2919	-2920	2921	2922	2923	2924	2925	2926	2927	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942	2943
-5 + 11i	-15 + 1i	-15 + 3i	-13 + 1i	-13 + 3i	-15 + 7i	-15 + Si	-13 + 7i	-13 + 5i	-9 + 1i	-9 + 3	-11 + 1i	-11 + 3i	-9 + 7	-9 + 5	-11 + 7i	-11 + 5i	-15 + 15i	-15 + 13	-13 + 15i	-13 + 13	-15 + 9i	-15 + 11i	-13 + 9i	-13 + 11i	-9 + 15i	-9 + 13i	-11 + 15i	-11 + 13	-9 + 9i	-9 + 11i	-11 + 9i	-11 + 11i
2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	2875	2876	2877	2878	2879
-27 + 43	-17 + 33i	-17 + 35i	-19 + 33i	-19 + 35i	-17 + 39i	-17 + 37i	-19 + 39i	-19 + 37i	-23 + 33i	-23 + 35i	-21 + 33i	-21 + 35i	-23 + 39i	-23 + 37i	-21 + 39i	-21 + 37i	-17 + 47i	-17 + 45i	-19 + 47i	-19 + 45	-17 + 41i	-17 + 43i	-19 + 41i	-19 + 43i	-23 + 47i	-23 + 45i	-21 + 47i	-21 + 45i	-23 + 41i	-23 + 43i	-21 + 41i	-21 + 43i
2783	2784	2785	2786	2787	2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
-27 + 53	-17 + 63i	-17 + 61i	-19 + 63i	-19 + 61i	-17 + 57i	-17 + 59i	-19 + 57i	-19 + 59i	-23 + 63i	-23 + 61i	-21 + 63i	-21 + 61i	-23 + 57i	-23 + 59i	-21 + 57i	-21 + 59i	-17 + 49i	-17 + 51i	-19 + 49i	-19 + 51i	-17 + 55i	-17 + 53i	-19 + 55i	-19 + 53i	-23 + 49i	-23 + 51i	-21 + 49i	-21 + 51i	-23 + 55i	-23 + 53i	-21 + 55i	-21 + 53i
2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751
-5 + 43i	-15 + 33i	-15 + 35i	-13 + 33i	-13 + 35i	-15 + 39i	-15 + 37i	-13 + 39i	-13 + 37	-9 + 33	-9 + 35i	-11 + 33i	-11 + 35i	-9 + 39i	·6 + 37i	-11 + 39i	-11 + 37i	-15 + 47i	-15 + 45i	-13 + 47i	-13 + 45i	-15 + 41i	-15 + 43i	-13 + 41i	-13 + 43i	-9 + 47i	-9 + 45i	-11 + 47i	-11 + 45i	-9 + 41i	-9 + 43i	-11 + 41i	-11 + 43i
2655	2656	2657	2658	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	5669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679	2680	2681	2682	2683	2684	2685	2686	2687
-5 + 53	-15 + 63i	-15 + 61i	-13 + 63i	-13 + 61i	-15 + 57i	-15 + 59i	-13 + 57i	-13 + 59i	-9 + 63i	-9 + 61i	-11 + 63	-11 + 61i	-9 + 57i	-9 + 59i	-11 + 57i	-11 + 59i	-15 + 49i	-15 + 51i	-13 + 49i	-13 + 51i	-15 + 55i	-15 + 53i	-13 + 55i	-13 + 53i	-9 + 49i	-9 + 51i	-11 + 49i	-11 + 51i	-9 + 55i	-9 + 53i	-11 + 55i	-11 + 53i
2591	2592	2593	2594	2595	2596	2597	2598	5299	2600	2601	2602	2603	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622	2623

Fig. 28

- 5	E	ъ	Ta	155	مَنا ا	15	liō	ΙĒ	Ξ	ī	1 =	क्र	l in	15	liä	1=	ΙĒ	l in	ΙE	īã	m	===	iři		=	<u> </u>	7	<u> </u>	ला
Dispersión	3-31	3 - 29	5 - 31	5 - 29	1 .	3 - 27	5 - 25	Iг	9 - 31	9 - 29	7 - 31	7 - 29	9 - 25	9-2	7 - 25	7-2	-33 - 17	-33 - 19	5 - 1,	-35 - 19	3-2	-33 - 21	5 - 23	5 - 21	-39 - 17	-39 - 19	-37 - 17	7 - 15	-39 - 23
	-33 -33	-33	-35	35	-33		-35		-39	-39	置-37	-37	-39	-39	-37	-37			35-35		-33		-35	-35	e,			-37	_
Valor	3520	3521	3522	3523	3524	3528	3526	3527	3528	3529	3530	3531	3532	353	3534	3535	3536	3537	3538	3539	3540	3541	3542	3543	3544	3545	3546	3547	3548
Dispersión	- Ii	ij	-1i	- 3i	. 7i	1 .	- 7	<u>-</u> Si	11.	. 3i	- 11	·3	- 71	- 5i	- 7i	iš.	- 15i	- 13i	- 1Si	- 13i	. 9i	- 11	- 9i	- 11	- 15i	- 13i	- 15i	- 13	<u>.</u>
Disp	-33	-33	-35	-35	-33	-33	-35	-35	-39	-39	-37	-37	-39	-39	-37	-37	£	-33	RS	55	-33	-33	-32	-35	-39	-39	£-37	Ę	-39
Valor	3456	3457	3458	3459	3460	3461	3462	3463	3464	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478	3479	3480	3481	3482	3483	3484
rsión	- 31	- 29i	- 31i	- 29i	- 25i	- 27i	- 25i	- 27i	-311	- 29	- 31i	- 29i	- 25i	- 27i	- 25i	. 27i	- 17i	- 19	17;	19	- 23i	- 21	- 23i	- 21i	. 17i	- 19i	- 17i	- 19i	- 23
Dispe	-63	-63	-61	-61	-63	-63	19-	-61	-57	-22	65-	65-	-57	-57	-59	65-	-63	-63	-61	-61	-63	-63	-61	-61	-23	-57	-59	-59	-57
Valor Dispersión	3335	E6EE	3394	3335	3336	3397	3688	3399	3460	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417	3418	3418	3420
ərsión	- 11	- 3	- 1i	- 3	- 7i	- Si	- 7i.	- 5!	- 1	- 3i	- 1i	- 3i	- 71	- 5i	- 7i	- 51	- 15i	- 13i	- 15i	- 13i	- 9i	- 11i	<u>.</u> 9	- 11	- 15i	- 13 i	- 15i	13	<u>.</u>
Dispe	-63	-63	-61	-61	-63	-63	-61	-61	-57	-57	-59	-59	-57	-57	-59	-59	-63	63	-61	-61	-63	-63	-61	-61	-57	-57	-23	-29	-57
Valor Dispersión	3328	3329	3330	3331	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3845	3346	3347	3348	3349	3350	3351	3352	3353	3354	3322	3356
Dispersión	- 33	- 35	- 33	- 35i	. 39i	- 37i	- 39	37;	- 33	- 35i	- 33i	- 35	- 39	37i	- 39i	- 37i	- 47;	- 45i	- 47i	- 45i	- 41i	- 43	-41	- 43i	- 47i	- 45i	- 47i	- 45i	- 4 1i
Dispe	-33	33	-35	35	-33	-33	-35	-35	-33	-39	37	-31	-39	65	-37	-37	-33	-33	ξ	-32	-33	-33	33	-35	-39	-39	-37	-37	33
Valor	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3279	3280	3281	3287	3283	3284	3285	3286	3287	3288	3289	3290	3291	3292
	63	- 61i	65	611	57	59	57	59	65i	.67i	65	61	57i	59	57	59i	49	51i	49i	51i	55	23	55	53	49i	51	49	51i	551
Dispersión	-33	-33	-23	-35	-33	-33	-32	-35	-25	-22-	-27 -	-37 -	8	-39	-37 -	-37 -	-33	33	-35-	-35	-33	8	-35	35	-39	65	37	-37	-39
Valor	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	32.4	3212	3213	3214	3215	3216	3217	3218	3219	3220	3221	3222	3223	3224		32.26	HILTON IN	3228
_	33	- 29	- 33	- 33	- 25i	- 27	25	37	33	32	33		33	32	39	37	-17	5	1	-13	23	21	-23	-21	- 17	- 45		- 19	4
Dispersión	-63	-65	휘	9	-65	-65	-67 - 25	-61	57	-57	-59 - 33	-59 + 35	-57 -	-57-	-59 - 39	-59 - 37	9	-65	-67 - 17	Ġ	-65 - 23	-65	67	6	4	-57	-69 - 17	-69-	-57-
	_	3137		3139		3141		3143	_		3146		3148	1000			3152	83 83	3154	3155	3156	_			3360	_	3162		3164
rsión	Ħ	ij	\neg		7	- 2			т.	- 67	- 65				۲-				_		_	*****	6	_	- 15	_	_	13	i6
Dispe	-65	-65	-3 - 65	-67 - 3	ξģ	ξ	-67 - 7	67	-7 - 65	Ļ	Ş	-5-67	ᆌ	-7 - 69	69	-69 - 5	-65 - 15	-65 - 13	-67 - 15	-67 - 13	-62 - 9	-65 - 11	6	-67 - 11	4	-71 - 13	-69 - 15	-69-	7
_	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087		3089	_	_	3092		3094	_	-	_	3098		3100

Fig. 29

T=	:=	:=:		·=		15	12	15	12	[<u>=</u>	:=:	ā	=	·=	:5	=	:5	:=	:-	=	:=	=	اعدا		:=	-	-	-	-	=	=	-	:=1	
- 21	- 23	- 21	- 31	- 29i	- 31	- 29i	- 25	- 27	- 25	- 27	- 31	- 29	- 31	- 29	- 25	- 27	- 25	- 27	- 1	- 19	- 17	- 19	- 23	- 21	- 23	- 21	- 17	- 19i	- 17	- 19	- 23	- 21	- 23	- 21
-39	-37	-37	45-	-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	-43	-47	-47	-45	-45	-47	-47	-45	-45	-41	-41	-43	-43	-41	-41	-43	-43
3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580	3581	3582	3583
=	<u>.</u>	111	- 1i	- 3i	- 1i	- 3i	- 7i	- 5i	. 7i	<u>.</u>	· 1	- 3i	- 1i	- 3i	- 7i	- 5	- 7i	- 5i	15i	13i	15i	13i	6	111	9.	11	15i	13i	15i	13i	į.	11i	6	Ξ
93	-37	-37	47	47	45	-45	-47	-47	-45	45	-41	41	43	-43	-41	-41	43	-43	-42	-47 -	-42	-42	-47	-47	-45	-45 -	-41	-41	-43	-43	-41	-41	-43	-43 -
3485	3486	3487	3488	3489	3490	3491	3492	3493	3494	3495	3496	3497	3498	3499	3500	3501	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519
211	23i	211	31i	29i	31;	29i	25i	27i	25i	27i	31)	29	311	29i	25	27	25)	27	17	19	17	19	23	21i	23i	21 i	17i	19	17i	19i	23i	21i	23i	211
-52	- 65-	- 29 -	- 65-	-49 -	-51 -	-51 -	-49 -	- 65-	-51 -	-51	-55	- 55-	-53 -	-23 -	- 55-	-52	-53 -	-53 -	-49	-46	-51 -	-51 -	- 65-	-49 -	-51	-51	-55	-55 -	-53 -	-53 -	-52-	-55-	-53	-53 -
3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	3451	3452	3453	3454	3455
Ξ	6	111	Ξ	3	11	3	7	iΣ	7i	ī	7	æ	Ξ	3	7	iZ	7	i	15i	13i	15i	13i	9	111	6	11	15i	13i	15i	13i	6	111	6	111
-57 -	- 65-	- 29 -	-49-	-49 -	-51 -	-51 -	-49 -	-49	-51 -	-51	-52	-52-	-53-	-53 -	-55-	-55	-53 -	-53 -	-49 -	-49	-51	-51	-49 -	-49	-51 -	- 21	-55	-55-	-53 -	- 23 -	-55	-55	-53	-53 -
3357	3358	3359	3360	3361	3362	3363	3364	3365	3366	3367	3368	:3369::	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391
43i	41i	43i	33i	35i	33i	35i	39i	37i	39i	37i	33i	35i	33i	35i	39i	37i	39	37i	47i	4Si	47i	45	41i	43i	41i	43i	47i	45i	47i	42i	411	4 3i	411	43i
-39 -	-37 -	-37 -	-47 -	-47 -	-45 -	-45 -	-47 -	-47 -	-45 -	-45 -	-41 -	-41 -	-43 -	-43 -	-41 -	-41	-43 -	-43	-47 -	-47 -	-45 -	-45 -	-47 -	-47 -	-45 -	-45 -	-41 -	-41 -	-43 -	-43 -	-41	-41 -	-43 -	-43 -
3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327
53i	55i	53i	e5i	67i	65	67i	71 i	e9i	57i	69i	65i	67i	65 i	67i	57	59i	571	i69	49i	51i	49i	51i	55	53	55	53	49i	51i	49i	51i	55i	531	55	53i
-39 -	-37 -	-37 -	-17 -	-17 -	-19 -	-19 -	-17 -	-17 -	-45 -	-19 -	-23 -	-23 -	-21	-21	-41 -	-41 -	-43 -	-21	-47 -	-47 -	-45 -	-45 -	- 47 -	-47 -	-45 -	-45 -	-41 -	-41 -	-43 -	-43 -	-41 -	-41	-43 -	-43 -
3229	3230	3231	3232	3233	3234	3235	3236	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263
43	41i	21	33i	35	33i	35	39i	37i	39	37	33	35i	33i	35i	39i	37i	39i	371	47i	45	47i	45i	41i	43i	41i	43i	47i	4 5i	47i	45i	41)	43i	41	43
-57 -	- 65-	- 69-	-49	-49	-51	-51	-49 -	-49 -	-51	-51 -	-55	-55-	-53	-53 -	-55	-55	-53 -	-53 -	-49 -	-49	-51 -	-51	-49 -	-49	-51	-51	-55	-55	-53 -	-53 -	-52 -	-55	-53	'n
3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175		2112	3178	3179	3180	3181	3182	3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	_		3198	3199
- 11i	<u>.</u>	11i	65i	67i	65i	67i	711	69		69			- 65i	- 67i	711	69	71i	69i	- 49i	- 51i	- 49i	- 51i	- 55i	- 53i	73i	53	I	13i	49i		<u>.</u>	- 114	- 73	_
-71 -	-69-	-69 - 11i	-15 - 65i	-15 - 67i	-13 - 65	-13 - 67i	-15 - 71	-15 - 69	-13 - 71i	-13 - 69	-6 - 65	-9 - 67	-11-	-11	-9 - 71	-9 - 69	-11 - 71i	-11 - 69i	-49 -	-49 -	-51	-51	-49 -	-49	-13 - 73	-51	-55 - 49i	-73 - 13	-53 - 49i	-53 - 51i	-73 -	-73 -	큐	-53 - 53
3101	3102	3103	3104	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135

Fig. 30

ņ	Ē	9	Ħ	59i	ίζ	1	25	Y.	31	29i	ã	<u>6</u>	ij	271	25	iZ.	ĸ	19i	7.	<u>:6</u>	ë	ij	231	21	5	6	į,	191	23 i	21i	33	퍐
Dispersión	-31 - 31	-31 - 29	-53 - 3	-29 - 2	-31 - 25	-31 - 27	-29 - 2	-29 - 278	-25 - 3	-25 - 2	-27 - 31	-27 - 29	-25 - 2	-22 - 2	-27 - 2	-27 - 27i	-31 - 1	-31 - 1	-29 - 17	-29 - 19i	-31 - 23	-31 - 21	-29 - 5	-29 - 2	-25 - 17	-25 - 19	-27 - 17	22 1	-25 - 2	-22 - 2	-27 - 23	-27 - 2
Hitter						::ITE	2007	100216	there					-			11000	_	Sec. 1		2000	180003	100000		1000	_		1000		_	2000	_
Valor	260%	4033	4034	4035	4036	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	2050	4051	4052	4053	4054	4055	4856	4057	4058	4059	4060	4061	4062	4063
Dispersión	- 11	3	#	- 3	-71	- 51	- 7i	- 21	- 11	- 3i	- 1i	- 3	- 7i	- 5	- 7i	- 53	- 15i	13	- 15i	- 13i	õ	- 11î	- 3	- 11	- 15i	- 13	- 15	- 13i	- 9	- 111	<u>.</u>	11
_	-31	-31	-29	-29	-31	-31	-29	-29	-25	-25	-27	-27	-25	-55	-27	-27	-31	-31	-29	-29	-31	-31	-29	-29	-25	-25	-27	-27	-25	-25	-27	-27
Valor	8968	6966	3970	126E	配46語	€265	7268	57.65	3976	426E	3978	3979	0968	1868	2868	3983	3984	3985	3986	1987	3988	3989	2990	3991	3992	3993	3994	3668	3996	3997	3666	3999
Dispersión	- 31i	291	311	291	25i	271	25i	27i	311	29i	31i	29i	25i	27i	- 25i	- 27i	- 17i	- 19i	171	- 19i	- 23i	- 21i	- 23i	- 21	- 17i	- 19	- 17i	- 19i	- 23i	- 21	- 23i	771
	-1	-1-	έ	-3-	7. 17.	-1-	6-	÷	- 2-	-2-	-2-	-5-	-7-	-	-5	ę,	1-	7	m	ņ	71	7-	m	m	-7	1-	'n	ς	-2	-2-	ŧρ	ın
Valor	#068	S066	9068	2068	8066	6068	3910	#3914E	3912	3913	3914	3915	3916	21.66	3918	3919	3920	3921	3922	3923	3924	3925	3356	3927	3928	3929	3930	3931	3635	3933	9934	3935
Dispersión	-11	-3i	117	- 3!	-71	iZ)	-71	ij	- 11	- 3!	- 11	- 3i	- 7	- 5i	- 7i	- 5!	- 15i	- 13i	- 15i	- 13	<u>- 9</u>	- 11)	<u>16 -</u>	- <u>11</u> i	- 15i	- 13i	- 15ĭ	- 13i	9i	- 11i	<u>:</u> 6	Ŧ-
	1-	F	m	m	-1	÷,	က	က္	-7	<i>'</i> -	Ş-	-5	1-	۲-	5-	47	Ţ-	+	3	÷	7-	Ť	3	÷	-7	2	Ϋ́	ç	2	. 4-	ς.	ι'n
Valor	3840	3841	3842	3843	對略	3845	3846	3847	3848	3849	0586	3851	3825	3853	\$58E	3888	9588	188E	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868	6988	3870	3871
Dispersión	- 33i	- 35i	-33	- 35i	- 39i	- 37	- 39i	- 37i	- 33i	- 35i	~ 33i	- 35i	- 39i	- 37i	- 39	- 37i	- 47i	- 45i	- 47i	- 45i	- 41i	- 43i	- 41i	- 43i	- 47i	- 45i	- 47	- 45	- 41	- 43i	- 41	43
Dispe	-31	-31	52	-29	-31	-31	-29	-29	-25	-25	-27	-27	-22	-25	-27	-27	-31	-31	-29	-29	-31	-31	-29	-29	-55	-25	-27	-27	-25	-25	-27	5
Valor 5	3776	8777	37.78	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789	3790	3791	3792	3793	3794	3795	3528	3797	35.08	3799	3800	3801	3802	3803	3804	3805	3806	3807
	- 63i	- 61)	631	- 611	57	- 59	- 57i	59i	63i	- 61i	- 63i	61i	571	59	57.	59i	49.	511	49i	51i	55i	53i	551	53i	49i	51i	49i	51	55i	žŝ	55i	53
Dispersión	-31 -	-31 -	-29 -	-29	-31	-31	-29-	-29-	-22-	-25 -	-27 -	-27 -	-22	-22	-27-	-27 -	-31	-31	-29-	-29 -	-31	-31	-29	-29-	-22	-22	-27 -	-22-	-25 -	-22	-27 -	27
Valor	minor	3713	3714	3715	3716	3717	8718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730	3731	3732	3733	3734		3736	3737	3738	3739	3740	3741	3742	3743
fam.	3712	37	37	7.		37	4			8	37	37	6	37	8	M		鐮			6			3	6)	37	3,	3		m		
Dispersión	- 33	-1 - 35i	-3 - 33	-3 - 35	-1 - 39	-1 - 37	-3 - 39	-3 - 37	-7 - 33	-7 - 35	-5 - 33	-5 - 35	-7 - 39	-7 - 37	-5 - 39	-5 - 37	-47	-1 - 45	-3 - 47i	-3 - 45	-1 - 41	-1 - 43i	-3 - 41	-3 - 43	-7 - 47	-7 - 45	-5 - 47	-5 - 45	-7 - 411	-7 - 43	-5 - 41	-5 - 43
	-1	L	l	_					100000	_	l_	_					7									_				1	!	1
Valor	3648	3649	3650	3651	3652	3653	3654	SSSE	3656	3657	3658	3659	3560	3661	3662	3663	3664	3998	3996	3667	3668	3669	3670	3671	3672	3673	₹/9€	3675	3676	3677	3678	3679
rsión	-1 - 63i	-1 - 61i	-3 - 63	-3 - 61i	- 571	-1 - 59	-3 - 571	-3 - 59	-7 - 63	-7 - 61	-5 - 63	-5 - 61i	-7 - 57	-7 - 591	-5 - 57	-5 - 59	-1 - 49i	1 - 51	-3 - 49	-3 - 511	-1 - 55i	-1 - 53	-3 - 55	-3 - 53	-7 - 49	-7 - 511	-5 - 491	-5 - 51	-7 - 551	-7 - 53	-5 - 55	-5 - 53
Dispersión				-3	-1-		3					ι'n			L		1	•												ı		LI
Valor	3584	3585	3586	3587	3588	3589	3590	■359	3592	3593	3594	3282	3596	3597	3598	3599	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615

Fig. 31

31i	29i	31i	- 29i	- 25i	27i	- 25i	271	- 31i	- 29i	- 31i	29i	- 25i	- 27i	25i	- 27i	- 17i	- 19i	- 17i	- 19i	- 23i	21i	- 23i	21i	- 17i	- 19i	- 17i	- 19i	23i	- 21i	23i	21i
-17 - 31i	-17 -	-19 -	-19 -	-17 -	-17 -	-19 -	-19 - 27	-23 -	-53 -	-21	-21 - 29	-53 -	-23 -	-21 - 25	-21 -	-17 -	-17 -	-19 -	-19 -	-17 -	-17 - 21	-19 -	-19 -	-23 -	-23 -	-21	-21	-23 - 23	-23 -	-21 -	-21
4064	4065	9904	4067	4068	4069	4070	4071	4072	4073	4024	4075	4076	4077	4078	6/04	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
-17 - 11	-17 - 3i	-19 - 1i	-19 - 3i	-17 - 7i	-17 - 5i	-19 - 7i	-19 - Si	-23 - 1i	-23 - 3i	-21 - 1i	-21 - 3i	-23 - 7i	-23 - Si	-21 - 7i	-21 - 5i	-17 - 15i	-17 - 13i	-19 - 15i	-19 - 13i	-17 - 9i	-17 - 11i	-19 - 9i	-19 - 11i	-23 - 15i	-23 - 13i	-21 - 15i	-21 - 13i	-23 - 9i	-23 - 11i	-21 - 9i	-21 - 11i
4000	4001	4002	4003	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022	4023	4024	4025	4026	4027	4028	4029	4030	4031
-15 - 31i	-15 - 29i	-13 - 31i	-13 - 29	-15 - 25i	15 - 27	-13 - 25i	-13 - 27i	-9 - 31i	-9 - 29i	-11 - 31i	-11 - 29i	-9 - 25i	-9 - 27i	-11 - 25	-11 - 27i	-15 - 17	-15 - 19	-13 - 17	·13 - 19i	-15 - 23i	-15 - 21i	-13 - 23i	-13 - 21i	-9 - 17i	-9 - 19i	.11 - 17i	-11 - 19i	-9 - 23i	-9 - 21i	-11 - 23	-11 - 21i
3936	3937	3938	3939	3940	3941	3942	3943	3944	3945	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
-15 - 1i	-15 - 3i	-13 - 1i	-13 - 3i	-15 - 7i	-15 - 5i	-13 - 7i	-13 - 5i	-9 - 1i	-9 - 3i	-11 - 1i	-11 - 3i	.9 - 7i	-6 - Si	-11 - 7	-11 - 5i	-15 - 15i	-15 - 13i	-13 - 15i	-13 - 13i	-15 - 9i	-15 - 11i	-13 - 9i	-13 - 11i	-9 - 15i	-9 - 13i	-11 - 15i	-11 - 13)	i6 - 6-	-9 - 11i	-11 - 9i	-11 - 11i
3872	813	3874	3875	3876	2188	3878	3879	3880	3881	3882	5883	3884	3885	988€	3887	3888	3889	0686	3891	3892	3893	3894	568E	9686	3897	8688	668E	006€	3901	3305	3903
-17 - 33i	-17 - 35i	-19 - 33i	-19 - 35i	-17 - 39i	-17 - 37	-19 - 39i	-19 - 37i	-23 - 33i	-23 - 35i	-21 - 33i	-21 - 35i	-23 - 39i	-23 - 37i	-21 - 39	-21 - 37	-17 - 47i	-17 - 45i	-19 - 47i	-19 - 45	-17 - 41i	-17 - 43i	-19 - 41i	-19 - 43i	-23 - 47i	-23 - 45i	-21 - 47i	-21 - 45i	-23 - 41i	-23 - 43i	-21 - 41i	-21 - 43i
3808	3809	3810	381	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839
-17 - 63i	-17 - 61i	-19 - 63	-19 - 61	-17 - 57	-17 - 59i	-19 - 57i	-19 - 59	-23 - 63	-23 - 61i	-21 - 63	-21 - 61i	-23 - 57i	-23 - 59i	-21 - 57	-21 - 59i	-17 - 49i	-17 - 51i	-19 - 49i	-19 - 51i	-17 - 55i	-17 - 53i	-19 - 55i	-19 - 53i	-23 - 49i	-23 - 51i	-21 - 49i	-21 - 51i	-23 - 55i	-23 - 53i	-21 - 55	-21 - 53
3744	3745	3746	3747	3748	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770	3771	3772	3773	3774	3775
-15 - 33	-15 - 35i	-13 - 33	-13 - 35	-15 - 39i	-15 - 37i	-13 - 39i	-13 - 37i	-9 - 33i	-9 - 35i	-11 - 33i	-11 - 35i	-9 - 39i	-9 - 37i	-11 - 39i	-11 - 37	-15 - 47i	-15 - 45i	-13 - 47i	-13 - 45i	-15 - 41i	-15 - 43i	-13 - 41i	-13 - 43i	-9 - 47i	-9 - 45i	-11 - 47	-11 - 45i	-9 - 41)	-9 - 43i	-11 - 41i	-11 - 43i
3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	3690	3691	3695	£69£	3694	369£	969£	3697	8698	669£	3700	3701	3702	8203	3704	S0/E	90/8	2008	3708	602€	3710	3711
-15 - 63i	-15 - 61	-13 - 63	-13 - 61i	-15 - 57i	-15 - 59	-13 - 57i	-13 - 59i	-9 - 63	-9 - 61i	-11 - 63i	-11 - 61i	-9 - 57	-9 - 59i	-11 - 57	-11 - 59	-15 - 49i	-15 - 51i	-13 - 49i	-13 - 51i	-15 - 55i	-15 - 53i	-13 - 55i	-13 - 53i	-9 - 49i	-9 - 51i	-11 - 49i	-11 - 51i	-9 - 55i	-9 - 53i	-11 - 55i	_
3616	3617	3618	3619	3620	3621			3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	6696	3640	3641	3642	3643	3644	3645	3646	

Fig. 32

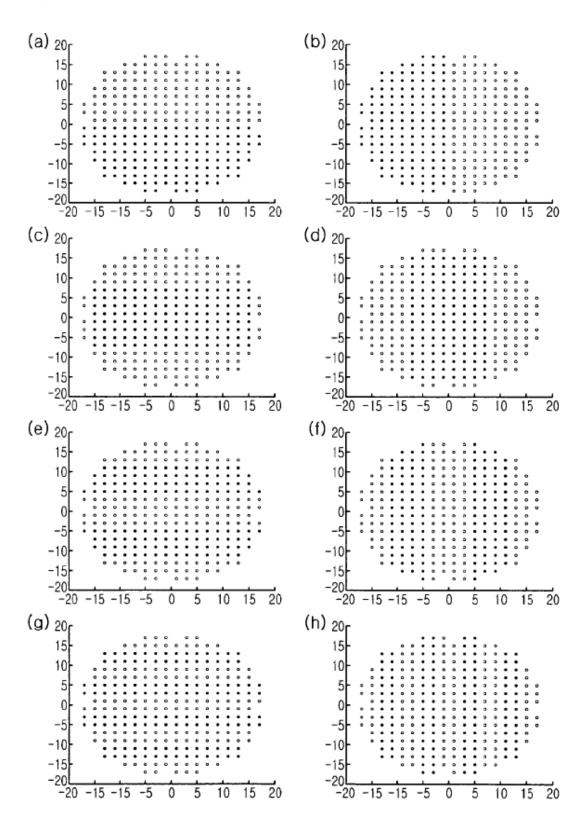


Fig. 33

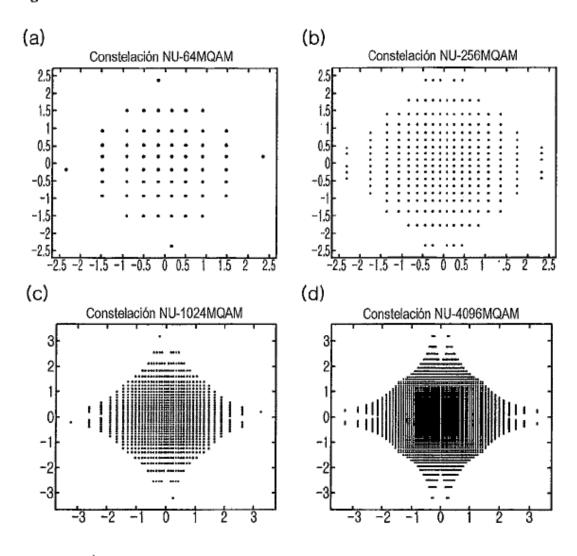


Fig. 34

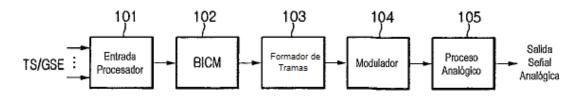


Fig. 35

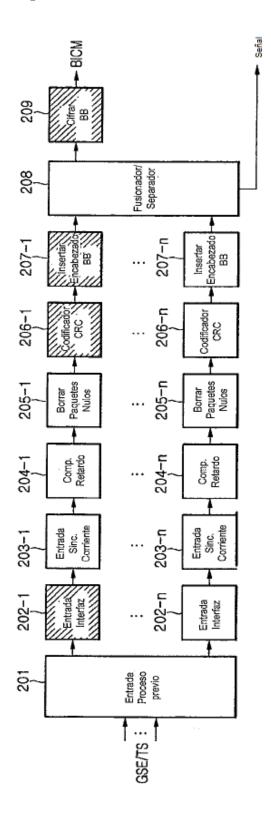


Fig. 36

TS/GS (2 bits)	SIS/MIS (1 bit)	CCM/ACM (1 bit)	ISSYI (1 bit)	NPD (1bit)	EXT (2bits)
00 = GFPS 11 = TS 01 = GCS 10 = GSE	[= simple () = múltiple	1 = CCM 0 = ACM	1 = activo 0 = no activo	1 = :activo 0 = no activo	Reservado para uso futuro

Campo	Tamaño (Bytes)	Descripción		
MATYPE	2	Tal como se ha descrito anteriormente		
UPL	2	Longitud del Paquete del Usuario en bits, en el rango [0,65535]		
DFL	2	Longitud del Campo de Datos, en el rango [0,53760]		
SYNC	1	Una copia del Paquete de Usuario de Sinc. de bytes		
SYNCD	2	La distancia en bits desde el inicio del DATA FIELD al primer UP completo del campo de datos. SYNCD=0 _D significa que el primer UP está alineado con el inicio del Campo de Datos. SYNCD= 65535 _D significa que ningún UP empieza en DATA FIELD.		
CRC-8 MODE	1	El XOR del campo CRC-8 (1 byte) con el campo MODE (1 byte). CRC-8 es el código de detección del error aplicado a los primeros 9 bytes del BBHEADER. MODE (8 bits) ha de ser: • 0 ₀ Modo Normal • 1 ₀ Modo de Alta Eficiencia • Otros valores: reservado para uso futuro.		

Fig. 37

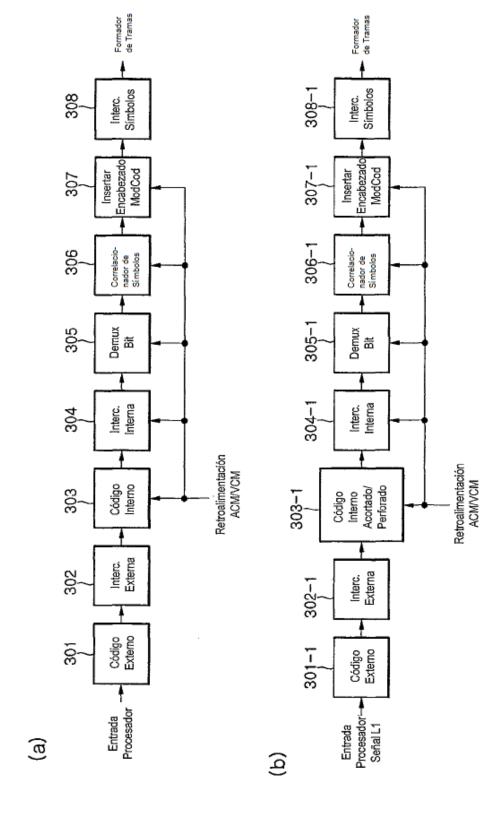


Fig. 38

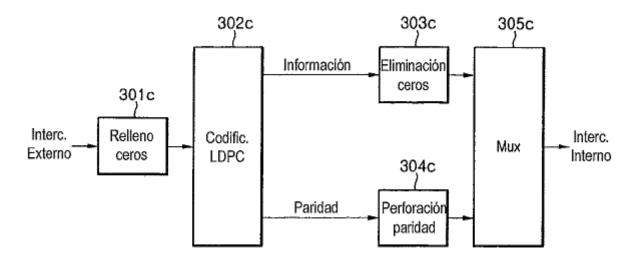


Fig. 39

			Caso 1	Caso 2
Cap	oacidad (bit/s/	Hz)	Modulación	Modulación
	1/2	3.0	NU-MQAM	NU-QAM
	2/3	4.0	NU-MQAM	NU-QAM
	3/4	4.5	NU-MQAM	NU-MQAM
6	4/5	4.8	MQAM	MQAM
	5/6	5.0	MQAM	MQAM
	8/9	5.3	MQAM	MQAM
	9/10	5.4	MQAM	MQAM
	1/2	4.0	NU-MQAM	NU-QAM
	2/3	5.3	NU-MQAM	NU-QAM
	3/4	6.0	NU-MQAM	NU-MQAM
8	4/5	6.4	NU-MQAM	NU-MQAM
	5/6	6,7	MQAM	MQAM
	8/9	7.1	MQAM	MQAM
	9/10	7.2	MQAM	MQAM
	1/2	5.0	NU-MQAM	NU-QAM
	2/3	6.7	NU-MQAM	NU-QAM
	3/4	7.5	NU-MQAM	NU-MQAM
10	4/5	8.0	NU-MQAM	NU-MQAM
	5/6	8.3	NU-MQAM	NU-MQAM
	8/9	8.9	MQAM	MQAM
No.	9/10	9.0	MQAM	MQAM
	1/2	6.0	NU-MQAM	NU-QAM
	2/3	8.0	NU-MQAM	NU-QAM
	3/4	9.0	NU-MQAM	NU-MQAM
12	4/5	9.6	NU-MQAM	NU-MQAM
	5/6	10.0	NU-MQAM	NU-MQAM
	8/9	10.7	MQAM	MQAM
	9/10	10.8	MQAM	MQAM

Fig. 40

			Caso 1	Caso 2	Caso 2
Minimi C	capacidad (bit/s	/Hz)	Modulación	Modulación	Modulación
	1/2	3.0	QAM	QAM	QAM
2	2/3	4:0		QAM	QAM
	3/4	14.5	QAM	QAM	QAM
	4/5	4.8		QAM	QAM
	5/6	5,0	QAM	QAM	QAM
	8/9	5.3	QAM	QAM	QAM
	9/10	5.4	QAM	QAM	QAM
	1/2	3.0	QAM	QAM	QAM
	2/3	4.0	QAM	QAM	QAM
	3/4	4.5	QAM	QAM	QAM
4	4/5	4.8	QAM	QAM	QAM
	5/6	5.0	QAM	QAM	QAM
	8/9	5.3	QAM	QAM	QAM
	9/10	5.4	QAM	QAM	QAM
	1/2	3.0	QAM	QAM	QAM
	2/3	4.0	QAM	QAM	QAM
	3/4	4.5	QAM	QAM	QAM
6	4/5	4.8	QAM	QAM	QAM
	5/6	5.0	QAM	QAM	QAM
	8/9	5,3	QAM	QAM	QAM
	9/10	5:4	QAM	QAM	QAM
	1/2	4.0	QAM	QAM	QAM
	2/3	15.3	QAM	QAM	QAM
	3/4	6.0	QAM	QAM	QAM
8	4/5	6.4	QAM	QAM	QAM
	5/6	6.7	QAM	QAM	QAM
	8/9	7,1	QAM	QAM	QAM
	9/10	7.2	QAM	QAM	QAM
	1/2	 5.0 	NU-MQAM	NU-QAM	MQAM
	2/3	⊞⊞6.7 	NU-MQAM	NU-QAM	MQAM
10	3/4	7.5	NU-MQAM	NU-MQAM	MQAM
		8.0	NU-MQAM	NU-MQAM	MQAM
	5/6	8,3	NU-MQAM	NU-MQAM	MQAM
	8/9	8.9	MQAM	MQAM	MQAM
	9/10	9.0	MQAM	MQAM	MQAM
12	1/2	6.0	NU-MQAM	NU-QAM	MQAM
	2/3	8.0	NU-MQAM	NU-QAM	MQAM
	3/4	9.0	NU-MQAM	NU-MQAM	MQAM
	4/5	9:6	NU-MQAM	NU-MQAM	MQAM
	5/6	10.0	NU-MQAM	NU-MQAM	MQAM
	8/9	10.7	MQAM	MQAM	MQAM
	9/10	10.8	MQAM	MQAM	MQAM

Fig. 41

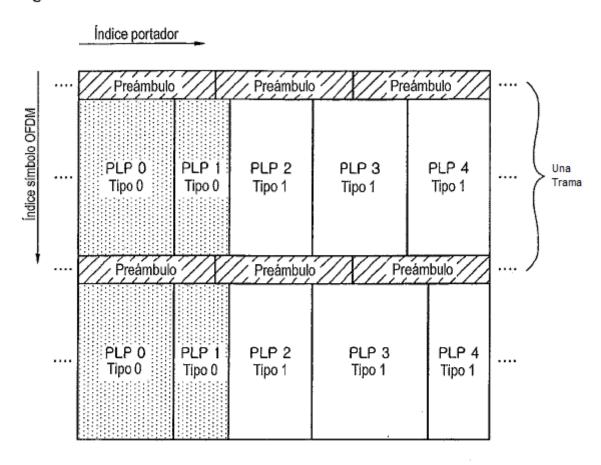


Fig. 42

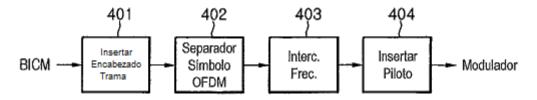


Fig. 43

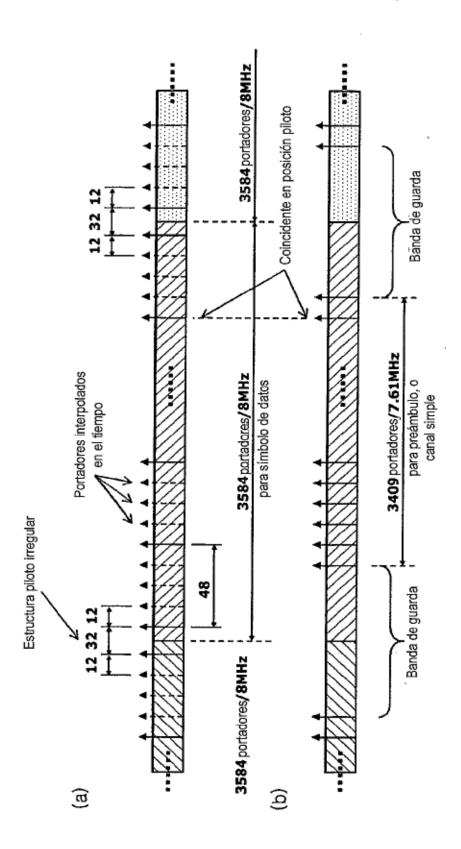


Fig. 44

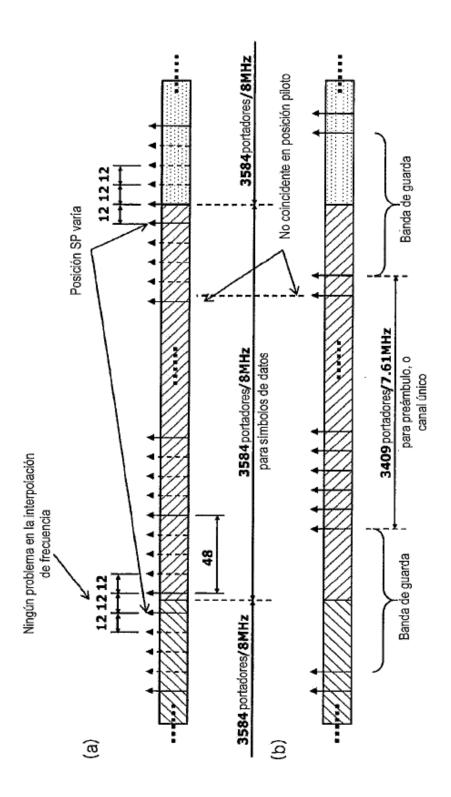


Fig. 45

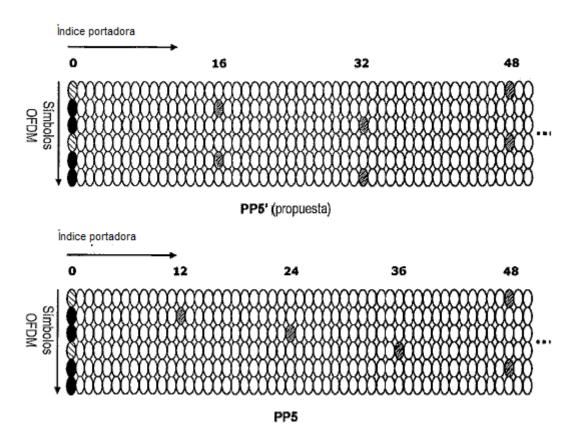


Fig. 46

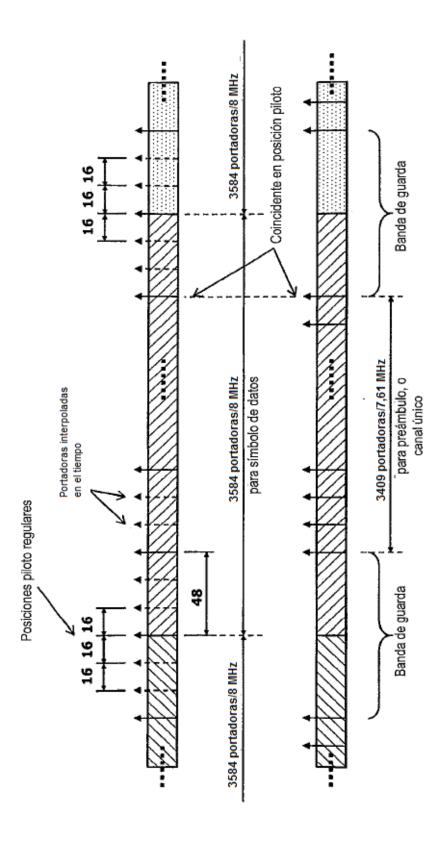


Fig. 47

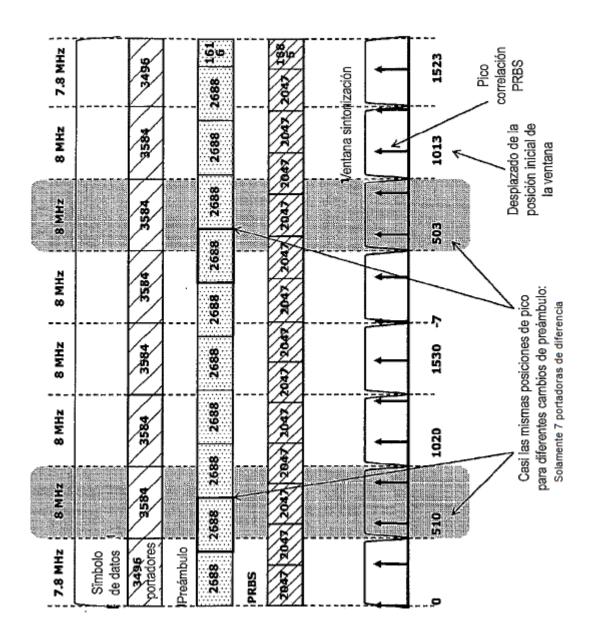


Fig. 48

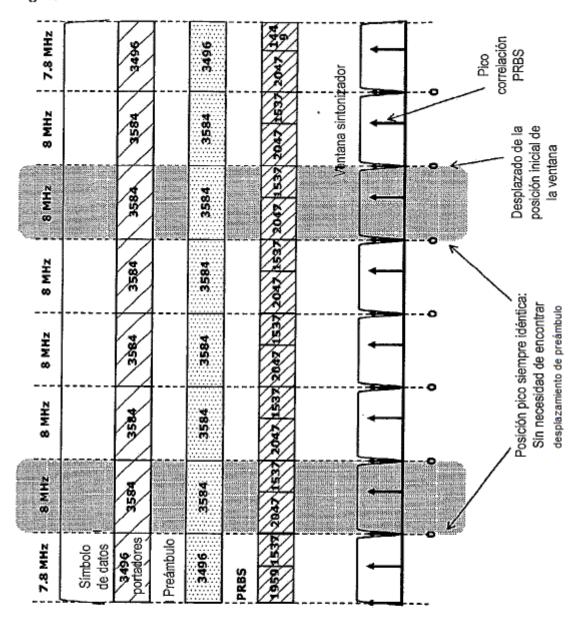


Fig. 49

Retardo (µs)	0.2	0.4	0.8	1.2	2.5	15	Trayectoria de
Aten. (dB)	-11	-14	-17	~23	-32	-40 🖍	daanaa alabia

Fig. 50

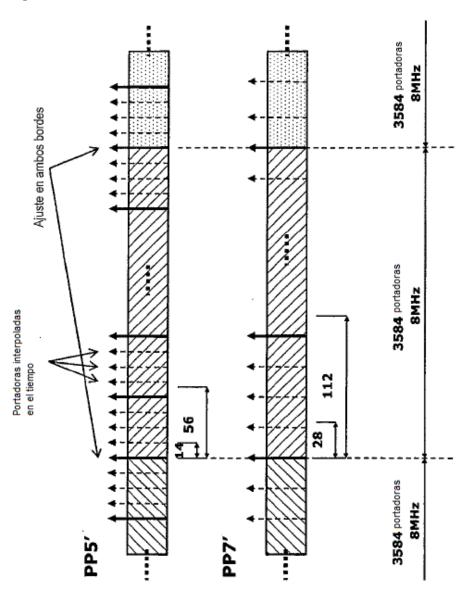


Fig. 51

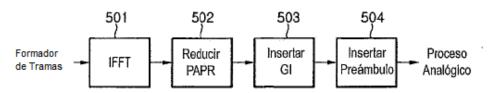


Fig. 52

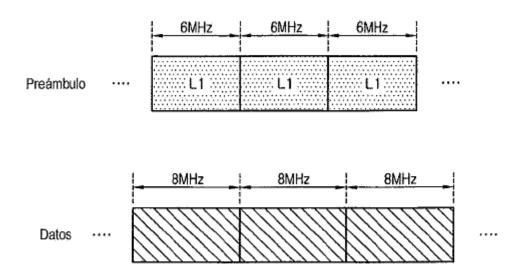


Fig. 53

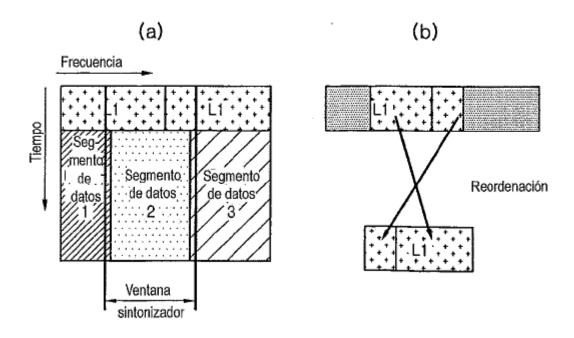


Fig. 54

Fig. 55

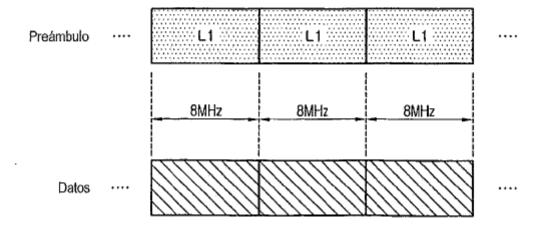


Fig. 56

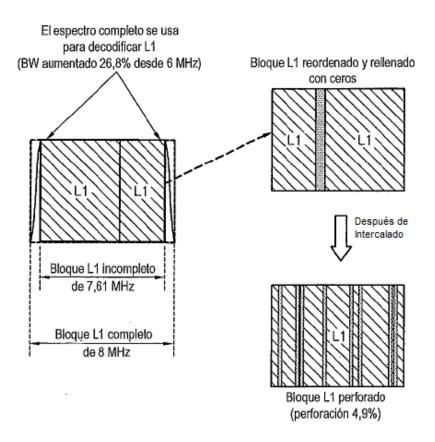


Fig. 57

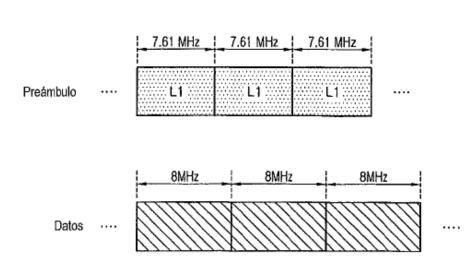


Fig. 58

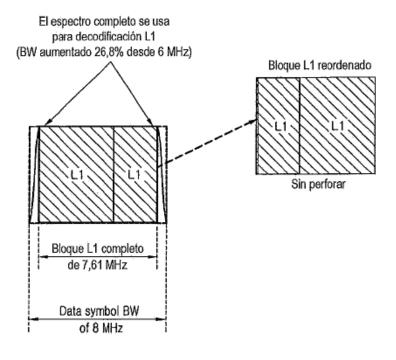


Fig. 59

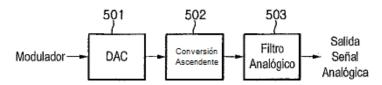
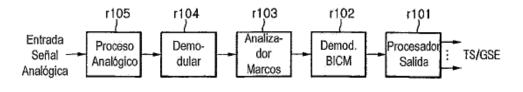



Fig. 60

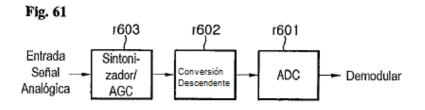


Fig. 62

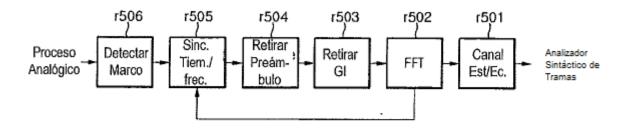


Fig. 63

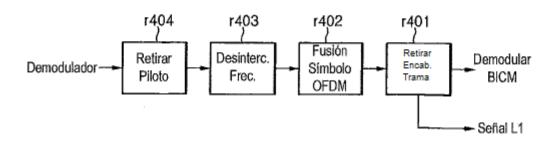


Fig. 64

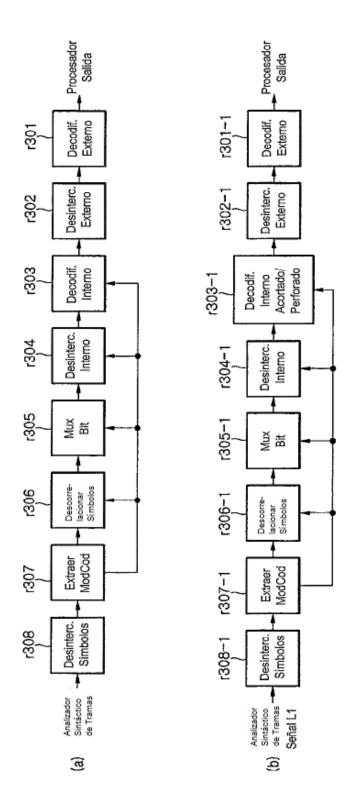


Fig. 65

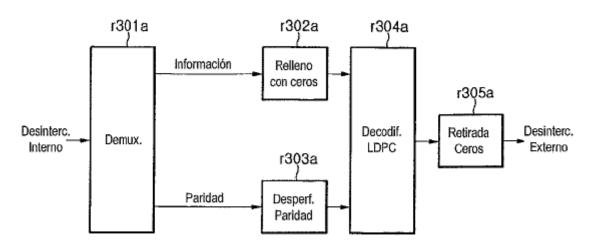


Fig. 66

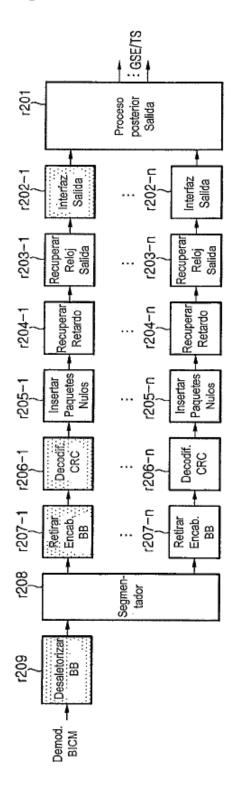


Fig. 67

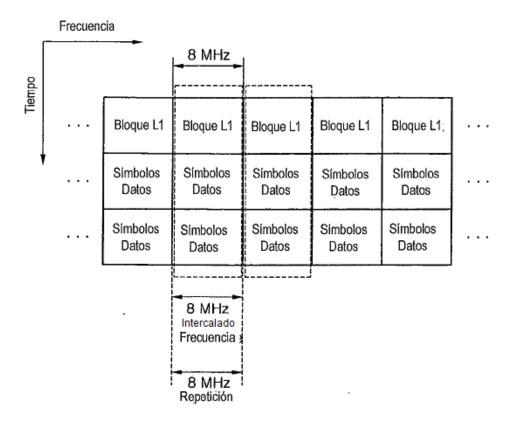


Fig. 68

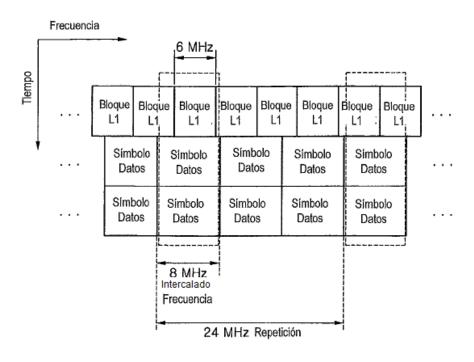


Fig. 69

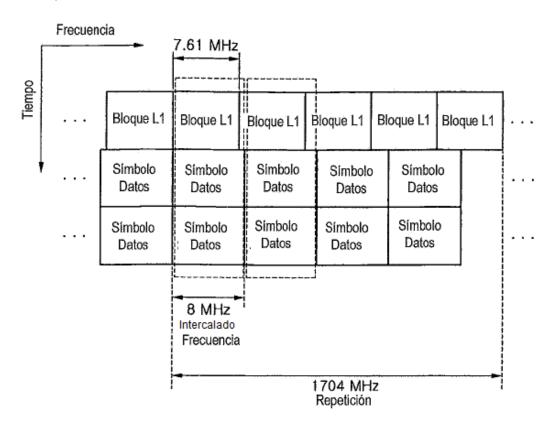


Fig. 70

Campo	Bits	
L1_span	12	número de portadoras separadas por el bloque L1 en un símbolo OFDM (Máx = 7,61 MHz)
num_chbon	3	número de canales unidos
num_dslice	8	número de segmentos de datos
num_plp	8	número de PLPs
num_notch	5	número de bandas de muescas
for dslice {		
chbon_index	3	índice de canal unido
dslice_start	9	inicio de segmento de datos en un canal (8 MHz)
dslice_width	9	anchura del segmento de datos
}		
for plp {		
dslice_id	8	ID datos segmentados
plp_id	8	ID PLP
plp_type	1	tipo PLP (común/datos)
plp_payload_type	5	tipo carga PLP (TS, GS,)
}		
for notch {		
chbon_index	3	índice canal unido
notch_start	9	inicio de banda de muesca en un canal (8 MHz)
notch_width	9	anchura de banda de muesca
}		
gi	1	modo intervalo de guarda
sframe_id	16	ID supertrama
frame_id	16	ID trama
reserved	0	rfu
crc32	32	CRC32
Total	11760	

El número de bits de información L1 varía según las diferentes configuraciones/condiciones

Fig. 71

		_
Información L1 (bits)	11760	
Bloque L1 (bits)	23520	
Símbolos 16 - QAM	5880	Tamaño máximo
Total portadoras	3408	
Distancia SP preámbulo	6	
Portadoras de datos	2840	
LDPC corto	1.45	
Símbolos OFDM	2.07	

Fig. 72

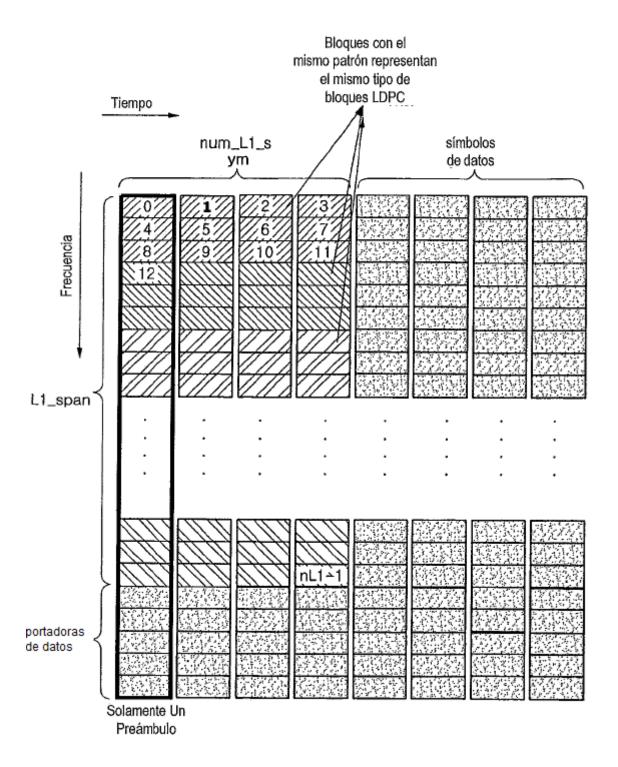


Fig. 73

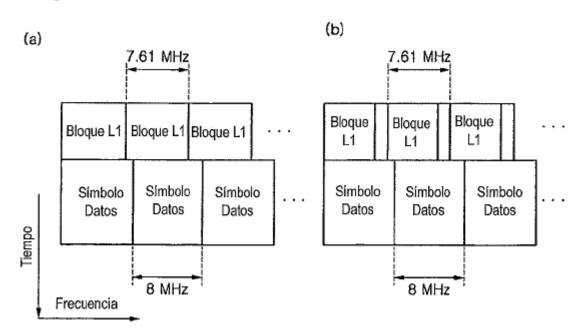


Fig. 74

		Г
Campo	Bits	
L1_column	9	número de portadores separados por bloque L1 en un símbolo OFDM (Max=7,61MHz
L1_row	3	número de símbolos OFDM separados por bloque L1
num_chbon	3	número de canales unidos
num_plp	8	número de segmentos de datos
num_dslice	8	número de PLPs
num_notch	5	número de bandas de muesca
for dslice {		
chbon_index	3	Índice canal unido
dslice_start	9	inicio de segmento de datos en un canal (8 MHz)
dslice_width	9	anchura de segmento de datos
}		
for plp {		
dslice_id	8	ID datos segmentados
plp_id	8	ID PLP
plp_type	1	tipo PLP (común/datos)
plp_payload_type	5	tipo carga PLP (TS, GS,)
}		
for notch {		
chbon_index	3	índice canal unido
notch_start	9	início de banda de muesca en un canal (8 MHz)
notch_width	9	anchura de banda de muesca
}		
gi	1	modo intervalo de guarda
sframe_id	16	ID supertrama
frame_id	16	ID trama
reserved	16	rfu
crc32	32	CRC32
Total	11776	

El número de bits de información L1 varía según las diferentes configuraciones/condiciones

Fig. 75

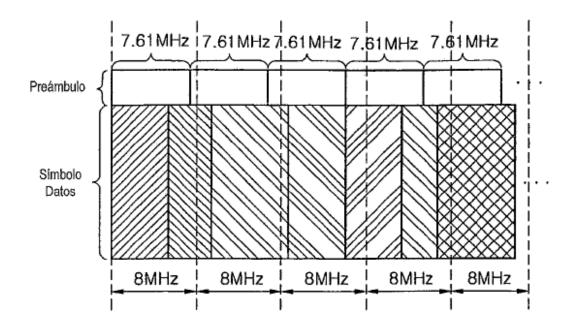


Fig. 76

Tamaño Bloque LDPC	Modulación (bps/Hz)	Símbolos QAM	Encabezado ModCod
64800	4	16200	0.28%
	6	10800	0.42%
	8	8100	0.56%
	10	6480	0.69%
	12	5400	0.83%
16200	4	4050	1.11%
	6	2700	1.67%
	8	2025	2.22%
	10	1620	2.78%
	12	1350	3.33%

Fig. 77

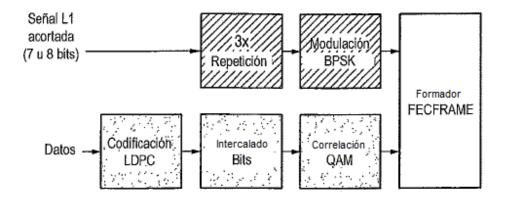


Fig. 78

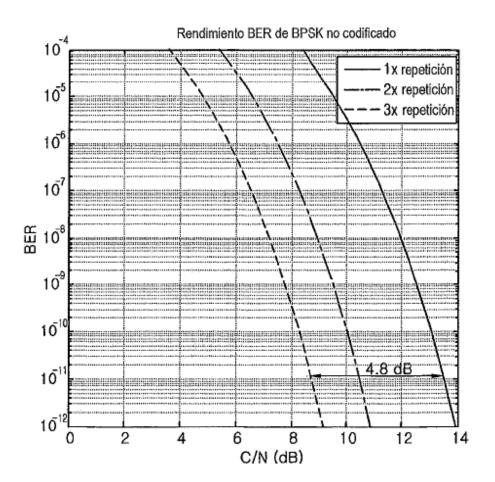


Fig. 79

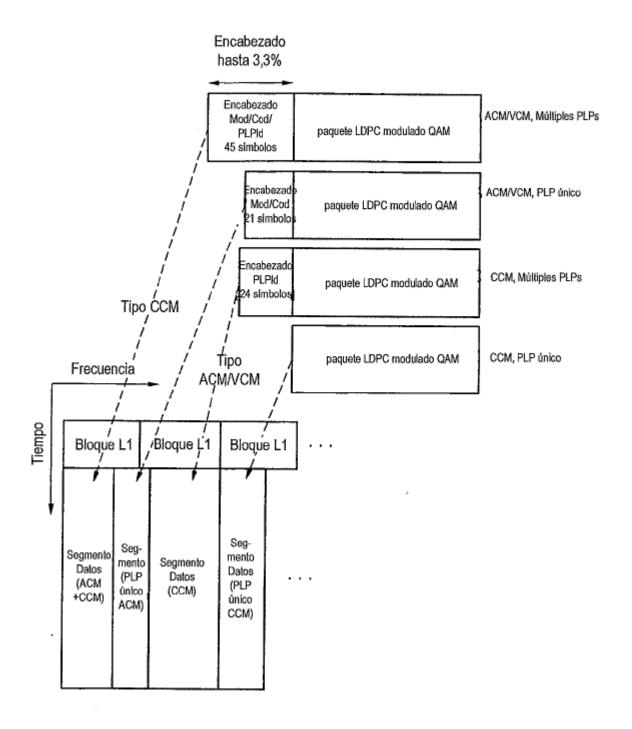


Fig. 80

	Campo	Bits	1
	L1_size	14	tamaño bloque L1 (bits)
/	num_chbon	3	número de canales unidos
El tamaño del bloque £1 se transmite	num_dslice	8	número de porciones de datos
al primer bloque LDPC (longitud	num_plp	8	número de PLPs
más corta fija = 192 bits)	num_notch	5	número de bandas de muesca
	for dslice {		
	chbon_index	3	Indice canales unidos
Intercalado de tiempo	dslice_start	9	inicio de segmento de datos en un canal (8 MHz)
encendido/apagado	dslice_width	9	anchura del segmento de datos
para soportar el modo de	dslice_time_intrly	1	intercalación de tiempo encendido/apagado
ratericia corta	dslice_type	1	tipo de segmento de datos (CCM, ACM/VCM)
	}		
Tipo de segmento de dalos	for plp {		
	dslice_id	8	ID datos segmentados
de la señalización l.1	plp_id	8	IDPLP
	plp_type	1	tipo PLP (común/datos)
	plp_payload_type	5	tipo carga PLP (TSCS,)
	if dslice_type=CCM {		
Los campos Mod/Cod se	plp_mod	3	tipo modulación PLP
transmiten en el preámbulo	plp_fec_type	1	tipo FEC PLP (largo/corto)
para tipo CCM solamente	plp_cod	3	Indice código PLP
`	}		
	}		
	for notch {		
	chbon_index	3	Indice canal unido
·	notch_start	9	inicio de banda de muesca en un canal (8 MHz)
	notch_width	9	anchura de la banda de muesca
	}		
	gi	1	modo intervalo de guarda
	sframe_id	16	ID supertrama
	frame_id	16	ID trama
	reserved	16	rfu
	crc32	32	CRC32
	Total	14082	

Fig. 81

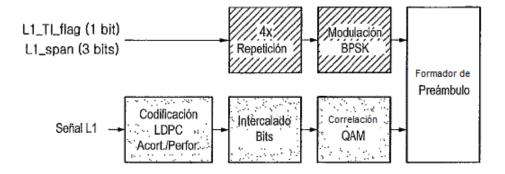


Fig. 82

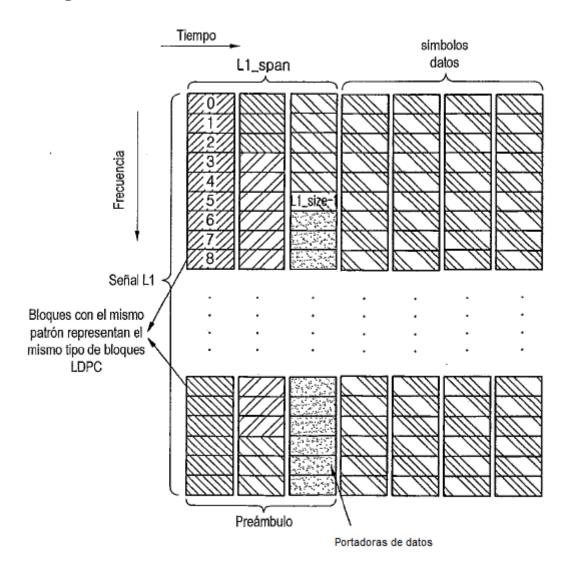


Fig. 83

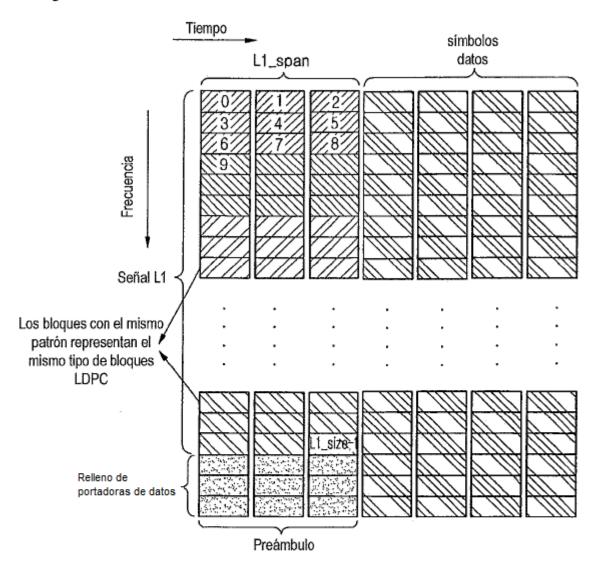


Fig. 84

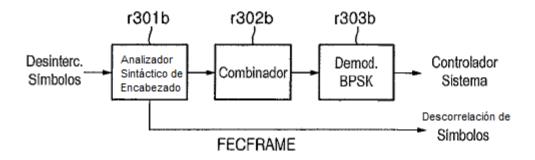


Fig. 85

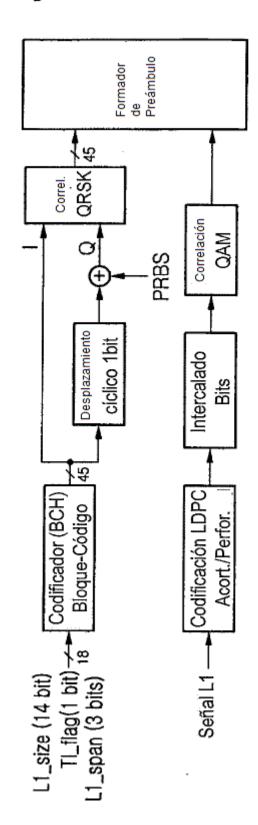


Fig. 86

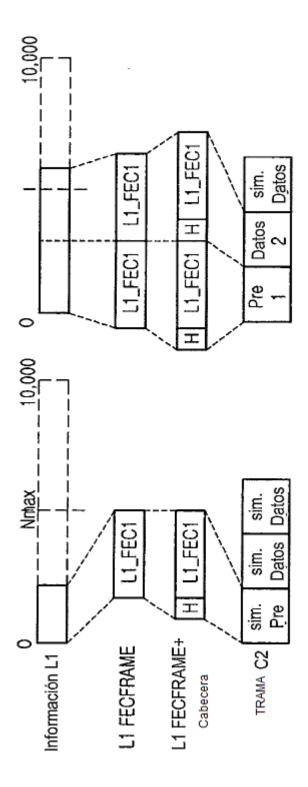


Fig. 87

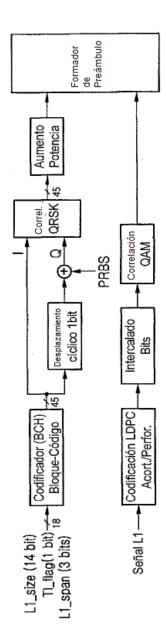


Fig. 88

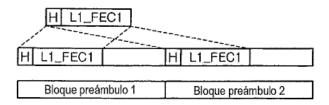


Fig. 89

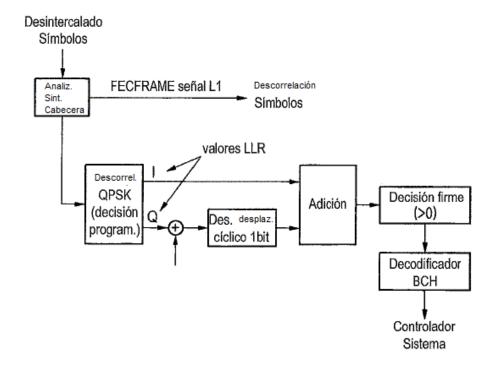


Fig. 90

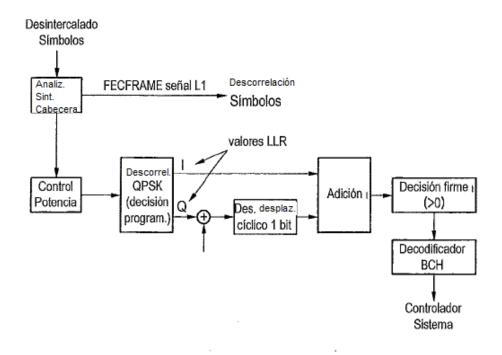


Fig. 91

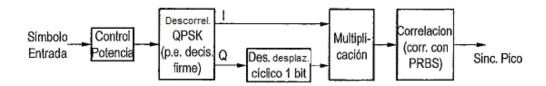


Fig. 92

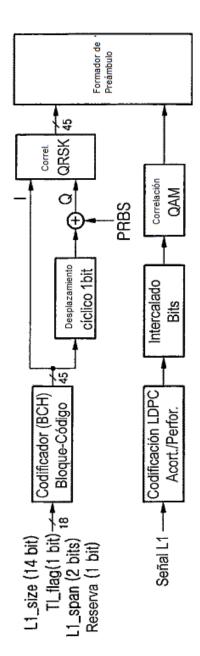


Fig. 93

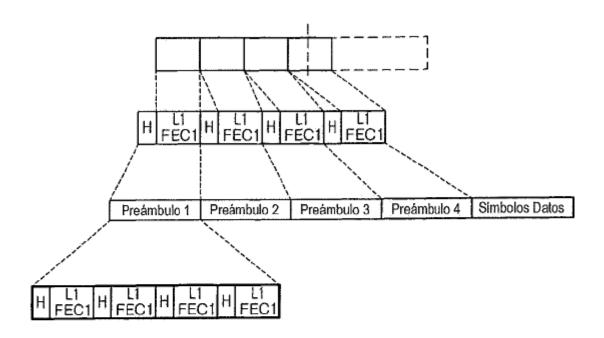


Fig. 94

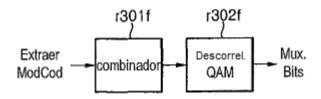


Fig. 95

Campo	Bits	
L1_size	14	tamaño bloque L1 (bits)
num_chbon	3	número de canales unidos
num_dslice	8	número de segmentos de datos
num_plp	8	número de PLPs
num_notch	5	número de bandas de muesca
for dslice {		
chbon_index	3	indice canales unidos
dslice_start	9	inicio de segmentos de datos en un canal (8 MHz)
dslice_width	9	anchura del segmento de datos
dslice_time_intrlv	1	intercalado de tiempo on/off
dslice_type	1	tipo segmento de datos (CCM, ACM/VCM)
}		
for plp {		
dslice_id	8	ID datos segmentados
plp_id	8	ID PLP
plp_type	1	tipo PLP (común/datos)
plp_payload_type	5	tipo de carga PLP (TS, GS,)
if dslice_type=CCM {		
plp_mod	3	tipo modulación PLP
plp_fec_type	1	tipo FEC PLP (largo/corto)
plpcod	3	
plp_start	21	dirección ínicio PLP
}		
}		
for notch {		
chbon_index	3	Indice canales unidos
notch_start	9	
notch_width	9	anchura de banda de muesca
}		
gi	1	modo de intervalo de guarda
sframe_id	16	ID supertrama
frame_id	16	ID trama
reserved	16	rfu
crc32	32	CRC32
Total	1,9458	

El número de bits de información L1 varía según las diferentes configuraciones/condiciones

Fig. 96

Campo	Bits]
L1_size	14	tamaño blogue L1 (bits)
num_chbon	3	número de canales unidos
num_dslice	8	
num_plp	8	
num_notch	5	número de bandas de muesca
for dslice {	1	
chbon_index	3	indice canales unidos
dslice_start	9	inicio de segmentos de datos en un canal (8 MHz)
dslice_width	9	anchura del segmento de datos
dslice_time_intrlv	1	intercalado de tiempo encendido/apagado
dslice_type	1	tipo segmento de datos (CCM, ACM/VCM)
}		
for plp {		
dslice_id	8	ID datos segmentados
plp_id	8	ID PLP
plp_type	1	tipo PLP (común/datos)
plp_payload_type	5	tipo de carga PLP (TS, GS,)
if dslice_type=CCM {		
plp_mod	3	
plp_fec_type	1	
plp_cod		Indice código PLP
plp_start	14	dirección inicio PLP
}		
}		
for notch {		
chbon_index		indice canales unidos
notch_start	9	inicio de banda de muesca en un canal (8 MHz)
notch_width	9	anchura de banda de muesca
}		
gi	1	modo de intervalo de guarda
sframe_id	16	ID supertrama
frame_id	16	ID trama
reserved	16	rfu
crc32	32	CRC32
Total	1,7666	

El número de bits de información L1 varía según las diferentes configuraciones/condiciones

Fig. 97

Longitud LDPC	Tipo QAM	Sïmbolos QAM
64800	16 QAM	16200
64800	64 QAM	10800
64800	256 QAM	8100
64800	1024 QAM	6480
64800	4096 QAM	5400
16200	16 QAM	4050
16200	64 QAM	2700
16200	256 QAM	2025
16200	1024 QAM	1620
16200	4096 QAM	1350

Fig. 98

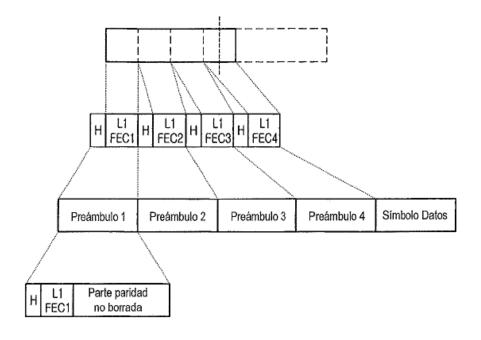


Fig. 99

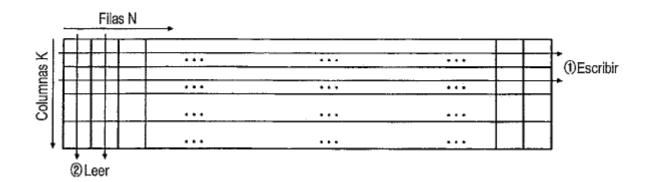


Fig. 100

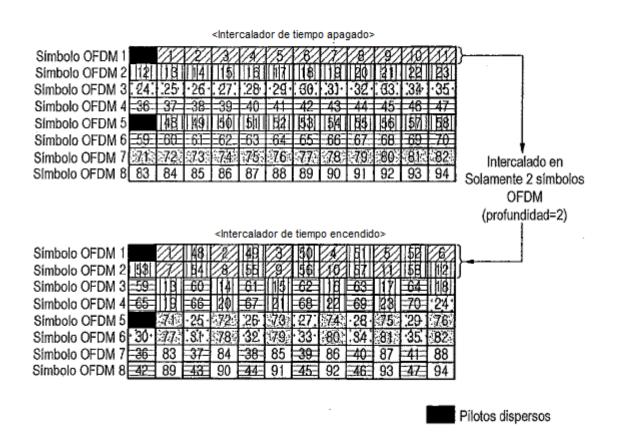


Fig. 101

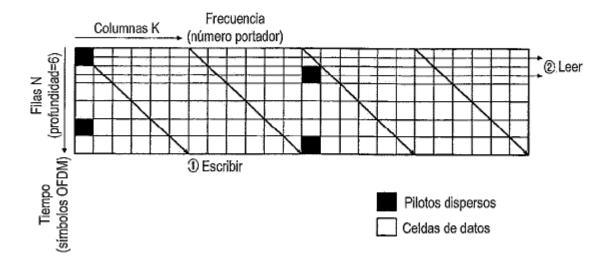


Fig. 102

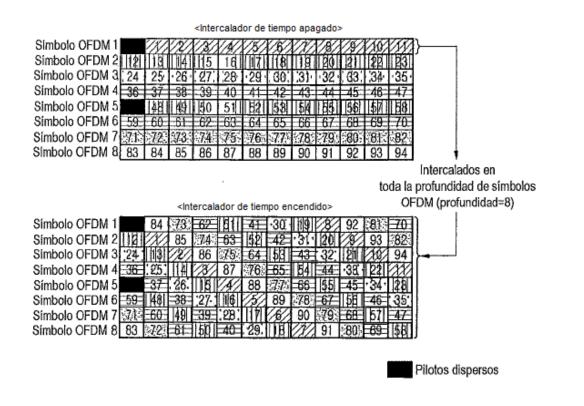


Fig. 103

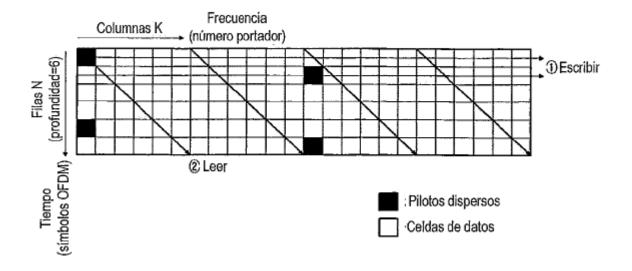


Fig. 104

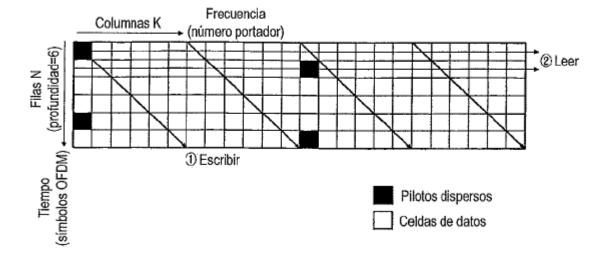


Fig. 105

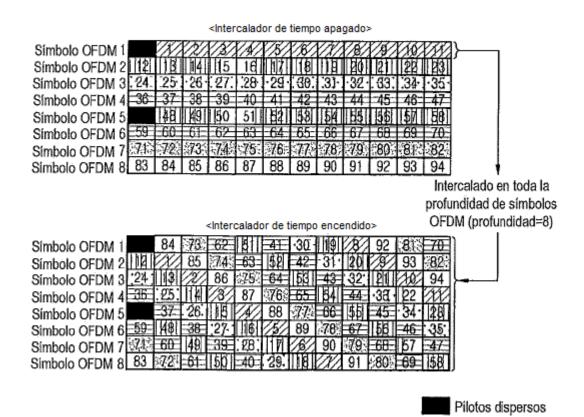


Fig. 106

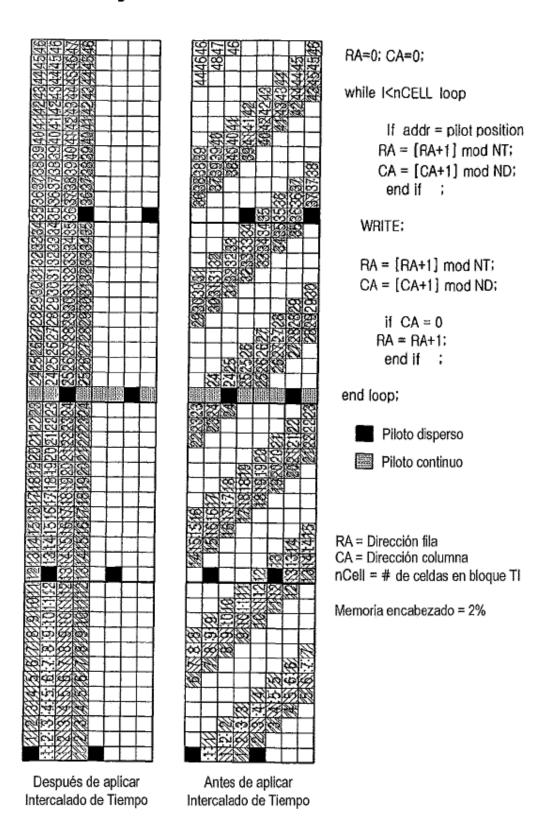


Fig. 107

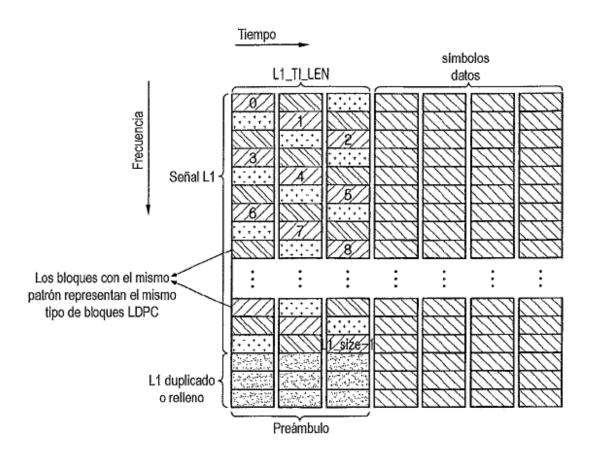


Fig. 108

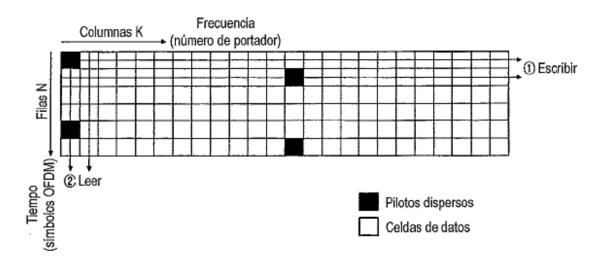


Fig. 109

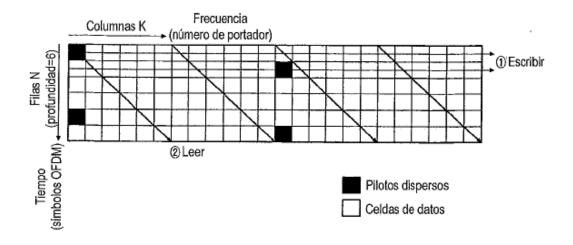


Fig. 110

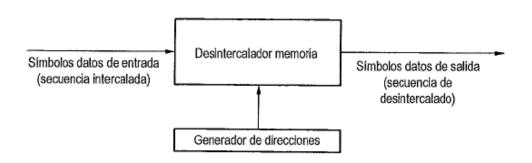


Fig. 111

	i	=0											i	=12)									j=	23
j=0	Ri,j Ci,j	0	0	2	3	0 4	5	0 6	7	8	9	0 10	11	0	1	2	3	4	5	1 6	7	8	9	101	1
j=1	Ri,j Ci,j	0	1	2	3	4	5	6	7	8	9	2 10	3 11	0	2	3	3	5 4	6 5	7 6	7	8	2 9	3 10	4 1
j=2	Ri,j Ci,j	0	2	2	6	4	2 5	6	7	8	9	4 10	6 11	0	3	5	7	4	<u>3</u>	5 6	7	8	3	5 10 1	7 11
j=3	Ri,j Ci,j	0	3	6	3	4	<u>7</u> 5	2	5 7	8	3	6 10	11	0	1	7	2	5	0 5	3 6	6 7	8	<u>4</u> 9	7	2

Fig. 112

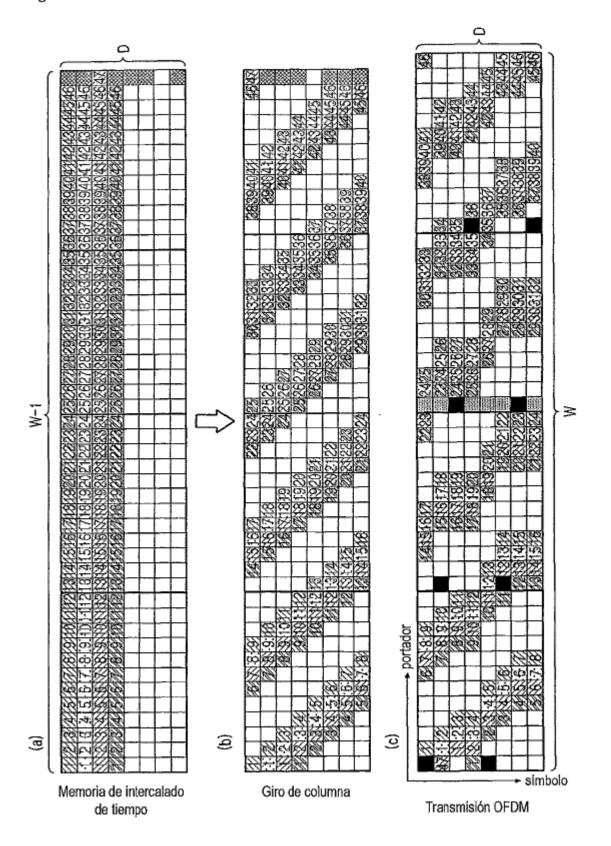


Fig. 113

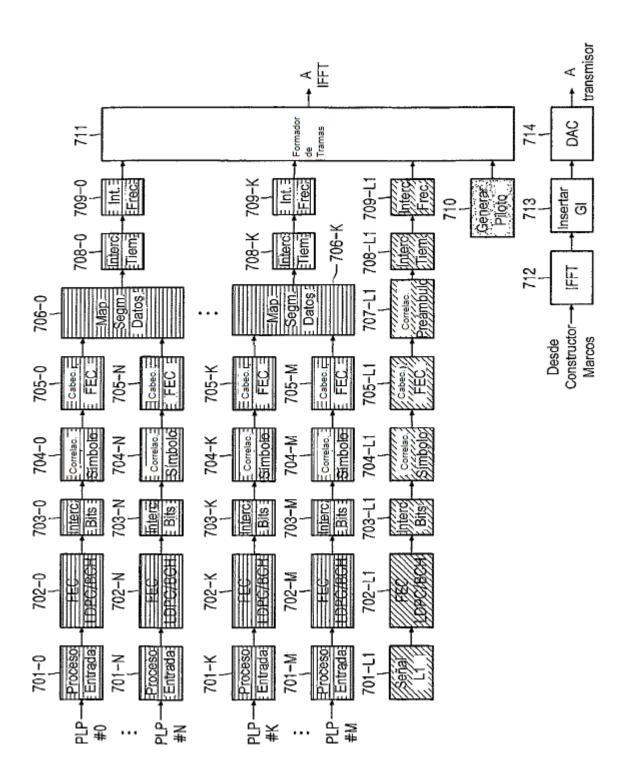
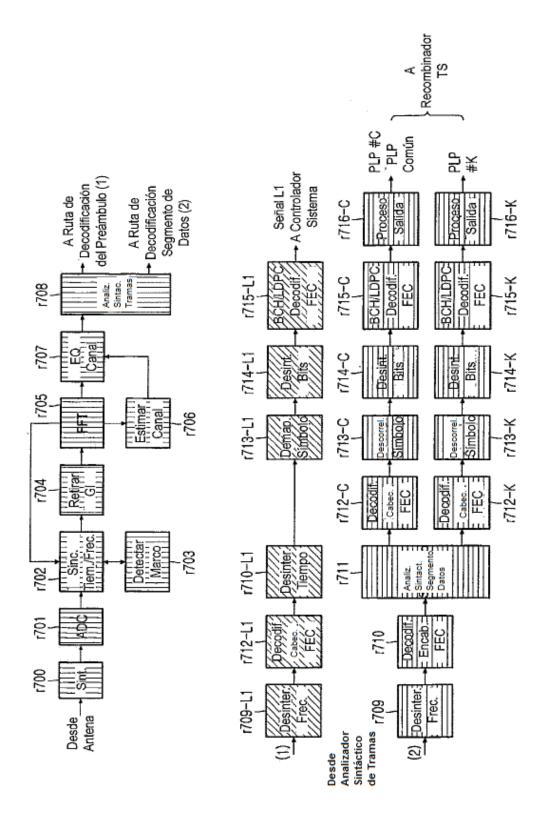
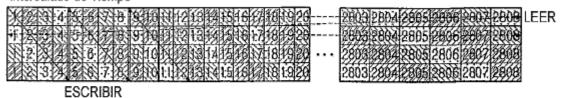




Fig. 114

Fig. 115

(a) Intercalado de Tiempo

(b) Desintercalado de tiempo

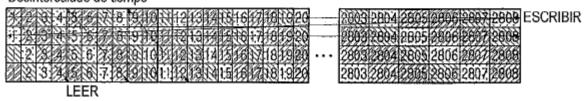


Fig. 116

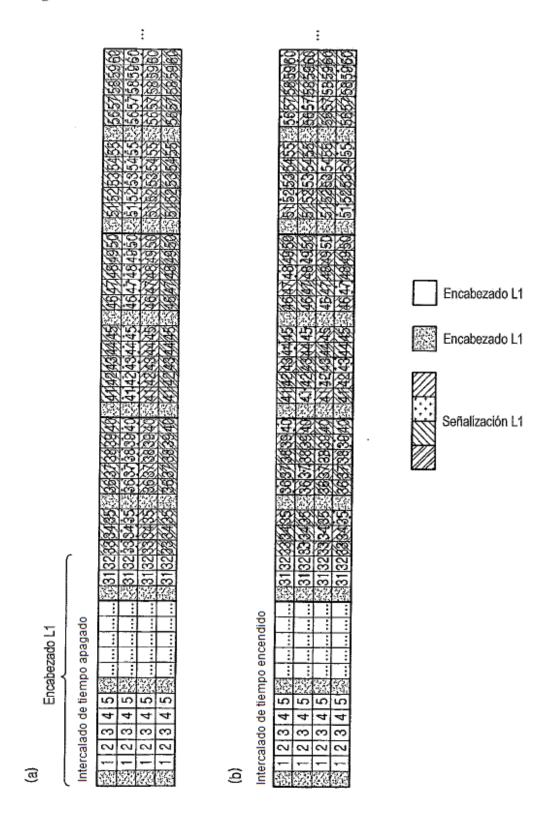


Fig. 117

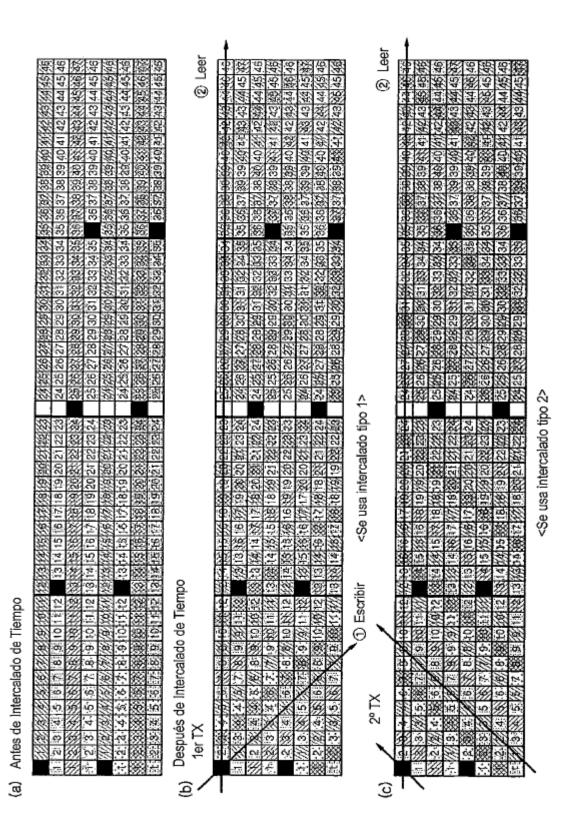


Fig. 118

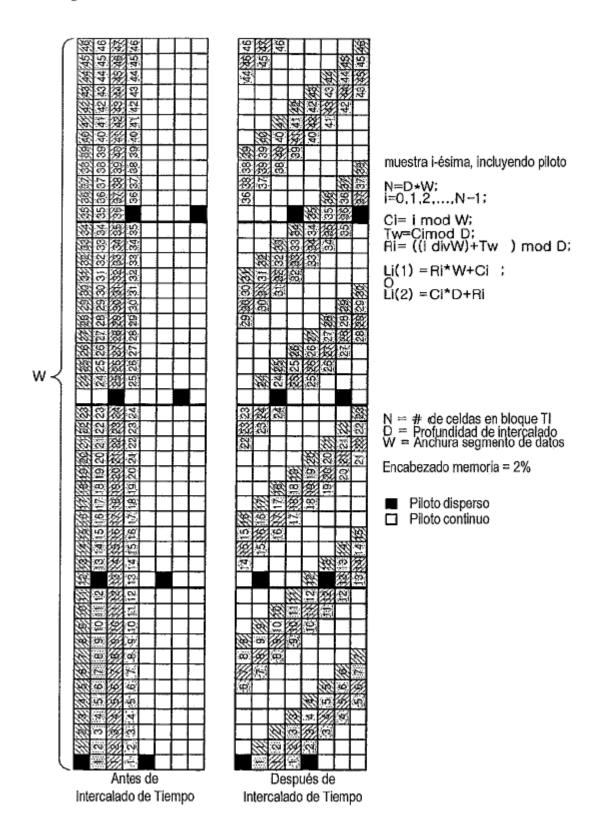


Fig. 119

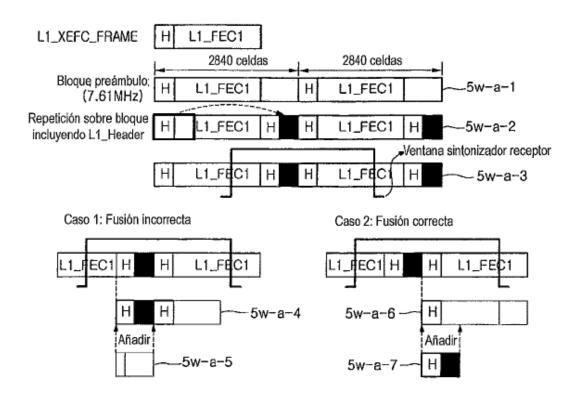


Fig. 120

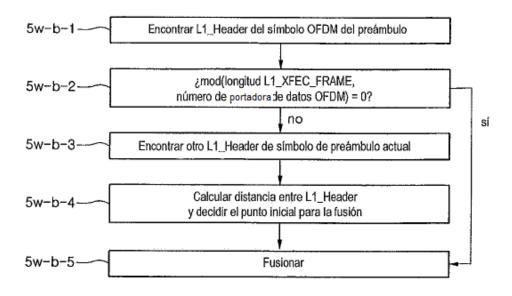


Fig. 121

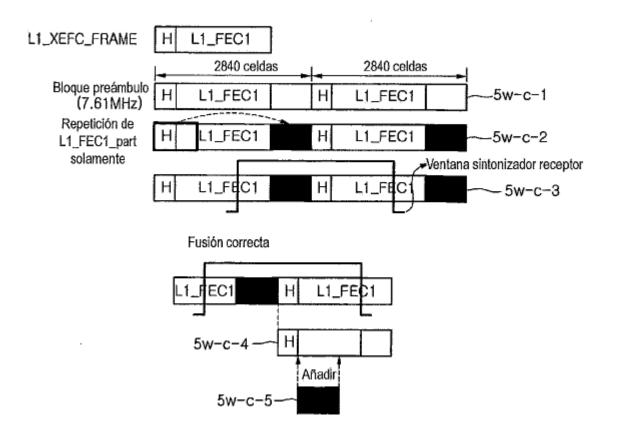


Fig. 122

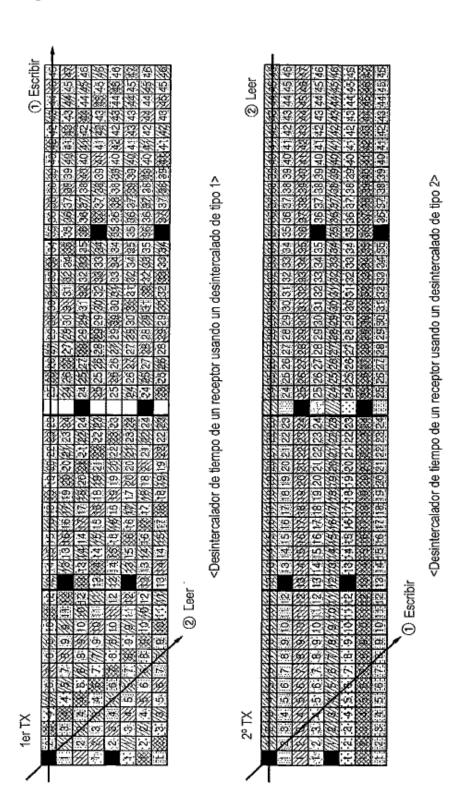


Fig. 123

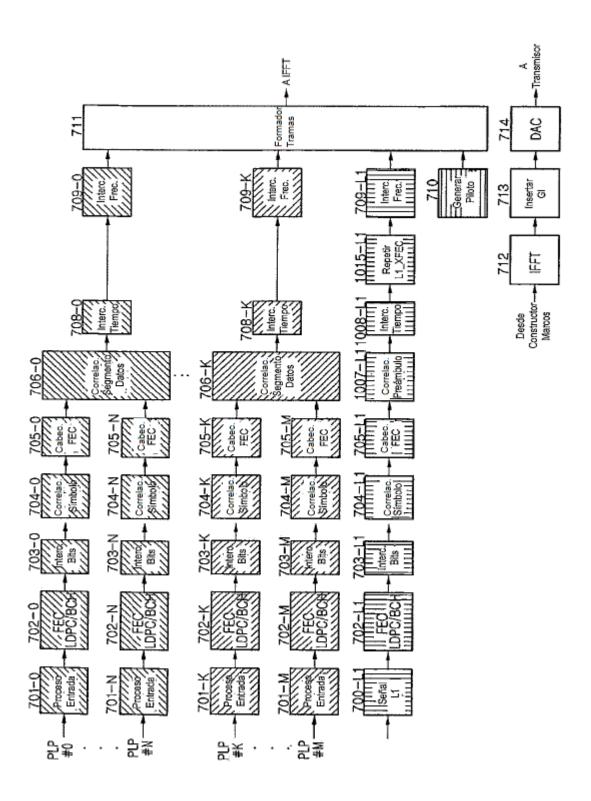


Fig. 124

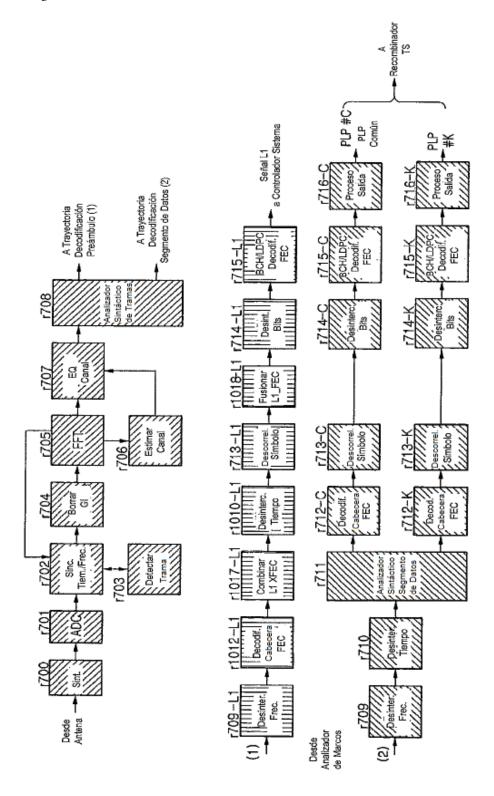


Fig. 125

ı	3	46	深	9				П
1	33	92	666	45		-	-	
1	26	52.	22		-			Н
1	H	70	爱	77	L			Ш
1	8	43	2	43				
1	1	42	32	42			\vdash	П
١	1	-	724		-			Н
1	\mathcal{H}	4	2	4				Ш
١	S)	40	袋	40				
١	8	33	2	8		П	$\overline{}$	
١		8	36	100.	-	Н	Н	-
1	98	38	k 00 66 8	38		ш		ш
1	10	100.0	1662	37				
1	彩客	96	8	36				
	29	32	30.		_	т	М	
١	40.	e,	792	100	_	_		
١	9	34	22	35				
	320	33	多数	34				
	Ž	32	8	· cm				П
	33		383	10.00	-		\vdash	Н
		9	200	32		\Box	-	\sqcup
	8	3	ts)	85				
	86	29	多	ଚ				П
	*	28	2	28	_		\neg	\vdash
	33	42	쏬	2	_	-		
		27	8	28		Ш		Ш
	翁	26	200	27				
	10	25	98	26				
١	86	24	8	25	\vdash			Н
	350	Ω	\mathfrak{D}_{ℓ}	ev.	-	-		
					_		_	Ш
İ	200	23	数	24				
1	1	22	窓	23				\Box
	33.	1	8	22	-	-	-	-
١	統	2	777					
ı	1	20	24	21	_	ш		
1	30	6	8	20				
ı	80	8	200	Ġ,			П	\Box
١	3	7	200	8	-	\vdash		
١	755	300	37/	12	_	ш	_	\vdash
	160	16	\mathscr{L}	17				
	33	5	#	9				
	#	4	65	u)		_	Н	Н
			447	and Service	-			-
		92	94	20	_			Ш
	2		22	35				
	14	2	22	12				
	8	15175	\widetilde{Z}	100	-	\vdash	\vdash	Н
	12	*	44	=	-	-		\vdash
	777	30	14	9				
	35	o,	弼	Ġ.				
	12	60	166	œ				П
	77	1000	#	20	-	-	-	Н
1	14	1776	77/	10	_	Ш		Н
	165	œ	39	ø			_	
	32	ur)	149	ψń.				П
	22		10	· · · · /	-	\vdash		H
ı. A	77.5		\mathscr{H}	100				
		co:	1921	က	_			Ш
	100		440	7	ı			
	<i>12</i> (4)	N	88	2				
	177	3	(8) (2)	2			Н	Н

Intercalado de tiempo APAGADO

12	9	П				19
12	-2º.	┝┈┥		-	324	53
SF.					1	14
1.74	-	\vdash		1	100	72
		}		14	+	55
	-	_	30%	8	100	748 X
		Li	14	est.	19	,4
		SON	.cu	ख्य	S	
_ :	L	340	4	25/	,5T.	_
	34	1865	45	27		
	14	.35	222	4	_	_
100	0	140	0			
140	7	2T	7	_	_	_
တ္တ.	12	6				
200	22/	-	_	-	-	1
22	188				١.	窓
227	1000	_	-	\vdash	1227	*
· 63	Ι.				1997	65
12	-		_	200	100	12
1 1	1			1.0	60	7883
$\overline{}$	$\overline{}$		575	3	to	
			100	m.	100	
		4	1413	10	íO.	
		20	on.	郊	m	
	Odra-	60	155	73.1	-	
	10%	3	100	Ė	L	L
34	ÇV.	100	3		_	ļ —
10,	co.	ARV	(0)		\perp	_
1000	250	O.				
.02	153	18 O i	_		\vdash	
(H)				i		92930
144	4525		_	-	1	177
8					135%	183
P 145	\vdash			See .	500	77
				83	Ñ	180
_		_	720		80	28/38
Li	L :		100	CV	30	Ø
		300	Q)	100	40.77	_
		111	N.	250	3	L
	163	5	10	40.		
	CO.	S.	2M	Ç,	\vdash	\vdash
12	N.	1500	60		1	
150	530	222	nell.	ш		\vdash
						1
22				\vdash	_	
13	1	1	l I			83
224	(SM)	_	-	۳	35.55	450
83					121	N
400		-		222	-	122
				32	Š.	148
-		-	355		12	7
			100	N	20	2
		255	(D)	(25	1	
\Box		32	7	280	NO.	L
	160	00	164	60		
	14	1700C	H	-		_
190	15.	166	80		-	_
1777	400	141	(-1)	\vdash	\vdash	-
90	14	1				
77	17.1	27.3	-			
09)	9					13.0
77.4	150	-	\vdash	_	1300	32
42					220	350
	_	_	_	2322		12
		L		32	200	12
			257		10	ión
			127		174	13
		727	67	141	180	-
		14	12	**	12	L
	257	藥	14		_	
$\overline{}$		2000	149	4	L.,	L
	22	中国 (10.5.5)			_	
222	55.	10	Ó			
34	E 01	72	O.			L
180	101	2	ΦĒ		\vdash	⊢
18 6	10178	016	ΦĒ			L
720	01/08/16	2	9.0			22
720	01 8 8	2	0E			130
720	8 10 10	2	96		22	111 2
#/	101 (8) (8)	2	9.0		390	14.12
<i>(</i> 4)	18 18 10 18	2	90		6.00	W 1 W
<i>(</i> 4)	90188	2	<u> </u>	186	198,9	第7
720	19 (A) (A)	2	新	26.35	19 19 18 19 19 18	5.86.7
<i>(</i> 4)	(4) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	2	題	200	M9 18	多多7
<i>(</i> 4)	到018年	2		第8	98.9	30.24.26.3
<i>(</i> 4)	(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2	99	第2	96.9	13.000000000000000000000000000000000000
<i>(</i> 4)	MODEL DE LE	2	M. 4.86	3 () () () ()	16 18 6 186 pt	30000000000000000000000000000000000000
<i>(</i> 4)	901808	2		3,3,3,5,3	18 9 PM	10000000000000000000000000000000000000
<i>(</i> 4)	2 (2)	2	2000年1月19日	3.1% 5.1%	189 9 (No. 1)	10000000000000000000000000000000000000
<i>(</i> 4)	第018年11日 18日本10日	2	96 分析之	33.00	189 9 (A) b	1000年1000年100日
	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(8) (1) (1) (1) (2) (2) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(B)	15 (24 (24 (24 (24 (24 (24 (24 (24 (24 (24	15 15 15 15 15 15 15 15	15 15 15 15 15 15 15 15

Intercalado de tiempo ENCENDIDO

Fig. 126

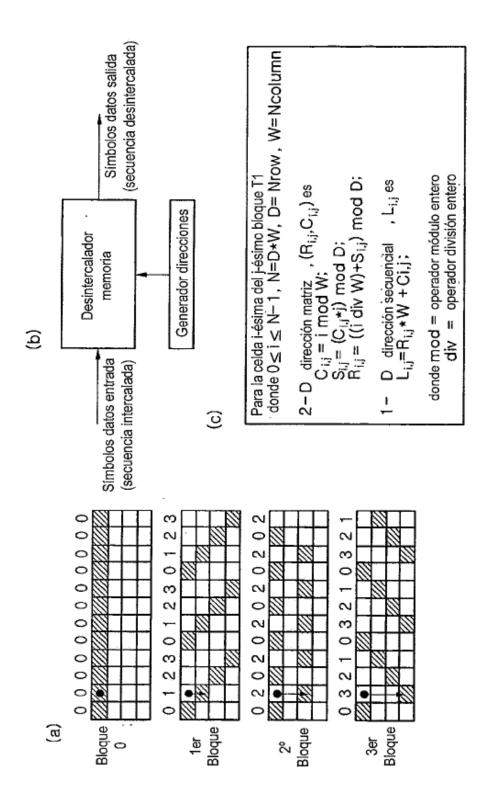


Fig. 127

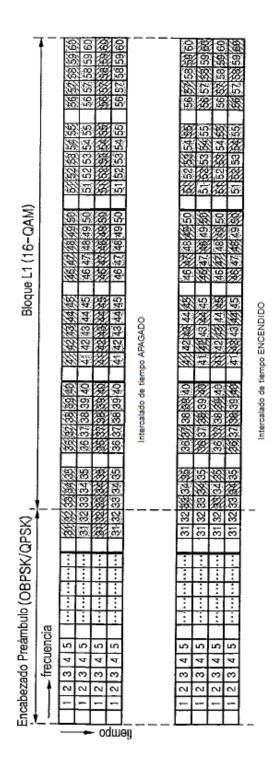


Fig. 128

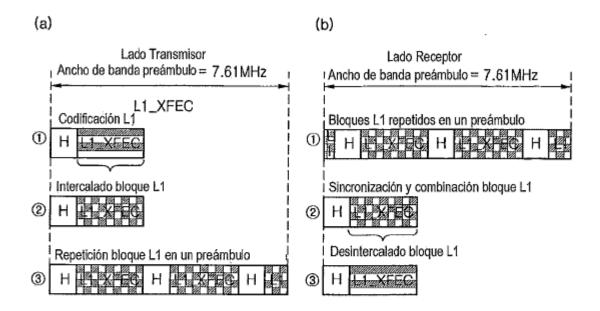


Fig. 129

Valor	Profundidad TI	
00	No TI	Cuanda on usa TI flog (4 hif)
01	Mejor Encaje	Cuando se usa TI_flag (1 bit)
10	4 Símbolos OFDM	TI para bloque L1 corto
11	8 Símbolos OFDM	Para mejor rendimiento TI

Fig. 130

(a) Señalización y estructura de cabecera

N o	Características clave	Campos de señalización	Relleno	Rendimiento PER Cabecera L1	Rendimiento TI Bloque L1	Carga Adicio- nal
1	solamente bandera TI encendido/apagado	L1 (15), TI (1), no CRC	No	Normal	Malo para blo- que L1 corto	No
2	L1_size_bits / 8	L1 (12), TI (2), CRC (2)	Max 7 bits	Mejor	Bueno	No
3	L1_size_cells	L1 (13), TI (2), CRC (1)	Max 3 bits	Bueno	Bueno	No
4	L1_size_bits por simbolo	L1 (13), TI (2), CRC (1)	Max 4 bits	Bueno	Bueno	No
5	L1_size_cells por símbolo	L1 (11), TI (2), CRC (2), Rfu(1)	Max 19 bits	Mejor	Bueno	No
6	Dos cabeceras (32 bils)	L1 (15), TI (2), CRC (4), Rfu (11)	No	Mejor	Bueno	0.01% (inapre- ciable)

(b) Método de relleno

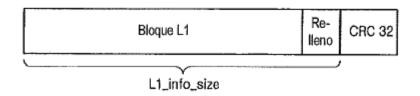


Fig. 131

Campo	Bits	Descripción
num_chbon		número de canales unidos
num_dslice	8	número de segmentos de datos
num_notch	4	número de bandas de muesca
for i=0num_dslice-1 {	1	
dslice_id	8	identificador de segmentos de datos
dslice_start	12	inicio de segmento de datos en canal C2 (Max 64 MHz)
dslice_width	9	anchura del segmento de datos (Máx 7,61 MHz)
dslice_ti_depth	2	profundidad del intercalador de tiempo
dslice_type	1	tipo de segmento de datos (tipo 1, tipo 2)*
dslice_pwr_allocation	2	asignación potencia segmento de datos
num_plp	8	número de PLPs
for i=0 .num_plp~1 {		
plp_id	8	identificador PLP
plp_type	-1	tipo PLP (común/datos)
PSI/SI reprocessing	1	bandera reprocesamiento PSP/SI
plp_payload_type	5	tico carga PLP (TS, GS,)
if dslice_type=='0' {	1.	
plp_modcod	5	modulación/codificación PLP
plp_start_addr	14	dirección inicio PLP
}		
}		
}		
for i=0num_notch=1{		
notch_start		início de banda de muesca con canal C2 (Máx 64MHz)
notch_width	9	anchura de banda de muesca (Máx 7,61 MHz)
}		11 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1
gi .	2	modo de intervalo de guarda
num_data_symbols	10	número de símbolos OFDM de datos por marco C2
num_c2_frames	8	número de tramas C2 por supertrama
frame_idx	8	índice de trama C2 en una supertrama
PAPR	1	bandera PAPR
reserved		reservado para uso futuro
crc32	32	CRC32

*tipo 1: PLP único con CCM

*tipo 2: Otros

Fig. 132

dslice_ti_depth	Prof. TI
100	1
'01'	4
10'	8
'11'	16

Fig. 133

dslice_type	tipo
"0"	PLP único con CCM
a11	Otros

Fig. 134

plp_type	tipo
"0"	plp común
⁶ 1°	plp datos

Fig. 135

plp_payload_type	tipo de carga
"00000"	GFPS
*00001	GCS
"00010"	GSE
'00011'	TS
otros	reservado uso futuro :

Fig. 136

plp_modcod	Modulación	índice código	bloque LDPC
"00000"	16QAM	AIE	largo
"00001"		4/5	corto
"00010"		9/10	largo
"00011"		8/9	corto
"00100"		0.10	largo
"00101"		2/3	corto
"00110"	CADAM	AIE	largo
"00111"	64QAM	4/5	corto
"01000"		9/10	largo
_"01001"		8/9	corto
"01010"	0500411		largo
"01011"		3/4	corto
"01100"		F IO	largo
"01101"	256QAM	5/6	corto
"01110"		9/10	largo
"01111"		8/9	corto
"10000"			largo
"10001"		3/4	corto
"10010"	1004044	E IC	largo
"10011"	1024QAM	5/6	corto
"10100"		9/10	largo
"10101"		8/9	corto _
10110	4096QAM		largo
"10111"		5/6	corto
"11000"		9/10	largo
"11001"		8/9	corto
otros	reservado uso futuro	reservado uso futuro	reservado uso futuro

Fig. 137

gi	valor
"00"	1/128
"01"	1/64
otros	reservado uso futuro

Fig. 138

PAPR	valor
"O"	activar
b II	desactivar

Fig. 139

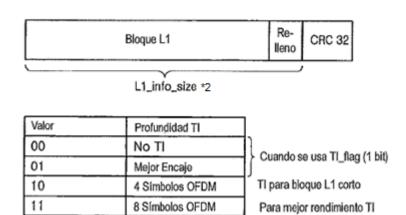
Campo	Dita	December
network_id	Bits	Descripción ID de la red DVB-C2 actual
c2_system_id		ID del sistema C2 en la red DVB-C2
C2_signal_start_frequency		frecuencia inicio señal C2
C2_signal_star_frequency	22	frecuencia parada señal C2
num_chbon		número de canales unidos
num_dslice		número de canales unidos número de segmentos de datos
num_notch		número de segmentos de datos
for i=0num_dslice-1 {	4	numero de bandas de muesca
dslice_id	l g	identificador segmento de datos
dslice_start	12	inicio segmento de datos en canal C2 (max 64MHz)
dslice_width	16	anchura de segmento de datos (Max 7,61MHz)
dslice_ti_depth	2	profundidad intercalador de tiempo
dslice_type		tipo segmento de datos (tipo 1, tipo 2)*
dstice_pwr_allocation		asignación potencia segmento de datos
reserved_1		reservado para uso futuro
num_plp	Ř	número de PLPs
for i=0num_plp-1 {	ľ	Training do 1 El o
plp_id	R	identificador PLP
plp_type	2	tipo PLP (datos comunes/normales/agrupados)
if plp_type=='common' or 'grouped' {		apple at the teacher and the teacher
plp_group_id	8	identificador grupo PLP
. }		, and the same of
plp_payload_type	5	tipo carga PLP (TS, GS,)
PSI/SI reprocessing		bandera reprocesamiento PSP/SI
reserved_2	0	reservado para uso futuro
if dslice_type=='0' {		
plp_modcod	5	modulación/codificación PLP
plp_start_addr	14	dirección inicio PLP
} -		
}	l	
[}		
for i=0num_notch-1 {		
notch_start	12	inicio banda de muesca en canal C2 (max 64MHz)
notch_width	9	anchura de banda de muesca (Max 7,61MHz)
[}	ı	
gi	2	modo intervalo de guarda
num_data_symbols		número de símbolos OFDM de datos por marco C2
num_c2_frames		número de tramas C2 por supertrama
frame_idx		número de trama C2 en una supertrama
PAPR		bandera PAPR
reserved_3		reservado para uso futuro
crc32	32	CRC32

*típo 1: PLP único con CCM

*tipo 2: Otros

Fig. 140

plp_type	tipo
"00"	plp común
"01"	plp datos normal
"10"	plp datos agrupado
otros	reservado uso futuro


Fig. 141

Comme	0.14	6
Campo	Bits	
network_id	16	ID de la red DVB-C2 actual
c2_system_id	16	ID del sistema C2 en la red DVB-C2
C2_signal_start_frequency		frecuencia inicio señal C2
num_chbon		número de canales unidos
num_dslice	8	número de segmentos de datos
num_notch	4	número de bandas de muesca
for i=0num_dslice-1 {	ı	
dslice_id	8	identificador segmento de datos
dslice_start	12	inicio segmento dedatos en canal C2 (max 64MHz)
dslice_width	112	anchura de segmento de datos (Max 6/MHz)
dslice_ti_depth	2	profundidad intercalador de tempo
dslice_type	1	tipo segmento de catos (tipo 1, tipo 2)*
num_plp	8	número de PLPs
reserved 1	١ŏ	reservado para uso futuro
for i=0num_plp=1 {	ľ	
plp_id	۹	identificador PLP
plp_type		tipo PLP (datos comunes/normales/agrupados)
if plp_type=='common' or 'grouped' {	۱ ٔ	upo F EF (datos confunes/non alesiagrupados)
plp_group_id	l a	identificador grupo PLP
l I	ľ	identificação grapor El
PSI/SI reprocessing	١,	bandera reprocesamiento PSP/S
plp_payload_type		tipo de carga útil PLP (TS, GS,)
reserved_2		reservado para uso futuro
if dslice_type=='0' {	·	leselvand bara rist Tritolo
		modulación/codificación PLP
plp_modcod		
plp_start_addr	14	dirección inicio PLP
] ,}		
, 1		
1		
for i=0num_notch-1 {		(-(-)- b
notch_start		inicio banda de muesca en canal C2 (max 64MHz)
notch_width	9	anchura de banda de muesca (Max 7,61MHz)
[F		
[gi	2	modo intervalo de guarda
PAPR	1	bandera PAPR
reserved_3	0	reservado para uso futuro
crc32	32	CRC32
Total	221	

tipo 1: PLP unico con CCM

tipo 2: Otros

Fig. 142

