

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 396 057

61 Int. Cl.:

C12N 15/52 (2006.01) C12N 15/81 (2006.01) C12N 9/90 (2006.01) C12N 9/02 (2006.01) C12P 33/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 22.01.2003 E 03701537 (7)
 (97) Fecha y número de publicación de la concesión europea: 19.09.2012 EP 1472354
- (54) Título: Procedimiento para la fabricación de 7-dehidrocolesterol en organismos transgénicos
- (30) Prioridad:

29.01.2002 DE 10203352

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 18.02.2013

(73) Titular/es:

ORGANO BALANCE GMBH (100.0%) GUSTAV-MEYER-ALLEE 25 13355 BERLIN, DE

(72) Inventor/es:

LANG, CHRISTINE y VEEN, MARKUS

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Procedimiento para la fabricación de 7-dehidrocolesterol en organismos transgénicos

5

10

20

35

40

La presente invención se refiere a un procedimiento para la fabricación de 7-dehidrocolesterol mediante el cultivo de organismos, en particular, levaduras. Asimismo, la invención se refiere a los constructos de ácidos nucleicos que se necesitan para la fabricación de organismos genéticamente modificados, así como a los organismos genéticamente modificados, en particular, las levaduras mismas.

El 7-dehidrocolesterol, también denominado colesta-5,7-dienol o provitamina D3, así como sus productos intermedios biosintéticos del metabolismo de los esteroles, como el zimosterol, el farnesol, el geraniol, el escualeno, el lanosterol, el colesta 5,7,24-trienol y el colesta 5,7,22,24-tetraenol, y sus productos secuenciales biosintéticos del metabolismo de los esteroles, como la vitamina D3 y el colesterol, son compuestos con un alto valor económico.

La importancia económica del 7-dehidrocolesterol estriba sobre todo en la obtención de vitamina D3 a partir de 7-dehidrocolesterol a través de radiación UV.

Así pues, disponer de un procedimiento rentable para la fabricación de 7-dehidrocolesterol tiene una enorme importancia.

Son procedimientos especialmente rentables los procedimientos biotecnológicos que aprovechan los organismos optimizados mediante una modificación genética que fabrican 7-dehidrocolesterol.

Mientras que el metabolismo de los esteroles en bacterias, hongos, levaduras y algunos insectos conduce esencialmente de zimosterol a ergosterol (provitamina D2) a través de fecosterol, episterol, ergosta-5,7-dienol y ergosta-5,7,22,24-tetraen-3β-ol, el metabolismo de los esteroles en mamíferos conduce esencialmente de zimosterol a 7-dehidrocolesterol (provitamina D3) a través de colesta-7,24-dienol y latosterol.

El 7-dehidrocolesterol (provitamina D3) se transforma en colesterol a través de la 7-dehidrocolesterol reductasa y el colesterol, en hormonas esteroideas, corticoides y ácidos biliares como la progesterona, la testosterona, el estradiol, la aldosterona, la cortisona y el colato.

Algunos genes del metabolismo del 7-dehidrocolesterol en mamíferos son conocidos y están clonados, como por ejemplo

ácidos nucleicos que codifican una $\Delta 8$ - $\Delta 7$ -isomerasa humana (también llamada proteína de fijación al emopamilo o EBP), ACCESSION NM_006579 y una $\Delta 8$ - $\Delta 7$ -isomerasa murina (Braverman, N. et a1., (1999): Mutations in the gene encoding 3beta-hydroxysteroid-delta8,delta7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat.Genet. 22(3), 291-294),

30 ácidos nucleicos que codifican una Δ5-desaturasa humana (también llamada esterol-C5-desaturasa), ACCESSION AB016247 y una Δ5-desaturasa murina (Nishi, S. et al., (2000): cDNA cloning of the mammalian sterol C5-desaturase and the expression in yeast mutant. Bio-chim. Biophys. Acta 1490 (1-2), 106-108),

ácidos nucleicos que codifican una $\Delta 24$ -reductasa humana (también llamada 24-dehydrocolesterol reductasa o DHCR24), ACCESSION NM_014762 y una $\Delta 24$ -reductasa murina (Waterham, H.R. et al. (2001): Mutations in the 3beta-hydroxysterol De1ta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am.J.Hum.Genet.69(4), 685-694) y

acidos nucleicos que codifican una esterol-aciltransferasa humana (Chang, C. C. et al., Molecular cloning and functional expression of human acyl-coenzyme A: cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells, J. Biol. Chem. 1993, Oct 5;268(28): 20747-55) y una esterol-aciltransferasa murina (Uelman, P.J.: Tissue-specific expression and cholesterol regulation of acylcoenzyme A: cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro, J. Biol. Chem. 1995 Nov 3;270(44):26192-201).

Los genes del metabolismo del ergosterol son ampliamente conocidos y están clonados, como por ejemplo

- ácidos nucleicos que codifican una $\Delta 8$ - $\Delta 7$ -isomerasa (ERG2) (Ashman, W.H. et al. (1991): Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids. Aug; 26(8): 628-32.),
- ácidos nucleicos que codifican una Δ 5-desaturasa (ERG3) (Arthington, B.A. et a1. (1991): Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene. Jun 15; 102(1): 39-44.),
- 5 ácidos nucleicos que codifican una Δ24-reductasa (ERG 4) (Lai. M.H. et a1., (1994); The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene.Mar11;140(1):41-9.),
 - ácidos nucleicos que codifican una HMG-CoA-reductasa (*HMG*) (Bason M.E. et al, (1988) Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limting enzyme of sterol biosynthesis. Mol Cell Biol 8: 3797-3808),
- 4cidos nucleicos que codifican una HMG-CoA-reductasa truncada (t-HMG) (Polakowski T, Stahl U, Lang C. (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol Biotechnol. Jan; 49(1): 66-71),

15

20

- ácidos nucleicos que codifican una lanosterol-C14-demetilasa (*ERG11*) (Kalb VF, Loper JC, Dey CR, Woods CW, Sutter TR (1986) Isolation of a cytochrome P-450 structural gene from *Saccharomyces cerevisiae*. Gene 45(3):237-45).
- ácidos nucleicos que codifican una escualeno sintetasa (*ERG9*) (Jennings, S.M., (1991): Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci USA. Jul15; 88(14): 6038-42),
- ácidos nucleicos que codifican una esterol-aciltransferasa (SATI) y (SAT2) (Yang, H. :Sterol esterification. in yeast: a two-gene process. Science. 1996 May 31; 272(5266):1353-6), así como otra esterol aciltransferasa (J. Biol. Chem. 1996, Sep 27;271(39):24157-63),
- ácidos nucleicos que codifican una escualeno epoxidasa (*ERG1*) (Jandrositz, A., et al (1991) The gene encoding squalene epoxidase from *Saccharomyces cerevisiae*: cloning and characterization. Gene 107: 155-160),
- ácidos nucleicos que codifican una C24-metiltransferasa (*ERG6*) (Hardwick, K.G. et al.,: SED6 is identical to ERG6, and encodes a putative methyltransferase required for ergosterol synthesis. Yeast. Feb; 10(2): 265-9) y
- 25 ácidos nucleicos que codifican una Δ22-desaturasa (*ERG5*) (Skaggs, B.A. et al.: Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis, Gene.1996 Feb22;169(1):105-9.).
 - Por otro lado, se conocen procedimientos que tienen por objeto un aumento del contenido en productos intermedios específicos y productos finales del metabolismo de los esteroles en levaduras y hongos.
- De la patente EP 486 290 se conoce que el contenido en escualeno y otros esteroles específicos, como es el zimosterol, puede aumentarse en las levaduras aumentando la tasa de expresión de la HMG-CoA-reductasa y, al mismo tiempo, interrumpiendo la ruta metabólica de la zimosterol-C24-metiltransferasa (ERG6) y de la ergosta-5,7,24(28)-trienol-22-dehidrogenasa (ERG5).
- Por T. Polakowski, Molekularbiologische Beeinflussung des Ergosterolstoffwechsels der Hefe Saccharomyces cerevisiae, Shaker Verlag Aachen, 1999, página 59 a 66, se conoce que el aumento de la tasa de expresión de la HMG-CoA-reductasa sola, sin interrupción de la ruta metabólica ulterior como se indica en el documento EP 486 290, conduce solo a un aumento del contenido en esteroles tempranos, así como en escualeno, mientras que el contenido en esteroles posteriores, como el ergosterol, no se modifica de forma significativa, o incluso presenta tendencia a reducirse en el caso del ergosterol.
- 40 El documento WO 99/16886 describe un procedimiento para la fabricación de ergosterol en levaduras que sobreexpresan una combinación de los genes *t*HMG, ERG9, SAT1 y ERG1.

Tainaka et al., J, Ferment. Bioeng. 1995, 79, 64-66, describen también que la sobreexpresión de ERG11 (lanosterol-C14-demetilasa) conduce a un enriquecimiento de 4,4-dimetilzimosterol, pero no de ergosterol. El transformante mostró, frente al tipo silvestre, un contenido en zimosterol aumentado en el factor de 1,1 a 1,47 en función de las condiciones de fermentación.

Avruch et al., Can. J. Biochem 1976, 54(7), 657-665, así como Xu et al, Biochem. Biophys. Res. Commun. 1988, 155(1), 509-517, describen que con una inhibición específica de la C24-metiltransferasa y también con una mutación en el locus erg6 en *S. cerevisiae* se detectan, además de zimosterol, también trazas de colesterol.

De la publicación WO98/45457 se conocen plantas con constructos de ADN que tienen como consecuencia la expresión de una Δ -24-25-reductasa.

10 El objetivo de la presente invención consiste en proporcionar un procedimiento para la fabricación de 7dehidrocolesterol con propiedades ventajosas, como una producción superior.

Por consiguiente, se encontró un procedimiento según la reivindicación 1.

15

30

40

Una actividad aumentada respecto al tipo silvestre, en el caso de que el organismo de partida no presente dicha actividad, indica que la actividad se causa. En el caso de que el organismo de partida presente ya la actividad, una actividad aumentada respecto al tipo silvestre significa una actividad aumentada en un porcentaje.

Se entiende por actividad de la $\Delta 8$ - $\Delta 7$ -isomerasa la actividad enzimática de una $\Delta 8$ - $\Delta 7$ -isomerasa, también llamada $\Delta 8$ - $\Delta 7$ -esterolisomerasa.

Se entiende por una $\Delta 8-\Delta 7$ -isomerasa una proteína que presenta la actividad enzimática de convertir zimosterol en colesta-7.24-dienol.

20 En consecuencia, se entiende por actividad de la $\Delta 8$ - $\Delta 7$ -isomerasa la cantidad de zimosterol convertida o la cantidad formada de colesta-7,24-dienol en un tiempo determinado por la acción de la proteína $\Delta 8$ - $\Delta 7$ -isomerasa.

De este modo, en el caso de una actividad aumentada de la $\Delta 8$ - $\Delta 7$ -isomerasa respecto al tipo silvestre, en comparación con el tipo silvestre, la cantidad convertida de zimosterol o la cantidad formada de colesta-7,24-dienol se ve aumentada en un tiempo determinado por la acción de la proteína $\Delta 8$ - $\Delta 7$ -isomerasa.

Preferiblemente este aumento de la actividad de la Δ8-A7-isomerasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos del 300%, todavía más preferentemente de al menos el 500%, en particular, al menos el 600% de la actividad de la Δ8-A7-isomerasa del tipo silvestre.

Se entiende por actividad de la Δ 5-desaturasa la actividad enzimática de una Δ 5-desaturasa, también llamada latosterol-5-desaturasa o esterol-C5-desaturasa.

Se entiende por una $\Delta 5$ -desaturasa una proteína que presenta la actividad enzimática de convertir colesta-7,24-dienol en colesta-5,7,24-trienol.

En consecuencia, se entiende por actividad de la Δ 5-desaturasa la cantidad de colesta-7,24-dienol convertida o la cantidad formada de colesta-5,7,24-trienol en un tiempo determinado por la acción de la proteína Δ 5-desaturasa.

35 De este modo, en el caso de una actividad aumentada de la Δ5-desaturasa respecto al tipo silvestre, en comparación con el tipo silvestre, la cantidad convertida de colesta-7,24-dienol o la cantidad formada de colesta-5,7,24-trienol se ve aumentada en un tiempo determinado por la acción de la proteína Δ5-desaturasa.

Preferiblemente este aumento de la actividad de la $\Delta5$ -desaturasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos del 300%, todavía más preferentemente de al menos el 500%, en particular, al menos el 600% de la actividad de la $\Delta5$ -desaturasa del tipo silvestre.

Se entiende por actividad de la Δ 24-reductasa la actividad enzimática de una Δ 24-reductasa, también llamada 24-dehidrocolesterol-reductasa.

Se entiende por una Δ24-reductasa una proteína que presenta la actividad enzimática de transformar el doble enlace entre C24 y C25 de los compuestos de colesterol en un enlace simple, como por ejemplo colesta-5,7,24-trienol en 7-dehidrocolesterol o zimosterol en latosterol o colesta-7,24-dienol en colesta-7-enol.

5

10

30

En consecuencia, se entiende por actividad de la Δ 24-reductasa preferiblemente la cantidad de colesta-5,7,24-trienol convertida o la cantidad formada de 7-dehidrocolesterol en un tiempo determinado por la proteína Δ 24-reductasa.

De este modo, en el caso de una actividad aumentada de la $\Delta 24$ -reductasa respecto al tipo silvestre, en comparación con el tipo silvestre la cantidad convertida de colesta-5,7,24-trienol o la cantidad formada de 7-dehidrocolesterol se ve aumentada en un tiempo determinado por la acción de la proteína $\Delta 24$ -reductasa.

Preferiblemente este aumento de la actividad de la Δ 24-reductasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos del 300%, todavía más preferentemente de al menos el 500%, en particular, al menos el 600% de la actividad de la Δ 24-reductasa del tipo silvestre.

Se entiende por tipo silvestre el organismo de partida correspondiente no modificado genéticamente. Preferiblemente y en particular en los casos en los que el organismo o el tipo silvestre no puede asignarse de forma unívoca, se entiende por tipo silvestre un organismo de referencia para el aumento de la actividad de la Δ8-Δ7-isomerasa, el aumento de la actividad de la Δ24-reductasa, la reducción de la actividad de la C24-metiltransferasa que se describe más adelante, la reducción de la actividad de la Δ22-desaturasa que se describe más adelante, el aumento de la actividad de la HMG-CoA-reductasa que se describe más adelante, el aumento de la actividad de la lanosterol-C14-demetilasa que se describe más adelante, el aumento de la actividad de la escualeno sintetasa que se describe más adelante y el aumento de la actividad de la esterol-aciltransferasa que se describe más adelante, así como para el aumento del contenido en 7-dehidrocolesterol y/o sus productos intermedios o secuenciales. Este organismo de referencia es preferiblemente la cepa de la levadura *Saccharomyces cerevisiae AH22*.

El aumento de la actividad de la $\Delta 8$ - $\Delta 7$ -isomerasa, la actividad de la $\Delta 5$ -desaturasa y la actividad de la $\Delta 24$ -reductasa, así como de la actividad de la HMG-CoA-reductasa, la actividad de la lanosterol-C14-demetilasa, la actividad de la escualeno epoxidasa, la actividad de la escualeno sintetasa y la actividad de la esterol-aciltransferasa que se describe más adelante puede seguir diferentes vías de manera independiente entre sí, por ejemplo, desactivando los mecanismos de regulación inhibidores en el nivel de expresión o de proteínas, o mediante el aumento de la expresión génica de los ácidos nucleicos correspondientes, es decir, ácidos nucleicos que codifican una $\Delta 8$ - $\Delta 7$ -isomerasa, una $\Delta 5$ -desaturasa, una $\Delta 24$ -reductasa, una HMG-CoA-reductasa, una lanosterol-C14-demetilasa, una escualeno epoxidasa, una escualeno sintetasa o una esterol-aciltransferasa frente al tipo silvestre.

35 El aumento de la expresión génica de los ácidos nucleicos correspondiente frente al tipo silvestre también puede tener lugar a través de diferentes vías, por ejemplo, mediante la inducción de los genes correspondientes a través de activadores, a saber mediante la inducción del gen de Δ8-Δ7-isomerasa, del gen de Δ5-desaturasa, del gen de Δ24-reductasa, del gen de HMG-CoA-reductasa, del gen de lanosterol-C14-demetilasa, del gen de escualeno epoxidasa, del gen de escualeno sintetasa o del gen de esterol-aciltransferasa a través de activadores o mediante la incorporación de una o varias copias génicas de los ácidos nucleicos correspondientes, es decir, mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una Δ8-Δ7-isomerasa, una Δ5-desaturasa, una Δ24-reductasa, una HMG-CoA-reductasa, una lanosterol-C14-demetilasa, una escualeno epoxidasa, una escualeno sintetasa o una esterol aciltransferasa.

Por aumento de la expresión génica de un ácido nucleico que codifica una $\Delta 8$ - $\Delta 7$ -isomerasa, una $\Delta 5$ -desaturasa, una $\Delta 24$ -reductasa, una HMG-CoA-reductasa, una lanosterol-C14-demetilasa, una escualeno epoxidasa, una escualeno sintetasa o una esterol-aciltransferasa se entiende también según la invención la manipulación de la expresión de las $\Delta 8$ - $\Delta 7$ -isomerasas, $\Delta 5$ -desaturasas, $\Delta 24$ -reductasas, HMG-CoA-reductasas, lanosterol-C14-

demetilasas, escualeno epoxidasas, escualeno sintetasa o esterol-aciltransferasas endógenas propias del organismo, en particular propias de las levaduras.

Esto puede conseguirse, por ejemplo, cambiando la secuencia promotora del ADN para genes que codifican $\Delta 8$ - $\Delta 7$ -isomerasa, $\Delta 5$ -desaturasa, $\Delta 24$ -reductasa, HMG-CoA-reductasa, lanosterol-C14-demetilasa, escualeno epoxidasa, escualeno sintetasa o esterol-aciltransferasa. Una modificación de este tipo, que tiene como consecuencia una alta tasa de expresión del gen correspondiente, puede tener lugar por ejemplo mediante la deleción o la inserción de secuencias de ADN.

5

10

15

30

35

Como se ha descrito antes, es posible modificar la expresión de la $\Delta 8-\Delta 7$ -isomerasa, $\Delta 5$ -desaturasa, $\Delta 24$ -reductasa, HMG-CoA-reductasa, lanosterol-C14-demetilasa, escualeno epoxidasa, escualeno sintetasa o esterol-aciltransferasa endógenas mediante la aplicación de estímulos exógenos. Esto puede tener lugar mediante condiciones fisiológicas, es decir, mediante la aplicación de sustancias externas.

También puede conseguirse una expresión modificada o aumentada de los genes de $\Delta 8-\Delta 7$ -isomerasa, $\Delta 5$ -desaturasa, $\Delta 24$ -reductasa, HMG-CoA-reductasa, lanosterol-C14-demetilasa, escualeno epoxidasa, escualeno sintetasa o esterol-aciltransferasa endógenas haciendo que una proteína reguladora no existente en el organismo no transformado entre en interacción con el promotor de estos genes.

Tal regulador puede representar una proteína quimérica, que consta de un dominio de enlace de ADN y un dominio activador de la transcripción, como se describe, por ejemplo, en el documento WO 96/06166.

En una realización preferida el aumento de la actividad de la $\Delta 8$ - $\Delta 7$ -isomerasa respecto al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una $\Delta 8$ - $\Delta 7$ -isomerasa.

20 En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una $\Delta 8-\Delta 7$ isomerasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una $\Delta 8-\Delta 7$ -isomerasa.

Para ello, básicamente puede utilizarse cualquier gen de $\Delta 8-\Delta 7$ -isomerasa, es decir, cualquier ácido nucleico que codifique una $\Delta 8-\Delta 7$ -isomerasa.

25 En el caso de secuencias genómicas Δ8-Δ7-isomerasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el organismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la Δ8-Δ7-isomerasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de genes de Δ8-Δ7-isomerasa son ácidos nucleicos que codifican una Δ8-Δ7-isomerasa murina (ácido nucleico: SEQ. ID. nº 1, proteína: SEQ. ID. nº 2) o una Δ8-Δ7-isomerasa humana (ácido nucleico: SEQ. ID. nº 3, proteína: SEQ. ID. nº 4) (Braverman,N. et al.,(1999): Mutations in the gene encoding 3beta-hydroxysteroid-delta8, delta7-isomerase cause X-linked dominant Conradi-Hunermann syndrome, Nat. Genet. 22 (3), 291-294), pero también ácidos nucleicos que codifican proteínas que, por ejemplo, en virtud de una amplia especificidad del sustrato muestran la actividad de una Δ8-Δ7-isomerasa, como por ejemplo ácidos nucleicos que codifican una C8-isomerasa de *Saccharomyces cerevisiae (ERG2)*, (ácido nucleico: SEQ. ID. nº 5, proteína: SEQ. ID. nº 6), (Ashman, W.H. et al. (1991): Cloning and disruption of the yeast C-8 sterol isomerase gene.Lipids.Aug;26(8):628-32.).

En los organismos transgénicos según la invención existe así en esta realización preferida frente al tipo silvestre al menos otro gen de $\Delta 8$ - $\Delta 7$ -isomerasa.

El número de genes de Δ8-Δ7-isomerasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, de manera especialmente preferente más de tres, preferentemente del todo más de cinco.

Todos los ácidos nucleicos mencionados en la descripción pueden ser, por ejemplo, una secuencia ARN-ADN o una secuencia de ADNc.

Son genes de $\Delta 8-\Delta 7$ -isomerasa preferidos los ácidos nucleicos que codifican proteínas que presentan una alta especificidad de sustrato para zimosterol. En consecuencia se prefieren en particular genes de $\Delta 8-\Delta 7$ -isomerasa y las $\Delta 8-\Delta 7$ -isomerasas correspondientes de animales mamíferos y sus equivalentes funcionales.

En consecuencia, en el procedimiento descrito aquí se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 2 o una secuencia derivada de esta secuencia mediante sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30%, preferiblemente al menos el 50%, más preferentemente al menos el 70%, aún más preferentemente al menos el 90% y más preferentemente del todo el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 2, y que presentan la propiedad enzimática de una Δ8-Δ7-isomerasa.

10 La secuencia SEQ. ID. nº 2 representa la secuencia de aminoácidos de la Δ8-Δ7-isomerasa de *Mus musculus*.

Otros ejemplos de $\Delta 8-\Delta 7$ -isomerasas y genes de $\Delta 8-\Delta 7$ -isomerasa pueden detectarse fácilmente, por ejemplo, a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de aminoácidos correspondientes retrotraducidas a partir de las bases de datos con la SEQ. ID. nº 2.

La $\Delta 8$ - $\Delta 7$ -isomerasa de *Homo sapiens* (SEQ. ID. n° 4) muestra por ejemplo con la $\Delta 8$ - $\Delta 7$ -isomerasa de *Mus musculus* (SEQ. ID. n° 2) una identidad del 74%.

Otros ejemplos de $\Delta 8-\Delta 7$ -isomerasas y genes de $\Delta 8-\Delta 7$ -isomerasa pueden detectarse también de una forma conocida partiendo de la secuencia SEQ. ID. nº 1 a partir de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

Por el concepto "sustitución" se entiende en la descripción el intercambio de uno o varios aminoácidos por uno o varios aminoácidos. Preferentemente se realizan los llamados intercambios conservadores, en los que el aminoácido reemplazado tiene una propiedad similar a la del aminoácido original, por ejemplo, intercambio de Glu por Asp, Gln por Asn, Val por Ile, Leu por Ile, Ser por Thr.

La deleción es la sustitución de un aminoácido por un enlace directo. Son posiciones preferidas para las deleciones los términos del polipéptido y los enlaces entre los diferentes dominios de proteínas.

Las inserciones son incorporaciones de aminoácidos en la cadena de polipéptidos, donde formalmente un enlace directo se sustituye por uno o varios aminoácidos.

Por identidad entre dos proteínas se entiende la identidad de los aminoácidos a través de toda la longitud de la proteína correspondiente, en particular la identidad que se calcula mediante comparación con ayuda del software Lasergene de la empresa DNASTAR, inc. Madison, Wisconsin (EE.UU.), utilizando el método Clustal (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr; 5(2):151-1) ajustando los siguientes parámetros:

Parámetro de alineación múltiple:

5

30

35

40

45

Penalización por huecos	10
Penalización por longitud de los huecos	10
Parámetro de alineación por parejas:	
K-tupla	1
Penalización por huecos	3
Ventana	5
Diagonales salvadas	5

Por una proteína que presenta una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 2, se entiende así una proteína que, en una comparación de su secuencia con la secuencia SEQ. ID. nº 2, en particular según el algoritmo de parámetros anterior con el juego de parámetros anterior presenta una identidad de al menos el 30%.

En otra realización especialmente preferida, para el aumento de la actividad de la $\Delta 8-\Delta 7$ -isomerasa en los organismos se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos de la $\Delta 8-\Delta 7$ -isomerasa de *Mus musculus* (SEQ. ID. nº 2).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos, por ejemplo, mediante la retrotraducción de la secuencia de polipéptidos según el código genético.

5

10

25

30

35

40

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 1.

La secuencia SEQ. ID. nº 1 representa el ADNc de *Mus musculus*, que codifica la $\Delta 8$ - $\Delta 7$ -isomerasa de la secuencia SEQ. ID. nº 2.

Todos los genes de Δ8-Δ7-isomerasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos puede tener lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento
 Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook *et al.* (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

En una realización preferida el aumento de la actividad de la $\Delta 5$ -desaturasa frente al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una $\Delta 5$ -desaturasa.

En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una Δ5-desaturasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una Δ5-desaturasa.

Para ello puede utilizarse en principio cualquier gen de Δ 5-desaturasa, es decir cualquier ácido nucleico que codifique una Δ 5-desaturasa.

En el caso de secuencias genómicas Δ5-desaturasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el organismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la Δ5-desaturasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de genes de Δ 5-desaturasa son ácidos nucleicos que codifican una Δ 5-desaturasa murina (ácido nucleico: SEQ. ID. nº 7, proteína: SEQ. ID. nº 8) o una Δ 5-desaturasa humana (ácido nucleico: SEQ. ID. nº 9, proteína: SEQ. ID. nº 10) (Nishi, S. *et al.*, (2000): cDNA cloning of the mammalian sterol C5-desaturase and the expression in yeast mutant. Biochim. Biophys. Acta, 1490, (1-2), 106-108), pero también ácidos nucleicos que codifican proteínas que, por ejemplo, en virtud de una amplia especificidad de sustrato presentan la actividad de una Δ 5-desaturasa, como por ejemplo los ácidos nucleicos que codifican una C5-desaturasa de *Saccharomyces cerevisiae* (ERG3) (ácido nucleico: SEQ. ID. nº 11, proteína: SEQ. ID. nº 12), (Arthington, B.A. *et al.* (1991): Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene. Jun15; 102(1): 39-44).

Así pues, en los organismos transgénicos según la invención, en esta realización preferida frente al tipo silvestre existe al menos otro gen de $\Delta 5$ -desaturasa.

El número de genes de Δ 5-desaturasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, de manera especialmente preferente más de tres y de manera especialmente preferente del todo más de cinco.

Son genes de Δ 5-desaturasa preferidos ácidos nucleicos que codifican proteínas que presentan una alta especificidad de sustrato para colesta-7,24-dienol. En consecuencia, se prefieren en particular genes de Δ 5-desaturasa y las Δ 5-desaturasas correspondientes de animales mamíferos y sus equivalentes funcionales.

5

10

25

En consecuencia, en el procedimiento descrito aquí se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen las secuencias de aminoácidos SEQ. ID. nº 8 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que muestren una identidad de al menos el 30%, preferiblemente al menos el 50%, más preferentemente al menos el 70%, aún más preferentemente al menos el 90%, y más preferentemente del todo al menos el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 8 y que presentan la propiedad enzimática de una Δ5-desaturasa.

La secuencia SEQ. ID. nº 8 representa la secuencia de aminoácidos de la Δ5-desaturasa de Mus musculus.

Otros ejemplos para Δ5-desaturasas y genes de Δ5-desaturasa pueden detectarse fácilmente por ejemplo a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de ácidos nucleicos correspondientes retrotraducidas de las bases de datos con la SEQ. ID. nº 2.

La $\Delta 5$ -desaturasa de *Homo sapiens* (SEQ. ID. nº 10) muestra por ejemplo con la $\Delta 5$ -desaturasa de *Mus musculus* (SEQ. ID. nº 8) una identidad del 84%.

20 Otros ejemplos de Δ5-desaturasas y genes de Δ5-desaturasa pueden detectarse fácilmente de un modo conocido también por ejemplo a partir de la secuencia SEQ. ID. nº 7 a partir de diversos organismos de secuencia genómica no conocida, mediante hibridación y técnicas de RCP.

Por una proteína que presenta una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 8, se entiende así una proteína que, en la comparación de su secuencia con la secuencia SEQ. ID. nº 8, en particular según el algoritmo de programa anterior con el juego de parámetros anterior, presenta una identidad de al menos el 30%.

En otra realización especialmente preferida, para el aumento de la actividad de la $\Delta 5$ -desaturasa en los organismos se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos de la $\Delta 5$ -desaturasa de *Mus musculus* (SEQ. ID. nº 8).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos por ejemplo mediante la retrotraducción de la secuencia de polipéptidos según el código genético.

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

35 Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 7.

La secuencia SEQ. ID. nº 7 representa el ADNc de *Mus musculus*, que codifica la Δ5-desaturasa de la secuencia SEQ. ID. nº 8.

Todos los genes de Δ5-desaturasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos puede tener

lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook *et al.* (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

5 En una realización preferida el aumento de la actividad de la Δ24-reductasa frente al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una Δ24-reductasa.

En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una $\Delta 24$ -reductasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una $\Delta 24$ -reductasa.

Para ello puede utilizarse en principio cualquier gen de Δ24-reductasa, es decir cualquier ácido nucleico que codifique una Δ24-reductasa.

15

20

35

En el caso de secuencias genómicas $\Delta 24$ -reductasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el organismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la $\Delta 24$ -reductasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de genes de $\Delta 24$ -reductasa son ácidos nucleicos que codifican una $\Delta 24$ -reductasa murina (ácido nucleico: SEQ. ID. nº 13, proteína: SEQ. ID. nº 14) o una $\Delta 24$ -reductasa humana (ácido nucleico: SEQ. ID. nº 15, proteína: SEQ. ID. nº 16), (Waterham, H.R. *et al.*: Mutations in the 3beta-Hydroxysterol Delta24-Reductasa Gene Cause Desmosterolosis, an Autosomal Recessive Disorder of Cholesterol Biosynthesis, Am. H. Hum. Genet. 69 (4), 685-694 (2001)), pero también ácidos nucleicos que codifican proteínas que, por ejemplo, en virtud de una amplia especificidad de sustrato presentan la actividad de una $\Delta 24$ -reductasa, como por ejemplo los ácidos nucleicos que codifican una $\Delta 24$ -reductasa de *Saccharomyces cerevisiae* (ERG4), (ácidos nucleicos: SEQ. ID. nº 17, proteína: SEQ. ID. nº 18), (Lai, M.H. *et al.* (1994): The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene. Mar11; 140 (1): 41-9).

Así pues, en los organismos transgénicos según la invención existe en esta realización preferida frente al tipo silvestre al menos otro gen de $\Delta 24$ -reductasa.

El número de genes de Δ 24-reductasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, especialmente preferiblemente más de tres y de manera especialmente preferible del todo más de cinco.

30 Son genes de $\Delta 24$ -reductasa preferidos los ácidos nucleicos que codifican proteínas que presentan una alta especificidad de sustrato para colesta-5,7,24-trienol. En consecuencia se prefieren en particular genes de $\Delta 24$ -reductasa y las $\Delta 24$ -reductasas correspondientes de animales mamíferos y sus equivalentes funcionales.

Por consiguiente, en el procedimiento aquí descrito se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 14, o bien una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que muestran una identidad de al menos el 30%, preferiblemente de al menos el 50%, más preferentemente al menos 70%, aún más preferentemente al menos el 90%, más preferentemente del todo de al menos el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 14 y que presentan la propiedad enzimática de una Δ24-reductasa.

La secuencia SEQ. ID. nº 14 representa la secuencia de aminoácidos de la Δ24-reductasa de *Mus musculus*.

40 Otros ejemplos de Δ24-reductasas y genes de Δ24-reductasa pueden detectarse fácilmente, por ejemplo, a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de aminoácidos correspondientes retrotraducidas a partir de las bases de datos con la SEQ. ID. nº 14.

La Δ 24-reductasa de *Homo sapiens* (SEQ. ID. nº 16) muestra por ejemplo con la Δ 24-reductasa de *Mus musculus* 45 (IC. sec. nº 14) una identidad del 96%.

Otros ejemplos de Δ 24-reductasas y genes de Δ 24-reductasa pueden detectarse también de una forma conocida partiendo de la secuencia SEQ. ID. nº 13 a partir de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

Por una proteína que presenta una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 14 se entiende en consecuencia una proteína que, en una comparación de su secuencia con la secuencia SEQ. ID. nº 14, en particular según el algoritmo de programa anterior con el juego de parámetros anterior, presenta una identidad de al menos el 30%.

5

10

15

25

30

En otra realización especialmente preferida, para el aumento de la actividad de la $\Delta 24$ -reductasa se incorporan ácidos nucleicos en organismos que codifican proteínas que contienen la secuencia de aminoácidos de la $\Delta 24$ -reductasa de *Mus musculus* (SEQ. ID. nº 14).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos por ejemplo mediante la retrotraducción de la secuencia de polipéptidos según el código genético.

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 13.

20 La secuencia SEQ. ID. nº 13 representa el ADN genómico de *Mus musculus*, que codifica la Δ24-reductasa de la secuencia SEQ. ID. nº 14.

Todos los genes de Δ24-reductasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos puede tener lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook *et al.* (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

En otra realización preferida del procedimiento según la invención se cultivan organismos que, frente al tipo silvestre, aparte de las modificaciones genéticas aquí descritas presentan una actividad reducida de al menos una de las actividades del grupo de la actividad de la C24-metiltransferasa y la actividad de la Δ22-desaturasa.

En otra realización especialmente preferida se cultivan organismos que, frente al tipo silvestre, además de las modificaciones genéticas aquí descritas presentan una actividad reducida de la C24-metiltransferasa y una actividad reducida de la Δ 22-desaturasa.

Por actividad reducida se entiende tanto la actividad reducida como la desactivación completa de la actividad. Una reducción de una actividad abarca así desde una reducción en cantidad de la proteína correspondiente en el organismo hasta la falta completa de la proteína correspondiente, que se comprueba por ejemplo mediante la falta de detección de la actividad enzimática correspondiente o una falta de detección inmunológica de las proteínas correspondientes.

40 Se entiende por actividad de la C24-metiltransferasa la actividad enzimática de una C24-metiltransferasa.

Por una C24-metiltransferasa se entiende una proteína que presenta la actividad enzimática de convertir el zimosterol en fecosterol (ergosta-8,24(28)dienol).

Por consiguiente, por actividad de la C24-metiltransferasa se entiende la cantidad convertida de zimosterol o la cantidad de fecosterol formada en un tiempo determinado por la acción de la proteína C24-metiltransferasa.

De este modo, en el caso de una actividad reducida de la C24-metiltransferasa frente al tipo silvestre, en comparación con el tipo silvestre la cantidad convertida de zimosterol o la cantidad formada de fecosterol se reducen en un tiempo determinado mediante la proteína C24-metiltransferasa.

Preferiblemente esta reducción de la actividad de la C24-metiltransferasa tiene lugar a al menos el 90%, más preferentemente a al menos el 70%, más preferiblemente a al menos el 50%, más preferiblemente a al menos el 30%, más preferiblemente a al menos un 10%, aún más preferiblemente a al menos el 5%, en particular al 0% de la actividad de la C24-metiltransferasa del tipo silvestre. En consecuencia, especialmente preferida resulta una desactivación de la actividad de la C24-metiltransferasa en el organismo.

Por actividad de la Δ 22-desaturasa se entiende la actividad enzimática de una Δ 22-desaturasa.

5

10

35

40

Por una Δ 22-desaturasa se entiende una proteína que presenta la actividad enzimática de convertir ergosta-5,7-dienol en ergosta-5,7,22,24-tetraen-3 β -ol.

Por consiguiente, se entiende por actividad de la Δ22-desaturasa la cantidad convertida de ergosta-5,7-dienol o la cantidad formada de ergosta-5,7,22,24-tetraen-3ß-ol en un tiempo determinado por la acción de la proteína Δ22-desaturasa.

En el caso de una actividad reducida de la Δ 22-desaturasa frente al tipo silvestre, en comparación con el tipo silvestre, la cantidad convertida de ergosta-5,7-dienol o la cantidad formada de ergosta-5,7,22,24-tetraen-3\mathbb{G}-ol se ve reducida en un tiempo determinado por la acción de la proteína Δ 22-desaturasa.

- Preferiblemente esta reducción de la actividad de la Δ22-desaturasa tiene lugar a al menos el 90%, más preferentemente a al menos el 70%, más preferentemente a al menos el 50%, más preferentemente a al menos el 30%, más preferentemente a al menos el 10%, aún más preferentemente a al menos el 5%, en particular al 0% de la actividad de la Δ22-desaturasa del tipo silvestre. Especialmente preferida es, pues, una desactivación de la actividad de la Δ22-desaturasa en el organismo.
- La reducción de la actividad de la C24-metiltransferasa y/o la actividad de la Δ22-desaturasa puede tener lugar de manera independiente entre sí mediante diferentes mecanismos biológicos celulares, por ejemplo, mediante la inhibición de la actividad correspondiente en el nivel de proteínas, por ejemplo mediante la adición de inhibidores de la enzima correspondiente o mediante la reducción de la expresión génica frente al tipo silvestre de los ácidos nucleicos correspondientes que codifican una C24-metiltransferasa o una Δ22-desaturasa.
- 30 En una realización preferida del procedimiento según la invención, la reducción de la actividad de la C24-metiltransferasa y/o la actividad de la Δ22-desaturasa frente al tipo silvestre tiene lugar mediante una reducción de la expresión génica de los ácidos nucleicos correspondientes que codifican una C24-metiltransferasa o una Δ22-desaturasa
 - La reducción de la expresión génica de los ácidos nucleicos que codifican una C24-metiltransferasa o una Δ22-desaturasa, frente al tipo silvestre, también puede tener lugar mediante diferentes vías, por ejemplo, mediante
 - a) la incorporación de secuencias de ácidos nucleicos que pueden transcribirse a una secuencia de ácidos nucleicos antisentido que es capaz de inhibir la actividad de la C24-metiltransferasa y/o la actividad de la Δ 22-desaturasa, por ejemplo, inhibiendo la expresión de C24-metiltransferasa endógena y/o la actividad de la Δ 22-desaturasa.
 - b) la sobreexpresión (que conduce a la cosupresión) de secuencias homólogas de ácidos nucleicos de C24-metiltransferasa y/o Δ22-desaturasa.
 - c) la introducción de mutaciones sin-sentido en el endógeno mediante la introducción de oligonucleótidos de ARN/ADN en el organismo.

- d) la incorporación de factores específicos fijadores del ADN, por ejemplo, factores del tipo de transcripción de dedos de cinc, que provocan una reducción de la expresión génica o
- e) la generación de mutantes "knockout", por ejemplo, con ayuda de mutagénesis de ADN-T o recombinación homóloga.
- 5 En una realización preferida del procedimiento según la invención, la reducción de la expresión génica de los ácidos nucleicos que codifican una C24-metiltransferasa o una Δ22-desaturasa tiene lugar mediante la generación de mutantes "knockout", de manera especialmente preferente mediante recombinación homóloga.
 - Así pues, se utiliza preferentemente un organismo que no presenta ningún gen funcional de C24-metiltransferasa y/o Δ 22-desaturasa.
- 10 En una realización preferida la generación de mutantes "knockout", es decir, la deleción del locus de destino del gen de C24-metiltransferasa y/o de Δ22-desaturasa, con una integración simultánea de un casete de expresión que contiene al menos uno de los ácidos nucleicos descritos antes o a continuación, que codifican una proteína cuya actividad está aumentada en comparación con el tipo silvestre, tiene lugar mediante recombinación homóloga.
- Para ello pueden utilizarse constructos de ácidos nucleicos que, junto a los casetes de expresión que se describen a continuación, que contienen promotor, secuencia codificadora y, en su caso, terminador y, junto a un marcador de selección descrito a continuación en los extremos 3' y 5', contienen secuencias de ácidos nucleicos que son idénticas a las secuencias de ácidos nucleicos al principio y al final del gen que va a someterse a deleción.

20

- Preferiblemente el marcador de selección puede volver a eliminarse después de la selección mediante sistemas de recombinasa, por ejemplo, mediante señales loxP en los extremos 3' y 5' del marcador de selección utilizando una recombinasa Cre (sistema Cre-LoxP).
- En el organismo preferido Saccharomyces cerevisiae el gen de C24-metiltransferasa significa el gen ERG6 (ID sec. nº 19). El SEQ. ID. nº 20 representa la C24-metiltransferasa correspondiente de Saccharomyces cerevisiae (Hardwick, K.G. et al.: SED6 is identical to ERG6, and encodes a putative methyltransferase required for ergosterol synthesis. Yeast. Feb; 10(2); 265-9).
- 25 En el organismo preferido *Saccharomyces cerevisiae* el gen de Δ22-desaturasa significa el gen *ERG5* (SEQ. ID. nº 21). La SEQ. ID. nº 22 representa la Δ22-desaturasa correspondiente de *Saccharomyces cerevisiae* (Skaggs, B.A. *et al.*: Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis, Gene. 1996 Feb22; 169(1):105-9).
- En otra realización preferida del procedimiento según la invención se cultivan organismos que, además de las modificaciones aquí descritas frente al tipo silvestre, presentan una actividad aumentada de al menos una de las actividades, seleccionadas del grupo de actividad de la HMG-CoA-reductasa, la actividad de la lanosterol-C14-demetilasa, la actividad de la escualeno epoxidasa, la actividad de la escualeno sintetasa o la actividad de la esterol aciltransferasa.
- Por actividad de la HMG-CoA-reductasa se entiende la actividad enzimática de una HMG-CoA-reductasa (3-hidroxi-35 metil-glutaril-coenzima-A-reductasa).
 - Por una HMG-CoA-reductasa se entiende una proteína que presenta la actividad enzimática de convertir 3-hidroxi-3-metil-glutaril-coenzima-A-reductasa en mevalonato.
- Por consiguiente, se entiende por actividad de la HMG-CoA-reductasa la cantidad convertida de 3-hidroxi-3-metil-glutaril-coenzima-A o la cantidad formada de mevalonato durante un tiempo determinado por la acción de la proteína HMG-CoA-reductasa.
 - Así pues, en el caso de una actividad aumentada de la HMG-CoA-reductasa frente al tipo silvestre, en comparación con el tipo silvestre la cantidad convertida de 3-hidroxi-3-meil-glutaril-coenzima-A o la cantidad formada de mevalonato se ve aumentada en un tiempo determinado por la acción de la proteína HMG-CoA-reductasa.

Preferiblemente este aumento de la actividad de la actividad de la HMG-CoA-reductasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos el 300%, aún más preferentemente de al menos el 500%, en particular al menos el 600% de la actividad de la HMG-CoA-reductasa del tipo silvestre.

5 Por actividad de la lanosterol-C14-demetilasa se entiende la actividad enzimática de una lanosterol-C14-demetilasa.

Por una lanosterol-C14-demetilasa se entiende una proteína que presenta la actividad enzimática de convertir lanosterol en 4,4-dimetilcolesta-8,14,24-trienol.

En consecuencia, por actividad de la lanosterol-C14-demetilasa se entiende la cantidad de lanosterol convertida o la cantidad formada de 4,4-dimetilcolesta-8,14,24-trienol en un tiempo determinado por la acción de la proteína lanosterol-C14-demetilasa.

10

15

25

30

35

Así pues, en el caso de una actividad aumentada de la lanosterol-C14-demetilasa frente al tipo silvestre, en comparación con el tipo silvestre, la cantidad convertida de lanosterol o e la cantidad formada de 4,4-dimetilcolesta-8,14,24-trienol se ve aumentada en un tiempo determinado por la acción de la proteína lanosterol-C14-demetilasa.

Preferiblemente este aumento de la actividad de la lanosterol-C14-demetilasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos el 300%, aún más preferentemente del 500%, en particular al menos el 600% de la actividad de la lanosterol-C14-demetilasa del tipo silvestre.

Por actividad de la escualeno epoxidasa se entiende la actividad enzimática de una escualeno epoxidasa.

Por una escualeno epoxidasa se entiende una proteína que presenta la actividad enzimática de convertir el escualeno en epóxido de escualeno.

En consecuencia, se entiende por actividad de la escualeno epoxidasa la cantidad convertida de escualeno o la cantidad formada de epóxido de escualeno en un tiempo determinado por la acción de la proteína escualeno epoxidasa.

De este modo, en el caso de una actividad aumentada de la escualeno epoxidasa respecto al tipo silvestre, en comparación con el tipo silvestre la cantidad convertida de escualeno o la cantidad formada de epóxido de escualeno se ve aumentada en un tiempo determinado por la acción de la proteína escualeno epoxidasa.

Preferiblemente este aumento de la actividad de la escualeno epoxidasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos del 300%, todavía más preferentemente de al menos el 500%, en particular, al menos el 600% de la actividad de la escualeno epoxidasa del tipo silvestre.

Por actividad de la escualeno sintetasa se entiende la actividad enzimática de una escualeno sintetasa.

Se entiende por una escualeno sintetasa una proteína que presenta la actividad enzimática de convertir pirofosfato de farnesilo en escualeno.

En consecuencia, se entiende por actividad de la escualeno sintetasa la cantidad convertida de pirofosfato de farnesilo o la cantidad formada de escualeno en un tiempo determinado por la acción de la proteína escualeno sintetasa.

De este modo, en el caso de una actividad aumentada de la escualeno sintetasa respecto al tipo silvestre, en comparación con el tipo silvestre la cantidad convertida de pirofosfato de farnesilo o la cantidad formada de escualeno se ve aumentada en un tiempo determinado por la acción de la proteína escualeno sintetasa.

40 Preferiblemente este aumento de la actividad de la escualeno sintetasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 100%, más

preferentemente de al menos del 300%, todavía más preferentemente de al menos el 500%, en particular, al menos el 600% de la actividad de la escualeno sintetasa del tipo silvestre.

Por actividad de la esterol-aciltransferasa se entiende la actividad enzimática de una esterol-aciltransferasa.

5

10

15

40

Se entiende por una esterol-aciltransferasa una proteína que presenta la actividad enzimática de convertir 7dehidrocolesterol en 7-dehidrocolesterol acetilado correspondiente.

En consecuencia, se entiende por actividad de la esterol-aciltransferasa la cantidad de 7-dehidrocolesterol convertida o la cantidad formada de 7-dehidrocolesterol acetilado en un tiempo determinado por la acción de la proteína esterol-aciltransferasa.

De este modo, en el caso de una actividad aumentada de la esterol-aciltransferasa respecto al tipo silvestre, en comparación con el tipo silvestre la cantidad convertida de 7-dehidrocolesterol o la cantidad formada de 7-dehidrocolesterol acetilado se ve aumentada en un tiempo determinado por la acción de la proteína esterol-aciltransferasa.

Preferiblemente este aumento de la actividad de la esterol-aciltransferasa es de al menos el 5%, más preferentemente de al menos el 20%, más preferentemente de al menos el 50%, más preferentemente de al menos el 100%, más preferentemente de al menos del 300%, todavía más preferentemente de al menos el 500%, en particular, al menos el 600% de la actividad de la esterol-aciltransferasa del tipo silvestre.

En una realización preferida, el aumento de la actividad de la HMG-CoA-reductasa respecto al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una HMG-CoA-reductasa.

En una realización especialmente preferida del procedimiento según la invención, el aumento de la expresión génica de un ácido nucleico que codifica una HMG-CoA-reductasa se realiza incorporando en el organismo un constructo de ácidos nucleicos que contienen un ácido nucleico que codifica una HMG-CoA-reductasa, cuya expresión en el organismo, comparada con el tipo silvestre, está sujeta a una regulación reducida.

Por una regulación reducida, comparada con el tipo silvestre, se entiende una regulación reducida en comparación con el tipo silvestre definido aquí, preferiblemente la ausencia de regulación en el nivel de expresión o de proteínas.

La regulación reducida puede conseguirse preferiblemente a través de un promotor vinculado funcionalmente con la secuencia codificadora en el constructo de ácidos nucleicos, en donde dicho promotor, en comparación con el promotor del tipo silvestre, está sujeto en el organismo a una regulación reducida.

Por ejemplo, el promotor ADH medio en la levadura está sujeto solo a una regulación reducida y, por lo tanto, es preferido especialmente como promotor en el constructo de ácidos nucleicos aquí descrito.

30 Este fragmento del promotor *ADH12s*, en adelante también llamado *ADH1*, muestra una expresión casi constitutiva (Ruohonen, L, Penttila, M, Keranen, S. (1991) Optimization of Bacillus alpha-amylase production by *Saccaharomyces cerevisiae*. Yeast. May-Jun;7(4):337-462; Lang C, Looman AC. (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in *Saccharomyces cerevisiae*. Appl Microbiol Biotechnol. Dec; 44(1-2):147-56.), de manera que la regulación transcripcional ya no tiene lugar a través de productos intermedios de la biosíntesis del ergosterol.

Otros promotores preferidos con regulación reducida son promotores constitutivos, como por ejemplo el promotor TEF1 de la levadura, el promotor GPD de la levadura o el promotor PGK de la levadura (Mumberg D, Muller R, Funk M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995 Apr 14;156(1):119-22; Chen CY, Oppermann H, Hitzeman, RA. (1984) Homologous versus heterologous gene expression in the yeast, *Saccharomyces cerevisiae*. Nucleic Acids Res. Dec 11;12(23):8951-70.

La regulación reducida puede conseguirse en otra realización preferida utilizando como ácido nucleico que codifica una HMG-CoA-reductasa un ácido nucleico cuya expresión en el organismo, comparada con el ácido nucleico ortólogo propio del organismo, está sujeta a una regulación reducida.

Especialmente preferida es la utilización de un ácido nucleico que solo codifica el área catalítica de la HMG-CoA-reductasa ((t-)HMG-CoA-reductasa truncada) como ácido nucleico que codifica una HMG-CoA-reductasa. Este ácido nucleico (t-HMG), descrito en los documentos EP 486 290 y WO 99/16886, codifica solo la parte catalíticamente activa de la HMG-CoA-reductasa, y el dominio de membrana responsable de la regulación en el nivel de la proteína falta. De este modo, este ácido nucleico está sujeto, sobre todo en la levadura, a una regulación reducida y conduce a un aumento de la expresión génica de la HMG-CoA-reductasa.

5

10

15

25

30

35

40

45

En una realización especialmente preferida se incorporan ácidos nucleicos preferiblemente a través del constructo de ácidos nucleicos descrito aquí, que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 24 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que muestran una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 24 y que presentan la propiedad de una HMG-CoA-reductasa.

La secuencia SEQ. ID. nº 24 representa la secuencia de aminoácidos de la HMG-CoA-reductasa truncada (t-HMG).

Otros ejemplos de HMG-CoA-reductasas y, con ello, de t-HMG-CoA-reductasas reducidas en el área catalítica o de los genes codificadores pueden detectarse fácilmente a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de ácidos nucleicos retrotraducidas correspondientes a partir de las bases de datos con la SEQ. ID. nº 24.

Otros ejemplos de HMG-CoA-reductasas y, con ello, de t-HMG-CoA-reductasas reducidas en el área catalítica o de los genes codificadores pueden detectarse fácilmente de un modo conocido a partir de la secuencia SEQ. ID. nº 23 de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

20 De manera especialmente preferente se utiliza un ácido nucleico que contiene la secuencia SEQ. ID. nº 23 como ácido nucleico que codifica una HMG-CoA-reductasa truncada.

En una realización especialmente preferida la regulación reducida puede conseguirse utilizando como ácido nucleico que codifica una HMG-CoA-reductasa un ácido nucleico cuya expresión en el organismo, comparada con el ácido nucleico ortólogo propio del organismo, está sujeta a una regulación reducida, y utiliza un promotor que, comparado con el promotor del tipo silvestre, está sujeto en el organismo a una regulación reducida.

En una realización preferida el aumento de la actividad de la lanosterol-C14-demetilasa respecto al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una lanosterol-C14-demetilasa.

En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una lanosterol-C14-demetilasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una lanosterol-C14-demetilasa.

Para ello, básicamente puede utilizarse cualquier gen de lanosterol-C14-demetilasa (ERG11), es decir, cualquier ácido nucleico que codifique una lanosterol-C14-demetilasa. En el caso de secuencias genómicas lanosterol-C14-demetilasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el microorganismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la lanosterol-C14-demetilasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de genes de lanosterol-C14-demetilasa son ácidos nucleicos que codifican una lanosterol-C14-demetilasa de *Saccharomyces cerevisiae* (Kalb VF, Loper JC, Dey CR, Woods CW, Sutter TR (1986) Isolation of a cytochrome P-450 structural gene from *Saccharomyces cerevisiae*. Gene 45(3):237-45), *Candida albicans* (Lamb DC, Kelly DE, Ba1dwin BC, Gozzo F, Boscott P, Richards WG, Kelly SL (1997) Differential inhibition of Candida albicans CYP51 with azole antifungal stereoisomers. FEMS Microbiol Lett 149(1):25-30), *Homo sapiens* (Stromstedt, M, Rozman, D, Waterman, MR. (1996) The ubiquitously expressed human CYP5I encodes lanosterol 14 alpha-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch Biochem Biophys 1996 May 1;329(1):73-81c) o *Rattus norvegicus*, Aoyama Y, Funae Y, Noshiro M, Horiuchi T, Yoshida Y. (1994) Occurrence of a P450 showing

high homology to yeast lanosterol 14-demethylase (P450 (14DM)) in the rat liver. Biochem Biophys Res Commun. Jun 30;201(3):1320-6)

En los organismos transgénicos según la invención existe así en esta realización preferida frente al tipo silvestre al menos otro gen de lanosterol-C14-demetilasa.

5 El número de genes de lanosterol-C14-demetilasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, de manera especialmente preferente más de tres, preferentemente del todo más de cinco.

En el procedimiento descrito aquí se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 26 o una secuencia derivada de esta secuencia mediante sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30%, preferiblemente al menos el 50%, más preferentemente al menos el 70%, aún más preferentemente al menos el 90% y más preferentemente del todo el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 26 y que presentan la propiedad enzimática de una lanosterol-C14-demetilasa.

10

25

La secuencia SEQ. ID. nº 26 representa la secuencia de aminoácidos de la lanosterol-C14-demetilasa de Saccharomyces cerevisiae.

Otros ejemplos de lanosterol-C14-demetilasa y de genes de lanosterol-C14-demetilasa pueden detectarse fácilmente a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de ácidos nucleicos retrotraducidas correspondientes a partir de las bases de datos con la SEQ. ID. nº 26.

Otros ejemplos de lanosterol-C14-demetilasa y de genes de lanosterol-C14-demetilasa pueden detectarse fácilmente de un modo conocido a partir de la SEQ. ID. nº 25 de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

Por una proteína que presenta una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 26, se entiende en consecuencia una proteína que, en una comparación de su secuencia con la secuencia SEQ. ID. nº 26, en particular según el algoritmo de programa anterior con el juego de parámetros anterior, presenta una identidad de al menos el 30%.

En otra realización preferida en los organismos se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos de la lanosterol-C14-demetilasa de *Saccharomyces cerevisiae* (SEQ. ID. nº 26).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos, por ejemplo, mediante retrotraducción de la secuencia de polipéptidos según el código genético.

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

35 Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 25.

La secuencia SEQ. ID. nº 25 representa el ADN genómico de *Saccharomyces cerevisiae* (ORF S0001049), que codifica la lanosterol-C14-demetilasa de la secuencia SEQ. ID. nº 26.

Todos los genes de lanosterol-C14-demetilasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos

puede tener lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

5

10

15

20

25

30

40

En una realización preferida el aumento de la actividad de la escualeno epoxidasa respecto al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una escualeno epoxidasa.

En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una escualeno epoxidasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una escualeno epoxidasa.

Para ello, básicamente puede utilizarse cualquier gen de escualeno epoxidasa (ERG1), es decir, cualquier ácido nucleico que codifique una escualeno epoxidasa. En el caso de secuencias genómicas escualeno epoxidasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el microorganismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la escualeno epoxidasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de ácidos nucleicos que codifican una escualeno epoxidasa son ácidos nucleicos que codifican una escualeno epoxidasa de *Saccharomyces cerevisiae* (Jandrositz, A., et al (1991) The gene encoding squalene epoxidase from *Saccharomyces cerevisiae*: cloning and characterization. Gene 107 :155-160), de *Mus musculus* (Kosuga, K, Hata, S, Osumi, T, Sakakibara, J, Ono, T. (1995) Nucleotide sequence of a cDNA for mouse squalene epoxidase, Biochim Biophys Acta, Feb 21; 1260(3): 345-8b), de *Rattus norvegicus* (Sakakibara, J, Watanabe, R, Kanai, Y, Ono T. (1995) Molecular cloning and expression of rat squalene epoxidase. J Biol Chem Jan 6;270(1):17-20c) o de *Homo sapiens* (Nakamura Y, Sakakibara J, Izumi T. Shibata A, Ono T. (1996) Transcriptional regulation of squalene epoxidase by sterols and inbibitors in HeLa cells., J. Biol. Chem. 1996, Apr 5;271(14):8053-6).

En los organismos transgénicos según la invención existe así en esta realización preferida frente al tipo silvestre al menos otra escualeno epoxidasa.

El número de genes de escualeno epoxidasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, de manera especialmente preferente más de tres, preferentemente del todo más de cinco.

En el procedimiento descrito aquí se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 28 o una secuencia derivada de esta secuencia mediante sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30%, preferiblemente al menos el 50%, más preferentemente al menos el 70%, aún más preferentemente al menos el 90% y más preferentemente del todo el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 28 y que presentan la propiedad enzimática de una escualeno epoxidasa.

La secuencia SEQ. ID. nº 28 representa la secuencia de aminoácidos de la escualeno epoxidasa de *Saccharomyces cerevisiae*.

Otros ejemplos de escualeno epoxidasas y genes de escualeno epoxidasa pueden detectarse fácilmente, por ejemplo, a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de aminoácidos correspondientes retrotraducidas a partir de las bases de datos con la SEQ. ID. nº 28.

Otros ejemplos de escualeno epoxidasa y genes de escualeno epoxidasa pueden detectarse también de una forma conocida partiendo de la secuencia SEQ. ID. nº 27 a partir de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

En otra realización preferida en los organismos se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos de la escualeno epoxidasa de *Saccharomyces cerevisiae* (SEQ. ID. nº 28).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos, por ejemplo, mediante la retrotraducción de la secuencia de polipéptidos según el código genético.

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

5

15

20

25

30

35

40

45

Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 27.

La secuencia SEQ. ID. nº 27 representa el ADN genómico de *Saccharomyces cerevisiae* (ORF YGR175C), que codifica la escualeno epoxidasa de la secuencia SEQ. ID. nº 28.

Todos los genes de escualeno epoxidasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos puede tener lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook *et al.* (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

En una realización preferida el aumento de la actividad de la escualeno sintetasa frente al tipo silvestre tiene lugar mediante un aumento de la expresión génica de un ácido nucleico que codifica una escualeno sintetasa.

En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una escualeno sintetasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una escualeno sintetasa.

Para ello puede utilizarse en principio cualquier gen de escualeno sintetasa (ERG9), es decir cualquier ácido nucleico que codifique una escualeno sintetasa. En el caso de secuencias genómicas escualeno sintetasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el organismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la escualeno sintetasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de ácidos nucleicos que codifican una escualeno sintetasa son ácidos nucleicos que codifican una escualeno sintetasa de *Saccharomyces cerevisiae (ERG9)*, (Jennings, S.M., (1991): Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci USA. Jul15; 88(14): 6038-42), ácidos nucleicos que codifican una escualeno sintetasa de *Botryococcus braunii Okada* (Devarenne, T. P. *et al.*: Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, raceB, Arch. Biochem. Biophys. 2000, Jan15, 373(2):307-17), ácidos nucleicos que codifican una escualeno sintetasa de *Potato tuber* (Yoshioka H. *et al.*: cDNA cloning of sesquiter penecyclase and squalene synthase and expression of the genes in potato tuber infected with Phytophthora infestans, Plant. Cell. Physiol. 1999, Sep; 40(9):993-8), o ácidos nucleicos que codifican una escualeno sintetasa de *Glycyrrhiza glabra* (Hayashi, H. *et al.*: Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase, Biol. Pharm. Bull. 1999, Sep; 22(9); 947-50).

En los organismos transgénicos según la invención existe así en esta realización preferida frente al tipo silvestre al menos otro gen de escualeno sintetasa.

El número de genes de escualeno sintetasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, de manera especialmente preferente más de tres, preferentemente del todo más de cinco.

En el procedimiento descrito aquí se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 30 o una secuencia derivada de esta secuencia mediante

sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30%, preferiblemente al menos el 50%, más preferentemente al menos el 70%, aún más preferentemente al menos el 90% y más preferentemente del todo el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 30 y que presentan la propiedad enzimática de una escualeno sintetasa.

5 La secuencia SEQ. ID. nº 30 representa la secuencia de aminoácidos de la escualeno sintetasa (ERG9) de Saccharomyces cerevisiae.

10

20

30

35

Otros ejemplos de escualeno sintetasas y genes de escualeno sintetasa pueden detectarse fácilmente, por ejemplo, a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de aminoácidos correspondientes retrotraducidas a partir de las bases de datos con la SEQ. ID. nº 30.

Otros ejemplos de escualeno sintetasa y genes de escualeno sintetasa pueden detectarse también de una forma conocida partiendo de la secuencia SEQ. ID. nº 29 a partir de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

En otra realización preferida en los organismos se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos de la escualeno sintetasa de *Saccharomyces cerevisiae* (SEQ. ID. nº 30).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos, por ejemplo, mediante la retrotraducción de la secuencia de polipéptidos según el código genético.

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 29.

La secuencia SEQ. ID. nº 29 representa el ADN genómico de *Saccharomyces cerevisiae* (ORF YHR190W), que codifica la escualeno sintetasa de la secuencia SEQ. ID. nº 30.

Todos los genes de escualeno sintetasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos puede tener lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook *et al.* (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

En una realización preferida el aumento de la actividad de la esterol-aciltransferasa frente al tipo silvestre tiene lugar mediante el aumento de la expresión génica de un ácido nucleico que codifica una esterol-aciltransferasa.

En otra realización preferida el aumento de la expresión génica de un ácido nucleico que codifica una esterolaciltransferasa tiene lugar mediante la incorporación en el organismo de uno o varios ácidos nucleicos que codifican una esterol-aciltransferasa.

Para ello puede utilizarse en principio cualquier gen de esterol-aciltransferasa (SAT1 o SAT2), es decir cualquier 40 ácido nucleico que codifique una esterol-aciltransferasa. En el caso de secuencias genómicas esterol-aciltransferasa-ácido nucleico de fuentes eucariónticas que contienen intrones, para el caso de que el organismo huésped no esté en disposición o no pueda ponerse en disposición de expresar la esterol-aciltransferasa correspondiente, deben utilizarse preferentemente secuencias de ácidos nucleicos ya procesadas, como los ADNc correspondientes.

Ejemplos de ácidos nucleicos que codifican una esterol-aciltransferasa son ácidos nucleicos que codifican una esterol-aciltransferasa de *Saccharomyces cerevisiae* (*SAT1*) o (*SAT2*), (Yang, H.: Sterol esterification. in yeast: a two-gene process. Science. 1996 May 31; 272(5266):1353-6), otro ácido nucleico que codifica otra esterol aciltranferasa de *Saccharomyces cerevisiae* (J. Biol. Chem. 1996, Sep 27; 271(39):24157-63), ácidos nucleicos que codifican una esterol-aciltransferasa humana (Chang, C. C. et al., Molecular cloning and functional expression of human acyl-coenzyme A: cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells, J. Biol. Chem. 1993, Oct 5;268(28): 20747-55) y ácidos nucleicos que codifican una esterol-aciltransferasa murina (Uelmen, P.J.: Tissue-specific expression and cholesterol regulation of acylcoenzyme A: cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro, J. Biol. Chem. 1995 Nov 3; 270(44): 26192-201).

En los organismos transgénicos según la invención existe así en esta realización preferida frente al tipo silvestre al menos otro gen de esterol-aciltransferasa.

El número de genes de esterol-aciltransferasa en los organismos transgénicos según la invención es de al menos dos, preferiblemente más de dos, de manera especialmente preferente más de tres, preferentemente del todo más de cinco.

En el procedimiento descrito aquí se utilizan preferentemente ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 32 o SEQ. ID. nº 50 o una secuencia derivada de esta secuencia mediante sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30%, preferiblemente al menos el 50%, más preferentemente al menos el 70%, aún más preferentemente al menos el 90% y más preferentemente del todo el 95% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 32 o SEQ. ID. nº 50, y que presentan la propiedad enzimática de una esterol-aciltransferasa.

La secuencia SEQ. ID. nº 32 representa la secuencia de aminoácidos de la esterol-aciltransferasa SAT1 de Saccharomyces cerevisiae.

La secuencia SEQ. ID. nº 50 representa la secuencia de aminoácidos de la esterol-aciltransferasa SAT2 de 25 Saccharomyces cerevisiae.

SAT1 y SAT2 se diferencian porque tienen una especificidad de sustrato distinta.

10

15

20

30

Otros ejemplos de esterol-aciltransferasas y genes de esterol-aciltransferasa pueden detectarse fácilmente, por ejemplo, a partir de diversos organismos de secuencia genómica conocida mediante comparaciones de homología de las secuencias de aminoácidos o de las secuencias de aminoácidos correspondientes retrotraducidas a partir de las bases de datos con la SEQ. ID. nº 32 o 50.

Otros ejemplos de esterol-aciltransferasa y genes de esterol-aciltransferasa pueden detectarse también de una forma conocida partiendo de la secuencia SEQ. ID. nº 31 o 49 a partir de diversos organismos de secuencia genómica no conocida, mediante técnicas de hibridación y RCP.

En otra realización preferida en los organismos se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos de la esterol-aciltransferasa SAT1 de *Saccharomyces cerevisiae* (SEQ. ID. nº 32) o SAT2 de *Saccharomyces cerevisiae* (SEQ. ID. nº 50).

Pueden obtenerse secuencias apropiadas de ácidos nucleicos, por ejemplo, mediante la retrotraducción de la secuencia de polipéptidos según el código genético.

Preferentemente se utilizan para ello los codones que se utilizan con frecuencia conforme al uso del codón específico del organismo. El uso del codón puede determinarse fácilmente a partir de evaluaciones informáticas de otros genes conocidos de los organismos correspondientes.

Si la proteína debe expresarse por ejemplo en la levadura, con frecuencia resulta ventajoso emplear el uso del codón en la retrotraducción.

En una realización especialmente preferida en el organismo se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 31 o 49.

La secuencia SEQ. ID. nº 31 representa el ADN genómico de *Saccharomyces cerevisiae* (ORF YNR019W) que codifica la esterol-aciltransferasa SAT1 de la secuencia SEQ. ID. nº 32.

5 La secuencia SEQ. ID. nº 49 representa el ADN genómico de *Saccharomyces cerevisiae* (ORF YCR048W) que codifica la esterol-aciltransferasa SAT2 de la secuencia SEQ. ID. nº 50.

Todos los genes de esterol-aciltransferasa mencionados aquí pueden fabricarse de modo conocido mediante síntesis química a partir de los módulos de nucleótidos, por ejemplo, mediante condensación de fragmentos de módulos de nucleótidos complementarios solapados de la doble hélice. La síntesis química de los oligonucleótidos puede tener lugar por ejemplo, de forma conocida, según el método de fosfoamidita (Voet, Voet, 2ª edición, Wiley Press New York, página 896-897). La adición de oligonucleótidos sintéticos y el relleno de huecos con ayuda del fragmento Klenow de la ADN-polimerasa y las reacciones de ligación, así como los procedimientos generales de clonación se describen en Sambrook *et al.* (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press.

10

30

35

Por organismos según la invención se entienden, por ejemplo, bacterias, en particular bacterias del género *Bacillus, Escherichia coli, Lactobacillus spec.* o *Streptomyces spec.*,

por ejemplo, levaduras, es particular levaduras del género Saccharomyces cerevisiae, Pichuia pastoris o Klyveromyces spec.,

por ejemplo, hongos, en particular hongos del género Aspergillus spec., Penicillium spec o Dictyostelium spec.,

20 así como por ejemplo *líneas celulares de insectos* que son capaces de fabricar zimosterol y/o sus productos intermedios o secuenciales como tipo silvestre o mediante una modificación genética previa.

Son organismos especialmente preferidos las levaduras, en particular de la especie Saccharomyces cerevisiae, en particular las cepas de levadura Saccharomyces cerevisiae AH22, Saccharomyces cerevisiae GRF, Saccharomyces cerevisiae DBY747 y Saccharomyces cerevisiae BY4741.

25 En el caso de levaduras como organismos u organismos genéticamente modificados, para el aumento de al menos una de las actividades, seleccionada del grupo de la actividad de la $\Delta 8-\Delta 7$ -isomerasa, la actividad de la $\Delta 5$ -desaturasa y la actividad de la $\Delta 24$ -reductasa, como se ha descrito antes, pueden sobreexpresarse los ácidos nucleicos correspondientes.

La sobreexpresión puede tener lugar tanto de forma homóloga, mediante la incorporación de ácidos nucleicos propios de las levaduras, como de forma heteróloga, mediante la incorporación de ácidos nucleicos de otros organismos, en particular mamíferos, o de variantes naturales o artificiales derivadas de ellos. Preferiblemente en las levaduras se utilizan genes de mamíferos, pues estos presentan una mejor especificidad de sustrato en la dirección del 7-dehidrocolesterol.

La determinación de la actividad de la Δ8-Δ7-isomerasa, la actividad de la Δ5-desaturasa, la actividad de la Δ24-reductasa, la actividad de la C24-metiltransferasa, la actividad de la Δ22-desaturasa, la actividad de la HMG-CoA-reductasa, la actividad de la lanosterol-C14-demetilasa, la actividad de la escualeno epoxidasa, la actividad de la escualeno sintetasa y la actividad de la esterol-aciltransferasa del organismo genéticamente modificado según la invención, así como del organismo de referencia tiene lugar en las siguientes condiciones:

La determinación de la actividad de la HMG-CoA-reductasa tiene lugar tal como se describe en Th. Polakowski, 40 Molekularbiologische Beeinflussung des Ergosterolstoffwechsels der Hefe *Saccharomyces cerevisiae*, Shaker Verlag Aachen, 1999, ISBN 3-8265-6211-9.

Por consiguiente, se obtienen 10⁹ células de levaduras de un cultivo de 48 horas mediante centrifugación (3500xg, 5 min) y se lavan en 2 ml de tampón I (100 mM de tampón de potasio, pH 7,0). El sedimento celular se incluye en 500 µl de tampón 1 (proteínas citosólicas) o 2 (100 mM de tampón de fosfato de potasio pH 7,0; 1% tritón X-100)

(proteínas totales) y se añade 1 µl 500 mM de PMSF en isopropanol. A las células se añaden 500 µl de perlas de vidrio (d = 0,5 mm) y las células se rompen cinco veces durante un minuto mediante agitación vorticial. El líquido entre las perlas de vidrio se transfiere a una nueva pipeta de Eppendorf. Los restos celulares o los componentes de membrana se separan mediante una centrifugación de 15 minutos (14.000xg). El sobrenadante se transfiere a una nueva pipeta de Eppendorf y representa la fracción de proteína.

5

10

35

La actividad de la HMG-CoA se determina mediante la medición del uso de NADPH+H⁺ en la reducción de 3-hidroxi-3-metilglutaril-CoA, que se añade como sustrato.

En una preparación de prueba de 1000 μl se añaden 20 μl de isolato de proteína de levadura con 910 μl de tampón l; 50 μl 0,1 mM DTT y 10 μl 16 mM NADPH+H⁺. La prueba se atempera a 30° y se mide durante 7,5 min a 340 nm en el fotómetro. La reducción de NADPH que se mide en este período es la tasa de descomposición sin adición de sustrato y se tiene en cuenta como valor de fondo.

A continuación tiene lugar la adición de sustrato (10 µl 30 mM HMG-CoA) y se mide durante otros 7,5 minutos. El cálculo de la actividad de la HMG-CoA-reductasa tiene lugar mediante la determinación de la tasa de descomposición de NADPH específica.

La determinación de la actividad de la lanosterol-C14-demetilasa tiene lugar tal como se describe en Omura, T. y Sato, R. (1964) The carbon monoxide binding pigment in liver microsomes. J. Biol. Chem. 239, 2370-2378. En esta prueba la cantidad de enzima P450 puede semi-cuantificarse como holoenzima con hemo fijado. La holoenzima (activa) (con hemo) puede reducirse mediante CO y solo la enzima con CO reducido muestra un máximo de absorción a 450 nm. Así, el máximo de absorción a 450 nm es una medida para la actividad de la lanosterol-C14-demetilasa.

Para realizar la determinación de la actividad se diluye una fracción microsómica (4-10 mg/ml de proteína en 100 mM de tampón de fosfato de potasio) 1:4, de manera que la proteína utilizada para la prueba presenta una concentración de 2 mg/ml. La prueba se realiza directamente en una cubeta.

A los microsomas se les añade una punta de espátula de ditionita $(S_2O_4Na_2)$. Con un espectrofotómetro se adopta la línea base en el área de 380-500 nm.

A continuación se distribuyen de 20-30 burbujas de CO por la muestra. La absorción se mide a continuación en el mismo rango. La cantidad de absorción a 450 nm corresponde a la proporción de enzima P450 en la preparación de prueba.

La determinación de la actividad de la escualeno epoxidasa se realiza tal como se describe en Leber, R., Landl, K.,

Zinser, E., Ahorn, H., Spok, A., Kohlwein, SD, Turnowski, F., Daum, G. (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles, Mol. Biol. Cell. 1998, Feb; 9(2):375-86.

Este método contiene de 0,35 a 0,7 mg de proteína microsómica o de 3,5 a 75 μ g de partículas lipídicas de proteína en 100 mM de Tris-HCl, pH 7,5, 1 mM EDTA, 0,1 mM FAD, 3 mM NADPH, 0,1 mM de inhibidor de escualeno 2,3-epoxidasa ciclasa U18666A, 32 μ M de [3 H]escualeno dispersados en 0,005% Tween 80 en un volumen total de 500 μ l.

La prueba se realiza a 30 °C. Después de un pretratamiento de 10 minutos, se inicia la reacción añadiendo escualeno y, después de 15, 30 y 45 minutos se finaliza mediante la extracción de lípidos con 3 ml de cloroformo/metanol (2:1 vol/vol) y 750 µl de MgCl₂ al 0,035%.

Los lípidos se secan con nitrógeno y se redisuelven en 0,5 ml de cloroformo/metanol (2:1 vol/vol). Para una cromatografía en capa fina se añaden partes en una placa de gel de sílice 60 (0,2 mm) y se separan con cloroformo como eluyente. Las posiciones que contienen [³H]2,3-oxidoescualeno y [³H]escualeno se raspan y se cuantifican con un contador de centelleo.

La determinación de la actividad de la $\Delta 8-\Delta 7$ -isomerasa tiene lugar con una ligera variación tal como se describe en Silve S. et al.: Emopamil-binding Protein, a Mammalian Protein That Binds a Series of Structurally Diverse

Neuroprotective Agents, Exhibits 8-7 Sterol Isomerase Activity in Yeast, J Biol Chem 1996 Sep 13; 271(37): 22434-40:

Microsomas procesados a partir de 10 ml de volumen de cultivo se incuban durante 3 h en presencia de 75 μM colesta-8-en-3-ol a 30 °C. Los esteroles se extraen a continuación 4 veces con 5 ml de hexano y se depuran. Las alícuotas se analizan mediante cromatografía de gases/espectrometría de masas (GC/MS).

La determinación de la actividad de la Δ 5-desaturasa tiene lugar con una ligera variación tal como se describe en Nishi, S. et al. (2000): cDNA cloning of the mammalian sterol C5-desaturase and the expression in yeast mutant. Biochim. Biophys. Acta1490 (1-2), 106-108:

Microsomas procesados a partir de 10 ml de volumen de cultivo se incuban durante 3 h en presencia de 75 μM de latosterol y 2 mM NADH a 30 °C. Los esteroles se extraen a continuación 4 veces con 5 ml de hexano y se depuran. Las alícuotas se analizan mediante cromatografía de gases/espectrometría de masas (GC/MS).

La determinación de la actividad de la Δ24-reductasa puede realizarse tal como se indica a continuación:

5

15

20

25

30

Microsomas procesados a partir de 10 ml de volumen de cultivo se incuban durante 3 h en presencia de 75 μM de colesta-5,7,24-trienol a 30 °C. Los esteroles se extraen a continuación 4 veces con 5 ml de hexano y se depuran. Las alícuotas se analizan mediante cromatografía de gases/espectrometría de masas (GC/MS).

La determinación de la actividad de la C24-metiltransferasa puede realizarse tal como se indica a continuación:

La proteína *Erg6p* (C24-metiltransferasa) es detectable al 80% en partículas lipídicas de la levadura (Athendstaedt, K., Zweytick, D., Jandrositz, A. Kohlwein, SD, Daum, G: Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J. Bacteriol. 1999 Oct; 181(20): 6441-8). Para la determinación de la actividad enzimática se procesan partículas lipídicas de un volumen de cultivo (48 h) de 100 ml (según un método descrito en Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G: Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol. 1999 Oct; 181(20): 6441-8).

El contenido en proteínas se determina mediante una prueba enzimática Biorad y para cada preparación de prueba se utilizan 3 mg de proteína en un volumen de 500 μl. A la prueba se le añaden 50 μM de [methyl-³H₃]-S-adenosilmetionina y 50 μM de zimosterol y la preparación se incuba durante 10 minutos a 35 °C. A continuación se añade el mismo volumen (500 μl) de cloroformo/metanol (4:1) y, a continuación, se extraen los esteroles.

Mediante medición de centelleo puede determinarse la cantidad de zimosterol con [metil-³H₃]-S-adenosil-metionina incorporada, pues con la extracción de cloroformo/metanol solo se extraen sustancias liposolubles. Para la cuantificación, las descomposiciones radiactivas se determinan también para 50 µM de [metil-³H₃]-S-adenosil-metionina mediante medición de centelleo.

Este procedimiento es una variación del procedimiento descrito en Nes WD, Guo D., Zhou W.: Substrate-based inhibitors of the (S)-adenosyl-L-methionine: delta24(25)- to delta24(28)-sterol methyl transferase from Saccharomyces cerevisiae, Arch. Biochem. Biophys. 1997 Jun 1; 342 (1): 68-81.

La determinación de la actividad de la Δ 22-desaturasa (ERG5p) puede realizarse tal como se indica a continuación:

Diversas concentraciones de ergosta-5,7-dienol, depuradas a partir de mutantes erg5 de *S. cerevisiae* (Parks et al., 1985. Yeast sterols. Yeast mutants as tools for the study of sterol metabolism. Methods Enzymol. 111:333-346) y 50 μg de dilauroilfosfatidilcolina se mezclan y se tratan con ultrasonidos, hasta que surge una suspensión blanca. Se añaden microsomas procesados (1 ml) (3 mg/ml de proteína). Al principio de la reacción enzimática se añade a la prueba NADPH (concentración final, 1 mM). La preparación se incuba durante 20 minutos a 37 °C. La reacción se detiene añadiendo 3 ml de metanol y los esteroles se saponifican mediante la adición de 2 ml de KOH en agua al 60% (peso/volumen). La preparación se incuba durante 2 horas a 90 °C. Después del enfriado la preparación se extrae tres veces con 5 ml de hexano y se concentra mediante evaporación rotativa. A continuación, los esteroles se sililizan 1 hora a 60 °C con *bis*(trimetilsilil)trifluoroacetamida (50 μl en 50 μl de toluol). Los esteroles se analizan mediante cromatografía de gases/espectrometría de masas (GC/MS) (por ejemplo, modelo VG 12-250 de cromatógrafo de gases-espectrómetro de masas; VG Biotech, Manchester, Reino Unido). El producto intermedio de

Δ22-desaturada surgido puede identificarse dependiendo de la cantidad utilizada de sustrato. Como referencia sirven microsomas que no se incuban con sustrato.

Este procedimiento es una variación del procedimiento descrito en Lamb et al: Purification, reconstitution, and inhibition of cytochrome P-450 sterol delta22-desaturase from the pathogenic fungus Candida glabrata. Antimicrob Agents Chemother. 1999 Jul; 43(7): 1725-8.

La determinación de la actividad de la escualeno sintetasa puede realizarse tal como se describe a continuación:

5

10

15

20

25

35

Las pruebas contienen 50 mM Mops, pH 7,2, 10 mM MgCl₂, 1% (v/v) Tween-80, 10% (v/v) 2-propanol, 1 mM DTT, 1 mg/ml BSA, NADPH, FPP (o PSPP) y microsomas (3 mg de contenido en proteína) en un volumen total de 200 µl en tubos de ensayo. Las reacciones con sustrato radiactivo [1-³H]FPP (15-30 mCi/µmol) se incuban a 30 °C durante 30 minutos y la preparación de suspensión se llena con un volumen de 1:1 (v/v) de KOH:metanol acuoso al 40%. Se añade NaCl líquido para la saturación de la solución y también se añaden 2 ml de ligroína que contiene 0,5% (v/v) de escualeno.

La suspensión se agita mediante vórtice durante 30 segundos. Se añade cada vez 1 ml de la capa de ligroína en una pipeta Pasteur en una columna de aluminio empaquetada de 0,5 x 6 cm (80-200 mesh, Fisher). La columna está preequilibrada con 2 ml de ligroína con escualeno al 0,5% (v/v). A continuación, la columna se eluye con 5 x 1 ml de toluol que contiene escualeno al 0,5% (v/v). La radiactividad del escualeno se mide con un contador de centelleo (Beckman) en líquido de centelleo Cytoscint (ICN).

Este procedimiento es una variación de los procedimientos descritos en Radisky et al. Biochemistry. 2000 Feb 22; 39(7):1748-60, Zhang et al (1993) *Arch. Biochem. Biophys. 304*, 133-143 y Poulter, C. D. et al. (1989) *J. Am. Chem. Soc. 111*, 3734-3739.

La determinación de la actividad de la esterol-aciltransferasa puede realizarse tal como se describe a continuación:

A partir de un precultivo de 20 ml, que se incuba durante 2 días, se inocula un cultivo principal de 200 ml al 1% y se incuba durante la noche en el medio completo. Las células se recolectan y, a continuación, se lavan en doble volumen de tampón HP (100 mM de tampón de fosfato de potasio, pH 7,4; 0,5 mM de EDTA; 1 mM de glutatión; 20 μ M de leupeptina; 64 μ M de benzamidina; 2 mM de PMSF) y se resuspenden en tampón HP.

Después de añadir 1 g de perlas de vidrio las células se rompen 8 veces durante un minuto mediante agitación vorticial. El sobrenadante se ultracentrifuga a 105.000 xg. El sedimento se incluye en 1 ml de tampón ACAT (100 mM tampón de fosfato de potasio pH 7,4; 1 mM glutatión).

La prueba enzimática tiene lugar en un volumen de 500 μl. El sustrato ergosterol se incluye en 62,5 ml 0,5 de tampón ACAT mediante agitación vorticial fuerte. 250 μl de esta solución se utiliza como sustrato para la prueba. A ello se añaden 20 μl de extracto de proteína, 50 μl de agua y 130 μl 0,5 de tampón ACAT.

La preparación se incuba durante 15 minutos a 37 °C. A continuación se añaden 50 µl de 14C-oleoil-CoA (600.000 dpm) y la reacción se detiene después de un minuto mediante la adición de 4 ml de cloroformo/metanol (2:1). A ello se añaden 500 µl H₂O. Para la separación de fases la suspensión se centrifuga brevemente a 2000 xg. La fase inferior se concentra en un matraz cónico hasta que se seca y se redisuelve en 100 µl de cloroformo/metanol (4:1) y se aplica en una placa de cromatografía en capa fina o DC (gel de sílice 60 F254). La cromatografía en capa fina se realiza con petroéter/dietiléter/ácido acético 90:10:1 como eluyente. Las manchas de la fracción de esteriléster se recortan y en un contador de centelleo se determina la cantidad de descomposiciones radiactivas. A través de la cantidad de las moléculas de 14C-oleoil-CoA fijadas al esteriléster puede determinarse la actividad enzimática.

40 En una realización preferida del procedimiento según la invención la fabricación de 7-dehidrocolesteroll tiene lugar mediante el cultivo de organismos, en particular levaduras, según la reivindicación 1, que presentan además una actividad reducida de al menos una de las actividades seleccionadas del grupo de la actividad de la C24-metiltransferasa y la actividad de la Δ22-desaturasa y presentan además una actividad aumentada de la HMG-CoA-reductasa, una actividad aumentada de la lanosterol-C14-demetilasa y una actividad aumentada de la escualeno epoxidasa.

Otras realizaciones preferidas del procedimiento según la invención se mencionan en las reivindicaciones secundarias.

En el procedimiento según la invención para la fabricación de 7-dehidrocolesterol, preferiblemente al paso de cultivo de los organismos genéticamente modificados, en adelante también llamados organismos transgénicos, se añade una recolección de los organismos y un aislamiento de 7-dehidrocolesterol.

5

20

25

30

35

40

45

La recolección de los organismos tiene lugar de un modo conocido correspondiendo al organismo de que se trate. Los microorganismos, como las bacterias, los musgos, las levaduras y los hongos o las células vegetales que se cultivan mediante fermentación en sustratos líquidos, pueden separarse mediante centrifugación, decantación y filtración.

El aislamiento de 7-dehidrocolesterol a partir de la biomasa recolectada tiene lugar conjuntamente de forma conocida, por ejemplo, mediante la extracción y, en su caso, otros procesos de limpieza químicos o físicos, como son los métodos de precipitación, cristalografía, procesos térmicos de separación, como son los procesos de rectificación o procesos de separación física, como por ejemplo, la cromatografía.

La fabricación de organismos transgénicos, en particular levaduras, puede tener lugar preferiblemente mediante la transformación de los organismos de partida, en particular levaduras, con un constructo de ácidos nucleicos según la reivindicación 40. La fabricación de los organismos transgénicos tiene lugar en esta realización con un constructo de ácidos nucleicos.

En una realización especialmente preferida el constructo de ácidos nucleicos descrito aquí contiene además al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una HMG-CoA-reductasa, ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una esterol-aciltransferasa, que están vinculados funcionalmente con una o varias señales de regulación, que garantizan la transcripción y la traducción en organismos.

No obstante, la fabricación de los organismos transgénicos también puede tener lugar preferiblemente mediante la transformación de los organismos de partida, en particular las levaduras, con una combinación de constructos de ácidos nucleicos según la reivindicación 42.

En una realización especialmente preferida la combinación de constructos de ácidos nucleicos descrita aquí contiene además al menos un constructo de ácidos nucleicos, seleccionado del grupo de constructo de ácidos nucleicos que contienen ácidos nucleicos que codifican una HMG-CoA-reductasa, constructo de ácidos nucleicos que contienen ácidos nucleicos que codifican una lanosterol-C14-demetilasa, constructo de ácidos nucleicos que contienen ácidos nucleicos que codifican una escualeno epoxidasa, constructo de ácidos nucleicos que contienen ácidos nucleicos que codifican una escualeno sintetasa y constructo de ácidos nucleicos que contienen ácidos nucleicos que codifican una esterol-aciltransferasa, que siempre están vinculados funcionalmente con una o varias señales de regulación, que garantizan la transcripción y la traducción en organismos.

Los constructos de ácidos nucleicos en los que la secuencia codificadora de ácidos nucleicos está vinculada funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos, sobre todo levaduras, se denominan en adelante también casetes de expresión.

Los constructos de ácidos nucleicos que contienen este casete de expresión son, por ejemplo, vectores o plásmidos.

En consecuencia, la invención se refiere también a los constructos de ácidos nucleicos aquí incluidos, en particular constructos de ácidos nucleicos que funcionan como casete de expresión, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos.

En una realización preferida este constructo de ácidos nucleicos abarca además al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una HMG-CoA-reductasa, ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno epoxidasa, ácidos nucleicos que codifican una esterol-aciltransferasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos.

Preferiblemente las señales de regulación contienen uno o varios promotores que garantizan la transcripción y la traducción en organismos, en particular en levaduras.

Los casetes de expresión contienen señales de regulación, es decir, secuencias de ácidos nucleicos reguladoras, que controlan la expresión de la secuencia codificadora en la célula huésped. Según una realización preferida, el casete de expresión abarca corriente arriba, es decir, en el extremo 5' de la secuencia codificadora, un promotor y, corriente abajo, es decir, en el extremo 3', un terminador y, en su caso, otros elementos reguladores que están vinculados operativamente con la secuencia intermedia codificadora para al menos uno de los genes descritos aquí.

5

10

20

25

30

35

45

Se entiende por vinculación operativa la disposición secuencial de promotor, secuencia codificadora, en su caso, terminador y, en su caso, otros elementos reguladores, de manera que cada uno de los elementos reguladores puede desempeñar su función según lo previsto en la expresión de la secuencia codificadora.

A continuación se describen a modo de ejemplo los constructos de ácidos nucleicos, los casetes de expresión y los plásmidos preferidos para levaduras y hongos y el procedimiento para fabricar levaduras transgénicas, así como las propias levaduras transgénicas.

Básicamente como promotor del casete de expresión resulta adecuado cualquier promotor que pueda controlar la expresión de genes externos en organismos, en particular en levaduras.

Preferiblemente se utiliza en particular un promotor que en la levadura está sujeto a una regulación reducida, como por ejemplo el promotor ADH medio.

Este fragmento del promotor *ADH12s*, en adelante también denominado *ADH1*, muestra una expresión casi constitutiva (Ruohonen L., Penttila M., Keranen S. (1991) Optimization of Bacillus alpha-amylase production by *Saccharomyces cerevisiae*. Yeast. May-Jun; 7 (4): 337-462; Lang C., Looman AC. (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in *Saccharomyces cerevisiae*. Appl. Microbiol. Biotechnol. Dec; 44(1-2); 147-56), de manera que la regulación transcripcional ya no tiene lugar mediante productos intermedios de la biosíntesis del ergosterol.

Otros promotores preferidos con regulación reducida son promotores constitutivos, como por ejemplo el promotor TEF1 de la levadura, el promotor GPD de la levadura o el promotor PGK de la levadura (Mumberg D., Muller R., Funk M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995 Apr. 14; 156(1): 119-22; Chen, CY., Oppermann, H., Hitzeman, RA. (1984) Homologous versus heterologous gene expression in the yeast, *Saccharomyces cerevisiae*. Nucleic Acids Res. Dec 11; 12(23): 8951-70).

El casete de expresión también puede contener promotores inducibles, en particular un promotor químicamente inducible a través del que es posible controlar la expresión de los ácidos nucleicos que codifican una Δ8-Δ7-isomerasa, una Δ5-desaturasa, una Δ24-reductasa, una HMG-CoA-reductasa, una lanosterol-C14-demetilasa, una escualeno epoxidasa, una escualeno sintetasa o una esterol-aciltransferasa en el organismo en un momento determinado.

Pueden utilizarse, promotores tales como el promotor Cupl de la levadura (Etcheverry T. (1990) Induced expression using yeast copper metallothionein promoter. Methods Enzymol. 1990; 185:319-29), el promotor Gall-10 de la levadura (Ronicke V., Graulich W., Mumberg D., Muller R., Funk M. (1997) Use of conditional promoters for expression of heterelogous proteins in *Saccharomyces cerevisiae*, Methods Enzymol. 283:313-22) o el promotor Pho5 de la levadura (Bajwa W., Rudolph H., Hinnen A. (1987) PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene. Yeast. 1987 Mar; 3(1): 33-42).

Como terminador del casete de expresión resulta adecuado básicamente cualquier terminador que pueda controlar la expresión de genes externos en los organismos, en particular en las levaduras.

Se prefiere el terminador de triptófano de la levadura (terminador TRP1).

La fabricación de un casete de expresión tiene lugar preferiblemente mediante la fusión de un promotor adecuado con los ácidos nucleicos descritos aquí que codifican una Δ8-Δ7-isomerasa, una Δ5-desaturasa, una Δ24-reductasa, una HMG-CoA-reductasa, una lanosterol-C14-demetilasa, una escualeno epoxidasa, una escualeno sintetasa o una

esterol-aciltransferasa y, en su caso, un terminador según las técnicas de recombinación y clonación habituales, como las que se describen en T. Maniatis, E.F. Fritsch y J. Sambrook, Molecular cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989), o en T. J. Silhavy, M.L. Berman y L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) y en Ausubel, F. M. et al., Current protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987).

Los ácidos nucleicos según la invención pueden fabricarse sintéticamente u obtenerse de forma natural, o bien contener una mezcla de componentes sintéticos y naturales de ácidos nucleicos, así como constar de diferentes porciones de genes heterólogos de diversos organismos.

Como se ha descrito antes, se prefieren secuencias sintéticas de nucleótidos con codones que son preferidos por las levaduras. Estos codones preferidos por las levaduras pueden determinarse a partir de codones que tienen la máxima frecuencia de proteínas que se expresan en la mayor parte de las especies de levaduras interesantes.

15

20

30

En la preparación de un casete de expresión pueden manipularse diversos fragmentos de ADN para obtener una secuencia de nucleótidos que lee de forma apropiada en la dirección correcta y que está provista de un marco de lectura correcto. Para la unión de los fragmentos de ADN entre sí a los fragmentos pueden unirse adaptadores o engarzadores.

De manera apropiada las regiones del promotor o del terminador pueden estar dotadas en la dirección de transcripción de un engarzador o un poliengarzador que contiene uno o varios sitios de restricción para la inserción de esta secuencia. Por regla general el engarzador tiene de 1 a 10, en su mayoría de 1 a 8, preferiblemente de 2 a 6 sitios de restricción. Por lo general, dentro de las áreas reguladoras, el engarzador tiene un tamaño de menos de 100 bp, con frecuencia de menos de 60 bp, si bien de al menos 5 bp. El promotor puede ser tanto nativo u homólogo como externo o heterólogo respecto al organismo huésped. El casete de expresión contiene preferiblemente en la dirección de transcripción 5'-3' el promotor, una secuencia de ácidos nucleicos codificadora o un constructo de ácidos nucleicos y una región para la terminación transcripcional. Pueden intercambiarse diferentes áreas de terminación según se prefiera.

También pueden utilizarse manipulaciones que proporcionen sitios de restricción adecuados o que eliminen el ADN o los sitios de restricción superfluos. Donde entran en consideración inserciones, deleciones o sustituciones, como por ejemplo transiciones y transversiones, es posible utilizar mutagénesis *in vitro*, la reparación de cebadores, la restricción o la ligación.

En el caso de manipulaciones adecuadas, tales como por ejemplo, restricción, *chewing-back* (mascadura) o relleno de partes sobresalientes (colgantes) de extremos romos (*bluntends*) pueden proporcionarse extremos complementarios de los fragmentos para la ligación.

La invención también se refiere a la utilización de los ácidos nucleicos aquí descritos, de los constructos de ácidos nucleicos aquí descritos o de las proteínas aquí descritas para la fabricación de organismos transgénicos, en particular, levaduras.

Preferiblemente estos organismos transgénicos, en particular las levaduras, presentan respecto al tipo silvestre un contenido aumentado en 7-dehidrocolesterol.

Así pues, la invención se refiere también al uso de los ácidos nucleicos aquí descritos o de los constructos de ácidos nucleicos según la invención para el aumento del contenido en 7-dehidrocolesterol y/o sus productos intermedios y/o secuenciales biosintéticos.

Las proteínas y los ácidos nucleicos aquí descritos pueden utilizarse para la fabricación de 7-dehidrocolesterol en organismos transgénicos.

La transferencia de genes externos al genoma de un organismo, en particular de levadura, recibe el nombre de transformación.

Para ello, en particular en el caso de las levaduras, pueden utilizarse métodos conocidos para la transformación.

Son métodos adecuados para la transformación de levaduras, por ejemplo, el método LiAC, tal como se describe en Schiestl RH., Gietz RD. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier, Curr Genet. Dec; 16(5-6):339-46, la electroporación tal como se describe en Manivasakam P., Schiestl RH. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res. Sep 11; 21(18):4414-5, o la fusión de protoplastos, tal como se describe en Morgan AJ. (1983) Yeast strain improvement by protoplast fusion and transformation, Experientia Suppl. 46:155-66.

5

10

15

20

35

40

45

Preferiblemente el constructo que va a expresarse se clona en un vector, en particular, en plásmidos, que resultan adecuados para transformar levaduras, como por ejemplo, los sistemas de vectores Yep24 (Naumovski L., Friedberg EC. (1982) Molecular cloning of eucaryotic genes required for excision repair of UV-irradiated DNA: isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae. J Bacteriol Oct; 152(1):323-31), Yep13 (Borach JR., Strathern JN., Hicks JB. (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec; 8(1); 121.33), la serie pRS de vectores (centromérico y episomal) (Sikorski RS., Hieter P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. Genetics. May; 122(1); 19-27), así como los sistemas de vectores YCp19 o pYEXBX.

En consecuencia, la invención se refiere también a vectores, en particular a plásmidos que contienen los ácidos nucleicos, los constructos de ácidos nucleicos o los casetes de expresión descritos aquí.

La invención también puede explicarse con un procedimiento para la fabricación de organismos genéticamente modificados, en donde en el organismo de partida se introduce funcionalmente un ácido nucleico aquí descrito o un constructo de ácidos nucleicos aquí descrito.

La invención se refiere también a los organismos genéticamente modificados según la reivindicación 40.

En una realización preferida el organismo genéticamente modificado presenta frente al tipo silvestre, además de las modificaciones genéticas aquí descritas, una actividad reducida de al menos una de las actividades, seleccionada del grupo de la actividad de la C24-metiltransferasa y la actividad de la Δ22-desaturasa.

La reducción de al menos una de las actividades respecto al tipo silvestre se consigue preferiblemente mediante una reducción de la expresión génica de al menos un ácido nucleico, seleccionado del grupo de los ácidos nucleicos que codifican una C24-metiltransferasa y los ácidos nucleicos que codifican una Δ22-desaturasa.

Un organismo genéticamente modificado especialmente preferido no presenta ningún gen funcional de C24-metiltransferasa y/o gen de Δ 22-desaturasa además de las modificaciones genéticas aquí descritas.

30 Especialmente preferidos son los organismos genéticamente modificados, mencionados aquí, en los que la modificación genética aumenta respecto al tipo silvestre además al menos una de las actividades seleccionadas del grupo de la actividad de la HMG-CoA-reductasa, la actividad de la lanosterol-C14-demetilasa, la actividad de la escualeno epoxidasa, la actividad de la escualeno sintetasa y la actividad de la esterol-aciltransferasa.

Preferiblemente, tal como se ha mencionado antes, el aumento de al menos una de estas actividades frente al tipo silvestre tiene lugar mediante el aumento de la expresión génica de al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una HMG-CoA-reductasa, ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno epoxidasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una esterol-aciltransferasa.

Preferiblemente el aumento respecto al tipo silvestre de la expresión génica de al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una HMG-CoA-reductasa, ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno epoxidasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una esterol-aciltransferasa, tiene lugar mediante el aumento del número de copias de al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una HMG-CoA-reductasa, ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno epoxidasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una escualeno sintetas y ácidos nucleicos que codifican una es

Por consiguiente, la invención se refiere preferentemente a un organismo genéticamente modificado descrito aquí que contiene dos o más ácidos nucleicos de al menos un ácido nucleico seleccionado del grupo de ácidos nucleicos que codifican una HMG-CoA-reductasa, ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno epoxidasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una esterol-aciltransferasa.

En particular la invención se refiere preferentemente a un organismo genéticamente modificado que, además de las modificaciones genéticas aquí descritas, contiene dos o más ácidos nucleicos que codifican una HMG-CoA-reductasa y/o dos o más ácidos nucleicos que codifican una lanosterol-C14-demetilasa y/o dos o más ácidos nucleicos que codifican una escualeno epoxidasa y/o dos o más ácidos nucleicos que codifican una escualeno sintetasa y/o dos o más ácidos nucleicos que codifican una esterol-aciltransferasa.

Los organismos genéticamente modificados descritos aquí presentan frente al tipo silvestre una cantidad aumentada de 7-dehidrocolesterol.

Son organismos genéticamente modificados preferidos según la invención las levaduras o los hongos genéticamente modificados, en particular las levaduras genéticamente modificadas según la invención, en particular la especie de levadura genéticamente modificada según la invención Saccharomyces cerevisiae, en particular las cepas de levadura genéticamente modificadas Saccharomyces cerevisiae AH22, Saccharomyces cerevisiae GRF, Saccharomyces cerevisiae DBY747 y Saccharomyces cerevisiae BY4741.

Aumento del contenido en 7-dehidrocolesterol significa en el marco de la presente invención preferiblemente la capacidad obtenida artificialmente de una biosíntesis aumentada de al menos uno de estos compuestos en el organismo genéticamente modificado frente al organismo no modificado genéticamente.

En consecuencia, por tipo silvestre se entiende, como se mencionó al principio, el organismo no modificado genéticamente, en particular el organismo de referencia mencionado aquí.

Por aumento en el contenido de 7-dehidrocolesterol en comparación con el tipo silvestre se entiende en particular el aumento en el organismo del contenido de uno de los compuestos mencionados aquí en al menos un 50%, preferiblemente un 100%, más preferentemente un 200%, de manera especialmente preferente un 400% en comparación con el tipo silvestre.

La determinación del contenido en al menos uno de los compuestos mencionados tiene lugar según uno de los métodos analíticos conocidos y se refiere preferiblemente a los compartimentos del organismo en los que se producen esteroles.

- 30 La invención se explica mediante los ejemplos que se incluyen a continuación, si bien no está limitada a los mismos:
 - I. Condiciones experimentales generales
 - 1. Restricción

5

10

15

20

25

35

40

La restricción de los plásmidos (1 a 10 μ g) se realizó en preparaciones de 30 μ l. El ADN se incluyó en 24 μ l de H_2O , y se mezcló con 3 μ l del tampón correspondiente, 1 ml RSA (albúmina de suero de bovino) y 2 μ l de enzima. La concentración enzimática era de 1 unidad/ μ l o de 5 unidades/ μ l según la cantidad de ADN. En algunos casos a la preparación se le añadió también 1 μ l de RNasa para descomponer el ARN-t. La preparación de restricción se incubó durante 2 horas a 37 °C. La restricción se controló con un minigel.

2. Electroforesis en gel

Las electroforesis en gel se realizaron en aparatos de minigel o minigel ancho. Los minigeles (aprox. 20 ml, 8 bolsas) y los minigeles anchos (50 ml, 15 o 30 bolsas) constaban de agarosa al 1% en TAE. Como tampón de electroforesis se utilizó 1 x TAE. Las muestras (10 µl) se mezclaron con 3 µl de solución de parada y se aplicaron en el gel. Como solución estándar sirvió ADN-l cortado con *Hin*dIII (bandas en: 23,1 kb; 9,4 kb; 6,6 kb; 4,4 kb; 2,3 kb; 2,0 kb; 0,6 kb). Para la separación se creó una tensión de 80 V durante 45 a 60 minutos. A continuación el gel se coloreó en

solución de bromuro de etidio y se sujetó bajo luz UV con el sistema de documentación por vídeo INTAS o se fotografió con un filtro naranja.

3. Elución en gel

5

10

15

20

25

35

40

45

Se utilizó una elución en gel para aislar los fragmentos deseados. La preparación de restricción se aplicó en varias bolsas de un minigel y se separó. Sólo □-HindIII y una "traza sacrificial" se colorearon en una solución de bromuro de etidio, se observaron con luz UV y se marcó el fragmento deseado. De este modo se impidió que el ADN del resto de bolsas se dañara por la acción del bromuro de etidio y la luz UV. Con la colocación uno al lado de la pieza de gel coloreada y no coloreada a partir de la marca pudo recortarse el fragmento deseado a partir de la pieza de gel no coloreada. La pieza de agarosa con el fragmento que debía aislarse se introdujo en una manguera de diálisis, se cerró sin burbujas con poco tampón TAE y se colocó en el aparato de minigel Biorad. El tampón de electroforesis constó de 1 x TAE y la tensión fue de 100 V durante 40 minutos. A continuación la polaridad de la corriente se cambió durante 2 minutos para volver a desprender el ADN pegado en la manguera de diálisis. El tampón de la manguera de diálisis que contenía los fragmentos de ADN se transfirió a tubos de reacción y con ello se realizó una precipitación con etanol. Además, a la solución de ADN se le añadió 1/10 del volumen de 3 M de acetato de sodio, ARNt (1 μl por 50 μl de solución) y 2,5 veces el volumen de etanol al 96% helado. La preparación se incubó durante 30 minutos a -20 °C y, después, se centrifugó a 12000 rpm, durante 30 minutos a 4 °C. El sedimento de ADN se secó y se incluyó en 10 a 50 μl de H₂O (según la cantidad de ADN).

4. Tratamiento de Klenow

Con el tratamiento de Klenow los extremos sobrenadantes de los fragmentos de ADN se rellenan de manera que surgen extremos romos ("blunt-ends"). Por cada µg de ADN se pipeteó la siguiente preparación:

Sedimento de ADN	+ 11 µl	H2O
	+ 1,5 µl	10 x tampón Klenow
	+ 1 µl	0,1 M DTT
	+ 1 µl	nucleótidos (dNTP 2 mM)
	+ 1 µl	polimerasa Klenow (1 unidad/μl)

El ADN debía proceder en este caso de una precipitación de etanol para evitar que las impurezas inhibieran la polimerasa de Klenow. La incubación se realizó durante 30 minutos a 37 °C y mediante otros 5 minutos a 70 °C se detuvo la reacción. El ADN se obtuvo de la preparación mediante una precipitación de etanol y se incluyó en 10 μ l de H_2O .

30 5. Ligación

Los fragmentos de ADN que debían ligarse se unieron. El volumen final de 13,1 μ l contenía aprox. 0,5 μ l de ADN con una relación vector-inserto de 1:5. La muestra se incubó durante 45 segundos a 70 °C, se enfrió a temperatura ambiente (aprox. 3 minutos) y, después, se incubó durante 10 minutos en hielo. Acto seguido, se añadieron los tampones de ligación: 2,6 μ l 500 mM TrisHCl pH 7,5 y 1,3 μ l 100 mM de MgCl₂, y se incubó otros 10 minutos en hielo. Tras la adición de 1 μ l 500 mM de DTT y 1 μ l 10 mM de ATP y una nueva incubación de 10 minutos en hielo se añadió 1 μ l de ligasa (1 unidad/pl). Todo el procedimiento debía tener lugar sin vibraciones para no volver a separar los extremos de ADN que estaban uno junto al otro. La ligación tuvo lugar durante la noche a 14 °C.

6. Transformación de E. Coli

Células competentes de *Escherichia coli (E. coli)* NM522 se transformaron con el ADN de la preparación de ligación. Como control positivo se utilizó una preparación con 50 µg del plásmido pScL3 y, como control cero, una preparación sin ADN. Para cada preparación de transformación se pipetearon 100 µl de solución PEG al 8%, 10 µl de ADN y 200 µl de células competentes (*E. coli* NM522) en el tubo de una centrifugadora de sobremesa. Las preparaciones se colocaron durante 30 minutos en hielo y se agitaron un poco.

A continuación, tuvo lugar el shock térmico: 1 minuto a 42 °C. Para la regeneración se añadió a las células 1 ml de medio LB y se incubó durante 90 minutos a 37 °C en un agitador. 100 µl de la preparación no diluida, 100 µl de una dilución 1:10 y 100 µl de una dilución 1:100 se colocaron en placas de LB + ampicilina y se incubaron a 37 °C durante la noche.

7. Aislamiento del plásmido de *E. coli* (minipreparación)

Se tomaron colonias de *E. coli* y se concentraron durante la noche en 1,5 ml de medio de LB + ampicilina en el tubo de una centrifugadora de sobremesa a 37 °C y a 120 rpm. Al día siguiente las células se centrifugaron durante 5 minutos a 5000 rpm y 4 °C y el sedimento se incluyó en 50 µl de tampón TE.

Cada preparación se mezcló con 100 μl 0,2 N NaOH, solución de SDS al 1% y se colocó durante 5 minutos en hielo (lisis de las células). A continuación se añadieron 400 μl de solución de acetato de Na/NaCl (230 μl H₂O, 130 μl 3 M de acetato de sodio, 40 μl 5 M de NaCl), la preparación se mezcló y se colocó en hielo durante otros 15 minutos (precipitación de proteínas). Después de una centrifugación de 15 minutos a 11.000 rpm el sobrenadante, que contenía el ADN plásmido, se transfirió a una pipeta de Eppendorf. Si el sobrenadante no estaba totalmente claro, se centrifugó otra vez. El sobrenadante se mezcló con 360 μl de isopropanol helado y se incubó durante 30 minutos a -20 °C (precipitación de ADN). El ADN se centrifugó (15 minutos, 12.000 rpm, 4 °C), el sobrenadante se desechó, el sedimento se lavó en 100 μl de etanol al 96% helado, se incubó durante 15 minutos a -20 °C y se centrifugó de nuevo (15 minutos, 12.000 rpm, 4 °C). El sedimento se secó en un Speed Vac y después se incluyó en 100 ml de H₂O. El ADN plásmido se caracterizó mediante un análisis de restricción. Para ello se restringieron 10 μl de cada preparación y se separaron mediante electroforesis en gel en un minigel ancho (véase más arriba).

8. Procesamiento del plásmido de E. coli (maxipreparación)

Para aislar cantidades mayores de ADN plásmido, se utilizó el método de maxipreparación. Dos matraces con 100 ml de medio de LB + ampicilina se inocularon con una colonia o con 100 μ l de un cultivo congelado que portaba el plásmido que debía aislarse y, después, se incubó durante la noche a 37 °C y 120 rpm. El producto (200 ml) se transfirió al día siguiente a un recipiente GSA y se centrifugó a 4000 rpm (2600 x g) durante 10 minutos. El sedimento celular se incluyó en 6 ml de tampón TE. Para la descomposición de la pared celular se añadieron 1,2 ml de solución de lisozima (20 mg/ml tampón TE) y se incubó durante 10 minutos a temperatura ambiente. A continuación se realizó la lisis de las células con 12 ml 0,2 N NaOH, solución SDS al 1% y otra incubación de 5 minutos a temperatura ambiente. Las proteínas se precipitaron mediante la adición de 9 ml de solución de 3 M acetato de sodio refrigerado (pH 4,8) y una incubación de 15 minutos en hielo. Después de la centrifugación (GSA: 13.000 rpm (27.500 x g), 20 minutos, 4 °C), el sobrenadante, que contenía el ADN, se transfirió a un nuevo recipiente GSA y el ADN se precipitó con 15 ml de isopropanol helado y una incubación de 30 minutos a -20 °C. El sedimento de ADN se lavó en 5 ml de etanol helado y se secó al aire (aprox. 30 - 60 minutos). A continuación se incluyó en 1 ml de H_2 O. Se realizó una comprobación del plásmido mediante análisis de restricción. La concentración se determinó mediante la aplicación de diluciones en un minigel. Para reducir el contenido en sal se realizó una microdiálisis de 30 a 60 minutos (tamaño del poro 0,025 μ m).

9. Transformación de la levadura

Para la transformación de la levadura se utilizó un cultivo previo de la cepa *Saccaromyces cerevisiae* AH22. Un matraz con 20 ml de medio YE se inoculó con 100 µl de cultivo congelado y se incubó durante la noche a 28 °C y 120 rpm. El cultivo principal tuvo lugar en las mismas condiciones en un matraz con 100 ml de medio YE, que se inocularon con 10 µl, 20 µl o 50 µl del cultivo previo.

9.1 Creación de células competentes

Al día siguiente los matraces se contaron mediante una cámara Thoma y se siguió trabajando con el matraz que tenía un número de células de 3- 5×10^7 células/ml. Las células se recolectaron mediante centrifugación (GSA: 5000 rpm (4000 x g) 10 minutos). El sedimento celular se incluyó en 10 ml de tampón TE y se distribuyó entre dos tubos de centrifugadora de sobremesa (5 ml en cada uno). Las células se centrifugaron durante 3 minutos a 6000 rpm y se lavaron otras dos veces con sendos tampones TE de 5 ml. A continuación el sedimento celular se incluyó en 330 μ l de tampón de acetato de litio por cada 10^9 células, se transfirió a un matraz Erlenmeyer de 50 ml y se agitó durante una hora a 28 °C. De este modo, las células resultaron ser competentes para la transformación.

45 9.2 Transformación

20

25

30

35

40

Para cada preparación de transformación, en el tubo de una centrifugadora de sobremesa se pipetearon 15 μ l de ADN de esperma de arenque (10 mg/ml), 10 μ l del ADN a transformar (aprox. 0,5 μ g) y 330 μ l de células

competentes y se incubaron durante 30 minutos a 28 $^{\circ}$ C (sin agitar). A continuación se añadieron 700 μ l de PEG 6000 al 50% y se incubó durante otra hora a 28 $^{\circ}$ C, sin agitación. Acto seguido se procedió a un shock térmico de 5 minutos a 42 $^{\circ}$ C.

100 µl de la suspensión se colocaron en el medio de selección (YNB, Difco) para seleccionar una prototrofia de leucina. En el caso de la selección en la resistencia a G418 después del shock térmico tiene lugar una regeneración de las células (véase punto 9.3 Fase de regeneración).

9.3 Fase de regeneración

Como el marcador de selección es la resistencia frente a G418, las células necesitaron tiempo para la expresión del gen de resistencia. Las preparaciones de transformación se mezclaron con 4 ml de medio YE y se incubaron durante la noche a 28 °C en el agitador (120 rpm). Al día siguiente la células se centrifugaron (6000 rpm, 3 minutos), se incluyeron en un 1 ml de medio YE y de ellas 100 µl o 200 µl se colocaron en placas YE + G418. Las placas se incubaron a 28 °C durante varios días.

10. Condiciones para la RCP

Las condiciones para la reacción en cadena de la polimerasa deben optimizarse para cada caso concreto y no son válidas de manera ilimitada para todas las preparaciones. Así, entre otros, puede variarse la cantidad utilizada de ADN, la concentración de sal y la temperatura de fusión. Para el problema que nos ocupa resultó favorable utilizar una pipeta de Eppendorf, que era adecuada para su uso en el termociclador, para reunir las siguientes sustancias: A 2 µl (= 0,1 U) de Taq polimerasa Super se añadieron 5 µl de tampón Super, 8 µl de dNTPs (0,625 µM de cada), cebador 5', cebador 3' y 0,2 µg de matrices de ADN, disueltas en agua suficiente para dar un volumen total de 50 µl para la preparación de la RCP. La preparación se centrifugó brevemente y se recubrió con una gota de aceite. Se seleccionaron entre 37 y 40 ciclos para la amplificación.

II. Ejemplos

10

Los ejemplos 1 a 5 son ejemplos comparativos, mientras que el ejemplo 6 es un ejemplo según la invención.

Ejemplo 1

30

35

Expresión y sobreexpresión de una HMG-CoA-reductasa truncada, una escualeno epoxidasa (ERG1) y/o una lanosterol-C14-demetilasa (ERG11), en parte mediante la deleción de *ERG5* y *ERG6* en *S. cerevisiae* GRF18 o GRF*ura3*

1.1 Fabricación de los plásmidos pFlat1 y pFlat3 y pFlat4

Para la fabricación del vector de expresión pFlat3 el plásmido YEp24 (Naumovski, L., Friedberg EC (1982) Molecular cloning of eucaryotic genes required for excision repair of UV-irradiated DNA: isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae. J Bacteriol Oct; 152(1): 323-31) se linealizó mediante restricción con *SphI* y se integró un fragmento de *SphI* de 900 bp del vector pPT2B (Lang C., Looman AC (1995) Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in *Saccharomyces cerevisiae*. Appl. Microbiol. Biotechnol. Dec.; 44(1-2): 147-56), que contenía el promotor *ADH1* y el terminador *TRP1* de la levadura *Saccharomyces cerevisiae* y un sitio de clonación múltiple del vector pUC19 (Yanisch-Perron C., Vieira J., Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985; 33(1): 103-19).

El sitio de clonación múltiple se amplió mediante un poliengarzador que contenía los sitios de restricción *Not*l y *Xho*l. El poliengarzador se integró a través del punto de corte *Sall* del vector. El plásmido resultante se llama pFlat1.

Para la fabricación del vector pFlat3, el vector pFlat1 se linealizó mediante la enzima *Nco*l y se sometió a tratamiento de Klenow para producir extremos romos (blunt ends). A continuación, a partir del plásmido YDpL (Berben, G., Dumont, J., Guilliquet, V., Bolle, P.A. and Hilger, F. (1991) The YDp Plasmids: a Uniform Set of Vectors Bearing Versatile Disruption Cassettes for *Saccharomyces cerevisiae*. Yeast 7: 475-477) se integró un fragmento *BamH*I

convertido en extremo romo mediante tratamiento de Klenow de la polimerasa, que contenía el gen *LEU2* de la levadura.

Para la fabricación del vector pFlat4, el vector pFlat1 se linealizó mediante la enzima *Nco*l y se sometió a tratamiento de Klenow para producir extremos romos (blunt ends). A continuación, a partir del plásmido YDpH (Berben et al. 1991) se integró un fragmento *BamH*I convertido en extremo romo mediante tratamiento de Klenow de la polimerasa, que contenía el gen *HIS3* de la levadura.

1.2 Integración de *ERG1*, *ERG11*, *ERG4*, *ERG2* o *ERG3* o del gen de la Δ24-reductasa en los vectores pFlat1, pFlat3 y pFlat4

En primer lugar se utilizó una RCP para insertar un sitio de restricción *Not*I en el sitio codificador 5' de los genes *ERG1*, *ERG4*, Δ24-reductasa, *ERG2* o *ERG3*·y un sitio de restricción *Xho*I en el sitio codificador 3' de los genes y las regiones codificadoras correspondientes se amplificaron. A continuación, los amplificados se trataron con las enzimas de restricción *Not*I y *Xho*I. Paralelamente los plásmidos pFlat1, pFlat3 y pFlat4 se trataron con las enzimas *Not*I y *Xho*I. Mediante ligación con la T4-ligasa los amplificados cortados se integraron después en los plásmidos cortados. La figura 7 muestra a modo de ejemplo el plásmido pFlat-3-*ERG4*.

15 Secuencias cebadoras para la clonación de *ERG1*, *ERG2*, *ERG3*, *ERG4*, Δ24-reductasa:

Cebador ERG1-5' (SEQ: ID. nº 51):

5

CTGCGGCCGC ATCATGTCTG CTGTTAACGT TGC

Cebador ERG1-3' (SEQ. ID. nº 52):

TTCTCGAGTT AACCAATCAA CTCACCAAAC

20 Cebador ERG11-5' (SEQ. ID. nº 53):

CTGCGGCCGCAGGATGTCTGCTACCAAGTCAATCG

Cebador ERG11-3' (SEQ. ID. nº 54):

ATCTCGAGCTTAGATCTTTTGTTCTGGATTTCTC

Cebador ERG2-5' (SEQ. ID. nº 55):

25 CTGCGGCCGCACCATGAAGTTTTTCCCACT CC

Cebador ERG2-3' (SEQ. ID. nº 56):

TTCTCGAGTTAGAACTTTTTGTTTTGCAACAAG

Cebador ERG3-5' (SEQ. ID. nº 57):

CTGCGGCCGCAATATGGATTTGGTCTTAGAAGTCG

30 Cebador ERG3-3' (SEQ. ID. nº 58):

AACTCGAGTCAGTTGTTCTTCTTGGTATTTG

Cebador ERG4-5' (SEQ. ID. nº 59):

CTGCGGCCGCACTATGGCAAAGGATAATAGTGAG

Cebador ERG4-3' (SEQ. ID. nº 60):

35 TTCTCGAGCTAGAAAACATAAGGAATAAAGAC

Cebador Δ24R-5' (SEQ. ID. nº 47):

CTGCGGCCGCAAGATGGAGCCCGCCGTGTCGC

Cebador Δ 24R-3' (SEQ. ID. nº 48):

AACTCGAGTCAGTGCCTTGCCGCCTTGC

5 1.3 Fabricación de los vectores de integración pUG6-tHMG, pUG6-ERG1, pUG6-ERG11

1.3.1 pUG6-tHMG

10

25

30

35

La secuencia de ADN para el casete de expresión del promotor *ADH1*-terminador *tHMG*-triptófano se aisló a partir del vector YepH2 (Polakowski, T., Stahl, U., Lang, C. (1998): Overexpression of a cytosolic HMG-CoA reductase in yeast leads to squalene accumulation. Appl. Microbiol. Biotechnol. 49: 66-71) mediante restricción con las enzimas *EcoRV* y *Bsp*68I (*Nru*I) utilizando métodos estándar. El fragmento de ADN obtenido se clonó en el vector pUG6 (Güldener, U et al. (1996): A new efficient gene disruption cassette for repeated use in budding yeast, Nucleic Acids Res. Jul 1; 24(13):2519-24) por ligación de extremos romos en el punto de corte de *EcoRV* y dio lugar al vector con la designación pUG6-*tHMG* (figura 1).

1.3.2 pUG6-ERG1

La secuencia de ADN para el casete de expresión del promotor *ADH1*-terminador *ERG1*-triptófano se aisló a partir del vector pFlat3-*ERG1* mediante restricción con las enzimas *Nhe*l y *Bsp68*l (*Nru*l) utilizando métodos estándar. El fragmento de ADN obtenido se clonó según un tratamiento de Klenow en el vector pUG6 (Güldener, U et a1. (1996): A new efficient gene disruption cassette for repeated use in budding yeast, Nucleic Acids Res. Jul 1;24(13):2519-24) por ligación de extremos romos en el punto de corte de *EcoRV* y dio lugar al vector con la designación *pUG6-ERGI* (figura 2).

1.3.3 pUG6-ERG11

La secuencia de ADN para el casete de expresión del promotor *ADH1*-terminador *ERG11*-triptófano se aisló a partir del vector pFlat3-*ERG11* mediante restricción con las enzimas *EcoRV* y *Bsp68*l (*Nru*l) utilizando métodos estándar. El fragmento de ADN obtenido se clonó en el vector pUG6 (Güldener, U et a1. (1996): A new efficient gene disruption cassette for repeated use in budding yeast, Nucleic Acids Res. Jul 1;24(13):2519-24) por ligación de extremos romos en el punto de corte de *EcoRV* y dio lugar al vector con la designación *pUG6-ERG11* (figura 3).

1.4. Transformación integradora de los casetes de expresión en las cepas de levadura GRP o GRFura3

Tras el aislamiento de plásmidos se amplificaron fragmentos de los vectores pUG6- tHMG, pUG6-ERG1 y pUG6-ERG1 mediante RCP de manera que los fragmentos resultantes constaran de los siguientes componentes: loxP-kanMX-loxP-promotor ADH1-gen de de destino-terminador de triptófano, en donde por gen de destino se entiende tHMG, ERG1 o ERG11 y por kanMX, un gen de resistencia a la kanamicina.

Como cebadores se seleccionaron secuencias de oligonucleótidos que, en el área de recocido, contenían las secuencias más allá de los casetes a amplificar del vector pUG6-gen de destino y, en los extremos 5' y 3', contenían colgantes 40 pares de bases cada vez de la secuencia 5' o de la secuencia 3' del locus de integración. De este modo se garantiza que, por un lado, todo el fragmento, incluido *KanMX* y gen de destino se amplifican y, por otro lado, que este fragmento puede transformarse a continuación en levadura e integrarse mediante recombinación homóloga en el locus del gen de destino de la levadura. A este respecto, en función del locus del gen de destino de la levadura se utilizaron como cebador las siguientes secuencias de oligonucleótidos:

Para la integración en el locus génico URA3:

40 URA3-Crelox-5' (SEQ. ID nº 33):

5'-ATGTCGAAAG CTACATATAA GGAACGTGCT GCATCTCATC CCAGCTGAAG CTTCGTACGC-3'

URA3-Crelox-3' (SEQ. ID. No. 34):

5'-TTAGTTTTGC TGGCCGCATC TTCTCAAATA TGCTTCCCAG GCATAGGCCA CTAGTGGATC TG-3'

Para la integración en el locus génico LEU2:

LEU2-Crelox-5' (SEQ. ID. nº 35):

5 5'-GAATACTCAG GTATCGTAAG ATGCAAGAGT TCGAATCTCT CCAGCTGAAG CTTCGTACGC-3'

LEU2-Crelox-3' (SEQ. ID. nº 36):

5'-TCTACCCTAT GAACATATTC CATTTTGTAA TTTCGTGTCG GCATAGGCCA CTAGTGGATC TG-3'

Para la integración en el locus génico HIS3:

HIS3-Crelox-5' (SEQ. ID. No. 37):

10 5'-ATGACAGAGC AGAAAGCCCT AGTAAAGCGT ATTACAAATG CCAGCTGAAG CTTCGTACGC-3'

HIS3-Crelox-3' (SEQ. ID. No. 38):

5'-CTACATAAGA ACACCTTTGG TGGAGGGAAC ATCGTTGGTA GCATAGGCCA CTAGTGGATC TG-3'

Para la integración en el locus génico ERG6:

ERG6-Crelox-5' (SEQ. ID. nº 39):

15 5'-ATGAGTGAAA CAGAATTGAG AAAAAGACAG GCCCAATTCA CCAGCTGAAG CTTCGTACGC-3'

ERG6-Crelox-3' (SEQ. ID. nº 40):

5'-TTATTGAGTT GCTTCTTGGG AAGTTTGGGA GGGGGTTTCG GCATAGGCCA CTAGTGGATC TG-3'

Para la integración en el locus génico ERG5:

ERG5-Crelox-5' (SEQ. ID. nº 41):

20 5'-ATGAGTTCTG TCGCAGAAAA TATAATACAA CATGCCACTC CCAGCTGAAG CTTCGTACGC-3'

ERG5-Crelox-3' (SEQ. ID. nº 42):

25

30

35

5'-TTATTCGAAG ACTTCTCCAG TAATTGGGTC TCTCTTTTTG GCATAGGCCA CTAGTGGATC TG-3'

Como marcador de selección sirvió la resistencia frente a geneticina (G418). Las cepas resultantes contenían una copia del gen de destino correspondiente (tHMG, ERG1 o ERG11) bajo el control del promotor ADH y el terminador de triptófano. Al mismo tiempo fue posible suprimir el gen correspondiente del locus de destino mediante la integración del casete de expresión. Para volver a eliminar a continuación el gen para la resistencia frente a G418, la cepa de levadura surgida se transformó con el vector pSH47 que contenía la recombinasa cre (Guldener, U, Heck, S, Fielder, T, Beinhauer, J, Hegemann, JH. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. Jul 1;24(13):2519-24.). A través de este vector la recombinasa cre se expresó en la levadura, lo que tuvo como consecuencia que el área comprendida entre las dos secuencias loxP se recombinara, lo que a su vez tuvo como consecuencia que solo quedara una de las dos secuencias loxP y los casetes de expresión promotor ADH1-gen de destino-terminador de triptófano en el locus de destino.

La consecuencia es que la cepa de la levadura vuelve a perder su resistencia a G418 y, con ello, resulta apropiada para integrar o eliminar otros genes en la cepa de la levadura mediante este sistema "cre-lox". El vector pSH47 puede eliminarse de forma selectiva a continuación mediante cultivo en medio FOA.

De esta manera es posible integrar uno detrás de otro varios genes de destino en la cepa de la levadura bajo el control del promotor ADH1 y el terminador de triptófano en diversos locus de destino.

Primero se integra un gen de destino en el locus *URA3*, o se usa una cepa *ura3* para que la cepa de levadura para uracilo sea auxótrofa, pues el vector pSH47 contiene un gen *URA3* para la selección de cepas protótrofas para uracilo. La figura 4 muestra un ejemplo metódico.

Con este método se fabricaron las cepas de deleción o integración de levadura que se incluyen en la tabla 1, en donde, del modo conocido, el gen está en minúsculas en el caso de deleción, y está en mayúsculas en el caso de integración.

Tabla 1

5

N°	Nombre de la cepa	Modificación respecto a la cepa de levadura GRF
I	GRFtH1	ura3, tHMG:leu2
II	GRFtH1E1	ERG1:ura3, tHmG:leu2
III	GRFtH1E11	ura3, tHMG:leu2, ERG11:his3
IV	GRFtH1E1E11	ERGI:ura3, tHMG:leu2, ERG11:his3
V	GRFtH1E1E11 <i>erg5erg6</i>	ura3, tHMG:leu2, ERG1:erg6, ERG11:erg5
VI	GRFtH1erg5erg6	ura3, tHMG: leu2, erg5, erg6

10

15

Las cepas de levadura se cultivaron durante 48 horas en medio WMVIII a 28 °C y 160 rpm en un volumen de cultivo de 20 ml. A continuación, 500 µl de este precultivo se transfirieron a un cultivo principal de 50 ml del mismo medio y se cultivaron durante 3 días a 28 °C y 160 rpm en un matraz Erlenmeyer.

Los esteroles y el escualeno se extrajeron después de 3 días (Parks LW, Bottema CD, Rodriguez RJ, Lewis TA. (1985) Yeast sterols: yeast mutants as tools for the study of sterol metabolism. Methods Enzymol. 1985;111:333-46) y se analizaron mediante cromatografía de gases. Se produjeron los siguientes valores (véase tabla 2).

Tabla 2

		Cor	tenido	en es	sterole	s 1 a 1	11 en [superf	icie pi	co/gTS	6]	
N°	Nombre de la cepa	1	2	3	4	5	6	7	8	9	10	11
I	GRFtH1	9,9	0,8	0,3	1,2	1,1	1,0	0,0	0,0	0,0	0,0	4,7
II	GRFtH1E1	6,8	1,9	0,4	1,5	2,2	2,1	0,0	0,0	0,0	0,0	6,9
III	GRFtH1E11	9,9	0,4	0,7	2,3	1,9	1,9	0,0	0,0	0,0	0,0	5,0
IV	GRFtH1E1E11	6,0	1,2	0,9	3,0	2,3	2,2	0,0	0,0	0,0	0,0	7,2
V	GRFtH1E1E11 erg5erg6	5,8	0,8	0,4	23,1	0,0	0,0	0,0	0,0	11,8	0,0	0,0
VI	GRFtH1 <i>erg5erg6</i>	9,9	0,8	0,3	12,6	0,0	0,0	0,0	0,0	7,1	0,0	0,0

- 1 = escualeno
- 2 = lanosterol
- 3 = dimetil-zimosterol
- 4 = zimosterol
- 5 5 = fecosterol
 - 6 = episterol
 - 7 = colesta-7,24-dienol
 - 8 = colesta-8-enol
 - 9 = colesta-5,7,24 trienol
- 10 10 = 7-dehidrocolesterol
 - 11 = ergosterol

Ejemplo 2

Expresión del qen heterólogo que codifica una Δ8-Δ7-isomerasa (Ebp) del ratón (*Mus musculus*) en la levadura.

La secuencia de ADNc de la Δ8-Δ7-isomerasa de *Mus musculus* (Moebius, F.F., Soellner, K.E.M., Fiechter, B., Huck, C.W., Bonn, G., Glossmann, H. (1999): Histidine77, Glutamic Acid123, Threonine126, Asparagine194, and Tryptophanl97 of Human Emopamil Protein Are Required for in Vivo Sterol Δ8-Δ7 Isomerisation. Biochem. 38, 1119-1127.) se amplificó mediante RCP a partir del clon de ADNc IMAGp998A22757 (huésped: *E. coli* DH10B) del "Deutsches Resourcenzentrum für Genomforschung GmbH" (Berlin).

Los cebadores utilizados aquí son los oligómetros de ADN Ebp-5' (SEQ. ID. nº 43) y Ebp-3' (SEQ. ID. nº 44). El fragmento de ADN obtenido se trató con las enzimas de restricción *Not*I y *Xho*I y, a continuación, se integró mediante una reacción de ligasa en los vectores pFlat3 y pFlat1 (figura 4), que también se trataron antes con las enzimas *Not*I y *Xho*I. Los vectores resultantes pFlat1-*EBP* y pFlat3-*EBP* (figura 5a) contenían el gen *EBP* bajo el control del promotor *ADH* y el terminador de triptófano.

El vector de expresión pFlat3-*EBP* se transformó a continuación en las cepas de levadura I a VI de la tabla 1 del ejemplo 1, así como en la cepa GRFura3. Las cepas de levadura así obtenidas se cultivaron a continuación durante 48 horas en medio WMVIII a 28 °C y 160 rpm en un volumen de cultivo de 20 ml. A continuación, 500 µl de este precultivo se transfirieron a un cultivo principal de 50 ml del mismo medio y se cultivaron durante 3 días a 28 °C y 160 rpm en un matraz Erlenmeyer.

Los esteroles se extrajeron después de 3 días tal como se describe en el ejemplo 1 y se analizaron mediante cromatografía de gases. La influencia de la expresión de una Δ8-Δ7-isomerasa de *Mus musculus* en combinación con la expresión de los genes propios de la levadura transcripcionalmente desregulados *tHMG* y/o *ERG1* y/o *ERG1* y/o la deleción de los genes propios de la levadura *ERG6* y *ERG5* se incluye en la tabla 3. Las abreviaturas significan lo siguiente: - = reducción; 0 = ninguna modificación; / = no existente; +, ++, ++++ = enriquecido a fuertemente enriquecido.

Tabla 3

						dificac a de le		-	icas e	n el c	onteni	do en
N°	Nombre de la cepa	1	2	3	4	5	6	7	8	9	10	11
VII	GRFtH1 pFlat3-Ebp	0	0	0	0	0	0	/	/	/	/	0
VIII	GRFtH1E1 pFlat3-Ebp	0	0	0	-	0	0	+	/	/	/	0
IX	GRFtH1E11 pFlat3-Ebp	0	0	0	-	0	0	+	/	/	/	0
X	GRFtH1E1E11 pFlat3-Ebp	0	0	0	-	0	0	+	/	/	/	0
ΧI	GRFtH1E1E11erg5 erg6 pFlat3-Ebp	0	0	0		/	/	+	/	++	/	/
XII	GRFtH1 <i>erg5erg6</i> pFlat3-Ebp	0	0	0	-	/	/	+	/	+	/	/

- 1 = escualeno
- 2 = lanosterol
- 5 3 = dimetil-zimosterol
 - 4 = zimosterol
 - 5 = fecosterol
 - 6 = episterol
 - 7 = colesta-7,24-dienol
- 10 8 = colesta-8-enol
 - 9 = colesta-5,7,24 trienol
 - 10 = 7-dehidrocolesterol
 - 11 = ergosterol

Ejemplo 3

20

25

15 Expresión del gen heterólogo que codifica una Δ 5-desaturasa (Sc5d) del ratón (*Mus musculus*) en la levadura.

La secuencia de ADNc de la Δ5-desaturasa de *Mus musculus* (Nishi S., Hideaki, N., Ishibashi, T. (2000): cDNA cloning of the mammalian sterol C5-desaturase and the expression in yeast mutant. Biochim. Biophys. A 1490, 106-108.) se amplificó mediante RCP a partir del clon de ADNc IMAGp998K144618 (huésped: *E. coli* DH10B) del "Deutsches Resourcenzentrum für Genomforschung GmbH" (Berlín). Los cebadores utilizados aquí son los oligómetros de ADN Sc5d-5' (SEQ. ID. nº 45) y Sc5d-3' (SEQ. ID. nº 46). El fragmento de ADN obtenido se trató con las enzimas de restricción *Not*l y *Xho*l y, a continuación, se integró mediante una reacción de ligasa en el vector pFlat3 (figura 4), que también se trató antes con las enzimas *Not*l y *Xho*l. El vector resultante pFlat3-*SC5D* (figura 5b) contenía el gen SC5D bajo el control del promotor ADH y el terminador de triptófano.

El vector de expresión pFlat3-SC5D se transformó a continuación en las cepas de levadura I a VI de la tabla 1 del ejemplo 1, así como en la cepa GRFura3. Las cepas de levadura así obtenidas se cultivaron a continuación durante 48 horas en medio WMVIII a 28 °C y 160 rpm en un volumen de cultivo de 20 ml. A continuación, 500 µl de este precultivo se transfirieron a un cultivo principal de 50 ml del mismo medio y se cultivaron durante 3 días a 28 °C y 160 rpm en un matraz Erlenmeyer.

Los esteroles se extrajeron después de 3 días tal como se describe en el ejemplo 1 y se analizaron mediante cromatografía de gases. La influencia de la expresión de una $\Delta 5$ -desaturasa de *Mus musculus* en combinación con la expresión de los genes propios de la levadura transcripcionalmente desregulados *tHMG* y/o *ERG1* y/o *ERG11* y/o la deleción de los genes propios de la levadura *ERG6* y *ERG5* se incluye en la tabla 4. Las abreviaturas significan lo siguiente: - = reducción; 0 = ninguna modificación; / = no existente; +, ++, ++++ = enriquecido a fuertemente enriquecido.

Tabla 4

5

								genéti a GRF		n el co	ontenio	do en
Nº	Nombre de la cepa	1	2	3	4	5	6	7	8	9	10	11
XIII	GRFtH1 pFlat3-Sc5d	0	0	0	0	0	0	/	/	/	/	0
XIV	GRFtH1E1 pFlat3-Sc5d	0	0	0	-	0	0	/	/	+	/	0
XV	GRFtH1E11 pFlat3-Sc5d	0	0	0	-	0	0	/	/	+	/	0
XVI	GRFtH1E1E11 pFlat3-Sc5d	0	0	0	-	0	0	/	/	+	/	0
XVII	GRFtH1E1E11erg5 erg6 pFlat3-Sc5d	0	-	0		/	/	/	/	+++	+	/
XVIII	GRFtH1 <i>erg5erg6</i> pFlat3-Sc5d	0	0	0		/	/	/	/	++	/	/

- 1 = escualeno
- 10 2 = lanosterol
 - 3 = dimetil-zimosterol
 - 4 = zimosterol
 - 5 = fecosterol
 - 6 = episterol
- 15 7 = colesta-7,24-dienol
 - 8 = colesta-8-enol
 - 9 = colesta-5,7,24 trienol
 - 10 = 7-dehidrocolesterol
 - 11 = ergosterol

20 Ejemplo 4

25

Expresión del gen heterólogo que codifica una Δ24-reductasa (D24R) del ratón (*Mus musculus*) en la levadura.

La secuencia de ADNc de la Δ24-reductasa de *Mus musculus* (Waterham, H.R., Koster, J., Romeijn, G.J , Hennekam, R.C., Vreken, P., Andersson, H.C., FitzPatrick, D.R., Kelly, R.I. and Wanders, R.J., Mutations in the 3beta-Hydroxysterol Delta24-Reductase Gene Cause Desmosterolosis, an Autosomal Recessive Disorder of Cholesterol Biosynthesis, Am. J. Hum. Genet. 69 (4), 685-694 (2001)) se amplificó mediante RCP a partir del clon de ADNc IMAGp998K179532 (huésped: *E. coli* DH10B) del "Deutsches Resourcenzentrum für Genomforschung GmbH" (Berlín).

Los cebadores utilizados aquí son los oligómetros de ADN D24R-5' (SEQ. ID. nº 47) y D24R-3' (SEQ. ID. nº 48). El fragmento de ADN obtenido se trató con las enzimas de restricción *Not*I y *Xho*I y, a continuación, se integró mediante una reacción de ligasa en el vector pFlat4 (figura 6), que también se trató antes con las enzimas *Not*I y *Xho*I. El vector resultante pFlat4-D24R (figura 5d) contenía el gen *D24R* bajo el control del promotor *ADH1* y el terminador de triptófano.

El vector de expresión pFlat4-*D24R* se transformó a continuación en las cepas de levadura I a VI de la tabla 1 del ejemplo 1, así como en la cepa GRFura3. Las cepas de levadura así obtenidas se cultivaron a continuación durante 48 horas en medio WMVIII a 28 °C y 160 rpm en un volumen de cultivo de 20 ml. A continuación, 500 µl de este precultivo se transfirieron a un cultivo principal de 50 ml del mismo medio y se cultivaron durante 3 días a 28 °C y 160 rpm en un matraz Erlenmeyer.

Los esteroles se extrajeron después de 3 días tal como se describe en el ejemplo 1 y se analizaron mediante cromatografía de gases. La influencia de la expresión de una $\Delta 24$ -reductasa de *Mus musculus* en combinación con la expresión de los genes propios de la levadura transcripcionalmente desregulados *tHMG* y/o *ERG1* y/o *ERG11* y/o la deleción de los genes propios de la levadura *ERG6* y *ERG5* se incluye en la tabla 5. Las abreviaturas significan lo siguiente: - = reducción; 0 = ninguna modificación; / = no existente; +, ++, ++++ = enriquecido a fuertemente enriquecido.

Tabla 5

5

10

15

								genét ra GRI		n el c	ontenio	do en
Nº	Nombre de la cepa	1	2	3	4	5	6	7	8	9	10	11
XIX	GRFtH1 pFlat4-D24R	0	0	0	0	0	0	/	/	/	/	0
XX	GRFtH1E1 pFlat4-D24R	0	-	-	-	0	0	/	/	/	+	0
XXI	GRFtH1E11 pFlat4-D24R	0	0	0	-	0	0	/	+	/	+	0
XXII	GRFtH1E1E11 pFlat4-D24R	0	0	0	-	0	0	/	+	/	+	0
XXIII	GRFtH1E1E11erg5 erg6 pFlat4-D24R	0	-	-		/	/	0	+	+	+++	/
XXIV	GRFtH1erg5erg6 pFlat4-D24R	0	-	-		/	/	0	+	+	++	/

1	=	escuaieno

20 2 = lanosterol

3 = dimetil-zimosterol

4 = zimosterol

5 = fecosterol

6 = episterol

25 7 = colesta-7,24-dienol

8 = colesta-8-enol

9 = colesta-5,7,24 trienol

10 = 7-dehidrocolesterol

11 = ergosterol

Ejemplo 5

Expresión conjunta de los genes heterólogos que codifican una Δ8-Δ7-isomerasa (Ebp) del ratón (*Mus musculus*) y una C5-desaturasa (Sc5d) del ratón (*Mus musculus*) en la levadura.

Los vectores de expresión pFlat1-*EBP* (del ejemplo 2) y pFlat3-*SC5D* (del ejemplo 3) se transformaron a continuación en las cepas de levadura I a VI de la tabla 1 del ejemplo 1, así como en la cepa GRFura3. Las cepas de levadura así obtenidas se cultivaron a continuación durante 48 horas en medio WMVIII a 28 °C y 160 rpm en un volumen de cultivo de 20 ml. A continuación, 500 µl de este precultivo se transfirieron a un cultivo principal de 50 ml del mismo medio y se cultivaron durante 3 días a 28 °C y 160 rpm en un matraz Erlenmeyer.

Los esteroles se extrajeron después de 3 días tal como se describe en el ejemplo 1 y se analizaron mediante cromatografía de gases. La influencia de la expresión de una Δ8-Δ7-isomerasa y una C5-desaturasa de *Mus musculus* en combinación con la expresión de los genes propios de la levadura transcripcionalmente desregulados *tHMG* y/o *ERG1* y/o *ERG11* y/o la deleción de los genes propios de la levadura *ERG6* y *ERG5* se incluye en la tabla 6. Las abreviaturas significan lo siguiente: - = reducción; 0 = ninguna modificación; / = no existente; +, ++, +++, ++++ = enriquecido a fuertemente enriquecido.

Tabla 6

10

15

						lificacio a de le				n el co	ontenio	lo en
N°	Nombre de la cepa	1	2	3	4	5	6	7	8	9	10	11
XXV	GRFtH1 pFlat3-Ebp/ pFlat1-Sc5d	0	0	0	-	0	0	/	/	+	/	0
XXVI	GRFtH1E1 pFlat3-Ebp/ pFlat1-Sc5d	0	-	0		0	0	/	/	+	/	0
XXVII	GRFtH1E11 pFlat3-Ebp/ pFlat1-Sc5d	0	0	0		0	0	/	/	+	/	0
XXVIII	GRFtH1E1E11 pFlat3-Ebp/ pFlat1-Sc5d	0	-	-		0	0	/	/	++	/	0
XXIX	GRFtH1E1E11erg5 erg6 pFlat3-Ebp/ pFlat1-Sc5d	0	-	0		/	/	/	/	+++	+	/
XXX	GRFtH1 <i>erg5erg6</i> pFlat3-Ebp/ pFlat1-Sc5d	0	0	0	-	/	/	/	/	++	+	/

1 = escualeno

20 2 = lanosterol

3 = dimetil-zimosterol

- 4 = zimosterol
- 5 = fecosterol
- 6 = episterol
- 7 = colesta-7,24-dienol
- 5 8 = colesta-8-enol
 - 9 = colesta-5,7,24 trienol
 - 10 = 7-dehidrocolesterol
 - 11 = ergosterol

Ejemplo 6

15

20

10 Expresión conjunta de los genes heterólogos que codifican una Δ8-Δ7-isomerasa (Ebp) del ratón (*Mus musculus*), que codifica una C5-desaturasa (Sc5d) del ratón (*Mus musculus*) y una Δ24-reductasa del ratón (*Mus musculus*) en la levadura.

Los vectores de expresión pFlat1-*EBP* (del ejemplo 2) y pFlat3-*SC5D* (del ejemplo 3) y pFlat4-*D24R* (del ejemplo 4) se transformaron en las cepas de levadura I a VI de la tabla 1 del ejemplo 1, así como en la cepa GRFura3. Las cepas de levadura así obtenidas se cultivaron a continuación durante 48 horas en medio WMVIII a 28 °C y 160 rpm en un volumen de cultivo de 20 ml. A continuación, 500 µl de este precultivo se transfirieron a un cultivo principal de 50 ml del mismo medio y se cultivaron durante 3 días a 28 °C y 160 rpm en un matraz Erlenmeyer.

Los esteroles se extrajeron después de 3 días tal como se describe en el ejemplo 1 y se analizaron mediante cromatografía de gases. La influencia de la expresión de una $\Delta 8-\Delta 7$ -isomerasa y una C5-desaturasa y una $\Delta 24$ -reductasa de *Mus musculus* en combinación con la expresión de los genes propios de la levadura transcripcionalmente desregulados *tHMG* y/o *ERG1* y/o *ERG11* y/o la deleción de los genes propios de la levadura *ERG6* y *ERG5* se incluye en la tabla 7. Las abreviaturas significan lo siguiente: - = reducción; 0 = ninguna modificación; / = no existente; +, ++, ++++ = enriquecido a fuertemente enriquecido.

Tabla 7

				a de la ente a						n el d	conteni	do en
N°	Nombre de la cepa	1	2	3	4	5	6	7	8	9	10	11
XXXI	GRFtH1 pFlat3-Ebp/ pFlat1-Sc5d/ pFlat4-D24R	0	0	0	-	0	0	/	/	/	+	0
XXXII	GRFtH1E1 pFlat3-Ebp/ pFlat1-Sc5d/ pFlat4-D24R	0	-	0		0	0	/	/	/	+	0
XXXIII	GRFtH1E11 pFlat3-Ebp/ pFlat1-Sc5d/ pFlat4-D24R	0	0	0		0	0	/	/	/	+	0
XXXIV	GRFtH1E1E11 pFlat3-Ebp/ pFlat1-Sc5d/ pFlat4-D24R	0	-	-		0	0	/	/	/	++	0

XXXV	GRFtH1E1E11 <i>erg5</i> erg6 pFlat3-Ebp/ pFlat1-Sc5d/ pFlat4-D24R	0	-	0		/	1	I	1	+	++++	/
XXXVI	GRFtH1 <i>erg5erg6</i> pFlat3-Ebp/ pFlat1-Sc5d/ pFlat4-D24R	0	0	0	-	/	/	1	/	++	+++	/

	1	= escualeno
	2	= lanosterol
	3	= dimetil-zimosterol
5	4	= zimosterol
	5	= fecosterol
	6	= episterol
	7	= colesta-7,24-dienol
	8	= colesta-8-enol
10	9	= colesta-5,7,24 trieno
	10	= 7-dehidrocolesterol
	11	= ergosterol

PROTOCOLO DE SECUENCIAS

	<110> B	ASF A	Aktie	enges	sells	schai	ft									
5			ıs pı	rodu	ctos	inte	erme	dios							rol tétic	cos
40	<130> 00	050														
10	<140> <141>															
15	<160> 60	0														
	<170> Ve	ersi	ón de	e la	pate	ente	2.0									
20	<210> 1 <211> 69 <212> Al <213> Mi	DN	ıscul	lus												
25	<220> <221> CI <222> (1		(693))												
	<400> 1 atg acc															48
30	1			5					10	-1-			9	15		
	aag ctg Lys Leu	_						-		_		_			_	96
35	gtt ggc	ctc	ttc	tcc	atc	tct	ggg	ggc	cta	att	gtg	atc	acg	tgg	ctg	144
	Val Gly	Leu 35	Phe	Ser	Ile	Ser	Gly 40	Gly	Leu	Ile	Val	Ile 45	Thr	Trp	Leu	
40	ttg tct Leu Ser															192
	50					55					60					
45	gcc ttg Ala Leu 65	_			-		_									240
	ggc tgg Gly Trp										_	_		_		288
50				85	-		-		90			-		95		
	tta tcc Leu Ser															336
55	ctt agt	gac		ttc	gtc	gtc	tgt		gag	act	gtc	aca		tgt	ctc	384
	Leu Ser	Asp 115	Ser	Phe	Val	Val	Cys 120	Met	Glu	Thr	Val	Thr 125	Ala	Cys	Leu	

5					agc Ser			_			_			_		_	432
3					gtc Val												480
10		_		_	tac Tyr 165		_					_			_		528
15					cac His												576
20		_	_		ttg Leu				_					_	_		624
25					agt Ser												672
25		_	_	_	cat His		taa										693
30																	
	<211 <212	0> 2 1> 23 2> PE 3> Mi	RT	ıscu	lus												
35	<211 <212 <213 <400	1> 23 2> PI 3> Mu 0> 2	RT ıs mı		lus Thr 5	Val	Pro	Leu	His	Pro 10	Tyr	Trp	Pro	Arg	His 15	Leu	
	<213 <213 <213 <400 Met	1> 23 2> PH 3> Mu 0> 2 Thr	RT us mu Thr	Asn	Thr					10	_	_			15		
35 40	<211 <212 <213 <400 Met 1 Lys	1> 23 2> PF 3> Mu 0> 2 Thr	RT is mu Thr Asp	Asn Asn 20	Thr 5	Val	Pro	Asn	Asp 25	10 Leu	Pro	Thr	Ser	His	15 Ile	Leu	
35	<211 <212 <213 <400 Met 1 Lys	1> 2; 2> PH 3> Mu 0> 2 Thr Leu	RT us mu Thr Asp Leu 35	Asn Asn 20 Phe	Thr 5 Phe	Val Ile	Pro Ser	Asn Gly 40	Asp 25 Gly	10 Leu Leu	Pro	Thr Val	Ser Ile 45	His 30 Thr	15 Ile Trp	Leu Leu	
35 40	<211 <212 <213 <400 Met 1 Lys Val	1> 2: 2> PF 3> Mu 0> 2 Thr Leu Gly Ser 50	Thr Asp Leu 35 Ser	Asn Asn 20 Phe Arg	Thr 5 Phe	Val Ile Ser	Pro Ser Val 55	Asn Gly 40 Val	Asp 25 Gly Pro	10 Leu Leu	Pro Ile Gly	Thr Val Ala	Ser Ile 45 Gly	His 30 Thr	15 Ile Trp Arg	Leu Leu Leu	
35 40 45	<211 <212 <213 <400 Met 1 Lys Val Leu Ala 65	1> 2: 2> PH 3> Mu 0> 2 Thr Leu Gly Ser 50 Leu	Thr Asp Leu 35 Ser Cys	Asn 20 Phe Arg	Thr 5 Phe Ser	Val Ile Ser Ala 70	Pro Ser Val 55	Asn Gly 40 Val Cys	Asp 25 Gly Pro	10 Leu Leu Leu	Pro Ile Gly Ile 75	Thr Val Ala 60 His	Ser Ile 45 Gly Leu	His 30 Thr Arg	15 Ile Trp Arg	Leu Leu Glu 80	
35 40 45	<213 <213 <400 Met 1 Lys Val Leu Ala 65 Gly	1> 2: 2> PH 3> Mu 0> 2 Thr Leu Gly Ser 50 Leu	Thr Asp Leu 35 Ser Cys	Asn 20 Phe Arg Trp Ser	Thr 5 Phe Ser Ala Phe Leu	Val Ile Ser Ala 70 Tyr	Pro Ser Val 55 Val Asn	Asn Gly 40 Val Cys	Asp 25 Gly Pro Thr	Leu Leu Phe Leu 90	Pro Ile Gly Ile 75 Leu	Thr Val Ala 60 His	Ser Ile 45 Gly Leu Asp	His 30 Thr Arg Val	15 Ile Trp Arg Ile Ala 95	Leu Leu Glu 80 Phe	

			115					120					125				
5	Trp	Gly 130	Pro	Leu	Ser	Leu	Trp 135	Val	Val	Ile	Ala	Phe 140	Leu	Arg	Gln	Gln	
5	Pro 145	Phe	Arg	Phe	Val	Leu 150	Gln	Leu	Val	Val	Ser 155	Met	Gly	Gln	Ile	Tyr 160	
10	Gly	Asp	Val	Leu	Tyr 165	Phe	Leu	Thr	Glu	Leu 170	His	Glu	Gly	Leu	Gln 175	His	
	Gly	Glu	Ile	Gly 180	His	Pro	Val	Tyr	Phe 185	Trp	Phe	Tyr	Phe	Val 190	Phe	Leu	
15	Asn	Ala	Val 195	Trp	Leu	Val	Ile	Pro 200	Ser	Ile	Leu	Val	Leu 205	Asp	Ala	Ile	
20	Lys	His 210	Leu	Thr	Ser	Ala	Gln 215	Ser	Val	Leu	Asp	Ser 220	Lys	Val	Met	Lys	
	Ile 225	Lys	Ser	Lys	His	Asn 230											
25	<211 <212	0> 3 1> 69 2> AI 3> Ho	ON	sapie	ens												
30)> l> CI 2> (1		(693))												
35	atg)> 3 act Thr															48
40		ctg Leu															96
45		ggc Gly															144
		tca Ser 50															192
50		ctg Leu															240
55		tgg Trp															288

									_	_		_	_	_	tac Tyr		336
5	_		_					_	_	_				_	tgc Cys	ctg Leu	384
10															cag Gln		432
15			_				_			_				_	atc Ile		480
20		_					_				_	_			cag Gln 175		528
			_											-	ttc Phe	_	576
25		-	_		_		_			-				-	gct Ala		624
30	_					_	_	_	_	_	_	_	_	_	aca Thr		672
35	_	_	agc Ser	_	_		tga										693
40	<211 <212	0> 4 1> 2: 2> PI 3> Ho		sapie	ens												
45		0> 4 Thr	Thr	Asn	Ala 5	Gly	Pro	Leu	His	Pro 10	Tyr	Trp	Pro	Gln	His 15	Leu	
	Arg	Leu	Asp	Asn 20	Phe	Val	Pro	Asn	Asp 25	Arg	Pro	Thr	Trp	His 30	Ile	Leu	
50	Ala	Gly	Leu 35	Phe	Ser	Val	Thr	Gly 40	Val	Leu	Val	Val	Thr 45	Thr	Trp	Leu	
E.E.	Leu	Ser 50	Gly	Arg	Ala	Ala	Val 55	Val	Pro	Leu	Gly	Thr 60	Trp	Arg	Arg	Leu	
55	Ser 65	Leu	Cys	Trp	Phe	Ala 70	Val	Cys	Gly	Phe	Ile 75	His	Leu	Val	Ile	Glu 80	

	Gly	Trp	Phe	Val	Leu 85	Tyr	Tyr	Glu	Asp	Leu 90	Leu	Gly	Asp	Gln	Ala 95	Phe	
5	Leu	Ser	Gln	Leu 100	Trp	Lys	Glu	Tyr	Ala 105	Lys	Gly	Asp	Ser	Arg 110	Tyr	Ile	
	Leu	Gly	Asp 115	Asn	Phe	Thr	Val	Cys 120	Met	Glu	Thr	Ile	Thr 125	Ala	Cys	Leu	
10	Trp	Gly 130	Pro	Leu	Ser	Leu	Trp 135	Val	Val	Ile	Ala	Phe 140	Leu	Arg	Gln	His	
15	Pro 145	Leu	Arg	Phe	Ile	Leu 150	Gln	Leu	Val	Val	Ser 155	Val	Gly	Gln	Ile	Tyr 160	
	Gly	Asp	Val	Leu	Tyr 165	Phe	Leu	Thr	Glu	His 170	Arg	Asp	Gly	Phe	Gln 175	His	
20	Gly	Glu	Leu	Gly 180	His	Pro	Leu	Tyr	Phe 185	Trp	Phe	Tyr	Phe	Val 190	Phe	Met	
	Asn	Ala	Leu 195	Trp	Leu	Val	Leu	Pro 200	Gly	Val	Leu	Val	Leu 205	Asp	Ala	Val	
25	Lys	His 210	Leu	Thr	His	Ala	Gln 215	Ser	Thr	Leu	Asp	Ala 220	Lys	Ala	Thr	Lys	
30	Ala 225	Lys	Ser	Lys	Lys	Asn 230											
	<211	0> 5 l> 66 2> AI															
35	<213	3> Sa	accha	aromy	yces	cere	evisi	iae									
)> l> CI 2> (1		(669))												
40	<400)> 5															
		aag Lys															48
45		aac Asn															96
50		aaa Lys		_		_		_		_			_				144
55	_	gca Ala 50	_					_	_	_		_	_	_	_	_	192
	gca	ctt	gcc	tct	cat	tac	ggg	gac	gaa	tac	atc	aac	agg	tac	gtc	aaa	240

	Ala 65	Leu	Ala	Ser	His	Tyr 70	Gly	Asp	Glu	Tyr	Ile 75	Asn	Arg	Tyr	Val	Lys 80	
5	_	_		_				_			gcg Ala	_			_		288
10				_		_					att Ile					-	336
15	_			_	222				_		ttt Phe	_	_	_			384
15						_			_	_	ttg Leu			_		-	432
20	_	_	_					_			cac His 155	_	_	_			480
25	_	_			_	_					ttt Phe	_		_	_	_	528
30						_	_	_			ggg		_	_			576
0.5		_			_						aga Arg		_		_		624
35	_		_	_		_		_	_		aac Asn		_		taa		669
40	<211	0> 6 1> 22 2> PI															
45	<213	3> Sa	accha	aromy	yces	cere	evis	iae									
)> 6 Lys	Phe	Phe	Pro 5	Leu	Leu	Leu	Leu	Ile 10	Gly	Val	Val	Gly	Tyr 15	Ile	
50	Met	Asn	Val	Leu 20	Phe	Thr	Thr	Trp	Leu 25	Pro	Thr	Asn	Tyr	Met 30	Phe	Asp	
55	Pro	Lys	Thr 35	Leu	Asn	Glu	Ile	Cys 40	Asn	Ser	Val	Ile	Ser 45	Lys	His	Asn	
55	Ala	Ala 50	Glu	Gly	Leu	Ser	Thr 55	Glu	Asp	Leu	Leu	Gln 60	Asp	Val	Arg	Asp	

	Ala 65	Leu	Ala	Ser	His	Tyr 70	Gly	Asp	Glu	Tyr	Ile 75	Asn	Arg	Tyr	Val	Lys 80	
5	Glu	Glu	Trp	Val	Phe 85	Asn	Asn	Ala	Gly	Gly 90	Ala	Met	Gly	Gln	Met 95	Ile	
	Ile	Leu	His	Ala 100	Ser	Val	Ser	Glu	Tyr 105	Leu	Ile	Leu	Phe	Gly 110	Thr	Ala	
10	Val	Gly	Thr 115	Glu	Gly	His	Thr	Gly 120	Val	His	Phe	Ala	Asp 125	Asp	Tyr	Phe	
15	Thr	Ile 130	Leu	His	Gly	Thr	Gln 135	Ile	Ala	Ala	Leu	Pro 140	Tyr	Ala	Thr	Glu	
15	Ala 145	Glu	Val	Tyr	Thr	Pro 150	Gly	Met	Thr	His	His 155	Leu	Lys	Lys	Gly	Tyr 160	
20	Ala	Lys	Gln	Tyr	Ser 165	Met	Pro	Gly	Gly	Ser 170	Phe	Ala	Leu	Glu	Leu 175	Ala	
	Gln	Gly	Trp	Ile 180	Pro	Cys	Met	Leu	Pro 185	Phe	Gly	Phe	Leu	Asp 190	Thr	Phe	
25	Ser	Ser	Thr 195	Leu	Asp	Leu	Tyr	Thr 200	Leu	Tyr	Arg	Thr	Val 205	Tyr	Leu	Thr	
30	Ala	Arg 210	Asp	Met	Gly	Lys	Asn 215	Leu	Leu	Gln	Asn	Lys 220	Lys	Phe			
	<211 <212	0> 7 l> 9(2> AI	ON														
35	<213	3> Mı	ıs mı	ıscul	lus												
)> l> CI 2> (1		(900))												
40	<400	0> 7															
		gac Asp															48
45	_	tat Tyr		-	_				-				_				96
50		ctc Leu															144
55	_	gca Ala 50			_				_		_				_		192
	cac	сса	cag	ttt	tta	aag	aac	caa	gtc	tcg	cgt	gag	atc	gtg	ttc	act	240

	His 65	Pro	Gln	Phe	Leu	Lys 70	Asn	Gln	Val	Ser	Arg 75	Glu	Ile	Val	Phe	Thr 80	
5	_	_		_				_			acc Thr	_				_	288
10	_		_				_				gat Asp	-			_		336
15									_	_	gtc Val	_					384
15			_	_	_						agg Arg		_			_	432
20	_	_			_						cat His 155						480
25	_	_		-	_		-				gtg Val	_				_	528
30	_	_								_	ttt Phe		_		_		576
35	_						-	_	_		gtc Val						624
33		_		_			_		_		tta Leu						672
40											ttc Phe 235						720
45											gga Gly						768
50					_						agt Ser			_		_	816
55		_		_			_		-	_	aac Asn		_				864
JJ					gga Gly						aag Lys	tag 300					900

5	<211 <212	0> 8 1> 29 2> PF 3> Mu	RT	ıscul	lus											
10	<400 Met 1)> 8 Asp	Leu	Val	Leu 5	Ser	Ala	Ala	Asp	Tyr 10	Tyr	Phe	Phe	Thr	Pro 15	Tyr
	Val	Tyr	Pro	Ala 20	Thr	Trp	Pro	Glu	Asp 25	Asn	Ile	Ile	Arg	Gln 30	Thr	Ile
15	Ser	Leu	Leu 35	Ile	Val	Thr	Asn	Leu 40	Gly	Ala	Tyr	Ile	Leu 45	Tyr	Phe	Phe
20	Cys	Ala 50	Thr	Leu	Ser	Tyr	Tyr 55	Phe	Val	Tyr	Asp	His 60	Ser	Leu	Met	Lys
20	His 65	Pro	Gln	Phe	Leu	Lys 70	Asn	Gln	Val	Ser	Arg 75	Glu	Ile	Val	Phe	Thr 80
25	Val	Lys	Ser	Leu	Pro 85	Trp	Ile	Ser	Ile	Pro 90	Thr	Val	Ser	Leu	Phe 95	Leu
	Leu	Glu	Leu	Arg 100	Gly	Tyr	Ser	Lys	Leu 105	Tyr	Asp	Asp	Ile	Gly 110	Asp	Phe
30	Pro	Asn	Gly 115	Trp	Ile	His	Leu	Met 120	Val	Ser	Val	Val	Ser 125	Phe	Leu	Phe
35	Phe	Thr 130	Asp	Met	Leu	Ile	Tyr 135	Arg	Ile	His	Arg	Gly 140	Leu	His	His	Arg
00	Leu 145	Val	Tyr	Lys	Arg	Ile 150	His	Lys	Pro	His	His 155	Ile	Trp	Lys	Ile	Pro 160
40	Thr	Pro	Phe	Ala	Ser 165	His	Ala	Phe	His	Pro 170	Val	Asp	Gly	Phe	Leu 175	Gln
	Ser	Leu	Pro	Tyr 180	His	Ile	Tyr	Pro	Phe 185	Val	Phe	Pro	Leu	His 190	Lys	Val
45	Val	Tyr	Leu 195	Gly	Leu	Tyr	Val	Leu 200	Val	Asn	Val	Trp	Thr 205	Ile	Ser	Ile
50	His	Asp 210	Gly	Asp	Phe	Arg	Val 215	Pro	Gln	Ile	Leu	Arg 220	Pro	Phe	Ile	Asn
00	Gly 225	Ser	Ala	His	His	Thr 230	Asp	His	His	Met	Phe 235	Phe	Asp	Tyr	Asn	Tyr 240
55	Gly	Gln	Tyr	Phe	Thr 245	Leu	Trp	Asp	Arg	Ile 250	Gly	Gly	Ser	Phe	Lys 255	His
	Pro	Ser	Ser	Phe	Glu	Gly	Lys	Gly	Pro		Ser	Tyr	Val	Lys	Asn	Met

	Thr	Glu	Lys 275	Glu	Ser	Asn	Ser	Phe 280	Ala	Glu	Asn	Gly	Cys 285	Lys	Gly	Lys	
5	Lys	Val 290	Ser	Asn	Gly	Glu	Phe 295	Thr	Lys	Asn	Lys						
10	<213 <213	0> 9 1> 9(2> AI 3> Ho	ON	sapie	ens												
15		0> 1> CI 2> (1		(900))												
20	atg)> 9 gat Asp		_		_	-	_	_								48
25		tat Tyr		_				_	-	-			_		-		96
30		ctt Leu															144
	_	gca Ala 50		_	_				_		-		_		_		192
35		cca Pro															240
40	_	cag Gln	_	_				_				-	-	_		_	288
45		gag Glu															336
50		tat Tyr		_		_		_	_	_							384
JU		act Thr 130															432
55		gta Val															480

				_	_		_					_			ctt Leu 175	cag Gln	528
5	_														aag Lys	gtg Val	576
10	-			_	_			_	_						tcc Ser		624
15		_		_		_	_					_			att Ile		672
20			_				_			_			_		aat Asn	tat Tyr 240	720
20						_		_							aaa Lys 255		768
25															gag Glu		816
30				_	_	_	_						_	_	aat Asn	_	864
35		tta Leu 290							_		_	tag 300					900
40	<211 <212	0> 10 1> 29 2> PI 3> Ho	99 RT	sapie	ens												
45		0> 1(Asp		Val	Leu 5	Arg	Val	Ala	Asp	Tyr 10	Tyr	Phe	Phe	Thr	Pro 15	Tyr	
	Val	Tyr	Pro	Ala 20	Thr	Trp	Pro	Glu	Asp 25	Asp	Ile	Phe	Arg	Gln 30	Ala	Ile	
50	Ser	Leu	Leu 35	Ile	Val	Thr	Asn	Val 40	Gly	Ala	Tyr	Ile	Leu 45	Tyr	Phe	Phe	
EF	Cys	Ala 50	Thr	Leu	Ser	Tyr	Tyr 55	Phe	Val	Phe	Asp	His 60	Ala	Leu	Met	Lys	
55	His 65	Pro	Gln	Phe	Leu	Lys 70	Asn	Gln	Val	Arg	Arg 75	Glu	Ile	Lys	Phe	Thr 80	

	Val	Gln	Ala	Leu	Pro 85	Trp	Ile	Ser	Ile	Leu 90	Thr	Val	Ala	Leu	Phe 95	Leu	
5	Leu	Glu	Ile	Arg 100	Gly	Tyr	Ser	Lys	Leu 105	His	Asp	Asp	Leu	Gly 110	Glu	Phe	
	Pro	Tyr	Gly 115	Leu	Phe	Glu	Leu	Val 120	Val	Ser	Ile	Ile	Ser 125	Phe	Leu	Phe	
10	Phe	Thr 130	Asp	Met	Phe	Ile	Tyr 135	Trp	Ile	His	Arg	Gly 140	Leu	His	His	Arg	
15	Leu 145	Val	Tyr	Lys	Arg	Leu 150	His	Lys	Pro	His	His 155	Ile	Trp	Lys	Ile	Pro 160	
10	Thr	Pro	Phe	Ala	Ser 165	His	Ala	Phe	His	Pro 170	Ile	Asp	Gly	Phe	Leu 175	Gln	
20	Ser	Leu	Pro	Tyr 180	His	Ile	Tyr	Pro	Phe 185	Ile	Phe	Pro	Leu	His 190	Lys	Val	
	Val	Tyr	Leu 195	Ser	Leu	Tyr	Ile	Leu 200	Val	Asn	Ile	Trp	Thr 205	Ile	Ser	Ile	
25	His	Asp 210	Gly	Asp	Phe	Arg	Val 215	Pro	Gln	Ile	Leu	Gln 220	Pro	Phe	Ile	Asn	
30	Gly 225	Ser	Ala	His	His	Thr 230	Asp	His	His	Met	Phe 235	Phe	Asp	Tyr	Asn	Tyr 240	
50	Gly	Gln	Tyr	Phe	Thr 245	Leu	Trp	Asp	Arg	Ile 250	Gly	Gly	Ser	Phe	Lys 255	Asn	
35	Pro	Ser	Ser	Phe 260	Glu	Gly	Lys	Gly	Pro 265	Leu	Ser	Tyr	Val	Lys 270	Glu	Met	
	Thr	Glu	Gly 275	Lys	Arg	Ser	Ser	Pro 280	Ser	Gly	Asn	Gly	Cys 285	Lys	Asn	Glu	
40	Lys	Leu 290	Phe	Asn	Gly	Glu	Phe 295	Thr	Lys	Thr	Glu						
45	<211 <212)> 11 1> 1(2> AI 3> Sa	98 ON	aromy	yces	cere	evisi	lae									
50)> l> CI 2> (1		(1098	3)												
55	atg)> 11 gat Asp	ttg	_		_	-	_	_			_		_	_	_	48
	tac	gct	aaa	gtt	ctg	ccc	gct	tcg	ttg	gca 56		aat	att	cct	gtc	aag	96

	Tyr	Ala	Lys	Val 20	Leu	Pro	Ala	Ser	Leu 25	Ala	Ala	Asn	Ile	Pro 30	Val	Lys	
5		_		_	cta Leu		_		_			_			_		144
10	_	_			ttg Leu			_		_	_		_	_	_		192
4.5				_	gtg Val			_		_	_	_	_	_			240
15	_	_		_	cct Pro 85	_		_		_	_	_					288
20		_		_	acg Thr										_	-	336
25	_		_		gtg Val				_								384
30	_		_		aac Asn		_	_	_	_		_	_	_	_	_	432
0.5	_				atg Met	_	_	_		_				_	_	-	480
35	_				tct Ser 165				_	_		_		_			528
40					ctc Leu												576
45	_	_			tat Tyr				_		_					_	624
50		_	_	_	cac His	_				_		_	_	_			672
		_			tct Ser				-	_			_				720
55	_				tac Tyr 245		_		_				_	_			768

E	_		_		act Thr		_					_	_			_	816
5					tca Ser												864
10	_	_			cta Leu												912
15					cta Leu												960
20					tta Leu 325												1008
25					cat His												1056
	_			_	aac Asn	_				_	_			tga			1098
30	<212 <212	0> 12 1> 30 2> PI	65 RT	a romi	7000	a a r	i a										
35	<213 <213 <213 <400	1> 30 2> PI 3> Sa 0> 12	65 RT accha 2		yces Leu				Asp	His	Tyr	Val	Leu	Asp	_	Leu	
	<213 <213 <213 <400 Met	1> 30 2> PI 3> Sa 0> 12 Asp	65 RT accha 2 Leu	Val		Glu	Val	Ala	_	10	_			_	15		
35	<211 <211 <211 <400 Met 1	1> 30 2> PP 3> Sa 0> 12 Asp	65 RT accha 2 Leu Lys	Val Val 20	Leu 5	Glu Pro	Val Ala	Ala	Leu 25	10 Ala	Ala	Asn	Ile	Pro 30	15 Val	Lys	
35 40	<21: <21: <21: <400 Met 1 Tyr	1> 30 2> PI 3> Sa 0> 12 Asp Ala	65 RT accha 2 Leu Lys Lys 35	Val Val 20 Leu	Leu 5 Leu	Glu Pro Gly	Val Ala Leu	Ala Ser Asn 40	Leu 25 Ser	10 Ala Gly	Ala	Asn Ser	Ile Asn 45	Pro 30 Ser	15 Val Thr	Lys	
35 40	<21: <21: <21: <400 Met 1 Tyr Trp Leu	1> 30 2> PI 3> Sa 0> 12 Asp Ala Gln Gln 50	65 RT accha 2 Leu Lys S 35 Glu	Val Val 20 Leu Thr	Leu 5 Leu Leu	Glu Pro Gly Asn	Val Ala Leu Ser 55	Ala Ser Asn 40 Lys	Leu 25 Ser Asn	10 Ala Gly Ala	Ala Phe Val	Asn Ser Lys 60	Ile Asn 45 Glu	Pro 30 Ser Cys	15 Val Thr	Lys Ile Arg	
35 40 45	<21: <21: <21: <400 Met 1 Tyr Trp Leu Phe 65	1> 36 2> PI 3> Sa 0> 12 Asp Ala Gln Gln 50	65 RT accha 2 Leu Lys Solu Glu	Val Val 20 Leu Thr	Leu 5 Leu Leu	Glu Pro Gly Asn Pro	Val Ala Leu Ser 55	Ala Ser Asn 40 Lys Leu	Leu 25 Ser Asn	10 Ala Gly Ala Asp	Ala Phe Val Met 75	Asn Ser Lys 60 Ser	Ile Asn 45 Glu Thr	Pro 30 Ser Cys	15 Val Thr Arg	Lys Ile Arg Phe	
35 40 45	<21: <21: <400 Met 1 Tyr Trp Leu Phe 65 Ala	1> 30 2> PI 3> Sa 0> 12 Asp Ala Gln 50 Tyr	65 RT accha 2 Leu Lys 35 Glu Gly	Val Val 20 Leu Thr Gln Leu	Leu 5 Leu Leu Val	Glu Pro Gly Asn Pro 70 Arg	Val Ala Leu Ser 55 Phe	Ala Ser Asn 40 Lys Leu Ser	Leu 25 Ser Asn Phe	10 Ala Gly Ala Asp Leu 90	Ala Phe Val Met 75 Arg	Asn Ser Lys 60 Ser	Ile Asn 45 Glu Thr	Pro 30 Ser Cys Thr	15 Val Thr Arg Ser Ser	Lys Ile Arg Phe 80 Leu	

			115					120					125			
5	Arg	Tyr 130	Leu	Lys	Asn	Gln	Met 135	Ala	Met	Glu	Ile	Lys 140	Leu	Ala	Val	Ser
3	Ala 145	Ile	Pro	Trp	Met	Ser 150	Met	Leu	Thr	Val	Pro 155	Trp	Phe	Val	Met	Glu 160
10	Leu	Asn	Gly	His	Ser 165	Lys	Leu	Tyr	Met	Lys 170	Ile	Asp	Tyr	Glu	Asn 175	His
	Gly	Val	Arg	Lys 180	Leu	Ile	Ile	Glu	Tyr 185	Phe	Thr	Phe	Ile	Phe 190	Phe	Thr
15	Asp	Cys	Gly 195	Val	Tyr	Leu	Ala	His 200	Arg	Trp	Leu	His	Trp 205	Pro	Arg	Val
00	Tyr	Arg 210	Ala	Leu	His	Lys	Pro 215	His	His	Lys	Trp	Leu 220	Val	Cys	Thr	Pro
20	Phe 225	Ala	Ser	His	Ser	Phe 230	His	Pro	Val	Asp	Gly 235	Phe	Leu	Gln	Ser	Ile 240
25	Ser	Tyr	His	Ile	Tyr 245	Pro	Leu	Ile	Leu	Pro 250	Leu	His	Lys	Val	Ser 255	Tyr
	Leu	Ile	Leu	Phe 260	Thr	Phe	Val	Asn	Phe 265	Trp	Thr	Val	Met	Ile 270	His	Asp
30	Gly	Gln	Tyr 275	Leu	Ser	Asn	Asn	Pro 280	Ala	Val	Asn	Gly	Thr 285	Ala	Cys	His
35	Thr	Val 290	His	His	Leu	Tyr	Phe 295	Asn	Tyr	Asn	Tyr	Gly 300	Gln	Phe	Thr	Thr
33	Leu 305	Trp	Asp	Arg	Leu	Gly 310	Gly	Ser	Tyr	Arg	Arg 315	Pro	Asp	Asp	Ser	Leu 320
40	Phe	Asp	Pro	Lys	Leu 325	Arg	Asp	Ala	Lys	Glu 330	Thr	Trp	Asp	Ala	Gln 335	Val
	Lys	Glu	Val	Glu 340	His	Phe	Ile	Lys	Glu 345	Val	Glu	Gly	Asp	Asp 350	Asn	Asp
45	Arg	Ile	Tyr 355	Glu	Asn	Asp	Pro	Asn 360	Thr	Lys	Lys	Asn	Asn 365			
50	<211 <212)> 13 L> 15 2> AI 3> Mu	557 ON	ıscul	Lus											
55		L> CI		(1557	7)											
	<400)> 13	3													

					gtg Val 5												48
5			_		aag Lys	222	_			_				_	_		96
10				_	ctc Leu		_	_	_		_				_		144
15					cgc Arg	_					_	_	_	_		_	192
20					cag Gln												240
20		_	_	_	ggc Gly 85	_	_			_	_	_		_			288
25				_	tcg Ser	_	_	_		_		_	_			_	336
30					aac Asn												384
35	_		_	_	gtg Val			_			_		_			-	432
40					att Ile												480
40					ggg Gly 165												528
45					ggc Gly												576
50		_	_	_	ggc Gly	_			_	_		_		_			624
55					gcc Ala												672
		_	_		atc Ile				_	_	_	_		_	_	_	720

	225					230				235					240	
5			gag Glu		_			_	 _		_	_				768
10			tcc Ser													816
10		_	gat Asp 275		_		_	_			222	_			_	864
15			gag Glu													912
20			ttc Phe	_												960
25		_	tac Tyr			_	_				_		_	_	_	1008
30			tgg Trp			_	_									1056
30		_	tac Tyr 355					_			_				_	1104
35			acc Thr													1152
40			cag Gln													1200
45			ttc Phe													1248
50			ctg Leu													1296
30			ctc Leu 435													1344
55			gag Glu													1392

	_					caa Gln 470	_			-	-	_		_		_	1440
5						atg Met											1488
10						cag Gln											1536
15		aag Lys				cac His	tga										1557
20	<213 <213	0> 14 1> 51 2> PE 3> Mi	18 RT	ıscul	lus												
25)> 14 Glu		Ala	Val 5	Ser	Leu	Ala	Val	Cys 10	Ala	Leu	Leu	Phe	Leu 15	Leu	
	Trp	Val	Arg	Val 20	Lys	Gly	Leu	Glu	Phe 25	Val	Leu	Ile	His	Gln 30	Arg	Trp	
30	Val	Phe	Val 35	Cys	Leu	Phe	Leu	Leu 40	Pro	Leu	Ser	Leu	Ile 45	Phe	Asp	Ile	
35	Tyr	Tyr 50	Tyr	Val	Arg	Ala	Trp 55	Val	Val	Phe	Lys	Leu 60	Ser	Ser	Ala	Pro	
33	Arg 65	Leu	His	Glu	Gln	Arg 70	Val	Arg	Asp	Ile	Gln 75	Lys	Gln	Val	Arg	Glu 80	
40	Trp	Lys	Glu	Gln	Gly 85	Ser	Lys	Thr	Phe	Met 90	Cys	Thr	Gly	Arg	Pro 95	Gly	
	Trp	Leu	Thr	Val 100	Ser	Leu	Arg	Val	Gly 105	Lys	Tyr	Lys	Lys	Thr 110	His	Lys	
45	Asn	Ile	Met 115	Ile	Asn	Leu	Met	Asp 120	Ile	Leu	Glu	Val	Asp 125	Thr	Lys	Lys	
50	Gln	Ile 130	Val	Arg	Val	Glu	Pro 135	Leu	Val	Ser	Met	Gly 140	Gln	Val	Thr	Ala	
50	Leu 145	Leu	Asn	Ser	Ile	Gly 150	Trp	Thr	Leu	Pro	Val 155	Leu	Pro	Glu	Leu	Asp 160	
55	Asp	Leu	Thr	Val	Gly 165	Gly	Leu	Ile	Met	Gly 170	Thr	Gly	Ile	Glu	Ser 175	Ser	
	Ser	His	Lys	Tyr 180	Gly	Leu	Phe	Gln	His 185	Ile	Cys	Thr	Ala	Tyr 190	Glu	Leu	

	Ile	Leu	Ala 195	Asp	Gly	Ser	Phe	Val 200	Arg	Cys	Thr	Pro	Ser 205	Glu	Asn	Ser
5	Asp	Leu 210	Phe	Tyr	Ala	Val	Pro 215	Trp	Ser	Cys	Gly	Thr 220	Leu	Gly	Phe	Leu
10	Val 225	Ala	Ala	Glu	Ile	Arg 230	Ile	Ile	Pro	Ala	Lys 235	Lys	Tyr	Val	Lys	Leu 240
	Arg	Phe	Glu	Pro	Val 245	Arg	Gly	Leu	Glu	Ala 250	Ile	Cys	Glu	Lys	Phe 255	Thr
15	Arg	Glu	Ser	Gln 260	Arg	Leu	Glu	Asn	His 265	Phe	Val	Glu	Gly	Leu 270	Leu	Tyr
	Ser	Leu	Asp 275	Glu	Ala	Val	Ala	Val 280	Ile	Met	Thr	Gly	Val 285	Met	Thr	Asp
20	Asp	Val 290	Glu	Ser	Ser	Lys	Leu 295	Asn	Ser	Ile	Gly	Ser 300	Tyr	Tyr	Lys	Pro
25	Trp 305	Phe	Phe	Lys	His	Val 310	Glu	Asn	Tyr	Leu	Lys 315	Thr	Asn	Arg	Glu	Gly 320
	Leu	Glu	Tyr	Ile	Pro 325	Leu	Arg	His	Tyr	Tyr 330	His	Arg	His	Thr	Arg 335	Ser
30	Ile	Phe	Trp	Glu 340	Leu	Gln	Asp	Ile	Ile 345	Pro	Phe	Gly	Asn	Asn 350	Pro	Ile
	Phe	Arg	Tyr 355	Leu	Phe	Gly	Trp	Met 360	Val	Pro	Pro	Lys	Ile 365	Ser	Leu	Leu
35	Lys	Leu 370	Thr	Gln	Gly	Glu	Thr 375	Leu	Arg	Lys	Leu	Tyr 380	Glu	Gln	His	His
40	Val 385	Val	Gln	Asp	Met	Leu 390	Val	Pro	Met	Lys	Cys 395	Met	Ser	Gln	Ala	Leu 400
	His	Thr	Phe	Gln	Asn 405	Asp	Ile	His	Val	Tyr 410	Pro	Ile	Trp	Leu	Cys 415	Pro
45	Phe	Ile	Leu	Pro 420	Ser	Gln	Pro	Gly	Leu 425	Val	His	Pro	Lys	Gly 430	Asp	Glu
	Ala	Glu	Leu 435	Tyr	Val	Asp	Ile	Gly 440	Ala	Tyr	Gly	Glu	Pro 445	Arg	Val	Lys
50	His	Phe 450	Glu	Ala	Arg	Ser	Cys 455	Met	Arg	Gln	Leu	Glu 460	Lys	Phe	Val	Arg
55	Ser 465	Val	His	Gly	Phe	Gln 470	Met	Leu	Tyr	Ala	Asp 475	Cys	Tyr	Met	Asn	Arg 480
	Glu	Glu	Phe	Trp	Glu 485	Met	Phe	Asp	Gly	Ser 490	Leu	Tyr	His	Lys	Leu 495	Arg

	Lys	Gln	Leu	Gly 500	Cys	Gln	Asp	Ala	Phe 505	Pro	Glu	Val	Tyr	Asp 510	Lys	Ile	
5	Cys	Lys	Ala 515	Ala	Arg	His											
10	<211 <212)> 1! L> 1! 2> AI 3> Ho	551 ON	sapie	ens												
15		L> CI		(1551	1)												
20	atg		ccc	-	gtg Val 5	_	_	_		-		_			_	_	48
05					aag Lys												96
25				_	ctc Leu			_	_		_				-		144
30					cgc Arg												192
35	_	_			cag Gln	-			-		_	_	_			_	240
40					ggt Gly 85	_				_	_	_	222	_			288
45					tca Ser												336
45					aac Asn												384
50					gtg Val												432
55					att Ile												480
	gac	ctc	aca	gtg	ggg	ggc	ttg	atc	atg	ggc	aca	ggc	atc	gag	tca	tca	528

	Asp	Leu	Thr	Val	Gly 165	Gly	Leu	Ile	Met	Gly 170	Thr	Gly	Ile	Glu	Ser 175	Ser	
5			_		ggc Gly	_					_		_			_	576
10	_	_	_	_	ggc Gly	_			_	_		_		_			624
15	_	_			gcc Ala	_				_		_	_			_	672
15		_	_		atc Ile	_				_	_	_		_	_	_	720
20	_				gtg Val 245			_		_		_	_	_			768
25				_	cgg Arg	_						_		_			816
30		_	_		gct Ala	_		_			_	_		_		_	864
35					ctg Leu												912
33					gag Glu												960
40				_	aga Arg 325					_		_	_	_			1008
45					gac Asp												1056
50					tgg Trp												1104
55					acc Thr												1152
55					gtg Val												1200

5				_			_					_	_	_	ttc Phe 415		1248
	_		_	_											gca Ala		1296
10															cac His		1344
15	_	_			_	_		_	_		_		_	_	agc Ser		1392
20															gag Glu		1440
25				_		_			_			_	_	_	gag Glu 495	_	1488
20	_		_	_	_	_						_	_		tgc Cys	_	1536
30			agg Arg 515		tga												1551
35	<213 <213	0> 10 1> 51 2> PI 3> Ho	16	sapie	ens												
40		0> 10 Glu		Ala	Val 5	Ser	Leu	Ala	Val	Cys 10	Ala	Leu	Leu	Phe	Leu 15	Leu	
45	Trp	Val	Arg	Leu 20	Lys	Gly	Leu	Glu	Phe 25	Val	Leu	Ile	His	Gln 30	Arg	Trp	
	Val	Phe	Val 35	Cys	Leu	Phe	Leu	Leu 40	Pro	Leu	Ser	Leu	Ile 45	Phe	Asp	Ile	
50	Tyr	Tyr 50	Tyr	Val	Arg	Ala	Trp 55	Val	Val	Phe	Lys	Leu 60	Ser	Ser	Ala	Pro	
55	Arg 65	Leu	His	Glu	Gln	Arg 70	Val	Arg	Asp	Ile	Gln 75	Lys	Gln	Val	Arg	Glu 80	
00	Trp	Lys	Glu	Gln	Gly 85	Ser	Lys	Thr	Phe	Met 90	Cys	Thr	Gly	Arg	Pro 95	Gly	

	Trp	Leu	Thr	Val 100	Ser	Leu	Arg	Val	Gly 105	Lys	Tyr	Lys	Lys	Thr 110	His	Lys
5	Asn	Ile	Met 115	Ile	Asn	Leu	Met	Asp 120	Ile	Leu	Glu	Val	Asp 125	Thr	Lys	Lys
	Gln	Ile 130	Val	Arg	Val	Glu	Pro 135	Leu	Val	Thr	Met	Gly 140	Gln	Val	Thr	Ala
10	Leu 145	Leu	Thr	Ser	Ile	Gly 150	Trp	Thr	Leu	Pro	Val 155	Leu	Pro	Glu	Leu	Asp 160
15	Asp	Leu	Thr	Val	Gly 165	Gly	Leu	Ile	Met	Gly 170	Thr	Gly	Ile	Glu	Ser 175	Ser
10	Ser	His	Lys	Tyr 180	Gly	Leu	Phe	Gln	His 185	Ile	Cys	Thr	Ala	Tyr 190	Glu	Leu
20	Val	Leu	Ala 195	Asp	Gly	Ser	Phe	Val 200	Arg	Cys	Thr	Pro	Ser 205	Glu	Asn	Ser
	Asp	Leu 210	Phe	Tyr	Ala	Val	Pro 215	Trp	Ser	Cys	Gly	Thr 220	Leu	Gly	Phe	Leu
25	Val 225	Ala	Ala	Glu	Ile	Arg 230	Ile	Ile	Pro	Ala	Lys 235	Lys	Tyr	Val	Lys	Leu 240
30	Arg	Phe	Glu	Pro	Val 245	Arg	Gly	Leu	Glu	Ala 250	Ile	Cys	Ala	Lys	Phe 255	Thr
00	His	Glu	Ser	Gln 260	Arg	Gln	Glu	Asn	His 265	Phe	Val	Glu	Gly	Leu 270	Leu	Tyr
35	Ser	Leu	Asp 275	Glu	Ala	Val	Ile	Met 280	Thr	Gly	Val	Met	Thr 285	Asp	Glu	Ala
	Glu	Pro 290	Ser	Lys	Leu	Asn	Ser 295	Ile	Gly	Asn	Tyr	Tyr 300	Lys	Pro	Trp	Phe
40	Phe 305	Lys	His	Val	Glu	Asn 310	Tyr	Leu	Lys	Thr	Asn 315	Arg	Glu	Gly	Leu	Glu 320
45	Tyr	Ile	Pro	Leu	Arg 325	His	Tyr	Tyr	His	Arg 330	His	Thr	Arg	Ser	Ile 335	Phe
40	Trp	Glu	Leu	Gln 340	Asp	Ile	Ile	Pro	Phe 345	Gly	Asn	Asn	Pro	Ile 350	Phe	Arg
50	Tyr	Leu	Phe 355	Gly	Trp	Met	Val	Pro 360	Pro	Lys	Ile	Ser	Leu 365	Leu	Lys	Leu
	Thr	Gln 370	Gly	Glu	Thr	Leu	Arg 375	Lys	Leu	Tyr	Glu	Gln 380	His	His	Val	Val
55	Gln 385	Asp	Met	Leu	Val	Pro 390	Met	Lys	Cys	Leu	Gln 395	Gln	Ala	Leu	His	Thr 400
	Phe	Gln	Asn	Asp	Ile	His	Val	Tyr	Pro	Ile		Leu	Cys	Pro	Phe	Ile

					405					410					415		
5	Leu	Pro	Ser	Gln 420	Pro	Gly	Leu	Val	His 425	Pro	Lys	Gly	Asn	Glu 430	Ala	Glu	
ŭ	Leu	Tyr	Ile 435	Asp	Ile	Gly	Ala	Tyr 440	Gly	Glu	Pro	Arg	Val 445	Lys	His	Phe	
10	Glu	Ala 450	Arg	Ser	Cys	Met	Arg 455	Gln	Leu	Glu	Lys	Phe 460	Val	Arg	Ser	Val	
	His 465	Gly	Phe	Gln	Met	Leu 470	Tyr	Ala	Asp	Cys	Tyr 475	Met	Asn	Arg	Glu	Glu 480	
15	Phe	Trp	Glu	Met	Phe 485	Asp	Gly	Ser	Leu	Tyr 490	His	Lys	Leu	Arg	Glu 495	Lys	
20	Leu	Gly	Cys	Gln 500	Asp	Ala	Phe	Pro	Glu 505	Val	Tyr	Asp	Lys	Ile 510	Cys	Lys	
	Ala	Ala	Arg 515	His													
25	<211 <212	0> 17 1> 14 2> AI 3> Sa	122 DN	aromy	yces	cere	evisi	lae									
30)> l> CI 2> (1		(1422	2)												
25)> 17															4.0
35		gca Ala															48
40		tcc Ser															96
45		aat Asn															144
		ctg Leu 50		222					_						_		192
50		ttt Phe															240
55		cac His															288

		_	_		_	tgg Trp										_	336
5						acg Thr	_										384
10	_			_	_	gga Gly			_				_		_	_	432
15			_		_	act Thr 150			_	_	_	_	_				480
20						tat Tyr											528
		_	_			tca Ser	222		_					_			576
25						tca Ser											624
30			_			atg Met		_									672
35	_	_	_	_	_	ttt Phe 230			_	_							720
40					_	ggt Gly	-	_	_	_	_						768
40						ttg Leu		_	_	_		_			_		816
45			_	_	_	aaa Lys		_	_	_		_				_	864
50		_		_	_	ttt Phe										_	912
55		_				tac Tyr 310	_		_	_	_		_				960
	_			_		cac His				_			_	_	_		1008

					325					330					335		
5	_	_			_	_		tac Tyr			_	_	_		_	_	1056
10								atg Met 360									1104
10								caa Gln									1152
15								cta Leu									1200
20	_	_						gcc Ala	_						_		1248
25	_	_		_	222			tcg Ser								_	1296
30				_	_	_		cac His 440	_	_		_	_		_		1344
50								gat Asp									1392
35			_					gtt Val		tag							1422
40	<211 <212)> 18 L> 47 2> PF 3> Sa	73 RT	aromy	yces	cere	evisi	iae									
45)> 18 Ala		Asp	Asn 5	Ser	Glu	Lys	Leu	Gln 10	Val	Gln	Gly	Glu	Glu 15	Lys	
50	Lys	Ser	Lys	Gln 20	Pro	Val	Asn	Phe	Leu 25	Pro	Gln	Gly	Lys	Trp	Leu	Lys	
	Pro	Asn	Glu 35	Ile	Glu	Tyr	Glu	Phe 40	Gly	Gly	Thr	Thr	Gly 45	Val	Ile	Gly	
55	Met	Leu 50	Ile	Gly	Phe	Pro	Leu 55	Leu	Met	Tyr	Tyr	Met 60	Trp	Ile	Cys	Ala	
	Glu	Phe	Tyr	His	Gly	Lys	Val	Ala	Leu	Pro	Lys	Ala	Gly	Glu	Ser	Trp	

	65					70					75					80
-	Met	His	Phe	Ile	Lys 85	His	Leu	Tyr	Gln	Leu 90	Val	Leu	Glu	Asn	Gly 95	Ile
5	Pro	Glu	Lys	Tyr 100	Asp	Trp	Thr	Ile	Phe 105	Leu	Thr	Phe	Trp	Val 110	Phe	Gln
10	Ile	Ile	Phe 115	Tyr	Tyr	Thr	Leu	Pro 120	Gly	Ile	Trp	Thr	Lys 125	Gly	Gln	Pro
	Leu	Ser 130	His	Leu	Lys	Gly	Lys 135	Gln	Leu	Pro	Tyr	Phe 140	Cys	Asn	Ala	Met
15	Trp 145	Thr	Leu	Tyr	Val	Thr 150	Thr	Thr	Leu	Val	Leu 155	Val	Leu	His	Phe	Thr 160
20	Asn	Leu	Phe	Arg	Leu 165	Tyr	Val	Ile	Ile	Asp 170	Arg	Phe	Gly	Arg	Ile 175	Met
20	Thr	Cys	Ala	Ile 180	Ile	Ser	Gly	Phe	Ala 185	Phe	Ser	Ile	Ile	Leu 190	Tyr	Leu
25	Trp	Thr	Leu 195	Phe	Ile	Ser	His	Asp 200	Tyr	His	Arg	Met	Thr 205	Gly	Asn	His
	Leu	Tyr 210	Asp	Phe	Phe	Met	Gly 215	Ala	Pro	Leu	Asn	Pro 220	Arg	Trp	Gly	Ile
30	Leu 225	Asp	Leu	Lys	Met	Phe 230	Phe	Glu	Val	Arg	Leu 235	Pro	Trp	Phe	Thr	Leu 240
35	Tyr	Phe	Ile	Thr	Leu 245	Gly	Ala	Cys	Leu	Lys 250	Gln	Trp	Glu	Thr	Tyr 255	Gly
55	Tyr	Val	Thr	Pro 260	Gln	Leu	Gly	Val	Val 265	Met	Leu	Ala	His	Trp 270	Leu	Tyr
40	Ala	Asn	Ala 275	Cys	Ala	Lys	Gly	Glu 280	Glu	Leu	Ile	Val	Pro 285	Thr	Trp	Asp
	Met	Ala 290	Tyr	Glu	Lys	Phe	Gly 295	Phe	Met	Leu	Ile	Phe 300	Trp	Asn	Ile	Ala
45	Gly 305	Val	Pro	Tyr	Thr	Tyr 310	Cys	His	Cys	Thr	Leu 315	Tyr	Leu	Tyr	Tyr	His 320
50	Asp	Pro	Ser	Glu	Tyr 325	His	Trp	Ser	Thr	Leu 330	Tyr	Asn	Val	Ser	Leu 335	Tyr
30	Val	Val	Leu	Leu 340	Cys	Ala	Tyr	Tyr	Phe 345	Phe	Asp	Thr	Ala	Asn 350	Ala	Gln
55	Lys	Asn	Ala 355	Phe	Arg	Lys	Gln	Met 360	Ser	Gly	Asp	Lys	Thr 365	Gly	Arg	Lys
	Thr	Phe 370	Pro	Phe	Leu	Pro	Tyr 375	Gln	Ile	Leu	Lys	Asn 380	Pro	Lys	Tyr	Met

	Val 385	Thr	Ser	Asn	Gly	Ser 390	Tyr	Leu	Leu	Ile	Asp 395	Gly	Trp	Tyr	Thr	Leu 400	
5	Ala	Arg	Lys	Ile	His 405	Tyr	Thr	Ala	Asp	Trp 410	Thr	Gln	Ser	Leu	Val 415	Trp	
10	Ala	Leu	Ser	Cys 420	Gly	Phe	Asn	Ser	Val 425	Phe	Pro	Trp	Phe	Phe 430	Pro	Val	
10	Phe	Phe	Leu 435	Val	Val	Leu	Ile	His 440	Arg	Ala	Phe	Arg	Asp 445	Gln	Ala	Lys	
15	Cys	Lys 450	Arg	Lys	Tyr	Gly	Lys 455	Asp	Trp	Asp	Glu	Tyr 460	Cys	Lys	His	Cys	
	Pro 465	Tyr	Val	Phe	Ile	Pro 470	Tyr	Val	Phe								
20	<211 <212)> 19 1> 13 2> AI	152 ON														
25	<220)> l> CI	accha DS 1)	-	•	cere	evis:	ıae									
30	<400)> 19	9														
	atq	aqt	qaa	aca	qaa	ttq	aga	aaa	aga	caq	qcc	caa	ttc	act	agg	gag	48
								aaa Lys									48
35	Met 1 tta	Ser	Glu ggt	Thr gat	Glu 5 gat	Leu	Arg ggt		Arg aag	Gln 10 aca	Ala	Gln ttg	Phe agt	Thr	Arg 15 ttg	Glu	96
35	Met 1 tta Leu tcg	Ser cat His	Glu ggt Gly aac	Thr gat Asp 20 aac	Glu 5 gat Asp	Leu att Ile gcc	Arg ggt Gly caa	Lys	Arg aag Lys 25 gaa	Gln 10 aca Thr	Ala ggt Gly gtt	Gln ttg Leu cag	Phe agt Ser	Thr gca Ala 30 tac	Arg 15 ttg Leu ttg	Glu atg Met	
	Met 1 tta Leu tcg Ser	Ser cat His aag Lys	ggt Gly aac Asn 35	gat Asp 20 aac Asn	Glu 5 gat Asp tct Ser	att Ile gcc Ala	Arg ggt Gly caa Gln gat	Lys aaa Lys aag Lys	aag Lys 25 gaa Glu	Gln 10 aca Thr gcc Ala	Ala ggt Gly gtt Val	ttg Leu cag Gln	agt Ser aag Lys 45	gca Ala 30 tac Tyr	Arg 15 ttg Leu ttg Leu	atg Met aga Arg	96
40	Met 1 tta Leu tcg Ser aat Asn	cat His aag Lys tgg Trp 50	ggt Gly aac Asn 35 gat Asp	Thr gat Asp 20 aac Asn ggt Gly gaa	Glu 5 gat Asp tct Ser aga Arg gcc	Leu att Ile gcc Ala acc Thr	ggt Gly caa Gln gat Asp 55	aaa Lys aag Lys 40	Arg aag Lys 25 gaa Glu gat Asp	Gln 10 aca Thr gcc Ala gcc Ala	Ala ggt Gly gtt Val gaa Glu aac	Cag Gln gaa Glu 60 gtc	Phe agt Ser aag Lys 45 cgt Arg	Thr gca Ala 30 tac Tyr cgt Arg	Arg 15 ttg Leu ttg Leu ctt Leu gat	Glu atg Met aga Arg gag Glu ttc	96
40	Met 1 tta Leu tcg Ser aat Asn gat Asp 65 tat	cat His aag Lys tgg Trp 50 tat Tyr	ggt Gly aac Asn 35 gat Asp aat	Thr gat Asp 20 aac Asn ggt Gly gaa Glu ggt	Glu 5 gat Asp tct Ser aga Arg gcc Ala tgg	Leu att Ile gcc Ala acc Thr aca Thr 70	Arg ggt Gly caa Gln gat Asp 55 cat His	aaa Lys aag Lys 40 aaa Lys	Arg aag Lys 25 gaa Glu gat Asp tac Tyr	Gln 10 aca Thr gcc Ala gcc Ala tat Tyr cat	Ala ggt Gly gtt Val gaa Glu aac Asn 75 ttc	Cag Gln gaa Glu 60 gtc Val	Phe agt Ser aag Lys 45 cgt Arg gtt Val	Thr gca Ala 30 tac Tyr cgt Arg aca Thr	Arg 15 ttg Leu ttg Leu ctt Leu gat Asp	atg Met aga Arg gag Glu ttc Phe 80 aaa	96 144 192

					att Ile												384
5		_			cca Pro	_	_			_	_				_		432
10					aac Asn												480
15		_			tac Tyr 165		_	_	_		_	_		_	_		528
20	_		_		atg Met	_		-	_				_		-		576
20	_			_	aca Thr	_		_				_		_		_	624
25	_			_	gtt Val	_		_					_	_		_	672
30		_	_		gat Asp			_	_				_		_	_	720
35		_		_	att Ile 245	_			_				_	_			768
40					agg Arg												816
40	_	_	_	_	ctg Leu		_		_	_	_						864
45					gag Glu												912
50				_	act Thr			_							_		960
55					gaa Glu 325												1008
					cta Leu												1056

				340					345					350			
5		tcc Ser															1104
10	_	aac Asn 370	_	_								_	_			taa	1152
15	<211 <212)> 2(1> 38 2> PF 3> Sa	33 RT	aromy	yces	cere	evisi	iae									
20)> 2(Ser		Thr	Glu 5	Leu	Arg	Lys	Arg	Gln 10	Ala	Gln	Phe	Thr	Arg 15	Glu	
20	Leu	His	Gly	Asp 20	Asp	Ile	Gly	Lys	Lys 25	Thr	Gly	Leu	Ser	Ala 30	Leu	Met	
25	Ser	Lys	Asn 35	Asn	Ser	Ala	Gln	Lys 40	Glu	Ala	Val	Gln	Lys 45	Tyr	Leu	Arg	
	Asn	Trp 50	Asp	Gly	Arg	Thr	Asp 55	Lys	Asp	Ala	Glu	Glu 60	Arg	Arg	Leu	Glu	
30	Asp 65	Tyr	Asn	Glu	Ala	Thr 70	His	Ser	Tyr	Tyr	Asn 75	Val	Val	Thr	Asp	Phe 80	
0.5	Tyr	Glu	Tyr	Gly	Trp 85	Gly	Ser	Ser	Phe	His 90	Phe	Ser	Arg	Phe	Tyr 95	Lys	
35	Gly	Glu	Ser	Phe 100	Ala	Ala	Ser	Ile	Ala 105	Arg	His	Glu	His	Tyr 110	Leu	Ala	
40	Tyr	Lys	Ala 115	Gly	Ile	Gln	Arg	Gly 120	Asp	Leu	Val	Leu	Asp 125	Val	Gly	Cys	
	Gly	Val 130	Gly	Gly	Pro	Ala	Arg 135	Glu	Ile	Ala	Arg	Phe 140	Thr	Gly	Cys	Asn	
45	Val 145	Ile	Gly	Leu	Asn	Asn 150	Asn	Asp	Tyr	Gln	Ile 155	Ala	Lys	Ala	Lys	Tyr 160	
	Tyr	Ala	Lys	Lys	Tyr 165	Asn	Leu	Ser	Asp	Gln 170	Met	Asp	Phe	Val	Lys 175	Gly	
50	Asp	Phe	Met	Lys 180	Met	Asp	Phe	Glu	Glu 185	Asn	Thr	Phe	Asp	Lys 190	Val	Tyr	
55	Ala	Ile	Glu 195	Ala	Thr	Cys	His	Ala 200	Pro	Lys	Leu	Glu	Gly 205	Val	Tyr	Ser	
	Glu	Ile 210	Tyr	Lys	Val	Leu	Lys 215	Pro	Gly	Gly	Thr	Phe 220	Ala	Val	Tyr	Glu	

	Trp 225	Val	Met	Thr	Asp	Lys 230	Tyr	Asp	Glu	Asn	Asn 235	Pro	Glu	His	Arg	Lys 240	
5	Ile	Ala	Tyr	Glu	Ile 245	Glu	Leu	Gly	Asp	Gly 250	Ile	Pro	Lys	Met	Phe 255	His	
10	Val	Asp	Val	Ala 260	Arg	Lys	Ala	Leu	Lys 265	Asn	Cys	Gly	Phe	Glu 270	Val	Leu	
10	Val	Ser	Glu 275	Asp	Leu	Ala	Asp	Asn 280	Asp	Asp	Glu	Ile	Pro 285	Trp	Tyr	Tyr	
15	Pro	Leu 290	Thr	Gly	Glu	Trp	Lys 295	Tyr	Val	Gln	Asn	Leu 300	Ala	Asn	Leu	Ala	
	Thr 305	Phe	Phe	Arg	Thr	Ser 310	Tyr	Leu	Gly	Arg	Gln 315	Phe	Thr	Thr	Ala	Met 320	
20	Val	Thr	Val	Met	Glu 325	Lys	Leu	Gly	Leu	Ala 330	Pro	Glu	Gly	Ser	Lys 335	Glu	
25	Val	Thr	Ala	Ala 340	Leu	Glu	Asn	Ala	Ala 345	Val	Gly	Leu	Val	Ala 350	Gly	Gly	
20	Lys	Ser	Lys 355	Leu	Phe	Thr	Pro	Met 360	Met	Leu	Phe	Val	Ala 365	Arg	Lys	Pro	
30	Glu	Asn 370	Ala	Glu	Thr	Pro	Ser 375	Gln	Thr	Ser	Gln	Glu 380	Ala	Thr	Gln		
35	<211 <212	0> 2: 1> 10 2> Al 3> Sa	617 ON	aromy	yces	cere	evis	iae									
40		0> 1> CI 2> (1	-	(161	7)												
45	atg	0> 2: agt Ser	tct														48
	_	cta Leu			_	_		_	_			_		_			96
50	_	ttc Phe	_		_	_			_		_			_			144
55		gct Ala 50															192

					ggt Gly												240
5					ttt Phe 85	_	_			_		_		_	_		288
10					gca Ala												336
15			_	_	atc Ile	_			_	_	_	_	_	_		-	384
20					ttc Phe												432
20			_		tgc Cys			_		_	_			_			480
25	_		_		tca Ser 165									_	_	-	528
30					tca Ser	_	_			_	_	_		_	_	_	576
35		_	_		tct Ser	_							_	_			624
40		_	_	_	gaa Glu			_	_			_				_	672
40					acc Thr	_	_		_	_	_		_	_	_		720
45		_	_		gca Ala 245	_	_	-		-							768
50					aca Thr				_			_	_	_	_	_	816
55					aac Asn												864
			_		gtt Val	_	_	_	_	_		_	_	_	_		912

		290					295					300					
5	_	_	_		_		_	gat Asp	-		_				_		960
10				_	_			gaa Glu	_	_						_	1008
10			_	-				tta Leu	_	_		_				-	1056
15	_	_	_		_	_		gct Ala 360	_		_	_	_		_	_	1104
20	_	_			_	_		acc Thr	_	_		_	_	_			1152
25		_	_				_	gtc Val			_		_	_		_	1200
30								tat Tyr									1248
30						_		aag Lys		_	_						1296
35								gaa Glu 440									1344
40								ggc Gly									1392
45								ggt Gly									1440
50								gct Ala									1488
50		_						act Thr			_	_			_	_	1536
55		_						gat Asp 520	_	_		_				_	1584

					act Thr						taa						1617
5	<211 <212	0> 22 1> 53 2> PI	38 RT														
10	<400)> 22	2		yces				Tlo	Cln	П¦с	λla	Прх	Шic	λen	cor	
	1	DET	DET	vai	5	GIU	ASII	116	116	10	1113	AIA	1111	1113	15	DEI	
15	Thr	Leu	His	Gln 20	Leu	Ala	Lys	Asp	Gln 25	Pro	Ser	Val	Gly	Val 30	Thr	Thr	
20	Ala	Phe	Ser 35	Ile	Leu	Asp	Thr	Leu 40	Lys	Ser	Met	Ser	Tyr 45	Leu	Lys	Ile	
20	Phe	Ala 50	Thr	Leu	Ile	Cys	Ile 55	Leu	Leu	Val	Trp	Asp 60	Gln	Val	Ala	Tyr	
25	Gln 65	Ile	Lys	Lys	Gly	Ser 70	Ile	Ala	Gly	Pro	Lys 75	Phe	Lys	Phe	Trp	Pro 80	
	Ile	Ile	Gly	Pro	Phe 85	Leu	Glu	Ser	Leu	Asp 90	Pro	Lys	Phe	Glu	Glu 95	Tyr	
30	Lys	Ala	Lys	Trp 100	Ala	Ser	Gly	Pro	Leu 105	Ser	Cys	Val	Ser	Ile 110	Phe	His	
35	Lys	Phe	Val 115	Val	Ile	Ala	Ser	Thr 120	Arg	Asp	Leu	Ala	Arg 125	Lys	Ile	Leu	
00	Gln	Ser 130	Ser	Lys	Phe	Val	Lys 135	Pro	Cys	Val	Val	Asp 140	Val	Ala	Val	Lys	
40	Ile 145	Leu	Arg	Pro	Cys	Asn 150	Trp	Val	Phe	Leu	Asp 155	Gly	Lys	Ala	His	Thr 160	
	Asp	Tyr	Arg	Lys	Ser 165	Leu	Asn	Gly	Leu	Phe 170	Thr	Lys	Gln	Ala	Leu 175	Ala	
45	Gln	Tyr	Leu	Pro 180	Ser	Leu	Glu	Gln	Ile 185	Met	Asp	Lys	Tyr	Met 190	Asp	Lys	
50	Phe	Val	Arg 195	Leu	Ser	Lys	Glu	Asn 200	Asn	Tyr	Glu	Pro	Gln 205	Val	Phe	Phe	
	His	Glu 210	Met	Arg	Glu	Ile	Leu 215	Cys	Ala	Leu	Ser	Leu 220	Asn	Ser	Phe	Cys	
55	Gly 225	Asn	Tyr	Ile	Thr	Glu 230	Asp	Gln	Val	Arg	Lys 235	Ile	Ala	Asp	Asp	Tyr 240	
	Tyr	Leu	Val	Thr	Ala 245	Ala	Leu	Glu	Leu	Val 250	Asn	Phe	Pro	Ile	Ile 255	Ile	

	Pro	Tyr	Thr	Lys 260	Thr	Trp	Tyr	Gly	Lys 265	Lys	Thr	Ala	Asp	Met 270	Ala	Met
5	Lys	Ile	Phe 275	Glu	Asn	Cys	Ala	Gln 280	Met	Ala	Lys	Asp	His 285	Ile	Ala	Ala
10	Gly	Gly 290	Lys	Pro	Val	Cys	Val 295	Met	Asp	Ala	Trp	Cys 300	Lys	Leu	Met	His
	Asp 305	Ala	Lys	Asn	Ser	Asn 310	Asp	Asp	Asp	Ser	Arg 315	Ile	Tyr	His	Arg	Glu 320
15	Phe	Thr	Asn	Lys	Glu 325	Ile	Ser	Glu	Ala	Val 330	Phe	Thr	Phe	Leu	Phe 335	Ala
	Ser	Gln	Asp	Ala 340	Ser	Ser	Ser	Leu	Ala 345	Cys	Trp	Leu	Phe	Gln 350	Ile	Val
20	Ala	Asp	Arg 355	Pro	Asp	Val	Leu	Ala 360	Lys	Ile	Arg	Glu	Glu 365	Gln	Leu	Ala
25	Val	Arg 370	Asn	Asn	Asp	Met	Ser 375	Thr	Glu	Leu	Asn	Leu 380	Asp	Leu	Ile	Glu
20	Lys 385	Met	Lys	Tyr	Thr	Asn 390	Met	Val	Ile	Lys	Glu 395	Thr	Leu	Arg	Tyr	Arg 400
30	Pro	Pro	Val	Leu	Met 405	Val	Pro	Tyr	Val	Val 410	Lys	Lys	Asn	Phe	Pro 415	Val
	Ser	Pro	Asn	Tyr 420	Thr	Ala	Pro	Lys	Gly 425	Ala	Met	Leu	Ile	Pro 430	Thr	Leu
35	Tyr	Pro	Ala 435	Leu	His	Asp	Pro	Glu 440	Val	Tyr	Glu	Asn	Pro 445	Asp	Glu	Phe
40	Ile	Pro 450	Glu	Arg	Trp	Val	Glu 455	Gly	Ser	Lys	Ala	Ser 460	Glu	Ala	Lys	Lys
10	Asn 465	Trp	Leu	Val	Phe	Gly 470	Cys	Gly	Pro	His	Val 475	Cys	Leu	Gly	Gln	Thr 480
45	Tyr	Val	Met	Ile	Thr 485	Phe	Ala	Ala	Leu	Leu 490	Gly	Lys	Phe	Ala	Leu 495	Tyr
	Thr	Asp	Phe	His 500	His	Thr	Val	Thr	Pro 505	Leu	Ser	Glu	Lys	Ile 510	Lys	Val
50	Phe	Ala	Thr 515	Ile	Phe	Pro	Lys	Asp 520	Asp	Leu	Leu	Leu	Thr 525	Phe	Lys	Lys
55	Arg	Asp 530	Pro	Ile	Thr	Gly	Glu 535	Val	Phe	Glu						
		0> 23 l> 15														

		2> AI 3> Se		ncia	arti	ifici	ial										
5	<220 <223	3> La	a des	_	oción	n de	las	secue	encia	a art	cifi	cial	: HMO	5			
10		0> 1> CI 2> (1		(1578	3)												
15	atg	0> 23 gac Asp	caa	_				-	-		_	_				-	48
		gta Val		_	_				_						_		96
20		gga Gly	_		_		_						_	_			144
25		cct Pro 50															192
30	_	gat Asp	_			_			_	_		_	_			_	240
35		gga Gly															288
40		cac His															336
40		acg Thr	_		_		_	_		_	_				_	-	384
45	_	gct Ala 130		_		_		_	_							-	432
50		gac Asp	_	_			_	_	_	_		_				_	480
55		ttg Leu															528
		cat His			_	_					_	_	_	_		_	576

				180					185					190			
5											ggt Gly						624
10											gta Val						672
10											tta Leu 235						720
15			_				_				aca Thr		_		_	_	768
20	_						_		_		gat Asp				_	_	816
25											atg Met						864
30											gaa Glu						912
30	_	_		_	_		_				tac Tyr 315	_		_			960
35		-	_					_		_	ggt Gly	_	_	-	_	-	1008
40											aaa Lys						1056
45											aag Lys						1104
50											gca Ala						1152
50			_	_		_	-				gat Asp 395		-			_	1200
55											gaa Glu						1248

	_			-	tcc Ser	_				-	-						1296
5					gaa Glu												1344
10	_		_		gct Ala		_					_	_			_	1392
15					tgt Cys												1440
20	_		_	_	ggc Gly 485		_	-		_		_					1488
20					cca Pro												1536
25					gat Asp									taa			1578
30	<211 <212)> 24 L> 52 2> PF	25 RT	acia	2×+ -	ific:	: a 1										
	<211 <212 <213	L> 52 2> PF 3> Se	25 RT ecuer	ncia	arti	ific	ial										
30	<211 <212 <213 <400	L> 52 2> PF 3> Se 0> 24	25 RT ecuer I		arti			Glu	Val	Thr 10	Lys	Lys	Ser	Phe	Thr 15	Ala	
	<211 <212 <213 <400 Met 1	L> 52 2> PF 3> Se 0> 24 Asp	25 RT ecuer I Gln	Leu	Val	Lys	Thr			10	_	_			15		
35	<211 <212 <213 <400 Met 1	l> 52 2> PF 3> Se 0> 24 Asp	25 RT ecuer I Gln Gln	Leu Lys 20	Val 5	Lys Ser	Thr Thr	Pro	Val 25	10 Leu	Thr	Asn	Lys	Thr 30	15 Val	Ile	
35	<211 <212 <213 <400 Met 1 Pro	1> 52 2> PF 3> Se 0> 24 Asp Val	25 RT ecuer I Gln Gln Ser 35	Leu Lys 20 Lys	Val 5 Ala	Lys Ser Lys	Thr Thr Ser	Pro Leu 40	Val 25 Ser	10 Leu Ser	Thr Ala	Asn Gln	Lys Ser 45	Thr 30 Ser	15 Val Ser	Ile	
35 40 45	<211 <212 <213 <400 Met 1 Pro Ser	1> 52 2> PF 3> Se 0> 24 Asp Val Gly Pro 50	25 RT ecuer A Gln Ser 35 Ser	Leu Lys 20 Lys Ser	Val 5 Ala Val	Lys Ser Lys Ser	Thr Thr Ser Glu 55	Pro Leu 40 Glu	Val 25 Ser Asp	10 Leu Ser Asp	Thr Ala Ser	Asn Gln Arg	Lys Ser 45 Asp	Thr 30 Ser	15 Val Ser Glu	Ile Ser Ser	
35	<211 <212 <213 <400 Met 1 Pro Ser Gly Leu 65	l> 52 2> PF 3> Se 3> Se Asp Val Gly Pro 50 Asp	25 RT ecuer 4 Gln Ser 35 Ser	Leu Lys 20 Lys Ser	Val 5 Ala Val Ser	Lys Ser Lys Ser Arg	Thr Thr Ser Glu 55 Pro	Pro Leu 40 Glu Leu	Val 25 Ser Asp	10 Leu Ser Asp Glu	Thr Ala Ser Leu 75	Asn Gln Arg 60 Glu	Lys Ser 45 Asp	Thr 30 Ser Ile	15 Val Ser Glu Leu	Ile Ser Ser	
35 40 45	<211 <212 <213 <400 Met 1 Pro Ser Gly Leu 65 Ser	L> 52 PF 3> Se N> 24 Asp Val Gly Pro 50 Asp Gly	25 RT ecuer I Gln Ser 35 Ser Lys	Leu Lys 20 Lys Ser Lys	Val 5 Ala Val Ser Ile	Lys Ser Lys Ser Arg 70 Gln	Thr Thr Ser Glu 55 Pro Leu	Pro Leu 40 Glu Leu Lys	Val 25 Ser Asp Glu Asn	10 Leu Ser Asp Glu Lys 90	Thr Ala Ser Leu 75 Glu	Asn Gln Arg 60 Glu Val	Lys Ser 45 Asp Ala	Thr 30 Ser Ile Leu Ala	15 Val Ser Glu Leu 95	Ile Ser Ser Ser 80 Val	

	Glu	Ala 130	Pro	Val	Leu	Ala	Ser 135	Asp	Arg	Leu	Pro	Tyr 140	Lys	Asn	Tyr	Asp
5	Tyr 145	Asp	Arg	Val	Phe	Gly 150	Ala	Cys	Cys	Glu	Asn 155	Val	Ile	Gly	Tyr	Met 160
10	Pro	Leu	Pro	Val	Gly 165	Val	Ile	Gly	Pro	Leu 170	Val	Ile	Asp	Gly	Thr 175	Ser
10	Tyr	His	Ile	Pro 180	Met	Ala	Thr	Thr	Glu 185	Gly	Cys	Leu	Val	Ala 190	Ser	Ala
15	Met	Arg	Gly 195	Cys	Lys	Ala	Ile	Asn 200	Ala	Gly	Gly	Gly	Ala 205	Thr	Thr	Val
	Leu	Thr 210	Lys	Asp	Gly	Met	Thr 215	Arg	Gly	Pro	Val	Val 220	Arg	Phe	Pro	Thr
20	Leu 225	Lys	Arg	Ser	Gly	Ala 230	Cys	Lys	Ile	Trp	Leu 235	Asp	Ser	Glu	Glu	Gly 240
25	Gln	Asn	Ala	Ile	Lys 245	Lys	Ala	Phe	Asn	Ser 250	Thr	Ser	Arg	Phe	Ala 255	Arg
	Leu	Gln	His	Ile 260	Gln	Thr	Cys	Leu	Ala 265	Gly	Asp	Leu	Leu	Phe 270	Met	Arg
30	Phe	Arg	Thr 275	Thr	Thr	Gly	Asp	Ala 280	Met	Gly	Met	Asn	Met 285	Ile	Ser	Lys
	Gly	Val 290	Glu	Tyr	Ser	Leu	Lys 295	Gln	Met	Val	Glu	Glu 300	Tyr	Gly	Trp	Glu
35	Asp 305	Met	Glu	Val	Val	Ser 310	Val	Ser	Gly	Asn	Tyr 315	Cys	Thr	Asp	Lys	Lys 320
40	Pro	Ala	Ala	Ile	Asn 325	Trp	Ile	Glu	Gly	Arg 330	Gly	Lys	Ser	Val	Val 335	Ala
	Glu	Ala	Thr	Ile 340	Pro	Gly	Asp	Val	Val 345	Arg	Lys	Val	Leu	Lys 350	Ser	Asp
45	Val	Ser	Ala 355	Leu	Val	Glu	Leu	Asn 360	Ile	Ala	Lys	Asn	Leu 365	Val	Gly	Ser
	Ala	Met 370	Ala	Gly	Ser	Val	Gly 375	Gly	Phe	Asn	Ala	His 380	Ala	Ala	Asn	Leu
50	Val 385	Thr	Ala	Val	Phe	Leu 390	Ala	Leu	Gly	Gln	Asp 395	Pro	Ala	Gln	Asn	Val 400
55	Glu	Ser	Ser	Asn	Cys 405	Ile	Thr	Leu	Met	Lys 410	Glu	Val	Asp	Gly	Asp 415	Leu
	Arg	Ile	Ser	Val 420	Ser	Met	Pro	Ser	Ile 425	Glu	Val	Gly	Thr	Ile 430	Gly	Gly

	Gly	Thr	Val 435	Leu	Glu	Pro	Gln	Gly 440	Ala	Met	Leu	Asp	Leu 445	Leu	Gly	Val	
5	Arg	Gly 450	Pro	His	Ala	Thr	Ala 455	Pro	Gly	Thr	Asn	Ala 460	Arg	Gln	Leu	Ala	
	Arg 465	Ile	Val	Ala	Cys	Ala 470	Val	Leu	Ala	Gly	Glu 475	Leu	Ser	Leu	Cys	Ala 480	
10	Ala	Leu	Ala	Ala	Gly 485	His	Leu	Val	Gln	Ser 490	His	Met	Thr	His	Asn 495	Arg	
15	Lys	Pro	Ala	Glu 500	Pro	Thr	Lys	Pro	Asn 505	Asn	Leu	Asp	Ala	Thr 510	Asp	Ile	
10	Asn	Arg	Leu 515	Lys	Asp	Gly	Ser	Val 520	Thr	Cys	Ile	Lys	Ser 525				
20	<211 <212)> 25 l> 15 2> AI 3> Sa	593 ON	aromy	yces	cere	evisi	lae									
25)> L> CI 2> (1		(1593	3)												
30	atg		gct		aag Lys 5												48
35					cat His												96
40	_				att Ile							_				cta Leu	144
45			_	_	aag Lys	_	_										192
-					gct Ala												240
50					aag Lys 85												288
55					act Thr												336
	ttc	aac	gct	aag	ttg	gca	gat	gtt	tca	gca	gaa	gct	gct	tac	gct	cat	384

	Phe	Asn	Ala 115	Lys	Leu	Ala	Asp	Val 120	Ser	Ala	Glu	Ala	Ala 125	Tyr	Ala	His	
5	_				_					_	att Ile		_	_			432
10											aag Lys 155						480
15											gct Ala						528
			_	_					_	_	aat Asn	_	_				576
20			_		_	_				_	atg Met					_	624
25											gca Ala						672
30		_		_		_	_	_	-	_	ggt Gly 235						720
35		_						_	_		tat Tyr	_	_	_	-		768
00	_		_	_						_	tct Ser				_	_	816
40	_	_			_			_	_	-	ttg Leu		-		_	_	864
45											atg Met						912
50	_		_				_		_		ggt Gly 315					_	960
55											gct Ala						1008
JJ											gtt Val						1056

5	_	_	_		tac Tyr	_				_	_		_	_			1104
			_	_	act Thr		_	_				_			_		1152
10	_	_	_	_	aaa Lys	_	_		-						_		1200
15					cac His 405												1248
20	_	_			cct Pro		_							_			1296
25		_		_	tcc Ser				_		_	_	_	_			1344
20			-		tct Ser	_		-	_								1392
30			_		aga Arg	_			_			_		_	_		1440
35		_		_	tcc Ser 485				_								1488
40			_		gtt Val				_				_	_			1536
45					gcc Ala	_				_	_	_			_		1584
10	_	atc Ile 530	taa														1593
50	<211	0> 20 l> 53 2> PI	30														
55	<213	3> Sa	accha	aromy	yces	cere	evisi	iae									
)> 20 Ser		Thr	Lys 5	Ser	Ile	Val	Gly	Glu 10		Leu	Glu	Tyr	Val 15	Asn	

	Ile	Gly	Leu	Ser 20	His	Phe	Leu	Ala	Leu 25	Pro	Leu	Ala	Gln	Arg 30	Ile	Ser
5	Leu	Ile	Ile 35	Ile	Ile	Pro	Phe	Ile 40	Tyr	Asn	Ile	Val	Trp 45	Gln	Leu	Leu
10	Tyr	Ser 50	Leu	Arg	Lys	Asp	Arg 55	Pro	Pro	Leu	Val	Phe 60	Tyr	Trp	Ile	Pro
10	Trp 65	Val	Gly	Ser	Ala	Val 70	Val	Tyr	Gly	Met	Lys 75	Pro	Tyr	Glu	Phe	Phe 80
15	Glu	Glu	Cys	Gln	Lys 85	Lys	Tyr	Gly	Asp	Ile 90	Phe	Ser	Phe	Val	Leu 95	Leu
	Gly	Arg	Val	Met 100	Thr	Val	Tyr	Leu	Gly 105	Pro	Lys	Gly	His	Glu 110	Phe	Val
20	Phe	Asn	Ala 115	Lys	Leu	Ala	Asp	Val 120	Ser	Ala	Glu	Ala	Ala 125	Tyr	Ala	His
25	Leu	Thr 130	Thr	Pro	Val	Phe	Gly 135	Lys	Gly	Val	Ile	Tyr 140	Asp	Cys	Pro	Asn
	Ser 145	Arg	Leu	Met	Glu	Gln 150	Lys	Lys	Phe	Val	Lys 155	Gly	Ala	Leu	Thr	Lys 160
30	Glu	Ala	Phe	Lys	Ser 165	Tyr	Val	Pro	Leu	Ile 170	Ala	Glu	Glu	Val	Tyr 175	Lys
	Tyr	Phe	Arg	Asp 180	Ser	Lys	Asn	Phe	Arg 185	Leu	Asn	Glu	Arg	Thr 190	Thr	Gly
35	Thr	Ile	Asp 195	Val	Met	Val	Thr	Gln 200	Pro	Glu	Met	Thr	Ile 205	Phe	Thr	Ala
40	Ser	Arg 210	Ser	Leu	Leu	Gly	Lys 215	Glu	Met	Arg	Ala	Lys 220	Leu	Asp	Thr	Asp
	Phe 225	Ala	Tyr	Leu	Tyr	Ser 230	Asp	Leu	Asp	Lys	Gly 235	Phe	Thr	Pro	Ile	Asn 240
45	Phe	Val	Phe	Pro	Asn 245	Leu	Pro	Leu	Glu	His 250	Tyr	Arg	Lys	Arg	Asp 255	His
	Ala	Gln	Lys	Ala 260	Ile	Ser	Gly	Thr	Tyr 265	Met	Ser	Leu	Ile	Lys 270	Glu	Arg
50	Arg	Lys	Asn 275	Asn	Asp	Ile	Gln	Asp 280	Arg	Asp	Leu	Ile	Asp 285	Ser	Leu	Met
55	Lys	Asn 290	Ser	Thr	Tyr	Lys	Asp 295	Gly	Val	Lys	Met	Thr 300	Asp	Gln	Glu	Ile
	Ala 305	Asn	Leu	Leu	Ile	Gly 310	Val	Leu	Met	Gly	Gly 315	Gln	His	Thr	Ser	Ala 320

Ala Thr Ser Ala Trp Ile Leu Leu His Leu Ala Glu Arg Pro Asp Val

Gln Gln Glu Leu Tyr Glu Glu Gln Met Arg Val Leu Asp Gly Gly Lys

	Lys	Glu	Leu 355	Thr	Tyr	Asp	Leu	Leu 360	Gln	Glu	Met	Pro	Leu 365	Leu	Asn	Gln	
10	Thr	Ile 370	Lys	Glu	Thr	Leu	Arg 375	Met	His	His	Pro	Leu 380	His	Ser	Leu	Phe	
15	Arg 385	Lys	Val	Met	Lys	Asp 390	Met	His	Val	Pro	Asn 395	Thr	Ser	Tyr	Val	Ile 400	
10	Pro	Ala	Gly	Tyr	His 405	Val	Leu	Val	Ser	Pro 410	Gly	Tyr	Thr	His	Leu 415	Arg	
20	Asp	Glu	Tyr	Phe 420	Pro	Asn	Ala	His	Gln 425	Phe	Asn	Ile	His	Arg 430	Trp	Asn	
	Lys	Asp	Ser 435	Ala	Ser	Ser	Tyr	Ser 440	Val	Gly	Glu	Glu	Val 445	Asp	Tyr	Gly	
25	Phe	Gly 450	Ala	Ile	Ser	Lys	Gly 455	Val	Ser	Ser	Pro	Tyr 460	Leu	Pro	Phe	Gly	
30	Gly 465	Gly	Arg	His	Arg	Cys 470	Ile	Gly	Glu	His	Phe 475	Ala	Tyr	Cys	Gln	Leu 480	
	Gly	Val	Leu	Met	Ser 485	Ile	Phe	Ile	Arg	Thr 490	Leu	Lys	Trp	His	Tyr 495	Pro	
35	Glu	Gly	Lys	Thr 500	Val	Pro	Pro	Pro	Asp 505	Phe	Thr	Ser	Met	Val 510	Thr	Leu	
	Pro	Thr	Gly 515	Pro	Ala	Lys	Ile	Ile 520	Trp	Glu	Lys	Arg	Asn 525	Pro	Glu	Gln	
40	Lys	Ile 530															
45	<211 <212	0> 27 1> 14 2> AI 3> Sa	191 ON	aromy	/ces	cere	evisi	iae									
50		0> 1> CI 2> (1		(1491	L)												
55	atg)> 27 tct Ser	gct														48
	att	acc	tac	gat	gcg	att	gtc	atc	ggt	gct 88		gtt	atc	ggt	cca	tgt	96

	Ile	Thr	Tyr	Asp 20	Ala	Ile	Val	Ile	Gly 25	Ala	Gly	Val	Ile	Gly 30	Pro	Cys	
5					cta Leu												144
10	_	_		_	atg Met		_	_		_		_	_	_			192
15			_	_	gca Ala	_	_	_	_		_						240
15					tat Tyr 85												288
20	_		_	_	att Ile					_	_	_				-	336
25					gac Asp												384
30	_	_			cac His		_	_		_	_	_	_	_	_		432
35		_	_		gtt Val			_		_			_	_			480
33		_			cca Pro 165		_		_					_			528
40					gaa Glu												576
45	_		_		aag Lys		_			_		_				_	624
50	_				tca Ser	_		_	_	_	_			_		_	672
55			_		tct Ser	_		_		_		_			_	_	720
55					atg Met 245												768

5			_	_				_		_	_		_		ctt Leu	_	816
3	_					_	_		_	_		_	_		atg Met		864
10	_	_	_						_	_		_			ttt Phe	_	912
15	_	_	_	_					_	_	_				tac Tyr	_	960
20															gac Asp 335		1008
25			_	_			_					_		_	ggt Gly	_	1056
20		_	_	_	_	_		_				_		_	ttc Phe	_	1104
30	_	_	_	_	_	_	_	_			_				gaa Glu	_	1152
35	_	_		_		_			_	_			_	_	tat Tyr		1200
40															ggt Gly 415		1248
45															gtt Val		1296
.0		_			_	_		_		_		_			gtt Val		1344
50		_	_	_						_		_	_	_	cgt Arg		1392
55															ttg Leu		1440
	aca	gct	att	aga	gta	ttc	acc	cca	ttt	ttg		ggt	gag	ttg	att	ggt	1488

	Thr	Ala	Ile	Arg	Val 485	Phe	Thr	Pro	Phe	Leu 490	Phe	Gly	Glu	Leu	Ile 495	Gly	
5	taa																1491
10	<211 <212	0> 28 1> 49 2> PE 3> Sa	96 RT	aromy	yces	cere	evisi	iae									
15)> 28 Ser		Val	Asn 5	Val	Ala	Pro	Glu	Leu 10	Ile	Asn	Ala	Asp	Asn 15	Thr	
	Ile	Thr	Tyr	Asp 20	Ala	Ile	Val	Ile	Gly 25	Ala	Gly	Val	Ile	Gly 30	Pro	Cys	
20	Val	Ala	Thr 35	Gly	Leu	Ala	Arg	Lys 40	Gly	Lys	Lys	Val	Leu 45	Ile	Val	Glu	
25	Arg	Asp 50	Trp	Ala	Met	Pro	Asp 55	Arg	Ile	Val	Gly	Glu 60	Leu	Met	Gln	Pro	
25	Gly 65	Gly	Val	Arg	Ala	Leu 70	Arg	Ser	Leu	Gly	Met 75	Ile	Gln	Ser	Ile	Asn 80	
30	Asn	Ile	Glu	Ala	Tyr 85	Pro	Val	Thr	Gly	Tyr 90	Thr	Val	Phe	Phe	Asn 95	Gly	
	Glu	Gln	Val	Asp 100	Ile	Pro	Tyr	Pro	Tyr 105	Lys	Ala	Asp	Ile	Pro 110	Lys	Val	
35	Glu	Lys	Leu 115	Lys	Asp	Leu	Val	Lys 120	Asp	Gly	Asn	Asp	Lys 125	Val	Leu	Glu	
40	Asp	Ser 130	Thr	Ile	His	Ile	Lys 135	Asp	Tyr	Glu	Asp	Asp 140	Glu	Arg	Glu	Arg	
40	Gly 145	Val	Ala	Phe	Val	His 150	Gly	Arg	Phe	Leu	Asn 155	Asn	Leu	Arg	Asn	Ile 160	
45	Thr	Ala	Gln	Glu	Pro 165	Asn	Val	Thr	Arg	Val 170	Gln	Gly	Asn	Cys	Ile 175	Glu	
	Ile	Leu	Lys	Asp 180	Glu	Lys	Asn	Glu	Val 185	Val	Gly	Ala	Lys	Val 190	Asp	Ile	
50	Asp	Gly	Arg 195	Gly	Lys	Val	Glu	Phe 200	Lys	Ala	His	Leu	Thr 205	Phe	Ile	Cys	
55	Asp	Gly 210	Ile	Phe	Ser	Arg	Phe 215	Arg	Lys	Glu	Leu	His 220	Pro	Asp	His	Val	
55	Pro 225	Thr	Val	Gly	Ser	Ser 230	Phe	Val	Gly	Met	Ser 235	Leu	Phe	Asn	Ala	Lys 240	

	Asn	Pro	Ala	Pro	Met 245	His	Gly	His	Val	Ile 250	Leu	Gly	Ser	Asp	His 255	Met
5	Pro	Ile	Leu	Val 260	Tyr	Gln	Ile	Ser	Pro 265	Glu	Glu	Thr	Arg	Ile 270	Leu	Cys
	Ala	Tyr	Asn 275	Ser	Pro	Lys	Val	Pro 280	Ala	Asp	Ile	Lys	Ser 285	Trp	Met	Ile
10	Lys	Asp 290	Val	Gln	Pro	Phe	Ile 295	Pro	Lys	Ser	Leu	Arg 300	Pro	Ser	Phe	Asp
15	Glu 305	Ala	Val	Ser	Gln	Gly 310	Lys	Phe	Arg	Ala	Met 315	Pro	Asn	Ser	Tyr	Leu 320
.0	Pro	Ala	Arg	Gln	Asn 325	Asp	Val	Thr	Gly	Met 330	Cys	Val	Ile	Gly	Asp 335	Ala
20	Leu	Asn	Met	Arg 340	His	Pro	Leu	Thr	Gly 345	Gly	Gly	Met	Thr	Val 350	Gly	Leu
	His	Asp	Val 355	Val	Leu	Leu	Ile	Lys 360	Lys	Ile	Gly	Asp	Leu 365	Asp	Phe	Ser
25	Asp	Arg 370	Glu	Lys	Val	Leu	Asp 375	Glu	Leu	Leu	Asp	Tyr 380	His	Phe	Glu	Arg
30	Lys 385	Ser	Tyr	Asp	Ser	Val 390	Ile	Asn	Val	Leu	Ser 395	Val	Ala	Leu	Tyr	Ser 400
	Leu	Phe	Ala	Ala	Asp 405	Ser	Asp	Asn	Leu	Lys 410	Ala	Leu	Gln	Lys	Gly 415	Cys
35	Phe	Lys	Tyr	Phe 420	Gln	Arg	Gly	Gly	Asp 425	Cys	Val	Asn	Lys	Pro 430	Val	Glu
	Phe	Leu	Ser 435	Gly	Val	Leu	Pro	Lys 440	Pro	Leu	Gln	Leu	Thr 445	Arg	Val	Phe
40	Phe	Ala 450	Val	Ala	Phe	Tyr	Thr 455	Ile	Tyr	Leu	Asn	Met 460	Glu	Glu	Arg	Gly
45	Phe 465	Leu	Gly	Leu	Pro	Met 470	Ala	Leu	Leu	Glu	Gly 475	Ile	Met	Ile	Leu	Ile 480
	Thr	Ala	Ile	Arg	Val 485	Phe	Thr	Pro	Phe	Leu 490	Phe	Gly	Glu	Leu	Ile 495	Gly
50	<211 <212	0> 29 1> 13 2> AI 3> Sa	335 ON	aromy	yces	cere	evisi	iae								
55		l> CI	os 1)	(1335	5)											

	<400)> 29	9														
5	_		_				_	gca Ala	_		_	_		_	_	_	48
ŭ								aga Arg									96
10	_		_					ttg Leu 40		_		_	_	_		_	144
15								gtg Val									192
20	_		_	_				tat Tyr	_				_	_	_		240
05		_	_	_	_			gaa Glu		_	_			_	_	_	288
25								ttg Leu									336
30		_		_		_	_	aga Arg 120	_	_	_		_		_	tcg Ser	384
35				-				ttg Leu			_			-	-		432
40								ggt Gly									480
45								ggg									528
45								ggt Gly									576
50								gcc Ala 200									624
55								ctt Leu									672
	aga	gat	tac	aat	gaa	gat	ttg	gtc	gat	ggt	aga	tcc	ttc	tgg	CCC	aag	720

	Arg 225	Asp	Tyr	Asn	Glu	Asp 230	Leu	Val	Asp	Gly	Arg 235	Ser	Phe	Trp	Pro	Lys 240	
5		atc Ile															768
10		aac Asn															816
15	_	ttg Leu	_		_		_		_			_	-				864
10		caa Gln 290						_	-				-	_	-		912
20	_	acc Thr	_	_	_	_				_	-					aat Asn 320	960
25	_	aag Lys		_	_				_				_				1008
30		ttg Leu															1056
35		tct Ser		_	_			-						_			1104
33		atc Ile 370															1152
40		cct Pro															1200
45		gaa Glu	_		_		_	_	_	_	_					_	1248
50		gag Glu															1296
55		ggg											tga 445				1335
55	<210)> 3()														

<210> 30 <211> 444

		2> PF 3> Sa		aromy	yces	cere	evisi	iae								
5)> 3(Gly		Leu	Leu 5	Gln	Leu	Ala	Leu	His 10	Pro	Val	Glu	Met	Lys 15	Ala
10	Ala	Leu	Lys	Leu 20	Lys	Phe	Cys	Arg	Thr 25	Pro	Leu	Phe	Ser	Ile 30	Tyr	Asp
10	Gln	Ser	Thr 35	Ser	Pro	Tyr	Leu	Leu 40	His	Cys	Phe	Glu	Leu 45	Leu	Asn	Leu
15	Thr	Ser 50	Arg	Ser	Phe	Ala	Ala 55	Val	Ile	Arg	Glu	Leu 60	His	Pro	Glu	Leu
	Arg 65	Asn	Cys	Val	Thr	Leu 70	Phe	Tyr	Leu	Ile	Leu 75	Arg	Ala	Leu	Asp	Thr 80
20	Ile	Glu	Asp	Asp	Met 85	Ser	Ile	Glu	His	Asp 90	Leu	Lys	Ile	Asp	Leu 95	Leu
25	Arg	His	Phe	His 100	Glu	Lys	Leu	Leu	Leu 105	Thr	Lys	Trp	Ser	Phe 110	Asp	Gly
	Asn	Ala	Pro 115	Asp	Val	Lys	Asp	Arg 120	Ala	Val	Leu	Thr	Asp 125	Phe	Glu	Ser
30	Ile	Leu 130	Ile	Glu	Phe	His	Lys 135	Leu	Lys	Pro	Glu	Tyr 140	Gln	Glu	Val	Ile
	Lys 145	Glu	Ile	Thr	Glu	Lys 150	Met	Gly	Asn	Gly	Met 155	Ala	Asp	Tyr	Ile	Leu 160
35	Asp	Glu	Asn	Tyr	Asn 165	Leu	Asn	Gly	Leu	Gln 170	Thr	Val	His	Asp	Tyr 175	Asp
40	Val	Tyr	Cys	His 180	Tyr	Val	Ala	Gly	Leu 185	Val	Gly	Asp	Gly	Leu 190	Thr	Arg
	Leu	Ile	Val 195	Ile	Ala	Lys	Phe	Ala 200	Asn	Glu	Ser	Leu	Tyr 205	Ser	Asn	Glu
45	Gln	Leu 210	Tyr	Glu	Ser	Met	Gly 215	Leu	Phe	Leu	Gln	Lys 220	Thr	Asn	Ile	Ile
	Arg 225	Asp	Tyr	Asn	Glu	Asp 230	Leu	Val	Asp	Gly	Arg 235	Ser	Phe	Trp	Pro	Lys 240
50	Glu	Ile	Trp	Ser	Gln 245	Tyr	Ala	Pro	Gln	Leu 250	Lys	Asp	Phe	Met	Lys 255	Pro
55	Glu	Asn	Glu	Gln 260	Leu	Gly	Leu	Asp	Cys 265	Ile	Asn	His	Leu	Val 270	Leu	Asn
	Ala	Leu	Ser 275	His	Val	Ile	Asp	Val 280	Leu	Thr	Tyr	Leu	Ala 285	Gly	Ile	His

	Glu	Gln 290	Ser	Thr	Phe	Gln	Phe 295	Cys	Ala	Ile	Pro	Gln 300	Val	Met	Ala	Ile	
5	Ala 305	Thr	Leu	Ala	Leu	Val 310	Phe	Asn	Asn	Arg	Glu 315	Val	Leu	His	Gly	Asn 320	
	Val	Lys	Ile	Arg	Lys 325	Gly	Thr	Thr	Cys	Tyr 330	Leu	Ile	Leu	Lys	Ser 335	Arg	
10	Thr	Leu	Arg	Gly 340	Cys	Val	Glu	Ile	Phe 345	Asp	Tyr	Tyr	Leu	Arg 350	Asp	Ile	
15	Lys	Ser	Lys 355	Leu	Ala	Val	Gln	Asp 360	Pro	Asn	Phe	Leu	Lys 365	Leu	Asn	Ile	
10	Gln	Ile 370	Ser	Lys	Ile	Glu	Gln 375	Phe	Met	Glu	Glu	Met 380	Tyr	Gln	Asp	Lys	
20	Leu 385	Pro	Pro	Asn	Val	Lys 390	Pro	Asn	Glu	Thr	Pro 395	Ile	Phe	Leu	Lys	Val 400	
	Lys	Glu	Arg	Ser	Arg 405	Tyr	Asp	Asp	Glu	Leu 410	Val	Pro	Thr	Gln	Gln 415	Glu	
25	Glu	Glu	Tyr	Lys 420	Phe	Asn	Met	Val	Leu 425	Ser	Ile	Ile	Leu	Ser 430	Val	Leu	
30	Leu	Gly	Phe 435	Tyr	Tyr	Ile	Tyr	Thr 440	Leu	His	Arg	Ala					
35	<211 <212	0> 31 1> 19 2> AI 3> Sa	929 ON	aromy	yces	cere	evis	iae									
)> l> CI 2> (1		(1929	9)												
40	<400	0> 31	1														
	atg	gac Asp	aag														48
45		aag Lys															96
50		gac Asp															144
55	_	aat Asn 50	_			_					_			_			192
	gcc	tca	aac	gga	gac	gtc	gca	ttc	atc	сса	gga	act	gct	acc	gaa	ggc	240

	Ala 65	Ser	Asn	Gly	Asp	Val 70	Ala	Phe	Ile	Pro	Gly 75	Thr	Ala	Thr	Glu	Gly 80	
5					_		_	_			gag Glu		_	_		_	288
10		_				_			_		aaa Lys		_	_			336
15			222						_		ttc Phe	_	_				384
10	_				_			_			gtt Val					_	432
20									_	_	gag Glu 155		_	_			480
25				_	_	_	_				cac His		_	_			528
30		_	_	_	_		_				gat Asp		_	_			576
35		_			_	_			_	_	gtg Val	-		_	_		624
33										_	tac Tyr					atg Met	672
40											ata Ile 235						720
45				_		_	-	_			ttg Leu			_		_	768
50		_				_		_	_		ttg Leu	_		_	_		816
55											aag Lys						864
JJ											att Ile						912

5	_				_				-						cac His		960
·	_		_					_				_		_	atg Met 335		1008
10															aag Lys		1056
15	_						_	_		-			_	_	tct Ser		1104
20															ttt Phe		1152
25	_		_	_	_		_			_	_				aaa Lys		1200
20					_	_		_						_	ttt Phe 415		1248
30							-			-		_	-		aga Arg		1296
35	_		_		_	_		_	-						ttc Phe		1344
40	_	_		_	_			_	_			_	-	_	aga Arg	_	1392
45	_	_		_			-					_	-	_	tta Leu	_	1440
.0			_		_		-	_		-					gtg Val 495	_	1488
50			_	_			_			_	_		_		tgt Cys		1536
55															tgg Trp		1584
	aat	tgt	gtt	agt	tgg	gca	gac	ttc	agt	aga		tgg	aac	atc	cca	gtg	1632

	Asn	Cys 530	Val	Ser	Trp	Ala	Asp 535	Phe	Ser	Arg	Ile	Trp 540	Asn	Ile	Pro	Val	
5		_		_	tta Leu	_		-			_		_	_			1680
10		_		_	agt Ser 565		_		_	_					_		1728
45					tta Leu												1776
15		_			ttc Phe		_	_		_			_	-			1824
20					atg Met			_						-			1872
25					tgc Cys												1920
																	1000
30	_	ttc Phe	taa														1929
30 35	<pre>Thr <210 <211 <212</pre>	Phe 0> 32 1> 64 2> PI	2 42 RT	aromy	yces	cere	evisi	Lae									1929
	<pre>Thr <210 <211 <212 <213 <400</pre>	Phe 0> 32 1> 64 2> PH 3> Sa 0> 32	2 42 RT accha		yces Lys 5				Glu	Asn 10	Glu	Gln	Phe	Leu	Arg 15	Ile	1929
	<pre>Thr <210 <212 <212 <213 <400 Met</pre>	Phe 32 1> 64 2> PH 3> S3 3> S3 Asp	2 42 RT accha 2 Lys	Lys	Lys	Asp	Leu	Leu		10					15		1929
35	<pre>Thr <210 <211 <212 <213 <400 Met</pre>	Phe 0> 32 1> 64 2> PI 3> Sa 1> Asp	2 42 RT accha 2 Lys Leu	Lys Asn 20	Lys 5	Asp Ala	Leu Asp	Leu Ala	Gly 25	10 Lys	Arg	Gln	Ser	Ile 30	15 Thr	Val	1929
35 40	<pre>Company</pre>	Phe 0> 32 1> 64 2> PH 3> S3 Asp Lys Asp	2 42 RT accha 2 Lys Leu Glu 35	Lys Asn 20 Gly	Lys 5 Ala	Asp Ala Leu	Leu Asp Tyr	Leu Ala Gly 40	Gly 25 Leu	10 Lys Asp	Arg Thr	Gln Ser	Ser Gly 45	Ile 30 Asn	15 Thr Ser	Val Pro	1929
35 40	<pre>Thr <210 <211 <212 <213 <400 Met 1 Gln Asp</pre>	Phe 0> 32 1> 64 2> PH 3> Sa N> 32 Asp Lys Asp Asp	2 42 RT accha 2 Lys Leu Glu 35 Glu	Lys Asn 20 Gly His	Lys 5 Ala Glu	Asp Ala Leu Ala	Leu Asp Tyr Thr 55	Leu Ala Gly 40 Thr	Gly 25 Leu Ile	10 Lys Asp	Arg Thr Gln	Gln Ser Asn 60	Ser Gly 45 His	Ile 30 Asn Ser	15 Thr Ser Val	Val Pro Val	1929
35 40 45	<pre>Thr <210 <211 <211 <211 <400 Met 1 Gln Asp Ala Ala 65</pre>	Phe 0> 32 1> 64 2> PH 3> Sa Asp Lys Asp Asp Ser	2 42 RT accha 2 Lys Leu Glu 35 Glu Asn	Lys Asn 20 Gly His	Lys 5 Ala Glu Thr	Asp Ala Leu Ala Val 70	Leu Asp Tyr Thr 55 Ala	Leu Ala Gly 40 Thr	Gly 25 Leu Ile	10 Lys Asp Thr	Arg Thr Gln Gly 75	Gln Ser Asn 60 Thr	Ser Gly 45 His	Ile 30 Asn Ser	15 Thr Ser Val Glu	Val Pro Val Gly 80	1929

	Arg	Gln	Gly 115	Ser	Ser	Asn	Phe	Ile 120	Ser	Tyr	Phe	Asp	Asp 125	Met	Ser	Phe
5	Glu	His 130	Arg	Pro	Ser	Ile	Leu 135	Asp	Gly	Ser	Val	Asn 140	Glu	Pro	Phe	Lys
	Thr 145	Lys	Phe	Val	Gly	Pro 150	Thr	Leu	Glu	Lys	Glu 155	Ile	Arg	Arg	Arg	Glu 160
10	Lys	Glu	Leu	Met	Ala 165	Met	Arg	Lys	Asn	Leu 170	His	His	Arg	Lys	Ser 175	Ser
15	Pro	Asp	Ala	Val 180	Asp	Ser	Val	Gly	Lys 185	Asn	Asp	Gly	Ala	Ala 190	Pro	Thr
10	Thr	Val	Pro 195	Thr	Ala	Ala	Thr	Ser 200	Glu	Thr	Val	Val	Thr 205	Val	Glu	Thr
20	Thr	Ile 210	Ile	Ser	Ser	Asn	Phe 215	Ser	Gly	Leu	Tyr	Val 220	Ala	Phe	Trp	Met
	Ala 225	Ile	Ala	Phe	Gly	Ala 230	Val	Lys	Ala	Leu	Ile 235	Asp	Tyr	Tyr	Tyr	Gln 240
25	His	Asn	Gly	Ser	Phe 245	Lys	Asp	Ser	Glu	Ile 250	Leu	Lys	Phe	Met	Thr 255	Thr
30	Asn	Leu	Phe	Thr 260	Val	Ala	Ser	Val	Asp 265	Leu	Leu	Met	Tyr	Leu 270	Ser	Thr
00	Tyr	Phe	Val 275	Val	Gly	Ile	Gln	Tyr 280	Leu	Cys	Lys	Trp	Gly 285	Val	Leu	Lys
35	Trp	Gly 290	Thr	Thr	Gly	Trp	Ile 295	Phe	Thr	Ser	Ile	Tyr 300	Glu	Phe	Leu	Phe
	Val 305	Ile	Phe	Tyr	Met	Tyr 310	Leu	Thr	Glu	Asn	Ile 315	Leu	Lys	Leu	His	Trp 320
40	Leu	Ser	Lys	Ile	Phe 325	Leu	Phe	Leu	His	Ser 330	Leu	Val	Leu	Leu	Met 335	Lys
45	Met	His	Ser	Phe 340	Ala	Phe	Tyr	Asn	Gly 345	Tyr	Leu	Trp	Gly	Ile 350	Lys	Glu
40	Glu	Leu	Gln 355	Phe	Ser	Lys	Ser	Ala 360	Leu	Ala	Lys	Tyr	Lys 365	Asp	Ser	Ile
50	Asn	Asp 370	Pro	Lys	Val	Ile	Gly 375	Ala	Leu	Glu	Lys	Ser 380	Cys	Glu	Phe	Cys
	Ser 385	Phe	Glu	Leu	Ser	Ser 390	Gln	Ser	Leu	Ser	Asp 395	Gln	Thr	Gln	Lys	Phe 400
55	Pro	Asn	Asn	Ile	Ser 405	Ala	Lys	Ser	Phe	Phe 410	Trp	Phe	Thr	Met	Phe 415	Pro
	Thr	Leu	Ile	Tyr	Gln	Ile	Glu	Tyr	Pro	Arg		Lys	Glu	Ile	Arg	Trp

				420					425					430		
F	Ser	Tyr	Val 435	Leu	Glu	Lys	Ile	Cys 440	Ala	Ile	Phe	Gly	Thr 445	Ile	Phe	Leu
5	Met	Met 450	Ile	Asp	Ala	Gln	Ile 455	Leu	Met	Tyr	Pro	Val 460	Ala	Met	Arg	Ala
10	Leu 465	Ala	Val	Arg	Asn	Ser 470	Glu	Trp	Thr	Gly	Ile 475	Leu	Asp	Arg	Leu	Leu 480
	Lys	Trp	Val	Gly	Leu 485	Leu	Val	Asp	Ile	Val 490	Pro	Gly	Phe	Ile	Val 495	Met
15	Tyr	Ile	Leu	Asp 500	Phe	Tyr	Leu	Ile	Trp 505	Asp	Ala	Ile	Leu	Asn 510	Cys	Val
20	Ala	Glu	Leu 515	Thr	Arg	Phe	Gly	Asp 520	Arg	Tyr	Phe	Tyr	Gly 525	Asp	Trp	Trp
20	Asn	Cys 530	Val	Ser	Trp	Ala	Asp 535	Phe	Ser	Arg	Ile	Trp 540	Asn	Ile	Pro	Val
25	His 545	Lys	Phe	Leu	Leu	Arg 550	His	Val	Tyr	His	Ser 555	Ser	Met	Ser	Ser	Phe 560
	Lys	Leu	Asn	Lys	Ser 565	Gln	Ala	Thr	Leu	Met 570	Thr	Phe	Phe	Leu	Ser 575	Ser
30	Val	Val	His	Glu 580	Leu	Ala	Met	Tyr	Val 585	Ile	Phe	Lys	Lys	Leu 590	Arg	Phe
35	Tyr	Leu	Phe 595	Phe	Phe	Gln	Met	Leu 600	Gln	Met	Pro	Leu	Val 605	Ala	Leu	Thr
33	Asn	Thr 610	Lys	Phe	Met	Arg	Asn 615	Arg	Thr	Ile	Ile	Gly 620	Asn	Val	Ile	Phe
40	Trp 625	Leu	Gly	Ile	Cys	Met 630	Gly	Pro	Ser	Val	Met 635	Cys	Thr	Leu	Tyr	Leu 640
	Thr	Phe														
45	<211 <212	0> 33 1> 60 2> AI 3> Se	ON	ncia	art:	ific	ial									
50	<220 <220		a des	scrip	pción	n de	la s	secue	encia	a art	tifi	cial	: in:	iciad	dor	
55		l> p:	rime: l)		nd											
)> 3: cgaa		ctaca	atata	aa go	gaac	gtgci	t gca	atcto 10		cca	gctga	aag (cttc	gtacgc

```
<210> 34
    <211> 62
    <212> ADN
5
    <213> Secuencia artificial
    <220>
    <223> La descripción de la secuencia artificial: iniciador
10
    <220>
    <221> primer bind
    <222> (1)..(62)
    <400> 34
15
    ttagttttgc tggccgcatc ttctcaaata tgcttcccag gcataggcca ctagtggatc 60
                                                                         62
    tg
20
    <210> 35
    <211> 60
    <212> ADN
    <213> Secuencia artificial
25
    <220>
    <223> La descripción de la secuencia artificial: iniciador
    <220>
30
    <221> primer bind
    <222> (1)..(60)
    <400> 35
    gaatactcag gtatcgtaag atgcaagagt tcgaatctct ccagctgaag cttcgtacgc 60
35
    <210> 36
    <211> 62
    <212> ADN
    <213> Secuencia artificial
40
    <220>
    <223> La descripción de la secuencia artificial: iniciador
45
    <220>
    <221> primer bind
    <222> (1)..(62)
50
    tctaccctat gaacatattc cattttgtaa tttcgtgtcg gcataggcca ctagtggatc 60
                                                                         62
    tg
55
    <210> 37
    <211> 60
    <212> ADN
    <213> Secuencia artificial
```

```
<223> La descripción de la secuencia artificial: iniciador
5
    <220>
     <221> primer bind
     \langle 222 \rangle (1)...(\overline{6}0)
     <400> 37
10
     atgacagage agaaageest agtaaagegt attacaaatg ceagetgaag ettegtaege 60
     <210> 38
     <211> 62
15
    <212> ADN
     <213> Secuencia artificial
     <220>
     <223> La descripción de la secuencia artificial: iniciador
20
     <221> primer_bind
     <222> (1)..(62)
    <400> 38
25
     ctacataaga acacctttgg tggagggaac atcgttggta gcataggcca ctagtggatc 60
                                                                             62
     tg
30
     <210> 39
     <211> 60
     <212> ADN
     <213> Secuencia artificial
35
     <220>
     <223> La descripción de la secuencia artificial: iniciador
     <220>
40
     <221> primer bind
     <222> (1)..(60)
     <400> 39
     atgagtgaaa cagaattgag aaaaagacag gcccaattca ccagctgaag cttcgtacgc 60
45
     <210> 40
     <211> 62
     <212> ADN
50
     <213> Secuencia artificial
     <220>
     <223> La descripción de la secuencia artificial: iniciador
55
    <220>
     <221> primer bind
     \langle 222 \rangle (1)..(\overline{6}2)
```

```
<400> 40
    ttattgagtt gcttcttggg aagtttggga gggggtttcg gcataggcca ctagtggatc 60
                                                                         62
    tg
5
    <210> 41
    <211> 60
    <212> ADN
10
    <213> Secuencia artificial
    <220>
    <223> La descripción de la secuencia artificial: iniciador
15
    <221> primer_bind
    <222> (1)..(60)
    <400> 41
20
    atgagttctg tcgcagaaaa tataatacaa catgccactc ccagctgaag cttcgtacgc 60
    <210> 42
    <211> 62
    <212> ADN
25
    <213> Secuencia artificial
    <220>
    <223> La descripción de la secuencia artificial: iniciador
30
    <220>
    <221> primer bind
    <222> (1)..(62)
35
    <400> 42
    ttattcgaag acttctccag taattgggtc tctctttttg gcataggcca ctagtggatc 60
                                                                         62
    tg
40
    <210> 43
    <211> 33
    <212> ADN
    <213> Secuencia artificial
45
    <220>
    <223> La descripción de la secuencia artificial: iniciador
    <220>
50
    <221> primer bind
    <222> (1)..(33)
    <400> 43
    ctgcggccgc aacatgacca ccaatacggt ccc
                                                                         33
55
    <210> 44
    <211> 27
```

```
<212> ADN
     <213> Secuencia artificial
5
    <223> La descripción de la secuencia artificial: iniciador
     <220>
     <221> primer bind
     \langle 222 \rangle (1)..(\overline{27})
10
     <400> 44
                                                                                27
     ttctcgagtc tttagttatg cttgctc
    <210> 45
15
     <211> 33
     <212> ADN
     <213> Secuencia artificial
20
    <220>
     <223> La descripción de la secuencia artificial: iniciador
     <220>
     <221> primer_bind
25
    \langle 222 \rangle (1)..(\overline{3}3)
     <400> 45
                                                                                33
     ctgcggccgc aagatggacc tggttctcag tgc
30
     <210> 46
     <211> 29
     <212> ADN
     <213> Secuencia artificial
35
     <220>
     <223> La descripción de la secuencia artificial: iniciador
     <220>
40
     <221> primer bind
     <222> (1)..(29)
     <400> 46
     ttctcgagct acttattctt tgtaaactc
                                                                                29
45
     <210> 47
     <211> 32
     <212> ADN
50
     <213> Secuencia artificial
     <220>
     <223> La descripción de la secuencia artificial: iniciador
55
    <220>
     <221> primer bind
     \langle 222 \rangle (1)..(\overline{3}2)
```

	<400> 47 ctgcggccgc aagatggagc ccgccgtgtc gc														32		
5		> 28 2> AI	B DN	ncia	arti	ific	ial										
10	<220> <223> La descripción de la secuencia artificial: iniciador <220>																
15	<220> <221> primer_bind <222> (1)(28) <400> 48																
	<400> 48 aactcgagtc agtgccttgc cgccttgc																28
20	<pre>aactcgagtc agtgccttgc cgccttgc <210> 49 <211> 1833 <212> ADN</pre>																
25	<221	<212> ADN <213> Saccharomyces cerevisiae <220> <221> CDS <222> (1)(1833)															
30		acg	gag		aag Lys 5												48
35					tcc Ser												96
40					ctg Leu											tcg Ser	144
45					ctg Leu												192
50					gaa Glu												240
50				_	gcc Ala 85		_		_					_	_	_	288
55					agg Arg												336

				_	gtg Val	_		_		_		_		_	_	_	384
5	_				ccc Pro		_	_					_		_		432
10		_			aat Asn		_	_		_		_		_	_	_	480
15		_		_	gtg Val 165	_		_			_	_	_	_	_	-	528
20					aaa Lys												576
					ttg Leu												624
25			_		ggc Gly	_	_			_	_	_			_		672
30	_		_	_	ttg Leu		_		_	_	_	_	_	_	_		720
35	_	_			ttc Phe 245		_					_			_		768
40					aag Lys												816
	_	_			ccc Pro							_				_	864
45				_	acg Thr	_			_		_						912
50	_	_	_	_	cac His	_		_								_	960
55		_	_	_	ctc Leu 325						_	_				_	1008
	_		_		cca Pro			_			_			_	_	_	1056

				340					345					350			
5		_			gaa Glu	_			_		_	_		_			1104
10				_	tgc Cys	_				_		_	_			_	1152
10				_	atc Ile				_	_	_	_		_			1200
15					aag Lys 405												1248
20	_	-	_	-	cag Gln			_		_		-	_	_	-		1296
25	_				acg Thr									_	_		1344
30					ctg Leu			-	_		_				-	_	1392
30		_		_	ttt Phe		_			_	_		_		_		1440
35			_		agg Arg 485			_	_					_			1488
40					ttt Phe												1536
45					cta Leu	-					_		_		-	_	1584
50					agc Ser												1632
50					atg Met												1680
55					ttc Phe 565												1728

								aga Arg									1776
5	_			_	_			ccc Pro 600	_			_	_	_		_	1824
10		tta Leu 610	tga														1833
15	<210> 50 <211> 610 <212> PRT <213> Saccharomyces cerevisiae																
20		0> 5(Thr		Thr	Lys 5	Asp	Leu	Leu	Gln	Asp 10	Glu	Glu	Phe	Leu	Lys 15	Ile	
25	Arg	Arg	Leu	Asn 20	Ser	Ala	Glu	Ala	Asn 25	Lys	Arg	His	Ser	Val 30	Thr	Tyr	
	Asp	Asn	Val 35	Ile	Leu	Pro	Gln	Glu 40	Ser	Met	Glu	Val	Ser 45	Pro	Arg	Ser	
30	Ser	Thr 50	Thr	Ser	Leu	Val	Glu 55	Pro	Val	Glu	Ser	Thr 60	Glu	Gly	Val	Glu	
	Ser 65	Thr	Glu	Ala	Glu	Arg 70	Val	Ala	Gly	Lys	Gln 75	Glu	Gln	Glu	Glu	Glu 80	
35	Tyr	Pro	Val	Asp	Ala 85	His	Met	Gln	Lys	Tyr 90	Leu	Ser	His	Leu	Lys 95	Ser	
40	Lys	Ser						Arg								Ser	
	Phe	Phe	Gly 115	Asp	Val	Ser	Phe	Asp 120	Pro	Arg	Pro	Thr	Leu 125	Leu	Asp	Ser	
45	Ala	Ile 130	Asn	Val	Pro	Phe	Gln 135	Thr	Thr	Phe	Lys	Gly 140	Pro	Val	Leu	Glu	
	Lys 145	Gln	Leu	Lys	Asn	Leu 150	Gln	Leu	Thr	Lys	Thr 155	Lys	Thr	Lys	Ala	Thr 160	
50	Val	Lys	Thr	Thr	Val 165	Lys	Thr	Thr	Glu	Lys 170	Thr	Asp	Lys	Ala	Asp 175	Ala	
E F	Pro	Pro	Gly	Glu 180	Lys	Leu	Glu	Ser	Asn 185	Phe	Ser	Gly	Ile	Tyr 190	Val	Phe	
55	Ala	Trp	Met 195	Phe	Leu	Gly	Trp	Ile 200	Ala	Ile	Arg	Cys	Cys 205	Thr	Asp	Tyr	

	Tyr	Ala 210	Ser	Tyr	Gly	Ser	Ala 215	Trp	Asn	Lys	Leu	Glu 220	Ile	Val	Gln	Tyr
5	Met 225	Thr	Thr	Asp	Leu	Phe 230	Thr	Ile	Ala	Met	Leu 235	Asp	Leu	Ala	Met	Phe 240
	Leu	Cys	Thr	Phe	Phe 245	Val	Val	Phe	Val	His 250	Trp	Leu	Val	Lys	Lys 255	Arg
10	Ile	Ile	Asn	Trp 260	Lys	Trp	Thr	Gly	Phe 265	Val	Ala	Val	Ser	Ile 270	Phe	Glu
15	Leu	Ala	Phe 275	Ile	Pro	Val	Thr	Phe 280	Pro	Ile	Tyr	Val	Tyr 285	Tyr	Phe	Asp
	Phe	Asn 290	Trp	Val	Thr	Arg	Ile 295	Phe	Leu	Phe	Leu	His 300	Ser	Val	Val	Phe
20	Val 305	Met	Lys	Ser	His	Ser 310	Phe	Ala	Phe	Tyr	Asn 315	Gly	Tyr	Leu	Trp	Asp 320
	Ile	Lys	Gln	Glu	Leu 325	Glu	Tyr	Ser	Ser	Lys 330	Gln	Leu	Gln	Lys	Tyr 335	Lys
25	Glu	Ser	Leu	Ser 340	Pro	Glu	Thr	Arg	Glu 345	Ile	Leu	Gln	Lys	Ser 350	Cys	Asp
30	Phe	Cys	Leu 355	Phe	Glu	Leu	Asn	Tyr 360	Gln	Thr	Lys	Asp	Asn 365	Asp	Phe	Pro
	Asn	Asn 370	Ile	Ser	Cys	Ser	Asn 375	Phe	Phe	Met	Phe	Cys 380	Leu	Phe	Pro	Val
35	Leu 385	Val	Tyr	Gln	Ile	Asn 390	Tyr	Pro	Arg	Thr	Ser 395	Arg	Ile	Arg	Trp	Arg 400
	Tyr	Val	Leu	Glu	Lys 405	Val	Cys	Ala	Ile	Ile 410	Gly	Thr	Ile	Phe	Leu 415	Met
40	Met	Val	Thr	Ala 420	Gln	Phe	Phe	Met	His 425	Pro	Val	Ala	Met	Arg 430	Cys	Ile
45	Gln	Phe	His 435	Asn	Thr	Pro	Thr	Phe 440	Gly	Gly	Trp	Ile	Pro 445	Ala	Thr	Gln
	Glu	Trp 450	Phe	His	Leu	Leu	Phe 455	Asp	Met	Ile	Pro	Gly 460	Phe	Thr	Val	Leu
50	Tyr 465	Met	Leu	Thr	Phe	Tyr 470	Met	Ile	Trp	Asp	Ala 475	Leu	Leu	Asn	Cys	Val 480
	Ala	Glu	Leu	Thr	Arg 485	Phe	Ala	Asp	Arg	Tyr 490	Phe	Tyr	Gly	Asp	Trp 495	Trp
55	Asn	Cys	Val	Ser 500	Phe	Glu	Glu	Phe	Ser 505	Arg	Ile	Trp	Asn	Val 510	Pro	Val
	His	Lys	Phe	Leu	Leu	Arg	His	Val	Tyr	His		Ser	Met	Gly	Ala	Leu

```
515
                                 520
                                                      525
    His Leu Ser Lys Ser Gln Ala Thr Leu Phe Thr Phe Phe Leu Ser Ala
         530
                             535
                                                  540
5
    Val Phe His Glu Met Ala Met Phe Ala Ile Phe Arg Arg Val Arg Gly
                         550
                                              555
    Tyr Leu Phe Met Phe Gln Leu Ser Gln Phe Val Trp Thr Ala Leu Ser
10
                     565
                                         570
    Asn Thr Lys Phe Leu Arg Ala Arg Pro Gln Leu Ser Asn Val Val Phe
                 580
                                     585
15
    Ser Phe Gly Val Cys Ser Gly Pro Ser Ile Ile Met Thr Leu Tyr Leu
             595
                                 600
                                                      605
    Thr Leu
        610
20
    <210> 51
    <211> 33
    <212> ADN
25
    <213> Secuencia artificial
    <220>
    <223> La descripción de la secuencia artificial: iniciador
   <220>
30
    <221> primer bind
    <222> (1)..(33)
    <400> 51
                                                                        33
35
    ctgcggccgc atcatgtctg ctgttaacgt tgc
    <210> 52
    <211> 30
40
    <212> ADN
    <213> Secuencia artificial
    <223> La descripción de la secuencia artificial: iniciador
45
    <220>
    <221> primer bind
    <222> (1)..(30)
50
    <400> 52
    ttctcgagtt aaccaatcaa ctcaccaaac
                                                                        30
    <210> 53
55
    <211> 35
    <212> ADN
    <213> Secuencia artificial
```

```
<220>
    <223> La descripción de la secuencia artificial: iniciador
    <220>
5
    <221> primer bind
    <222> (1)..(35)
    <400> 53
                                                                        35
    ctgcggccgc aggatgtctg ctaccaagtc aatcg
10
    <210> 54
    <211> 34
    <212> ADN
15
    <213> Secuencia artificial
    <220>
    <223> La descripción de la secuencia artificial: iniciador
    <220>
20
    <221> primer bind
    <222> (1)..(34)
    <400> 54
                                                                        34
25
    atctcgagct tagatctttt gttctggatt tctc
    <210> 55
    <211> 32
30
    <212> ADN
    <213> Secuencia artificial
    <220>
    <223> La descripción de la secuencia artificial: iniciador
35
    <220>
    <221> primer bind
    <222> (1)..(32)
40
    <400> 55
    ctgcggccgc accatgaagt ttttcccact cc
                                                                        32
    <210> 56
45
    <211> 33
    <212> ADN
    <213> Secuencia artificial
50
    <223> La descripción de la secuencia artificial: iniciador
    <220>
    <221> primer_bind
    <222> (1)..(33)
55
    <400> 56
    ttctcgagtt agaacttttt gttttgcaac aag
                                                                        33
```

```
<210> 57
     <211> 35
     <212> ADN
5
    <213> Secuencia artificial
     <220>
     <221> primer bind
     \langle 222 \rangle (1)..(\overline{3}5)
10
     <220>
     <223> La descripción de la secuencia artificial: iniciador
     <400> 57
                                                                             35
15
    ctgcggccgc aatatggatt tggtcttaga agtcg
     <210> 58
     <211> 31
20
    <212> ADN
     <213> Secuencia artificial
     <220>
     <223> La descripción de la secuencia artificial: iniciador
25
     <220>
     <221> primer bind
     \langle 222 \rangle (1)..(\overline{3}1)
30
    <400> 58
                                                                             31
     aactcgagtc agttgttctt cttggtattt g
     <210> 59
35
    <211> 34
     <212> ADN
     <213> Secuencia artificial
40
    <223> La descripción de la secuencia artificial: iniciador
     <220>
     <221> primer bind
     <222> (1)..(34)
45
     <400> 59
     ctgcggccgc actatggcaa aggataatag tgag
                                                                             34
50
    <210> 60
     <211> 32
     <212> ADN
     <213> Secuencia artificial
55
     <223> La descripción de la secuencia artificial: iniciador
     <220>
```

<221> primer_bind <222> (1)..(32) <400> 60 5 ttctcgagct agaaaacata aggaataaag ac 32

REIVINDICACIONES

1. Procedimiento para la fabricación de 7-dehidrocolesterol mediante el cultivo de organismos que, frente al tipo silvestre, presentan una actividad aumentada de la Δ24-reductasa y de la actividad de la HMG-CoA-reductasa, así como que presentan una actividad aumentada de la Δ8-Δ7-isomerasa y de la Δ5-desaturasa, o una actividad aumentada de la escualeno epoxidasa.

5

15

40

- 2. Procedimiento según la reivindicación 1, caracterizado porque, para el aumento de la actividad de la $\Delta 8$ - $\Delta 7$ isomerasa, se aumenta respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una $\Delta 8$ - $\Delta 7$ -isomerasa.
- 3. Procedimiento según la reivindicación 2, caracterizado porque, para el aumento de la expresión génica, se incorporan en el organismo uno o varios ácidos nucleicos que codifican una Δ8-Δ7-isomerasa.
 - 4. Procedimiento según la reivindicación 3, caracterizado porque se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 2 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 2, y que presentan la propiedad enzimática de una Δ8-Δ7-isomerasa.
 - 5. Procedimiento según la reivindicación 4, caracterizado porque se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 1.
- 6. Procedimiento según una de las reivindicaciones 1 a 5, caracterizado porque, para el aumento de la actividad de la Δ5-desaturasa, se aumenta respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una Δ5-desaturasa.
 - 7. Procedimiento según la reivindicación 6, caracterizado porque, para el aumento de la expresión génica, se incorporan en el organismo uno o varios ácidos nucleicos que codifican una Δ5-desaturasa.
- 8. Procedimiento según la reivindicación 7, caracterizado porque se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 4 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 4, y que presentan la propiedad enzimática de una Δ5-desaturasa.
- 9. Procedimiento según la reivindicación 8, caracterizado porque se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 3.
 - 10. Procedimiento según una de las reivindicaciones 1 a 9, caracterizado porque, para el aumento de la actividad de la $\Delta 24$ -reductasa, se aumenta respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una $\Delta 24$ -reductasa.
- 11. Procedimiento según la reivindicación 10, caracterizado porque, para el aumento de la expresión génica, se incorporan en el organismo uno o varios ácidos nucleicos que codifican una Δ24-reductasa.
 - 12. Procedimiento según la reivindicación 11, caracterizado porque se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 6 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 6, y que presentan la propiedad enzimática de una Δ24-reductasa.
 - 13. Procedimiento según la reivindicación 12, caracterizado porque se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 5.

- 14. Procedimiento según una de las reividicaciones 1 a 13, caracterizado porque los organismos presentan frente al tipo silvestre también una actividad reducida de al menos una de las actividades seleccionada del grupo de la actividad de la C24-metiltransferasa y la actividad de la Δ22-desaturasa.
- 15. Procedimiento según la reivindicación 14, caracterizado porque los organismos presentan respecto al tipo
 5 silvestre una actividad reducida de la C24-metiltransferasa y una actividad reducida de la Δ22-desaturasa.
 - 16. Procedimiento según una de las reivindicaciones 14 o 15, caracterizado porque, para la reducción de la actividad de la C24-metiltransferasa, se reduce respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una C24-metiltransferasa.
- 17. Procedimiento según la reivindicación 16, caracterizado porque se utiliza un organismo que no presenta ningún gen funcional de C24-metiltransferasa.
 - 18. Procedimiento según una de las reivindicaciones 14 a 17, caracterizado porque, para la reducción de la actividad de la Δ22-desaturasa, se reduce respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una Δ22-desaturasa.
- 19. Procedimiento según la reivindicación 18, caracterizado porque se utiliza un organismo que no presenta
 15 ningún gen funcional de Δ22-desaturasa.
 - 20. Procedimiento según una de las reividicaciones 1 a 19, caracterizado porque los organismos presentan frente al tipo silvestre también una actividad aumentada de al menos una de las actividades seleccionada del grupo de la actividad de la lanosterol-C14-demetilasa, la actividad de la escualeno sintetasa y la actividad de la esterol-aciltransferasa.
- 20 21. Procedimiento según la reivindicación 20, caracterizado porque los organismos presentan también respecto al tipo silvestre una actividad aumentada de la lanosterol-C14-demetilasa.
 - 22. Procedimiento según una de las reivindicaciones 20 o 21, caracterizado porque, para el aumento de la actividad de la lanosterol-C14-demetilasa, se aumenta respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una lanosterol-C14-demetilasa.
- 23. Procedimiento según la reivindicación 22, caracterizado porque, para el aumento de la expresión génica, se incorporan en el organismo uno o varios ácidos nucleicos que codifican una lanosterol-C14-demetilasa.

30

40

- 24. Procedimiento según la reivindicación 23, caracterizado porque se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 8 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 8, y que presentan la propiedad enzimática de una lanosterol-C14-demetilasa.
- 25. Procedimiento según la reivindicación 24, caracterizado porque se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 7.
- 26. Procedimiento según una de las reivindicaciones 1 a 25, caracterizado porque, para el aumento de la actividad de la HMG-CoA-reductasa, se aumenta respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una HMG-CoA-reductasa.
 - 27. Procedimiento según la reivindicación 26, caracterizado porque, para el aumento de la expresión génica, se incorpora en el organismo un constructo de ácidos nucleicos que contiene un ácido nucleico que codifica una HMG-CoA-reductasa, cuya expresión en el organismo, comparada con el tipo silvestre, está sujeta a una regulación reducida.
 - 28. Procedimiento según la reivindicación 26, caracterizado porque el constructo de ácidos nucleicos contiene un promotor que, en comparación con el promotor del tipo silvestre, está sujeto en el organismo a una regulación reducida.

- 29. Procedimiento según una de las reivindicaciones 27 o 28, caracterizado porque como ácido nucleico que codifica una HMG-CoA-reductasa se utiliza un ácido nucleico cuya expresión en el organismo, comparada con el ácido nucleico ortólogo propio del organismo, está sujeta a una regulación reducida.
- 30. Procedimiento según la reivindicación 29, caracterizado porque como ácido nucleico que codifica una HMG-CoA-reductasa se utiliza un ácido nucleico que codifica el área catalítica de la HMG-CoA-reductasa.

5

10

35

40

- 31. Procedimiento según la reivindicación 30, caracterizado porque se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 10 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 10, y que presentan la propiedad enzimática de una HMG-CoA-reductasa.
- 32. Procedimiento según la reivindicación 31, caracterizado porque se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 9.
- 33. Procedimiento según una de las reivindicaciones 1 a 32, caracterizado porque se utiliza un organismo que presenta frente al tipo silvestre también una actividad aumentada de la escualeno epoxidasa.
- 15 34. Procedimiento según la reivindicación 33, caracterizado porque, para el aumento de la actividad de la escualeno epoxidasa, se aumenta respecto al tipo silvestre la expresión génica de un ácido nucleico que codifica una escualeno epoxidasa.
 - 35. Procedimiento según la reivindicación 34, caracterizado porque, para el aumento de la expresión génica, se incorporan en el organismo uno o varios ácidos nucleicos que codifican una escualeno epoxidasa.
- 20 36. Procedimiento según la reivindicación 35, caracterizado porque se incorporan ácidos nucleicos que codifican proteínas que contienen la secuencia de aminoácidos SEQ. ID. nº 12 o una secuencia derivada de esta secuencia por sustitución, inserción o deleción de aminoácidos, que presentan una identidad de al menos el 30% en el nivel de aminoácidos con la secuencia SEQ. ID. nº 12, y que presentan la propiedad enzimática de una escualeno epoxidasa.
- 25 37. Procedimiento según la reivindicación 36, caracterizado porque se incorpora un ácido nucleico que contiene la secuencia SEQ. ID. nº 11.
 - 38. Procedimiento según una de las reivindicaciones 1 a 38, caracterizado porque como organismo se utiliza levadura.
- 39. Procedimiento según una de las reivindicaciones 1 a 38, caracterizado porque después del cultivo se recolecta el organismo y, a continuación, se aísla 7-dehidrocolesterol del organismo.
 - 40. Constructo de ácidos nucleicos, que contiene a) al menos un ácido nucleico que codifica una Δ24-reductasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos, b) al menos un ácido nucleico que codifica una HMG-CoA-reductasa, y bien c1) al menos un ácido nucleico que codifica una Δ8-Δ7-isomerasa y un ácido nucleico que codifica una Δ5-desaturasa, o c2) un ácido nucleico que codifica una escualeno epoxidasa, en donde los componentes b), así como c1) o c2) están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos.
 - 41. Constructo de ácidos nucleicos según la reivindicación 40, que contiene al menos un ácido nucleico seleccionado del grupo de ácidos nucleicos que codifican una lanosterol-C14-demetilasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una esterol-aciltransferasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos.
 - 42. Combinación de constructos de ácidos nucleicos, en donde la combinación abarca al menos un constructo de ácidos nucleicos seleccionado del grupo A a C

A constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una $\Delta 8$ - $\Delta 7$ -isomeresa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos,

B constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una $\Delta 5$ -desaturasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos y

5

10

15

20

25

35

C constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una $\Delta 24$ -reductasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos, y al menos un constructo de ácidos nucleicos, seleccionado del grupo D a H

D constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una HMG-CoA-reductasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos,

E constructo de ácidos nucleicos, que contiene ácidos nucleicos que contienen una lanosterol-C14-demetilasa, que están vinculadas funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos,

F constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una escualeno epoxidasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos,

G constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una escualeno sintetasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos,

H constructo de ácidos nucleicos que contiene ácidos nucleicos que codifican una esterol-aciltransferasa, que están vinculados funcionalmente con una o varias señales de regulación que garantizan la transcripción y la traducción en organismos, en donde los grupos C y D, así como A y B por un lado o F por otro lado están incluidos obligatoriamente.

- 43. Constructos de ácidos nucleicos o combinación de constructos de ácidos nucleicos según una de las reivindicaciones 40 a 42, caracterizados porque las señales de regulación contienen uno o varios promotores y uno o varios terminadores que garantizan la transcripción y la traducción en organismos.
- Constructos de ácidos nucleicos o combinación de constructos de ácidos nucleicos según la reivindicación 43,
 caracterizados porque se utilizan las señales de regulación que garantizan la transcripción y la traducción en levaduras.
 - 45. Organismo genéticamente modificado, en donde la modificación genética aumenta al menos la actividad de la Δ24-reductasa y la actividad de la HMG-CoA-reductasa frente a un tipo silvestre, en donde el aumento de la actividad de la Δ24-reductasa se produce frente al tipo silvestre mediante el aumento de la expresión génica de al menos un ácido nucleico que codifica una Δ24-reductasa, en donde la modificación genética aumenta también la actividad de la escualeno epoxidasa o en donde el organismo contiene dos o más ácidos nucleicos que codifican una Δ8-Δ7-isomerasa y/o dos o más ácidos nucleicos que codifican una Δ5-desaturasa.
 - 46. Organismo genéticamente modificado según la reivindicación 45, caracterizado porque el organismo contiene dos o más ácidos nucleicos que codifican una Δ24-reductasa.
- 47. Organismo genéticamente modificado según una de las reivindicaciones 45 a 46, caracterizado porque la modificación genética reduce también respecto a un tipo silvestre al menos una de las actividades seleccionada del grupo de la actividad de la C24-metiltransferasa y la actividad de la Δ22-desaturasa.
 - 48. Organismo genéticamente modificado según la reivindicación 47, caracterizado porque se produce respecto al tipo silvestre la reducción de al menos una de las actividades mediante la reducción de la expresión génica

- de al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una C24-metiltransferesa y ácidos nucleicos que codifican una Δ 22-desaturasa.
- 49. Organismo genéticamente modificado según la reivindicación 48, caracterizado porque el organismo no presenta ningún gen funcional de la C24-metiltransferasa y/o gen de la Δ22-desaturasa.
- 5 50. Organismo genéticamente modificado según una de las reivindicaciones 45 a 49, caracterizado porque la modificación genética aumenta también respecto a un tipo silvestre al menos una de las actividades seleccionada del grupo de la actividad de la lanosterol-C14-demetilasa, la actividad de la escualeno sintetasa y la actividad de la esterol-aciltransferasa.
- 51. Organismo genéticamente modificado según la reivindicación 50, caracterizado porque se produce respecto al tipo silvestre el aumento de al menos una de las actividades mediante el aumento de la expresión génica de al menos un ácido nucleico, seleccionado del grupo de ácidos nucleicos que codifican una lanoserol-C14-demetilasa, ácidos nucleicos que codifican una escualeno sintetasa y ácidos nucleicos que codifican una esterol-aciltransferasa.
- 52. Organismo genéticamente modificado según la reivindicación 51, caracterizado porque el organismo contiene dos o más ácidos nucleicos que codifican una HMG-CoA-reductasa y/o dos o más ácidos nucleicos que codifican una lanosterol-C14-demetilasa y/o dos o más ácidos nucleicos que codifican una escualeno epoxidasa y/o dos o más ácidos nucleicos que codifican una esterol-aciltransferasa.
- 53. Organismo genéticamente modificado según una de las reivindicaciones 45 a 52, caracterizado porque el organismo genéticamente modificado presenta frente al tipo silvestre un contenido aumentado de 7-dehidrocolesterol.
 - 54. Organismo genéticamente modificado según una de las reivindicaciones 45 a 53, caracterizado porque como organismo se utiliza levadura.
- 55. Utilización de un organismo genéticamente modificado según una de las reivindicaciones 45 a 54 para la fabricación de 7-dehidrocolesterol.

Figura 1

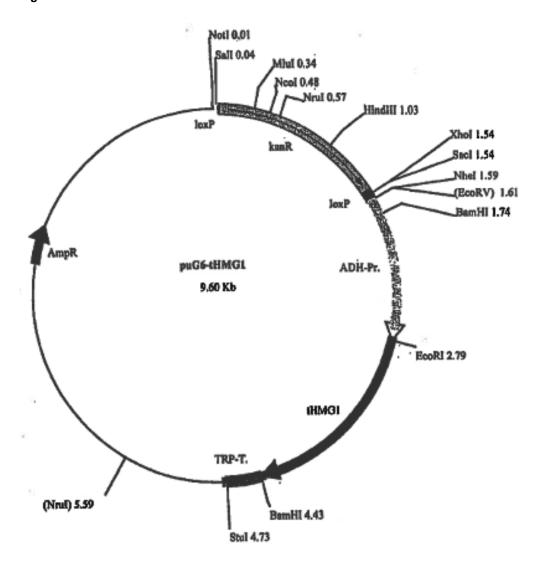


Figura 2

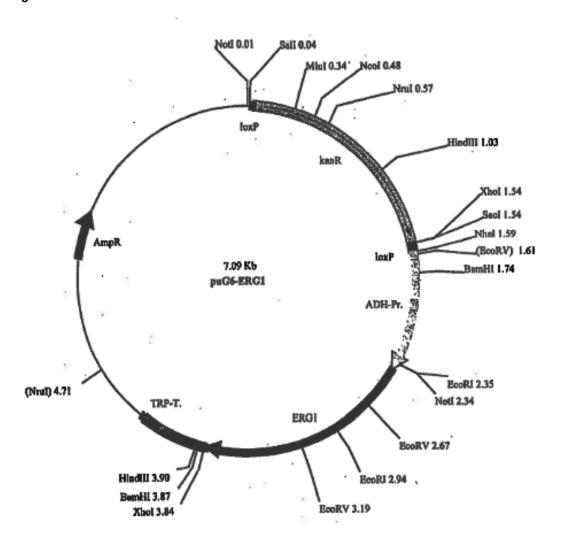


Figura 3

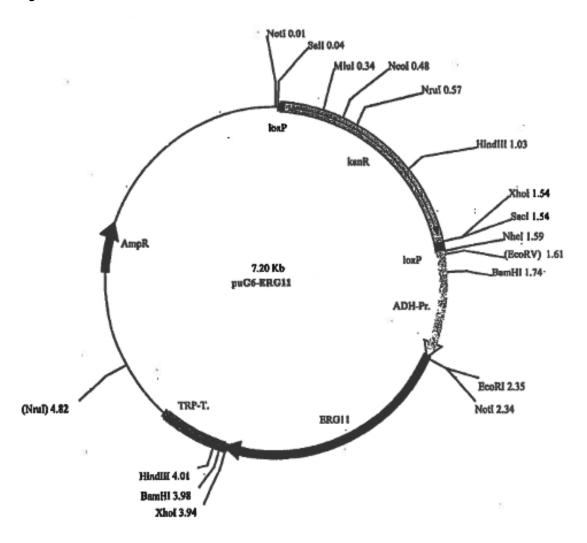


Figura 4

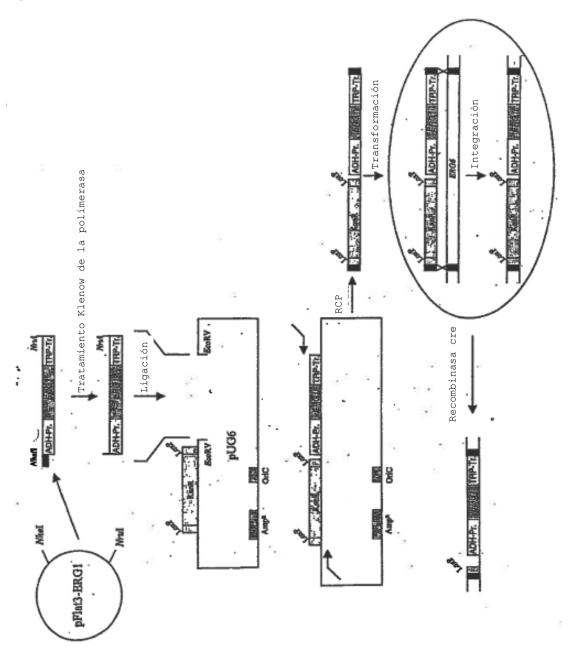


Figura 5a

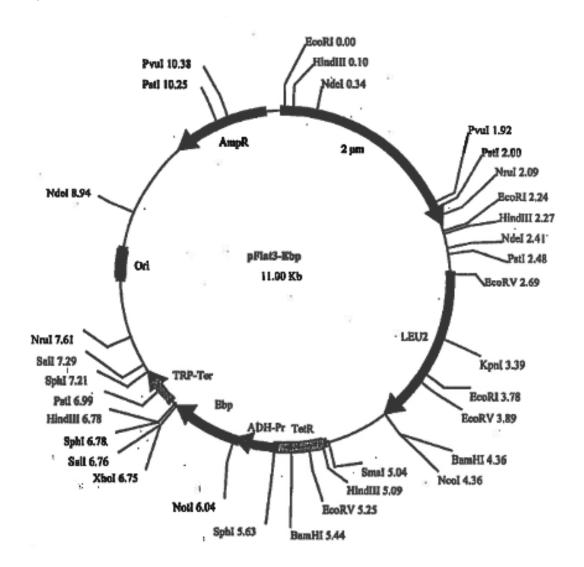


Figura 5b

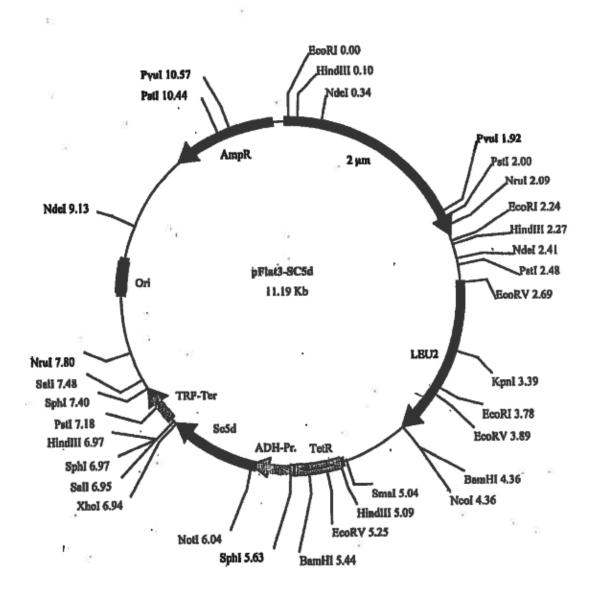


Figura 5c

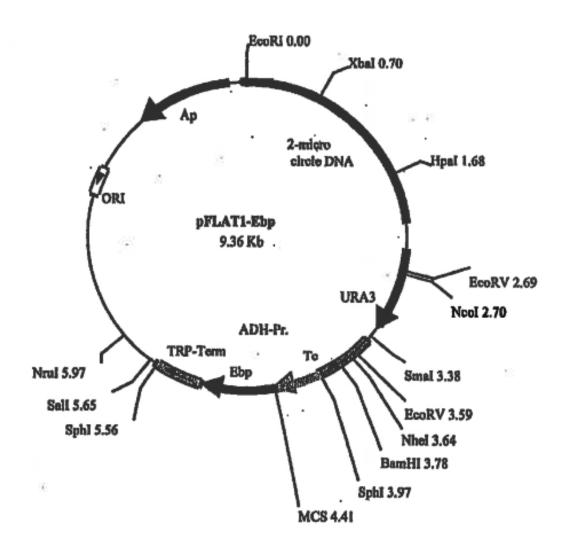


Figura 5d

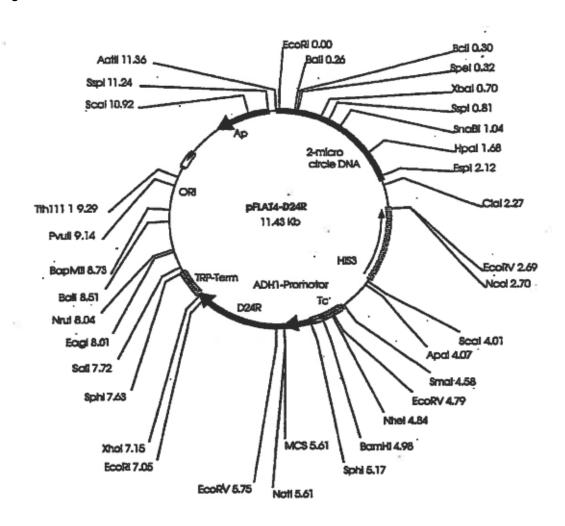


Figura 6

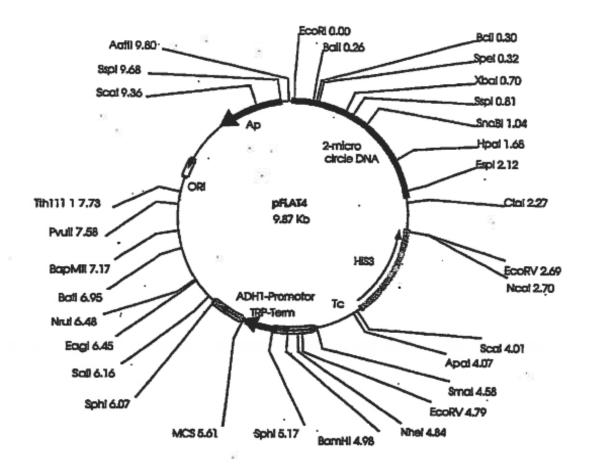
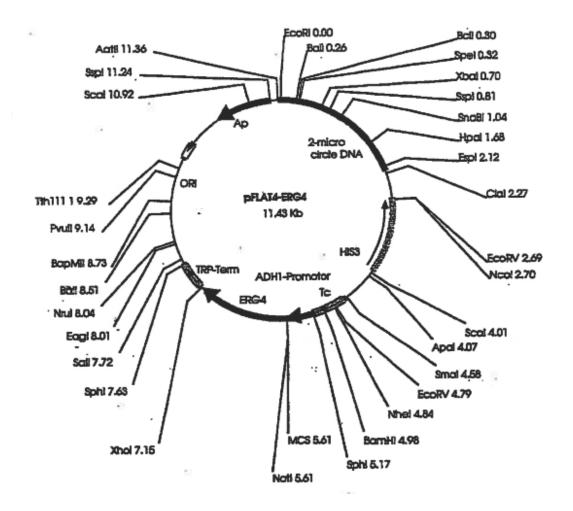



Figura 7

