

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 396 127

51 Int. Cl.:

C12N 7/00 (2006.01) C07K 14/165 (2006.01) G01N 33/569 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 02.12.2004 E 04805624 (6)
- Fecha y número de publicación de la concesión europea: 19.09.2012 EP 1697507
- (54) Título: Uso de proteinas y peptidos codificados por el genoma de una nueva cepa de coronavirus asociado al SRAS
- (30) Prioridad:

02.12.2003 FR 0314152 02.12.2003 FR 0314151

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.02.2013 (73) Titular/es:

INSTITUT PASTEUR (33.3%)
25-28, RUE DU DOCTEUR ROUX
75724 PARIS CEDEX 15, FR;
CENTRE NATIONAL DE LA RECHERCHE
SCIENTIFIQUE (CNRS) (33.3%) y
UNIVERSITE PARIS VII (33.3%)

(72) Inventor/es:

VAN DER WERF, SYLVIE; ESCRIOU, NICOLAS; CRESCENZO-CHAIGNE, BERNADETTE; MANUGUERRA, JEAN-CLAUDE; KUNST, FREDERIK, INSTITUT PASTEUR; CALLENDRET, BENOÎT; **BETTON, JEAN-MICHEL;** LORIN, VALÉRIE; GERBAUD, SYLVIE; **BURGUIERE, ANA MARIA;** AZEBI, SALIHA; CHARNEAU, PIERRE; TANGY, FRÉDÉRIC; COMBREDET, CHANTAL; DELAGNEAU, JEAN-FRANÇOIS y MARTIN, MONIQUE

(74) Agente/Representante:

DURÁN MOYA, Luis Alfonso

DESCRIPCIÓN

Uso de proteínas y péptidos codificados por el genoma de una nueva cepa de coronavirus asociado al SRAS

La presente invención se refiere a una nueva cepa de coronavirus asociada al síndrome respiratorio agudo severo (SRAS), procedente de una extracción catalogada bajo el nº 031589 y extraída en Hanoi (Vietnam), a moléculas de ácido nucleico procedentes de su genoma, a las proteínas y péptidos codificados por dichas moléculas de ácido nucleico, así como a sus aplicaciones, en particular como agentes reactivos de diagnóstico y/o como vacuna.

El coronavirus es un virus de ARN monocatenario, de polaridad positiva, de aproximadamente 30 kilobases, que se replica en el citoplasma de células hospedantes; el extremo 5' del genoma tiene una estructura en capuchón y el extremo 3' comprende una cola polyA. Este virus está envuelto y comprende, en su superficie, estructuras peploméricas denominadas espículas.

El genoma comprende los cuadros abiertos de lectura, u ORF, siguientes, desde su extremo 5' hacia su extremo 3'; ORF1a y ORF1b, que corresponden a las proteínas del complejo de transcripción-replicación, y ORF-S, ORF-E, ORF-M y ORF-N, que corresponden a las proteínas estructurales S, E, M y N. Comprende también unos ORF que corresponden a proteínas de función desconocida codificadas por: la región situada entre el ORF-S y el ORF-E y que se superpone a esta última, la región situada entre el ORF-N, y la región incluida entre el ORF-N.

La proteína S es una glicoproteína membranaria (200-220 kDa), que se presenta en forma de espículas o "pinchos" que emergen de la superficie de envoltura viral. Es responsable de la adhesión del virus a los receptores de la célula hospedante, y de la inducción de la fusión de la envoltura viral con la membrana celular.

La pequeña proteína de envoltura (E) también denominada sM (*small membrane*), que es una proteína transmembranaria no glicosilada de aproximadamente 10 kDa, es la proteína presente en cantidad más baja en el virión. Desempeña un papel motor en el proceso del brote de coronavirus que se produce a nivel del compartimiento intermedio en el retículo endoplásmico y el aparato de Golgi.

La proteína M, o proteína matriz (25-30 kDa), es una glicoproteína membranaria más abundante que está integrada en la partícula viral por una interacción M/E, mientras que la incorporación de S en las partículas está dirigida por una interacción S/M. Parece ser importante para la maduración viral de los coronavirus y para la determinación del sitio al nivel del cual las partículas virales se ensamblan.

La proteína N o proteína de nucleocápside (45-50 kDa), que es la más conservada entre las proteínas estructurales de los coronavirus, es necesaria para encapsidar el ARN genómico, y después para dirigir su incorporación en el virión. Esta proteína está probablemente también implicada en la replicación del ARN.

Cuando una célula hospedante es infectada, el cuadro de lectura (ORF) situado en 5' del genoma viral se traduce en una poliproteína que es escindida por las proteasas virales, y libera entonces varias proteínas no estructurales, tales como ARN-polimerasa, ARN dependiente (Rep) ATPasa helicasa (Hel). Estas dos proteínas están implicadas en la replicación del genoma viral, así como en la generación de transcritos que son utilizados en la síntesis de las proteínas virales. Los mecanismos por los cuales se producen estos ARNm sub-genómicos no están totalmente comprendidos; sin embargo, hechos recientes indican que las secuencias de regulación de la transcripción en el extremo 5' de cada gen representan señales que regulan la transcripción discontinua de los ARNm sub-genómicos.

Las proteínas de la membrana viral (proteínas S, E y M) están insertadas en el compartimiento intermedio, mientras que el ARN replicado (hebra +) se ensambla con la proteína N (nucleocápside). Este complejo proteína-ARN se asocia después con la proteína M incluida en las membranas del retículo endoplásmico y las partículas virales se forman cuando el complejo de la nucleocápside brota en el retículo endoplásmico. El virus migra después a través del complejo del Golgi y eventualmente sale de la célula, por ejemplo mediante exocitosis. El sitio de adhesión del virus a la célula hospedante se encuentra al nivel de la proteína S.

Los coronavirus son responsables del 15 al 30% de los catarros en el ser humano, y de infecciones respiratorias o digestivas en los animales, en particular gatos (FIPV: Feline infectious peritonitis virus), aves de corral (IBV: Avian Infectious bronchitis virus), ratones (MHV: Mouse Hepatitis virus), cerdos (TGEV: Transmissible gastroenterititis virus, PEDV: Porcine Epidemic Diarrhea virus, PRCoV: Porcine Respiratory Coronavirus, HEV: Hemagglutinating encephalomyelitis Virus) y los bovinos (BcoV: Bovine coronavirus).

En general, cada coronavirus afecta sólo a una especie; en los individuos inmunocompetentes, la infección induce unos anticuerpos eventualmente neutralizantes, y una inmunidad celular, capaces de destruir las células infectadas.

Una epidemia de neumonía atípica, denominada síndrome respiratorio agudo severo (SARS o *Severe acute respiratory syndrome*, SRAS en español), se ha propagado en diferentes países (Vietnam, Hong-Kong, Singapur, Thailandia y Canadá) durante el primer trimestre de 2003, a partir de un foco inicial aparecido en China, en el último trimestre de 2002. La severidad de esta enfermedad es tal, que su índice de mortalidad es aproximadamente del 3 al

6%. La determinación del agente causante de esta enfermedad se ha investigado por numerosos laboratorios, en todo el mundo.

En marzo de 2003, se ha aislado un nuevo coronavirus (SARS-CoV, SARS virus o virus SRAS en español), en asociación con unos casos de síndrome respiratorio agudo severo (T.G.KSIAZEK y otros, The New England Journal of Medicine, 2003, 348, 1319-1330; C. DROSTEN y otros, The New England Journal of Medicine, 2003, 348, 1967-1976; Peiris y otros, Lancet, 2003, 361, 1319-).

Se obtuvieron así unas secuencias genómicas de este nuevo coronavirus, en particular las del aislado Urbani (Genbank nº de acceso AY274119.3 y A. MARRA y otros, Science, 1 de mayo, 2003, 300, 1399-1404) y del aislado de Toronto (Tor2, Genbank nº de acceso AY 278741 y A. ROTA y otros, Science, 2003, 300, 1394-1399).

La organización del genoma es comparable a la de los demás coronavirus conocidos, permitiendo así confirmar la pertenencia del SRAS-CoV a la familia de los *Coronaviridae*; se han identificado en particular los cuadros de lectura abiertos ORF1a y 1b, y los cuadros de lectura abiertos que corresponden a las proteínas S, E, M y N, así como a proteínas codificadas por: la región situada entre ORF-S y ORF-E (ORF3), la región situada entre ORF-S y ORF-E y que se superpone a ORF-E (ORF4), la región situada entre ORF-M y ORF-N (ORF7 a ORF11) y la región que corresponde a ORF-N (ORF13 y ORF14).

Se han puesto en evidencia siete diferencias entre las secuencias de los aislados Tor2 y Urbani; 3 corresponden a mutaciones silenciosas (c/t en la posición 16622 y a/g en la posición 19064 de ORF1b, t/c en la posición 24872 de ORF-S), y 4 modifican la secuencia en aminoácidos respectivamente: las proteínas codificadas por ORF1a (c/t en la posición 7919 que corresponde a la mutación A/V), la proteína S (g/t en la posición 23220 que corresponde a la mutación A/S), la proteína codificada por ORF3 (a/g en la posición 25298 que corresponde la mutación R/G) y de la proteína M (t/c en la posición 26857 que corresponde a la mutación S/P).

Además, el análisis filogenético muestra que el SRAS-CoV está distante de los demás coronavirus, y que no ha aparecido ni por mutación de coronavirus respiratorios humanos, ni por recombinación entre unos coronavirus conocidos (para una revisión, véase Homes J.C.I., 2003, 111, 1605-1609).

La puesta en evidencia y la consideración de nuevas variantes son importantes para la realización de agentes reactivos de detección y de diagnóstico de SRAS suficientemente sensibles y específicos, así como composiciones inmunógenas aptas para proteger las poblaciones contra unas epidemias de SRAS.

Los inventores han puesto en evidencia ahora otra cepa de coronavirus asociado al SRAS, que se distingue de los aislados Tor2 y Urbani.

La presente invención es tal como se define por las reivindicaciones 1 a 22 más adelante.

Los inventores describen una cepa aislada o purificada de coronavirus humano asociado al síndrome respiratorio agudo severo, caracterizada porque su genoma presenta, en forma de ADN complementario, un codón de serina en la posición 23220-23222 del gen de la proteína S, o un codón de glicina en la posición 25298-25300 del gen de ORF3, y un codón de alanina en la posición 7918-7920 de ORF1a, o un codón de serina en la posición 26857-26859 del gen de la proteína M, siendo dichas posiciones indicadas en referencia a la secuencia Genbank AY274119.3

Según otro modo de realización ventajoso de dicha cepa, el equivalente ADN de su genoma presenta una secuencia que corresponde a la secuencia SEC ID nº 1; esta cepa de coronavirus procede de la extracción de un lavado broncoalveolar de un paciente afectado de SRAS, catalogado bajo el nº 031589 y efectuado en el hospital francés de Hanoi (Vietnam).

Dicha secuencia SEC ID nº 1 es la del ácido desoxirribonucleico, que corresponde a la molécula de ácido ribonucleico del genoma de la cepa aislada de coronavirus, tal como se definió anteriormente.

La secuencia SEC ID nº 1 se distingue de la secuencia Genbank AY274119.3 (aislado Tor2) porque posee las mutaciones siguientes:

- g/t en la posición 23220; el codón de alanina (gct) en la posición 577 de la secuencia en aminoácidos de la proteína S de Tor2 está sustituido con un codón de serina (tct),
- a/g en la posición 25298; el codón de arginina (aga) en la posición 11 de la secuencia de aminoácidos de la proteína codificada por ORF3 de Tor2 está sustituido con un codón de glicina (gga).

Además, la secuencia SEC ID nº 1 se distingue de la secuencia Genbank AY278741 (aislado Urbani) porque posee las mutaciones siguientes:

- t/c en la posición 7919; el codón de valina (gtt) en la posición 2552 de la secuencia en aminoácidos de la

proteína codificada por ORF1a está sustituido con un codón de alanina (gct),

- t/c en la posición 16622: esta mutación no modifica la secuencia en aminoácidos de las proteínas codificadas por ORF1b (mutación silenciosa),
- g/a en la posición 19064: esta mutación no modifica la secuencia de aminoácidos de las proteínas codificadas por ORF1b (mutación silenciosa).
- c/t en la posición 24872: esta mutación no modifica la secuencia de aminoácidos de la proteína S, y
- -c/t en la posición 26857: el codón de prolina (ccc) en la posición 154 de la secuencia de aminoácidos de la proteína M está sustituido con un codón de serina (tcc).

En ausencia de mención particular, las posiciones de las secuencias nucleotídicas y peptídicas están indicadas con referencia a la secuencia Genbank AY274119.3.

Los inventores describen también un polinucleótido aislado o purificado, caracterizado porque su secuencia es la del genoma de la cepa aislada de coronavirus, tal como se ha definido anteriormente.

Según un modo de realización ventajoso de dicho polinucleótido, este presenta la secuencia SEC ID nº 1.

Los inventores describen también un polinucleótido aislado o purificado, caracterizado porque su secuencia hibrida en condiciones de fuerte rigor, con la secuencia del polinucleótido, tal como se ha definido anteriormente.

Los términos "aislado o purificado" significan modificado "por la mano del ser humano" a partir del estado natural; dicho de otra manera, si un objeto existe en la naturaleza, este se denomina aislado, o purificado si se ha modificado o extraído de su entorno natural, o las dos. Por ejemplo, un polinucleótido, o una proteína/péptido naturalmente presente en un organismo vivo, no es ni aislado, ni purificado; en cambio, el mismo polinucleótido o proteína/péptido separado de las moléculas que coexisten en su entorno natural, obtenido por clonación, amplificación y/o síntesis química, está aislado en el sentido de la presente invención. Además, un polinucleótido o una proteína/péptido introducido en un organismo por transformación, manipulación genética o cualquier otro método, está "aislado" incluso si está presente en dicho organismo. El término purificado, tal como se utiliza en la presente invención, significa que las proteínas/péptidos, según la invención, están esencialmente libres de asociación con otras proteínas o polipéptidos, como lo es, por ejemplo, el producto purificado del cultivo de células hospedantes recombinantes, o el producto purificado a partir de una fuente no recombinante.

Se entiende por condiciones de hibridación de fuerte rigor, condiciones de temperatura y de fuerza iónica seleccionadas de tal manera que permiten el mantenimiento de la hibridación específica y selectiva entre los polinucleótidos complementarios.

A título ilustrativo, condiciones de fuerte rigor con el fin de definir los polinucleótidos anteriores, son ventajosamente las siguientes: la hibridación ADN-ADN o ADN-ARN se realiza en dos etapas: (1) prehibridación a 42°C durante 3 horas en tampón de fosfato (20 mM pH 7,5), que contiene 5 x SSC (1 x SSC corresponde a una solución de 0,15 M de NaCl + 0,015 M de citrato de sodio), el 50% de formamida, el 7% de dodecilsulfato de sodio (SDS), 10 x Denhardt's, 5% de sulfato de dextrano y el 1% de ADN de esperma de salmón; (2) hibridación durante 20 horas a 42°C seguida de 2 lavados de 20 minutos a 20°C en 2 x SSC + el 2% SDS, 1 lavado de 20 minutos a 20°C en 0,1 x SSC + el 0,1% SDS. El último lavado se realiza en 0,1 x SSC + el 0,1% SDS durante 30 minutos a 60°C.

Los inventores describen asimismo un fragmento representativo del polinucleótido, tal como se ha definido anteriormente, caracterizado porque es susceptible de ser obtenido o bien mediante el uso de enzimas de restricción, cuyos sitios de reconocimiento y de escisión están presentes en dicho polinucleótido, tal como se ha definido anteriormente, o bien mediante amplificación con la ayuda de cebadores oligonucleotídicos específicos de dicho polinucleótido, tal como se ha definido anteriormente, o bien mediante transcripción *in vitro*, o bien mediante síntesis química.

Según un modo de realización ventajoso de dicho fragmento, éste se selecciona del grupo constituido por: el ADNc, que corresponde a al menos un cuadro de lectura abierto (ORF), seleccionado entre: ORF1a, ORF1b, ORF-S, ORF-E, ORF-M, ORF-N, ORF3, ORF4, ORF7 a ORF11, ORF13 y ORF 14, y el ADNc, que corresponde a los extremos 5' o 3' no codificantes de dicho polinucleótido.

Según una disposición ventajosa de este modo de realización, dicho fragmento presenta una secuencia seleccionada del grupo constituido por:

- las secuencias SEC ID nº 2 y 4, que representan el ADNc que corresponde al ORF-S, que codifica la proteína S,
- las secuencias SEC ID nº 13 y 15, que representan el ADNc que corresponde al ORF-E, que codifica la proteína

Ε,

- las secuencias SEC ID $\rm n^o$ 16 y 18, que representan el ADNc que corresponde al ORF-M, que codifica la proteína M.
- las secuencias SEC ID nº 36 y 38, que representan el ADNc que corresponde al ORF-N, que codifica la proteína N
- las secuencias que representan los ADNc que corresponden respectivamente: a ORF1a y ORF1b (ORF1ab, SEC ID nº 31), a los ORF3 y ORF4 (SEC ID nº 7, 8), a los ORF 7 a 11 (SEC ID nº 19, 20), al ORF13 (SEC ID nº 32) y al ORF14 (SEC ID nº 34), y
- las secuencias que representan los ADNc que corresponden respectivamente a los extremos 5' (SEC ID nº 39 y 72) y 3' no codificantes (SEC ID nº 40, 73) de dicho polinucleótido.

Los inventores describen también un fragmento del ADNc que codifica la proteína S, tal como se ha definido anteriormente, caracterizado porque presenta una secuencia seleccionada del grupo constituido por las secuencias SEC ID nº 5 y 6 (fragmentos Sa y Sb).

Los inventores describen también un fragmento del ADNc que corresponde a los ORF1a y ORF1b, tal como se han definido anteriormente, caracterizado porque presenta una secuencia seleccionada del grupo constituido por las secuencias SEC ID nº 41 a 54 (fragmentos L0 a L12).

Los inventores describen también un fragmento del polinucleótido, tal como se ha definido anteriormente, caracterizado porque presenta al menos 15 bases o pares de bases consecutivas de la secuencia del genoma de dicha cepa, que incluye al menos una de las situadas en las posiciones 7979, 16622, 19064, 23220, 24872, 25298 y 26857. Preferiblemente, se trata de un fragmento de 20 a 2500 bases o pares de bases, de manera preferente de 20 a 400.

Según un modo de realización ventajoso de dicho fragmento, este incluye al menos una pareja de bases o de pares de bases que corresponden a las posiciones siguientes: 7919 y 23220, 7919 y 25298, 16622 y 23220, 19064 y 23220, 16622 y 25298, 19064 y 25298, 23220 y 24872, 23220 y 26857, 24872 y 25298, 25298 y 26857.

Los inventores describen también unos cebadores de al menos 18 bases, aptos para amplificar un fragmento del genoma de un coronavirus asociado al SRAS, o del equivalente ADN de este.

Según un modo de realización de dichos cebadores, estos se seleccionan del grupo constituido por:

- el par de cebadores nº 1, que corresponde respectivamente a las posiciones 28507 a 28522 (cebador sentido, SEC ID nº 60) y 28774 a 28759 (cebador anti-sentido, SEC ID nº 61) de la secuencia del polinucleótido, tal como se ha definido anteriormente,
- el par de cebadores nº 2, que corresponde respectivamente a las posiciones 28375 a 28390 (cebador sentido, SEC ID nº 62) y 28702 a 28687 (cebador anti-sentido, SEC ID nº 63) de la secuencia del polinucleótido, tal como se ha definido anteriormente, y
- el par de cebadores constituido de los cebadores SEC ID n^{os} 55 y 56.

Los inventores describen también una sonda para detectar la presencia del genoma de un coronavirus asociado al SRAS o de un fragmento de este, caracterizada porque se selecciona del grupo constituido por: los fragmentos tales como se han definido anteriormente, y los fragmentos que corresponden a las posiciones siguientes de la secuencia del polinucleótido, tal como se ha definido anteriormente: 28561 a 28586, 28588 a 28608, 28541 a 28563 y 28565 a 28589 (SEC ID nº 64 a 67).

Las sondas y cebadores pueden ser marcados directa o indirectamente por un compuesto radioactivo o no radioactivo, mediante métodos bien conocidos por el experto en la materia, a fin de obtener una señal detectable y/o cuantificable. Entre los isótopos radioactivos utilizados, se pueden citar ³²P, ³³P, ³⁵S, ³H ó l'¹²⁵I. La entidades no radioactivas se seleccionan entre los ligantes, tales como la biotina, la avidina, la estreptavidina, la digoxigenina, los haptenos, los colorantes, los agentes luminescentes tales como los agentes radioluminescentes, quemoluminescentes, bioluminescentes, fluorescentes, fosforescentes.

Las sondas y cebadores engloban las sondas y los cebadores marcados derivados de las secuencias anteriores.

Tales sondas y cebadores son útiles para el diagnóstico de la infección por un coronavirus asociado al SRAS.

Los inventores describen también un método de detección de un coronavirus asociado al SRAS, a partir de una

muestra biológica, método el cual se caracteriza porque comprende al menos:

- (a) extraer los ácidos nucleicos presentes en dicha muestra biológica,
- (b) amplificar un fragmento del ORF-N mediante RT-PCR con la ayuda de un par de cebadores tales como se han definido anteriormente, y
- (c) detectar mediante cualquier medio apropiado de los productos de amplificaciones obtenidos en (b).

Los productos de amplificaciones (amplicones) en (b) son de 268 pb para el par de cebadores nº 1 y de 328 pb para el par de cebadores nº 2.

Según un modo de aplicación ventajoso de dicho procedimiento, la etapa (b) de detección se realiza con la ayuda de al menos una sonda que corresponde a las posiciones 28561 a 28586, 28588 a 28608, 28541 a 28563 y 28565 a 28589 de la secuencia de polinucleótido, tal como se definió anteriormente.

Preferentemente, el genoma de coronavirus asociado al SRAS se detecta, y eventualmente se cuantifica por PCR en tiempo real, con la ayuda del par de cebadores nº 2 y de las sondas que corresponden a las posiciones 28541 a 28563, y 28565 a 28589, marcadas con unos compuestos diferentes, especialmente unos agentes fluorescentes diferentes.

LA RT-PCR en tiempo real que aplica este par de cebadores y esta sonda es muy sensible, ya que permite detectar 10² copias de ARN y hasta 10 copias de ARN, es además fiable y reproducible.

La presente solicitud engloba los polidesoxirribonucleótidos y los polirribonucleótidos monocatenarios, bicatenarios y tricatenarios, que corresponden a la secuencia del genoma de la cepa aislada de coronavirus y de sus fragmentos, tales como se han definido anteriormente, así como a sus secuencias complementarias, sentido o anti-sentido, en particular los ARN y los ADNc que corresponden a la secuencia del genoma y de sus fragmentos, tales como se han definido anteriormente.

Los inventores describen también los fragmentos de amplificación obtenidos con la ayuda de cebadores específicos del genoma de la cepa purificada o aislada, tal como se ha definido anteriormente, en particular con la ayuda de cebadores y de pares de cebadores, tales como se han definido anteriormente, los fragmentos de restricción constituidos por, o que comprenden la secuencia de los fragmentos, tales como se han definido anteriormente, los fragmentos obtenidos por transcripción *in vitro* a partir de un vector que contiene la secuencia SEC ID nº 1 o un fragmento tal como se ha definido anteriormente, así como fragmentos obtenidos por síntesis química. Ejemplos de fragmentos de restricción se deducen del mapa de restricción de la secuencia SEC ID nº 1, ilustrado por la figura 13. Dichos fragmentos están o bien en forma de fragmentos aislados, o bien en forma de mezclas de fragmentos. La presente solicitud engloba también los fragmentos modificados, con respecto a los anteriores, por escisión, o adición de nucleótidos en una proporción de aproximadamente el 15% con respecto a la longitud de los fragmentos anteriores, y/o modificados al nivel de la naturaleza de los nucleótidos, a partir del momento en el que los fragmentos nucleotídicos modificados conserven una capacidad de hibridación con las secuencias de ARN genómico o antigenómico del aislado, tal como se ha definido anteriormente.

Las moléculas de ácido nucleico, según la invención, se obtienen mediante los métodos clásicos, conocidos en sí, siguiendo los protocolos estándares, tales como los descritos en *Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA*). Por ejemplo, se pueden obtener mediante amplificación de una secuencia nucleica por PCR o RT-PCR, o bien mediante síntesis química total o parcial.

Los inventores describen también un chip o filtro de ADN o de ARN, caracterizado porque comprende al menos un polinucleótido o uno de sus fragmentos, tales como se han definido anteriormente.

Los chip o filtros de ADN o de ARN se preparan mediante los métodos clásicos, conocidos en sí, como por ejemplo injerto químico o electroquímico de oligonucleótido sobre soporte de vidrio o de nylon.

La presente invención tiene también por objeto un vector de clonación y/o de expresión recombinante, en particular un plásmido, un virus, un vector viral o un fago, que comprende un fragmento de ácido nucleico, según la presente invención. Preferiblemente, dicho vector recombinante es un vector de expresión en el que dicho fragmento de ácido nucleico está colocado bajo el control de elementos reguladores de la transcripción y de la traducción apropiados. Además, dicho vector puede comprender unas secuencias (etiquetas o *tag*) fusionadas en fase con el extremo 5' y/o 3' de dicho inserto, útiles para la inmovilización y/o la detección y/o la purificación de la proteína expresada a partir de dicho vector.

Estos vectores están construidos e introducidos en células hospedantes mediante métodos clásicos de ADN recombinante y de ingeniería genética, que son conocidos en sí. Numerosos vectores en los que se pueden insertar una molécula de ácido nucleico de interés, a fin de introducirlo y mantenerlo en una célula hospedante, son

conocidos en sí; la elección de un vector apropiado depende del uso considerado para este vector (por ejemplo, replicación de la secuencia de interés, expresión de esta secuencia, mantenimiento de la secuencia en forma extracromosómica o bien integración en el material cromosómico del hospedante), así como de la naturaleza de la célula hospedante.

Los inventores describen los plásmidos siguientes:

- el plásmido denominado SRAS-S, comprendido en la cepa bacteriana depositada bajo el nº 1-3059, el 20 de junio de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que para codifica la proteína S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, secuencia que corresponde a los nucleótidos de las posiciones 21406 a 25348 (SEC ID nº 4), en referencia a la secuencia Genbank AY274119.3,
- el plásmido denominado SRAS-S1, comprendido en la cepa bacteriana depositada bajo el nº I-3020, el 12 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene un fragmento 5' de la secuencia de ADNc que codifica la proteína S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, fragmento que corresponde a los nucleótidos de las posiciones 21406 a 23454 (SEC ID nº 5), en referencia a la secuencia Genbank AY274119.3 Tor2,
- el plásmido denominado SRAS-S2, comprendido en la cepa bacteriana depositada bajo el nº I-3019, el 12 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene un fragmento 3' de la secuencia de ADNc que codifica la proteína S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, fragmento que corresponde a los nucleótidos de las posiciones 23322 a 25348 (SEC ID nº 6), en referencia a la secuencia Genbank nº de acceso AY274119.3,
- el plásmido denominado SRAS-SE, comprendido en la cepa bacteriana depositada bajo el nº 1-3126, el 13 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que corresponde a la región situada entre ORF-S y ORF-E y que se superpone al ORF-E de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, región que corresponde a los nucleótidos de las posiciones 25110 a 26244 (SEC ID nº 8), en referencia a la secuencia Genbank nº de acceso AY274119.3,
- el plásmido denominado SRAS-E, comprendido en la cepa bacteriana depositada bajo el nº 1-3046, el 28 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que codifica la proteína E de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 26082 a 26413 (SEC ID nº 15), en referencia a la secuencia Genbank nº de acceso AY274119.3,
- el plásmido denominado SRAS-M; comprendido en la cepa bacteriana depositada bajo el n° 1-3047, el 28 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que codifica la proteína M de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589, tal como se ha definido anteriormente; secuencia que corresponde a los nucleótidos de las posiciones 26330 a 27098 (SEC ID N° 18), en referencia a la secuencia Genbank n° de acceso AY274119.3.
- el plásmido denominado SRAS-MN, comprendido en la cepa bacteriana depositada bajo el nº I-3125, el 13 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que corresponde a la región situada entre el ORF-M y el ORF-N de la cepa de SRAS-CoV, procedente de la extracción catalogada bajo el nº 031589 y extraída en Hanoi, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 26977 a 28218 (SEC ID nº 20), en referencia a la secuencia Genbank nº de acceso AY274119.3,
- el plásmido denominado SRAS-N, comprendido en la cepa bacteriana depositada bajo el nº 1-3048, el 5 de junio de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que codifica la proteína N de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 28054 a 29430 (SEC ID Nº 38), en referencia a la secuencia Genbank nº de acceso AY274119.3; este plásmido comprende así un inserto de secuencia SEC ID nº 38, y está comprendido en una cepa bacteriana que se ha depositado bajo el nº 1-3048, el 5 de junio de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15,
- el plásmido denominado SRAS-5'NC, comprendido en la cepa bacteriana depositada bajo el nº I-3124, el 7 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que corresponde al extremo 5' no codificante del genoma de la cepa de SRAS-

CoV procedente de la extracción catalogada bajo el n° 031589, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 1 a 204 (SEC ID n° 39), en referencia a la secuencia Genbank n° de acceso AY274119.3,

- el plásmido denominado SRAS-3'NC, comprendido en la cepa bacteriana depositada bajo el nº 1-3123 el 7 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que corresponde al extremo 3' no codificante del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, secuencia que corresponde a la situada entre el nucleótido en la posición 28933 a 29727 (SEC ID nº 40), en referencia a la secuencia Genbank nº de acceso AY274119.3, se termina por una serie de nucleótidos a.,
- el plásmido de expresión denominado pIV2.3N, que contiene un fragmento de ADNc que codifica una fusión C-terminal de la proteína N (SEC ID nº 37) con una etiqueta de polihistidina,
- el plásmido de expresión denominado pIV2.3 $S_{\rm C}$, que contiene un fragmento de ADNc que codifica una fusión C-terminal del fragmento que corresponde a las posiciones 475 a 1193 de la secuencia en aminoácidos de la proteína S (SEC ID nº 3) con una etiqueta de polihistidina,
- el plásmido de expresión pIV2.3S_L, que contiene un fragmento de ADNc que codifica una fusión C-terminal del fragmento que corresponde a las posiciones 14 a 1193 de la secuencia en aminoácidos de la proteína S (SEC ID nº 3) con una etiqueta de polihistidina,
- el plásmido de expresión denominado pIV2.4N, que contiene un fragmento de ADNc que codifica una fusión N-terminal de la proteína N (SEC ID nº 3) con una etiqueta de polihistidina,
- el plásmido de expresión denominado pIV2.4 $S_{\rm C}$ o pIV2.4 $S_{\rm L}$, que contiene un inserto que codifica una fusión N-terminal del fragmento que corresponde a las posiciones 475 a 1193 de la secuencia en aminoácidos de la proteína S (SEC ID $n^{\rm o}$ 3) con una etiqueta de polihistidina, y
- el plásmido de expresión denominado pIV2.4 S_L que contiene un fragmento de ADNc que codifica una fusión N-terminal del fragmento que corresponde a las posiciones 14 a 1193 de la secuencia en aminoácidos de la proteína S (SEC ID n° 3) con una etiqueta de polihistidina.

Según una disposición ventajosa del plásmido de expresión, tal como se ha definido anteriormente, está comprendido en una cepa bacteriana depositada bajo el nº I-3117, el 23 de octubre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.

Según otra disposición ventajosa del plásmido de expresión, tal como se ha definido anteriormente, está comprendido en una cepa bacteriana depositada bajo el n° I-3118, el 23 de octubre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.

Según otra disposición del plásmido de expresión, tal como se ha definido anteriormente, está comprendido en una cepa bacteriana depositada en la CNCM, 25 rue du Docteur Roux, 75724 Paris Cedex 15 bajo los números siguientes:

- a) cepa nº I-3118, depositada el 23 de octubre de 2003,
- b) cepa n° I-3019, depositada el 12 de mayo de 2003,
- c) cepa n° l-3020, depositada el 12 de mayo de 2003,
- d) cepa n° I-3059, depositada el 20 de junio de 2003.
- e) cepa n° I-3323, depositada el 22 de noviembre de 2004,
- f) cepa n° I-3324, depositada el 22 de noviembre de 2004,
- g) cepa n° I-3326, depositada el 1 de diciembre de 2004,
- h) cepa n° I-3327, depositada el 1 de diciembre de 2004,
- i) cepa n° l-3332, depositada el 1 de diciembre de 2004,
- j) cepa n° I-3333, depositada el 1 de diciembre de 2004,
- k) cepa n° I-3334, depositada el 1 de diciembre de 2004,

- I) cepa n° I-3335, depositada el 1 de diciembre de 2004,
- m) cepa n° I-3336, depositada el 1 de diciembre de 2004,
- n) cepa n° I-3337, depositada el 1 de diciembre de 2004,
- o) cepa n° I-3338, depositada el 2 de diciembre de 2004,
- p) cepa n° l-3339, depositada el 2 de diciembre de 2004,
- q) cepa n° I-3340, depositada el 2 de diciembre de 2004,
- r) cepa n° I-3341, depositada el 2 de diciembre de 2004.

Los inventores describen también un inserto de ácido nucleico de origen viral, caracterizado porque está contenido en cualquiera de las cepas tales como se definieron anteriormente en a)-r).

Los inventores describen también un ácido nucleico que comprende un gen sintético que permite una expresión optimizada de la proteína S en unas células eucariotas, caracterizado porque posee la secuencia SEC ID nº 140.

Los inventores describen también un vector de expresión que comprende un ácido nucleico que comprende un gen sintético que permite una expresión optimizada de la proteína S, vector que es conocido en la cepa bacteriana depositada en la CNCM, el 1 de diciembre de 2004, bajo el nº l-3333.

Según un modo de realización de dicho vector de expresión, se trata de un vector viral, en forma de partícula viral o en forma de genoma recombinante.

Según una disposición ventajosa de este modo de realización, se trata de una partícula viral recombinante o de un genoma viral recombinante susceptible de ser obtenido por transfección de un plásmido según los apartados g), h) y k) a r), tal como se han definido anteriormente, en un sistema celular apropiado, es decir, por ejemplo, células transfectadas con uno o algunos otros plásmido(s), destinados a transcomplementar ciertas funciones del virus eliminadas en el vector y necesarias para la formación de las partículas virales.

Se entiende aquí por "familia de la proteína S" la proteína S completa, su ectodominio y fragmentos de este ectodominio, que se producen preferiblemente en un sistema eucariota.

Los inventores describen también un vector lentiviral que codifica un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente.

Los inventores describen también un virus de la rubeola recombinante, que codifica un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente.

Los inventores describen también un virus de la vacuna recombinante que codifica un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente.

Los inventores describen también el uso de un vector según los apartados e) a r) tales como se han definido anteriormente, o de un vector que comprende un gen sintético de la proteína S, tal como se ha definido anteriormente, para la producción, en un sistema eucariota, de la proteína S del coronavirus asociado al SRAS, o de un fragmento de esta proteína.

Los inventores describen también un método de producción de la proteína S en un sistema eucariota, que comprende una etapa de transfección de células eucariotas en cultivo por un vector seleccionado entre los vectores contenidos en las cepas bacterianas mencionadas en los apartados e) a r) anteriores, o un vector que comprende un gen sintético que permite una expresión optimizada de la proteína S.

Los inventores describen también un banco de ADNc caracterizado porque comprende unos fragmentos tales como se han definido anteriormente, en particular unos fragmentos de amplificación o unos fragmentos de restricción, clonados en un vector recombinante, en particular un vector de expresión (banco de expresión).

Los inventores describen también unas células, en particular unas células procariotas, modificadas por un vector recombinante tal como se ha definido anteriormente.

Los inventores describen también una célula eucariota genéticamente modificada, que expresa una proteína o un polipéptido tales como se definen más adelante. Por supuesto, los términos "células eucariota genéticamente modificada" no designan una célula modificada por un virus salvaje.

Según un modo de realización ventajoso de dicha célula, es susceptible de ser obtenida mediante transfección por cualquiera de los vectores mencionados en los apartados k) a n) anteriores.

Según una disposición ventajosa de este modo de realización, se trata de la célula FRhK4-Ssol-30, depositada en la CNCM el 22 de noviembre de 2004, bajo el nº I-3325.

Los vectores recombinantes tales como se han definido anteriormente y las células transformadas por dichos vectores de expresión son ventajosamente utilizados para la producción de proteínas y de péptidos correspondientes. Los bancos de expresión derivados de dichos vectores, así como las células transformadas por dichos bancos de expresión, son ventajosamente utilizados para identificar los epítopos inmunógenos (epítopos B y T) de las proteínas del coronavirus asociado al SRAS.

Los inventores describen también las proteínas y los péptidos purificados o aislados, caracterizados porque están codificados por el polinucleótido o uno de sus fragmentos tales como se han definido anteriormente.

Según un modo de realización ventajoso, dicha proteína se selecciona del grupo constituido por:

- la proteína S de secuencia SEC ID nº 3 o su ectodominio
- la proteína E de secuencia SEC ID nº 14
- la proteína M de secuencia SEC ID nº 17
- la proteína N de secuencia SEC ID nº 37
- las proteínas codificadas por ORF: ORF1a, ORF1b, ORF3, ORF4 y ORF7 a ORF11, ORF 13 y ORF 14 de secuencia respectivamente, SEC ID n° 74, 75, 10, 12, 22, 24, 26, 28, 30, 33 y 35.

Se usarán a continuación, indiferentemente, los términos "ectodominio de la proteína S" y "forma soluble de la proteína S".

Según un modo de realización ventajoso, dicho polipéptido está constituido de aminoácidos que corresponden a las posiciones 1 a 1193 de la secuencia en aminoácidos de la proteína S.

Según otro modo de realización ventajoso, dicho péptido se selecciona del grupo constituido por:

- a) los péptidos que corresponden a las posiciones 14 a 1193 y 475 a 1193 de la secuencia en aminoácidos de la proteína S,
- b) los péptidos que corresponden a las posiciones 2 a 14 (SEC ID nº 69) y 100 a 221 de la secuencia en aminoácidos de la proteína M; estos péptidos corresponden respectivamente al ectodominio y al endodominio de la proteína M, y
- c) los péptidos que corresponden a las posiciones 1 a 12 (SEC ID nº 70) y 53 a 76 (SEC ID nº 71) de la secuencia en aminoácidos de la proteína E; estos péptidos corresponden respectivamente al ectodominio y al extremo C-terminal de la proteína E, y
- d) los péptidos de 5 a 50 aminoácidos consecutivos, preferiblemente de 10 a 30 aminoácidos, incluidos o que se superponen parcial o totalmente a la secuencia de los péptidos tales como se han definido en a), b) o c).

Los inventores describen también un péptido caracterizado porque presenta una secuencia de 7 a 50 aminoácidos, que incluye un residuo de aminoácido seleccionado del grupo constituido por:

- la alanina, situada en la posición 2552 de la secuencia en aminoácidos de la proteína codificada por el ORF1a,
- la serina, situada en la posición 577 de la secuencia en aminoácidos de la proteína S de la cepa de SRAS-CoV tal como se ha definido anteriormente.
- la glicina, en la posición 11 de la secuencia en aminoácidos de la proteína codificada por el ORF3 de la cepa de SRAS-CoV tal como se ha definido anteriormente,
- la serina, en la posición 154 de la secuencia en aminoácidos de la proteína M de la cepa de SRAS-CoV tal como se ha definido anteriormente,

Los inventores describen también un anticuerpo o un fragmento de anticuerpo policional o monocional, susceptible

de ser obtenido mediante inmunización de un animal con un vector recombinante, tal como se ha definido anteriormente, un banco de ADNc tal como se ha definido anteriormente o bien una proteína o un péptido tales como se han definido anteriormente, caracterizado porque se enlaza con al menos una de las proteínas codificadas por el SRAS-CoV tal como se ha definido anteriormente.

Un anticuerpo, tal como se ha definido anteriormente, engloba los anticuerpos policlonales, los anticuerpos monoclonales, los anticuerpos quiméricos, tales como los anticuerpos humanizados, así como sus fragmentos (Fab, Fv, scFv).

Los inventores describen también un hibridoma, que produce un anticuerpo monoclonal contra la proteína N, caracterizado porque se selecciona entre los hibridomas siguientes:

- el hibridoma que produce el anticuerpo monoclonal 87, depositado en la CNCM el 1 de diciembre de 2004 bajo el número I-3328,
- el hibridoma que produce el anticuerpo monoclonal 86, depositado en la CNCM el 1 de diciembre de 2004 bajo el número I-3329.
- el hibridoma que produce el anticuerpo monoclonal 57, depositado en la CNCM el 1 de diciembre de 2004 bajo el número I-3330, y
- el hibridoma que produce el anticuerpo monoclonal 156, depositado en la CNCM el 1 de diciembre de 2004 bajo el número I-3331.

Los inventores describen también un anticuerpo, o fragmento de anticuerpo policional o monocional, dirigido contra la proteína N, caracterizado porque está producido por un hibridoma tal como se ha definido anteriormente.

Se entiende por anticuerpo quimérico, en relación a un anticuerpo de una especie animal particular o de una clase particular de anticuerpo, un anticuerpo que comprende todo o parte de una cadena pesada y/o de una cadena ligera de un anticuerpo de otra especie animal o de otra clase de anticuerpo.

Se entiende por anticuerpo humanizado una inmunoglobulina humana en la que los residuos de CDR (*Complementary-Determining Regions*), que forman el sitio de unión al antígeno, están sustituidos por los de un anticuerpo monoclonal no humano que posee la especificidad, la afinidad o la actividad buscadas. Por comparación con los anticuerpos no humanos, los anticuerpos humanizados son menos inmunógenos y poseen una vida media prolongada en el ser humano, ya que posee sólo una baja proporción de secuencias no humanas, debido a que la casi totalidad de los residuos de las regiones FR (Framework) y de la región constante (Fc) de estos anticuerpos son los de unas secuencias consenso de inmunoglobulinas humanas.

Los inventores describen también un chip o filtro de proteína, caracterizado porque comprende una proteína, un péptido o bien un anticuerpo tales como se han definido anteriormente.

Los chips de proteína son preparados mediante los métodos clásicos, conocidos. Entre los soportes apropiados sobre los cuales se pueden inmovilizar unas proteínas, se pueden citar los de material plástico o de vidrio, en particular en forma de microplacas.

Los inventores describen también agentes reactivos derivados de la cepa aislada de coronavirus asociado al SRAS, procedente de la extracción catalogada bajo el nº 031589, útiles para el estudio y el diagnóstico de la infección provocada por un coronavirus asociado al SRAS, agentes reactivos que se seleccionan del grupo constituido por:

- (a) un par de cebadores, una sonda o un chip de ADN tales como se han definido anteriormente,
- (b) un vector recombinante, o una célula modificada, tales como se han definido anteriormente,
- (c) una cepa aislada de coronavirus, o un polinucleótido, tales como se han definido anteriormente,
- (d) una proteína o un péptido tales como se han definido anteriormente,
- (e) un anticuerpo o un fragmento de anticuerpo, tales como se han definido anteriormente,
- (f) un chip de proteína tal como se ha definido anteriormente.

Estos diferentes agentes reactivos son preparados y utilizados según las técnicas clásicas de biología molecular y de inmunología, siguiendo los protocolos estándares, tales como los descritos en *Current Protocols in Molecular Biology* (Frederick M. AUSUBEL, 2000, Wiley and Son Inc., Library of Congress, USA), en *Current Protocols in Immunology* (John E. Cologan, 2000, Wiley and Son Inc. Library of Congress, USA) y en *Antibodies: A Laboratory*

Manual (E. Howell y D Lane, Cold Spring Harbor Laboratory, 1988).

Los fragmentos de ácido nucleico, según la invención, son preparados y utilizados según las técnicas clásicas, tales como se han definido anteriormente. Los péptidos y las proteínas, según la invención, son preparados mediante las técnicas de ADN recombinante, conocidas por el experto en la materia, en particular con la ayuda de los vectores recombinantes tales como se han definido anteriormente. Alternativamente, los péptidos, según la invención, se pueden preparar mediante las técnicas clásicas de síntesis en fase sólida o líquida, conocidas por el experto en la materia.

Los anticuerpos policionales son preparados mediante inmunización de un animal apropiado con una proteína o un péptido tales como se han definido anteriormente, eventualmente acoplado a la KLH o a la albúmina y/o asociado a un adyuvante apropiado tal como el adyuvante de Freund (completo o incompleto) o el hidróxido de alúmina; después de la obtención de un título en anticuerpo satisfactorio, los anticuerpos se recogen mediante extracción del suero de los animales inmunizados y enriquecidos en IgG por precipitación, según las técnicas clásicas, después los IgG específicos de las proteínas de SRAS-CoV se purifican eventualmente mediante cromatografía de afinidad sobre una columna apropiada, sobre la cual se fijan dicho péptido o dicha proteína, tales como se han definido anteriormente, a fin de obtener una preparación de IgG monoespecíficos.

Los anticuerpos monoclonales son producidos a partir de hibridomas obtenidos mediante fusión de linfocitos B de un animal inmunizado por una proteína o un péptido tales como se han definido anteriormente con unos mielomas, según la técnica de Kohler y Milstein (Nature, 1975, 256, 495-497); los hibridomas son cultivados *in vitro*, en particular en fermentadores o producidos *in vivo*, en forma de ascito; alternativamente, dichos anticuerpos monoclonales son producidos mediante ingeniería genética tal, como se describe en la patente americana US 4.816.567.

Los anticuerpos humanizados son producidos mediante métodos generales como los descritos en la solicitud internacional WO 98/45332.

Los fragmentos de anticuerpos son producidos a partir de las regiones V_H y V_L clonadas, a partir de los ARNm de hibridomas o de linfocitos esplénicos de un ratón inmunizado; por ejemplo, los fragmentos Fv, scFv o Fab están expresados en la superficie de fagos filamentosos según la técnica de Winter y Milstein (Nature, 1991, 349, 293-299); después de varias etapas de selección, los fragmentos de anticuerpos específicos del antígeno son aislados y expresados en un sistema de expresión apropiado, mediante las técnicas clásicas de clonación y de expresión de ADN recombinante.

Los anticuerpos o sus fragmentos tales como se han definido anteriormente, son purificados mediante las técnicas clásicas conocidas por el experto en la materia, tales como la cromatografía de afinidad.

Los inventores describen además el uso de un producto seleccionado del grupo constituido por: un par de cebadores, una sonda, un chip de ADN, un vector recombinante, una célula modificada, una cepa aislada de coronavirus, un polinucleótido, una proteína o un péptido, un anticuerpo o un fragmento de anticuerpo y un chip de proteína tales como se han definido anteriormente, para la preparación de un agente reactivo de detección y eventualmente de genotipaje/serotipaje, de un coronavirus asociado al SRAS.

Las proteínas y los péptidos tales como se han definido anteriormente, que son adecuados para ser reconocidos y/o para inducir la producción de anticuerpos específicos del coronavirus asociado al SRAS, son útiles para el diagnóstico de la infección por tal coronavirus; la infección se detecta, mediante una técnica apropiada, en particular EIA, ELISA, RIA, inmunofluorescencia, a partir de una muestra biológica extraída en un individuo susceptible de ser infectado.

Según una disposición ventajosa de dicho uso, dichas proteínas se seleccionan del grupo constituido por las proteínas S, E, M y/o N, y los péptidos tales como se han definido anteriormente.

Las proteínas S, E, M y/o N y los péptidos derivados de estas proteínas tales como se han definido anteriormente, por ejemplo la proteína N, se utilizan para el diagnóstico indirecto de una infección con coronavirus asociado al SRAS (diagnóstico serológico; detección de anticuerpos específicos del SRAS-CoV), en particular mediante un método inmunoenzimático (ELISA).

Los anticuerpos y los fragmentos de anticuerpos tales como se han definido anteriormente, en particular los dirigidos contra las proteínas S, E, M y/o N y los péptidos derivados tales como se han definido anteriormente, son útiles para el diagnóstico directo de una infección con coronavirus asociado al SRAS; la detección de proteína(s) del SRAS-CoV se realiza mediante una técnica apropiada, en particular EIA, ELISA, RIA, inmunofluorescencia a partir de una muestra biológica extraída en un individuo susceptible de ser infectado.

Los inventores describen asimismo un método de detección de un coronavirus asociado al SRAS, a partir de una muestra biológica, método que se caracteriza porque comprende al menos:

- (a) la puesta en contacto de dicha muestra biológica con al menos un anticuerpo o un fragmento de anticuerpo, una proteína, un péptido o bien un chip o un filtro de proteína o de péptido, tales como se han definido anteriormente, y
- (b) el revelado mediante cualquier medio apropiado unos complejos antígeno-anticuerpo formados en (a), por ejemplo mediante EIA, ELISA, RIA, o mediante inmunofluorescencia.

Según un modo de aplicación ventajoso de dicho procedimiento, la etapa (a) comprende:

- (a₁) la puesta en contacto de dicha muestra biológica con al menos un primer anticuerpo o un fragmento de anticuerpo que está fijado sobre un soporte apropiado, en particular una microplaca,
- (a2) el lavado de la fase sólida, y
- (a₃) la adición de al menos un segundo anticuerpo o un fragmento de anticuerpo, diferente del primero, estando dicho anticuerpo o fragmento de anticuerpo eventualmente marcado de manera apropiada.

Este procedimiento que permite capturar las partículas víricas presentes en la muestra biológica se denomina también procedimiento de inmunocaptura.

Por ejemplo:

- la etapa (a₁) se realiza con al menos un primer anticuerpo monoclonal o policlonal o un fragmento de estos, dirigido contra la proteína S, M y/o E, y/o un péptido que corresponde al ectodominio de una de estas proteínas (péptidos M2-14 o E1-12)
- la etapa (a₃) se realiza con al menos un anticuerpo o un fragmento de anticuerpo dirigido contra otro epítopo de la misma proteína o preferiblemente contra otra proteína, de manera preferente contra una proteína interna, tal como la nucleoproteína N o el endodominio de la proteína E o M, de manera aún más preferente, se trata de anticuerpos o de fragmentos de anticuerpos dirigidos contra la proteína N, muy abundante en la partícula viral; cuando un anticuerpo o un fragmento de anticuerpo dirigido contra una proteína interna (N) o contra el endodominio de las proteínas E o M se utiliza, dicho anticuerpo es incubado en presencia de detergente, como el Tween 20 por ejemplo, a unas concentraciones del orden del 0,1%,
- la etapa (b) de revelado de los complejos antígeno-anticuerpo formados se realiza directamente con la ayuda de un segundo anticuerpo marcado, por ejemplo, con biotina o una enzima apropiada tal como la peroxidasa o la fosfatasa alcalina, o bien indirectamente con la ayuda de un suero anti-inmunoglobulinas marcado como anteriormente. Los complejos así formados son revelados con la ayuda de un sustrato apropiado.

Según una realización preferente de este método, la muestra biológica se mezcla con el anticuerpo monoclonal de revelado previamente a su puesta en contacto con los anticuerpos monoclonales de captura. Llegado el caso, la mezcla suero-anticuerpo de revelado se incuba durante al menos 10 minutos a temperatura ambiente antes de ser aplicada sobre la placa.

Los inventores describen también un ensayo de inmunocaptura destinado a detectar una infección por el coronavirus asociado al SRAS por detección de la nucleoproteína nativa (proteína N), en particular caracterizado porque el anticuerpo utilizado para la captura de la nucleoproteína viral nativa es un anticuerpo monoclonal específico de la región central y/o de un epítopo conformacional.

Según un modo de realización de dicho ensayo, el anticuerpo utilizado para la captura de la proteína N es el anticuerpo monoclonal Acm87, producido por el hibridoma depositado en la CNCM el 1 de diciembre de 2004 bajo el número I-3328.

Según otro modo de realización de dicho ensayo de inmunocaptura, el anticuerpo utilizado para la captura de la proteína N es el anticuerpo monoclonal Acm86, producido por el hibridoma depositado en la CNCM el 1 de diciembre de 2004 bajo el número I-3329.

Según otro modo de realización de dicho ensayo de inmunocaptura, los anticuerpos monoclonales Acm86 y Acm87 son utilizados para la captura de la proteína N.

En los ensayos de inmunocaptura, se puede utilizar el revelado de la proteína N, el anticuerpo monoclonal Acm57, producido por el hibridoma depositado en la CNCM el 1 de diciembre de 2004 bajo el número 1-3330, estando dicho anticuerpo conjugado a una molécula o a una partícula reveladora.

Conforme a dicho ensayo de inmunocaptura, una combinación de los anticuerpos Acm57 y Acm87, conjugados a

una molécula o a una partícula reveladora, se utiliza para el revelado de la proteína N.

Una molécula reveladora puede ser un átomo radioactivo, un colorante, una molécula fluorescente, un fluoróforo, una enzima; una partícula reveladora puede ser, por ejemplo, oro coloidal, una partícula magnética o una bola de látex.

Los inventores describen también un agente reactivo de detección de un coronavirus asociado al SRAS, caracterizado porque se selecciona del grupo constituido por:

- (a) un par de cebadores o una sonda tales como se han definido anteriormente,
- (b) un vector recombinante tal como se ha definido anteriormente o una célula modificada tal como se ha definido anteriormente.
- (c) una cepa aislada de coronavirus tal como se ha definido anteriormente o un polinucleótido tal como se ha definido anteriormente,
- (d) un anticuerpo o un fragmento de anticuerpo tal como se ha definido anteriormente,
- (e) una combinación de anticuerpos que comprende los anticuerpos monoclonales Acm86 y/o Acm87, y el anticuerpo monoclonal Acm57, tal como se ha definido anteriormente,
- (f) un chip o un filtro, tal como se han definido anteriormente.

Los inventores describen también un método de detección de una infección por un coronavirus asociado al SRAS, a partir de una muestra biológica, mediante ELISA IgG indirecto que utiliza la proteína N, método que está caracterizado porque las placas son sensibilizadas por una solución de proteína N a una concentración comprendida entre 0,5 y 4 µg/ml, preferiblemente 2 µg/ml, en un tampón PBS 10 mM pH 7,2, rojo de fenol a 0,25 ml/l.

Los inventores describen, además, un método de detección de una infección por un coronavirus asociado al SRAS, a partir de una muestra biológica, mediante ELISA doble epítopo, caracterizado porque el suero a ensayar está mezclado al antígeno de revelado, siendo dicha mezcla puesta en contacto después con el antígeno fijado sobre un soporte sólido.

Según una variante de los ensayos de detección de los coronavirus asociado al SRAS, estos ensayos combinan un ELISA que utiliza la proteína N, y otro ELISA que utiliza la proteína S, tal como se describe más adelante.

Los inventores describen también un complejo inmune formado de un anticuerpo o de un fragmento de anticuerpo policional o monoclonal, tal como se han definido anteriormente, y de una proteína o de un péptido del coronavirus asociado al SRAS.

Los inventores describen además un kit de detección de un coronavirus asociado al SRAS, caracterizado porque comprende al menos un agente reactivo seleccionado del grupo constituido por: un par de cebadores, una sonda, un chip de ADN o ARN, un vector recombinante, una célula modificada, una cepa aislada de coronavirus, un polinucleótido, una proteína o un péptido, un anticuerpo, y un chip de proteína, tales como se han definido anteriormente.

Los inventores describen además una composición inmunógena, caracterizada porque comprende al menos un producto seleccionado del grupo constituido por:

- a) una proteína o un péptido tales como se han definido anteriormente,
- b) un polinucleótido de tipo ADN o ARN o uno de sus fragmentos representativos tales como se han definido anteriormente, de secuencia seleccionada entre:
 - (i) la secuencia SEC ID nº 1 o su equivalente ARN,
 - (ii) la secuencia que hibrida, en condiciones de fuerte rigor, con la secuencia SEC ID nº 1,
 - (iii) la secuencia complementaria de la secuencia SEC ID nº 1 o de la secuencia que hibrida en condiciones de fuerte rigor con la secuencia SEC ID nº 1,
 - (iv) la secuencia nucleotídica de un fragmento representativo del polinucleótido, tal como se define en (i), (ii) o
 - (v) la secuencia tal como se define en (i), (ii), (iii) o (iv), modificada, y

- c) un vector de expresión recombinante que comprende un polinucleótido tal como se define en b), y
- d) un banco de ADNc tal como se definió anteriormente,

siendo dicha composición inmunógena capaz de inducir una inmunidad humoral o celular protectora específica del coronavirus asociado al SRAS, en particular la producción de un anticuerpo dirigido contra un epítopo específico del coronavirus asociado al SRAS.

Las proteínas y los péptidos, tales como se han definido anteriormente, en particular las proteínas S, M, E y/o N y los péptidos derivados, así como las moléculas de ácido nucleico (ADN o ARN) que codifican dichas proteínas o dichos péptidos, son buenas vacunas candidatas y pueden ser utilizadas en composiciones inmunógenas para la producción de una vacuna contra el coronavirus asociado al SRAS.

Según un modo de realización ventajoso de las composiciones, según la invención, estas contienen además al menos un vehículo farmacéuticamente aceptable y eventualmente sustancias portadoras y/o adyuvantes.

Los vehículos farmacéuticamente aceptables, las sustancias portadoras y los adyuvantes son los clásicamente utilizados.

Los adyuvantes se seleccionan ventajosamente del grupo constituido por emulsiones oleosas, saponina, sustancias minerales, extractos bacterianos, hidróxido de alúmina y escualeno.

Las sustancias portadoras son ventajosamente seleccionadas del grupo constituido por los liposomas unilaminares, los liposomas multilaminares, unas micelas de saponina o unas microesferas sólidas de naturaleza sacarídica o aurífera.

Las composiciones, según la invención, se administran por vía general, en particular intramuscular o subcutánea, o bien por vía local, en particular nasal (aerosol).

Los inventores describen también el uso de una proteína o de un péptido aislado o purificado que presenta una secuencia seleccionada del grupo constituido por las secuencias SEC ID nº 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 y 75 para formar un complejo inmune con un anticuerpo dirigido específicamente contra un epítopo del coronavirus asociado al SRAS.

Los inventores describen también un complejo inmune formado por una proteína o por un péptido aislado o purificado, que presenta una secuencia seleccionada del grupo constituido por las secuencias SEC ID nº 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 y 75, y de un anticuerpo dirigido específicamente contra un epítopo del coronavirus asociado al SRAS.

Los inventores describen también el uso de una proteína o de un péptido aislado o purificado, que presenta una secuencia seleccionada del grupo constituido por las secuencias SEC ID nº 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 y 75, para inducir la producción de un anticuerpo capaz de reconocer específicamente un epítopo del coronavirus asociado al SRAS.

Los inventores describen también el uso de un polinucleótido aislado o purificado, que presenta una secuencia seleccionada del grupo constituido por las secuencias SEC ID nº 1, 2, 4, 7, 8, 13, 15, 16, 18, 19, 20, 31, 36 y 38 para inducir la producción de un anticuerpo dirigido contra la proteína codificada por dicho polinucleótido, y capaz de reconocer específicamente un epítopo del coronavirus asociado al SRAS.

Los inventores describen también unos anticuerpos monoclonales que reconocen la proteína S nativa de un coronavirus asociado al SRAS.

Los inventores describen también el uso de una proteína o de un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente, o de un anticuerpo que reconoce la proteína S nativa, tal como se ha definido anteriormente, para detectar una infección por un coronavirus asociado al SRAS, a partir de una muestra biológica.

Los inventores describen también un método de detección de una infección por un coronavirus asociado al SRAS, a partir de una muestra biológica, caracterizado porque la detección se efectúa mediante ELISA utilizando la proteína S recombinante, expresada en un sistema eucariota.

Según un modo de aplicación ventajoso de dicho método, se trata de un método por ELISA doble epítopo, y el suero a ensayar se mezcla con el antígeno de revelado, siendo dicha mezcla puesta en contacto después con el antígeno fijado sobre un soporte sólido.

Los inventores describen también un complejo inmune formado de un anticuerpo o de un fragmento de anticuerpo

monoclonal que reconoce la proteína S nativa, y de una proteína o de un péptido del coronavirus asociado al SRAS.

Los inventores describen también un complejo inmune formado de una proteína o de un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente, y de un anticuerpo dirigido específicamente contra un epítopo del coronavirus asociado al SRAS.

Los inventores describen además un kit o estuche de detección de un coronavirus asociado al SRAS, caracterizado porque comprende al menos un agente reactivo seleccionado del grupo constituido por: una proteína o polipéptido de la familia de la proteína S, tal como se ha definido anteriormente, un ácido nucleico que codifica una proteína o un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente, una célula que expresa una proteína o un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente, o un anticuerpo que reconoce la proteína S nativa de un coronavirus asociado al SRAS.

Los inventores describen una composición inmunógena y/o de vacuna, caracterizada porque comprende un polipéptido o una proteína recombinante de la familia de la proteína S, tal como se ha definido anteriormente, obtenido en un sistema de expresión eucariota.

Los inventores describen también una composición inmunógena y/o de vacuna, caracterizada porque comprende un vector o virus recombinante, que expresa una proteína o un polipéptido de la familia de la proteína S, tal como se ha definido anteriormente.

Además de las disposiciones anteriores, la invención comprende también otras disposiciones, que destacarán de la descripción siguiente, que se refiere a unos ejemplos de aplicación del polinucleótido que representa el genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589, y unos fragmentos de ADNc derivados, que son objeto de la presente invención, así como a la Tabla I que presenta el listado de las secuencias:

Tabla I: listado de secuencias

Número de identificación	Secuencia	Posición del ADNc en referencia a Genbank AY274119.3	Número de depósito en la CNCM del plásmido correspondiente
SEC ID nº 1	Genoma de la cepa procedente de la extracción 031589	-	-
SEC ID nº 2	ORF-S*	21406-25348	-
SEC ID nº 3	Proteína S	-	-
SEC ID nº 4	ORF-S**	21406-25348	I-3059
SEQ ID nº 5	fragmento Sa	21406-23454	I-3020
SEC ID nº 6	fragmento Sb	23322-25348	I-3019
SEC ID nº 7	ORF-3+ORF-4*	25110-26244	-
SEC ID nº 8	ORF-3+ORF-4**	25110-26244	I-3126
SEC ID nº 9	ORF3	-	-
SEC ID nº 10	Proteína ORF-3	-	-
SEC ID nº 11	ORF4	-	-
SEC ID nº 12	Proteína ORF-4	-	-
SEQ ID nº 13	ORF-E*	26082-26413	-
SEC ID nº 14	Proteína E	-	-
SEC ID nº 15	ORF-E**	26082-26413	I-3046
SEC ID nº 16	ORF-M*	26330-27098	-
SEC ID nº 17	Proteína M	-	-
SEC ID nº 18	ORF-M**	26330-27098	I-3047
SEC ID nº 19	ORF7 a 11*	26977-28218	-
SEC ID nº 20	ORF7 a 11**	26977-28218	I-3125
SEC ID nº 21	ORF7	-	-
SEC ID nº 22	Proteína ORF7	-	-
SEC ID nº 23	ORF8	-	-
SEC ID nº 24	Proteína ORF8	-	
SEC ID nº 25	ORF9	-	-
SEC ID nº 26	Proteína ORF9	-	=
SEC ID nº 27	ORF10	-	=
SEC ID nº 28	Proteína ORF10	-	=
SEC ID nº 29	ORF11	-	=
SEC ID nº 30	Proteína ORF11	-	-

SEC ID n° 34 SEC ID n° 35 P SEC ID n° 36 SEC ID n° 37 SEC ID n° 38 SEC ID n° 39 5'I SEC ID n° 40 3'I SEC ID n° 41 I SEC ID n° 41 I SEC ID n° 42 I SEC ID n° 43 I SEC ID n° 44 I SEC ID n° 45 F SEC ID n° 46 I SEC ID n° 47 I SEC ID n° 48 I SEC ID n° 49 I SEC ID n° 50 I SEC ID n° 51 I SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 54 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 60 Ceba SEC ID n° 61 Ceba SEC ID n° 62 Ceba SEC ID n° 63 Ceba SEC ID n° 64 S SEC ID n° 65 S SEC ID	OrF1ab ORF13 Toteina ORF13 ORF14 Toteina ORF14 ORF-N* Proteina N ORF-N** To codificante** To codificante** To codificante** To codificante Toteina N ORF1ab Tragmento L0 Tragmento L1 Tragmento L2 Tragmento L3 Tragmento L4 Tragmento L4 Tragmento L5 Tragmento L5 Tragmento L6 Tragmento L7 Tragmento L8 Tragmento L9 Tragmento L9 Tragmento L10 Tragmento L11	265-21485 28130-28426	
SEC ID n° 34 SEC ID n° 34 SEC ID n° 35 P SEC ID n° 36 SEC ID n° 37 SEC ID n° 38 SEC ID n° 39 5'n SEC ID n° 40 3'n SEC ID n° 41 I SEC ID n° 41 I SEC ID n° 42 I SEC ID n° 43 I SEC ID n° 44 I SEC ID n° 45 F SEC ID n° 46 I SEC ID n° 47 I SEC ID n° 48 I SEC ID n° 50 I SEC ID n° 50 I SEC ID n° 51 I SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65	roteína ORF13 ORF14 roteína ORF14 ORF-N* Proteína N ORF-N** no codificante** no codificante** no codificante to	28130-28426 28583-28795 28054-29430 28054-29430 1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	- - - - - - - - - - - - - - - - - - -
SEC ID nº 34 P SEC ID nº 35 P SEC ID nº 36 P SEC ID nº 37 SEC ID nº 38 SEC ID nº 40 3'I SEC ID nº 40 3'I SEC ID nº 41 I SEC ID nº 41 I SEC ID nº 43 I SEC ID nº 43 I SEC ID nº 45 F SEC ID nº 45 F SEC ID nº 46 I SEC ID nº 48 I SEC ID nº 49 I SEC ID nº 50 I SEC ID nº 51 I SEC ID nº 52 F SEC ID nº 53 F SEC ID nº 55 Ce SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 60 Ceba SEC ID nº 61 Cebad SEC ID nº 62 Cebad SEC ID nº 63 Cebad SEC ID nº 64 S SEC ID nº 63 Cebad SEC ID nº 64 S SEC ID nº 6	ORF14 rote(na ORF14 ORF-N* Prote(na N ORF-N** no codificante** no codificante** ORF1ab Fragmento L0 Fragmento L2 Fragmento L3 ragmento L4 Fragmento L4 Fragmento L5 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L8 Fragmento L9 ragmento L9 ragmento L9 ragmento L9 ragmento L10 ragmento L10 ragmento L11	28054-29430 - 28054-29430 1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	- - - - - - - - - - - - - - - - - - -
SEC ID n° 35 P SEC ID n° 36 SEC ID n° 37 SEC ID n° 38 SEC ID n° 39 SEC ID n° 40 3'I SEC ID n° 41 SEC ID n° 41 SEC ID n° 42 I SEC ID n° 43 I SEC ID n° 44 I SEC ID n° 45 F SEC ID n° 46 I SEC ID n° 47 SEC ID n° 48 SEC ID n° 49 I SEC ID n° 50 I SEC ID n° 51 I SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 59 Cebado SEC ID n° 60 Cebado SEC ID n° 61 Cebado SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	roteína ORF14 ORF-N* Proteína N ORF-N** no codificante** no codificante** ORF1ab Fragmento L0 Fragmento L2 Fragmento L3 ragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L8 Fragmento L9 ragmento L9 ragmento L9 ragmento L10 ragmento L10 ragmento L11	28054-29430 - 28054-29430 1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	I-3048 I-3124 I-3123
SEC ID n° 35 P SEC ID n° 36 SEC ID n° 37 SEC ID n° 38 SEC ID n° 39 SEC ID n° 40 3'I SEC ID n° 41 SEC ID n° 41 SEC ID n° 42 I SEC ID n° 43 I SEC ID n° 44 I SEC ID n° 45 F SEC ID n° 46 I SEC ID n° 47 SEC ID n° 48 SEC ID n° 49 I SEC ID n° 50 I SEC ID n° 51 I SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 59 Cebado SEC ID n° 60 Cebado SEC ID n° 61 Cebado SEC ID n° 63 Cebado SEC ID n° 65 S SEC ID n° 66 S	ORF-N* Proteína N ORF-N** no codificante** no codificante** ORF1ab Fragmento L0 Fragmento L1 Fragmento L3 ragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L9 ragmento L9 ragmento L10 ragmento L10 ragmento L11	28054-29430 - 28054-29430 1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	I-3048 I-3124 I-3123
SEC ID n° 36 SEC ID n° 37 SEC ID n° 38 SEC ID n° 39 SEC ID n° 40 SEC ID n° 41 SEC ID n° 41 SEC ID n° 42 SEC ID n° 43 SEC ID n° 45 SEC ID n° 46 SEC ID n° 47 SEC ID n° 48 SEC ID n° 49 SEC ID n° 50 SEC ID n° 51 SEC ID n° 52 SEC ID n° 53 SEC ID n° 54 SEC ID n° 55 SEC ID n° 56 SEC ID n° 57 SEC ID n° 58 SEC ID n° 59 SEC ID n° 60 SEC ID n° 61 SEC ID n° 62 SEC ID n° 63 SEC ID n° 63 SEC ID n° 64 SEC ID n° 65	ORF-N* Proteína N ORF-N** no codificante** no codificante** ORF1ab Fragmento L0 Fragmento L1 Fragmento L3 ragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L9 ragmento L9 ragmento L10 ragmento L10 ragmento L11	28054-29430 - 28054-29430 1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	I-3048 I-3124 I-3123
SEC ID nº 38 SEC ID nº 40 SEC ID nº 41 SEC ID nº 42 SEC ID nº 43 SEC ID nº 44 SEC ID nº 45 SEC ID nº 46 SEC ID nº 47 SEC ID nº 48 SEC ID nº 49 SEC ID nº 50 SEC ID nº 51 SEC ID nº 52 SEC ID nº 54 SEC ID nº 55 SEC ID nº 55 SEC ID nº 56 SEC ID nº 57 SEC ID nº 57 SEC ID nº 58 SEC ID nº 59 SEC ID nº 60 SEC ID nº 61 SEC ID nº 62 SEC ID nº 63 SEC ID nº 63 SEC ID nº 64 SEC ID nº 65	ORF-N** no codificante** no codificante** ORF1ab Fragmento L0 Fragmento L1 Fragmento L3 ragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L7 Fragmento L8 Fragmento L8 Fragmento L9 ragmento L9 ragmento L10 ragmento L11	1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	I-3048 I-3124 I-3123
SEC ID nº 39 5'I SEC ID nº 40 3'I SEC ID nº 41 1 SEC ID nº 41 1 SEC ID nº 42 1 SEC ID nº 43 1 SEC ID nº 44 1 SEC ID nº 45 F SEC ID nº 46 1 SEC ID nº 47 1 SEC ID nº 48 1 SEC ID nº 49 1 SEC ID nº 50 1 SEC ID nº 51 1 SEC ID nº 52 F SEC ID nº 53 F SEC ID nº 54 F SEC ID nº 55 Ce SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 58 Ce SEC ID nº 59 Cebado SEC ID nº 60 Cebado SEC ID nº 61 Cebado SEC ID nº 62 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	no codificante** no codificante** ORF1ab Fragmento L0 Fragmento L1 Fragmento L3 ragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L8 Fragmento L9 ragmento L9 ragmento L10 ragmento L11	1-204 28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	I-3124 I-3123
SEC ID nº 40 SEC ID nº 41 SEC ID nº 42 SEC ID nº 43 SEC ID nº 44 SEC ID nº 45 SEC ID nº 46 SEC ID nº 47 SEC ID nº 48 SEC ID nº 50 SEC ID nº 51 SEC ID nº 52 SEC ID nº 53 SEC ID nº 54 SEC ID nº 55 SEC ID nº 55 SEC ID nº 56 SEC ID nº 57 SEC ID nº 58 SEC ID nº 59 SEC ID nº 59 SEC ID nº 60 SEC ID nº 61 SEC ID nº 62 SEC ID nº 63 SEC ID nº 64 SEC ID nº 65	ro codificante** ORF1ab Fragmento L0 Fragmento L2 Fragmento L3 ragmento L4b Fragmento L5 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L9 ragmento L10 ragmento L11	28933-29727 30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	I-3123
SEC ID nº 41 SEC ID nº 42 SEC ID nº 43 SEC ID nº 44 SEC ID nº 45 SEC ID nº 46 SEC ID nº 47 SEC ID nº 48 SEC ID nº 50 SEC ID nº 51 SEC ID nº 52 SEC ID nº 53 SEC ID nº 54 SEC ID nº 55 SEC ID nº 55 SEC ID nº 56 SEC ID nº 57 SEC ID nº 58 SEC ID nº 59 SEC ID nº 59 SEC ID nº 59 SEC ID nº 60 SEC ID nº 61 SEC ID nº 62 SEC ID nº 63 SEC ID nº 64 SEC ID nº 65	ORF1ab Fragmento L0 Fragmento L1 Fragmento L3 Fragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 Fragmento L9 Fragmento L10 Fragmento L11	30-500 211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	- - - - - - -
SEC ID nº 42 SEC ID nº 43 SEC ID nº 44 SEC ID nº 45 SEC ID nº 46 SEC ID nº 47 SEC ID nº 48 SEC ID nº 50 SEC ID nº 51 SEC ID nº 52 SEC ID nº 53 SEC ID nº 54 SEC ID nº 55 Ce SEC ID nº 56 SEC ID nº 57 SEC ID nº 58 SEC ID nº 59 SEC ID nº 59 SEC ID nº 59 SEC ID nº 60 SEC ID nº 61 SEC ID nº 62 SEC ID nº 63 SEC ID nº 63 SEC ID nº 64 SEC ID nº 65	Fragmento L0 Fragmento L1 Fragmento L2 Fragmento L3 Fragmento L4 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 Fragmento L10 Fragmento L10 Fragmento L11	211-2260 2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	- - - - -
SEC ID nº 43 SEC ID nº 44 SEC ID nº 45 SEC ID nº 46 SEC ID nº 47 SEC ID nº 48 SEC ID nº 50 SEC ID nº 51 SEC ID nº 53 SEC ID nº 54 SEC ID nº 55 Ce SEC ID nº 56 SEC ID nº 57 SEC ID nº 58 SEC ID nº 59 SEC ID nº 59 SEC ID nº 60 SEC ID nº 61 SEC ID nº 63 SEC ID nº 63 SEC ID nº 64 SEC ID nº 65	Fragmento L2 Fragmento L3 Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 Fragmento L10 Fragmento L11	2136-4187 3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	- - - - -
SEC ID nº 44 I SEC ID nº 45 F SEC ID nº 46 I SEC ID nº 47 I SEC ID nº 48 I SEC ID nº 50 I SEC ID nº 50 I SEC ID nº 51 I SEC ID nº 51 I SEC ID nº 53 F SEC ID nº 54 F SEC ID nº 55 Ce SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 58 Ce SEC ID nº 59 Cebado SEC ID nº 60 Ceba SEC ID nº 61 Cebado SEC ID nº 62 Ceba SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	Fragmento L3 ragmento L4b Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	
SEC ID nº 44 I SEC ID nº 45 F SEC ID nº 46 I SEC ID nº 47 I SEC ID nº 48 I SEC ID nº 49 I SEC ID nº 50 I SEC ID nº 51 I SEC ID nº 52 F SEC ID nº 53 F SEC ID nº 55 Ce SEC ID nº 55 Ce SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 58 Ce SEC ID nº 59 Cebado SEC ID nº 60 Ceba SEC ID nº 61 Cebado SEC ID nº 62 Ceba SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	Fragmento L3 ragmento L4b Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	3892-5344 4932-6043 5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	
SEC ID n° 46 SEC ID n° 47 SEC ID n° 48 SEC ID n° 49 SEC ID n° 50 SEC ID n° 51 SEC ID n° 52 SEC ID n° 53 SEC ID n° 54 SEC ID n° 55 Ceba SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Ce SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Cebado SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	Fragmento L4 Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	5305-7318 7275-9176 9032-11086 10298-12982 12815-14854	
SEC ID nº 47 I SEC ID nº 48 I SEC ID nº 49 I SEC ID nº 50 I SEC ID nº 51 I SEC ID nº 51 I SEC ID nº 52 F SEC ID nº 53 F SEC ID nº 54 F SEC ID nº 55 Ce SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 58 Ce SEC ID nº 59 Cebado SEC ID nº 60 Ceba SEC ID nº 61 Cebado SEC ID nº 62 Ceba SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	Fragmento L5 Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	7275-9176 9032-11086 10298-12982 12815-14854	
SEC ID nº 48 I SEC ID nº 49 I SEC ID nº 50 I SEC ID nº 51 I SEC ID nº 51 I SEC ID nº 52 F SEC ID nº 53 F SEC ID nº 55 Ce SEC ID nº 55 Ceba SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 58 Ce SEC ID nº 59 Cebado SEC ID nº 60 Ceba SEC ID nº 61 Cebado SEC ID nº 62 Ceba SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	Fragmento L6 Fragmento L7 Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	9032-11086 10298-12982 12815-14854	
SEC ID nº 49 I SEC ID nº 50 I SEC ID nº 51 I SEC ID nº 51 I SEC ID nº 52 F SEC ID nº 53 F SEC ID nº 54 F SEC ID nº 55 Ce SEC ID nº 56 Ceba SEC ID nº 57 Cel SEC ID nº 58 Cel SEC ID nº 59 Cebado SEC ID nº 60 Ceba SEC ID nº 61 Cebado SEC ID nº 62 Ceba SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	Fragmento L7 Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	10298-12982 12815-14854	-
SEC ID n° 50 I SEC ID n° 51 I SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 54 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Ce SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	Fragmento L8 Fragmento L9 ragmento L10 ragmento L11	12815-14854	
SEC ID n° 51 I SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 54 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Ce SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	ragmento L9 ragmento L10 ragmento L11		-
SEC ID n° 52 F SEC ID n° 53 F SEC ID n° 54 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Ce SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	ragmento L10 ragmento L11	14745-16646	
SEC ID n° 53 F SEC ID n° 54 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Cel SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	ragmento L11		-
SEC ID n° 54 F SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Cel SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S		16514-18590	-
SEC ID n° 55 Ce SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Ce SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S		18500-20602	-
SEC ID n° 56 Ceba SEC ID n° 57 Cel SEC ID n° 58 Cel SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	ragmento L12	20319-22224	-
SEC ID n° 57 Cel SEC ID n° 58 Cel SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	bador N sentido	-	-
SEC ID n° 58 Ce SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	dor N antisentido	-	-
SEC ID n° 59 Cebado SEC ID n° 60 Ceba SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	oador S _C sentido	-	-
SEC ID nº 60 Ceba SEC ID nº 61 Cebado SEC ID nº 62 Ceba SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	oador S∟ sentido	-	-
SEC ID n° 61 Cebado SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	r S _C y S _L antisentido	ı	-
SEC ID n° 62 Ceba SEC ID n° 63 Cebado SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	dor sentido serie 1	28507-28522	-
SEC ID nº 63 Cebado SEC ID nº 64 S SEC ID nº 65 S SEC ID nº 66 S	or antisentido serie 1	28774-28759	
SEC ID n° 64 S SEC ID n° 65 S SEC ID n° 66 S	dor sentido serie 2	28375-28390	-
SEC ID nº 65 S SEC ID nº 66 S	or antisentido serie 2	28702-28687	-
SEC ID nº 66	onda 1/serie 1	28561-28586	-
	onda 2/serie 1	28588-28608	-
05010.007	onda 1/serie 2	28541-28563	-
	onda 2/serie 2	28565-28589	-
	oador ancla 14T		
SEC ID nº 69	éptido M2-14	-	-
SEC ID nº 70	Péptido E1-12	ı	-
	éptido E53-76	ı	-
SEC ID nº 72 5'	no codificante*	1-204	-
SEC ID n° 73 3'	no codificante*	28933-29727	-
SEC ID nº 74 P	oteína ORF1a	-	-
SEC ID nº 75 P	oteína ORF1b	-	-
SEQ ID nos 76-139	Cebadores		
	eudógeno de S		
SEQ ID nos 141-148			
	cebadores		
SEQ ID nº 150			
SEQ ID nos 151-158	cebadores Aa1-13 de S polipéptido		+

así como a los dibujos anexos en los que:

⁻ la figura 1 ilustra el análisis por transferencia western de la expresión in vitro de las proteínas recombinantes N,

 S_C y S_L a partir de los vectores de expresión pIVEX. Pista 1: pIV2.3N. Pista 2: pIV2.3S_C. Pista 3: pIV2.3S_L. Pista 4: pIV2.4N. Pista 5: pIV2.4S_L o pIV2.4S_C. Pista 6: pIV2.4S_L. La expresión de la proteína GFP expresada a partir del mismo vector se utiliza como control.

- la figura 2 ilustra el análisis por electroforesis en gel de poliacrilamida en condiciones desnaturalizantes (SDS-PAGE), y coloración con azul de Coomassie, de la expresión in vivo de la proteína N a partir de los vectores de expresión pIVEX. La cepa de E.coli BL21(DE3)pDIA17, transformada por los vectores pIVEX recombinantes, se cultiva a 30°C en un medio LB, en presencia o ausencia de inductor (IPTG 1mM). Pista 1: pIV2.3N Pista 2: pIV2.4N.
- la figura 3 ilustra el análisis por electroforesis en gel de poliacrilamida en condiciones desnaturalizantes (SDS-PAGE) y coloración con azul de Coomassie, de la expresión *in vivo* de los polipéptidos S_L y S_C a partir de los vectores de expresión pIVEX. La cepa de *E.coli* BL21 (DE3)pDIA17, transformada por los vectores pIVEX recombinantes, se cultiva a 30°C en un medio LB, en presencia o ausencia de inductor (IPTG 1mM). Pista 1: pIV2.3S_C Pista 2: pIV2.3S_L. Pista 3: pIV2.4S₁ Pista 4: pIV2.4S_L.
- la figura 4 ilustra la actividad antigénica de las proteínas N, S_L y S_C recombinantes producidas en la cepa *E. coli* BL21(DE3)pDIA17, transformada por los vectores pIVEX recombinantes. A: electroforesis (SDS-PAGE) de los lisados bacterianos. B y C: transferencia western con los sueros, que provienen de un mismo paciente infectado por SRAS-CoV, extraídos respectivamente a los 8 días (B: suero M12) y a los 29 días (C: suero M13) después del comienzo de los síntomas del SRAS. Pista 1: pIV2.3N. Pista 2: pIV2.4N. Pista 3: pIV2.3S_C. Pista 4: pIV2.4 S₁. Pista 5: pIV2.3S_L. Pista 6: pIV2.4S_L
- la figura 5 ilustra la purificación sobre columna Ni-NTA agarosa de la proteína N recombinante, producida en la cepa E. coli BL21(DE3)pDIA17 a partir del vector pIV2.3N. Pista 1: Extracto bacteriano total. Pista 2: Extracto soluble. Pista 3: Extracto insoluble. Pista 4: Extracto depositado sobre la columna Ni-NTA. Pista 5: proteínas no retenidas. Pista 6: Fracciones del pico 1. Pista 7: Fracciones del pico 2.
- la figura 6 ilustra la purificación de la proteína S_C recombinante a partir de los cuerpos de inclusiones producidos en la cepa *E. coli* BL21(DE3)pDIA17, transformada por el pIV2.4S₁.A. Tratamiento con Tritón X-100 (2%): Pista 1: Extracto bacteriano total. Pista 2: Extracto soluble. Pista 3: Extracto insoluble. Pista 4: Sobrenadante después del tratamiento con Tritón X-100 (2%). Pistas 5 y 6: Residuo después del tratamiento con Tritón X-100 (2%).B: Tratamiento con urea 4M, 5M, 6M y 7M de los extractos solubles e insolubles.
- la figura 7 representa la inmunohuella realizada con la ayuda de un lisado de células infectadas por el SRAS-CoV y de un suero de paciente que padece neumopatía atípica.
- la figura 8 representa unas inmunohuellas realizadas con la ayuda de un lisado de células infectadas por el SRAS-CoV y de inmunosueros de conejos específicos de la nucleoproteína N (A) y de la proteína de espícula S (B). I.S.: suero inmune. p.i.: suero pre-inmune. El inmunosuero anti-N se utilizó al 1/50000 y el inmunosuero anti-S al 1/10000.
- la figura 9 ilustra la reactividad en ELISA de los sueros policionales monoespecíficos de conejo dirigidos contra la proteína N o el fragmento corto de la proteína S (S_C), frente a proteínas recombinantes correspondientes utilizadas para la inmunización. A: conejos P13097, P13081, y P13031 inmunizados con la proteína N recombinante purificada. B: conejos P11135, P13042, y P14001 inmunizados con una preparación de cuerpos de inclusiones que corresponden al fragmento corto de la proteína S (S_C). I.S.: suero inmune. p.i.: suero preinmune.
- la figura 10 ilustra la reactividad en ELISA de la proteína N recombinante purificada, frente a suero de pacientes que padecen neumonía atípica causada por el SRAS-CoV. Figura 10a: placas ELISA preparadas con la proteína N a la concentración de 4 μg/ml y 2 μg/ml. Figura 10b: placa ELISA preparada con la proteína N a la concentración de 1 μg/ml. Los sueros designados A, B, D, E, F, G, H corresponden a los de la Tabla IV.
- la figura 11 ilustra la amplificación por RT-PCR de cantidades decrecientes de ARN sintético del gen N del SRAS-CoV (10⁷ a 1 copia), con la ayuda de los pares de cebadores n° 1 (N/+/28507,N/-/28774) (A) y n° 2 (N/+/28375,N/-/28702) (B). T: amplificación realizada en ausencia de ARN. MW: marcador de ADN.
- la figura 12 ilustra la amplificación por RT-PCR en tiempo real de ARN sintético del gen N del SRAS-CoV: unas cantidades decrecientes de ARN sintético en replicado (repli.; pistas 16 a 29) así como el ARN viral diluido al 1/20x10⁻⁴ (Pista 32) se amplificaron mediante RT-PCR en tiempo real con la ayuda del kit "Light Cycler RNA Amplification Kit Hybridization Probes" y de los pares de cebadores y de sondas de la serie n° 2, en las condiciones descritas en el ejemplo 8.

- la figura 13 (figura 13.1 a 13.70) representa el mapa de restricción de la secuencia SEC ID nº 1 que corresponde al equivalente ADN del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589.
- la figura 14 muestra el resultado del ensayo de serología SRAS por ELISA N indirecto (1ª serie de sueros ensayados)
- la figura 15 muestra el resultado del ensayo de serología SRAS por ELISA N indirecto (2º serie de sueros ensayados)
- la figura 16 presenta el resultado del ensayo de serología SRAS por ELISA N doble epítopo (1ª serie de sueros ensayados)
- la figura 17 muestra el resultado del ensayo de serología SRAS por ELISA N doble epítopo (2ª serie de sueros ensayados)
- la figura 18 ilustra el ensayo de reactividad de los anticuerpos monoclonales anti-N por ELISA sobre la nucleoproteína N nativa del SRAS-CoV. Los anticuerpos se ensayaron en forma de sobrenadantes de cultivo de hibridomas por un ELISA indirecto, utilizando un lisado irradiado de células VeroE6 infectadas por el SRAS-CoV como antígeno (curvas lisado SRAS). Un control negativo de reactividad se realiza para cada anticuerpo sobre un lisado de células VeroE6 no infectadas (curvas lisado negativo). Varios anticuerpos monoclonales de especificidad conocida se usaron como anticuerpos control negativos: para 1-3 dirigido contra los antígenos de los virus parainfluenza de tipo 1-3 (Bio-Rad) y gripe B dirigido contra los antígenos del virus de la gripe de tipo B (Bio-Rad).
- la figura 19 ilustra el ensayo de reactividad de los anticuerpos monoclonales anti-N del SRAS-CoV por ELISA sobre los antígenos nativos de coronavirus humano 229E (HCoV-229E). Los anticuerpos se ensayaron en forma de sobrenadantes de cultivo de hibridomas por un ensayo ELISA indirecto, utilizando un lisado de células MRC-5 infectadas por el coronavirus humano 229E como antígeno (curvas lisado 229E). Un control negativo de inmunorreactividad se realiza, para cada anticuerpo, sobre un lisado de células MRC-5 no infectadas (curvas lisado negativo). El anticuerpo monoclonal 5-11H.6 dirigido contra la proteína S del coronavirus humano 229E (Sizun y otros 1998, J. Virol. Met. 72: 145-152) se utiliza como anticuerpo control positivo. Los anticuerpos para 1-3 dirigidos contra los antígenos de los virus parainfluenza de tipo 1-3 (Bio-Rad) y gripe B dirigido contra los antígenos del virus de la gripe de tipo B (Bio-Rad) se añadieron al panel de los anticuerpos monoclonales ensayados.
- la figura 20 muestra un ensayo de reactividad de los anticuerpos monoclonales anti-N del SRAS-CoV por transferencia western sobre la nucleoproteína N nativa del SRAS-CoV desnaturalizado. Un lisado de células VeroE6 infectadas por el SRAS-Cov- se preparó en el tampón de depósito según Laemmli y puesto a migrar en un gel SDS al 12% de poliacrilamida, después las proteínas se transfirieron sobre una membrana de PVDF. Los anticuerpos monoclonales anti-N ensayados se utilizaron para el inmunoensayo a la concentración de 0,05 μg/ml. El revelado se hace con unos anticuerpos anti-lgG (H+L) de ratón acoplados a la peroxidasa (NA93IV, Amersham) y el sistema ECL+. Dos anticuerpos monoclonales se usaron como controles negativos de reactividad: gripe B dirigido contra los antígenos del virus de la gripe de tipo B (Bio-Rad) y para 1-3 dirigido contra los antígenos de los virus parainfluenza de tipo 1-3 (Bio-Rad).
- la figura 21 presenta los plásmidos de expresión en células de mamíferos de la proteína S del SRAS-CoV. El ADNc de la S del SRAS-CoV se insertó entre los sitios BamH1 y Xho1 del plásmido de expresión ACNpc3.1(+) (Clontech) para obtener el plásmido ADNpc-S y entre los sitios Nhe1 y Xho1 del plásmido de expresión pCl (Promega) para obtener el plásmido pCl-S- Las secuencias WPRE y CTE se insertaron en cada uno de los dos plásmidos ADNpc-S y pCl-S entre los sitios Xho1 y Xba1 para obtener respectivamente los plásmidos ADNpc-S-CTE, ADNpc-S-WPRE, pCl-S-CTE y pCl-S-WPRE.

SP: péptido señal predicho (aa 1-3) con el programa signalP v2.0 (Nielsen y otros, 1997, Protein Engineering, 10: 1-6)

TM: región transmembranaria predicha (aa 1196-1218) con el programa TMHMM v2.0 (Sonnhammer y otros, 1998, Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182, AAAI Press). Se debe señalar que los aminoácidos W1194 y P1195 forman parte posiblemente de la región transmembranaria con probabilidades respectivas de 0,13 y 0,42

P-CMV: promotor inmediato/precoz del citomegalovirus. BGH pA: señal de poliadenilación del gen de la hormona de crecimiento bovina

SV40 late pA: señal de poliadenilación tardía del virus SV40

SD/SA: sitios donante y receptor de empalme

WPRE: secuencias del "Woodchuck Hepatitis Virus posttranscriptional regulatory element" del virus de la hepatitis de la marmota

CTE: secuencias del "constitutive transport element" del retrovirus símico de Mason-Pfizer

- la figura 22 ilustra la expresión de la proteína S después de la transfección de células VeroE6. Se prepararon extractos celulares 48 horas después de la transfección de células VeroE6 por los plásmidos ADNpc, ADNpc-s, pCl y pCl-S. Extractos celulares se prepararon también 18 horas después de la infección por el virus recombinante de la vacuna antivariólica VV-TF7.3 y transfección por los plásmidos ADNpc o ADNpc-S. A título de control, unos extractos de células VeroE6 se prepararon 8 horas después de la infección por el SRAS-CoV con una multiplicidad de infección de 3. Se separaron sobre un gel SDS al 8% de acrilamida y fueron analizados mediante transferencia western con la ayuda de un anticuerpo policlonal de conejo anti-S y de un anticuerpo policlonal anti-IgG (H+L) de conejo acoplado con la peroxidasa (NA934V, Amersham). Una escala de masa molecular (kDa) se muestra en la figura.

SRAS.CoV: extracto de células VeroE6 infectadas por el SRAS-CoV

Mock: extracto control de células no infectadas

- la figura 23 ilustra el efecto de las secuencias CTE y WPRE sobre la expresión de la proteína S después de la transfección de células VeroE6 y 293T. Unos extractos celulares se prepararon 48 horas después de la transfección de células VeroE6 (A) o 293T (B) por los plásmidos ADNpc, ADNpc-S, ADNpc-S-CTE, ADNpc-S-WPRE, pCI-S, pCI-S-CTE y pCI- S-WPRE, separados sobre un gel SDS al 8% de acrilamida y analizados mediante transferencia western con la ayuda de un anticuerpo policlonal de conejo anti-S y de un anticuerpo policlonal anti-IgG (H+L) de conejo acoplado con la peroxidasa (NA934V, Amersham). Una escala de masa molecular (kDa) se lleva sobre la figura.

SRAS-CoV: extracto de células VeroE6 preparadas 8 horas después de la infección por el SRAS-CoV con una multiplicidad de infección de 3.

Mock: extracto control de células VeroE6 no infectadas

- la figura 24 presenta vectores lentivirales defectivos con "ADN flap" central para la expresión de la S du SRAS-CoV. El ADNc de la proteína S del SRAS-CoV se clonó en forma de un fragmento BamH1-Xho1 en el plásmido pTRIPAU3-CMV que contiene un vector lentiviral defectivo TRIP con "ADN flap" central (Sirven y otros, 2001, Mol. Ther., 3: 438-448) para obtener el plásmido pTRIP-S. Los casetes de expresión óptimos constituidos por el promotor inmediato/precoz del virus CMV, de una señal de empalme, del ADNc de la S y de una u otra de las señales post-transcripcionales CTE o WPRE se han sustituido al casete EF1a-EGFP del vector de expresión lentiviral defectivo de ADN FLAP central TRIPAU3-EF1 α (Sirven y otros, 2001, Mol. Ther., 3:438-448) para obtener los plásmidos pTRIP-SD/SA-S-CTE y pTRIP-SD/SA-S-WPRE.

SP: péptido señal

TM: región transmembranaria

P-CMV: promotor inmediato/precoz el citomegalovirus

P-EF1a: promotor del gen EF1 α

SD/SA: sitios donante y receptor de empalme

WPRE: secuencias del "Woodchuck Hepatitis Virus posttranscriptional regulatory element" del virus de la hepatitis de la marmota

CTE: secuencias del "constitutive transport element" del retrovirus símico de Mason-Pfizer

LTR: «Long terminal repeat»

ΔU3: LTR eliminado de las secuencias «promoter/enhancer»

cPPT: «polypurine tract cis-active sequence»

CTS: «central termination sequence»

- la figura 25 muestra el análisis mediante transferencia western de la expresión de la S du SRAS-CoV por líneas celulares transducidas por los vectores lentivirales TRIP-SD/SA-S-WPRE y TRIP-SD/SA-S-CTE. Se han preparado unos extractos celulares a partir de líneas FrhK4-S-CTE y FrhK4-S-WPRE establecidas después de la transducción por los vectores lentivirales TRIP-SD/SA-S-CTE y TRIP-SD /SA-S-WPRE respectivamente. Se han separado sobre un gel SDS al 8% de acrilamida y analizados mediante transferencia western con la ayuda de un anticuerpo policional de conejo anti-S y de un conjugado anti-IgG(H+L) de conejo acoplado con la peroxidasa. Una escala de masa molecular (kDa) se muestra en la figura.
 - T-: Extracto control de células FrhK-4
 - T+: Extracto de células FrhK-4 preparadas 24h después de la infección por el SRAS-CoV con una multiplicidad de infección de 3.
- la figura 26 se refiere al análisis de la expresión de polipéptido Ssol por líneas celulares transducidas por los vectores lentivirales TRIP-SD/SA-Ssol-WPRE y TRIP-SD/SA-Ssol-CTE. La secreción del polipéptido Ssol se ha buscado en el sobrenadante de una serie de clones celulares aislados después de la transducción de células FRhK-4 por los vectores lentivirales TRIP-SD/SA-Ssol-WPRE y TRIP-SD/SA-Ssol-CTE. 5 μl de sobrenadante diluidos al 1/2 en un tampón de depósito según Laemmli se analizaron mediante transferencia western revelado por un anticuerpo monoclonal anti-FLAG (M2, Sigma) y un conjugado anti-IgG(H+L) de ratón acoplado a la peroxidasa. T-: sobrenadante de la línea FRhK-4 parental. T+: sobrenadante de células BHK infectadas por un virus recombinante de la vacuna antivariólica que expresa el polipéptido Ssol. La flecha llena indica el polipéptido Ssol, mientras que la flecha hueca indica una reacción cruzada con una proteína de origen celular.
- la figura 27 muestra los resultados relativos al análisis del polipéptido Ssol purificado
 - A. 8, 2, 0,5 y 0,125 μg de polipéptido recombinante Ssol purificado mediante cromatografía de afinidad anti-FLAG y gel de filtración (G75) se separaron sobre gel SDS al 8% de poliacrilamida. El polipéptido Ssol así como unas cantidades variables de marcadores de masa molecular (MM) se revelaron mediante coloración con nitrato de plata (Gelcode SilverSNAP stain kit II, Pierce).
 - B. Marcadores estándar para el análisis por espectrometría de masas SELDI-TOF

IgG: IgG bovino de MM 147300

ConA: conalbúmina de MM 77490

HRP: peroxidasa de rábano picante a título de control y de MM 43240

- C. Análisis por espectrometría de masas (SELDI-TOF) del polipéptido recombinante Ssol. Los picos A y B corresponden al polipéptido Ssol simple y doblemente cargado.
- D. Secuenciación del extremo N-terminal del polipéptido recombinante Ssol. Se realizaron 5 ciclos de degradación de Edman en fase líquida sobre un secuenciador ABI494 (Applied Biosystems).
- la figura 28 ilustra la influencia de una señal de corte y empalme y de las secuencias CTE y WPRE sobre la eficacia de la inmunización génica con la ayuda de ADN plasmídico que codifica la S du SRAS-CoV
 - A. Unos grupos de 7 ratones BALB/c se inmunizaron dos veces con 4 semanas de intervalo con la ayuda de 50 μg de ADN plasmídico de pCl, ADNpc-S, pCl-S, ADNpc-N y pCl-HA.
 - B. Unos grupos de 6 ratones BALB/c se inmunizaron dos veces con 4 semanas de intervalo con la ayuda de 2 μ g, 10 μ g ó 50 μ g de ADN plasmídico de pCl, pCl-S, pCl-S-CTE y pCl-S-WPRE.

Los sueros inmunes extraídos 3 semanas después de la segunda inmunización se analizaron mediante ELISA indirecta utilizando un lisado de células VeroE6 infectadas por el SRAS-CoV como antígeno. Los títulos en anticuerpos anti-SRAS-CoV se calculan como la inversa de la dilución que produce una DO específica de 0,5 después del revelado por un anticuerpo policional anti-IgG de ratón acoplado a la peroxidasa (NA931V, Amersham) y de TMB (KPL).

- la figura 29 muestra la seroneutralización de la infectividad del SRAS-CoV por los anticuerpos inducidos en el ratón después de la inmunización génica con la ayuda de ADN plasmídico que codifica la S du SRAS-CoV. Unos grupos de sueros inmunes extraídos 3 semanas después de la segunda inmunización se realizaron para cada uno de los grupos de los experimentos descritos en la figura 28, y evaluados por su capacidad de seroneutralizar la infectividad de 100 TCID50 de SRAS-CoV sobre células FRhK-4. Se realizan 4 puntos para cada una de las diluciones de razón 2 ensayadas a partir del 1/20. El título seroneutralizante se calcula según el método de Reed y Munsch como la inversa de la dilución que neutraliza la infectividad de 2 pozos sobre 4.

- A. Grupos de ratones BALB/c inmunizados dos veces con 4 semanas de intervalo con la ayuda de 50 µg de ADN plasmídico de pCl, ADNpc-S, pCl-S, ADNpc-N y pCl-HA. □: suero preinmune. ■: suero inmune.
- B. Grupos de ratones BALB/c inmunizados dos veces con 4 semanas de intervalo con la ayuda de 2 μg, 10 μg ó 50 μg de ADN plasmídico de pCl, pCl-S, pCl-S-CTE γ pCl-S-WPRE.
- la figura 30 ilustra la inmunorreactividad del polipéptido recombinante Ssol frente a sueros de pacientes que padecen SRAS. La reactividad de sueros de pacientes se ha analizado mediante el ensayo ELISA indirecto contra unas fases sólidas preparadas con la ayuda del polipéptido recombinante Ssol purificado. Los anticuerpos de pacientes que reaccionan con la fase sólida a una dilución del 1/400 se revelan mediante un anticuerpo policlonal anti-IgG(H+L) humano acoplado a la peroxidasa (Amersham NA933V) y de TMB más H2O2 (KPL). Los sueros de casos posibles de SRAS son identificados por un número de orden del Centre National de Référence des virus influenzae así como por las iniciales del paciente y el número de días transcurridos desde el principio de los síntomas, llegado el caso. Los sueros TV son unos sueros controles de sujetos que han sido extraídos en Francia antes de la epidemia de SRAS aparecida en 2003.
- la figura 31 muestra la inducción de anticuerpos dirigidos contra el SRAS-CoV después de la inmunización con el polipéptido recombinante Ssol. Dos grupos de 6 ratones se inmunizaron con 3 semanas de intervalo con 10 μg de polipéptido recombinante Ssol (grupo Ssol) adyuvado con el hidróxido de aluminio o, a título de control, del adyuvante sólo (grupo mock). Se realizaron tres inmunizaciones sucesivas y los sueros inmunes se extrajeron 3 semanas después de cada una de las inmunizaciones (IS1, IS2, IS3). Los sueros inmunes se analizaron por grupo para cada uno de los 2 grupos por ELISA indirecto utilizando un lisado de células VeroE6 infectadas por el SRAS-CoV como antígeno. Los títulos en anticuerpos anti-SRAS-CoV se calculan como la inversa de la dilución que produce una DO específica de 0,5 después del revelado por un anticuerpo policional anti-IgG de ratón acoplado a la peroxidasa (Amersham) y de TMB (KPL).
- La figura 32 presenta la alineación nucleotídica de las secuencias del gen sintético 040530 con la secuencia del gen salvaje del aislado 031589 del SRAS-CoV. I-3059 corresponde a los nucleótidos 21406-25348 del aislado 031589 del SRAS-CoV depositado a la C.N.C.M. bajo el número 1-3059 (SEC ID nº 4, plásmido pSRAS-S). S-040530 es la secuencia del gen sintético 040530.
- la figura 33 ilustra el uso de un gen sintético para la expresión de la S del SRAS-CoV. Unos extractos celulares preparados 48 horas después de la transfección de células VeroE6 (A) o 293T (B) por los plásmidos pCI, pCI-S, pCI-S-CTE, pCI-S-WPRE y pCI-Ssynth se prepararon sobre un gel SDS al 8% de acrilamida y analizados mediante transferencia western con la ayuda de un anticuerpo policional de conejo anti-S y de un anticuerpo policional anti-IgG(H+L) de conejo acoplado con la peroxidasa (NA934V, Amersham). La transferencia western se reveló mediante luminescencia (ECL+, Amersham) y adquisición sobre un dispositivo de creación de imagen numérica (FluorS, BioRad). Los niveles de expresión de la proteína S se midieron cuantificando las 2 bandas mayoritarias localizadas sobre la imagen.
- la figura 34 presenta un esquema de la construcción de los virus de vacuna antivariólica recombinantes VV-TG-S, VV-TG-Ssol, VV-TN-S y VV-TN-Ssol
 - A.Los ADNc de la proteína S y del polipéptido Ssol del SRAS-CoV se insertaron entre los sitios BamH1 y Sma1 del plásmido de transferencia pTG186 para obtener los plásmidos pTG-S y pTG-Ssol.
 - B.Las secuencias del promotor sintético 480 se sustituyeron después de las del promotor 7,5 mediante intercambio del fragmento Nde1-Pst1 de los plásmidos pTG186poli, pTG-S y pTG-Ssol para obtener los plásmidos de transferencia pTN480, pTN-S y pTN-Ssol.
 - C. Secuencia del promotor sintético 480 tal como el contenido entre los sitios Nde1 y Pst1 de los plásmidos de transferencia de la serie pTN. Un sitio Asc1 se insertó para facilitar las manipulaciones ulteriores. Los sitios de restricción, así como la secuencia del promotor, son subrayados
 - D. Los virus recombinantes de la vacuna antivariólica se obtienen mediante doble recombinación homóloga *in vivo* entre el casete TK de los plásmidos de transferencia de las series pTG y pTN, y el gen TK de la cepa Copenhague del virus de la vacuna antivariólica.
 - SP: péptido señal predicha (aa 1-13) con el programa signalP v2.0 (Nielsen y otros, 1997, Protein Engineering, 10: 1-6)

TM: región transmembranaria predicha (aa 1196-1218) con el programa TMHMM v2.0 (Sonnhammer y otros, 1998, Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182, AAAI Press). Se debe de señalar que los aminoácidos W1194 y P1195 pertenecen posiblemente a la región transmembranaria con unas probabilidades respectivas de 0,13 y 0,42.

TK-L, TK-R: partes izquierda y derecha del gen de la timidinaquinasa del virus de la vacuna antivariólica

MCS: sitio múltiple de clonación

PE: promotor precoz

PL: promotor tardío

PL synth: promotor tardío sintético 480

- la figura 35 ilustra la expresión de la proteína S por los virus de la vacuna antivariólica recombinantes, analizada mediante transferencia western. Se han preparado unos extractos celulares 18 horas después de la infección de células CV1 por los virus de la vacuna antivariólica recombinantes VV-TG, VV-TG-S y VV-TN-S a una M.O.I. de 2 (A). A título de control, unos extractos de célula VeroE6 se prepararon 8 horas después de la infección por el SRAS-CoV con una multiplicidad de infección de 2. Unos extractos celulares se prepararon también 18 horas después de la infección de células CV1 por los virus de la vacuna antivariólica recombinantes VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S y VV-TN-Ssol (B). Se prepararon sobre geles SDS al 8% de acrilamida y analizados mediante transferencia western con la ayuda de un anticuerpo policlonal de conejo anti-S y de un anticuerpo policlonal anti-IgG(H+L) de conejo acoplado a la peroxidasa (NA934V, Amersham). «1 μl» y «10 μl» indican las cantidades de extractos celulares depositadas sobre el gel. Una escala de masa molecular (kDa) se muestra en la figura.

SRAS-CoV: Extracto de células VeroE6 infectadas por el SRAS-CoV

Mock: Extracto control de células non infectadas

- la figura 36 muestra el resultado de un análisis mediante transferencia western de la secreción del polipéptido Ssol por los virus de la vacuna antivariólica recombinantes.
 - A. Unos sobrenadantes de células CV1 infectadas por el virus de la vacuna antivariólica recombinante VV-TN, diferentes clones de virus VV-TN-Ssol y por los virus VV-TG-Ssol o VV-TN-Sflag se recogieron 18 horas después de la infección de células CV1 a una M.O.I. de 2.
 - B.Unos sobrenadantes de células 293T, FRhK-4, BHK-21 y CV1 infectadas por duplicados (1,2) por el virus de la vacuna antivariólica recombinante VV-TN-Ssol a una M.O.I. de 2 se recogieron 18 horas después de la infección. El sobrenadante de células CV1 infectadas por el virus VV-TN se recogió también a título de control (M).

Todos los sobrenadantes se han separado sobre gel SDS a 8% de acrilamida según Laemmli, y analizados mediante transferencia western con la ayuda de un anticuerpo monoclonal de ratón anti-FLAG y de un anticuerpo policlonal anti-IgG(H+L) de ratón acoplado a la peroxidasa (NA931V, Amersham) (A) o con la ayuda de un anticuerpo policlonal de conejo anti-S y de un anticuerpo policlonal anti-IgG(H+L) de conejo acoplado con la peroxidasa (NA934V, Amersham) (B). Una escala de masa molecular (kDa) se muestra en la figura.

- la figura 37 muestra el análisis del polipéptido Ssol, purificado mediante gel SDS de poliacrilamida
 - 10, 5 y 2 μ I de polipéptido recombinante SsoI purificado mediante cromatografía de afinidad anti-FLAG se separaron sobre gel SDS en gradiente del 4 al 15% de poliacrilamida. El polipéptido SsoI, así como unas cantidades variables de marcadores de masa molecular (MM), se revelaron mediante coloración con nitrato de plata (Gelcode SilverSNAP stain kit II, Pierce).
- la figura 38 ilustra la immunorreactividad del polipéptido recombinante Ssol producido por el virus de la vacuna antivariólica recombinante VV-TN-Ssol frente a sueros de pacientes que padecen SRAS. La reactividad de sueros de pacientes se analizó mediante un ensayo de ELISA indirecto contra unas fases sólidas preparadas con la ayuda del polipéptido recombinante Ssol purificado. Los anticuerpos de pacientes que reaccionan con la fase sólida a una dilución del 1/100 y 1/400 se revelan mediante un anticuerpo policlonal anti-IgG(H+L) humano acoplado a la peroxidasa (Amersham NA933V) y de TMB más H2O2 (KPL). Los sueros de casos posibles de SRAS son identificados mediante un número del tipo del Centre National de Référence des virus influenzae, así como por las iniciales del paciente y el número de días transcurridos desde el principio de los síntomas, llegado el caso. Los sueros TV son unos sueros controles de sujetos que fueron extraídos en Francia antes de la epidemia de SRAS aparecida en 2003.
- la figura 39 muestra la respuesta en anticuerpo anti-SRAS-CoV en el ratón después de la inmunización por los virus de la vacuna antivariólica recombinantes. Se inmunizaron unos grupos de 7 ratones BALB/c por vía i.v.

dos veces con 4 semanas de intervalo por 106 u.f.p. de virus de la vacuna antivariólica recombinantes VV-TG, VV-TG-HA, VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S, VV-TN-Ssol.

- A.Se realizaron unas grupos de sueros inmunes extraídos 3 semanas después de cada una de las dos inmunizaciones para cada uno de los grupos, y se analizaron mediante ELISA indirecto utilizando un lisado de células VeroE6 infectadas por el SRAS-CoV como antígeno. Los títulos en anticuerpos anti-SRAS-CoV son calculados como la inversa de la dilución que produce una DO específica de 0,5 después del revelado por un anticuerpo policional anti-IgG de ratón acoplado a la peroxidasa (NA931V, Amersham) y de TMB (KPL).
- B.Los grupos de suero inmunes se evaluaron para su capacidad para seroneutralizar la infectividad de 100 TCID50 del SRAS-CoV sobre células FRhK-4. Se realizan 4 puntos para cada una de las diluciones 2 veces ensayadas a partir del 1/20. El título seroneutralizante se calcula según el método de Reed y Munsch como la inversa de la dilución que neutraliza la infectividad de 2 pozos sobre 4.
- la figura 40 describe la construcción de los virus recombinantes MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol.
 - A.El vector rubeola es un genoma completo de la cepa vacínea Schwarz del virus de la rubeola (MV) en el que se ha introducido una unidad de transcripción suplementaria (Combredet, 2003, Journal of Virology, 77: 11546-11554). La expresión de las fases abiertas de lectura (ORF) suplementarias está controlada por los elementos que actúan en cis necesarias para la transcripción, para la formación del capuchón y para la poliadenilación del transgen, que se copiaron de los elementos presentes en la unión N/P. 2 vectores diferentes permiten la inserción entre los genes P (fosfoproteína) y M (matriz) por una parte y H (hemaglutinina) y L (polimerasa) por otra parte.
 - B.Los genomas recombinantes MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol del virus de la rubeola se construyeron mediante la inserción de los ORF de la proteína S y del polipéptido Ssol dentro de una unidad de transcripción suplementaria localizada entre los genes P y M del vector.

Los diferentes genes del virus de la rubeola (MV) son indicados: N (nucleoproteína), PVC (fosfoproteína y proteína V/C), M (matriz), F (fusión), H (hemaglutinina), L (polimerasa). T7 = promotor del ARN polimerasa T7, hh = ribozima "hammerhead", T7t = secuencia terminadora de la ARN polimerasa del fago T7, ∂ = ribozima del virus de la hepatitis ∂ , (2), (3) = unidades de transcripción suplementarias (ATU). Tamaño del genoma de MV: 15894 nt.

SP: péptido señal

TM: región transmembranaria

FLAG: etiqueta FLAG

- la figura 41 ilustra la expresión de la proteína S por los virus de la rubeola recombinantes, analizada mediante transferencia western. Se prepararon extractos citoplásmicos después de la infección de células Vero por diferentes pasos de los virus MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol y el virus salvaje MWSchw a título de control. Unos extractos celulares en tampón de depósito, según Laemmli, se prepararon también 8 horas después de la infección de células VeroE6 por el SRAS-CoV, con una multiplicidad de infección de 3. Se han preparado sobre un gel SDS al 8% de acrilamida y analizados mediante transferencia western con la ayuda de un anticuerpo policlonal de conejo anti-S y de un anticuerpo policlonal anti-IgG(H+L) de conejo acoplado a la peroxidasa (NA934V, Amersham).

Una escala de masa molecular (kDa) se muestra en la figura.

Pn: enésimo paso del virus después del cocultivo de células 293-3-46 y Vero.

SRAS-CoV: extracto de células VeroE6 infectadas por el SRAS-CoV

Mock: extracto control de células VeroE6 no infectadas

- la figura 42 muestra la expresión de la proteína S por los virus de la rubeola recombinantes, analizada mediante inmunofluorescencia

Se infectaron células Vero en monocapas sobre láminas de vidrio mediante el virus salvaje MWSchw (A) o los virus MVSchw2-SRAS-S (B) y MVSchw2-SRAS-Ssol (C). Cuando los sincitios alcanzaron del 30 al 40% de confluencia (A., B.) o 90-100% (C), las células se fijaron, permeabilizaron y marcaron mediante anticuerpos policlonales de conejo anti-SRAS-CoV y un conjugado anti-IgG(H+L) de conejo acoplado al FITC (Jackson).

- la figura 43 ilustra el análisis mediante transferencia western de la inmunorreactividad de sueros de conejo dirigidos contra los péptidos E1-12, E53-76 y M2-14. El conejo 20047 se inmunizó con el péptido E1-12 acoplado a la KLH. Los conejos 22234 y 22240 se inmunizaron con el péptido E53-76 acoplado a la KLH. Los conejos 20013 y 20080 se inmunizaron con el péptido M2-14 acoplado a la KLH. Los inmunosueros se analizaron mediante transferencia western con la ayuda de extractos de células infectadas por el SRAS-CoV (B) o con la ayuda de extractos de células infectadas por un virus recombinante de la vacuna antivariólica que expresa la proteína E (A) o M (C) del aislado 031589 del SRAS-CoV. Las inmunohuellas se recogieron con la ayuda de un conjugado anti-IgG(H+L) de conejo acoplado a la peroxidasa (NA934V, Amersham).

La posición de las proteínas E y M se indica mediante una flecha. Una escala de masa molecular (kDa) se muestra en la figura.

Sin embargo, se debe entender, por supuesto, que estos ejemplos son dados únicamente a título de ilustración del objeto de la invención, y no constituyen de ninguna manera una limitación.

Ejemplo 1: Clo nación y se cuenciación del genoma de la cep a de SR AS-CoV procedente de la extracción catalogada bajo el número 031589

El ARN de la cepa de SRAS-CoV se ha extraído a partir de la extracción de lavado broncoalveolar catalogado bajo el número 031589, efectuado sobre un paciente del hospital francés de Hanoi (Vietnam) que padece SRAS.

El ARN aislado se utilizó como plantilla para amplificar los ADNc que corresponden a los diferentes cuadros de lectura abiertos del genoma (ORF1a, ORF1b, ORF-S, ORF-E, ORF-M, ORF-N (incluyendo los ORF-13 y ORF-14), ORF3, ORF4, ORF7 a ORF11), y a los extremos 5' y 3' no codificantes. Las secuencias de los cebadores y de las sondas utilizadas para la amplificación/detección se han definido según la secuencia nucleotídica disponible del SRAS-CoV.

A continuación, los cebadores y las sondas son identificados mediante: la letra S, seguida de una letra que indica la región correspondiente del genoma (L para el extremo 5' que incluye ORF1a y ORF1b; S, M y N para los ORF-S, ORF-M, ORF-N, SE y MN para las regiones intergénicas correspondientes), después, eventualmente, de Fn, Rn, con n incluido entre 1 y 6 que corresponde a los cebadores utilizados para la PCR anidada o imbricada (par F1 + R1 para la primera amplificación, par F2 + R2 para la segunda amplificación, etc.), después de /+/ o /-/ que corresponde a un cebador sentido o antisentido y finalmente unas posiciones de los cebadores en referencia a la secuencia Genbank AY27411.3; para los cebadores S y N sentido y antisentido y los otros cebadores sentido únicamente, cuando una sola posición está indicada ésta corresponde a la del extremo 5' de una sonda o de un cebador de aproximadamente 20 bases; para los cebadores antisentido diferentes de los cebadores S y N, cuando se indica una sola posición, ésta corresponde a la del extremo 3' de una sonda o de un cebador de aproximadamente 20 bases.

Los productos de amplificaciones así generados se secuenciaron con la ayuda de cebadores específicos a fin de determinar la secuencia completa del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589. Estos productos de amplificación, con la excepción de los que corresponden a los ORF1a y ORF1b, se clonaron después en unos vectores de expresión a fin de producir las proteínas virales correspondientes y los anticuerpos dirigidos contra estas proteínas, en particular mediante inmunización a base de ADN.

1. Extracción de los ARN

Los ARN han sido extraídos con la ayuda del kit *Qlamp viral RNA extraction mini* (QIAGEN) siguiendo las recomendaciones del fabricante. De manera más precisa: se han mezclado 140 µl de la extracción y 560 µl de tampón AVL vigorosamente durante 15 segundos, incubados durante 10 minutos a temperatura ambiente y después centrifugados brevemente a velocidad máxima. Se han añadido 560 µl de etanol al 100% al sobrenadante y la mezcla así obtenida se agitó muy vigorosamente durante 15 s. Después, se han depositado 630 µl de la mezcla en la columna.

La columna se colocó sobre un tubo de 2 ml, se centrifugó durante 1 minuto a 8000 rpm, y después el resto de la mezcla se depositó sobre la misma columna, y se centrifugó nuevamente durante 1 minuto a 8000 rpm, y se transfirió la columna sobre un tubo de 2 ml limpio. Después, se añadieron 500 μ l de tampón AW1 sobre la columna, se centrifugó después la columna durante 1 minuto a 8000 rpm y se eliminó el eluido. Se añadieron 500 μ l de tampón AW2 sobre la columna que se centrifugó después durante 3 minutos a 14000 rpm y se trasfirió en un tubo de 1,5 ml. Finalmente, se añadieron 60 μ l de tampón AVE sobre la columna que se incubó durante 1 a 2 minutos a temperatura ambiente y después se centrifugó durante 1 minuto a 8000 rpm. El eluido que corresponde al ARN purificado se recuperó y se congeló a -20°C.

2. Amplificación, secuenciación y clonación de los ADNc

2.1) ADNc que codifica la proteína S

Los ARN extraídos a partir de la extracción se sometieron a una transcripción inversa con la ayuda de oligonucleótidos hexaméricos de secuencia aleatoria (pdN6), a fin de producir unos fragmentos de ADNc.

La secuencia que codifica la glicoproteína S del SRAS-CoV se amplificó en forma de dos fragmentos de ADN superpuestos: fragmentos 5' (SRAS-Sa, SEC ID n° 5) y fragmento 3' (SRAS-Sb, SEC ID n° 6), realizando dos amplificaciones sucesivas con la ayuda de cebadores imbricados. Los amplicones así obtenidos se secuenciaron, clonaron en el vector plasmídico PCR 2.1-TOPO™ (IN VITROGEN), y después se determinó la secuencia de los ADNc clonados.

a) clonación y secuenciación de los fragmentos Sa y Sb

a₁) síntesis del ADNc

La mezcla de reacción que contiene: ARN (5 μ l), H₂O ppi (3,5 μ l), tampón de transcriptasa inversa 5X (4 μ l), dNTP 5 mM (2 μ l), pdN6 100 ug/ml (4 μ l), RNasin 40 Ul/ul (0,5 μ l) y transcriptasa inversa AMV-RT, 10 Ul/ul, PROMEGA (1 μ l) se incubó en un termociclador en las condiciones siguientes: 45 min. a 42°C, 15 min. a 55°C, 5 min. a 95°C, y después se mantuvo el ADNc obtenido a +4°C.

a₂) primera amplificación PCR

Los extremos 5' y 3' del gen S se amplificaron respectivamente con los pares de cebadores S/F1/+/21350-21372 y S/R1/-/23518-23498, S/F3/+/23258-23277 y S/R3/-/25382-25363. La mezcla de reacción de 50 μ l que contiene: ADNc (2 μ l), cebadores 50 μ M (0,5 μ l), tampón 10 X (5 μ l), dNTP 5 mM (2 μ l), Taq Expand High Fidelity, Roche (0,75 μ l) y H₂O (39, 75 μ l) se amplificó en un termociclador, en las condiciones siguientes: una etapa inicial de desnaturalización a 94°C durante 2 minutos, seguida de 40 ciclos que comprenden: una etapa de desnaturalización a 94°C durante 30 s, una etapa de hibridación a 55°C durante 30 s y después una etapa de elongación a 72°C durante 2 minutos 30 s, con 10 s de elongación suplementaria a cada ciclo, y después una etapa final de elongación a 72°C durante 5 minutos.

a₃) segunda amplificación PCR

Los productos de la primera amplificación PCR (amplicones 5' y 3') han sufrido una segunda etapa de amplificación PCR (PCR anidada) en condiciones idénticas a las de la primera amplificación, con los pares de cebadores S/F2/+/21406-21426 y S/R2/-/23454-23435, y S/F4/+/23322-23341 y S/R4/-/25348-25329, respectivamente para el amplicón 5' y el amplicón 3'.

a₄) clonación y secuenciación de los fragmentos Sa y Sb

Los amplicones Sa (extremo 5') y Sb (extremo 3') así obtenidos se purificaron con la ayuda del kit *QlAquick PCR purification* (QlAGEN), siguiendo las recomendaciones del fabricante, después se clonaron en el vector PCR2.1-TOPO (kit Invitrogen), para dar los plásmidos denominados SRAS-S1 y SRAS-S2.

El ADN de los clones Sa y Sb se aisló y después se secuenció el inserto con la ayuda del kit Big Dye, Applied Biosystem y de los cebadores universales M13 directo y M13 inverso, así como de los cebadores: S/S/+/21867, S/S/+/22353, S/S/+/22811, S/S/+/23754, S/S/+/24207, S/S/+/24699, S/S/+/24348, S/S/-/24209, S/S/-/23630, S/S/-/23038, S/S/-/22454, S/S/-/21815, S/S/-/24784, S/S/+/21556, S/S/+/23130 y S/S/+/24465, siguiendo las instrucciones del fabricante; las secuencias de los fragmentos Sa y Sb así obtenidas corresponden a las secuencias SEC ID nº 5 y SEC ID nº 6 en el listado de secuencias adjunto en anexo.

El plásmido denominado SRAS-S1 se depositó bajo el n° 1-3020, el 12 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene un fragmento 5' de la secuencia del gen S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031559, tal como se ha definido anteriormente, correspondiendo dicho fragmento denominado Sa a los nucleótidos de las posiciones 21406 a 23454 (SEC ID n° 5), en referencia a la secuencia Genbank AY274119.3 Tor2.

El plásmido denominado TOP10F'-SRAS-S2 se depositó bajo el nº 1-3019, el 12 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene un fragmento 3' de la secuencia del gen S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, correspondiendo dicho fragmento denominado Sb a los nucleótidos de las posiciones 23322 a 25348 (SEC ID nº 6), en referencia a la secuencia Genbank nº de acceso AY274119.3.

b) clonación y secuenciación del ADNc completo (clon SRAS-S de 4 kb)

El ADNc S completo se obtuvo a partir de los clones SRAS-S1 y SRAS-S2 antes citados, de la siguiente manera:

- 1)se realizó una reacción de amplificación PCR sobre un clon SRAS-S2 en presencia del cebador S/R4/-/ 25348-25329 antes citado y del cebador S/S/+/24696-24715: se obtuvo un amplicón de 633 pb,
- 2) se realizó otra amplificación PCR sobre otro clon SRAS-S2, en presencia de los cebadores S/F4/+/23322-23341 antes citados y S/S/-/24803-24784: se obtuvo un amplicón de 1481 pb,

La reacción de amplificación se realizó en las condiciones tales como se han definido anteriormente para la amplificación de los fragmentos Sa y Sb, con la excepción de que se efectuaron 30 ciclos de amplificaciones que comprenden una etapa de desnaturalización a 94°C durante 20 s y una etapa de elongación a 72°C durante 2 minutos 30 s.

3) los 2 amplicones (633 pb y 1481 pb) se purificaron en las condiciones tales como se han definido anteriormente para los fragmentos Sa y Sb.

4) se realizó otra reacción de amplificación PCR con la ayuda de los cebadores S/F4/+/23322-23341 y S/R4/-/25348-25329 antes citados, sobre los amplicones purificados obtenidos en 3). La reacción de amplificación se realizó en las condiciones tales como se han definido anteriormente para la amplificación de los fragmentos Sa y Sb, con la excepción de que se efectuaron 30 ciclos de amplificaciones.

El amplicón de 2026 pb así obtenido se purificó, se clonó en el vector PCR2.1-TOPO y después se secuenció como anteriormente, con la ayuda de los cebadores tales como se han definido anteriormente para los fragmentos Sa y Sb. El clon así obtenido se denominó clon 3'.

5)El clon SRAS-S1 obtenido anteriormente y el clon 3' se han digerido por *EcoR I*, se purificaron las bandas de aproximadamente 2 kb así obtenidas sobre gel y después se amplificaron mediante PCR con los cebadores S/F2/+/21406-21426 y S/R4/-/25348-25329 antes citados. La reacción de amplificación se realizó en las condiciones tales como se han definido anteriormente para la amplificación de los fragmentos Sa y Sb, con la excepción de que se efectuaron 30 ciclos de amplificaciones. El amplicón de aproximadamente 4 kb se purificó y se secuenció. Después, se clonó en el vector PCR2.1-TOPO para dar el plásmido denominado SRAS-S, y se secuenció el inserto contenido en este plásmido como anteriormente, con la ayuda de los cebadores tales como se han definido anteriormente para los fragmentos Sa y Sb. Las secuencias de ADNc del inserto y del amplicón que codifica la proteína S, corresponden respectivamente a las secuencias SEC ID nº 4 y SEC ID nº 2 en el listado de secuencias adjunto en anexo, éstas codifican para la proteína S (SEC ID nº 3).

La secuencia del amplicón que corresponde al ADNc que codifica la proteína S de la cepa de SRAS-CoV procedente de la extracción n°031589 presenta las dos mutaciones siguientes con respecto a las secuencias que corresponden respectivamente a los aislados Tor2 y Urbani, siendo las posiciones de las mutaciones indicadas en referencia a la secuencia completa del genoma del aislado Tor2 (Genbank AY274119.3):

- g/t en posición 23220; el codón de alanina (gct) en posición 577 de la secuencia en aminoácidos de la proteína
 S de Tor2 está sustituido por un codón de serina (tct),
- c/t en posición 24872: esta mutación no modifica la secuencia en aminoácidos de la proteína S, y

El plásmido denominado SRAS-S se depositó bajo el n° 1-3059, el 20 de junio de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que codifica la proteína S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589, secuencia que corresponde a los nucleótidos de las posiciones 21406 a 25348 (SEC ID n° 4), en referencia a la secuencia Genbank AY274119.3.

2.2) ADNc que codifica las proteínas M y E

Los ARN procedentes de la extracción 031589, extraídos como anteriormente, se sometieron a una transcripción inversa, asociada, durante la misma etapa (kit Titan One Step RT-PCR[®], Roche), a una reacción de amplificación por PCR, con la ayuda de los pares de cebadores:

- S/E/F1/+/26051-26070 y S/E/R1/-/26455-26436 para amplificar el ORF-E, y
- S/M/F1/+/26225-26244 y S/M/R1/-/27148-27129 para amplificar el ORF-M.

Una primera mezcla de reacción que contiene: 8,6 μ l de H₂Oppi, 1 μ l de dNTP (5 mM), 0,2 μ l de cada uno de los cebadores (50 μ M), 1,25 μ l de DTT (100 mM) y 0,25 μ l de ARNsin (40 UI/ μ l) se combinó con una segunda mezcla de

reacción que contiene: 1 μ l de ARN, 7 μ l de H₂Oppi, 5 μ l de tampón de RT-PCR 5X y 0,5 μ l de mezcla de enzima, y se incubaron las mezclas combinadas en un termociclador en las condiciones siguientes: 30 min. a 42°C, 10 min. a 55°C, 2 min. a 94°C seguido de 40 ciclos que comprenden una etapa de desnaturalización a 94°C durante 10 s, una etapa de hibridación a 55°C durante 30 s y una etapa de elongación a 68°C durante 45 s, con 3 s de incremento por ciclo, y finalmente una etapa de elongación terminal a 68°C durante 7 min.

Los productos de amplificación así obtenidos (amplicones M y E) han sufrido una segunda amplificación PCR (PCR anidada) utilizando el kit Expand High-Fi[®], Roche), con la ayuda de los pares de cebadores:

- S/E/F2/+/26082-26101 y S/E/R2/-/26413-26394 para el amplicón E, y
- S/M/F2/+/26330-26350 y S/M/R2/-/27098-27078 para el amplicón M.

Conteniendo la mezcla de reacción: $2~\mu l$ del producto del primer PCR, $39,25~\mu l$ de H_2 Oppi, $5~\mu l$ de tampón 10X que contiene MgCl₂, $2~\mu l$ de dNTP (5 mM), $0,5~\mu l$ de cada uno de los cebadores (50 μ M) y $0,75~\mu l$ de mezcla de enzima se incubaron en un termociclador en las condiciones siguientes: una etapa de desnaturalización a $94^{\circ}C$ durante 2 min. seguido de 30 ciclos que comprenden una etapa de desnaturalización a $94^{\circ}C$ durante 15 s, una etapa de hibridación a $60^{\circ}C$ durante 30 s y una etapa de elongación a $72^{\circ}C$ durante 45 s, con 3 s de incremento por ciclo, y finalmente una etapa de elongación terminal a $72^{\circ}C$ durante 7 min. Los productos de amplificación obtenidos que corresponden a los ADNc que codifican para las proteínas E y M se secuenciaron como anteriormente, con la ayuda de los cebadores: S/E/F2/+/26082 y S/E/R2/-/26394, S/M/F2/+/26330, S/M/R2/-/27078 antes citados y de los cebadores S/M/+/26636-26655 y S/M/-/26567-26548. Después, se clonaron, como anteriormente, para dar los plásmidos denominados SRAS-E y SRAS-M. El ADN de estos clones se aisló y se secuenció después con la ayuda de los cebadores universales M13 directo y M13 inverso, así como unos cebadores S/M/+/26636 y S/M/-/26548 antes citados.

La secuencia del amplicón que representa el ADNc que codifica la proteína E (SEC ID nº 13) de la cepa de SRAS-CoV procedente de la extracción n°031589, no comprende diferencias con respecto a las secuencias que corresponden a unos aislados AY274119.3-Tor2 y AY278741-Urbani. La secuencia de la proteína E de la cepa de SRAS-CoV 031589 corresponde a la secuencia s ID nº 14 en el listado de secuencias adjunto en anexo.

El plásmido denominado SRAS-E se depositó bajo el nº 1-3046, el 28 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que codifica la proteína E de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 26082 a 26413 (SEC ID nº 15), en referencia a la secuencia Genbank nº de acceso AY274119.3.

La secuencia del amplicón que representa el ADNc que codifica la M (SEC ID nº 16) de la cepa de SRAS-CoV procedente de la extracción n°031589 no comprende diferencias con referencia a la secuencia correspondiente del aislado AY274119.3-Tor2. Sin embargo, en la posición 26857, el aislado AY278741-Urbani comprende una c y la secuencia de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n°031589 una t. Esta mutación desemboca en una modificación de la secuencia en aminoácidos de la proteína correspondiente: en la posición 154, una prolina (AY278741-Urbani) se cambia a serina en la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n°031589. La secuencia de la proteína M de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n°031589 corresponde a la secuencia SEC ID nº 17 en el listado de secuencias adjunto en anexo.

El plásmido denominado SRAS-M se depositó bajo el nº 1-3047, el 28 de mayo de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que codifica la proteína M de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente; secuencia que corresponde a los nucleótidos de las posiciones 26330 a 27098 (SEC ID nº 18), en referencia a la secuencia Genbank nº de acceso AY274119.3.

2.3) ADNc que corresponde a los ORF3, ORF4, ORF7 a ORF11

La misma estrategia de amplificación, de clonación y de secuenciación, se utilizó para obtener los fragmentos de ADNc que corresponden respectivamente a los ORF siguientes: ORF 3, ORF4, ORF7, ORF8, ORF9, ORF10 y ORF11. Los pares de cebadores utilizados para la primera amplificación son:

- ORF3 y ORF4: S/SE/F1/+/25069-25088 y S/SE/R1/-/26300-26281
- ORF7 a ORF11: S/MN/F1/+/26898-26917 y S/MN/R1/-/28287-28266

Los pares de cebadores utilizados para la segunda amplificación son:

- ORF3 y ORF4: S/SE/F2/+/25110-25129 y S/SE/R2/-/26244-26225

- ORF7 a ORF11: S/MN/F2/+/26977-26996 y S/MN/R2/-/28218-28199

Las condiciones de la primera amplificación (RT-PCR) son las siguientes: 45 min. a 42°C, 10 min. a 55°C, 2 min. a 94°C, seguido de 40 ciclos que comprenden una etapa de desnaturalización a 94°C durante 15 s, una etapa de hibridación a 58°C durante 30 s y una etapa de elongación a 68°C durante 1 min., con 5 s de incremento por ciclo, y finalmente una etapa de elongación terminal a 68°C durante 7 min.

Las condiciones de la PCR anidada son las siguientes: una etapa de desnaturalización a 94°C durante 2 min. seguida de 40 ciclos que comprenden una etapa de desnaturalización a 94°C durante 20 s, una etapa de hibridación a 58°C durante 30 s y una etapa de elongación a 72°C durante 50 s, con 4 s de incremento por ciclo, y finalmente una etapa de elongación terminal a 72°C durante 7 min.

Los productos de amplificación obtenidos que corresponden a los ADNc que contienen respectivamente los ORF3 y 4 y los ORF7 a 11 se secuenciaron con la ayuda de los cebadores: S/SE/+/25363, S/SE/+/25835, S/SE/-/25494, S/SE/-/25875, S/MN/ +/27839, S/MN/+/27409, S/MN/-/27836 S/MN/-/27799 y se clonaron como anteriormente para los otros ORF, para dar los plásmidos denominados SRAS-SE y SRAS-MN. El ADN de estos clones se aisló y se secuenció con la ayuda de estos mismos cebadores, y unos cebadores universales M 13 sentido y M 13 antisentido.

La secuencia del amplicón que representa el ADNc de la región que contiene los ORF 3 y 4 (SEC ID nº 7) de la cepa de SRAS-CoV procedente de la extracción n°031589 comporta una diferencia nucleotídica con referencia a la secuencia correspondiente del aislado AY274119-Tor2. Esta mutación en la posición 25298 desemboca en una modificación de la secuencia en aminoácidos de la proteína correspondiente (ORF 3): en la posición 11, una arginina (AY274119-Tor2) se cambia a glicina en la cepa de SRAS-CoV procedente de la extracción n°031589. Sin embargo, no se ha identificado ninguna mutación con referencia a la secuencia correspondiente del aislado AY278741-Urbani. Las secuencias de los ORF 3 y 4 y la cepa de SRAS-CoV procedente de la extracción n°031589 corresponden respectivamente a las secuencias SEC ID nº 10 y 12 en el listado de secuencias adjunto en anexo.

El plásmido denominado SRAS-SE se depositó bajo el n° I-3126, el 13 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que corresponde a la región situada entre el ORF-S y el ORF-E y que se superpone a ORF-E de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589, tal como se ha definido anteriormente, correspondiendo dicha región a los nucleótidos de las posiciones 25110 a 26244 (SEC ID nº 8), en referencia a la secuencia Genbank n° de acceso AY274119.3,

La secuencia del amplicón que representa el ADNc que corresponde a la región que contiene los ORF7 a ORF11 (SEC ID nº 19) de la cepa de SRAS-CoV procedente de la extracción n°031589 no comprende diferencias con respecto a las secuencias correspondientes de los aislados AY274119-Tor2 y AY278741-Urbani. Las secuencias de los ORF7 a 11 de la cepa de SRAS-CoV procedente de la extracción n°031589 corresponden respectivamente a las secuencias SEC ID n° 22, 24, 26, 28 y 30 en el listado de secuencias adjunto en anexo.

El plásmido denominado SRAS-MN se depositó bajo el n° I-3125, el 13 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que corresponde a la región situada entre el ORF-M y el ORF-N de la cepa de SRAS-CoV, procedente de la extracción catalogada bajo el n° 031589 y extraída en Hanoi, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 26977 a 28218 (SEC ID n° 20), en referencia a la secuencia Genbank n° de acceso AY274119.3.

La secuencia del amplicón que representa el ADNc que corresponde a la región que contiene los ORF7 a ORF11 (SEC ID nº 19) de la cepa de SRAS-CoV procedente de la extracción n°031589 no comprenden diferencias con respecto a las secuencias correspondientes de los aislados AY274119-Tor2 y AY278741-Urbani. Las secuencias de los ORF7 a 11 de la cepa de SRAS-CoV procedente de la extracción n°031589 corresponden respectivamente a las secuencias SEC ID nº 22, 24, 26, 28 y 30 en el listado de secuencias adjunto en anexo.

2.4) ADNc que codifica la proteína N y que incluye los ORF13 y ORF14

El ADNc se sintetizó y se amplificó como se describió anteriormente para los fragmentos Sa y Sb. De manera más precisa, la mezcla de reacción que contiene: $5~\mu l$ de ARN, $5~\mu l$ de H_2O ppi $4~\mu l$ de tampón de transcriptasa inversa 5X, $2~\mu l$ de dNTP (5~mM), $2~\mu l$ de oligo 20T ($5~\mu M$), $0.5~\mu l$ de RNasin ($40~U l/\mu l$) y 1, $5~\mu l$ de AMV-RT ($10~U l/\mu l$) Promega) se incubó en un termociclador en las condiciones siguientes: 45~min. a $42^{\circ}C$, 15~min. a $55^{\circ}C$, 5~min. a $95^{\circ}C$, y después se mantuvo a $+4^{\circ}C$.

Se realizó una primera amplificación PCR con el par de cebadores S/N/F3/+/28023 y S/N/R3/-/29480.

La mezcla de reacción como anteriormente para la amplificación de los fragmentos S1 y S2 se incubó en un termociclador, en las condiciones siguientes: una etapa inicial de desnaturalización a 94°C durante 2 min. seguida

de 40 ciclos que comprenden una etapa de desnaturalización a 94°C durante 20 s, una etapa de hibridación a 55°C durante 30 s y después una etapa de elongación a 72°C durante 1 min. 30 s con 10 s de elongación suplementaria en cada ciclo, y después una etapa final de elongación a 72°C durante 5 min.

El amplicón obtenido en la primera amplificación PCR ha sufrido una segunda etapa de amplificación PCR (PCR anidada) con el par de cebadores S/N/F4/+/28054 y S/N/R4/-/29430 en condiciones idénticas a las de la primera amplificación.

El producto de amplificación obtenido que corresponde al ADNc que codifica la proteína N de la cepa de SRAS-CoV procedente de la extracción n°031589 se secuenció con la ayuda de los cebadores: S/N/F4/+/28054, S/N/R4/-/29430, S/N/+/28468, S/N/+/28918 y S/N/-/28607 y se clonó como anteriormente para los otros ORF, para dar el plásmido denominado SRAS-N. El ADN de estos clones se aisló y se secuenció con la ayuda de los cebadores universales M13 sentido y M13 anti-sentido, así como de los cebadores S/N/+/28468, S/N/+/28918 y S/N/-/28607.

La secuencia del amplicón que representa el ADNc que corresponde a ORF-N y que incluye los ORF13 y ORF14 (SEC ID nº 36) de la cepa de SRAS-CoV procedente de la extracción n°031589 no comprenden diferencias con respecto a las secuencias correspondientes de los aislados AY274119.3-Tor2 y AY278741-Urbani. La secuencia de la proteína N de la cepa de SRAS-CoV procedente de la extracción n°031589 corresponde a la secuencia SEC ID nº 37 en el listado de secuencias adjunto en anexo.

Las secuencias de los ORF13 y 14 de la cepa de SRAS-CoV procedente de la extracción n°031589 corresponden respectivamente a las secuencias SEC ID n° 32 y 34 en el listado de secuencias adjunto en anexo.

El plásmido denominado SRAS-N se depositó bajo el nº I-3048, el 5 de junio de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que codifica la proteína N de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el nº 031589, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 28054 a 29430 (SEC ID nº 38), en referencia a la secuencia Genbank nº de acceso AY274119.3.

2.5) extremos 5' y 3' no codificantes

a) extremo 5' no codificante (5'NC)

a₁) síntesis del ADNc

Los ARN procedentes de la extracción 031589, extraídos como anteriormente, se sometieron a una transcripción inversa en las condiciones siguientes:

El ARN (15 μl) y el cebador S/L/-/443 (3 μl de la concentración de 5 μm, se incubaron durante 10 min. a 75°C.

Después, se añadieron un tampón de transcriptasa inversa 5X (6 μ l, INVITROGEN), unos dNTP 10 mM (1 μ l), un DTT 0,1M (3 μ l), y se incubó la mezcla a 50°C durante 3 min.

Finalmente, se añadió la transcriptasa inversa (3 μ l de Superscript[®], INVITROGEN) a la mezcla anterior, que se incubó a 50°C durante 1h30 y después a 90 °C durante 2 min.

El ADNc así obtenido se purificó con la ayuda del kit *QlAquick PCR purification* (QIAGEN), según las recomendaciones del fabricante.

b₁) Reacción a la Terminal Transferasa (TdT)

El ADNc (10 μ l) se incuba durante 2 min. a 100°C, se conserva en hielo, y después se añaden: H_2O (2,5 μ l), tampón TdT 5X (4 μ l, AMERSHAM), dATP 5mM (2 μ l) y TdT (1,5 μ l, AMERSHAM). La mezcla así obtenida se incuba durante 45 min. a 37°C y después durante 2 min. a 65°C.

El producto obtenido se amplifica mediante una primera reacción PCR con la ayuda de los cebadores: S/L/-/225-206 y anclaje 14T: 5'-AGATGAATTCGGTACCTTTTTTTTTTTTT-3' (SEC ID nº 68). Las condiciones de la amplificación son las siguientes: una etapa inicial de desnaturalización a 94°C durante 2 min. es seguida de 10 ciclos que comprenden una etapa de desnaturalización a 94°C durante 10 s, una etapa de hibridación a 45°C durante 30 s y después una etapa de elongación a 72°C durante 30 s, y después de 30 ciclos que comprenden una etapa de desnaturalización a 94°C durante 10 s, una etapa de hibridación a 50°C durante 30 s y después una etapa de elongación a 72°C durante 30 s, y después de una etapa final de elongación a 72°C durante 5 min.

El producto de la primera amplificación PCR sufrió una segunda etapa de amplificación con la ayuda de los cebadores: S/L/-/204-185 y anclaje 14T antes citado en condiciones idénticas a las de la primera amplificación. El

amplicón así obtenido se purificó, se secuenció con la ayuda del cebador S/L/-/182-163 y después se clonó como anteriormente para los diferentes ORF, para dar el plásmido denominado SRAS-5'NC. El ADN de este clon se aisló y se secuenció con la ayuda de los cebadores universales M13 sentido y M13 anti-sentido y del cebador S/L/-/182-163 antes citado.

El amplicón que representa el ADNc que corresponde al extremo 5'NC de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589 corresponde a la secuencia SEC ID nº 72 en el listado de secuencias adjunto en anexo; esta secuencia no comprende diferencias con respecto a las secuencias correspondientes de los aislados AY274119.3-Tor2 y AY278741-Urbani.

El plásmido denominado SRAS-5'NC se depositó bajo el n° I-3124, el 7 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene el ADNc que corresponde al extremo 5' no codificante del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589, tal como se ha definido anteriormente, secuencia que corresponde a los nucleótidos de las posiciones 1 a 204 (SEC ID n° 39), en referencia a la secuencia Genbank n° de acceso AY274119.3.

b) extremo 3' no codificante (3'NC)

a₁) síntesis del ADNc

Los ARN procedentes de la extracción nº 031589, extraídos como anteriormente, se sometieron a una transcripción inversa, según el protocolo siguiente: conteniendo la mezcla de reacción: ARN (5 μ l), H₂O (5 μ l), tampón de transcriptasa inversa 5X (4 μ l), dNTP 5 mM (2 μ l), Oligo 20T 5 μ M (2 μ l), RNasin 40 U/ μ l (0,5 μ l) y RT-AMV 10 UI/ μ l (1,5 μ l, PROMEGA) se incubó en un termociclador, en las condiciones siguientes: 45 min. a 42°C, 15 min. a 55°C, 5 min. a 95°C, y después se mantuvó a +4°C.

El ADNc obtenido se amplificó mediante una primera reacción PCR con la ayuda de los cebadores S/N/+/28468-28487 y anclaje 14T antes citado. Las condiciones de la amplificación son las siguientes: una etapa inicial de desnaturalización a 94°C durante 2 min. seguida de 10 ciclos que comprenden una etapa de desnaturalización a 94°C durante 20 s, una etapa de hibridación a 45°C durante 30 s y después una etapa de elongación a 72°C durante 50 s. y después de 30 ciclos que comprenden una etapa de desnaturalización a 94°C durante 20 s, una etapa de hibridación a 50°C durante 30 s y después una etapa de elongación a 72°C durante 50 s, y después de una etapa final de elongación a 72°C durante 5 min.

El producto de la primera amplificación PCR sufrió una segunda etapa de amplificación con la ayuda de los cebadores S/N/+/28933-28952 y anclaje 14T antes citados, en condiciones idénticas a las de la primera amplificación. El amplicón así obtenido se purificó, se secuenció con la ayuda del cebador S/N/+/29257-29278 y se clonó como anteriormente para los diferentes ORF, para dar el plásmido denominado SRAS-3'NC. El ADN de este clon se aisló y se secuenció con la ayuda de los cebadores universales M13 sentido y M13 anti-sentido y del cebador S/N/+/29257-29278 antes citado.

El amplicón que representa el ADNc que corresponde al extremo 3'NC de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589 corresponde a la secuencia SEC ID nº 73 en el listado de secuencias adjunto en anexo; esta secuencia no comprende diferencias con respecto a las secuencias correspondientes de los aislados AY274119.3-Tor2 y AY278741-Urbani.

El plásmido denominado SRAS-3'NC se depositó bajo el n° I-3123, el 7 de noviembre de 2003, en la Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; contiene la secuencia de ADNc que corresponde al extremo 3' no codificante del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589, tal como se ha definido anteriormente, correspondiendo dicha secuencia a aquella situada entre el nucleótido en la posición 28933 a 29727 (SEC ID n° 40), en referencia a la secuencia Genbank n° de acceso AY274119.3, se termina por una serie de nucleótidos a.

2.6) ORFIa y ORF1b

La amplificación de la región 5' que contiene los ORF1a y ORF1b del genoma del SRAS-CoV procedente de la extracción nº 031589 se realizó practicando unas reacciones de RT-PCR seguidas de PCR anidadas según los mismos principios que los anteriormente descritos para los otros ORF. Los fragmentos amplificados están superpuestos sobre varias decenas de bases, permitiendo así la reconstrucción informática de la secuencia completa de esta parte del genoma. De media, los fragmentos amplificados son de dos kilobases.

Se amplificaron así 14 fragmentos superpuestos denominados L0 a L12 con la ayuda de los cebadores siguientes:

Tabla II: Cebadores utilizados para la amplificación de la región 5'(ORF1a y ORF1b)

REGIÓN AMPLIFICADA Y SECUENCIADA (no tiene en cuenta los cebadores)	Cebador sentido RT- PCR	Cebador antisentido RT-PCR	Cebador sentido PCR anidada	Cebador antisentido PCR anidada
L0 50-480	S/L0/F1/+30	S/L0/R1/-481		
L1 231-2240	S/L1/F1/+147	S/L1/R1/-2336	S/L1/F2/+211	S/L1/R2/-2241
L2 2156-4167	S/L2/F1/+2033	S/L2/R1/-4192	S/L2/F2/+2136	S/L2/R2/-4168
L3 3913-5324	S/L3bis/F1/+3850	S/L3bis/R1/-5365	S/L3bis/F2/+3892	S/L3bis/R2/-5325
L4b 4952-6023	S/L4b/F1/+4878	S/L4b/R1/-6061	S/L4b/F2/+4932	S/L4b/R2/-6024
L4 5325-7318	S/L4/F1/+5272	S/L4/R1/-7392	S/L4/F2/+5305	S/L4/R2/-7323
L5 7296-9156	S/L5/F1/+7111	S/L5/R1/-9253	S/L5/F2/+7275	S/L5/R2/-9157
L6 9053-11066	S/L6/F1/+8975	S/L6/R1/-11151	S/L6/F2/+9032	S/L6/R2/-11067
L7 10928-12962	S/L7/F1/+10883	S/L7/R1/-13050	S/L7/F2/+10928	S/L7/R2/-12963
L8 12835-14834	S/L8/F1/+12690	S/L8/R1/-14857	S/L8/F2/+12815	S/L8/R2/-14835
L9 14765-16624	S/L9/F1/+14688	S/L9/R1/-16678	S/L9/F2/+14745	S/L9/R2/-16625
L10 16534-18570	S/L10/F1/+16451	S/L10/R1/-18594	S/L10/F2/+16514	S/L10/R2/-18571
L11 18521-20582	S/L11/F1/+18441	S/L11/R1/-20612	S/L11/F2/+18500	S/L11/R2/-20583
L12 20338-22205	S/L12/F1/+20279	S/L12/R1/-22229	S/L12/F2/+20319	S/L12/R2/-22206

Todos los fragmentos se purificaron en las condiciones siguientes, excepto el fragmento L0 que se amplificó como se describe anteriormente para el ORF-M:

- <u>RT-PCR</u>: 30 min. a 42°C, 15 min. a 55°C, 2 min. a 94°C, después el ADNc obtenido se amplifica en las condiciones siguientes: 40 ciclos que comprenden: una etapa de desnaturalización a 94°C durante 15 s, una etapa de hibridación a 58°C durante 30 s y después una etapa de elongación a 68°C durante 1 min. 30 s, con 5 s de elongación suplementaria en cada ciclo, después una etapa final de elongación a 68°C durante 7 min.
- <u>PCR anidada</u>: una etapa inicial de desnaturalización a 94°C durante 2 min. seguida de 35 ciclos que comprenden: una etapa de desnaturalización a 94°C durante 15 s, una etapa de hibridación a 60°C durante 30 s y después una etapa de elongación a 72°C durante 1 min. 30 s, con 5 s de elongación suplementaria en cada ciclo, después una etapa final de elongación a 72°C durante 7 min.

Los productos de amplificaciones se secuenciaron con la ayuda de los cebadores definidos en la Tabla III siguiente:

Tabla III: Cebadores utilizados para la secuenciación de la región 5' (ORF1a y ORF1b)

Nombres	Secuencias (SEC ID nº 76 a 139)
S/L3/+/4932	5'-CCACACACAGCTTGTGGATA-3'
S/L4/+/6401	5'-CCGAAGTTGTAGGCAATGTC-3'
S/L4/+/6964	5'-TTTGGTGCTCCTTCTTATTG-3'
S/L4/-/6817	5'-CCGGCATCCAAACATAATTT- 3'
S/L5/-/7633	5'-TGGTCAGTAGGGTTGATTGG-3'
S/L5/-/8127	5'-CATCCTTTGTGTCAACATCG-3'
S/L5/-/8633	5'-GTCACGAGTGACACCATCCT-3'
S/L5/+/7839	5'-ATGCGACGAGTCTGCTTCTA-3'
S/L5/+/8785	5'-TTCATAGTGCCTGGCTTACC-3'
S/L5/+/8255	5'-ATCTTGGCGCATGTATTGAC-3'
S/L6/-/9422	5'-TGCATTAGCAGCAACAACAT-3'

Nombres	Secuencias (SEC ID nº 76 a 139)
S/L6/-/9966	5'-TCTGCAGAACAGCAGAAGTG-3'
S/L6/-/10542	5'-CCTGTGCAGTTTGTCTGTCA-3'
S/L6/+/10677	5'-CCTTGTGGCAATGAAGTACA-3'
S/L6/+/10106	5'-ATGTCATTTGCACAGCAGAA-3'
S/L6/+/9571	5'-CTTCAATGGTTTGCCATGTT-3'
S/L7/-/11271	5'-TGCGAGCTGTCATGAGAATA-3'
S/L7/-/11801	5'-AACCGAGAGCAGTACCACAG-3'
S/L7/-/12383	5'-TTTGGCTGCTGTAGTCAATG-3'
S/L7/+/12640	5'-CTACGACAGATGTCCTGTGC-3'
S/L7/+/12088	5'-GAGCAGGCTGTAGCTAATGG-3'
S/L7/+111551	5'-TTAGGCTATTGTTGCTGCTG-3'
S/L8/-13160	5'-CAGACAACATGAAGCACCAC-3'
S/L8/-/13704	5'-CGCTGACGTGATATATGTGG-3'
S/L8/-14284	5'-TGCACAATGAAGGATACACC-3'
S/L8/+/14453	5'-ACATAGCTCGCGTCTCAGTT-3'
S/L8/+/13968	5'-GGCATTGTAGGCGTACTGAC-3'
S/L8/+/13401	5'-GTTTGCGGTGTAAGTGCAG-3'
S/L9/-15098	5'-TAGTGGCGGCTATTGACTTC-3'
S/L9/-15677	5'-CTAAACCTTGAGCCGCATAG-3'
S/L9/-16247	5'-CATGGTCATAGCAGCACTTG-3'
S/L9/+16323	5'-CCAGGTTGTGATGTCACTGAT-3'
S/L9/+15858	5'-CCTTACCCAGATCCATCAAG-3'
S/L9/+15288	5'-CGCAAACATAACACTTGCTG-3'
S/L10/-16914	5'-AGTGTTGGGTACAAGCCAGT-3'
S/L10/-17466	5'-GTTCCAAGGAACATGTCTGG-3'
S/L10/-18022	5'-AGGTGCCTGTGTAGGATGAA-3'
S/L10/+18245	5'-GGGCTGTCATGCAACTAGAG-3'
S/L10/+17663	5'-TCTTACACGCAATCCTGCTT-3'
S/L10/+17061	5'-TACCCATCTGCTCGCATAGT-3'
S/L11/-/18877	5'-GCAAGCAGAATTAACCCTCA-3'
S/L11/-19396	5'-AGCACCACCTAAATTGCATC-3'
S/L11/-20002	5'-TGGTCCCTTTGAAGGTGTTA-3'
S/L11/+20245	5'-TCGAACACATCGTTTATGGA-3'
S/L11/+/19611	5'-GAAGCACCTGTTTCCATCAT-3'
S/L11/+/19021	5'-ACGATGCTCAGCCATGTAGT-3'
SRAS/L1/F3/+800	5'-GAGGTGCAGTCACTCGCTAT-3'
SRAS/L1/F4/+1391	5'-CAGAGATTGGACCTGAGCAT-3'
SRAS/L1/F5/+1925	5'-CAGCAAACCACTCAATTCCT-3'
SRAS/L1/R3/-1674	5'-AAATGATGGCAACCTCTTCA-3'
SRAS/L1/R4/-1107	5'-CACGTGGTTGAATGACTTTG-3'
SRAS/L1/R5/-520	5'-ATTTCTGCAACCAGCTCAAC-3'
SRAS/L2/F3/+2664	5'-CGCATTGTCTCCTGGTTTAC-3'
SRAS/L2/F4/+3232	5'-GAGATTGAGCCAGAACCAGA-3'
SRAS/L2/F5/+3746	5'-ATGAGCAGGTTGTCATGGAT-3'
SRAS/L2/R3/-3579	5'-CTGCCTTAAGAAGCTGGATG-3'
SRAS/L2/R4/-2991	5'-TTTCTTCACCAGCATCATCA-3'
SRAS/L2/R5/-2529	5'-CACCGTTCTTGAGAACAACC-3'
SRAS/L3/F3/+4708	5'-TCTTTGGCTGGCTCTTACAG-3'
SRAS/L3/F4/+5305	5'-GCTGGTGATGCTGCTAACTT-3'
SRAS/L3/F5/+5822	5'-CCATCAAGCCTGTGTCGTAT-3'
SRAS/L3/R3/-5610	5'-CAGGTGGTGCAGACATCATA-3'
SRAS/L3/R4/-4988	5'-AACATCAGCACCATCCAAGT-3'
SRAS/L3/R5/-4437	5'-ATCGGACACCATAGTCAACG-3'
	,

Las secuencias de los fragmentos L0 a L12 de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el n° 031589, corresponden respectivamente a las secuencias SEC ID nº 41 a SEC ID nº 54 en el listado de secuencias adjunto en anexo. Entre estas secuencias, sólo las que corresponden a los fragmentos L5 comprenden una diferencia nucleotídica con referencia a la secuencia correspondiente del aislado AY278741-Urbani. Esta mutación t/c en la posición 7919 desemboca una modificación de la secuencia en aminoácidos de la proteína correspondiente, codificada por el ORF 1a: en la posición 2552, una valina (codón gtt; AY278741) se cambia a alanina (codón gct) en la cepa de SRAS-CoV 031589. Sin embargo, no se identifica ninguna mutación con referencia a la secuencia correspondiente del aislado AY274119.3-Urbani. Los otros fragmentos no presentan diferencias con respecto a las secuencias correspondientes de los aislados Tor2 y Urbani.

<u>Ejemplo 2</u>: Producción y purificación de proteínas N y S recombinantes de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589

La proteína entera N y dos fragmentos polipeptídicos de la proteína S de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589 se produjeron en $E.\ coli$, en forma de proteínas de fusión que comprende una etiqueta polihistidina N- o C-terminal. En los dos polipéptidos S, las secuencias hidrófobas N y C-terminales de la proteína S (péptido señal: posiciones 1 a 13 y hélice transmembranaria: posiciones 1196 a 1218) se eliminaron mientras que se preservaron la hélice β (posiciones 565 a 687) y las dos unidades de tipo "hélices enrolladas" (posiciones 895 a 980 y 1155 a 1186) de la proteína S. Estos dos polipéptidos están constituidos por: un fragmento largo (S_L) que corresponde a las posiciones 14 a 1193 de la secuencia en aminoácidos de la proteína S y un fragmento corto (S_C) que corresponde a las posiciones 475 a 1193 de la secuencia en aminoácidos de la proteína S

1) Clonación de los ADNc N, S_L y S_C en el vector de expresión pIVEX2.3 y pIVEX2.4

Los ADNc que corresponden a la proteína N y a los fragmentos S_L y S_C se amplificaron por PCR en condiciones estándares, con la ayuda del ADN polimerasa Platinium Pfx[®] (INVITROGEN). Los plásmidos SRAS-N y SRAS-S se usaron como plantillas y los oligonucleótidos siguientes como cebadores:

- 5'-CCCATATGTCTGATAATGGACCCCAATCAAAC-3' (N sentido, SEC ID nº 55)
- 5'-CCCCCGGGTGCCTGAGTTGAATCAGCAGAAGC-3' (N antisentido, SEC ID nº 56)
- 5'-CCCATATGAGTGACCTTGACCGGTGCACCAC-3' (Sc sentido, SEC ID nº 57)
- 5'-CCCATATGAAACCTTGCACCCCACCTGCTC-3' (S_L sentido, SEC ID nº 58)
- 5'-CCCCGGGTTTAATATTGCTCATATTTTCCC-3' (S_C y S_L antisentido, SEC ID nº 59).

Los cebadores sentido introducen un sitio *Ndel* (subrayado) mientras que les cebadores antisentido introducen un sitio *Xmal* o *Smal* (subrayado). Los 3 productos de amplificación se purificaron sobre columna (kit *QIAquick PCR Purification*, QIAGEN) y se clonaron en un vector apropiado. El ADN plasmídico purificado de las 3 construcciones (kit *QIAFilter Midi Plasmid*, QIAGEN) se verificó mediante secuenciación y se digirió mediante las enzimas *Ndel* y *Xmal*. Los 3 fragmentos que corresponden a los ADNc N, S_L y S_C se purificaron sobre gel de agarosa y después se insertaron en los plásmidos pIVEX2.3MCS (etiqueta polihistidina C-terminal) y pIVEX2.4d (etiqueta polihistidina N-terminal) previamente digeridos por las mismas enzimas. Después de la verificación de las construcciones, los 6 vectores de expresión así obtenidos (pIV2.3N, pIV2.3S_C, pIV2.3S_L, pIV2.4N, pIV2.4S_C también denominado pIV2.4S_I, pIV2.4S_L) se usaron después, por una parte para ensayar la expresión de las proteínas *in vitro*, y por otra parte para transformar la cepa bacteriana BL21(DE3)pDIA17 (NOVAGEN). Estas construcciones codifican unas proteínas cuya masa molecular esperada es la siguiente: pIV2.3N (47174 Da), pIV2.3S_C (82897 Da), pIV2.3S_L (132056 Da), pIV2.4N (48996 Da), pIV2.4S, (81076 Da) y pIV2.4S_L(133877 Da). Unas bacterias transformadas por pIV2.3N se depositaron en la CNCM el 23 de octubre de 2003, bajo el número I-3117, y unas bacterias transformadas por pIV2.4S₁ se depositaron a la CNCM el 23 de octubre de 2003, bajo el número I-3118.

2) Análisis de la expresión de las proteínas recombinantes in vitro e in vivo

Se ha ensayado la expresión de proteínas recombinantes a partir de los 6 vectores recombinantes, en una primera etapa, en un sistema in vitro (RTS100, Roche). Las proteínas producidas in vitro, después de una incubación de los vectores recombinantes pIVEX, 4h a 30°C, en el sistema RTS100, se analizaron mediante transferencia western con la ayuda de un anticuerpo anti-(his)6 acoplado a la peroxidasa. El resultado de la expresión in vitro (figura 1) muestra que sólo la proteína N está expresada en cantidades importantes, sea cual sea la posición, N- o C-terminal, de la etiqueta polihistidina. En una segunda etapa, la expresión de las proteínas N y S se ensayó in vivo a 30°C en un medio LB, en presencia o ausencia de inductor (IPTG 1 mM). La proteína N está muy bien producida en este sistema bacteriano (figura 2) y se encuentra principalmente en una fracción soluble después de la lisis de las bacterias. Sin embargo, la versión larga de S (SL) está muy poco producida y completamente insoluble (figura 3). La versión corta (S_C) presenta también una muy baja solubilidad, pero un índice de expresión mucho más elevado que el de la versión larga. Por otra parte, la construcción S_C fusionada con una etiqueta polihistidina en posición Cterminal presenta un tamaño más bajo de lo que se espera. Un experimento de inmunodetección con un anticuerpo anti-polihistidina ha mostrado que esta construcción era incompleta. En conclusión, las dos construcciones pIV2.3N y pIV2.4S_I que expresan respectivamente la proteína N entera fusionada con la etiqueta polihistidina en C-terminal y la proteína S corta fusionada con la etiqueta polihistidina en N-terminal, se seleccionaron para producir las dos proteínas en gran cantidad a fin de purificarlas. Los plásmidos pIV2.3N y pIV2.4S_I, se han depositado respectivamente bajo el nº I-3117 y I-3118 en la CNCM, 25 rue du Docteur Roux, 75724 PARIS 15, el 23 de octubre de 2003.

3) Análisis de la actividad antigénica de las proteínas recombinantes

Se ha ensayado la actividad antigénica de las proteínas N, S_L y S_C mediante transferencia western, con la ayuda de dos muestras de suero, que provienen de un mismo paciente infectado por el SRAS-CoV, extraídas 8 días (M12) y 29 días (M13) después del principio de los síntomas del SRAS. El protocolo experimental es como se describe en el ejemplo 3. Los resultados ilustrados por la figura 4 muestran (i) la seroconversión del paciente, y (ii) que la proteína N posee una mayor reactividad antigénica que la proteína S corta.

4) Purificación de la proteína N a partir de pIV2.3N

Se han realizado varios experimentos de purificación de la proteína N, producida a partir del vector pIV2.3N, según el protocolo siguiente. Las bacterias BL21(DE3)pDIA17, transformadas por el vector de expresión pIV2.3N, se cultivaron a 30°C en 1 litro de medio de cultivo que contiene 0,1 mg/ml de ampicilina, e inducidas por 1 mM de IPTG cuando se alcanza la densidad celular, equivalente a A_{600} = 0,8 (aproximadamente 3 horas). Después de 2 horas de cultivo en presencia de inductor, las células se recuperaron mediante centrifugación (10 min. a 5000 rpm), se resuspendieron en el tampón de lisis (50 mM NaH₂PO₄, NaCl 0,3 M, 20 mM imidazol, pH 8 que contiene la mezcla de inhibidores de proteasas $Complete^{\oplus}$, Roche), y se lisaron mediante la prensa de French (12000 psi). Después de la centrifugación del lisado bacteriano (15 min. a 12000 rpm), el sobrenadante (50 ml) se depositó con un caudal de 1ml/min. sobre una columna (15 ml) de quelación metálica (Ni-NTA superflow, Qiagen), equilibrada por el tampón de lisis. Después del lavado de la columna por 200 ml de tampón de lisis, la proteína N se eluyó mediante un gradiente de imidazol (20 \rightarrow 250 mM) en 10 volúmenes de columna. Las fracciones que contienen la proteína N se reunieron y se analizaron mediante electroforesis en gel de poliacrilamida en condiciones desnaturalizantes y después coloración con azul de Coomassie. Los resultados ilustrados por la figura 5 muestran que el protocolo empleado permite purificar la proteína N con una homogeneidad muy satisfactoria (95%) y un rendimiento medio de 15 mg de proteína por litro de cultivo.

5) Purificación de la proteína S_C a partir de pIV2.4S_C (pIV2.4S₁)

El protocolo seguido para purificar la proteína S corta es muy diferente de aquel descrito anteriormente, ya que la proteína está fuertemente agregada en el sistema bacteriano (cuerpo de inclusión). Las bacterias BL21(DE3)pDIA17, transformadas por el vector de expresión pIV2.4S₁ se cultivaron a 30°C en 1 litro de medio de cultivo que contiene 0,1 mg/ml de ampicilina, e inducidas mediante 1 mM de IPTG cuando se alcanza la densidad celular, equivalente a $A_{600} = 0.8$, (aproximadmente 3 horas). Después de 2 horas de cultivo en presencia de inductor, las células se recuperaron mediante centrifugación (10 min. a 5000 rpm), se resuspendieron en el tampón de lisis (0,1 M Tris-HCl, EDTA 1 mM, pH 7,5), y se lisaron mediante la prensa de French (1200 psi). Después de la centrifugación del lisado bacteriano (15 min. a 12000 rpm), el residuo se resuspendió en 25 ml de tampón de lisis que contiene 2% de Triton X100 y 10 mM ∃-mercaptoetanol, y después se centrifugó durante 20 min. a 12000 rpm. El residuo se resuspendió en un tampón Tris-HCl 10 mM que contiene 7 M de urea, y se agitó suavemente durante 30 min. a temperatura ambiente. Este último lavado de los cuerpos de inclusión con 7 M de urea es necesario para eliminar la mayoría de las proteínas membranarias de E. coli que cosedimentan con la proteína Sc agregada. Después de una última centrifugación durante 20 min. a 12000 rpm, el residuo final se resuspende en el tampón Tris-HCl 10 mM. El análisis electroforético de esta preparación (digura 6) muestra que la proteína S corta puede ser purificada con una homogeneidad satisfactoria (aproximadamente el 90%) a partir de los cuerpos de inclusión (extracto insoluble).

Ejemplo 3: Inmunodominancia de la proteína N

La reactividad de los anticuerpos presentes en el suero de los pacientes que padecen neumopatía atípica causada por el coronavirus asociado al SRAS (SRAS-CoV), frente a diferentes proteínas de este virus, se analizó mediante transferencia western en las condiciones descritas a continuación.

1) Material

a) lisado de células infectadas por el SRAS-CoV

Células Vero E6 $(2x10^6)$ se infectaron por el SRAS-CoV (aislado catalogado bajo el número FFM/MA104) a una multiplicidad de infección (M.O.I.) de 10^{-1} o 10^{-2} y después se incubaron en un medio DMEM que contiene el 2% de SVF, a 35° C en una atmósfera que contiene 5% de CO_2 . 48 horas más tarde, la alfombra celular se lavó con PBS y después se lisó con $500~\mu l$ de tampón de depósito preparado según Laemmli, y que contiene β -mercaptoetanol. Las muestras se hirvieron después durante 10~minutos y después se sonificaron 3~veces durante 20~segundos.

b) anticuerpos

b₁) suero de paciente que padece neumopatía atípica

El suero referenciado en el Centre National de Référence des virus influenzae (Région-Nord) bajo el n° 20033168 es el de un paciente francés que padece neumopatía atípica causada por el SRAS-CoV extraído 38 días después del principio de los síntomas; el diagnóstico de infección por el SRAS-CoV se realizó mediante par RT-PCR anidada y PCR cuantitativa.

b2) sueros policionales de conejo monoespecíficos dirigidos contra la proteína N o la proteína S

Los sueros son los producidos a partir de las proteínas recombinantes N y $S_{\mathbb{C}}$ (ejemplo 2), según el protocolo de inmunización descrito en el ejemplo 4; se trata del suero de conejo P13097 (suero anti-N) y del suero de conejo P11135 (suero anti-S).

2) Método

Se separaron 20 μl de lisado de células infectadas por el SRAS-CoV con M.O.I. de 10⁻¹ y 10⁻² y, a título de control, 20 μl de un lisado de células no infectadas (mock) sobre un gel SDS al 10% de poliacrilamida y después se transfirieron sobre una membrana de nitrocelulosa. Después del bloqueo en una solución de PBS/leche 5%/Tween 0,1% y lavado en PBS/ Tween 0,1%, esta membrana se hibridó durante una noche a 4°C con: (i) el inmunosuero n° 20033168 diluido al 1/300, 1/1000 y 1/3000 en el tampón PBS/BSA 1%/Tween 0,1%, (ii) el suero de conejo P13097 (suero anti-N) diluido al 1/50000 en el mismo tampón y (iii) el suero de conejo P11135 (suero anti-S) diluido al 1/10000 en el mismo tampón. Después del lavado en PBS/Tween, se realizó una hibridación secundaria con la ayuda de anticuerpos policionales de carnero dirigidos contra las cadenas pesadas y ligeras de las inmunoglobulinas G humanas y acoplados a la peroxidasa (NA933V, Amersham), o bien de anticuerpos policionales de asno dirigidos contra las cadenas pesadas y ligeras de las inmunoglobulinas G de conejo y acoplados a la peroxidasa (NA934V, Amersham). Los anticuerpos fijados se revelaron con la ayuda del kit ECL+ (Amersham) y de películas de autorradiografía Hyperfilm MP (Amersham). Una escala de masa molecular (kDa) se muestra en la figura.

3) Resultados

La figura 7 muestra que tres polipéptidos de masa molécula aparente 35, 55 y 200 kDa son detectados específicamente en los extractos de células infectadas por el SRAS-CoV.

A fin de identificar estos polipéptidos, se realizaron otras dos inmunohuellas (figura 8) sobre las mismas muestras y en las mismas condiciones con dos anticuerpos policlonales de conejo específicos de la nucleoproteína N (conejo P13097, figura 8A) y de la proteína de espícula S (conejo P11135, figura 8B). Este experimento muestra que el polipéptido de 200 kDa corresponde a la glicoproteína de espícula S del SRAS-CoV, que el polipéptido de 55 kDa corresponde a la nucleoproteína N mientras que el polipéptido de 35 kDa representa posiblemente una forma truncada o degradada de la N.

Los datos presentados en la figura 7 muestran por lo tanto que el suero 20033168 reacciona fuertemente con la N, y mucho más débilmente con la S del SRAS-CoV, ya que los polipéptidos de 35 y 55 kDa se revelan en forma de bandas intensas para diluciones de 1/300, 1/1000 y 1/3000 del inmunosuero, mientras que el polipéptido de 200 kDa es débilmente revelado para una dilución de 1/300. Se puede anotar también que ningún otro polipéptido del SRAS-CoV es detectado para diluciones superiores al 1/300 del suero 20033168.

Este experimento indica que la respuesta en anticuerpo específico de la N del SRAS-CoV domina las respuestas en anticuerpos específicos de los otros polipéptidos del SRAS-CoV y en particular la respuesta en anticuerpos dirigida contra la glicoproteína S. Indica una inmunodominancia de la nucleoproteína N durante infecciones humanas por el SRAS-CoV.

Ejemplo 4: Preparación de anticuerpos policionales monoespecíficos dirigidos contra las proteínas N y S del coronavirus asociado al SRAS (SRAS-CoV)

1) Material v método

Se inmunizaron tres conejos (P13097, P13081, P13031) con el polipéptido recombinante purificado que corresponde a la totalidad de la nucleoproteína (N), preparado según el protocolo descrito en el ejemplo 2. Después de una primera inyección de 0,35 mg por conejo de proteína emulsionada en adyuvante completo de Freund (vía intradérmica), los animales recibieron 3 inyecciones de recuerdo con 3 y después con 4 semanas de intervalo, de 0,35 mg de proteína recombinante emulsionada en adyuvante completo de Freund.

Se inmunizaron tres conejos (P11135, P13042, P14001) con el polipéptido recombinante que corresponde al fragmento corto de la proteína S (S_C), producida como se describe en el ejemplo 2. Como este polipéptido se

encuentra principalmente en forma de cuerpo de inclusión en el citoplasma bacteriano, los animales han recibido 4 inyecciones intradérmicas con 3-4 semanas de intervalo de una preparación de cuerpo de inclusión que corresponde a 0,5 mg de proteína recombinante emulsionada en adyuvante incompleto de Freund. Las 3 primeras inyecciones se realizaron con una preparación de cuerpos de inclusión, preparados según el protocolo descrito en el ejemplo 2, mientras que la cuarta inyección se realizó con una preparación de cuerpos de inclusión, preparados según el protocolo descrito en el ejemplo 2, y después purificados sobre gradiente de sacarosa y lavados en 2% de Tritón X100.

Para cada conejo, se ha preparado un suero preinmune (p.i.) antes de la primera inmunización y un inmunosuero (I.S.) 5 semanas después de la cuarta inmunización.

En una primera etapa, se analizó la reactividad de los sueros mediante ensayo ELISA frente a preparaciones de proteínas recombinantes parecidas a las utilizadas para las inmunizaciones; los ensayos ELISA se realizaron según el protocolo y con los agentes reactivos descritos en el ejemplo 6.

En una segunda etapa, se analizó la reactividad de los sueros realizando una inmunohuella (Western-blot) de un lisado de células infectadas por el SRAS-CoV, siguiendo el protocolo tal como se ha descrito en el ejemplo 3.

2) Resultados

Los ensayos ELISA (figura 9) demuestran que las preparaciones de proteína N recombinante y de cuerpos de inclusión del fragmento corto de la proteína S (S_C) son inmunógenos en el animal y que el título de los sueros inmunes es elevado (más del 1/25000).

La inmunohuella (figura 8) muestra que el suero inmune del conejo P13097 reconoce dos polipéptidos presentes en los lisados de células infectadas por el SRAS-CoV: un polipéptido cuya masa molecular aparente (50-55 kDa según los experimentos) es compatible con la de la nucleoproteína N (422 residuos, masa molecular predicha de 46 kDa) y un polipéptido de 35 kDa, que representa probablemente una forma truncada o degradada de la N.

Este experimento muestra también que el suero de conejo P11135 reconoce principalmente un polipéptido cuya masa molecula aparente (180-220 kDa según los experimentos) es compatible con una forma glicosilada de la S (1255 residuos, cadena polipeptídica no glicosilada de 139 kDa), así como unos polipéptidos más ligeros, que representan probablemente unas formas truncadas y/o glicosiladas de la S.

En conclusión, el conjunto de estos experimentos demuestra que unos polipéptidos recombinantes expresados en *E. coli* y que corresponden a las proteínas N y S del SRAS-CoV permiten inducir en el animal unos anticuerpos policionales capaces de reconocer las formas nativas de estas proteínas.

<u>Ejemplo 5</u>: Preparación de anticuerpos policionales monoespecíficos dirigidos contra las proteínas M y E del coronavirus asociado al SRAS (SRAS-CoV)

1) Análisis de la estructura de las proteínas M y E

a) Proteína E

La estructura de la proteína E del SRAS-CoV (76 aminoácidos) se analizó *in silico*, con la ayuda de diferentes programas como signalP v1.1, NetNGlyc 1.0, THMM 1.0 y 2.0 (Krogh y otros., 2001, J. Mol. Biol., 305(3):567-580) o también TOPPRED (von Heijne, 1992, J. Mol. Biol. 225, 487-494). El análisis muestra que este polipéptido no glicosilado es una proteína membranaria de tipo 1, que contiene una sola hélice transmembranaria (aa 12-34 según THMM), y cuya parte más grande del dominio hidrófilo (42 residuos) está localizada en el extremo C-terminal y posiblemente en el interior de la partícula viral (endodominio). Se puede anotar una inversión en la topología predicha por las versiones 1.0 (N-ter es externo) y 2.0 (N-ter es interno) del programa THMM, pero que otros algoritmos, en particular TOPPRED y THUMBUP (Zhou y Zhou, 2003, Protein Science 12:1547-1555) confirman una localización externa del extremo N-terminal de E.

b) Proteína M

Un análisis similar realizado sobre la proteína M del SRAS-CoV (221 aminoácidos) muestra que este polipéptido no posee péptido señal (según el programa signalP v1.1) sino tres dominios transmembranarios (residuos 15-37, 50-72, 77-99 según THMM2.0) y un gran dominio hidrófilo (aa 100-221) localizado en el interior de la partícula viral (endodominio). Esta posiblemente glicosilada sobre la asparagina en la posición 4 (según NetNGlyc 1.0).

Así, de acuerdo con los datos experimentales conocidos para los otros coronavirus, es remarcable que las dos proteínas M y E presentan unos endodominios que corresponden a la mayor parte de sus polipéptidos y unos ectodominios de tamaño muy pequeño.

- el ectodominio de E corresponde posiblemente a los residuos 1 a 11 ó 1 a 12 de la proteína: MYSFVSEETGT (L), SEC ID nº 70. En efecto, la probabilidad asociada a la localización transmembranaria del residuo 12 es intermedia (0,56 según THMM 2.0).
- el ectodominio de M corresponde posiblemente a los residuos 2 a 14 de la proteína: ADNGTITVEELKQ, SEC ID nº 69. En efecto, la metionina N-teminal de M está, muy probablemente, escindida del polipéptido maduro, ya que el residuo en la posición 2 es una alanina (Varshavsky, 1996, 93:12142-12149).

Por otra parte, el análisis de hidrofobicidad (Kyte & Doolittle, Hopp & Woods) de la proteína E demuestra que el extremo C-terminal del endodominio de E es hidrófilo y por lo tanto probablemente expuesto a la superficie de este dominio. Así, un péptido sintético que corresponde a este extremo es un buen candidato inmunógeno para inducir en el animal unos anticuerpos dirigidos contra el endodominio de E. En consecuencia, se ha sintetizado un péptido que corresponde a los 24 residuos C-terminales de E.

2) Preparación de anticuerpos dirigidos contra el ectodominio de las proteínas M y E y el endodominio de la proteína E

Los péptidos M2-14 (ADNGTITVEELKQ, SEC ID nº 69), E1-12 (MYSFVSEETGTL, SEC ID nº 70) y E53-76 (KPTVYVYSRV KNLNSSEGVP DLLV, SEC ID nº 71) se sintetizaron mediante Neosystem. Se han acoplado a la KLH (*Keylzole Limpet Hemocyanin*) con la ayuda del MBS (m-maleimido-benzoil-N-hidroxisuccinimida éster) a través de una cisteína añadida durante la síntesis, o bien en N-terminal del péptido (caso de E53-76), o bien en C-terminal (caso de M2-14 y E1-12).

Se inmunizaron dos conejos con cada uno de los conjugados, siguiendo el protocolo de inmunización siguiente: después de una primera inyección de 0,5 mg de péptido acoplado a la KLH y emulsionado en adyuvante completo de Freund (vía intradérmica), los animales reciben 2 a 4 inyecciones de recuerdo con 3 ó 4 semanas de intervalo de 0,25 mg de péptido acoplado a la KLH y emulsionado en adyuvante incompleto de Freund.

Para cada conejo, se ha preparado un suero preinmune (p.i.) antes de la primera inmunización, y se prepara un inmunosuero (I.S.) 3 a 5 semanas después de la inyección de recuerdo.

La reactividad de los sueros se analizó mediante transferencia western con la ayuda de extractos de células infectadas por el SRAS-CoV (figura 43B), o con la ayuda de extractos de células infectadas por un virus recombinante de la vacuna que expresa la proteína E (VV-TG-E, figura 43A) o M (VV-TN-M, figura 43C) del aislado 031589 del SRAS-CoV.

Los inmunosueros de los conejos 22234 y 22240, inmunizados por el conjugado KLH-E53-76, reconocen un polipéptido de aproximadamente 9 a 10kD, que está presente en los extractos de células infectadas por el SRAS-CoV pero ausente en los extractos de células no infectadas (figura 43B). La masa aparente de este polipéptido es compatible con la masa predicha de la proteína E, que es de 8,4 kD. De manera similar, el inmunosuero del conejo 20047, inmunizado por el conjugado KLH-E1-12, reconoce un polipéptido presente en los extractos de células infectadas por el virus VV-TG-E, cuya masa molar aparente es compatible con la de la proteína E (figura 43A).

El inmunosuero de los conejos 20013 y 20080, inmunizados por el conjugado KLH-M2-14, reconoce un polipéptido presente en los extractos de células infectadas por el virus VV-TN-M (figura 43C), cuya masa molar aparente (18 kD aproximadamente) es compatible con la de la glicoproteína M, que es de 25,1 kD y presenta un punto isoeléctrico elevado (9,1 para el polipéptido desnudo).

Estos resultados demuestran que los péptidos E1-12 y E53-76 por un lado, y el péptido M2-14 por otro lado, permiten inducir en el animal unos anticuerpos policionales capaces de reconocer las formas nativas de las proteínas E y M respectivamente del SRAS-CoV.

<u>Ejemplo 6</u>: Análisis de la reactividad en ELISA de la proteína N recombinante, frente a sueros de pacientes que padecen SRAS

1) Material

El antígeno utilizado para preparar las fases sólidas es la nucleoproteína N recombinante purificada preparada según el protocolo descrito en el ejemplo 2.

Los sueros a ensayar (Tabla IV) se seleccionaron en base a unos resultados de análisis de su reactividad por inmunifluorescencia (título IF-SRAS), frente a células infectadas por el SRAS-CoV.

Tabla IV: Sueros ensayados en ELISA

Referencia	N° de suero	Tipo de suero	Fecha del suero***	Título IF-SRAS
3050	Α	Control	na*	nt**
3048	В	Control	na	nt
033168	D	Paciente 1- SRAS	27/04/03 (D38)	320
033397	E	Paciente-1 SRAS	11/05/03 (D52)	320
032632	F	Paciente -2 SRAS	21/03/03 (D17)	2500
032791	G	Paciente -3 SRAS	04/04/03 (D3)	<40
033258	Н	Paciente -3 SRAS	28/04/03 (D27)	160
*na: no-aplical	ble. **nt: no-e	ensavado, *** los d	latos indicados corres	ponden al número

*na: no-aplicable. **nt: no-ensayado. *** los datos indicados corresponden al número de días después del principio de los síntomas de SRAS.

2) Método

La proteína N (100 μ l) diluida a diferentes concentraciones en tampón carbonato 0,1 M, pH 9,6 (1, 2 ó 4 μ g/ml) se distribuye en los pocillos de placas ELISA, después se incuban las placas durante una noche a temperatura del laboratorio. Las placas se lavan con tampón PBS-Tween, se saturan con tampón PBS-leche desnatada-sacarosa (5%). Se añaden los sueros a ensayar (100 μ l) previamente diluidos (1/50, 1/100, 1/200, 1/400, 1/800, 1/1600 y 1/3200), después se incuban las placas durante 1h a 37° C. Después de 3 lavados, se añade el conjugado anti-IgG humano marcado con peroxidasa (referencia 209-035-098, JACKSON) diluido al 1/18000, y se incuban las placas durante 1h a 37° C. Después de 4 lavados, se añade el cromógeno (TMB) y el sustrato (H₂O₂), y se incuban las placas durante 30 min. a temperatura ambiente, protegido de la luz. La reacción se detiene después y se mide la absorbencia a 450 nm con la ayuda de un lector automático.

3) Resultados

Los ensayos ELISA (figura 10) demuestran que la preparación de proteína N recombinante está reconocida específicamente por los anticuerpos de sueros de pacientes que padecen SRAS extraídos en fase tardía de la infección (≥ 17 días después del principio de los síntomas), mientras que no está reconocida de manera significativa por los anticuerpos de un suero de paciente extraído en fase precoz de la infección (3 días después del principio de los síntomas), ni por sueros controles de sujetos que no padecen SRAS.

Ejemplo 7: En sayos ELISA realizados para una detección muy específica y sensible de una infección por el coronavirus asociado al SRAS, a partir de sueros de pacientes

1) Ensayo ELISA IgG indirecto

a) Reactivos

Preparación de las placas

Las placas son sensibilizadas por una solución de proteína N a 2 μ g/ml en un tampón PBS 10mM pH 7,2, rojo de fenol a 0,25 ml/l. Se depositan 100 μ l de solución en los pocillos y se dejan incubar a temperatura ambiente durante una noche. La saturación se realiza mediante un prelavado en tampón PBS 10 mM/tween 0,1%, seguido de un lavado con una solución de saturación PBS, 25% leche/sacarosa.

Diluyente de sueros

Tampón TRIS 0,48 g/l, PBS 10 mM, EDTA 3,7 g/l, leche 15% v/v, pH 6,7

Diluyente conjugado

Tampón citrato (15 g/l), tween 0,5%, suero bovino 25%, NaCl 12%, leche desnatada 6% v/v PH 6,5

Conjugado

Conjugado anti-IgG humano 50X, comercializado por Bio-Rad: kit Platelia H. pylori ref. 72778

Otras Soluciones:

Solución de lavado R2, solución de revelado al TMB R8 diluyente, R9 cromógeno, R10 solución de detención: agentes reactivos comercializados por Bio-Rad (ej.: kit Platelia pylori, ref. 72778)

b) Modo de realización

Diluir los sueros al 1/200 en el diluyente de las muestras

Distribuir 100 ul/pocillo

Incubación durante 1h a 37°C

3 lavados en solución de LAVADO R2 10x previamente diluido 10 veces en agua desmineralizada (es decir, solución de lavado 1X)

Distribuir 100 μL de conjugado (conjugado 50x para diluir extemporáneamente en el diluyente conjugado proporcionado)

Incubación durante 1h a 37°C

4 lavados en solución de lavado 1X

Distribuir 200 µl/pocillo de solución de revelado (a diluir extemporáneamente, ej.:1 ml de R9 en 10ml de R8)

Incubación durante 30 min. a temperatura ambiente en la oscuridad

Detener la reacción con 100 µl/pocillo de R10

LECTURA a 450/620nm

Los resultados pueden ser interpretados tomando un suero LIMITE que da una respuesta más allá de la cual los sueros ensayados se considerarán como positivos. Este suero se selecciona y se diluye a fin de dar una señal significativamente superior al ruido de fondo.

2) Ensayo ELISA DOBLE EPÍTOPO

a) Agentes reactivos

Preparación de las placas

Las placas son sensibilizadas mediante una solución de proteína N a 1 μ g/ml en un tampón PBS 10 mM pH 7,2, rojo de fenol a 0,25 ml/l. Se depositan 100 μ l de solución en los pocillos y se dejan incubar a temperatura ambiente durante una noche. La saturación se lleva a cabo mediante un prelavado en tampón PBS 10 mM/0,1% tween seguido de un lavado con una solución de saturación PBS 10 mM, leche 25% (V/V)

Diluyente de sueros y conjugado

Tampón TRIS salino 50 mM pH 8, leche 2%

Conjugado

Se trata de la proteína N recombinante purificada, acoplada a la peroxidasa según el protocolo de Nakane (Nakane P.K. y Kawaoi A; (1974): Peroxydase-labeled antibody, a new method of conjugation. The Journal of Histochemistry and Cytochemistry Vol. 22, N) 23, p. 1084-1091), en unas relaciones molares respectivas 1/2. Este conjugado ProtN POD se utiliza a una concentración de 2 μ g/ml en un diluyente suero/conjugado.

Otras soluciones:

Solución de lavado R2, soluciones de revelado con TMB R8, diluyente, R9 cromógeno, R10 solución de detención: agentes reactivos comercializados por Bio-Rad (ej. kit platelia pylori ref. 72778).

b) Modo de realización

1ª etapa en placa de "predilución"

- Diluir cada suero al 1/5 en la placa de predilución (48 μl de diluyente + 12 μl de suero).
- Después de diluir el conjunto de los sueros, distribuir 60 μl de conjugado

■ Llegado el caso, se deja incubar la mezcla suero + conjugado.

2ª etapa en placa de "reacción"

- Transferir 100 μl de mezlca/pocillo en la placa de reacción
- Incubación durante 1h 37°C
- 5 lavados en dislución de LAVADO R2 10x previamente diluida 10 veces con agua desmineralizada (→ solución de lavado 1x)
- Distribuir 200 μl/pocillo de solución de revelado (a diluir extemporáneamente, ej.:1 ml de R9 en 10 ml de R8)
- Incubación durante 30 min. a temperatura ambiente protegido de la luz
- Detener la reacción con 100 µl/pocillo de R10
- LECTURA a 450/620nm

Como para el ensayo ELISA indirecto, los resultados pueden ser interpretados utilizando un suero de "valor límite". Cualquier suero que tiene una respuesta superior al suero de valor límite se considerará como positivo.

2) Resultados

Los sueros de pacientes clasificados como posible caso de SRAS del hospital francés de Hanoi, Vietnam o en relación con el hospital francés de Hanoi (JYK) se han analizado utilizando el ensayo IgG-N indirecto y el ensayo N doble epítopo.

Los resultados del ensayo IgG-N indirecto (figuras 14 y 15) y N doble epítopo (figuras 16 y 17) muestran una excelente correlación entre sí, así como con un ensayo ELISA indirecto que compara la reactividad de los sueros frente a un lisado de células VeroE6 no infectadas o infectadas por el SRAS-CoV (ELISA-lisado SRAS-CoV; véase la tabla V a continuación). Todos los sueros extraídos 12 días o más después del principio de los síntomas se encontraron positivos, incluyendo en pacientes para los cuales la infección por el virus del SRAS-CoV no había podido ser documentada mediante análisis de extracción respiratoria por RT-PCR, probablemente debido a una extracción demasiado tardía durante la infección (≥ D12). En el caso del paciente TTH para el cual se realizó una extracción nasal a D7 fue encontrado negativo mediante RT-PCR, la calidad de la extracción podría ser la causa.

Ciertos sueros fueron encontrados negativos mientras que la presencia de SRAS-CoV se detectó mediante RT-PCR. Se trata en todos los casos de sueros precoces extraídos menos de 10 días después del principio de los síntomas (ej.: suero nº 032637). En el caso de un paciente PTTH (suero nº 032673), sólo se evocó una suspicacia de SRAS en el momento en el que las extracciones se realizaron.

En coclusión, los ensayos serológicos IgG-N indirecto y N-doble epítopo permiten documentar la infección por el SRAS-CoV en todos los pacientes para sueros extraídos 12 días o más después de la infección.

Tabla V: resultados de los ensayos ELISA

Nº Pvt	Paciente	Día	PCR-SRAS (1)	ELISA lisado SRAS-CoV (2)	IgG-N (2ª serie)	2Xepítopo (2ª serie)
033168	JYK	38	POS	+++	>5000	NT
033597	JYK	74	POS	NT	≈ 5000	NT
032552	VTT	8	NEG-D3 y D8 y D12	NEG	<200	<5
032544	CTP	16	NEG D16 y D20	++	>5000	>>20
032546	CJF	15	NEG D15 y D19	++	>5000	>>20
032548	PTL	17	NEG D17 y D21	++	>5000	>>20
032550	NTH	17	NEG-D17 y D21	++	>5000	>>20
032553	VTT	8	NEG-D3 y D8 y D12	NEG	<200	<5
032554	NTBV	4	POS	NEG	<200	<5

Nº Pvt	Paciente	Día	PCR-SRAS (1)	ELISA lisado SRAS-CoV (2)	IgG-N (2ª serie)	2Xepítopo (2ª serie)
032555	NTBV	4	POS	NEG	<200	
032564	NTP	15	POS	++	>5000	>>20
032629	NVH	4	POS	NEG	<200	<5
032631	BTTX	9	POS	NEG	<200	<5
032635	NHH	4	POS	NEG	<200	<5
032637	NHB	10	POS	NEG	<200	<5
032642	BTTX	9	POS	NEG	<200	<5
032643	LTDH	1	POS	NEG	<200	<5
032644	NTBV	4	POS	NEG	<200	<5
032646	TTH	12	NEG D7 y D 12 y D16	++	>5000	>>20
032647	DTH	17	NEG D17 y D21	++	>5000	>>20
032648	NNT	15	NEG D15 y D19	++	>5000	>>20
032649	PTH	17	NEG D17 y D21	++	>5000	>>20
032672	LVV	16	NEG D16 y D20	+	>5000	>>20
032673	PTTH	NA	NEG	NEG	<200	<5
032674	PNB	17	NEG D17 y D21	++	>5000	>>20
032682	VTH	12	NEG D12 y D16	++	>5000	>>20
032683	DTV	17	NEG D17 y D21	+	>1000	>>20

Notas:

Ejemplo 8: Deteción del coronavirus asociado al SRAS (SRAS-CoV) por RT-PCR

1) Desarrollo de condiciones de RT-PCR en tiempo real con la ayuda de cebadores específicos del gen de la proteína de nucleocapside - ensayo "Light Cycler N"

a) concepción de los cebadores y de las sondas

La concepción de los cebadores y de las sondas se realizó a partir de la secuencia del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589, con la ayuda del programa "Light Cycler Probe Design (Roche)". Así, se seleccionaron las dos series de cebadores y de sondas siguientes:

- serie 1 (SEC ID nº 60, 61, 64, 65):
- <u>cebador sentido</u>: N/+/28507: 5'-GGC ATC GTA TGG GTT G-3' [28507-28522]
- <u>cebador antisentido</u>: N/-/28774: 5'-CAG TTT CAC CAC CTC C-3' [28774-28759]
- sonda 1: 5'-GGC ACC CGC AAT CCT AAT AAC AAT GC-fluoresceina 3' [28561-28586]
- sonda 2: 5' Red705 -GCC ACC GTG CTA CAA CTT CCT-fosfato [28588-28608]
- serie 2 (SEC ID nº 62, 63, 66, 67)
- <u>cebador sentido</u>: N/+/28375: 5'-GGC TAC TAC CGA AGA G-3' [28375-28390]

^{(1):} Los análisis por RT-PCR se realizaron por RT-PCR anidada BNI, LC Artus y LC-N sobre unos hisopos nasales o de la faringe; POS significa que al menos una extracción se encontró positiva en este paciente.

^{(2):} La reactividad de los sueros en el ensayo ELISA que utiliza un lisado de células infectadas por el SRAS-CoV se clasificó en muy altamente reactivo (+++), altamente activo (++), reactivo (+) y negativo en función del valor DO obtenido en las soluciones ensayadas.

- cebador antisentido: N/-/28702: 5'-AAT TAC CGC GAC TAC G-3' [28702-28687]
- sonda 1: SRAS/N/FL: 5'-ATA CAC CCA AAG ACC ACA TTG GC-fluoresceina 3' [28541-28563]
- sonda 2: SRAS/N/LC705: 5' Red705 -CCC GCA ATC CTA ATA ACA ATG CTG C-fosfato 3' [28565-28589]

b) análisis de la eficacia de los dos pares de cebadores

A fin de ensayar la eficacia respectiva de los dos pares de cebadores, se realizó una amplificación por RT-PCR sobre un ARN sintético que corresponde a los nucleótidos 28054-29430 del genoma de la cepa de SRAS-CoV procedente de la extracción catalogada bajo el número 031589 y que contiene la secuencia del gen N.

De manera más precisa:

Este ARN sintético se preparó mediante transcripción *in vitro* con la ayuda del ARN polimerasa del fago T7, de una plantilla de ADN obtenida por linearización del plásmido SRAS-N con la enzima *Bam H1*. Después de la eliminación de la plantilla de ADN por digestión con la ayuda de DNAsa 1, los ARN sintéticos se purifican mediante una extracción con fenol-cloroformo seguida de dos precipitaciones sucesivas en acetato de amonio e isopropanol. Se cuantifican entonces mediante la medición de la absorbencia a 260 nm y se controla su calidad mediante la relación de las absorbencias a 260 y 280 nm así como mediante una electroforesis en gel de agarosa. Así, la concentración de la preparación de ARN sintético utilizada para estos estudios es de 1,6 mg/ml, lo que corresponde a 2,1.10¹⁵ copias/ml de ARN.

Cantidades decrecientes de ARN sintético se amplificaron por RT-PCR con la ayuda del kit "Superscript™ One-Step RT-PCR with Platinum® Taq" y los pares de cebadores n° 1 (N/+/28507, N/-/28774) (figura 1A) y n° 2 (N/+/28375, N//28702) (figura 1B), siguiendo las indicaciones del proveedor. Las condiciones de amplificación utilizadas son las siguientes: el ADNc se sintetizó mediante incubación durante 30 min. a 45 °C, 15 min. a 55°C y después 2 min. a 94 °C, después se amplificó mediante 5 ciclos que comprenden: una etapa de desnaturalización a 94°C durante 15 s, una etapa de hibridación a 45°C durante 30 s, y después una etapa de elongación a 72°C durante 15 s, una etapa de hibridación a 55°C durante 30 s, y después una etapa de elongación a 72°C durante 30 s, con 2 s de elongación suplementaria en cada ciclo, y de una etapa final de elongación a 72°C durante 5 min. Los productos de amplificación obtenidos se mantuvieron después a 10°C.

Los resultados presentados en la figura 11 muestran que el par de cebadores n° 2 (N/+/28375, N/-/28702) permite detectar hasta 10 copias de ARN (banda de baja intensidad) o 10^2 copias (banda de buena intensidad) contra 10^4 copias para el par de cebadores n° 1 (N/+/28507, N/-/28774). Los amplicones son respectivamente de 268 pb (par 1) y de 328 pb (par 2).

c) desarrollo de la RT-PCR en tiempo real

Se desarrolló una RT-PCR en tiempo real con la ayuda del par de cebadores n^2 y del par de sonda constituido por SRAS/N/FL y SRAS/N/LC705 (figura 2).

La amplificación se realizó sobre un LightCycler $^{\text{TM}}$ (Roche) con la ayuda del kit "Light Cycler RNA Amplification Kit Hybridization Probes" (referencia 2 015 145, Roche) en las condiciones optimizadas siguientes. Una mezcla de reacción que contiene: H_2O (6,8 μ l), $MgCl_2$ 25 mM (0,8 μ l, 4 μ M final de Mg2+), mezcla de reacción 5X (4 μ l), sonda SRAS/N/FL 3 μ M (0,5 μ l, 0,075 μ M final), sonda SRAS/N/LC705 3 μ M (0,5 μ l, 0,075 μ M final), cebador N/+/28375 10 μ M (1 μ l, 0,5 μ M final), cebador N/-/28702 10 μ M (1 μ l, 0,5 μ M final), mezcla de enzima (0,4 μ l) y muestra (ARN viral, 5 μ l) se amplificó siguiendo el programa siguiente:

- Transcripción inversa:	50°C	10:00 min.	modo de análisis: ninguno
- <u>Desnaturalización</u> :	95°C	30 s x1	modo de análisis: ninguno
- Amplificación:	95°C 50°C 72°C	2 s 15 s 13 s	} modo de análisis: cuantificación*} x45 rampa térmica 2,0°C/s}
- Enfriamiento:	40°C	30 s x1	modo de análisis: ninguno

^{*} la medición de fluorescencia se hace al final de la hibridación y a cada ciclo (en modo SINGLE).

Los resultados presentados en la figura 12 muestran que este RT-PCR en tiempo real es muy sensible ya que permite detectar 10^2 copias de ARN sintético en 100% de las 5 muestras analizadas (29/29 muestras en 8

experimentos) y hasta 10 copias de ARN en 100% de las 5 muestras analizadas (40/45 muestras en 8 experimentos). Muestra también que este RT-PCR permite detectar la presencia la presencia del genoma del SRAS-CoV en una muestra y cuantificar el número de genomas presentes. A título de ejemplo, el ARN viral de un stock de SRAS-CoV cultivado sobre células Vero E6 se extrajo con la ayuda del kit "Qiamp viral RNA extraction" (Qiagen), diluido a 0,05.10⁻⁴ y analizado por RT-PCR en tiempo real según el protocolo descrito anteriormente; el análisis presentado en la figura 12 muestra que este stock de virus contiene 6,5.10⁹ genomas-equivalentes/ml (geq/ml), lo que es muy similar al valor de 1,0.10¹⁰ geq/ml medido con la ayuda del kit "RealArt™ HPA-Coronavirus LC RT PCR Reagents" comercializado por Artus.

2) Desarrollo de condiciones de RT-PCR a nidada que tiene como diana el gen del ARN polimerasa - e nsayo "RT-PCR anidada CDC (Centers for Disease Control and Prévention) /IP"

a) Extracción del ARN viral

Muestra clínica: QIAamp viral RNA Mini Kit (QIAGEN) según las indicaciones del fabricante, o una técnica equivalente. El ARN se evalúa en un volumen de 60 μl.

b) RT-PCR anidada "SNE/SAR"

Primera etapa: RT-PCR acoplado «SNE»

Se utilizó el kit Invitrogen *"Superscript™ One-Step RT-PCR with Platinum® Tacf"*, pero se le puede sustituir el kit *"Titan"* de Roche Boehringer con resultados similares.

Oligonucleótidos:

- SNE-S1 5' GGT TGG GAT TAT CCA AAA TGT GA 3'
- SNE-AS 1 5'GCA TCA TCA GAA AGA ATC ATC ATG 3'
- > Tamaño esperado: 440 pb
- 1. Preparar una mezcla:

H ₂ O	6,5 μl
Reacción mezcla 2X	12,5 μl
Oligo SNE-S1 50 μM	0,2 μΙ
Oligo SNE-AS1 50 μM	0,2 μΙ
ARNsin 40 U/μl	0,12 μΙ
RT/Platinum Taq mix	0, 5 μl

2. A 20 µl de la mezcla, añadir 5 µl de ARN y proceder a la amplificación sobre termociclador (condiciones ABI 9600)

```
2.1 45°C
             30 min.
     55°C
             15 min.
     94°C
             2 min.
2.2. 94°C
             15 s
                                   }
                                   } x 5 ciclos
     45°C
             30 s
     72°C
             30 s
                                   }
2.3. 94°C
             15 s
                                   }
     55°C
             30 s
                                   } x 35 ciclos
             30 s + 2 s/ciclo
     72°C
                                   }
2.4. 72°C
             5 min.
2.5 10°C
```

Conservación a +4°C.

La ARNsin (N2511/N2515) de Promega se utilizó como inhibidor de RNasa.

Unos ARN sintéticos sirvieron de control positivo. A título de control, 10^3 , 10^2 y 10 copias de ARN sintético R_{SNE} se amplificaron en cada experimento.

Segunda etapa: PCR anidada "STAR'

Oligonucleótidos:

- SAR1-S 5' CCT CTC TTG TTC TTG CTC GCA 3'

- SAR1-AS 5' TAT AGT GAG CCG CCA CAC ATG 3'

> Tamaño esperado: 121 pb

1. Preparar una mezcla:

H2O	35,8 μl
Tampón Taq 10X	5 μΙ
MgCl ₂ 25 mM	4 μΙ
Mezcla dNTPs 5 mM	2 μΙ
Oligo SAR1-S 50 μM	0,5 μΙ
Oligo SAR1-AS 50 μM	0,5 μΙ
Taq ADN pol 5 U/μl	0,25 μΙ

Se utilizó el AmpliTaq DNA Pol de Applied Biosystems (tampón 10X sin MgCl₂, ref. 27216601).

2. A 48 μ l de la mezcla, añadir 2 μ l del producto de la primera PCR y proceder a la amplificación (condiciones ABI 9600):

```
2.1. 94°C
              2 min.
2.2. 94°C
              30 s
     45°C
              45 s
                                    } x 5 ciclos
     72°C
              30 s
2.3. 94°C
              30 s
     55°C
              30 s
                                    } x 35 ciclos
     72°C
              30 s + 1 s/cicle
2.4. 72°C
              5 min.
2.5 10°C
```

- 3. Analizar 10 µl del producto de reacción sobre gel "low-melting" (tipo Seakem GTG) a 3% de agarosa. La sensibilidad del ensayo anidada está, rutinariamente, en las condiciones descritas, de 10 copias de ARN.
- 4. Los fragmentos puede después ser purificados sobre QIAquick PCR kit (QIAGEN) y secuenciados con los oligo SAR1-S y SAR1-AS.

3) Detección del ARN del SRAS-CoV por PCR a partir de extracciones respiratorias

a) Primer estudio comparativo

Se ha realizado un estudio comparativo sobre una serie de extracciones respiratorias recibidas por el Centre National de Référence des virus influenzae (Région-Nord), y susceptibles de contener SRAS-CoV. Para ello, se ha extraído el ARN de las extracciones con la ayuda del kit "Qiamp viral RNA extraction" (Qiagen), y analizado por RT-PCR en tiempo real, por un lado con la ayuda de los pares de cebadores y de sondas de la serie n° 2 en las condiciones descritas anteriormente y, por otro lado, con la ayuda del kit "LightCycler SRAS-CoV quantification kit" comercializado por Roche (referencia 03 604 438). Los resultados se resumen en la tabla VI a continuación. Muestran que 18 de las 26 extracciones son negativas y 5 de las 26 extracciones son positivas para los dos kits, mientras que una extracción es positiva para el único kit Roche y dos para los únicos agentes reactivos N "serie 2". Además, para 3 extracciones (20032701, 20032712, 20032714) las cantidades de ARN detectadas son claramente superiores con los agentes reactivos (sondas y cebadores) de la serie n° 2. Estos resultados indican que los cebadores y las sondas N "serie 2" son más sensibles para la detección del genoma del SRAS-CoV en unas extracciones biológicas que las del kit actualmente disponible.

<u>Tabla VI</u>: Análisis por RT-PCR en tiempo real de los ARN extraídos de una serie de extracciones de 5 pacientes con la ayuda de los pares de cebadores y de sondas de la serie n° 2 (N "serie 2") o del kit "LightCycler SARS-CoV quantification kit" (Roche). El tipo de extracción se indica así como el número de copias del genoma viral medidos en cada uno de los dos ensayos. NEG: RT-PCR negativa.

Extracciones n°	Paciente	Tipo de extracción	KIT ROCHE	N "serie 2"
20033082	K	nasal	NEG	NEG
20033083	K	faríngea	NEG	NEG
20033086	K	nasal	NEG	NEG
20033087	K	faríngea	NEG	NEG
20032802	M	nasal	NEG	NEG
20032803	M	expectoración	NEG	NEG
20032806	M	nasal o faríngea	NEG	NEG
20031746ARN2	С	faríngea	NEG	NEG
20032711	С	nasal o faríngea	39	NEG
20032910	В	nasal	NEG	NEG
20032911	В	faríngea	NEG	NEG
20033356	V	expectoración	NEG	NEG
20033357	V	expectoración	NEG	NEG
20031725	K	asp. endotraqueal	NEG	150
20032657	K	asp. endotraqueal	NEG	NEG
20032698	K	asp. endotraqueal	NEG	NEG
20032720	K	asp. endotraqueal	3	5
20033074	K	heces	115	257
20032701	M	faríngea	443	1676
20032702	M	expectoración	NEG	249
20031747ARN2	С	faríngea	NEG	NEG
20032712	С	desconocida	634	6914
20032714	С	faríngea	17	223
20032800	В	nasal	NEG	NEG
20033353	V	nasal	NEG	NEG
20033384	V	nasal	NEG	NEG

b) Segundo estudio comparativo

Los rendimientos de diferentes métodos de RT-PCR anidada y de RT-PCR en tiempo real se compararon después para 121 extracciones respiratorias de posibles casos de SRAS del hospital francés de Hanoi, Vietnam, realizados entre el 4º y el 17º día después del principio de los síntomas. Entre estas extracciones, 14 se habían encontrado positivas durante un primer ensayo que utiliza el método de RT-PCR anidada que tiene como diana el ORF1b (que codifica la replicasa) tal como se describe inicialmente por el Bernhard Nocht Institute (RT-PCR anidada BNI). Informaciones en relación con este ensayo están disponibles en internet, en la dirección http://www15.bni-hamburg.de/bni/bni2/neu2/getfile.acgi?area engl=diagnos-tics&pid=4112.

Los diferentes ensayos comparados en este estudio son:

- el método de RT-PCR cuantitativa, según la invención, con los cebadores y sonda N "serie 2" descrito anteriormente (columna Light Cycler N),
- el ensayo de RT-PCR anidada que tiene por diana el gen del ARN polimerasa descrito anteriormente, desarrollado por el CDC, el BNI y el Instituto Pasteur (RT-PCR anidada CDC/IP),
- el kit ARTUS de referencia "HPA Corona LC RT-PCR Kit # 5601-02", que es un ensayo de RT-PCR en tiempo real que tiene por diana el gen ORF1b,
- el ensayo de RT-PCR anidada de BNI, que tiene por diana también el gen del ARN polimerasa, mencionado anteriormente.

Los inventores han constatado:

- 1) una variabilidad inter-ensayo para una misma técnica, relacionada con la degradación de la preparación de ARN durante descongelaciones repetidas, en particular para las muestras que contienen las cantidades de ARN más bajas,
- 2) una sensibilidad reducida de la RT-PCR anidada CDC/IP con relación a la RT-PCR anidada BNI, y

3) una sensibilidad comparable del ensayo RT-PCR cuantitativa, según la invención, (Light Cycler N) con respecto al ensayo Light Cycler (LC) Artus.

Estos resultados, presentados en la tabla VII a continuación, muestran que el ensayo por RT-PCR cuantitativa, según la invención, constituye un excelente complemento, o una alternativa, a los ensayos actualmente disponibles. En efecto, el coronavirus relacinado al SRAS es un virus emergente, susceptible de evolucionar rápidamente. En particular, el gen del ARN polimerasa del coronavirus relacionado al SRAS, que está en el punto de mira de la mayoría de los ensayos actualmente disponibles, puede recombinar con el de otros coronavirus no relacionados al SRAS. El uso de un ensayo que tiene como diana exclusivamente este gen podría entonces conducir a la obtención de falsos negativos.

El ensayo RT-PCR cuantitativo, según la invención, no tiene por diana la misma región genómica que el kit ARTUS, ya que tiene por diana el gen que codifica la proteína N. Realizando un ensayo de diagnóstico que tiene por diana dos generes diferentes del coronavirus relacionado con el SRAS, se puede por lo tanto esperar librarse de resultados de tipo falsos positivos que podrían deberse a la evolución genética del virus.

Además, parece particularmente ventajoso tener por diana el gen de la proteína de nucleocápside, ya que es muy estable, debido a la fuerte presión de selección relacionada con las tensiones estructurales elevadas que conciernen a esta proteína.

Tabla VII: Comparación de diferentes métodos de análisis por amplificación génica, a partir de 121 extracciones de posibles casos de SRAS del hospital francés de Hanoi, Vietnam (epidemia del 2003)

N° CNR	Tipo de	Día de	Paciente	RT-PCR	RT-PCR	kit Light	Light Cycler
	extracción (1)	extracción		anidada CDC/IP	anidada BNI	Cycler Artus	N (IP)
107	NyP			Negativa	Negativa	Negativa	Negativa
extracciones					J		
032529	Р	10	NHB	Negativa	Positiva	Negativa	Negativa
032530	N	10	NHB	Positiva	Positiva	3,10E+01	4,20E+01
032531	Р	7	LP	Positiva	Positiva	7,70E+00	3,10E+00
032534	N	15	BND	Positiva	Positiva	1,60E+00	Negativa
032600	Р	4	NHH	Negativa	Positiva	Negativa	1,30E+02
032612	Р	17	NTS	Negativa	Positiva	Negativa	Negativa
032688	Р	9	BTX	Positiva	Positiva	Negativa	Negativa
032689	N	4	NVH	Positiva	Positiva	1,20E+01	2,30E+02
032690	Р	4	NVH	Negativa	Positiva	1,60E+00	Negativa
032727	Р	8	NVH	Positiva	Positiva	2,30E+02	4,00E+02
032728	N	8	NVH	Positiva	Positiva	1,10E+03	1,60E+04
032729	Р	14	NHB	Positiva	Positiva	5,90E+00	3,40E+01
032730	N	14	NHB	Positiva	Positiva	1,30E+02	4,80E+02
032741	Р	8	NHH	Positiva	Positiva	2,10E+02	1,30E+02
			Positivas	10	14	10	9
_	Fracción	detectada de las	14 Positivas	71,4%	100,0%	71,4%	64,3%
(1) P= hisopo far	_						
N= hisono nasal							

Ejemplo 9: Obtención y caracterización de anticuerpos monoclonales dirigidos contra la proteína N

Se inmunizaron ratones Balb C con la ayuda de la proteína N recombinante purificada y se fusionaron sus células esplénicas con un mieloma murino apropiado, según las técnicas de Kohler y Milstein.

Se preseleccionaron diez y nueve hibridomas secretores de anticuerpos anti N y se han preseleccionado sus inmunorreactividades precisadas. Estos anticuerpos reconocen bien la proteína N recombinante (en ELISA) con unas intensidades variables, así como la proteína viral, natural N en ELISA y/o transferencia western. Las figuras 18 a 20 muestran los resultados de estos ensayos para 15 de estos 19 anticuerpos monoclonales.

Se han sub-clonado los clones 12, 17, 28, 57, 72, 76, 86, 87, 98, 103, 146, 156, 166, 170, 199, 212, 218, 219 y 222, fuertemente reactivos. Los estudios de especificidad se prosiguieron con las herramientas apropiadas a fin de precisar los epítopos reconocidos, y verificar la ausencia de reactividad frente a otros coronavirus humanos y de algunos virus respiratorios.

Los estudios de cartografía (*mapping*) epitópica (realizados sobre membrana "spot", con la ayuda de péptidos superpuestos de 15 aa) y los estudios suplementarios realizados sobre la proteína N natural en transferencia western revelaron la existencia de 4 grupos de anticuerpos monoclonales:

- 1º Anticuerpos monoclonales específicos de un epítopo lineal mayor en posición N-ter (75-81, secuencia: INTNSVP). El representante de este grupo es el anticuerpo 156. El hibridoma que produce este anticuerpo se depositó en la Collection Nationale de Cultures de Microorganismes (CNCM) del Instituto Patseur (Paris, Francia) el 1 de diciembre de 2004, bajo el número I-3331. Este mismo epítopo es también reconocido por un suero de conejo (policlonal anti N) obtenido mediante inmunización clásica con la ayuda de esta misma proteína N.
- 2º Anticuerpos monoclonales específicos de un epítopo lineal mayor situado en posición central (posición 217-224, secuencia: ETALALL); los representantes de este grupo son los anticuerpos monoclonales 87 y 166. El hibridoma que produce el anticuerpo 87 se depositó en la CNCM el 1 de diciembre de 2004, bajo el número I-3328.
- 3° Anticuerpos monoclonales específicos de un epítopo lineal mayor situado en posición C-terminal (posición 403-408, secuencia: DFFRQL), los representantes de este grupo son los anticuerpos 28, 57 y 143. El hibridoma que produce el anticuerpo 57 se depositó en la CNCM el 1 de diciembre de 2004, bajo el número I-3330.
- 4° Anticuerpos monoclonales específicos de un epítopo discontinuo, conformacional. Este grupo de anticuerpos no reconoce ninguno de los péptidos que recubren la secuencia de la proteína N, pero reaccionan fuertemente sobre la proteína natural no desnaturalizada. El representante de este último grupo es el anticuerpo 86. El hibridoma que produce este anticuerpo se depositó en la CNCM el 1 de diciembre de 2004, bajo el número I-3329.

La tabla VIII siguiente resume los resultados de cartografía epitópica obtenidos:

Tabla VIII: Cartografía epitópica de los anticuerpos monoclonales

Anticuerpos	Epítopo	Posición	Región
28	DFSRQL Q	403 408	C - Ter.
143	DFSRQL Q		
76	DFSRQL Q		
57	DFSRQL Q		
	FFGMS RI	315 319	
146	LPQRQ	383 387	
166	ETALALL <i>LL</i>	217 224	central
87	ETALALL	217 224	
156	INTNSGP	75 81	N - Ter.
86	Conformacional		
212	Conformacional		
170	Conformacional		

Además, como se ilustra en particular en las figuras 18 a 19, estos anticuerpos no presentan reactividad en ELISA y/o en WB, frente a la proteína N del coronavirus humano 229 E.

<u>Ejemplo 10</u>: Combinaciones de anticuerpos monoclonales para el desarrollo de un ensayo de inmunocaptura sensible y específica del antígeno viral N en el suero o los fluidos biológicos de los pacientes contaminados por el virus SRAS CoV

Los anticuerpos listados a continuación se seleccionaron debido a sus propiedades bien particulares para un estudio suplementario de captura y detección de la proteína viral N, en el suero de los sujetos o pacientes.

Estos anticuerpos se produjeron en ascitis en ratones, purificados mediante cromatografía de afinidad y utilizados solos o en combinación como anticuerpos de captura, y como anticuerpos señal.

Listado de los anticuerpos seleccionados para este propósito:

- Acm anti región C-ter (n° 28, 57, 143)

- Acm anti región central (n° 87, 166)
- Acm anti región N-ter (n° 156)
- Acm anti epítopo discontinuo, conformacional (86)

1) Preparación de los agentes reactivos:

a) Placas ELISA de inmunocaptura

Las placas son sensibilizadas con las soluciones de anticuerpos a 5 μ g/ml de tampón carbonato 0,1 M, pH 9,6. Las soluciones (monovalentes o plurivalentes) son depositadas en un volumen de 100 μ l en los pocillos, y se incuban durante una noche a temperatura ambiente. Estas placas se lavan después en tampón PBS (10 mM pH 7,4 adicionado del 0,1% de Tween 20) y después se saturan con una solución de PBS adicionada del 0,3% de BSA y del 5% de sacarosa). Las placas se secan después y se envasan en una bolsa en presencia de un desecador. Están listas para su empleo.

b) Conjugados

Los anticuerpos purificados se acoplaron con la peroxidasa según el protocolo de Nakane (Nakane y otros - 1974, J. of Histo and cytochemistry, vol. 22, p 1084-1091) en una relación de una molécula de IgG para 3 moléculas de peroxidasa. Estos conjugados se purificaron mediante cromatografía de exclusión y se conservaron concentrados (concentración comprendida entre 1 a 2 mg/ml) en presencia del 50% de glicerol y a -20°C. Están diluidos para su utilización en los ensayos para la concentración final de 1 ó 2 μ g/ml en tampón PBS (pH 7,4) adicionado del 1% de BSA.

c) Otros agentes reactivos

- Sueros humanos negativos para todos los marcadores séricos de los virus HIV, HBV, HCV y THLV
- Conjunto (pool) de sueros humanos negativos con adición de 0,5% de Tritón X 100
- Ag viral inactivo: sobrenadante de cultiuvo viral inactivo mediante irradiación e inactivación verificada después del cultivo sobre células sensibles título de la suspensión antes de la inactivación de aproximadamente 10⁷ partículas infecciosas por ml o también aproximadamente 5x10⁹ partículas virales físicas por ml de antígeno
- Las muestras de Ag diluidas en suero humano negativo: estas muestras se prepararon mediante dilución al 1:100 y después por dilución en serie de razón 5.

Estas muestras no infecciosas mimetizan unas muestras humanas que esperan contener concentraciones bajas a muy bajas de nucleoproteína viral N. Tales muestras no son accesibles para los trabajos rutinarios

- Solución de lavado R2, solución de revelado TMB R8, cromógeno R9 y solución de detención R10, son los agentes reactivos genéricos comercializados por Bio-Rad en sus estuches ELISA (ej.: estuche Platelia Pylori ref. 72778).

2) Modo de realización

Las muestas de sueros humanos sobrecargados en Ag viral desactivado son distribuidas a razón de 100 μ l por pozo, directamente en las placas sensibilizadas, listas para su empleo y después incubados durante 1 hora a 37°C (incubación Bio-Rad IPS).

El material no retenido por la fase sólida se elimina mediante 3 lavados (lavado con solución R2 diluida, lavador automático LP 35).

Los conjugados apropiados, diluidos a la concentración final de 1 ó 2 μ g/ml son distribuidos a razón de 100 μ l por pozo y las placas se incuban de nuevo durante una hora a 37°C (incubación IPS).

El exceso de conjugado se elimina mediante 4 lavados sucesivos (solución R2 diluida - lavador LP 35).

La presencia de conjugado fijado sobre las placas se revela después de la adición de 100 μ l de solución de revelado preparada antes del uso (1 ml de R9 y 10 ml de R8) y después de la incubación durante 30 minutos, a temperatura ambiente y protegido de la luz.

La reacción enzimática se bloquea finalmente mediante adición de 100 μ l de agente reactivo R10 (H2SO4 1N) en todas los pozos.

La lectura se efectúa con la ayuda de un lector de microplacas apropiado de doble longitud de onda (450/620 nm).

Los resultados pueden ser interpretados utilizando como valor límite provisional la media de al menos dos controles negativos multiplicado por un factor 2 o también la media de 100 sueros negativos adicionada de un incremento que corresponde a 6 SD (Desviación estándar calculada sobre las 100 mediciones individuales).

3) Resultados

Diferentes combinaciones anticuerpos de captura y anticuerpos señal se ensayaron basándose en las propiedades de los anticuerpos seleccionados, y evitando las combinaciones de anticuerpos específico de los mismos epítopos en fase sólida y conjugados

Los mejores resultados se obtuvieron con las 4 combinaciones listadas a continuación. Estos resultados son reproducidos en la tabla IX a continuación.

Combinación F/28

Fase sólida (Acm 166 + 87 región central): conjugado anticuerpo 28 (C-ter)

Combinación G/28

Fase sólida (Acm 86 - epítopo conformacional): conjugado anticuerpo 28 (C-ter)

3. Combinación H/28

Fase sólida (Acms 86, 166 y 87 región central y epítopo conformacional): conjugado anticuerpo 28 (C-ter)

Combinación H/28 + 87

Fase sólida (Acms 86, 166 y 87 región central y epítopo conformacional): conjugado mixto anticuerpo 28 (C-ter) y 87 (central)

Combinación G/87

Fase sólida (Acm 86 - epítopo conformacional): conjugado anticuerpo 87 (región central)

Las 4 primeras combinaciones presentan unos rendimientos equivalentes y reproducibles, superiores a las otras combinaciones utilizadas (por ejemplo la combinación G/87). Por supuesto, en estas combinaciones, un anticuerpo monoclonal puede ser sustituido con otro anticuerpo que reconoce el mismo epítopo. Así, se pueden citar las variantes siguientes:

6. Variante de la combinación F/28

Fase sólida (Acm 87 únicamente): conjugado anticuerpo 57 (C-ter)

7. Variante de la combinación G/28

Fase sólida (Acm 86 - epítopo conformacional): conjugado anticuerpo 57 (C-ter)

8. Variante de la combinación H/28

Fase sólida (Acms 86 y 87 región central y epítopo conformacional): conjugado anticuerpo 57 (C-ter)

9. Variante de la combinación H/28 + 87

Fase sólida (Acms 86 y 87 región central y epítopo conformacional): conjugado mixto anticuerpo 57 (C-ter) y 87 (central)

Tabla IX: Control de la inmunorreactividad de los Acm anti-nucleoproteínas SRAS CoV: densidades ópticas medidas con cada combinación de anticuerpos, en función de las diluciones del antígeno viral inactivo.

N°	Dilución	F/28	G/28	G/87	H/28	H/28+87
0	1/100	5	5	3,495	3,900	5
1	1/500	3,795	3,814	1,379	3,702	3,804
2	1/2 500	2,815	2,950	0,275	3,268	2,680
3	1/12500	0,987	1,038	0,135	1,374	0,865
4	1/62500	0,404	0,348	0,125	0,480	0,328
5	1/312500	0,285	0,211	0,123	0,240	0,215
6	Control	0,210	0,200	0,098	0,186	0,156
7	Control	0,269	0,153	0,104	0,193	0,202

El límite de detección de estos 4 ensayos experimentales corresponde a la dilución de antígeno en suero negativo 1: 62500. Una extrapolación rápida deja suponer la detección de menos de 10³ partículas por ml de sueros.

De este estudio, destaca que los anticuerpos más apropiados para la captura de la nucleoproteína viral nativa son los anticuerpos específicos de la región central y/o de un epítopo conformacional, siendo uno y otro anticuerpos seleccionados también por su fuerte afinidad para el antígeno nativo.

Habiendo determinado los mejores anticuerpos para la composición de la fase sólida, los anticuerpos para conservar la prioridad para la detección de antígenos fijados sobre la fase sólida son los anticuerpos complementarios específicos de un epítopo dominante en la región C-ter. El empleo de cualquier otro anticuerpo complementario, pero específico de los epítopos localizados en la región N-ter de la proteína, conduce a resultados medios o mediocres.

Ejemplo 11: Sistemas de expresión eucario tas de la proteína de espícula (S) del co ronavirus aso ciado al SRAS (SRAS-CoV)

1) Optimización de las condiciones de expresión de la S del SRAS-CoV en células de mamíferos.

Las condiciones de expresión transitoria de la proteína de espícula (S) del SRAS-CoV se optimizaron en células de mamíferos (293T, VeroE6).

Para ello, se amplificó un fragmento de ADN que contiene el ADNc de la S del SRAS-CoV mediante PCR con la ayuda de los oligonucleótidos 5'-ATAGGATCCA CCATGTTTAT TTTCTTATTA TTTCTTACTC TCACT-3' y 5'-ATACTCGAGTT ATGTGTAATG TAATTTGACA CCCTTG-3' a partir del plásmido pSRAS-S (C.N.C.M. n° 1-3059) y después se insertó en los sitio BamH1 y Xho1 del plásmido pTRIPΔU3-CMV que contiene un vector lentiviral TRIP (Sirven, 2001, Mol. Ther., 3, 438-448) para obtener el plásmido pTRIP-S. El fragmento BamH1 y Xho1 que contiene el ADNc de la S se sub-clonó después entre los BamH1 y Xho1 del plásmido de expresión eucariota pcDNA3.1(+) (Clontech) para obtener el plásmido pcDNA-S. El fragmento Nhe1 y Xho1 que contiene el ADNc de la S se sub-clonó después entre los sitios correspondientes del plásmido de expresión pCI (Promega) para obtener el plásmido pCI-S. Las secuencias WPRE del virus de la hepatitis de la marmota ("Woodchuck Hepatitis Virus posttranscriptional regulatory element") y las secuencias CTE ("constitutive transport element") del retrovirus símico de Mason-Pfizer se insertaron en cada uno de los dos plásmidos pcDNA-S y pCI-S entre los sitios Xho1 y Xba1 para obtener respectivamente los plásmidos ADNpc-S-CTE, ADNpc-S-WPRE, pCI-S-CTE y pCI-S-WPRE (figura 21). El plásmido pCI-S-WPRE se depositó en la CNCM, el 22 de noviembre de 2004, bajo el número 1-3323. Todos los insertos se secuenciaron con la ayuda de un kit BigDye Terminator v1.1 (Applied Biosystems) y de un secuenciador automático ABI377.

Se buscó la capacidad de los plásmidos construidos para dirigir la expresión de la S del SRAS-CoV en células de mamíferos después de la transfección de células VeroE6 (figura 22). En este experimento, se han transfectado monocapas de $5x10^5$ células VeroE6 en cajas de Petri de 35 mm con 2 μ g de los plásmidos ADNpc (a título de control), ADNpc-S, pCl y pCl-S y 6 μ l de agente reactivo Fugene6 según las indicaciones del fabricante (Roche). Después de 48 horas de incubación a 37°C y bajo 5% de CO₂, se prepararon unos extractos celulares en tampón de depósito según Laemmli, separados sobre un gel SDS al 8% de poliacrilamida, y después transferidos sobre una membrana de PVDF (BioRad). La detección de esta inmunohuella («western blot») se realizó con la ayuda de un suero policlonal de conejo anti-S (suero inmune del conejo P11135: véase el ejemplo 4 anterior) y de anticuerpos policlonales de asno dirigidos contra los IgG de conejo y acoplados con la peroxidasa (NA934V, Amersham). Los anticuerpos fijados se revelaron mediante luminescencia con la ayuda del kit ECL+ (Amersham) y de películas de autorradiografía Hyperfilm MP (Amersham).

Este experimento (figura 22) muestra que el plásmido pcDNA-S no permite dirigir la expresión de la S del SRAS-CoV a niveles detectables mientras que el plásmido pCl-S permite una expresión baja, próxima del límite de detección, que puede ser demostrado cuando la película está sobre-expuesta. Unos resultados similares se obtuvieron cuando la expresión de la S se buscó mediante inmunofluorescencia (datos no mostrados). Esta imposibilidad de detectar una expresión eficaz de la S no se puede imputar a las técnicas de detección utilizadas ya que la proteína S puede ser puesta en evidencia al tamaño esperado (180 kDa) en un extracto de células infectadas por el SRAS-CoV o en un extracto de células VeroE6 infectadas por el virus recombinante de la vacuna antivariólica VV-TF7.3 y transfectadas por el plásmido pcDNA-S. En este último experimento, el virus VV-TF7.3 expresa el ARN polimerasa del fago T7, y permite la transcripción citoplásmica de un ARN sin capuchón susceptible de ser traducido eficazmente. Este experimento sugiere que los defectos de expresión descritos anteriormente se deben a una incapacidad intrínseca del ADNc de la S para ser expresado eficazmente cuando la etapa de transcripción en ARN mensajero se realiza a nivel nuclear.

En un segundo experimento, el efecto de las señales CTE y WPRE sobre la expresión de la S se ha buscado después de la transfección de células VeroE6 (figura 23A) y 293T (figura 23B) y según un protocolo similar al descrito anteriormente. Mientras que la expresión de la S no se puede demostrar después de la transfección de los

plásmidos ADNpc-S-CTE y ADNpc-S-WPRE derivados de ADNpc-S, la inserción de las señales WPRE y CTE mejora fuertemente la expresión de la S en el contexto del plásmido de expresión pCI-S.

Para precisar este resultado, se realizó una segunda serie de experimentos, en la que la inmunohuella se revela de manera cuantitativa por luminescencia y adquisición sobre un dispositivo de imágenes digitales (FluorS, BioRad). El análisis de los resultados obtenidos con el programa QuantityOne v4.2.3 (BioRad) muestra que las secuencias WPRE y CTE aumentan respectivamente la expresión de la S de un factor 20 a 42 y 10 a 26 en células Vero E6 (tabla X). En células 293T (tabla X), el efecto de la secuencia CTE es más moderado (4 a 5 veces), mientras que el de la secuencia WPRE sigue importante (13 a 28 veces).

<u>Tabla X</u>: Análisis cuantitativo del efecto de las señales CTE y W PRE sobre la expresión de la S d el SRAS-CoV:

Se prepararon extractos celulares 48 horas después de la transfección de células VeroE6 o 293T por los plásmidos pCI, pCI-S, pCI-S-CTE y pCI-S-WPRE, y se analizaron mediante transferencia western como se describe en la leyenda de la figura 22. La transferencia western se revela mediante luminescencia (ECL+, Amersham) y adquisición sobre un dispositivo de imágenes digitales (FluorS, BioRad). Los niveles de expresión son indicados en función de una escala arbitraria en la que el valor de 1 representa el nivel medido después de la transfección del plásmido pCI-S. Se realizaron dos experimentos independientes para cada uno de los dos tipos celulares. En el experimento 1, sobre células VeroE6, las transfecciones se realizaron en duplicado y los resultados son indicados en forma de media y desviaciones estándares de los niveles de expresión medidos.

Plásmido	Célula	ехр. 1	exp. 2
PCI	VeroE6	0,0	0,0
pCI-S	VeroE6	1,0 ± 0,1	1,0
pCI-S-CTE	VeroE6	9,8 ± 0,9	26,4
pCI-S-WPRE	VeroE6	20,1 ± 2,0	42,3
PCI	293T	0,0	0,0
PCI-S	293T	1,0	1,0
PCI-S-CTE	293T	4,6	4,0
PCI-S-WPRE	293T	27,6	12,8

En resumen, el conjunto de estos resultados muestra que la expresión en unas células de mamíferos del ADNc de la S del SRAS-CoV, bajo la dependencia de secuencias promotoras del ARN polimerasa II, requiere, para ser eficaz, la presencia de una señal de empalme así como una u otra de las secuencias WPRE y CTE.

2) Obtención de líneas estables que permiten la expresión de la S del SRAS-CoV

El ADNc de la proteína S del SRAS-CoV se clonó en forma de un fragmento BamH1-Xho1 en el plásmido pTRIP)AU3-CMV que contiene un vector lentiviral defectivo TRIP a ADN flap central (Sirven y otros, 2001, Mol. Ther., 3: 438-448), para obtener el plásmido pTRIP-S (figura 24). La co-transfección transitoria según Zennou y otros (2000, Cell, 101: 173-185) de este plásmido, de un plásmido de encapsidación (p8.2), y de un plásmido de expresión de la glicoproteína de envoltura G del VSV (pHCMV-G) en unas células 293T, permitió la preparación de pseudopartículas retrovíricas que contienen el vector TRIP-S, y pseudotipadas por la proteína de envoltura G. Estos vectores TRIP-S pseudotipados se utilizaron para transducir unas células 293T y FRhK-4: no se ha podido demostrar ninguna expresión de la proteína S, ni ha podido ser puesto en evidencia mediante transferencia western e inmunofluorescencia en las células transducidas (datos no presentados).

Los casetes de expresión óptimos constituidos del promotor inmediato/precoz del virus CMV, de una señal de corte y empalme, del ADNc de la S y de una u otra de las señales post-transcripcionales WPRE o CTE, descritas anteriormente, se sustituyeron entonces por el casete EF1 α -EGFP del vector de expresión lentiviral defectivo a ADN FLAP central TRIP Δ U3-EF1 α (Sirven y otros, 2001, Mol. Ther., 3:438-448) (figura 25). Estas sustituciones se realizaron mediante una serie de sub-clonaciones sucesivas de los casetes de expresión de S escindidos de los plásmidos pCT-S-CTE (BgIII-Ap1) o respectivamente pCI-S-WPRE (BgIII-Sal1), y después se insertan entre los sitios Mlu1 y Kpn1, o respectivamente Mlu1 y Xho1, del plásmido TRIP Δ U3-EF1 α para obtener los plásmidos pTRIP-SD/SA-S-CTE y pTRIP-SD/SA-S-WPRE, depositados en la CNCM, el 1 de diciembre de 2004, bajo los números I-3336 y 1-3334, respectivamente. Unos vectores pseudotipados se produjeron según Zennou y otros (2000, Cell, 101: 173-185) y utilizados para transducir unas células 293T (10000 células) y FRhK-4 (15000 células) según una

serie de 5 ciclos sucesivos de transducción con una cantidad de vector que corresponde a 25 ng (TRIP-SD/SA-S-CTE) o 22 ng TRIP-SD/SA-S-WPRE) de p24 por ciclo.

Las células transducidas se clonaron por dilución límite y se analizó una serie de clones para la expresión de la S del SRAS-CoV cualitativamente por inmunofluorescencia (datos no mostrados), y después cuantitativamente por transferencia western (figura 25) con la ayuda de un suero policlonal de conejo anti-S. Los resultados presentados en la figura 25 muestran que los clones 2 y 15 de células FrhK4-s-CTE transducidas por TRIP-SD/SA-S-CTE y los clones 4, 9 y 12 de células FRhK4-S-WPRE transducidas por TRIP-SD/SA-S-WPRE, permiten la expresión de la S del SRAS-CoV a niveles respectivamente bajos y moderados si se les comparan con los que se pueden observar durante la infección por el SRAS-CoV.

En resumen, los vectores TRIP-SD/SA-S-CTE y TRIP-SD/SA-S-WPRE permiten la obtención de clones estables de células FRhK-4 y, de manera similar, 293T que expresa la S del SRAS-CoV, mientras que los ensayos realizados con el vector "de base" TRIP-S siguen infructuosos, lo que demuestra la necesidad de una señal de empalme, así como una u otra de las secuencias CTE y WPRE para la obtención de clones celulares estables que expresan la proteína S.

Además, estas modificaciones del vector TRIP (inserción de una señal de corte y empalme empalme post-transcripcional como CTE y WPRE), podrían revelarse interesantes para mejorar la expresión de otros ADNc diferente de aquel de la S.

3) Obtención de líneas estables que permiten la expresión de una forma soluble de la S del SRAS-CoV. Purificación de este antígeno recombinante

Un ADNc que codifica una forma soluble de la proteína S (Ssol) se obtuvo fusionando las secuencias que codifican para el ectodominio de la proteína (aminoácidos 1 a 1193) a las de una etiqueta (FLAG: DYKDDDDK) a través de un enlazador BspE1, que codifica el dipéptido SG. Prácticamente, para obtener el plásmido ADNpc-Ssol, se amplificó un fragmento de ADN que codifica el ectodominio de la S del SRAS-CoV por PCR con la ayuda de los oligonucleótidos 5'-ATAGGATCCA CCATGTTTAT TTTCTTATTA TTTCTTACTC TCACT-3' y 5'-ACCTCCGGAT TTAATATATT GCTCATATTT TCCCAA- 3' a partir del plásmido pcDNA-S, y después se insertó entre los sitios únicos BamH1 y BspE1 únicos de un plásmido de expresión eucariota ADNpc3.1 (+) (Clontech) modificado, que contiene entre sus sitios BamH1 y Xho1 la secuencia de la etiqueta FLAG:

Los fragmentos Nhe1-Xho1 y BamH1-Xho1, que contiene el ADNc de la forma soluble de la S, se extirparon después del plásmido pcDNA-Ssol, y se sub-clonaron entre los sitios correspondientes del plásmido pTRIP-SD/SA-S-CTE y del plásmido pTRIP-SD/SA-S-WPRE, respectivamente, para obtener los plásmidos pTRIP-SD/SA-Ssol-CTE y pTRIP-SD/SA-Ssol-WPRE, depositados en la CNCM, el 1 de diciembre de 2004, bajo los números 1-3337 e 1-3335, respectivamente.

Se produjeron unos vectores pseudotipos según Zennou y otros (2000, Cell, 101: 173-185) y se utilizaron para transducir unas células FRhK-4 (15000 células) según una serie de 5 ciclos sucesivos de transducción (15000 células) con una cantidad de vector que corresponde a 24 ng (TRIP-SD/SA-Ssol-CTE) o 40 ng TRIP-SD/SA-Ssol-WPRE) de p24 por ciclo. Las células transducidas se clonaron por dilución límite y una serie de 16 clones transducidos mediante TRIP-SD/SA-Ssol-CTE y de 15 clones mediante TRIP-SD/SA-Ssol-WPRE se analizaron para la expresión del polipéptido Ssol mediante transferencia western, revelado por un anticuerpo monoclonal anti-FLAG (figura 26 y datos no mostrados), así como mediante un ELISA-captura específico del polipéptido Ssol que se realizó con este objetivo (tabla XI y datos no mostrados). Una parte del proceso de selección de los mejores clones secretores se muestra en la figura 26. El ELISA-captura se basa en el uso de fases sólidas recubiertas de anticuerpos policlonales de conejos inmunizados por SRAS-CoV purificado e inactivado. Estas fases sólidas permiten la captura del polipéptido Ssol secretado en los sobrenadantes celulares, cuya presencia se revela después mediante una serie de etapas que implican sucesivamente la fijación de un anticuerpo monoclonal anti-FLAG (M2, SIGMA), de anticuerpos biotinilados policlonales de conejo anti-IgG(H+L), de ratón (Jackson), y de un conjugado streptavidina-peroxidasa (Amersham), y después la adición de cromógeno y de sustrato (TMB + H₂O₂, KPL).

<u>Tabla XI</u>: análisis de la expresión de polipéptido Ssol por unas líneas celulares transducidas por los vectores lentivíricos TRIP-SD/SA-Ssol-WPRE y TRIP-SD/S A-Ssol-CTE. La secreción del polipéptido Ssol se buscó en el sobrenadante de una serie de clones celulares aislados después de la transducción de células FRhK-4 por los vectores lentivíricos TRIP-SD/SA-Ssol-WPRE y TRIP-SD/SA-Ssol-CTE. Los sobrenadates diluidos al 1/50 se analizaron mediante un ensayo ELISA-captura específico de la S du SRAS-CoV.

Vector	Clon	DO (450 nm)
Control	-	0,031
TRIP-SD/SA-Ssol-CTE	CTE2	0,547
	CTE3	0,668
	CTE9	0,171
	CTE12	0,208
	CTE13	0,133
TRIP-SD/SA-Ssol-WPRE	WPRE1	0,061
	WPRE10	0,134

La línea celular que segrega las cantidades más elevadas de polipéptido Ssol en el sobrenadante de cultivo es la línea FRhK4-Ssol-CTE3. Se ha sometido a una segunda serie de 5 ciclos de transducción por el vector TRIP-SD/SA-Ssol-CTE, en condiciones similares a las descritas anteriormente, y después se ha clonado. El sub-clon que segrega las cantidades más elevadas de Ssol se ha seleccionado mediante una combinación de análisis por transferencia western, y ELISA-captura: se trata del sub-clon FRhK4-Ssol-30, que se depositó en la CNCM, el 22 de noviembre de 2004, bajo el número I-3325.

La línea FRhK4-Ssol-30 permite la producción y la purificación en cantidad del polipéptido recombinante Ssol. En un experimento del tipo en el que las condiciones experimentales de crecimiento, de producción y de purificación se optimizaron, las células de la línea FRhK4-Ssol-30 son inoculadas en un medio de cultivo estándar (DMEM sin piruvato que contiene 4,5g/l de glucosa y suplementado con 5% de SVF, 100 U/ml de penicilina y 100 μg/ml de estreptomicina) en forma de una monocapa sub-confluente (1 millón de células para cada 100 cm² en 20 ml de medio). A confluencia, el medio estándar se sustituye con el medio de secreción en el que la cantidad de SVF se reduce al 0,5% y la cantidad de medio se reduce a 16 ml para cada 100 cm². El sobrenadante de cultivo se extrae después de 4 a 5 días de incubación a 35°C y bajo el 5% de CO₂. El polipéptido recombinante Ssol se purifica a partir del sobrenandante mediante la cadena de etapas de filtración sobre membrana de poliétersulfona (PES) de 0,1 μm, de concentración por ultra-filtración sobre una membrana de PES de punto de escisión 50 kD, de cromatografía de afinidad sobre plantilla anti-FLAG con elución mediante una solución de péptido FLAG (DYKDDDDK) a 100 μg/ml en TBS (Tris 50 mM pH 7,4, 150 mMNaCl), y después de cromatografía de gel de filtración en TBS sobre bolas de sephadex G-75 (Pharmacia). La concentración del polipéptido recombinante Ssol purificado se determinó mediante el ensayo micro-BCA (Pierce), y después se analizaron sus características bioquímicas.

El análisis por gel SDS al 8% de acrilamida teñida con nitrato de plata pone de manifiesto un polipéptido mayoritario cuya masa molecular es de aproximadamente 180 kD y cuyo grado de pureza puede ser evaluado al 98% (figura 27A). Mediante espectrometría de masas SELDI-TOF (Cyphergen), se ponen en evidencia dos picos principales: corresponden a formas simple y doblemente cargadas de un polipéptido mayoritario, cuya masa molecular está así determinada a 182,6 ± 3,7 kD (figuras 27B y C). Después de la transferencia sobre membrana Prosorb y del aclarado en TFA 0,1%, el extremo N-terminal del polipéptido Ssol se secuenció en fase líquida mediante degradación de Edman sobre 5 residuos (ABI494, Applied Biosystems), y determinada como siendo SDLDR (figura 27D). Esto demuestra que el péptido señal localizado en el extremo N-terminal de la proteína S del SRAS-CoV, compuesto de las aa 1 a 13 (MFIFLLFLTLTSG) según un análisis realizado con el programa signalP v2.0 (Nielsen y otros, 1997, Protein Engineering, 10: 1-6), está escindido del polipéptido Ssol maduro. El polipéptido recombinante Ssol está por lo tanto constituido de los aminoácidos 14 a 1193 de la proteína S del SRAS-CoV fusionados en C-terminal con una secuencia SGDYKDDDDK que contiene la secuencia de la etiqueta FLAG (subrayada). La diferencia entre la masa molar teórica del polipéptido Ssol desnudo (132,0 kD) y la masa molar real del polipéptido maduro (182,6 kD) sugiere que el polipéptido Ssol está glicosilado.

Una preparación de polipéptido Ssol purificado, y cuya concentración proteica se determinó mediante un ensayo micro-BCA, permite realizar una escala estándar para medir, con la ayuda del ensayo ELISA-captura descrito anteriormente, las concentraciones de Ssol presente en los sobrenadantes de cultivo y volver a considerar las caracteríticas de las líneas secretoras. Según este ensayo, la línea FRhK4-Ssol-CT3 segrega 4 a 6 μ g/ml de polipéptido Ssol mientras que la línea FRhK4-Ssol-30 segrega 9 a 13 μ g/ml de Ssol después de 4 a 5 días de cultivo a confluencia. Además, el esquema de purificación presentado anteriormente permite, rutinariamente, purificar de 1 a 2 mg de polipéptido Ssol por litro de sobrenadante de cultivo.

Ejemplo 12: Inmunización génica que implica a la proteína de espícula (S) del coronavirus asociado al SRAS (SRAS-CoV)

El efecto de una señal de empalme y de las señales post-transcripcionales WPRE y CTE, se analizó después de la inmunización génica de ratones BALB/c (figura 28).

Para ello, se inmunizaron unos BALB/c a intervalos de 4 semanas por inyección en el tibialis anterior de una solución salina de 50 μg de ADN plasmídico de pcDNA-S y pCl-S así como, a título de control, mediante 50 μg de ADN plasmídico de ADNpc-N (que dirige la expresión de la N del SRAS-CoV), o de pCl-HA (que dirige la expresión de la HA del virus gripal A/PR/8/34), y se recogen los sueros inmunes 3 semanas después de la 2ª inyección. La

presencia de anticuerpos dirigidos contra la S del SRAS-CoV se buscó mediante ELISA indirecto utilizando como antígeno un lisado de células VeroE6 infectadas por el SRAS-CoV y a título de control, un lisado de VeroE6 no infectadas. Los títulos (TI) en anticuerpos anti-SRAS-CoV se calculan como la inversa de la dilución que produce una DO específica de 0,5 (diferencia entre DO medida sobre lisado de células infectadas y DO medida sobre lisado de células no infectadas) después del revelado mediante un anticuerpo policlonal anti-IgG de ratón acoplado a la peroxidasa (NA931V, Amersham) y de TMB adicionado de H₂O₂ (KPL) (figura 28A).

En estas condiciones, el plásmido de expresión pcDNA-S permite sólo la inducción de bajos títulos de anticuerpos dirigidos contra la S del SRAS-CoV en 3 ratones de 6 ($LOG_{10}(TI)=1,9\pm0,6$), mientras que el plásmido ADNpc-N permite la inducción de anticuerpos anti-N con títulos elevados ($LOG_{10}(TI)=3,9\pm0,3$) en todos los animales, y los plásmidos controles (pCI, pCI-HA) no conducen a ningún anticuerpo detectable ($LOG_{10}(TI)<1,7$). El plásmido pCI-S provisto de una señal de corte y empalme permite la inducción de anticuerpos con títulos elevados ($LOG_{10}(TI)=3,7\pm0,2$), que son aproximadamente 60 veces superiores a los observados después de la inyección del plásmido pcDNA-S (p<10⁻⁵).

La eficacia de las señales post-transcriptionales se estudió realizando un estudio dosis-respuesta de los títulos en anticuerpos anti-S inducidos en ratón BALB/c en función de la cantidad de ADN plasmídico utilizado como inmunógeno (2 μ g, 10 μ g y 50 μ g). Este estudio (figura 28B) demuestra que la señal post-transcriptional WPRE mejora fuertemente la eficacia de la inmunización génica cuando se utilizan bajas dosis de ADN (p<10⁻⁵ para una dosis de 2 μ g de ADN y p<10⁻² para una dosis de 10 μ g), mientras que el efecto de la señal CTE sigue siendo marginal (p=0,34 para una dosis de 2 μ g de ADN).

Finalmente, los anticuerpos inducidos en el ratón después de la inmunización génica neutralizan la infectividad del SRAS-CoV *in vitro* (figuras 29A y 29B) a títulos que están en relación con los títulos medidos por ELISA.

En resumen, el uso de una señal de empalme y de la señal post-transcripcional WPRE del virus de la hepatitis de la marmota mejora de manera considerable la inducción de anticuerpos neutralizantes dirigidos contra el SRAS-CoV después de una inmunización génica con la ayuda de ADN plasmídico que dirige la expresión del ADNc de la S del SRAS-CoV.

Ejemplo 13: Aplicaciones de diagnósticos de la proteína S

La reactividad en ELISA del polipéptido recombinante Ssol se analizó frente a sueros de pacientes que padecen SRAS.

Los sueros de posibles casos de SRAS ensayados se seleccionaron sobre la base de unos resultados (positivos o negativos) de análisis de su reactividad específica frente a antígenos nativos del SRAS-CoV mediante ensayo de inmunofluorescencia sobre células VeroE6 infectadas por el SRAS-CoV y/o mediante ensayo ELISA indirecto utilizando como antígeno un lisado de células VeroE6 infectadas por el SRAS-CoV. Los sueros de estos pacientes son identificados mediante un número de orden del Centre National de Référence des virus influenzae, así como por las iniciales del paciente y el número de días transcurridos desde el principio de los síntomas. Todos los sueros de posibles casos (véase la tabla XI) reconocen los antígenos nativos del SRAS-CoV, con la excepción del suero 032552 del paciente VTT, para el cual la infección por el SRAS-CoV no se ha podido confirmar mediante RT-PCR realizada sobre extracciones respiratorias de los días 3, 8 y 12. Un panel de sueros control se usó a título de control (sueros TV): se trata de suero extraídos en Francia antes de la epidemia de SRAS aparecida en 2003.

Tabla XII: sueros de posibles casos de SRAS

suero	paciente	día de extracción
031724	JYK	7
033168	JYK	38
033597	JYK	74
032632	NTM	17
032634	THA	15
032541	PHV	10
032542	NIH	17
032552	VTT	8
032633	PTU	16
032791	JLB	3
033258	JLB	27
032703	JCM	8
033153	JCM	29

Unas fases sólidas sensibilizadas por el polipéptido recombinante Ssol se preparan mediante adsorción de una solución de polipéptido Ssol purificado a 2 μ g/ml en PBS en los pocillos de una placa ELISA, después se incuban las placas durante una noche a 4°C, y se lavan con tampón PBS-Tween (PBS, 0,1% Tween20). Después de la

saturación de las placas ELISA mediante una solución de PBS-leche desnatada al 10% (peso/volumen) y del lavado en PBS-tween, los sueros a ensayar (100 μ l) se diluyen al 1/400 en un tampón PBS-leche desnatada-Tween (PBS, 3% leche desnatada, 0,1% Tween), y después se añaden en los pocillos de la placa ELISA sensibilizada. Las placas se incuban durante 1h a 37°C. Después de 3 lavados con tampón PBS-Tween, se añade el conjugado anti-IgG humano marcado con la peroxidasa (ref. NA933V, Amersham) diluido al 1/4000 en tampón PBS-leche desnatada-Tween, y después las placas se incuban durante una hora a 37°C. Después de 6 lavados con tampón PBS-Tween, se añaden el cromógeno (TMB) y el sustrato (H_2O_2) y se incuban las placas durante 10 minutos protegidas de la luz. La reacción se detiene mediante la adición de una solución 1N de H_3PO_4 , y después se mide la absorbencia a 450 nm, con una referencia a 620nm.

Los ensayos ELISA (figura 30) demuestran que el polipéptido recombinante Ssol está reconocido específicamente por los anticuerpos séricos de pacientes que padecen SRAS extraídos en fase media o tardía de la infección (≥ 10 días después del principio de los síntomas, mientras que no está reconocido significativamente por los anticuerpos séricos de dos pacientes (JLB y JCM) extraídos en fase precoz de la infección (3 a 8 días después del principio de los síntomas) ni por unos sueros control de sujetos que no padecen SRAS. Los anticuerpos séricos de los pacientes JLB y JCM muestran una seroconversión entre los días 3 y 27 para el primero y 8 y 29 para el segundo, después del principio de los síntomas, lo que confirma la especificidad de la reactividad de estos sueros frente al polipéptido Ssol.

En conclusión, estos resultados demuestran que el polipéptido recombinante Ssol se puede utilizar como antígeno para el desarrollo de un ensayo ELISA de diagnético serológico de la infección por el SRAS-CoV.

Ejemplo 14: Aplicaciones como vacuna de la proteína S soluble recombinante

Se ha estudiado la inmunogenecidad del polipéptido recombinante Ssol en ratones.

Para ello, se ha inmunizado un grupo de 6 ratones con 3 semanas de intervalo con $10~\mu g$ de polipéptido recombinante Ssol adicionado de 1 mg de hidróxido de aluminio (Alu-gel-S, Serva) diluido en PBS. Se han realizado tres inmunizaciones sucesivas y los sueros inmunes se extrajeron 3 semanas después de cada una de las inmunizaciones (IS1, IS2, IS3). A título de control, un grupo de ratones (grupo mock) ha recibido el hidróxido de aluminio sólo según el mismo protocolo.

Los sueros inmunes se ha analizado por grupos para cada uno de los 2 grupos mediante ELISA indirecto utilizando un lisado de células VeroE6 infectadas por el SRAS-CoV como antígeno, y a título de control un lisado de células VeroE6 no infectadas. Los títulos en anticuerpo anti-SRAS-CoV se calculan como la inversa de la dilución que produce una DO específica de 0,5 después del revelado por un anticuerpo policlonal anti-lgG(H+L) de ratón acoplado con la peroxidasa (NA931V, Amersham) y de TMB adicionado de H₂O₂ (KPL). Este análisis (figura 31) muestra que la inmunización por el polipéptido Ssol induce en el ratón, a partir de la primera inmunización, unos anticuerpos dirigidos contra la forma nativa de la proteína de espícula del SRAS-CoV, presente en el lisado de células VeroE6 infectadas. Después de 2 y después 3 inmunizaciones, los títulos en anticuerpos anti-S se vuelven muy elevados.

Los sueros inmunes se analizaron por grupo para cada uno de los 2 grupos para su capacidad para seroneutralizar la infectividad del SRAS-CoV. Se realizan 4 puntos de seroneutralización sobre células FRhK-4 (100 TCID50 de SRAS-CoV) para cada una de las diluciones 2 veces ensayadas a partir del 1/20. El título seroneutralizante se calcula según el método de Reed y Munsch como la inversa de la dilución que neutraliza la infectividad de 2 pozos sobre 4. Este análisis muestra que los anticuerpos inducidos en el ratón por el polipéptido Ssol son neutralizantes: los títulos observados son muy elevados después de 2 y después de 3 inmunizaciones (superiores a 2560 y 5120 respectivamente, tabla XIII).

<u>Tabla XIII</u>: In ducción de a nticuerpos di rigidos c ontra e I SR AS-CoV de spués de la inmuni zación c on e I polipéptido recombinante Ssol. Los sueros inmunes se analizaron por grupo para cada uno de los 2 grupos para su capacidad para seroneutralizar la infectividad de 100 TCID50 del SRAS-CoV sobre células FRhK-4. Se han realizado 4 puntos para cada una de las diluciones de razón 2 ensayadas a partir del 1/20. El título serioneutralizante se calcula según el método de Reed y Munsch como la inversa de la dilución que neutraliza la infectividad de 2 pozos sobre 4.

Grupo	sueros	Ac. neutralizantes
	pi	< 20
Mock	IS1	< 20
IVIOCK	IS2	< 20
	IS3	< 20
	pi	< 20
Ssol	IS1	57
3501	IS2	> 2560
	IS3	> 5120

Los títulos neutralizantes observados en los ratones inmunizados con el polipéptido Scol alcanzan niveles muy superiores a los títulos observados por Yang y otros en el ratón (2004, Nature, 428: 561-564) y a los observados por Buchholz en el hámster (2004, PNAS 101: 9804-9809), que protegen respectivamente el ratón y el hámster de la infección por el SRAS-CoV. Es por lo tanto probable que los anticuerpos neutralizantes inducidos en el ratón después de la inmuización por el polipéptido Ssol protegen estos animales contra la infección por el SRAS-CoV.

Ejemplo 15: Gen sintético optimizado para la expresión en células de mamíferos de la proteína de espícula (S) del coronavirus asociado al SRAS (SRAS-CoV).

1) Concepción del gen sintético

Se ha concebido un gen sintético que codifica la proteína de espícula del SRAS-CoV a partir del gen del aislado 031559 (plásmido pSRAS-S, C.N.C.M. n° 1-3059) a fin de permitir unos niveles de expresión elevados en unas células de mamíferos, y en particular en las células de origen humana.

Para ello:

- el uso de los codones del gen salvaje del aislado 031589 se modificó a fin de acercarse a la tendencia observada en el ser humano, y mejorar la eficacia de la traducción del ARNm correspondiente
- el contenido global en GC del gen se ha aumentado a fin de prolongar la vida media del ARNm correspondiente
- las unidades, eventualmente crípticas, susceptibles de interferir con una expresión eficaz del gen, se han suprimido (sitios donantes y receptores de corte y empalme, señales de poliadenilación, secuencias muy ricas (>80%) o muy pobres (<30%) en GC, secuencias repetidas, secuencias implicadas en la formación de estructuras secundarias del ARN, cajas TATA)
- un segundo codón STOP se ha añadido para permitir una terminación eficaz de la traducción.

Además, se han introducido unidades CpG en el gen a fin de aumentar su inmunogenecidad como vacuna de ADN. A fin de facilitar la manipulación del gen sintético, se ha colocado dos sitios de restricción BamH1 y Xho1 a ambos lados de la fase de lectura abierta de la proteína S, y los sitios de restricción BamH1, Xho1, Nhe1, Kpn1, BspE1 y Sall han sido evitados en el gen sintético.

La secuencia del gen sintético concebido (gen 040530) se da en SEC ID nº 140.

Una alineación del gen sintético 040530 con la secuencia del gen salvaje del aislado 031589 del SRAS-CoV depositada en la C.N.CM. bajo el número 1-3059 (SEC ID nº 4, plásmido pSRAS-S) está presentado en la figura 32.

2) Construcciones plasmídicas

El gen sintético SEC ID nº 140 se ensambló a partir de oligonucleótidos sintéticos, y clonado entre los sitios Kpn1 y Sac1 del plásmido pUC-Kana para dar el plásmido 040530pUC-kana. La secuencia nucleotídica del inserto del plásmido 040530pUC-kana se verificó mediante secuenciación automática (Applied).

Se extirpó un fragmento Kpn1-Xho1 que contiene el gen sintético 040530 del plásmido 040530pUC-kana y sub-clon entre los sitios Nhe1 y Xho1 del plásmido de expresión pCl (Promega) para obtener el plásmido pCl-SSYNTH, depositado en la CNCM el 1 de diciembre de 2004, bajo el número I-3333.

Un gen sintético que codifica para la forma soluble de la proteína S, se obtuvo después fusionando las secuencias sintéticas que codifican para el ectodominio de la proteína S (aminoácidos 1 a 1193) a las de la etiqueta (FLAG: DYKDDDK) a través de un enlazador BspE1 que codifica el dipéptido SG. Prácticamente, se ha amplificado un fragmento de ADN que codifica el ectodominio de la S del SRAS-CoV por PCR con la ayuda de los oligonucleótidos 5'-ACTAGCTAGC GGATCCACCA TGTTCATCTT CCTG-3' y 5'-AGTATCCGGAC TTGATGTACT GCTCGTACTT GC-3' a partir del plásmido 040530pUC-kana, digerido por Nhe1 y BspE1 y después insertado entre los sitios únicos Nhe1 y BspE1 del plásmido pCI-Ssol, para dar el plásmido pCI-SCUBE, depositado en la CNCM el 1 de diciembre de 2004, bajo el número I-3332. (Los plásmidos pCI-Ssol, pCI-Ssol-CTE y pCI-Ssol-WPRE (depositados en la CNCM, el 22 de noviembre de 2004, bajo el número I-3324) se obtuvieron anteriormente mediante sub-clonación del fragmento Kpn1-Xho1 extirpado del plásmido pcDNA-Ssol (véase la nota técnica de la DI 2004-106) entre los sitios Nhe1 y Xho1 de los plásmidos pCI, pCI-S-CTE y pCI-S-WPRE, respectivamente.)

Los plásmidos pCI-Scube y pCI-Ssol codifican para el mismo polipéptido recombinante Ssol.

3) Resultados

La capacidad del gen sintético que codifica la proteína S para dirigir eficazmente la expresión de la S del SRAS-CoV en unas células de mamíferos se ha comparado con la del gen salvaje después de la transfección transitoria de las células de primates (VeroE6), y de células humanas (293T).

En el experimento representado por la figura 33, y en la tabla XIV, se han transfectado unas monocapas de 5x10⁵ células VeroE6 o 7x10⁵ células 293T en cajas de Petri de 35 mm con 2 μg de plásmidos pCl (a título de control), pCl-S, pCl-S-CTE, pCl-S-WPRE y pCl-Ssynth y 6 μl de agente reactivo Fugene6 según las indicaciones del fabricante (Roche). Después de 48 horas de incubación a 37°C y bajo 5% de CO₂, se han preparado unos extractos celulares en tampón de depósito según Laemmli, separados sobre un gel SDS al 8% de poliacrilamida y después transferidos sobre una membrana de PVDF (BioRad). La detección de esta inmunohuella («western blot») se ha realizado con la ayuda de un suero policlonal de conejo anti-S (suero inmune del conejo P11135: véase el Ejemplo 4 anterior) y de anticuerpos policlonales de asno dirigidos contra las IgG de conejo y acoplados con la peroxidasa (NA934V, Amersham). La inmunohuella se revela de manera cuantitativa por luminescencia con la ayuda del kit ECL+ (Amersham), y adquisición sobre un dispositivo de imágenes digitales (FluorS, BioRad).

El análisis de los resultados obtenidos con el programa QuantityOne v4.2.3 (BioRad) muestra que en este experimento, el plásmido pCI-Synth permite la expresión transitoria de la proteína S a niveles elevados en las células VeroE6 y 293T, mientras que el plásmido pCI-S no permite inducir una expresión a niveles suficientes para ser detectada. Los niveles de expresión observados son del orden de 2 veces superiores a los observados con el plásmido pCI-S-WPRE.

<u>Tabla XIV</u>: Utilización de un gen sintético para la expresión de la S del SRAS-CoV. Se separaron unos extractos celulares preparados 48 horas después de la transfección de célulasVeroE6 o 293T por los plásmidos pCI, pCI-S, pCI-S-CTE, pCI-S-WPRE y pCI-Ssynth sobre un gel SDS al 8% de acrilamida y analizados mediante transferencia western con la ayuda de un anticuerpo policional de conejo anti-S y de un anticuerpo policional anti-IgG(H+L) de conejo acoplado con la peroxidasa (NA934V, Amersham). La transferencia western se revela mediante luminescencia (ECL+, Amersham), y la adquisición sobre un dispositivo de imágenes digitales (FluorS, BioRad). Los niveles de expresión de la proteína S se han medido cuantificando las 2 bandas mayoritarias localizadas en la imagen (véase la figura 33), y son indicados en función de una escala arbitraria en la que el valor de 1 representa el nivel medido después de la transfección del plásmido pCI-S-WPRE.

plásmido	VeroE6	293T
pCI	0,0	0,0
pCI-S	< 0,1	< 0,1
pCI-S-CTE	0,5	< 0,1
pCI-S-WPRE	1,0	1,0
PCI-Ssynth	1,8	1,9

En una segunda etapa, la capacidad del gen sintético Scube para dirigir eficazmente la síntesis y la secreción del polipéptido Ssol por unas células de mamíferos se ha comparado a la del gel salvaje después de la transfección transitoria de células de hámster (BHK-21) y de células humanas (293T).

En el experimento presentado por la tabla XV, se han transfectado unas monocapas de $6x10^5$ células BHK-21 y de $7x10^5$ células 293T en cajas de Petri de 35 mm con 2 μ g de los plásmidos pCI (a título de control), pCI-Ssol, pCI-Ssol-CTE, pCI-Ssol-WPRE y pCI-Scube y 6 μ l de agente reactivo Fugene6 según las indicaciones del fabricante (Roche). Después de 48 horas de incubación a 37°C y bajo 5% de CO2, los sobrenadantes celulares se extrajeron y analizaron de manera cuantitativa para la secreción del polipéptido Ssol mediante un ensayo ELISA-captura específico del polipéptido Ssol.

El análisis de los resultados muestra que, en este experimento, el plásmido pCI-Scube permite la expresión del polipéptido Ssol a niveles 8 veces (células BHK-21) a 20 veces (células 293T) más elevados que el plásmido pCI-Ssol. Los niveles de expresión observados son del orden de 2 veces (células 293T) a 5 veces (células BHK-21) superiores a los observados con el plásmido pCI-Ssol-WPRE.

<u>Tabla XV</u>: Utilización de u n gen sintético para la expresión del polipéptido S sol. Los sobrenadantes se recogieron 48 horas después de la transfección de células BHK o 293T por los plásmidos pCI, pCI-Ssol, pCI-Ssol-CTE, pCI-Ssol-WPRE y pCI-Scube y analizados de manera cuantitativa para la secreción del polipéptido Ssol mediante un ensayo ELISA-captura específico del polipéptido Ssol. Las transfecciones se han realizado en duplicado y los resultados se indican en forma de medias y desviación típica de las concentraciones de polipéptido Ssol (ng/ml) medidas en los sobrenadantes.

Plásmido	внк	293T
Pci	< 20	< 20
pCI-Ssol	< 20	56 ± 10
pCI-Ssol-CTE	< 20	63 ± 8
pCI-Ssol-WPRE	28 ± 1	531 ± 15
PCI-Scube	152 ± 6	1140 ± 20

En resumen, estos resultados muestran que la expresión en unas células de mamíferos del gen sintético 040530 que codifica la S del SRAS-CoV bajo la dependencia de secuencias promotoras del ARN polimerasa II es mucho más eficaz que la del gen salvaje del aislado 031589. Esta expresión es incluso más eficaz que la dirigida por el gen salvaje en presencia de de las secuencias WPRE del virus de la hepatitis de la marmota.

4) Aplicaciones

El uso del gen sintético 040530 que codifica la S del SRAS-CoV, o de su variante Scube que codifica el polipéptido Ssol es susceptible de sustituir ventajosamente el gen salvaje en numerosas aplicaciones, en las que la expresión de la S es necesaria a niveles elevados. En particular, para:

- mejorar la eficacia de la inmunización génica por unos plásmidos del tipo pCI-Ssynth incluso pCI-Ssynth-CTE o pCI-Ssynth-WPRE
- establecer nuevas líneas celulares que expresan cantidades más elevadas de la proteína S o del polipéptido Ssol con la ayuda de vectores lentivirales recombinantes portadores del gen Ssynth o del gen Scube respectivamente
- mejorar la inmunogenecidad de los vectores lentivirales recombinantes que permite la expresión de la proteína S o del polipéptido Ssol
- mejorar la inmunogenecidad de vectores vivos que permiten la expresión de la proteína S o del polipéptido Ssol como unos virus recombinantes de la vacuna antivariólica, o unos virus de la rubeola recombinantes (véanse los ejemplos ejemplos 16 y 17 a continuación)

Ejemplo 16: Expresión de la proteína de espícula (S) del coronavirus asociado al SRAS (SRAS-CoV) con la ayuda de virus recombinantes de la vacuna antivariólica.

Aplicación vacuna.

Aplicación a la producción de una forma soluble de la proteína de espícula (S) y concepción de un ensayo serológico del SRAS.

1) Introducción

El objetivo de este ejemplo es evaluar la capacidad de virus recombinantes de la vacuna antivariólica (VV), que expresa diferentes antígenos del coronavirus asociado al SRAS (SRAS-CoV) para constituir nuevos candidatos vaccíneos contra el SRAS y un medio para producir unos antígenos recombinantes en células de mamíferos.

Para ello, los inventores se han interesado por la proteína de espícula (S) del SRAS-CoV, que permite inducir después de la inmunización génica en el animal, unos anticuerpos que neutralizan la infectividad del SRAS-CoV, así como a una forma soluble y secretada de esta proteína, el polipéptido Ssol, que es un compuesto del ectodominio (aa 1-1193) de la S fusionado en su extremo C-ter a una etiqueta FLAG (DYKDDDDK) vía un enlazador BspE1 que codifica el dipéptido SG. Este polipéptido Ssol presenta una antigenecidad similar a la de la proteína S y permite, después de la inyección al ratón en forma de una proteína purificada adicionada en hidróxido de aluminio, la inducción de títulos elevados de anticuerpos neutralizantes contra el SRAS-CoV.

Las diferentes formas del gen S se han colocado bajo la dependencia del promotor del gen 7.5K y después se han introducido en el locus de la timidina kinasa (TK) de la cepa Copenhague del virus de la vacuna antivariólica mediante doble recombinación homóloga *in vivo*. A fin de mejorar la inmunogenecidad de los virus de la vacuna antivariólica recombinantes, se ha seleccionado un promotor tardío sintético en lugar del promotor 7.5K, para aumentar la producción de S y Ssol durante unas fases tardías del ciclo viral.

Después de aislar los virus de la vacuna antivariólica recombinantes y de verificar su capacidad para expresar el antígeno S del SRAS-CoV, se ha ensayado su capacidad para inducir en el ratón una respuesta inmunitaria contra el SRAS. Después de haber purificado el antígeno Ssol del sobrenadante de células infectadas, se ha concebido un

ensayo ELISA de serodiagnóstico del SRAS, y se ha evaluado su eficacia con la ayuda de sueros de posibles casos de SRAS.

2) Construcción de virus recombinantes

Se obtuvieron virus recombinantes de la vacuna antivariólica, que dirigen la expresión de la glicoproteína S del aislado 031589 del SRAS-CoV y de forma soluble y secretada de esta proteína, el polipéptido Ssol, bajo la dependencia del promotor 7.5K. Con el objetivo de aumentar los niveles de expresión de S y Ssol, se obtuvieron también unos virus recombinantes, en los que los ADNc de S y de Ssol están dispuestos bajo la dependencia de un promotor sintético tardío.

El plásmido pTG186poli es un plásmido de transferencia para la construcción de virus recombinantes de la vacuna antivariólica (Kieny, 1986, Biotechnology, 4:790-795). Para ello, contiene el gen de la timidina kinasa del VV en el que se ha insertado el promotor del gen 7.5K, seguido de un sitio múltiple de clonación que permite la inserción de genes heterólogos (figura 34A). El promotor del gen 7.5K contiene un grupo de dos secuencias promotoras activas respectivamente durante las fases precoces (PE) y tardías (PL) del ciclo de replicación del virus de la vacuna antivariólica. Los fragmentos BamH1-Xho1 se han extirpado de los plásmidos pTRIP-S y pcDNA-Ssol respectivamente e insertados entre los sitios BamH1 y Sma1 del plásmido pTG186poli para dar los plásmidos pTG-S y pTG-Ssol (figura 34A). Los plásmidos pTG-S y pTG-Ssol se han depositado en la CNCM, el 2 de diciembre de 2004, bajo los números I-3338 e I-3339, respectivamente.

Los virus recombinantes de la vacuna antivariólica se obtuvieron mediante doble recombinación homóloga *in vivo* entre el casete TK de los plásmidos de transferencia de las series pTG y pTN y el gen TK de la cepa Copenhague del virus de la vacuna antivariólica según un procedimiento descrito por Kieny y otros (1984, Nature, 312: 163-166). Brevemente, se transfectan unas células CV-1 con la ayuda de DOTAP (Roche) mediante el ADN genómico de la cepa Copenhague del virus de la vacuna antivariólica y cada uno de los plásmidos de transferencia de las series pTG y pTN descritos anteriormente, y después se sobreinfecta por el virus de la vacuna antivariólica auxiliar VV-ts7 durante 24 horas a 33°C. El virus auxiliar está contra-seleccionado por incubación a 40°C durante 2 días, y después los virus recombinantes (fenotipo TK-) se seleccionan mediante dos ciclos de clonación en medio agar sobre células 143Btk- en pesencia de BuDr (25 µg/ml). Los 6 virus VV-TG, VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S y VV-TN-Ssol se obtuvieron respectivamente con la ayuda de los plásmidos de transferencia pTG186poli, pTG-S, pTG-Ssol, pTN480, pTN-S, pTN-Ssol. Los virus VV-TG y VV-TN no expresan ningún gen heterólogo y han sido utilizados como control TK- en los experimentos. Las preparaciones de virus recombinantes se han realizado sobre monocapas de células CV-1 o BHK-21, y el título en unidades que forma el intervalo (u.f.p.) determinado sobre células CV-1 según Earl y Moss (1998, Current Protocols in Molecular Biology, 16.16.1-16.16.13).

3) Caracterización de los virus recombinantes

Se ha buscado la expresión de los transgenes que codifican la proteína S y el polipéptido Ssol mediante transferencia western.

Se han infectado monocapas de células CV-1 con una multiplicidad de 2 por los diferentes virus de la vacuna antivariólica recombinantes VV-TG, VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S y VV-TN-Ssol. Después de 18 horas de incubación a 37°C y bajo 5% de CO2, se han preparado unos extractos celulares en tampón de depósito según Laemmli, se han separado sobre gel SDS al 8% de poliacrilamida, y después se han transferido sobre una membrana de PVDF (BioRad). La detección de esta inmunohuella («western blot») se ha realizado con la ayuda de un suero policlonal de conejo anti-S (suero inmune del conejo P11135: véase el ejemplo 4) y de anticuerpos policlonales de asno dirigidos contra las IgG de conejo, y acoplados con la peroxidasa (NA934V, Amersham). Los anticuerpos fijados se han revelado mediante luminescencia con la ayuda del kit ECL+ (Amersham) y de películas de autorradiografía Hyperfilm MP (Amersham).

Como se muestra en la figura 35A, el virus recombinante VV-TN-S dirige la expresión de la proteína S a niveles que son comparables a los que se puede observar 8h después de la infección por el SRAS-CoV pero que son mucho más elevados que los que se pueden observar después de la infección por VV-TG-S. En un segundo experimento (figura 35B), el análisis de cantidades variables de extractos celulares muestra que los niveles de expresión observados después de la infección por los virus de la serie TN (VV-TN-S y VV-TN-Ssol) son aproximadamente 10

veces más elevados que los observados con los virus de la serie TG (VV-TG-S y W-TG-Ssol respectivamente). Además, el polipéptido Ssol está secretado en el sobrenadante de células CV-1 infectadas por el virus VV-TN-Ssol más eficazmente que en el sobrenadante de células infectadas por VV-TG-Ssol (figura 36A). En este experimento, el virus VV-TN-Sflag se utilizó a título de control, porque expresa la forma membranaria de la proteína S fusionada en su extremo C-ter a la etiqueta FLAG. La proteína Sflag no está detectada en el sobrenadante de las células infectadas por VV-TN-Sflag, lo que demuestra que el polipéptido Ssol está bien secretado de manera activa después de la infección por W-TN-Ssol.

Estos resultados demuestran que los virus de la vacuna antivariólica recombinantes son portadores de los transgenes, y permiten la expresión de la glicoproteína del SRAS en su forma membranaria (S) o en una forma soluble y secretada (Ssol). El virus de la vacuna antivariólica portador del promotor sintético 480 permite la expresión de S y la secreción de Ssol a niveles mucho más elevados que los virus portadores del promotor del gen 7.5K.

4) Aplicación a la producción de una forma soluble de la S del SRAS-CoV.

Purificación de este antígeno recombinante y aplicaciones de diagnósticos.

La línea BHK-21 es la línea celular que segregan las cantidades más elevadas de polipéptido Ssol después de la infección por el virus VV-TN-Ssol entre las líneas ensayadas (BHK-21, CV1, 293T y FrhK-4, figura 36B); permite la producción y la purificación en cantidad del polipéptido recombinante Ssol. En un experimento del tipo en el que las condiciones experimentales de infección, de producción y de purificación se han optimizado, las células BHK-21 están inoculadas en un medio de cultivo estándar (DMEM sin piruvato que contiene 4,5 g/l de glucosa y suplementado por 5% de TPB, 5% de SVF, 100 U/ml de penicilina y 100 μ g/ml de estreptomicina) en forma de una monocapa sub-confluente (10 millones de células para cada 100 cm² en 25 ml de medio). Después de 24h de incubación a 37°C bajo 5% de CO₂, las células son infectadas a una M.O.I. de 0,03 y el medio estándar se sustituye por el medio de secreción en el que la cantidad de SVF está disminuido al 0,5% y el TPB está suprimido. El sobrenadante de cultivo se extrae después de 2,5 días de incubación a 35°C y bajo 5% de CO₂ y el virus de la vacuna antivariólica se inactiva mediante adición de tritón X-100 (0,1%). Después de la filtración sobre membrana de poliétersulfona (PES) de 0,1 μ m, el polipéptido recombinante Ssol se purifica mediante una cromatografía de afinidad sobre la plantilla anti-FLAG con elución por una solución de péptido FLAG (DYKDDDDK) a 100 μ g/ml en TBS (Tris 50mM pH 7,4, 150 mMNaCl).

El análisis por gel SDS al 8% de acrilamida coloreado con nitrato de plata ha puesto en evidencia un polipéptido mayoritario cuya masa molecular es de aproximadamente 180kD y cuyo grado de pureza es superior al 90% (figura 37).La concentración del polipéptido recombinante Ssol purificado se determinó mediante comparación con los marcadores de masa molecular, y se estima a 24 ng/µl.

Esta preparación de polipéptido Ssol purificado permite realizar una escala estándar para medir, con la ayuda de un ensayo ELISA-captura, las concentraciones de Ssol presentes en los sobrenadantes de cultivo. Según este ensayo, la línea BHK-21 segrega aproximadamente 1 µg/ml de polipéptido Ssol en condiciones de producción descritas anteriormente. Además, el esquema de purificación presentado permite purificar del orden de 160 µg de polipéptido Ssol por litro de sobrenadante de cultivo.

La reactividad en ELISA del polipéptido recombinante Ssol se ha analizado frente a sueros de pacientes que padecen STRAS.

Los sueros de posibles casos de SRAS ensayados se seleccionaron en base a resultados (positivos o negativos) de análisis de su reactividad específica frente a antígenos nativos del SRAS-CoV mediante ensayo de inmunofluorescencia sobre células VeroE6 infectadas por el SRAS-CoV y/o mediante el ensayo ELISA indirecto utilizando como antígeno un lisado de células VeroE6 infectadas por el SRAS-CoV. Los sueros de estos pacientes son identificados por un número de orden del Centre National de Référence des virus influenzae, así como mediante las iniciales del paciente, y el número de días transcurridos desde el principio de los síntomas. Todos los sueros de posibles casos (véase la tabla XVI) reconocen los antígenos nativos del SRAS-CoV con la excepción del suero 032552 del paciente VTT, para el cual la infección por el SRAS-CoV no se ha podido confirmar por RT-PCR realizada sobre extracciones respiratorias de los días 3, 8 y 12. Un panel de sueros control se ha utilizado a título de control (sueros TV): se trata de sueros extraídos en Francia antes de la epidemia de SRAS aparecida en 2003.

Tabla XVI: sueros de posibles casos de SRAS

suero	paciente	Día de extracción
033168	JYK	38
033597	JYK	74
032632	NTM	17

032634	THA	15
032541	PHV	10
032542	NIH	17
032552	VTT	8
032633	PTU	16

Se han preparado unas fases sólidas sensibilizadas por el polipéptido recombinante Ssol mediante adsorción de una solución de polipéptido Ssol purificado a 4 μ g/ml en PBS en los pocillos de una placa ELISA. Las placas se incuban durante una noche a 4°C y después se lavan con tampón PBS-Tween (PBS, 0,1% Tween20). Después del lavado en PBS-tween, los sueros a ensayar (100 μ l) se diluyen al 1/100 y al 1/400 en tampón PBS-leche desnatada-Tween (PBS, 3% leche desnatada, 0,1% Tween) y después se añaden en los pocillos de la placa ELISA sensibilizada. Las placas se incuban durante 1h a 37°C. Después de 3 lavados con tampón PBS-Tween, se añade el conjugado antilgG humano marcado con la peroxidasa (ref NA933V, Amersham) diluido al 1/4000 en tampón PBS-leche desnatada-Tween, y después se incuban las placas una hora a 37°C. Después de 6 lavados con tampón PBS-Tween, se añaden el cormógeno (TMB) y el sustrato (H_2O_2), y se incuban las placas durante 10 minutos protegidas de la luz. La reacción se detiene mediante adición de una solución 1M de H_3PO_4 , y después se mide la absorbencia a 450 nm con una referencia a 620 nm.

Los ensayos ELISA (figura 38) demuestran que el polipéptido recombinante Ssol está reconocido específicamente por los anticuerpos séricos de pacientes que padecen SRAS extraídos en fase media o tardía de la infección (≥ 10 días después del principio de los síntomas), mientras que no se ha reconocido de manera significativa por los anticuerpos séricos de los sueros controles de sujetos que no padecen SRAS.

En conclusión, estos resultados demuestran que el polipéptido recombinante Ssol puede ser purificado a partir del sobrenadante de células de mamíferos infectadas por el virus de la vacuna antivariólica recombinante VV-TN-Ssol y ser utilizado como antígeno para la realización de un ensayo ELISA de diagnóstico serológico de la infección por el SRAS-CoV.

5) Aplicaciones vacunas

Se ha estudiado la inmunogenecidad de los virus de la vacuna antivariólica recombinantes en el ratón.

Para ello, se han inmunizado unos grupos de 7 ratones BALB/c por vía i.v. dos veces con 4 semanas de intervalo por 10⁶ u.f.p. de virus de la vacuna antivariólica recombinantes VV-TG, VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S y VV-TN-Ssol así como, a título de control, VV-TG-HA que dirige la expresión de la hematoglutinina de la cepa A/PR/8/34 del virus de la gripe. Los sueros inmunes se han extraído 3 semanas después de cada una de las inmunizaciones (IS1, IS2).

Los sueros inmunes se han analizado por grupos para cada uno de los grupos por ELISA indirecto, utilizando un lisado de células VeroE6 infectadas por el SRAS-CoV como antígeno y a título de control, un lisado de células VeroE6 no infectadas. Los títulos (TI) en anticuerpos anti-SRAS-CoV se calculan como la inversa de la dilución que produce una DO específica de 0,5 después del revelado por un anticuerpo policlonal anti-lgG(H+L) de ratón acoplado con la peroxidasa (NA931 V, Amersham), y de TMB adicionado de H₂O₂ (KPL). Este análisis (figura 39A) muestra que la inmunización por el virus VV-TG-S y VV-TN-S induce en el ratón, a partir de la primera inmunización, unos anticuerpos dirigidos contra la forma nativa de la proteína de espícula del SRAS-CoV presente en el lisado de células VeroE6 infectadas. Las respuestas inducidas por el virus VV-TN-S son más elevadas que las inducidas por el virus VV-TG-S después de la primera (TI=740 y TI=270 respectivamente) y de la segunda (TI=3230 y TI=600 respectivamente) inmunización. El virus VV-TN-Ssol induce fuertes títulos de anticuerpos anti-SRAS-CoV después de dos inmunizaciones (TI=640), mientras que el virus VV-TG-Ssol induce una respuesta al límite de la detección (TI=40).

Se han analizado los sueros inmunes por grupos para cada uno de los grupos para su capacidad a seroneutralizar la infectividad del SRAS-CoV. Se realizan 4 puntos de seroneutralización sobre células FRhK-4 (100 TCID50 de SRAS-CoV) para cada una de las diluciones 2 veces ensayadas a partir del 1/20. El título seroneutralizante se calcula según el método de Reed y Munsch como la inversa de la dilución que neutraliza la infectividad de 2 pozos sobre 4. Este análisis muestra que los anticuerpos inducidos en el ratón por los virus de la vacuna antivariólica que expresa la proteína S o el polipéptido Ssol son netralizantes y que los virus de promotores sintéticos son unos inmunógenos más eficaces que los virus portadores del promotor 7.5K: los títulos más elevados (640) son observados después de 2 inmunizaciones por el virus VV-TN-S (figura 39B).

El poder protector de los anticuerpos neutralizantes inducidos en el ratón después de la inmunización por los virus de la vacuna antivariólica recombinantes se evalúa con la ayuda de una infección de prueba por el SRAS-CoV.

6) Otras aplicaciones

Se construyen virus de la vacuna antivariólica recombinantes de tercera generación sustituyendo las secuencias salvajes de los genes S y Ssol por unos genes sintéticos optimizados para la expresión en células de mamíferos, descritos anteriormente. Estos virus de la vacuna antivariólica recombinantes son susceptibles de expresar unas cantidades más importantes de antígenos S y Ssol, y por lo tanto una inmunogenecidad incrementada.

El virus recombinante de la vacuna antivariólica VV-TN-Ssol se puede utilizar para la producción en cantidad y la purificación del antígeno Ssol, para aplicaciones de diagnósticos (seorología por ELISA) y vacunas (vacuna sub-unitaria).

<u>Ejemplo 17</u>: Virus re combinante de la rubeola que expresa la prote ína de e spícula (S) de l c oronavirus asociado al SRAS (SRAS-CoV). Aplicaciones vacunas.

1) Introducción

La vacuna de la rubeola (MV) induce en el ser humano una inmunidad protectora de larga duración después de una sola inyección (Hilleman, 2002, Vaccine, 20: 651-665). La protección conferida es muy firme y se basa en la inducción de una respuesta en anticuerpos y de una respuesta celular CD4 y CD8. El genoma del MV es muy estable y no se ha observado jamás ninguna reversión hacia la virulencia de las cepas de vacuna. El virus de la rubeola pertenece al género de los Morbillivirus de la familia de los Paramyxoviridae; es un virus recubierto cuyo genoma es un ARN monocatenario de polaridad negativa de 16kb (figura 40A) y cuyo ciclo de replicación exclusivamente citoplásmido excluye cualquier posibilidad de integración en el genoma del hospedante. La vacuna de la rubeola es así una de las vacunas vivas más eficaz y más segura utilizadas en la población humana. El equipo de Frédéric Tangy ha desarrollado recientemente un vector de expresión en base a la cepa Schwarz del virus de la rubeola, que es la cepa atenuada más segura y más utilizada en el ser humano como vacuna contra la rubeola. Esta cepa vacuna puede ser aislada a partir de un clon molecular infeccioso, conservando al mismo tiempo su inmunogenecidad en los primates así como el ratón susceptibles a la infección. Constituye, después de la inserción de unidades de transcripción suplementarias, un vector para la expresión de secuencias heterólogas (Combredet. 2003, J. Virol. 77: 11546-11554). Además, un MV Schwarz recombinante que expresa la glicoproteína de envoltura del virus West Nile (WNV) induce una respuesta en anticuerpos eficaz y de larga duración que protege el ratón de una infección de prueba letal por el WNV (Despres y otros, 2004, J. Infect. Dis., en impresión). Todas estas características hacen de la cepa atenuada Schwarz del virus de la rubeola un candidato vector extremadamente prometedor para la construcción de nuevas vacunas vivas recombinantes.

El objetivo de este ejemplo es evaluar la capacidad de virus recombinantes de la rubeola (MV) que expresa diferentes coronavirus asociado al SRAS (SRAS-CoV) para constituir nuevos candidatos vaccíneos contra el SRAS.

Los inventores se han interesado en la proteína de espícula (S) del SRAS-CoV, que permite inducir después de la inmunización génica en el animal unos anticuerpos que neutralizan la infectividad del SRAS-CoV, así como una forma soluble y secretada de esta proteína, el polipéptido Ssol, que está compuesto del ectodominio (aa 1-1193) de la S fusionado en su extremo C-ter a una etiqueta FLAG (DYKDDDDK) a través de un enlazador BspE1 que codifica el dipéptido SG. Este polipéptido Ssol presenta una antigenecidad similar a la de la proteína S y permite, después de la inyección al ratón en forma de una proteína purificada adyuvada en hidróxido de aluminio, la inducción de títulos elevados de anticuerpos que neutralizantes contra el SRAS- CoV.

Las diferentes formas del gen S se han introducido en forma de una unidad de transcripción suplementaria entre los genes P (fosfoproteína) y M (plantilla) en el ADNc de la cepa Schwarz del MV anteriormente descrito (Combredet, 2003, J. Virol. 77: 11546-11554; solicitud EP N° 02291551.6 del 20 de junio de 2002, y solicitud EP N° 02291550.8 del 20 de junio de 2002). Después de aislar los virus recombinantes MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol y verificar su capacidad para expresar el antígeno S del SRAS-CoV, se ensaya su capacidad para inducir en el ratón y después en el mono una respuesta inmunitaria protectora contra el SRAS.

2) Construcción de los virus recombinantes

El plásmido pTM-MVSchw-ATU2 (figura 40B) contiene un ADNc infeccioso que corresponde al antigénoma de la cepa vacuna Schwarz del virus de la rubeola (MV) en el que una unidad de transcripción suplementaria (ATU) se ha introducido entre los genes P (fosfoproteína) y M (plantilla) (Combredet, 2003, Journal of Virology, 77: 11546-11554). Se han construido unos genomas recombinantes MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol del virus de la rubeola mediante la inserción de los ORF de la proteína S, y del polipéptido Ssol en la unidad de transcripción suplementaria del vector MVSchw-ATU2.

Para ello, un fragmento de ADN que contiene el ADNc de la S du SRAS-CoV se ha amplificado mediante PCR con la ayuda de los oligonucleótidos 5'-ATACGTACGA CCATGTTTAT TTTCTTATTA TTTCTTACTC TCACT-3' y 5'-ATAGCGCGCT CAT- TATGTGT AATGTAATTT GACACCCTTG-3' utilizando el plásmido ADNpc-S como plantilla, y

después insertado en el plásmido pCR®2.1-TOPO (Invitrogen) para obtener el plásmido pTOPO-S-MV. Los dos oligonucleótidos utilizados contienen unos sitios de restricción BsiW1 y BssHII, a fin de permitir la inserción ulterior en el vector de la rubeola, y se han concebido a fin de generar una secuencia de 3774 nt que incluye los codones de iniciación y de terminación, a fin de respectar la regla de los 6 que estipula que la longitud del genoma de un virus de la rubeola debe ser divisible por 6 (Calain & Roux, 1993, J. Virol., 67: 4822-4830; Schneider y otros, 1997, Virology, 227: 314-322). El inserto se ha secuenciado con la ayuda de un kit BigDye Terminator v1.1 (Applied Biosystems) y de un secuenciador automático ABI377.

Con el fin de expresar una forma soluble y secretada de la S del SRAS-CoV, se ha obtenido después un plásmido que contiene el ADNc del polipéptido Ssol que corresponde al ectodominio (aa 1-1193) de la S del SRAS-CoV fusionado en su extremo C-ter a la secuencia de una etiqueta FLAG (DYKDDDDK) a través de un enlazador BspE1 que codifica el dipéptido SG. Para ello, se ha amplificado un fragmento de ADN con la ayuda de los oligonucleótidos 5'-CCATTTCAAC AATTTGGCCG-3' y 5'- ATAGGATCCG CGCGCTCATT ATTTATCGTC GTCATCTTTATAATC-3' a partir del plásmido pCDNA-Ssol, y después insertado en el plásmido pTOPO-S-MV entre los sitios Sal1 y BamH1 para obtener el plásmido pTOPO-S-MV-SF. La secuencia generada es larga de 3618 nt entre los sitios BsiW1 y BssHII y respeta la regla de los 6. El inserto se ha secuenciado como se ha indicado anteriormente.

Los fragmentos BsiW1-BssHII que contienen los ADNc de la proteína S y del polipéptido Ssol se han extirpado después mediante digestión de los plásmidos pTOPO-S-MV y pTOPO-S-MV-SF y después se han sub-clonado entre los sitios correspondientes del plásmido pTM-MVSchw-ATU2 para dar los plásmidos pTM-MVSchw2-SRAS-S y pTM-MVSchw2-SRAS-Ssol (figura 40B). Estos dos plásmidos se han depositado en la C.N.C.M. el 1 de diciembre de 2004, bajo los números 1-3326 y 1-3327, respectivamente.

Los virus de la rubeola recombinantes que corresponden a los plásmidos pTM-MVSchw2-SRAS-S y pTM-MVSchw2-SRAS-Ssol se han obtenido mediante genética inversa según el sistema que se basa en el uso de una línea celular auxiliar, descrito por Radecke y otros (1995, Embo J., 14: 5773-5784) y modificado por Parks y otros (1999, J. Virol., 73: 3560-3566). Brevemente, las células auxiliares 293-3-46 son transfectadas según el método con fosfato de calcio por 5 μg de los plásmidos pTM-MVSchw2-SRAS-S o pTM-MVSchw2-SRAS-Ssol y 0,02 μg del plásmido pEMC-La que dirige la expresión de la polimerasa L del MV (donación de M. A. Billeter). Después de una noche de incubación a 37°C, se realiza un choque térmico durante 2 horas a 43°C y las células transfectadas son transferidas sobre una monocapa de células Vero. Para cada uno de los dos plásmidos, unos sincitios han aparecido después de 2 a 3 días de cocultivo, y se han transferido sucesivamente sobre una monocapas de células Vero al 70% de confluencia en cajas de petri de 35 mm y después en frascos de 25 y 75 cm². Cuando los sincitios alcanzan 80-90% de confluencia, se recuperan las células con la ayuda de un raspador, y después se congelan y se descongelan una vez. Después de una centrifugación a baja velocidad, el sobrenadante que contiene el virus se conserva alícuotamente a -80°C. Los títulos de los virus recombinantes MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol se han determinado mediante dilución límite sobre células Vero y el título en dosis que infecta al 50% los pozos (TCID₅₀) se ha calculado según el método de Karber.

3) Caracterización de los virus recombinantes

Se ha buscado la expresión de los transgenes que codifican la proteína S y el polipéptido Ssol mediante transferencia western e inmunofluorescencia.

Se han infectado unas monocapas de células Vero en frascos T-25 a una multiplicidad de 0,05 mediante diferentes pasos de los dos virus MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol y el virus salvaje MWSchw a título de control. Cuando los sincitios alcanzan 80 a 90% de confluencia, se preparan unos extractos citoplásmicos en un tampón de extracción (150 mMNaCl, 50 mM Tris-HCl pH 7,2, 1% tritón-X-100, 0,1% SDS, 1% DOC) y después se diluye en tampón de depósito según Laemmli, se separan sobre un gel SDS al 8% de poliacrilamida y se transfieren sobre una membrana de PVDF (BioRad). La detección de esta inmunohuella («western blot») se realiza con la ayuda de un suero policional de conejo anti-S (suero inmune del conejo P11135: véase el ejemplo 4 anterior) y de anticuerpos policionales de asno dirigidos contra las IgG de conejo y acoplados con la peroxidasa (NA934V, Amersham). Los anticuerpos fijados se revelan mediante luminiscencia con la ayuda del kit ECL+ (Amersham) y de películas de autorradiografía Hyperfilm MP (Amersham).

Se han infectado células Vero en monocapas sobre láminas de vidrio mediante los dos virus MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol y el virus salvaje MWSchw a título de control a multiplicidades de infección de 0,05. Cuando los sincitios alcanzan del 90 al 100% (virus MVSchw2-SRAS-Ssol) o del 30 al 40% (MVSchw2-SRAS-S,MWSchw) de confluencia, las células se fijan en una solución de PBS-PFA 4%, se permeabilizan mediante una solución de PBS que contiene 0,2% de tritón y después se marcan mediante anticuerpos policlonales de conejos hiperinmunizados por medio de los viriones purificados y inactivados del SRAS-CoV, y mediante un conjugado de anticuerpos de cabra anti-IgG(H+L) de conejo acoplado al FITC (Jackson).

Como se muestra en las figuras 41 y 42, los virus recombinantes MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol dirigen la expresión de la proteína S y del polipéptido Ssol respectivamente a niveles comparables a los que se pueden observar 8h después de la infección por el SRAS-CoV. La expresión de estos polipéptidos es estable después de 3

pasos de los virus recombinantes en cultivo celular. Estos resultados demuestran que los virus de la rubeola recombinantes son bien portadores de los transgenes y permiten la expresión de la glicoproteína del SRAS en su forma membranaria (S) o en una forma soluble (Ssol). Se espera que el polipéptido Ssol sea secretado de las células infectadas por el virus MVSchw2-SRAS-Ssol, tal como es el caso cuando este mismo polipéptido está expresado en unas células de mamíferos después de la transfección transitoria de las secuencias correspondientes (véase el ejemplo 11 anterior).

4) Aplicaciones

Como se ha demostrado que los virus MVSchw2-SRAS-S y MVSchw2-SRAS-Ssol permiten la expresión de la S del SRAS-CoV, se evalúa su capacidad para inducir una respuesta inmunitaria protectora contra el SRAS-CoV en el ratón CD46 $^{+/-}$ IFN- α β R $^{-/-}$, que es susceptible a la infección por el MV. La respuesta en anticuerpos de los ratones inmunizados se evalúa mediante ensayo ELISA contra los antígenos nativos del SRAS-CoV y para su capacidad para neutralizar la infectividad del SRAS-CoV *in vitro*, utilizando las metodologías descritas anteriormente. El poder protector de la respuesta se evaluará midiendo la reducción de la carga vírica pulmonar 2 días después de una infección de prueba no letal por el SRAS-CoV.

Se construyen virus de rubeola recombinantes de segunda generación sustituyendo las secuencias salvajes de los genes S y Ssol por genes sintéticos optimizados para la expresión en células de mamíferos, descritos en el ejemplo 15 anteriormente. Estos virus de rubeola recombinantes son susceptibles de expresar cantidades más importantes de antígenos S y Ssol y por lo tanto presentar una inmunogenecidad incrementada.

Alternativamente, los genes salvajes o sintéticos que codifican para la proteína S o el polipéptido Ssol pueden ser insertados en el vector de la rubeola MVSchw-ATU3 en forma de una unidad de transcripción suplementaria localizada entre los genes H y L, y después los virus recombinantes producidos y caracterizados de manera similar. Esta inserción es susceptible de generar unos virus recombinantes que poseen unas características (multiplicación del virus, nivel de expresión del transgen) diferentes, y posiblemente una inmunogenecidad mejorada con respecto a los obtenidos después de la inserción de los transgenes entre los genes P y N.

El virus de la rubeola recombinante MVSchw2-SRAS-Ssol se puede utilizar para la producción en cantidad y la purificación del antígeno Ssol en vista a aplicaciones de diagnósticos y vaccíneos.

Ejemplo 18: Otras aplicaciones relacionadas con la proteína S

- a) Los vectores lentivirales que permiten la expresión de la S o de Ssol (incluso de fragmentos de la S) pueden constituir una vacuna recombinante contra el SRAS-CoV, para ser utilizado en profilaxis humana y veterinaria. A fin de demostrar la factibilidad de tal vacuna, se estudia en el ratón la inmunogenecidad de los vectores lentivirales recombinantes TRIP-SD/SA-S-WPRE y TRIP-SD/SA-Ssol-WPRE.
- b) Unos anticuerpos monoclonales son producidos con la ayuda del polipéptido recombinante Ssol. Según los resultados representados en el ejemplo 14 anterior, estos anticuerpos o por lo menos la mayoría de ellos reconocerán la forma nativa de la S del SRAS-CoV y serán susceptibles de aplicaciones de diagnósticos y/o profilácticas.
- c) Un ensayo de serología del SRAS se realiza con el polipéptido Ssol utilizado como antígeno y la metodología del doble epítopo.

LISTADO DE SECUENCIAS

<110> INSTITUT PASTEUR CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE **UNIVERSITE PARIS 7** VAN DER WERF, Sylvie ESCRIOU, Nicolas CRESCENZO-CHAIGNE, Bernadette MANUGUERRA. Jean-Claude KUNST, Franck CALLENDRET, Benoît BETTON, Jean-Michel LORIN, Valérie GERBAUD, Sylvie BURGUIERE, Ana Maria AZEBI, Saliha CHARNEAU, Pierre TANGY, Frédéric

ES 2 396 127 T3

COMBREDET, Chantai DELAGNEAU, Jean-François MARTIN, Monique

<120> UTILIZACIÓN DE LAS PROTEÍNAS Y DE LOS PÉPTIDOS CODIFICADOS POR EL GENOMA DE UNA NUEVA CEPA DE CORONAVIRUS ASOCIADO AL SRAS

<130> 226-111ext

<150> FR 0314152

<151> 02-12-2003

<150> FR 0314151

<151> 02-12-2003

<160> 158

<170> PatentIn version 3.1

<210> 1

<211> 29746

<212> ADN

<213> CORONAVIRUS

<400> 1

ES 2 396 127 T3

atattaggtt	tttacctacc	caggaaaagc	caaccaacct	cgatctcttg	tagatctgtt	60
ctctaaacga	actttaaaat	ctgtgtagct	gtcgctcggc	tgcatgccta	gtgcacctac	120
gcagtataaa	caataataaa	ttttactgtc	gttgacaaga	aacgagtaac	tcgtccctct	180
tctgcagact	gcttacggtt	tcgtccgtgt	tgcagtcgat	catcagcata	cctaggtttc	240
gtccgggtgt	gaccgaaagg	taagatggag	agccttgttc	ttggtgtcaa	cgagaaaaca	300
cacgtccaac	tcagtttgcc	tgtccttcag	gttagagacg	tgctagtgcg	tggcttcggg	360
gactctgtgg	aagaggccct	atcggaggca	cgtgaacacc	tcaaaaatgg	cacttgtggt	420
ctagtagagc	tggaaaaagg	cgtactgccc	cagcttgaac	agccctatgt	gttcattaaa	480
cgttctgatg	ccttaagcac	caatcacggc	cacaaggtcg	ttgagctggt	tgcagaaatg	540
gacggcattc	agtacggtcg	tagcggtata	acactgggag	tactcgtgcc	acatgtgggc	600
gaaaccccaa	ttgcataccg	caatgttctt	cttcgtaaga	acggtaataa	gggagccggt	660
ggtcatagct	atggcatcga	tctaaagtct	tatgacttag	gtgacgagct	tggcactgat	720
cccattgaag	attatgaaca	aaactggaac	actaagcatg	gcagtggtgc	actccgtgaa	780
ctcactcgtg	agctcaatgg	aggtgcagtc	actcgctatg	tcgacaacaa	tttctgtggc	840
ccagatgggt	accctcttga	ttgcatcaaa	gattttctcg	cacgcgcggg	caagtcaatg	900
tgcactcttt	ccgaacaact	tgattacatc	gagtcgaaga	gaggtgtcta	ctgctgccgt	960
gaccatgagc	atgaaattgc	ctggttcact	gagcgctctg	ataagagcta	cgagcaccag	1020
acacccttcg	aaattaagag	tgccaagaaa	tttgacactt	tcaaagggga	atgcccaaag	1080
tttgtgtttc	ctcttaactc	aaaagtcaaa	gtcattcaac	cacgtgttga	aaagaaaaag	1140
actgagggtt	tcatggggcg	tatacgctct	gtgtaccctg	ttgcatctcc	acaggagtgt	1200
aacaatatgc	acttgtctac	cttgatgaaa	tgtaatcatt	gcgatgaagt	ttcatggcag	1260
acgtgcgact	ttctgaaagc	cacttgtgaa	cattgtggca	ctgaaaattt	agttattgaa	1320
ggacctacta	catgtgggta	cctacctact	aatgctgtag	tgaaaatgcc	atgtcctgcc	1380
tgtcaagacc	cagagattgg	acctgagcat	agtgttgcag	attatcacaa	ccactcaaac	1440
attgaaactc	gactccgcaa	gggaggtagg	actagatgtt	ttggaggctg	tgtgtttgcc	1500
tatgttggct	gctataataa	gcgtgcctac	tgggttcctc	gtgctagtgc	tgatattggc	1560

tcaggccata	ctggcattac	tggtgacaat	gtggagacct	tgaatgagga	tctccttgag	1620
atactgagtc	gtgaacgtgt	taacattaac	attgttggcg	attttcattt	gaatgaagag	1680
gttgccatca	ttttggcatc	tttctctgct	tctacaagtg	cctttattga	cactataaag	1740
agtcttgatt	acaagtcttt	caaaaccatt	gttgagtcct	gcggtaacta	taaagttacc	1800
aagggaaagc	ccgtaaaagg	tgcttggaac	attggacaac	agagatcagt	tttaacacca	1860
ctgtgtggtt	ttccctcaca	ggctgctggt	gttatcagat	caatttttgc	gcgcacactt	1920
gatgcagcaa	accactcaat	tcctgatttg	caaagagcag	ctgtcaccat	acttgatggt	1980
atttctgaac	agtcattacg	tcttgtcgac	gccatggttt	atacttcaga	cctgctcacc	2040
aacagtgtca	ttattatggc	atatgtaact	ggtggtcttg	tacaacagac	ttctcagtgg	2100
ttgtctaatc	ttttgggcac	tactgttgaa	aaactcaggc	ctatctttga	atggattgag	2160
gcgaaactta	gtgcaggagt	tgaatttctc	aaggatgctt	gggagattct	caaatttctc	2220
attacaggtg	tttttgacat	cgtcaagggt	caaatacagg	ttgcttcaga	taacatcaag	2280
gattgtgtaa	aatgcttcat	tgatgttgtt	aacaaggcac	tcgaaatgtg	cattgatcaa	2340
gtcactatcg	ctggcgcaaa	gttgcgatca	ctcaacttag	gtgaagtctt	catcgctcaa	2400
agcaagggac	tttaccgtca	gtgtatacgt	ggcaaggagc	agctgcaact	actcatgcct	2460
cttaaggcac	caaaagaagt	aacctttctt	gaaggtgatt	cacatgacac	agtacttacc	2520
tctgaggagg	ttgttctcaa	gaacggtgaa	ctcgaagcac	tcgagacgcc	cgttgatagc	2580
ttcacaaatg	gagctatcgt	tggcacacca	gtctgtgtaa	atggcctcat	gctcttagag	2640
attaaggaca	aagaacaata	ctgcgcattg	tctcctggtt	tactggctac	aaacaatgtc	2700
tttcgcttaa	aagggggtgc	accaattaaa	ggtgtaacct	ttggagaaga	tactgtttgg	2760
gaagttcaag	gttacaagaa	tgtgagaatc	acatttgagc	ttgatgaacg	tgttgacaaa	2820
gtgcttaatg	aaaagtgctc	tgtctacact	gttgaatccg	gtaccgaagt	tactgagttt	2880
gcatgtgttg	tagcagaggc	tgttgtgaag	actttacaac	cagtttctga	tctccttacc	2940
aacatgggta	ttgatcttga	tgagtggagt	gtagctacat	tctacttatt	tgatgatgct	3000
ggtgaagaaa	acttttcatc	acgtatgtat	tgttcctttt	accctccaga	tgaggaagaa	3060
gaggacgatg	cagagtgtga	ggaagaagaa	attgatgaaa	cctgtgaaca	tgagtacggt	3120
acagaggatg	attatcaagg	tctccctctg	gaatttggtg	cctcagctga	aacagttcga	3180
gttgaggaag	aagaagagga	agactggctg	gatgatacta	ctgagcaatc	agagattgag	3240
ccagaaccag	aacctacacc	tgaagaacca	gttaatcagt	ttactggtta	tttaaaactt	3300
actgacaatg	ttgccattaa	atgtgttgac	atcgttaagg	aggcacaaag	tgctaatcct	3360
atggtgattg	taaatgctgc	taacatacac	ctgaaacatg	gtggtggtgt	agcaggtgca	3420
ctcaacaagg	caaccaatgg	tgccatgcaa	aaggagagtg	atgattacat	taagctaaat	3480
ggccctctta	cagtaggagg	gtcttgtttg	ctttctggac	ataatcttgc	taagaagtgt	3540
ctgcatgttg	ttggacctaa	cctaaatgca	ggtgaggaca	tccagcttct	taaggcagca	3600

tatgaaaatt	tcaattcaca	ggacatctta	cttgcaccat	tgttgtcagc	aggcatattt	3660
ggtgctaaac	cacttcagtc	tttacaagtg	tgcgtgcaga	cggttcgtac	acaggtttat	3720
attgcagtca	atgacaaagc	tctttatgag	caggttgtca	tggattatct	tgataacctg	3780
aagcctagag	tggaagcacc	taaacaagag	gagccaccaa	acacagaaga	ttccaaaact	3840
gaggagaaat	ctgtcgtaca	gaagcctgtc	gatgtgaagc	caaaaattaa	ggcctgcatt	3900
gatgaggtta	ccacaacact	ggaagaaact	aagtttctta	ccaataagtt	actcttgttt	3960
gctgatatca	atggtaagct	ttaccatgat	tctcagaaca	tgcttagagg	tgaagatatg	4020
tctttccttg	agaaggatgc	accttacatg	gtaggtgatg	ttatcactag	tggtgatatc	4080
acttgtgttg	taataccctc	caaaaaggct	ggtggcacta	ctgagatgct	ctcaagagct	4140
ttgaagaaag	tgccagttga	tgagtatata	accacgtacc	ctggacaagg	atgtgctggt	4200
tatacacttg	aggaagctaa	gactgctctt	aagaaatgca	aatctgcatt	ttatgtacta	4260
ccttcagaag	cacctaatgc	taaggaagag	attctaggaa	ctgtatcctg	gaatttgaga	4320
gaaatgcttg	ctcatgctga	agagacaaga	aaattaatgc	ctatatgcat	ggatgttaga	4380
gccataatgg	caaccatcca	acgtaagtat	aaaggaatta	aaattcaaga	gggcatcgtt	4440
gactatggtg	tccgattctt	cttttatact	agtaaagagc	ctgtagcttc	tattattacg	4500
aagctgaact	ctctaaatga	gccgcttgtc	acaatgccaa	ttggttatgt	gacacatggt	4560
tttaatcttg	aagaggctgc	gcgctgtatg	cgttctctta	aagctcctgc	cgtagtgtca	4620
gtatcatcac	cagatgctgt	tactacatat	aatggatacc	tcacttcgtc	atcaaagaca	4680
tctgaggagc	actttgtaga	aacagtttct	ttggctggct	cttacagaga	ttggtcctat	4740
tcaggacagc	gtacagagtt	aggtgttgaa	tttcttaagc	gtggtgacaa	aattgtgtac	4800
cacactctgg	agagccccgt	cgagtttcat	cttgacggtg	aggttctttc	acttgacaaa	4860
ctaaagagtc	tcttatccct	gcgggaggtt	aagactataa	aagtgttcac	aactgtggac	4920
aacactaatc	tccacacaca	gcttgtggat	atgtctatga	catatggaca	gcagtttggt	4980
ccaacatact	tggatggtgc	tgatgttaca	aaaattaaac	ctcatgtaaa	tcatgagggt	5040
aagactttct	ttgtactacc	tagtgatgac	acactacgta	gtgaagcttt	cgagtactac	5100
catactcttg	atgagagitt	tcttggtagg	tacatgtctg	ctttaaacca	cacaaagaaa	5160
tggaaatttc	ctcaagttgg	tggtttaact	tcaattaaat	gggctgataa	caattgttat	5220
ttgtctagtg	ttttattagc	acttcaacag	cttgaagtca	aattcaatgc	accagcactt	5280
caagaggctt	attatagagc	ccgtgctggt	gatgctgcta	acttttgtgc	actcatactc	5340
gcttacagta	ataaaactgt	tggcgagctt	ggtgatgtca	gagaaactat	gacccatctt	5400
ctacagcatg	ctaatttgga	atctgcaaag	cgagttctta	atgtggtgtg	taaacattgt	5460
ggtcagaaaa	ctactacctt	aacgggtgta	gaagctgtga	tgtatatggg	tactctatct	5520
tatgataatc	ttaagacagg	tgtttccatt	ccatgtgtgt	gtggtcgtga	tgctacacaa	5580
tatctagtac	aacaagagtc	ttcttttgtt	atgatgtctg	caccacctgc	tgagtataaa	5640

ttacagcaag gt	acattctt a	tgtgcgaat	gagtacactg	gtaactatca	gtgtggtcat	5700
tacactcata ta	actgctaa g	gagaccctc	tatcgtattg	acggagctca	cctta c aaag	5760
atgtcagagt ac	aaaggacc a	gtgactgat	gttttctaca	aggaaacatc	ttacactaca	5820
accatcaagc ct	gtgtcgta t	aaactcgat	ggagttactt	acacagagat	tgaaccaaaa	5880
ttggatgggt at	tataaaaa g	gataatgct	tactatacag	agcagcctat	agaccttgta	5940
ccaactcaac ca	ttaccaaa t	gcgagtttt	gataatttca	aactcacatg	ttctaacaca	6000
aaatttgctg at	gatttaaa t	caaatgaca	ggcttcacaa	agccagcttc	acgagagcta	6060
tctgtcacat tc	ttcccaga c	ttgaatggc	gatgtagtgg	ctattgacta	tagacactat	6120
tcagcgagtt tc	aagaaagg t	gctaaatta	ctgcataagc	caattgtttg	gcacattaac	6180
caggctacaa cc	aagacaac g	ttcaaacca	aacacttggt	gtttacgttg	tctttggagt	6240
acaaagccag ta	gatacttc a	aattcattt	gaagttctgg	cagtagaaga	cacacaagga	6300
atggacaatc tt	gcttgtga aa	agtcaacaa	cccacctctg	aagaagtagt	ggaaaatcct	6360
accatacaga ag	gaagtcat a	gagtgtgac	gtgaaaacta	ccgaagttgt	aggcaatgtc	6420
atacttaaac ca	tcagatga a	ggtgttaaa	gtaacacaag	agttaggtca	tgaggatctt	6480
atggctgctt at	gtggaaaa c	acaagcatt	accattaaga	aacctaatga	gctttcacta	6540
gccttaggtt ta	aaaacaat t	gccactcat	ggtattgctg	caattaatag	tgttccttgg	6600
agtaaaattt tg	gcttatgt c	aaaccattc	ttaggacaag	cagcaattac	aacatcaaat	6660
tgcgctaaga ga	ttagcaca a	cgtgtgttt	aacaattata	tgccttatgt	gtttacatta	6720
ttgttccaat tg	tgtacttt ta	actaaaagt	accaattcta	gaattagagc	ttcactacct	6780
acaactattg ct	aaaaatag t	gttaagagt	gttgctaaat	tatgtttgga	tgccggcatt	6840
aattatgtga ag	tcacccaa a	ttttctaaa	ttgttcacaa	tcgctatgtg	gctattgttg	6900
ttaagtattt gc	ttaggttc to	ctaatctgt	gtaactgctg	cttttggtgt	actcttatct	6960
aattttggtg ct	ccttctta t	tgtaatggc	gttagagaat	tgtatcttaa	ttcgtctaac	7020
gttactacta tg	gatttctg t	gaaggttct	tttccttgca	gcatttgttt	aagtggatta	7080
gactcccttg at	tcttatcc a	gctcttgaa	accattcagg	tgacgatttc	atcgtacaag	7140
ctagacttga ca	attttagg t	ctggccgct	gagtgggttt	tggcatatat	gttgttcaca	7200
aaattcttt at	ttattagg t	ctttcagct	ataatgcagg	tgttctttgg	ctattttgct	7260
agtcatttca tc	agcaattc t	tggctcatg	tggtttatca	ttagtattgt	acaaatggca	7320
cccgtttctg ca	atggttag g	atgtacatc	ttctttgctt	ctttctacta	catatggaag	7380
agctatgttc at	atcatgga t	ggttgcacc	tcttcgactt	gcatgatgtg	ctataagcgc	7440
aatcgtgcca ca	cgcgttga g	tgtacaact	attgttaatg	gcatgaagag	atctttctat	7500
gtctatgcaa at	ggaggccg t	ggcttctgc	aagactcaca	attggaattg	tctcaattgt	7560
gacacatttt gc	actggtag t	acattcatt	agtgatgaag	ttgctcgtga	tttgtcactc	7620
cagtttaaaa ga	ccaatcaa c	cctactgac	cagtcatcgt	atattgttga	tagtgttgct	7680

ES 2 396 127 T3

gtgaaaaatg	gcgcgcttca	cctctacttt	gacaaggctg	gtcaaaagac	ctatgagaga	7740
catccgctct	cccattttgt	caatttagac	aatttgagag	ctaacaacac	taaaggttca	7800
ctgcctatta	atgtcatagt	ttttgatggc	aagtccaaat	gcgacgagtc	tgcttctaag	7860
tctgcttctg	tgtactacag	tcagctgatg	tgccaaccta	ttctgttgct	tgaccaagct	7920
cttgtatcag	acgttggaga	tagtactgaa	gtttccgtta	agatgtttga	tgcttatgtc	7980
gacacctttt	cagcaacttt	tagtgttcct	atggaaaaac	ttaaggcact	tgttgctaca	8040
gctcacagcg	agttagcaaa	gggtgtagct	ttagatggtg	tcctttctac	attcgtgtca	8100
gctgcccgac	aaggtgttgt	tgataccgat	gttgacacaa	aggatgttat	tgaatgtctc	8160
aaactttcac	atcactctga	cttagaagtg	acaggtgaca	gttgtaacaa	tttcatgctc	8220
acctataata	aggttgaaaa	catgacgccc	agagatcttg	gcgcatgtat	tgactgtaat	8280
gcaaggcata	tcaatgccca	agtagcaaaa	agtcacaatg	tttcactcat	ctggaatgta	8340
aaagactaca	tgtctttatc	tgaacagctg	cgtaaacaaa	ttcgtagtgc	tgccaagaag	8400
aacaacatac	cttttagact	aacttgtgct	acaactagac	aggttgtcaa	tgtcataact	8460
actaaaatct	cactcaaggg	tggtaagatt	gttagtactt	gttttaaact	tatgcttaag	8520
gccacattat	tgtgcgttct	tgctgcattg	gtttgttata	tcgttatgcc	agtacataca	8580
ttgtcaatcc	atgatggtta	cacaaatgaa	atcattggtt	acaaagccat	tcaggatggt	8640
gtcactcgtg	acatcatttc	tactgatgat	tgttttgcaa	ataaacatgc	tggttttgac	8700
gcatggttta	gccagcgtgg	tggttcatac	aaaaatgaca	aaagctgccc	tgtagtagct	8760
gctatcatta	caagagagat	tggtttcata	gtgcctggct	taccgggtac	tgtgctgaga	8820
gcaatcaatg	gtgacttctt	gcattttcta	cctcgtgttt	ttagtgctgt	tggcaacatt	8880
tgctacacac	cttccaaact	cattgagtat	agtgattttg	ctacctctgc	ttgcgttctt	8940
gctgctgagt	gtacaatttt	taaggatgct	atgggcaaac	ctgtgccata	ttgttatgac	9000
actaatttgc	tagagggttc	tatttcttat	ag tgagcttc	gtccagacac	tcgttatgtg	9060
cttatggatg	gttccatcat	acagtttcct	aacacttacc	tggagggttc	tgttagagta	9120
gtaacaactt	ttgatgctga	gtactgtaga	catggtacat	gcgaaaggtc	agaagtaggt	9180
atttgcctat	ctaccagtgg	tagatgggtt	cttaataatg	agcattacag	agctcta tc a	9240
ggagttttct	gtggtgttga	tgcgatgaat	ctcatagcta	acatctttac	tcctcttgtg	9300
caacctgtgg	gtgctttaga	tgtgtctgct	tcagtagtgg	ctggtggtat	tattgccata	9360
ttggtgactt	gtgctgccta	ctactttatg	aaattcagac	gtgtttttgg	tgagtacaac	942 0
catgttgttg	ctgctaatgc	acttttgttt	ttgatgtctt	tcactatact	ctgtctggta	9480
ccagcttaca	gctttctgcc	gggagtctac	tcagtctttt	acttgtactt	gacattctat	9540
ttcaccaatg	atgtttcatt	cttggctcac	cttcaatggt	ttgccatgtt	ttctcctatt	9600
gtgccttttt	ggataacagc	aatctatgta	ttctgtattt	ctctgaagca	ctgccattgg	9660
ttctttaaca	actatcttag	gaaaagagtc	atgtttaatg	gagttacatt	tagtaccttc	9720

gaggaggctg	ctttgtgtac	ctttttgctc	aacaaggaaa	tgtacctaaa	attgcgtagc	9780
gagacactgt	tgccacttac	acagtataac	aggtatcttg	ctctatataa	caagtacaag	9840
tatttcagtg	gagccttaga	tactaccagc	tatcgtgaag	cagcttgctg	ccacttagca	9900
aaggctctaa	atgactttag	caactcaggt	gctgatgttc	tctaccaacc	accacagaca	9960
tcaatcactt	ctgctgttct	gcagagtggt	tttaggaaaa	tggcattccc	gtcaggcaaa	10020
gttgaagggt	gcatggtaca	agtaacctgt	ggaactacaa	ctcttaatgg	attgtggttg	10080
gatgacacag	tatactgtcc	aagacatgtc	atttgcacag	cagaagacat	gcttaatcct	10140
aactatgaag	atctgctcat	tcgcaaatcc	aaccatagct	ttcttgttca	ggctggcaat	10200
gttcaacttc	gtgttattgg	ccattctatg	caaaattgtc	tgcttaggct	taaagttgat	10260
acttctaacc	ctaagacacc	caagtataaa	tttgtccgta	tccaacctgg	tcaaacattt	10320
tcagttctag	catgctacaa	tggttcacca	tctggtgttt	atcagtgtgc	catgagacct	10380
aatcatacca	ttaaaggttc	tttccttaat	ggatcatgtg	gtagtgttgg	ttttaacatt	10440
gattatgatt	gcgtgtcttt	ctgctatatg	catcatatgg	agcttccaac	aggagtacac	10500
gctggtactg	acttagaagg	taaattctat	ggtccatttg	ttgacagaca	aactgcacag	10560
gctgcaggta	cagacacaac	cataacatta	aatgttttgg	catggctgta	tgctgctgtt	10620
atcaatggtg	ataggtggtt	t c ttaataga	ttcaccacta	ctttgaatga	ctttaacctt	10680
gtggcaatga	agtacaacta	tgaacctttg	acacaagatc	atgttgacat	attgggacct	10740
ctttctgctc	aaacaggaat	tgccgtctta	gatatgtgtg	ctgctttgaa	agagctgctg	10800
cagaatggta	tgaatggtcg	tactatcctt	ggtagcacta	ttttagaaga	tgagtttaca	10860
ccatttgatg	ttgttagaca	atgctctggt	gttaccttcc	aaggtaagtt	caagaaaatt	10920
gttaagggca	ctcatcattg	gatgctttta	actttcttga	catcactatt	gattcttgtt	10980
caaagtacac	agtggtcact	gtttttcttt	gtttacgaga	atgctttctt	gccatttact	11040
cttggtatta	tggcaattgc	tgcatgtgct	atgctgcttg	ttaagcataa	gcacgcattc	11100
ttgtgcttgt	ttctgttacc	ttctcttgca	acagttgctt	actttaatat	ggtctacatg	11160
cctgctagct	gggtgatgcg	tatcatgaca	tggcttgaat	tggctgacac	tagcttgtct	11220
ggttataggc	ttaaggattg	tgttatgtat	gcttcagctt	tagttttgct	tattctcatg	11280
acagctcgca	ctgtttatga	tgatgctgct	agacgtgttt	ggacactgat	gaatgtcatt	11340
acacttgttt	acaaagtcta	ctätggtaat	gctttagatc	aagctatttc	catgtgggcc	11400
ttagttattt	ctgtaacctc	taactattct	ggtgtcgtta	cgactatcat	gtttttagct	11460
agagctatag	tgtttgtgtg	tgttgagtat	tacccattgt	tatttattac	tggcaacacc	11520
ttacagtgta	tcatgcttgt	ttattgtttc	ttaggctatt	gttgctgctg	ctactttggc	11580
cttttctgtt	tactcaaccg	ttacttcagg	cttactcttg	gtgtttatga	ctacttggtc	11640
tctacacaag	aatttaggta	tatgaactcc	caggggcttt	tgcctcctaa	gagtagtatt	11700
gatgctttca	agcttaacat	taagttgttg	ggtattggag	gtaaaccatg	tatcaaggtt	11760

gctactgtac	agtctaaaat	gtctgacgta	aagtgcacat	ctgtggtact	gctctcggtt	11 820
cttcaacaac	ttagagtaga	gtcatcttct	aaattgtggg	cacaatgtgt	acaactccac	11880
aatgatattc	ttcttgcaaa	agacacaact	gaagctttcg	agaagatggt	ttctcttttg	11940
tctgttttgc	tatccatgca	gggtgctgta	gacattaata	ggttgtgcga	ggaaatgctc	12000
gataaccgtg	ctactcttca	ggctattgct	tcagaattta	gttctttacc	atcatatgcc	12060
gcttatgcca	ctgcccagga	ggcctatgag	caggctgtag	ctaatggtga	ttctgaagtc	12120
gttctcaaaa	agttaaagaa	atctttgaat	gtggctaaat	ctgagtttga	ccgtgatgct	12180
gccatgcaac	gcaagttgga	aaagatggca	gatcaggcta	tgacccaaat	gtacaaacag	12240
gcaagatctg	aggacaagag	ggcaaaagta	actagtgcta	tgcaaacaat	gctcttcact	12300
atgcttagga	agcttgataa	tgatgcactt	aacaacatta	tcaacaatgc	gcgtgatggt	12360
tgtgttccac	tcaacatcat	accattgact	acagcagcca	aactcatggt	tgttgtccct	12420
gattatggta	cctacaagaa	cacttgtgat	ggtaacacct	ttacatatgc	atctgcactc	12480
tgggaaatcc	agcaagttgt	tgatgcggat	agcaagattg	ttcaacttag	tgaaattaac	12540
atggacaatt	caccaaattt	ggcttggcct	cttattgtta	cagctctaag	agccaactca	12600
gctgttaaac	tacagaataa	tgaactgagt	ccagtagcac	tacgacagat	gtcctgtgcg	12660
gctggtacca	cacaaacagc	ttgtactgat	gacaatgcac	ttgcctacta	taacaattcg	12720
aagggaggta	ggtttgtgct	ggcattacta	tcagaccacc	aagatctcaa	atgggctaga	12780
ttccctaaga	gtgatggtac	aggtacaatt	tacacagaac	tggaaccacc	ttgtaggttt	12840
gttacagaca	caccaaaagg	gcctaaagtg	aaatacttgt	acttcatcaa	aggcttaaac	12900
aacctaaata	gaggtatggt	gctgggcagt	ttagctgcta	cagtacgtct	tcaggctgga	12960
aatgctacag	aagtacctgc	caattcaact	gtgctttcct	tctgtgcttt	tgcagtagac	13020
cctgctaaag	catataagga	ttacctagca	agtggaggac	aaccaatcac	caactgtgtg	13080
aagatgttgt	gtacacacac	tggtacagga	caggcaatta	ctgtaacacc	agaagctaac	13140
atggaccaag	agtcctttgg	tggtgcttca	tgttgtctgt	attgtagatg	ccacattgac	13200
catccaaatc	ctaaaggatt	ctgtgacttg	aaaggtaagt	acgtccaaat	acctaccact	13260
tgtgctaatg	acccagtggg	ttttacactt	agaaacacag	tctgtaccgt	ctgcggaatg	13320
tggaaaggtt	atggctgtag	ttgtgaccaa	ctccgcgaac	ccttgatgca	gtctgcggat	13380
gcatcaacgt	tttaaacgg	gtttgcggtg	taagtgcagc	ccgtcttaca	ccgtgcggca	13440
caggcactag	tactgatgtc	gtctacaggg	cttttgatat	ttacaacgaa	aaagttgctg	13500
gttttgcaaa	gttcctaaaa	actaattgct	gtcgcttcca	ggagaaggat	gaggaaggca	13560
atttattaga	ctcttacttt	gtagttaaga	ggcatactat	gtctaactac	caacatgaag	13620
agactattta	taacttggtt	aaagattgtc	cagcggttgc	tgtccatgac	tttttcaagt	13680
ttagagtaga	tggtgacatg	gtaccacata	tatcacgtca	gcgtctaact	aaatacacaa	13740
tggctgattt	agtctatgct	ctacgtcatt	ttgatgaggg	taattgtgat	acattaaaag	13800
	tgtgttccac gattatggta tgggaaatcc atggacaatt gctgttaaac gctggtacca aagggaggta ttccctaaga gttacagaca aacctaaata aatgctacag cctgctaaag aagatgttgt atggaccaag catccaaatc tgtgctaatg tggaaaggtt gcatcaacgt caggcactag gtttgcaaa atttattaga agactatta ttagagtaga	tgtgttccac tcaacatcat gattatggta cctacaagaa tgggaaatcc agcaagttgt atgggaaatca tacagaataa gctggtacca cacaaacagc aagggaggta ggtttgtgct ttccctaaga gtgatggtacgtacacacacacacacacacacacacacac	tgtgttccac tcaacatcat accattgact gattatggta cctacaagaa cacttgtgat tgggaaatcc agcaagttgt tgatgcggat atggacaatt caccaaattt ggcttggcct gctgttaaac tacagaataa tgaactgagt gctggtacca cacaaacagc ttgtactgat aaggaggta ggtttgtgct ggcattacta ttccctaaga gtgatggtac aggtacaatt gttacagaca caccaaaagg gcctaaagtg aatcctaaata gaggtatggt gctgggcagt aatgctacaga aagtacctgc caattcaact cctgctaaag catataagga ttacctaagca atggaccaag agtcctttgg tggtacagga atggaccaag agtcctttgg tgttacact tggaaaggtt acccagtggg ttttacactt tggaaaggtt atggctgtag ttttacactt tggaaaggtt atggctgtag ttttacactt tggaaaggtt atgctaaagg ttttacactt tggaaaggt ttttaaaacgg gtttgcggtg caggcactag tactgatgtc gtctacagg	tgtgttccac tcaacatcat accattgact acagcagcca gattatggta cctacaagaa cacttgtgat ggtaacacct tgggaaatcc agcaagttgt tgatgcggat agcaagattg atggacaatt caccaaattt ggcttggcct cttattgtta gctgttaaac tacagaataa tgaactgagt ccagtagcac gctggtacca cacaaacagc ttgtactgat gacaatgcac aagggaggta ggtttgtgct ggcattacta tcagaacac ttccctaaga gtgatggtac aggtacaatt tacacagaac gttacagac caccaaaagg gcctaaagtg aaatacttgt aacctaaata gaggtatggt gctgggcagt ttagctgct aatgctacag aagtacctgc caattcaact gtgcttcct cctgctaaag catataagga ttacctagca ggtacaacac tggtacagga aggtactgt gacacacac tggtacagga caggcaatta atggaccaag agtcctttgg tggtgcttca tgttgctgt catccaaatc ctaaaggatt ctgtgactg accaggaaggt tgtggctaatg acccagtggg ttttacactt agaacacag tggtacaggt atggctgag ttgtgaccaa ctccgcgaac gcatcaacgt ttttaaacgg gtttgcggtg taagtgcagc caggcactag tactgatgc gtctacaagg cttttgatat gtttgcaaa gtccttaca accaact gtcacagg cttttgatat gtttgcaaa gtcctacaaaa accaagggt tgtgcaaa gcatcaacgt tactgatgc gtctacaagg cttttgatat gttttgcaaa gtcctacaaaa accaagtgc gtcacaaaa accaactag tactgaaga aagattgc gtcacaaaa accaactag ttttaaaacag gtcctaaaa accaactgg cttttgatat gttttgcaaa gtcctaaaa accaactagc gcatcaata tactgatgc gtcacaaaa accaactag tactgaaga aagattgc cagcggttgc taagagcactat taacctggt aaagattgc cagcggttgc ttagagataga tggtgacaat taacttggt aaagattgc cagcggttgc ttagagatagt taacttgat taacttggt aaagattgc cagcggttgc ttagagatagt taacttatta taacttggt aaagattgc cagcggttgc ttagagatagt taactagag tggtgacata taactggt taactacta taacttggt aaagattgc cagcggttgc ttagagatagt taactatta taacttggt aaagattgc cagcggttgc	tgtgttccac tcaacatcat accattgact acagcagcca tacataggt gattatggta cctacaagaa cacttgtgat ggtaacacct ttacatatgc tgggaaatcc agcaagttgt tgatggcgat agcaagattg ttcaacttagg atggacaatt caccaaattt ggcttggcct cttattgtta cagctctaag gctgttaaac tacagaataa tgaactgagt ccagtagcac tacgacagat gctggtacca cacaacagc ttgtactgat gacaatgcac ttgcctacta aagggaggta ggtttgtgct ggcattacta tcagaacaac tggaaccacc gttaccaa agggaggta ggttggtc aggtacaatt tacacagaac tggaaccacc gttaccaaaagg gcctaaagtg aaatacttgt acctcaaa aacctaaata gaggtatggt gctgggcagt ttagctgct cagtacgct aatgcacc aagatctcaa aagatctaaa gaggtatggt gctgggcagt ttagctgct cagtacgtct aatgctacaa aagatgttgt gtacacacac tggtacagga caggcaatta ctgtgactacaa aagatgttgt gtacacacac tggtacagga caggcaatta ctgtaacacc atggaaccaac aggtactttgg tggtgcttca tgttgtctgt attgtagatg catcaaatt gtgtgctaatg acccagtggg tttacactt agaaaggat atggctgaaggat tttacacct agaacacacg tcttgaggggac acccaacacg tctgaacacg tttacacac agaacacacg ttttacacac accaggacactaa tgtgctaaaa acccaatgg gtttacacac tccgcgaac ccttgatgca gcatcaacgt ttttaaacgg gtttgcggtg taagtgcagc ccgtctacacacggacactaa gtccttaaaa accaattgct gtcgctcca ggagaaaggat atttactaga gtcctaaaaa accaattgct gtcgcttcca ggagaaaggat atttactaga ctcttactt gtagttaaga ggcatactat ttacaacgaa gtcttacacacacacacacacacacacacacacacacaca	tgtgttccac tcaacatcat accattgact aacaacatta tcaacaatgg tgtgtgtcct gattatggta cctacaagaa cacttgtgat ggtaacacct ttacattag tgaattaac tgggaaatcc agcaagttgt tgatggcgat agcaagattg ttcaacttag tgaaattaac atgggaaatcc agcaagttgt tgatggcgat agcaagattg ttcaacttag tgaaattaac atgggaaatcc agcaagttgt tgatggcgct cttattgtta cagctctaag agccaactca gctgttaaac tacagaataa tgaactgagt ccagtagcac tacgacagat gtcctggcg gctggtacca cacaaacagc ttgtactgat gacaatgcac ttgcctacta taacaattcg aagggaggta ggttgtgct ggcattacta tcaagacac ttggcaccac atgggctaga ttccctaaga gtgatggtac aggtacaatt tacacagaac tggaaccacc ttgtagggtt gttacagaca caccaaaagg gcctaaaagtg aaatacttg acttcatcaa aggcttaaac aacctaaata gaggtatggt gctgggcagt ttagctgcta cagtacgtct tcaggctgga aatgctacaa gagtactgc caattcaact gtgctttcct tctgtgctt tgcagtagac cctgctaaag catataagga ttacctagca agtggaggac aaccaactac caactggtg aagatgttg gtacacacac tggtacagga caggcaatta ctgtaacacc agaagctaac atggaccaag agtcctttgg tggtgctca tgttgtctg attgtagat ccacattgac catccaaatc ctaaaggat ttacacaca gagacaatta ctgtaacacc agaagctaac atggaccaag agtcctttgg tggtgctca tgttgtctg attgtagat ccacacttgac catccaaatc ctaaaggat tttacacct agaacacaca tctgtaccg ctgcggaatg cgaaaggtt acgacaggg ttttacactt agaaacacag tctgtaccg ctgcggaatg gcatcaacgt ttttaaacgg gtttgcggtg taagtgcag ccctttaca ccgtgcggat ggaaaggtt acctaaca accaataggg cttttgaat ttacacaca aaagttgctg gttttgcaaa gttcctaaaa actaattgct gtcgctcca ggagaaggat gaggaaggca atttattaga ctcttactt gtagttaaga ggcatactat gtctaacac caacatgaag agactattt taacttggt aaagttaga ggcatactat gtctcaagac tttttcaagt ttagagtaga tggtgacatg gtaccacat ttgatggg ttgtccataca ggcgttaact aaaatacaca tggctgatt aggtgacatg gtaccacat ttgatggg ttgtccatga ttgttcaatg ttagagtaga tggtgacatg gtaccacata tatcacgtc ggcgtctaact aaaatacaca tggctgattt aggtcatatg ctaccacat ttgatggg taacttata aaatacaca tggctgattt aggtcatatg ctaccacat ttgatggg taacttata aaatacaca tggctgattt aggtcatatg ctaccacat ttgatggg taacttaata acactaaa

```
aaatactcgt Cacatacaat tgctgtgatg atgattattt caataagaag gattggtatg
                                                                    13860
acttcqtaga gaatcctgac atcttacgcg tatatqctaa cttaggtgag cgtgtacqcc
                                                                    13920
aatcattatt aaagactgta caattctgcg atgctatgcg tgatgcaggc attgtaggcg
                                                                    13980
tactgacatt agataatcag gatcttaatg ggaactggta cgatttcggt gatttcgtac
                                                                    14040
aagtagcacc aggctgcgga gttcctattg tggattcata ttactcattg ctgatgccca
                                                                    14100
tcctcacttt gactagggca ttggctgctg agtcccatat ggatgctgat ctcgcaaaac
                                                                    14160
cacttattaa gtgggatttg ctgaaatatg attttacgga agagagactt tgtctcttcg
                                                                    14220
acceptattt taaatattgg gaccagacat accatcccaa ttgtattaac tgtttggatg
                                                                    14280
ataggtgtat ccttcattgt gcaaacttta atgtgttatt ttctactgtg tttccaccta
                                                                    14340
caagttttgg accactagta agaaaaatat ttgtagatgg tgttcctttt gttgtttcaa
                                                                    14400
ctggatacca ttttcgtgag ttaggagtcg tacataatca ggatgtaaac ttacatagct
                                                                    14460
cgcgtctcag tttcaaggaa cttttagtgt atgctgctga tccagctatg catgcagctt
                                                                    14520
ctggcaattt attgctagat aaacgcacta catgcttttc agtagctgca ctaacaaaca
                                                                    14580
atgttgcttt tcaaactgtc aaacccggta attttaataa agacttttat gactttgctg
                                                                    14640
tgtctaaagg tttctttaag gaaggaagtt ctgttgaact aaaacacttc ttctttgctc
                                                                    14700
aggatggcaa cgctgctatc agtgattatg actattatcg ttataatctg ccaacaatgt
                                                                    14760
gtgatatcag acaactccta ttcgtagttg aagttgttga taaatacttt gattgttacg
                                                                    14820
atggtggctg tattaatgcc aaccaagtaa tcgttaacaa tctggataaa tcagctggtt
                                                                    14880
tcccatttaa taaatggggt aaggctagac tttattatga ctcaatgagt tatgaggatc
                                                                    14940
aagatgcact tttcgcgtat actaagcgta atgtcatccc tactataact caaatgaatc
                                                                    15000
ttaagtatgc cattagtgca aagaatagag ctcgcaccgt agctggtgtc tctatctgta
                                                                    15060
gtactatgac aaatagacag tttcatcaga aattattgaa gtcaatagcc gccactagag
                                                                    15120
gagctactgt ggtaattgga acaagcaagt tttacggtgg ctggcataat atgttaaaaa
                                                                    15180
ctgtttacag tgatgtagaa actccacacc ttatgggttg ggattatcca aaatgtgaca
                                                                    15240
gagccatgcc taacatgctt aggataatgg cctctcttgt tcttgctcgc aaacataaca
                                                                    15300
CttgCtgtaa cttatcacac cgtttctaca ggttagctaa cgaqtgtgcg caagtattaa
                                                                    15360
gtgagatggt catgtgtggc ggctcactat atgttaaacc aggtggaaca tcatccggtg
                                                                    15420
atgctacaac tgcttatgct aatagtgtct ttaacatttg tcaagctgtt acagccaatg
                                                                    15480
taaatgcact tctttcaact gatggtaata agatagctga caagtatgtc cgcaatctac
                                                                    15540
aacacaggct ctatgagtgt ctctatagaa atagggatgt tgatcatgaa ttcqtqqatq
                                                                    15600
agttttacgc ttacctgcgt aaacatttct ccatgatgat tctttctqat gatgccqttq
                                                                    15660
tgtgctataa cagtaactat gcggctcaag gtttagtagc tagcattaag aactttaagg
                                                                    15720
cagttcttta ttatcaaaat aatgtgttca tgtctgaggc aaaatgttgg actgagactg
                                                                    15780
accttactaa aggacctcac gaattttgct cacagcatac aatgctagtt aaacaaggag
                                                                    15840
```

```
15900
atgattacgt gtacctgcct tacccagatc catcaagaat attaggcgca ggctgttttg
                                                                    15960
tcgatgatat tgtcaaaaca gatggtacac ttatgattga aaggttcgtg tcactggcta
                                                                    16020
ttgatgctta cccacttaca aaacatccta atcaggagta tgctgatgtc tttcacttgt
atttacaata cattagaaag ttacatgatg agcttactgg ccacatgttg gacatgtatt
                                                                    16080
                                                                    16140
ccgtaatgct aactaatgat aacacctcac ggtactggga acctgagttt tatgaggcta
tgtacacacc acatacagtc ttgcaggctg taggtgcttg tgtattgtgc aattcacaga
                                                                    16200
cttcacttcg ttgcggtgcc tgtattagga gaccattcct atgttgcaag tgctgctatg
                                                                    16260
accatgicat ticaacatca cacaaattag tgttgtctgt taatccctat gtttgcaatg
                                                                    16320
ccccaggttg tgatgtcact gatgtgacac aactgtatct aggaggtatg agctattatt
                                                                    16380
gcaagtcaca taagcctccc attagttttc cattatgtgc taatggtcag gtttttggtt
                                                                    16440
tatacaaaaa cacatgtgta ggcagtgaca atgtcactga cttcaatgcg atagcaacat
                                                                    16500
gtgattggac taatgctggc gattacatac ttgccaacac ttgtactgag agactcaagc
                                                                    16560
ttttcgcagc agaaacgctc aaagccactg aggaaacatt taagctgtca tatggtattg
                                                                    16620
ccactgtacg cgaagtactc tctgacagag aattgcatct ttcatgggag gttggaaaac
                                                                    16680
ctagaccacc attgaacaga aactatgtct ttactggtta ccgtgtaact aaaaatagta
                                                                    16740
aagtacagat tggagagtac acctttgaaa aaggtgacta tggtgatgct gttgtgtaca
                                                                    16800
gaggtactac gacatacaag ttgaatgttg gtgattactt tgtgttgaca tctcacactg
                                                                    16860
taatgccact tagtgcacct actctagtgc cacaagagca ctatgtgaga attactggct
                                                                    16920
tgtacccaac actcaacatc tcagatgagt tttctagcaa tgttgcaaat tatcaaaagg
                                                                    16980
tcggcatgca aaagtactct acactccaag gaccacctgg tactggtaag agtcattttg
                                                                    17040
ccatcggact tgctctctat tacccatctg ctcgcatagt gtatacggca tgctctcatg
                                                                    17100
cagctgttga tgccctatgt gaaaaggcat taaaatattt gcccatagat aaatgtagta
                                                                    17160
gaatcatacc tgcgcgtgcg cgcgtagagt gttttgataa attcaaagtg aattcaacac
                                                                    17220
tagaacagta tgttttctgc actgtaaatg cattgccaga aacaactgct gacattgtag
                                                                    17280
tctttgatga aatctctatg gctactaatt atgacttgag tgttgtcaat gctagacttc
                                                                    17340
gtgcaaaaca ctacgtctat attggcgatc ctgctcaatt accagccccc cgcacattgc
                                                                    17400
tgactaaagg cacactagaa ccagaatatt ttaattcagt gtgcagactt atgaaaacaa
                                                                    17460
taggtccaga catgttcctt ggaacttgtc qccqttqtcc tgctgaaatt gttgacactg
                                                                    17520
tgagtgcttt agtttatgac aataagctaa aagcacacaa ggataagtca gctcaatgct
                                                                    17580
tcaaaatgtt ctacaaaggt gttattacac atgatgtttc atctgcaatc aacagacctc
                                                                    17640
aaataggcgt tgtaagagaa tttcttacac qcaatcctgc ttggagaaaa gctgttttta
                                                                    17700
tctcacctta taattcacag aacgctgtag cttcaaaaat cttaggattg cctacgcaga
                                                                    17760
ctgttgattc atcacagggt tctgaatatg actatgtcat attcacacaa actactgaaa
                                                                    17820
cagcacactc ttgtaatgtc aaccgcttca atgtggctat cacaagggca aaaattggca
                                                                    17880
```

ttttgtgcat	aatgtctgat	agagatcttt	atgacaaact	gcaatttaca	agtctagaaa	17940
taccacgtcg	caatgtggct	acattacaag	cagaaaatgt	aactggactt	tttaaggact	18000
gtagtaagat	cattactggt	cttcatccta	cacaggcacc	tacacacctc	agcgttgata	18060
taaagttcaa	gactgaagga	ttatgtgttg	acataccagg	cataccaaag	gacatgacct	18120
accgtagact	catctctatg	atgggtttca	aaatgaatta	ccaagtcaat	ggttacccta	18180
atatgtttat	cacccgcgaa	gaagctattc	gtcacgttcg	tgcgtggatt	ggctttgatg	18240
tagagggctg	tcatgcaact	agagatgctg	tgggtactaa	cctacctctc	cagctaggat	18300
tttctacagg	tgttaactta	gtagctgtac	cgactggtta	tgttgacact	gaaaataaca	18360
cagaattcac	cagagttaat	gcaaaacctc	caccaggtga	ccagtttaaa	catcttatac	18420
cactcatgta	taaaggcttg	ccctggaatg	tagtgcgtat	taagatagta	caaatgctca	18480
gtgatacact	gaaaggattg	tcagacagag	tcgtgttcgt	cctttgggcg	catggctttg	18540
agcttacatc	aatgaagtac	tttgtcaaga	ttggacctga	aagaacgtgt	tgtctgtgtg	18600
acaaacgtgc	aacttgcttt	tctacttcat	cagatactta	tgcctgctgg	aatcattctg	18660
tgggttttga	ctatgtctat	aacccattta	tgattgatgt	tcagcagtgg	ggctttacgg	18720
gtaaccttca	gagtaaccat	gaccaacatt	gccaggtaca	tggaaatgca	catgtggcta	18780
gttgtgatgc	tatcatgact	agatgtttag	cagtccatga	gtgctttgtt	aagcgcgttg	18840
attggtctgt	tgaataccct	attataggag	atgaactgag	ggttaattct	gcttgcagaa	18900
aagtacaaca	catggttgtg	aagtctgcat	tgcttgctga	taagtttcca	gttcttcatg	18960
acattggaaa	tccaaaggct	atcaagtgtg	tgcctcaggc	tgaagtagaa	tggaagttct	19020
acgatgctca	gccatgtagt	gacaaagctt	acaaaataga	ggaactcttc	tattcttatg	19080
ctacacatca	cgataaattc	actgatggtg	tttgtttgtt	ttggaattgt	aacgttgatc	19140
gttacccagc	caatgcaatt	gtgtgtaggt	ttgacacaag	agtcttgtca	aac tt g aact	19200
taccaggctg	tgatggtggt	agtttgtatg	tgaataagca	tgcattccac	actccagctt	19260
tcgataaaag	tgcatttact	aatttaaagc	aattgccttt	cttttactat	tctgatagtc	19320
cttgtgagtc	tcatggcaaa	caagtagtgt	cggatattga	ttatgttcca	ctcaaatctg	19380
ctacgtgtat	tacacgatgc	aatttaggtg	gtgctgtttg	cagacaccat	gcaaatgagt	19440
accgacagta	cttggatgca	tataatatga	tgatttctgc	tggatttagc	ctatggattt	19500
acaaacaatt	tgatacttat	aacctgtgga	atacatttac	caggttacag	agtttagaaa	19560
atgtgg c tta	taatgttgtt	aataaaggac	actttgatgg	acacgccggc	gaagcacctg	19620
tttccatcat	taataatgct	gtttacacaa	aggtagatgg	tattgatgtg	gagatctttg	19680
aaaataagac	aacacttcct	gttaatgttg	catttgagct	ttgggctaag	cgtaacatta	19740
aaccagtgcc	agagattaag	atactcaata	atttgggtgt	tgatatcgct	gctaatactg	19800
taatctggga	ctacaaaaga	gaagccccag	cacatgtatc	tacaataggt	gtctgcacaa	19860
tgactgacat	tgccaagaaa	cctactgaga	gtgcttgttc	ttcacttact	gtcttgtttg	19920

```
atggtagagt ggaaggacag gtagaccttt ttagaaacgc ccgtaatggt gttttaataa
                                                                  19980
cagaaggttc agtcaaaggt ctaacacctt caaagggacc agcacaagct agcgtcaatg
                                                                  20040
                                                                  20100
gagtcacatt aattggagaa tcagtaaaaa cacagtttaa ctactttaag aaagtagacg
gcattattca acagttgcct gaaacctact ttactcagag cagagactta gaggatttta
                                                                  20160
                                                                  20220
agcccagatc acaaatggaa actgactttc tcgagctcgc tatggatgaa ttcatacagc
                                                                  20280
gatataagct cgagggctat gccttcgaac acatcgttta tggagatttc agtcatggac
aacttggcgg tcttcattta atgataggct tagccaagcg ctcacaagat tcaccactta
                                                                  20340
aattagagga tittatccct atggacagca cagtgaaaaa ttacttcata acagatgcgc
                                                                  20400
aaacaggttc atcaaaatgt gtgtgttctg tgattgatct tttacttgat gactttgtcg
                                                                  20460
agataataaa gtcacaagat ttgtcagtga tttcaaaagt ggtcaaggtt acaattgact
                                                                  20520
atgctgaaat ttcattcatg ctttggtgta aggatggaca tgttgaaacc ttctacccaa
                                                                  20580
aactacaagc aagtcaagcg tggcaaccag gtgttgcgat gcctaacttg tacaagatgc
                                                                  20640
                                                                  20700
aaagaatgct tcttgaaaag tgtgaccttc agaattatgg tgaaaatgct gttataccaa
aaggaataat gatgaatgtc gcaaagtata ctcaactgtg tcaatactta aatacactta
                                                                  20760
ctttagctgt accctacaac atgagagtta ttcactttgg tgctggctct gataaaggag
                                                                  20820
ttgcaccagg tacagctgtg ctcagacaat ggttgccaac tggcacacta cttgtcgatt
                                                                  20880
                                                                  20940
cagatettaa tgaettegte teegaegeag attetaettt aattggagae tgtgeaacag
tacatacggc taataaatgg gaccttatta ttagcgatat gtatgaccct aggaccaaac
                                                                  21000
atgtgacaaa agagaatgac tctaaagaag ggtttttcac ttatctgtgt ggatttataa
                                                                  21060
agcaaaaact agccctgggt ggttctatag ctgtaaagat aacagagcat tcttggaatg
                                                                  21120
                                                                  21180
ctgaccttta caagcttatg ggccatttct catggtggac agcttttgtt acaaatgtaa
atgcatcatc atcggaagca tttttaattg gggctaacta tcttggcaag ccgaaggaac
                                                                  21240
aaattgatgg ctataccatg catgctaact acattttctg gaggaacaca aatcctatcc
                                                                  21300
agttgtcttc ctattcactc tttgacatga gcaaatttcc tcttaaatta agaggaactg
                                                                  21360
21420
gtaggcttat cattagagaa aacaacagag ttgtggtttc aagtgatatt cttgttaaca
                                                                  21480
actaaacgaa catgtttatt ttcttattat ttcttactct cactagtggt agtgaccttg
                                                                  21540
accggtgcac cacttttgat gatgttcaag ctcctaatta cactcaacat acttcatcta
                                                                  21600
tgaggggggt ttactatcct gatgaaattt ttagatcaga cactctttat ttaactcagg
                                                                  21660
                                                                  21720
atttatttct tccattttat tctaatgtta cagggtttca tactattaat catacgtttg
gcaaccctgt catacctttt aaggatggta tttattttgc tqccacaqag aaatcaaatg
                                                                  21780
ttgtccgtgg ttgggttttt ggttctacca tgaacaacaa qtcacaqtcq qtgattatta
                                                                  21840
ttaacaattc tactaatgtt gttatacgag catgtaactt tgaattgtgt gacaaccctt
                                                                  21900
tctttgctgt ttctaaaccc atgggtacac agacacatac tatgatattc gataatgcat
                                                                  21960
```

```
22020
ttaattgcac tttcgagtac atatctgatg ccttttcgct tgatgtttca gaaaagtcag
gtaattttaa acacttacga gagtttgtgt ttaaaaaataa agatgggttt ctctatgttt
                                                                   22080
ataagggcta tcaacctata gatqtagttc gtgatctacc ttctggtttt aacactttga
                                                                   22140
aacctatttt taagttgcct cttggtatta acattacaaa ttttagagcc attcttacag
                                                                   22200
ccttttcacc tgctcaagac atttggggca cgtcagctgc agcctatttt gttggctatt
                                                                   22260
taaagccaac tacatttatg ctcaagtatg atgaaaatgg tacaatcaca gatgctgttg
                                                                   22320
attgttctca aaatccactt gctgaactca aatgctctgt taagagcttt gagattgaca
                                                                   22380
aaggaattta ccagacctct aatttcaggg ttgttccctc aggagatgtt gtgagattcc
                                                                   22440
ctaatattac aaacttgtgt ccttttggag aggtttttaa tgctactaaa ttcccttctg
                                                                   22500
tctatgcatg ggagagaaaa aaaatttcta attgtgttgc tgattactct gtgctctaca
                                                                   22560
actcaacatt tttttcaacc tttaagtgct atggcgtttc tgccactaag ttgaatgatc
                                                                    22620
tttgcttctc caatgtctat gcagattctt ttgtagtcaa gggagatgat gtaagacaaa
                                                                   22680
tagcgccagg acaaactggt gttattgctg attataatta taaattgcca gatgatttca
                                                                    22740
tgggttgtgt ccttgcttgg aatactagga acattgatgc tacttcaact ggtaattata
                                                                   22800
attataaata taggtatctt agacatggca agcttaggcc ctttgagaga gacatatcta
                                                                   22860
atgtgccttt ctcccctgat ggcaaacctt gcaccccacc tgctcttaat tgttattggc
                                                                   22920
cattaaatga ttatggtttt tacaccacta ctggcattgg ctaccaacct tacagagttg
                                                                   22980
tagtaCtttc ttttgaactt ttaaatgcac cggccacggt ttgtggacca aaattatcca
                                                                   23040
ctgaccttat taagaaccag tgtgtcaatt ttaattttaa tggactcact ggtactggtg
                                                                    23100
tgttaactcc ttcttcaaag agatttcaac catttcaaca atttggccgt gatgtttctg
                                                                   23160
atttcactga ttccgttcga gatcctaaaa catctgaaat attagacatt tcaccttgct
                                                                    23220
cttttggggg tgtaagtgta attacacctg gaacaaatgc ttcatctgaa gttgctgttc
                                                                    23280
tatatcaaga tgttaactgc actgatgttt ctacagcaat tcatgcagat caactcacac
                                                                    23340
cagcttggcg catatattct actggaaaca atgtattcca gactcaagca ggctgtctta
                                                                   23400
taggagctga gcatgtcgac acttcttatg agtgcgacat tcctattgga gctggcattt
                                                                    23460
gtgctagtta ccatacagtt tctttattac gtagtactag ccaaaaatct attgtggctt
                                                                    23520
atactatgtc tttaggtgct gatagttcaa ttgcttactc taataacacc attgctatac
                                                                    23580
ctactaactt ttcaattagc attactacag aagtaatgcc tgtttctatg gctaaaacct
                                                                   23640
ccgtagattg taatatgtac atctgcggag attctactga atgtgctaat ttgcttctcc
                                                                   23700
aatatggtag CttttgCaca caactaaatc gtgcactctc aggtattgct gctgaacagg
                                                                   23760
atcgcaacac acgtgaagtg ttcgctcaag tcaaacaaat gtacaaaacc ccaactttga
                                                                   23820
aatattttgg tggttttaat ttttcacaaa tattacctga ccctctaaag ccaactaaga
                                                                   23880
ggtcttttat tgaggacttg ctctttaata aggtgacact cgctgatgct ggcttcatga
                                                                   23940
agcaatatgg cgaatgccta ggtgatatta atgctagaga tctcatttgt gcgcagaagt
                                                                    24000
```

```
tcaatggact tacagtgttg ccacctctgc tcactgatga tatgattgct gcctacactg
                                                                   24060
ctgctctagt tagtggtact qccactgctg gatggacatt tggtgctggc gctgctcttc
                                                                   24120
aaataccttt tgCtatgcaa atggcatata ggttcaatgg cattggagtt acccaaaatg
                                                                   24180
ttctctatga gaaccaaaaa caaatcgcca accaatttaa caaggcgatt agtcaaattc
                                                                   24240
aagaatcact tacaacaaca tcaactgcat tgggcaagct gcaagacgtt gttaaccaga
                                                                   24300
atgctcaagc attaaacaca cttgttaaac aacttagctc taattttggt gcaatttcaa
                                                                   24360
gtgtgctaaa tgatatcctt tcgcgacttg ataaagtcga ggcggaggta caaattgaca
                                                                   24420
ggttaattac aggcagactt caaaqccttc aaacctatgt aacacaacaa ctaatcaggg
                                                                   24480
ctgctgaaat cagggcttct gctaatcttg ctgctactaa aatgtctgag tgtgttcttg
                                                                   24540
gacaatcaaa aagagttgac ttttgtggaa agggctacca ccttatgtcc ttcccacaag
                                                                   24600
cagccccgca tggtgttgtc ttcctacatg tcacgtatgt gccatcccag gagaggaact
                                                                   24660
tcaccacage gecageaatt tgteatgaag geaaageata etteeetegt gaaggtgttt
                                                                   24720
ttgtgtttaa tggcacttct tggtttatta cacagaggaa cttcttttct ccacaaataa
                                                                   24780
ttactacaga caatacattt gtctcaggaa attgtgatgt cgttattggc atcattaaca
                                                                   24840
acacagttta tgatcctctg caacctgagc ttgactcatt caaagaagag ctggacaagt
                                                                   24900
acttcaaaaa tcatacatca ccagatgttg atcttggcga catttcaggc attaacgctt
                                                                   24960
ctgtcgtcaa cattcaaaaa gaaattgacc gcctcaatga ggtcgctaaa aatttaaatg
                                                                   25020
aatcactcat tgaccttcaa gaattgggaa aatatgagca atatattaaa tggccttggt
                                                                   25080
atgtttggct cggcttcatt gctggactaa ttgccatcgt catggttaca atcttgcttt
                                                                   25140
gttgcatgac tagttgttgc agttgcctca agggtgcatg ctcttgtggt tcttgctgca
                                                                   25200
agtttgatga ggatgactct gagccagttc tcaagggtgt caaattacat tacacataaa
                                                                   25260
cgaacttatg gatttgttta tgagattttt tactcttgga tcaattactg cacagccagt
                                                                   25320
aaaaattgac aatgcttctc ctgcaagtac tgttcatgct acagcaacga taccgctaca
                                                                   25380
agcctcactc cctttcggat ggcttgttat tggcgttgca tttcttgctg tttttcagag
                                                                   25440
cgctaccaaa ataattgcgc tcaataaaag atggcagcta gccctttata agggcttcca
                                                                   25500
gttcatttgc aatttactgc tgctatttgt taccatctat tcacatcttt tgcttgtcgc
                                                                   25560
tgcaggtatg gaggcgcaat ttttgtacct ctatqccttq atatattttc tacaatgcat
                                                                    25620
caacgcatgt agaattatta tgagatgttg gctttgttgg aagtgcaaat ccaagaaccc
                                                                   25680
attactttat gatgccaact actttgtttg ctggcacaca cataactatg actactgtat
                                                                    25740
accatataac agtgtcacag atacaattgt cgttactgaa ggtgacggca tttcaacacc
                                                                    25800
aaaactcaaa gaagactacc aaattggtgg ttattctgag gataggcact caggtgttaa
                                                                   25860
agactatgtc gttgtacatg gctatttcac cgaagtttac taccagcttg agtctacaca
                                                                   25920
aattactaca gacactggta ttgaaaatgc tacattcttc atctttaaca agcttgttaa
                                                                   25980
agacccaccg aatgtgcaaa tacacacaat cgacggctct tcaggagttg ctaatccagc
                                                                    26040
```

aatggatcca	atttatgatg	agccgacgac	gactactagc	gtgcctttgt	aagcacaaga	26100
aagtgagtac	gaacttatgt	actcattcgt	ttcggaagaa	acaggtacgt	taatagttaa	26160
tagcgtactt	ctttttcttg	ctttcgtggt	attcttgcta	gtcacactag	ccatccttac	26220
tgcgcttcga	ttgtgtgcgt	actgctgcaa	tattgttaac	gtgagtttag	taaaaccaac	26280
ggtttacgtc	tactcgcgtg	ttaaaaatct	gaactcttct	gaaggagttc	ctgatcttct	26340
ggtctaaacg	aactaactat	tattattatt	ctgtttggaa	ctttaacatt	gcttatcatg	26400
gcagacaacg	gtactattac	cgttgaggag	cttaaacaac	tcctggaaca	atggaaccta	26460
gtaataggtt	tcctattcct	agcctggatt	atgttactac	aatttgccta	ttctaatcgg	26520
aacaggtttt	tgtacataat	aaagcttgtt	ttcctctggc	tcttgtggcc	agtaacactt	26580
gcttgttttg	tgcttgctgc	tgtctacaga	attaattggg	tgactggcgg	gattgcgatt	26640
gcaatggctt	gtattgtagg	cttgatgtgg	cttagctact	tcgttgcttc	cttcaggctg	26700
tttgctcgta	cccgctcaat	gtggtcattc	aacccagaaa	caaacattct	tctcaatgtg	26760
cctctccggg	ggacaattgt	gaccagaccg	ctcatggaaa	gtgaacttgt	cattggtgct	26820
gtgatcattc	gtggtcactt	gcgaatggcc	ggacactccc	tagggcgctg	tgacattaag	26880
gacctgccaa	aagagatcac	tgtggctaca	tcacgaacgc	tttcttatta	caaattagga	26940
gcgtcgcagc	gtgtaggcac	tgattcaggt	tttgctgcat	acaaccgcta	ccgtattgga	27000
aactataaat	taaatacaga	ccacgccggt	agcaacgaca	atattgcttt	gctagtacag	27060
taagtgacaa	cagatgtttc	atcttgttga	cttccaggtt	acaatagcag	agatattgat	27120
tatcattatg	aggactttca	ggattgctat	ttggaatctt	gacgttataa	taagttcaat	27180
agtgagacaa	ttatttaagc	ctctaactaa	gaagaattat	tcggagttag	atgatgaaga	27240
acctatggag	ttagattatc	cataaaacga	acatgaaaat	tattctcttc	ctgacattga	27300
ttgtatttac	atcttgcgag	ctatatcact	atcaggagtg	tgttagaggt	acgactgtac	27360
tactaaaaga	accttgccca	tcaggaacat	acgagggcaa	ttcaccattt	caccctcttg	27420
ctgacaataa	atttgcacta	acttgcacta	gcacacactt	tgcttttgct	tgtgctgacg	27480
gtactcgaca	tacctatcag	ctgcgtgcaa	gatcagtttc	accaaaactt	ttcatcagac	27540
aagaggaggt	tcaacaagag	ctctactcgc	cactttttct	cattgttgct	gctctagtat	27600
ttttaatact	ttgcttcacc	attaagagaa	agacagaatg	aatgagctca	ctttaattga	27660
cttctatttg	tgctttttag	cctttctgct	attccttgtt	ttaataatgc	ttattatatt	27720
ttggttttca	ctcgaaatcc	aggatctaga	agaaccttgt	accaaagtct	aaacgaacat	27780
gaaacttctc	attgttttga	cttgtatttc	tctatgcagt	tgcatatgca	ctgtagtaca	27840
gcgctgtgca	tctaataaac	ctcatgtgct	tgaagatcct	tgtaaggtac	aacactaggg	27900
gtaatactta	tagcactgct	tggctttgtg	ctctaggaaa	ggttttacct	tttcatagat	27960
ggcacactat	ggttcaaaca	tgcacaccta	atgttactat	caactgtcaa	gatccagctg	28020
gtggtgcgct	tatagctagg	tgttggtacc	ttcatgaagg	tcaccaaact	gctgcattta	28080

```
gagacgtact tgttgtttta aataaacgaa caaattaaaa tgtctgataa tggaccccaa
                                                                   28140
tcaaaccaac gtagtgcccc ccgcattaca tttggtggac ccacagattc aactgacaat
                                                                    28200
aaccagaatg gaggacgcaa tggggcaagg ccaaaacagc gccgacccca aggtttaccc
                                                                    28260
aataatactg cgtcttggtt cacagctctc actcagcatg gcaaggagga acttagattc
                                                                    28320
cctcgaggcc agggcgttcc aatcaacacc aatagtggtc cagatgacca aattggctac
                                                                    28380
taccgaagag ctacccgacg agttcgtggt ggtgacggca aaatgaaaga gctcagcccc
                                                                    28440
agatggtact tctattacct aggaactggc ccagaagctt cacttcccta cggcgctaac
                                                                    28500
aaagaaggca tcgtatgggt tgcaactgag ggagccttga atacacccaa agaccacatt
                                                                    28560
ggcacccgca atcctaataa caatgctgcc accgtgctac aacttcctca aggaacaaca
                                                                    28620
ttgccaaaag gcttctacgc agagggaagc agaggcqqca gtcaagcctc ttctcgctcc
                                                                    28680
tcatcacgta gtcgcggtaa ttcaagaaat tcaactcctg gcagcagtag gggaaattct
                                                                    28740
cctgctcgaa tggctagcgg aggtggtgaa actgccctcg cgctattgct gctagacaga
                                                                    28800
ttgaaccage ttgagagcaa agtttetggt aaaggecaac aacaacaagg ccaaactgte
                                                                    28860
actaagaaat ctgctgctga ggcatctaaa aagcctcgcc aaaaacgtac tgccacaaaa
                                                                    28920
cagtacaacg tcactcaagc atttgggaga cgtggtccag aacaaaccca aggaaatttc
                                                                    28980
ggggaccaag acctaatcag acaaggaact gattacaaac attggccgca aattgcacaa
                                                                    29040
tttgctccaa gtgcctctgc attctttgga atgtcacgca ttggcatgga agtcacacct
                                                                    29100
tcgggaacat ggctgactta tcatggagcc attaaattgg atgacaaaga tccacaattc
                                                                    29160
aaagacaacg tcatactgct gaacaagcac attgacgcat acaaaacatt cccaccaaca
                                                                    29220
gagcctaaaa aggacaaaaa gaaaaagact gatgaagctc agcctttgcc gcagagacaa
                                                                    29280
aagaagcagc ccactgtgac tcttcttcct gcggctgaca tggatgattt ctccagacaa
                                                                    29340
cttcaaaatt ccatgagtgg agcttctgct gattcaactc aggcataaac actcatgatg
                                                                    29400
accacacaag gcagatgggc tatgtaaacg ttttcgcaat tccgtttacg atacatagtc
                                                                    29460
tactcttgtg cagaatgaat tctcgtaact aaacagcaca agtaggttta gttaacttta
                                                                    29520
atctcacata gcaatcttta atcaatgtgt aacattaggg aggacttgaa agagccacca
                                                                    29580
cattttcatc gaggccacgc ggagtacgat cgagggtaca gtgaataatg ctagggagag
                                                                    29640
ctgcctatat ggaagagccc taatgtgtaa aattaatttt agtagtgcta tccccatgtg
                                                                    29700
attttaatag cttcttagga gaatgacaaa aaaaaaaaa aaaaaa
                                                                    29746
```

<210> 2 <211>3945 <212> ADN <213> CORONAVIRUS

<220> <221> CDS <222> (89)..(3853) <223>

<400>	2																
ttct	ctto	tg g	gaaaa	aaggt	a gg	jctta	itcat	taç	jagaa	ıaac	aaca	igagt	tg t	ggtt	tcaag	6	0
tgai	atto	ett g	jttaa	acaad	it aa	acga	ac a N	atg t Met P L	tt a he 1	itt t De F	tc the l	ta t eu l	ta t .eu f	rtt d Phe L	tt .eu	11	.2
act Thr	ctc Leu 1 0	act Thr	agt Ser	ggt Gly	agt Ser	gac Asp 15	ctt Leu	gac Asp	cgg Arg	tgc Cys	acc Thr 20	act Thr	ttt Phe	gat Asp	gat Asp	16	0
			cct Pro													20	8(
			gat Asp													25	6
			ctt Leu 60													30)4
			ttt Phe													35	12
ttt Phe	gct Ala 90	gcc Ala	aca Thr	gag Glu	aaa Lys	tca ser 95	aat Asn	gtt Val	gtc Val	cgt Arg	ggt Gly 100	tgg Trp	gtt Val	ttt Phe	ggt Gly	40	00
tct Ser 105	acc Thr	atg Met	aac Asn	aac Asn	aag Lys 110	tca Ser	cag Gln	tcg Ser	gtg Val	att Ile 115	att Ile	att Ile	aac Asn	aat Asn	tct Ser 120	44	18
			gtt Val													49	96
			gtt Val 140													54	14
ttc Phe	gat Asp	aat Asn 155	g c a Ala	ttt Phe	aat Asn	tgc Cys	act Thr 160	ttc Phe	gag Glu	tac Tyr	ata Ile	tct Ser 165	gat Asp	gcc Ala	ttt Phe	59	92
tcg Ser	ctt Leu 170	gat Asp	gtt Val	tca Ser	gaa Glu	aag Lys 175	tca Ser	ggt Gly	aat Asn	ttt Phe	aaa Lys 180	cac His	tta Leu	cga Arg	gag Glu	64	10
			aaa Lys													68	38
caa Gln	cct Pro	ata Ile	gat Asp	gta Val 205	gtt Val	cgt Arg	gat Asp	cta Leu	cct Pro 210	tct Ser	ggt Gly	ttt Phe	aac Asn	act Thr 215	ttg Leu	73	36

aaa Lys	cct Pro	att Ile	ttt Phe 220	aag Lys	ttg Leu	cct Pro	ctt Leu	ggt Gly 225	att Ile	aac Asn	att Ile	aca Thr	aat Asn 230	ttt Phe	aga Arg	784
gcc Ala	att Ile	ctt Leu 235	aca Thr	gcc Ala	ttt Phe	tca Ser	cct Pro 240	gct Ala	caa Gln	gac Asp	att Ile	tgg Trp 245	ggc Gly	acg Thr	tca Ser	832
gct Ala	gca Ala 250	gcc Ala	tat Tyr	ttt Phe	gtt Val	ggc Gly 255	tat Tyr	tta Leu	aag Lys	cca Pro	act Thr 260	aca Thr	ttt Phe	atg Met	ctc Leu	880
aag Lys 265	tat Tyr	gat Asp	gaa Glu	aat Asn	ggt Gly 270	aca Thr	atc Ile	aca Thr	gat Asp	gct Ala 275	gtt val	gat Asp	tgt Cys	tct Ser	caa Gln 280	928
							tgc Cys									976
aaa Lys	gga Gly	att Ile	tac Tyr 300	cag Gln	acc Thr	tct Ser	aat Asn	ttc Phe 305	agg Arg	gtt Val	gtt Val	ccc Pro	tca Ser 310	gga Gly	gat Asp	1024
gtt Val	gtg Val	aga Arg 315	ttc Phe	cct Pro	aat Asn	att Ile	aca Thr 320	aac Asn	ttg Leu	tgt Cys	cct Pro	ttt Phe 325	gga Gly	gag Glu	gtt Val	1072
ttt Phe	aat Asn 330	gct Ala	act Thr	aaa Lys	ttc Phe	cct Pro 335	tct Ser	gtc Val	tat Tyr	gca Ala	tgg Trp 340	gag Glu	aga Arg	aaa Lys	aaa Lys	1120
att Ile 345	tct Ser	aat Asn	tgt Cys	gtt Val	gct Ala 350	gat Asp	tac Tyr	tct Ser	gtg val	ctc Leu 355	tac Tyr	aac Asn	tca Ser	aca Thr	ttt Phe 360	1168
ttt Phe	tca Ser	acc Thr	ttt Phe	aag Lys 365	tgc Cys	tat Tyr	G]A Gac	gtt Val	tct Ser 370	gcc Ala	act Thr	aag Lys	ttg Leu	aat Asn 375	gat Asp	1216
ctt Leu	tgc Cys	ttc Phe	tcc Ser 380	aat Asn	gtc Val	tat Tyr	gca Ala	gat Asp 385	tct Ser	ttt Phe	gta Val	gtc Val	aag Lys 390	gga Gly	gat Asp	1264
gat Asp	gta Val	aga Arg 395	caa Gln	ata Ile	gcg Ala	cca Pro	gga Gly 400	caa Gln	act Thr	ggt Gly	gtt val	att Ile 405	gct Ala	gat Asp	tat Tyr	1312
							ttc Phe									1360
							tca Ser									1408
agg Arg	tat Tyr	ctt L e u	aga Arg	cat His 445	ggc Gly	aag Lys	c tt L eu	agg Arg	ccc Pro 450	ttt Phe	gag Glu	aga Arg	gac Asp	ata Ile 455	tct Ser	1456
aat Asn	gtg Val	cct Pro	ttc Phe 460	tcc Ser	cct Pro	gat Asp	ggc Gly	aaa Lys 465	cct Pro	tgc Cys	acc Thr	cca Pro	cct Pro 470	gct Ala	ctt Leu	1504
							gat Asp 480									1552

att Ile	ggc Gly 490	tac Tyr	caa Gln	cct Pro	tac Tyr	aga Arg 495	gtt Val	gta Val	gta Val	ctt Leu	tct Ser 500	ttt Phe	gaa Glu	ctt Leu	tta Leu	1600
aat Asn 505	gca Ala	ccg Pro	gcc Ala	acg Thr	gtt Val 510	tgt Cys	gga Gly	cca Pro	aaa Lys	tta Leu 515	tcc Ser	act Thr	gac Asp	ctt Leu	att Ile 520	1648
aag Lys	aac Asn	cag Gln	tgt Cys	gtc Val 525	aat Asn	ttt Phe	aat Asn	ttt Phe	aat Asn 530	gga Gly	ctc Leu	act Thr	ggt Gly	act Thr 535	ggt G∛y	1696
gtg Val	tta Leu	act Thr	cct Pro 540	tct Ser	tca Ser	aag Lys	aga Arg	ttt Phe 545	caa Gln	cca Pro	ttt Phe	caa Gln	caa G1n 550	ttt Phe	ggc Gly	1744
						act Thr										1792
gaa Glu	ata Ile 570	tta Leu	gac Asp	att Ile	tca Ser	cct Pro 575	tgc Cys	tct Ser	ttt Phe	ggg Gly	ggt Gly 580	gta Val	agt Ser	gta Val	att Ile	1840
aca Thr 585	cct Pro	gga Gly	aca Thr	aat Asn	gct Ala 590	tca Ser	tct Ser	gaa Glu	gtt Val	gct Ala 595	gtt Val	cta Leu	tat Tyr	caa Gln	gat Asp 600	1888
						tct Ser										1936
						tct Ser										1984
gca Ala	ggc Gly	tgt Cys 635	ctt Leu	ata Ile	gga Gly	gct Ala	gag Glu 640	cat His	gtc Val	gac Asp	act Thr	tct Ser 645	tat Tyr	gag Glu	tgc Cys	2032
gac Asp	att Ile 650	cct Pro	att Ile	gga Gly	gct Ala	ggc Gly 655	att Ile	tgt Cys	gct Ala	agt Ser	tac Tyr 660	cat ніs	aca Thr	gtt Val	tct Ser	2080
tta Leu 665	tta Leu	cgt Arg	agt Ser	act Thr	agc Ser 670	caa Gln	aaa Lys	tct Ser	att Ile	gtg Val 675	gct Ala	tat Tyr	act Thr	atg Met	tct Ser 680	2128
tta Leu	ggt Gly	gct Ala	gat Asp	agt Ser 685	tca Ser	att Ile	gct Ala	tac Tyr	tct Ser 690	aat Asn	aac Asn	acc Thr	att Ile	gct Ala 695	ata Ile	2176
cct Pro	act Thr	aac Asn	ttt Phe 700	tca Ser	att Ile	agc Ser	att Ile	act Thr 705	aca Thr	gaa Glu	gta Val	atg Met	cct Pro 710	gtt Val	tct Ser	2224
						gat Asp										2272
						ctt Leu 735										2320
cta Leu 745	aat Asn	cgt Arg	gca Ala	ctc Leu	tca Ser 750	ggt Gly	att Ile	gct Ala	gct Ala	gaa Glu 755	cag Gln	gat Asp	cgc Arg	aac Asn	aca Thr 760	2368

cgt Arg	gaa Glu	gtg Val	ttc Phe	gct Ala 765	caa Gln	gtc Val	aaa Lys	caa Gln	atg Met 770	tac Tyr	aaa Lys	acc Thr	cca Pro	act Thr 775	ttg Leu	2416
aaa Lys	tat Tyr	ttt Phe	ggt Gly 780	ggt Gly	ttt Phe	aat Asn	ttt Phe	tca Ser 785	caa Gln	ata Ile	tta Leu	cct Pro	gac Asp 790	cct Pro	cta Leu	2464
aag Lys	cca Pro	act Thr 795	aag Lys	agg Arg	tct Ser	ttt Phe	att Ile 800	gag Glu	gac Asp	ttg Leu	ctc Leu	ttt Phe 805	aat Asn	aag Lys	gtg Val	2512
aca Thr	ctc Leu 810	gct Ala	gat Asp	gct Ala	ggc Gly	ttc Phe 815	atg Met	aag Lys	caa Gln	tat Tyr	ggc Gly 820	gaa Glu	tgc Cys	cta Leu	ggt Gly	2560
gat Asp 825	att Ile	aat Asn	gct Ala	aga Arg	gat Asp 830	ctc Leu	att Ile	tgt Cys	gcg Ala	cag Gln 835	aag Lys	ttc Phe	aat Asn	gga Gly	ctt Leu 840	2608
						ctc Leu										2656
						act Thr										2704
						cct Pro										2752
aat Asn	ggc Gly 890	att Ile	gga Gly	gtt Val	acc Thr	caa Gln 895	aat Asn	gtt Val	ctc Leu	tat Tyr	gag Glu 900	aac Asn	caa Gln	aaa Lys	caa Gln	2800
atc Ile 905	gcc Ala	aac Asn	caa Gln	ttt Phe	aac Asn 910	aag Lys	gcg Ala	att Ile	agt Ser	caa Gln 915	att Ile	caa Gln	gaa Glu	tca Ser	ctt Leu 920	2848
aca Thr	aca Thr	aca Thr	tca Ser	act Thr 925	gca Ala	ttg Leu	ggc Gly	aag Lys	ctg Leu 930	caa Gln	gac Asp	gtt Val	gtt Val	aac Asn 935	cag Gln	2896
aat Asn	gct Ala	caa Gln	gca Ala 940	tta Leu	aac Asn	aca Thr	ctt Leu	gtt Val 945	aaa Lys	caa Gln	ctt Leu	agc Ser	tct Ser 950	aat Asn	ttt Phe	2944
ggt Gly	gca Ala	att Ile 955	tca Ser	agt Ser	gtg Val	cta Leu	aat Asn 960	gat Asp	atc Ile	ctt Leu	tcg Ser	cga Arg 965	ctt Leu	gat Asp	aaa Lys	2992
gtc Val	gag Glu 970	gcg Ala	gag Glu	gta Val	caa Gln	att Ile 975	gac Asp	agg Arg	tta Leu	att Ile	aca Thr 980	ggc Gly	aga Arg	ctt Leu	caa Gln	3040
						aca Thr										3088
					Lei	t gc u Ala				5 M				ys V		3133
		caa Gln			Ar	a gt g Va				s G				yr H		3178

ctt atg tcc ttc cca caa gca gcc Leu Met Ser Phe Pro Gln Ala Ala 1035	ccg cat ggt gtt gtc ttc cta Pro His Gly Val Val Phe Leu 1040 1045	3223				
cat gtc acg tat gtg cca tcc cag His Val Thr Tyr Val Pro Ser Gln 1050	gag agg aac ttc acc aca gcg Glu Arg Asn Phe Thr Thr Ala 1055 1060	3268				
cca gca att tgt cat gaa ggc aaa Pro Ala Ile Cys His Glu Gly Lys 1065	gca tac ttc cct cgt gaa ggt Ala Tyr Phe Pro Arg Glu Gly 1070 1075	3313				
gtt ttt gtg ttt aat ggc act tct Val Phe Val Phe Asn Gly Thr Ser 1080	tgg ttt att aca cag agg aac Trp Phe Ile Thr Gln Arg Asn 1085 1090	3358				
ttc ttt tct cca caa ata att act Phe Phe Ser Pro Gln Ile Ile Thr 1095		3403				
gga aat tgt gat gtc gtt att ggc Gly Asn Cys Asp Val Val Ile Gly 1110	atc att aac aac aca gtt tat Ile Ile Asn Asn Thr Val Tyr 1115 1120	3448				
gat cct ctg caa cct gag ctt gac Asp Pro Leu Gln Pro Glu Leu Asp 1125		3493				
aag tac ttc aaa aat cat aca tca Lys Tyr Phe Lys Asn His Thr Ser 1140	cca gat gtt gat ctt ggc gac Pro Asp Val Asp Leu Gly Asp 1145 1150	3538				
att tca ggc att aac gct tct gtc Ile Ser Gly Ile Asn Ala Ser Val 1155	gtc aac att caa aaa gaa att Val Asn Ile Gln Lys Glu Ile 1160 1165	3583				
gac cgc ctc aat gag gtc gct aaa Asp Arg Leu Asn Glu Val Ala Lys 1170	aat tta aat gaa tca ctc att Asn Leu Asn Glu Ser Leu Ile 1175 1180	3628				
gac ctt caa gaa ttg gga aaa tat Asp Leu Gln Glu Leu Gly Lys Tyr 1185	gag caa tat att aaa tgg cct Glu Gln Tyr Ile Lys Trp Pro 1190 1195	3673				
tgg tat gtt tgg ctc ggc ttc att Trp Tyr Val Trp Leu Gly Phe Ile 1200	gct gga cta att gcc atc gtc Ala Gly Leu Ile Ala Ile Val 1205 1210	3718				
atg gtt aca atc ttg ctt tgt tgc Met Val Thr Ile Leu Leu Cys Cys 1215	atg act agt tgt tgc agt tgc Met Thr Ser Cys Cys Ser Cys 1220 1225	3763				
ctc aag ggt gca tgc tct tgt ggt Leu Lys Gly Ala Cys Ser Cys Gly 1230		3808				
gat gac tct gag cca gtt ctc aag Asp Asp Ser Glu Pro Val Leu Lys 1245	ggt gtc aaa tta cat tac aca Gly Val Lys Leu His Tyr Thr 1250 1255	3853				
taaacgaact tatggatttg tttatgagat	tttttactct tggatcaatt actgcacagc	3913				
cagtaaaaat tgacaatgct tctcctgcaa	a gt					

<210> 3 <211> 1255 <212> PRT

<213> CORONAVIRUS <400> 3

Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu $1 \hspace{1cm} 5 \hspace{1cm} 15$ Asp Arg Cys Thr Thr Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln 20 25 30 His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg 35 40 45 Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser 50 60 Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly Asn Pro Val 65 70 75 80 Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn 85 90 95 Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln
100 105 Ser Val Ile Ile Ile Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys 115 120 125 Asn Phe Glu Leu Cys Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met 130 135 140 Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr 145 150 155 160 Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser 165 170 175 Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly 180 185 190 Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp 195 200 205 Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro 235 230 235 240

Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr 245 250 255 Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile 260 265 270 Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys 275 280 285 Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn 290 295 300 Phe Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr 305 310 315 320 Asn Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser 325 330 335 Val Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr 340 345 350 Ser Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly 355 365 Val Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala 370 375 Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly 385 400 Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe 405 410 415 Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser 420 425 430 Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu
435 440 445 Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly 450 460 Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp 465 470 480 Tyr Gly Phe Tyr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val 485 490 495 Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly 500 505 510

Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn 515 520 525 Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg 530 540 Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp 545 550 555 560 Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys 565 570 575 Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser 580 585 590 Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr 595 600 605 Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr 610 615 620 Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu 625 630 635 640 His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile 645 650 Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys 660 665 670 Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 675 680 685 Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile 690 695 700 Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 705 710 715 720 Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu 725 730 735 Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile 740 745 750 Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys
755 760 765 Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 775 780

Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile 785 790 795 800 Glu Asp Leu Leu Phe Asm Lys Val Thr Leu Ala Asp Ala Gly Phe Met 805 810 815 Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile 820 825 830 Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr 835 840 845 Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala 850 855 860 Thr Ala Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe 865 870 875 880 Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn 885 890 895 Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala 900 905 910 Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly 915 920 925 Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu 930 940 Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn 945 950 955 960 Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln Ile Asp 965 970 975 Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln 980 985 990 Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala 995 1000 1005 Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val Asp 1010 1015 1020 Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala Ala 1025 1030 1035 Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln 1040 1045 1050

Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys 1055 1060 Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser 1070 1080 Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr 1085 Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly 1100 1105 1110 Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp 1115 1120 1125 Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His Thr Ser 1130 1140 Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val 1145 1150 1155 Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys 1160 1165 1170 Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr 1175 1180 1185 Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile 1190 1200 Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys 1205 1210 1215 Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly 1220 1230 Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys 1235 1240 1245 Gly Val Lys Leu His Tyr Thr

<210> 4

<211> 3943

<212> ADN

<213> CORONAVIRUS

<400> 4

60	gtttcaagtg	cagagttgtg	gagaaaacaa	cttatcatta	aaaaggtagg	ctcttctgga
120	actctcacta	attatttctt	ttattttctt	acgaacatgt	taacaactaa	atattcttgt
180	aattacactc	tcaagctcct	ttgatgatgt	tgcaccactt	ccttgaccgg	gtggtagtga
240	tcagacactc	aatttttaga	atcctgatga	ggggtttact	atctatgagg	aacatacttc
300	tttcatacta	tgttacaggg	tttattctaa	tttcttccat	tcaggattta	tttatttaac
360	tttgctgcca	tggtatttat	cttttaagga	cctgtcatac	gtttggcaac	ttaatcatac
420	aacaagtcac	taccatgaac	tttttggttc	cgtggttggg	aaatgttgtc	cagagaaatc
480	aactttgaat	acgagcatgt	atgttgttat	aattctacta	tattattaac	agtcggtgat
540	catactatga	tacacagaca	aacccatggg	gctgtttcta	ccctttcttt	tgtgtgacaa
600	tcgcttgatg	tgatgccttt	agtacatatc	tgcactttcg	tgcatttaat	tattcgataa
660	aataaagatg	tgtgtttaaa	tacgagagtt	tttaaacact	gtcaggtaat	tttcagaaaa
720	ctaccttctg	agttcgtgat	ctatagatgt	ggctatcaac	tgtttataag	ggtttctcta
780	acaaatttta	tattaacatt	tgcctcttgg	atttttaagt	tttgaaacct	gttttaacac
840	gctgcagcct	gggcacgtca	aagacatttg	tcacctgctc	tacagccttt	gagccattct
900	aatggtacaa	gtatgatgaa	ttatgctcaa	ccaactacat	ctatttaaag	attttgttgg
960	tctgttaaga	actcaaatgc	cacttgctga	tctcaaaatc	tgttgattgt	tcacagatgc
1020	ccctcaggag	cagggttgtt	cctctaattt	atttaccaga	tgacaaagga	gctttgagat
1080	tttaatgcta	tggagaggtt	tgtgtccttt	attacaaact	attccctaat	atgttgtgag
1140	gttgctgatt	ttctaattgt	gaaaaaaaat	gcatgggaga	ttctgtctat	ctaaattccc
1200	gtttctgcca	gtgctatggc	caacctttaa	acatttttt	ctacaactca	actctgtgct
1260	gtcaagggag	ttcttttgta	tctatgcaga	ttctccaatg	tgatctttgc	ctaagttgaa
1320	aattataaat	tgctgattat	ctggtgttat	ccaggacaaa	acaaatagcg	atgatgtaag
1380	gatgctactt	taggaacatt	cttggaatac	tgtgtccttg	tttcatgggt	tgccagatga
1440	aggccctttg	tggcaagctt	atcttagaca	aaatataggt	ttataattat	caactggtaa
1500	ccacctgctc	accttgcacc	ctgatggcaa	cctttctccc	atctaatgtg	agagagacat
1560	attggctacc	cactactggc	gtttttacac	aatgattatg	ttggccatta	ttaattgtta
1620	acggtttgtg	tgcaccggcc	aacttttaaa	ctttcttttg	agttgtagta	aaccttacag
1680	tttaatggac	caattttaat	accagtgtgt	cttattaaga	atccactgac	gaccaaaatt
1740	caacaatttg	tcaaccattt	caaagagatt	actccttctt	tggtgtgtta	tcactggtac
1800	gaaatattag	taaaacatct	ttcgagatcc	actgattccg	ctctgatttc	gccgtgatgt
1860	aatgcttcat	acctggaaca	gtgtaattac	gggggtgtaa	ttgctctttt	acatttcacc
1920	gcaatccatg	tgtttctaca	actgcactga	caagatgtta	tgttctatat	ctgaagttgc
1980	ttccagactc	aaacaatgta	attctactgg	tggcgcatat	cacaccagct	cagatcaact
2040	gacattccta	ttatgagtgc	tcgacacttc	gctgagcatg	tcttatagga	aagcagg c tg

ttggagctgg	catttgtgct	agttaccata	cagtttcttt	attacgtagt	actagccaaa	2100
aatctattgt	ggcttatact	atgtctttag	gtgctgatag	ttcaattgct	tactctaata	2160
acaccattgc	tatacctact	aacttttcaa	ttagcattac	tacagaagta	atgcctgttt	2220
ctatggctaa	aacctccgta	gattgtaata	tgtacatctg	cggagattct	actgaatgtg	2280
ctaatttgct	tctccaatat	ggtagctttt	gcacacaact	aaatcgtgca	ctctcaggta	2340
ttgctgctga	acaggatcgc	aacacacgtg	aagtgttcgc	tcaagtcaaa	caaatgtaca	2400
aaaccccaac	tttgaaatat	tttggtggtt	ttaatttttc	acaaatatta	cctgaccctc	2460
taaagccaac	taagaggtct	tttattgagg	acttgctctt	taataaggtg	acactcgctg	2520
atgctggctt	catgaagcaa	tatggcgaat	gcctaggtga	tattaatgct	agagatctca	2580
tttgtgcgca	gaagttcaat	gggcttacag	tgttgccacc	tctgctcact	gatgatatga	2640
ttgctgccta	cactgctgct	ctagttagtg	g tactgccac	tgctggatgg	acatttggtg	2700
ctggcgctgc	tcttcaaata	ccttttgcta	tgcaaatggc	atataggttc	aatggcattg	2760
gagttaccca	aaatgttctc	tatgagaacc	aaaaacaaat	cgccaaccaa	tttaacaagg	2820
cgattagtca	aattcaagaa	tcacttacaa	caacatcaac	tgcattgggc	aagctgcaag	2880
acgttgttaa	ccagaatgct	caagcattaa	acacacttgt	taaacaactt	agctctaatt	2940
ttggtgcaat	ttcaagtgtg	ctaaatgata	tcctttcgcg	acttgataaa	gtcgaggcgg	3000
aggtacaaat	tgacaggcta	attacaggca	gacttcaaag	ccttcaaacc	tatgtaacac	3060
aacaactaat	cagggctgct	gaaatcaggg	cttctgctaa	tcttgctgct	actaaaatgt	3120
ctgagtgtgt	tcttggacaa	tcaaaaagag	ttgacttttg	tggaaagggc	taccacctta	3180
tgtccttccc	acaagcagcc	ccgcatggtg	ttgtcttcct	acatgtcacg	tatgtgccat	3240
cccaggagag	gaacttcacc	acagcgccag	caatttgtca	tgaaggcaaa	gcatacttcc	3300
ctcgtgaagg	tgtttttgtg	tttaatggca	cttcttggtt	tattacacag	aggaacttct	3360
tttctccaca	aataattact	acagacaata	catttgtctc	aggaaattgt	gatgtcgtta	3420
ttggcatcat	taacaacaca	gtttatgatc	ctctgcaacc	tgagcttgac	tcattcaaag	3480
aagagctgga	caagtacttc	aaaaatcata	catcaccaga	tgttgatctt	ggcgacattt	3540
caggcattaa	cgcttctgtc	gtcaacattc	aaaaagaaat	tgaccgcctc	aatgaggtcg	3600
ctaaaaattt	aaatgaatca	ctcattgacc	ttcaagaatt	gggaaaatat	gagcaatata	3660
ttaaatggcc	ttggtatgtt	tggctcggct	tcattgctgg	actaattgcc	atcgtcatgg	3720
ttacaatctt	gctttgttgc	atgactagtt	gttgcagttg	cctcaagggt	gcatgctctt	3780
gtggttcttg	ctgcaagttt	gatgaggatg	actctgagcc	agttctcaag	ggtgtcaaat	3840
tacattacac	ataaacgaac	ttatggattt	gtttatgaga	ttttttactc	ttggatcaat	3900
tactgcacag	ccagtaaaaa	ttgacaatgc	ttctcctgca	agt		3943
	acgttgttaa ttggtgcaat aggtacaaat aacaactaat ctgagtgtgt tgtccttccc cccaggagag ctcgtgaagg tttctccaca ttggcatcat aagagctgga caggcattaa ctaaaaattt ttaaatggcc ttacaatctt gtggttcttg tacattacac	acgitightaa ccagaatigct tiggigcaat ticaagigtg aggitacaaat tigacagigcta aacaactaat caggigctigct ctigagiggiggiggiggiggiggiggiggiggiggiggigg	acgitightaa ccagaatgct caagcattaa tiggigaat ticaagtgtg ctaaatgata aggitacaaat tigacaggcta attacaggca aacaactaat cagggctgct gaaatcaggg ctgagtgtg tcttggacaa tcaaaaagag tigtcetece acaagcagce ccgcatggtg cccaggagag gaacticace acagcgccag ctcgigaagg tigtititigig titaatggca titicicaca aataattact acagacaata tiggicatcat taacaacaca gittiatgate aagagctgga caagtactic aaaaatcata caggcattaa cigciticitigi gicaacatte ctaaaaatti aaatgaatca cicaitigace tigaaatgi tiggicicigi atgactagti gitgiici gicaagatgi atgactata caggiticii gitgiici atgacgatgi tacattacac ataacgaac tiaatggatti tacaatacac ataacacgaac tiaatggatti tacaatacac ataacacgaac tiaatggatti tacaatacac ataacacgaac tiaatggatti	acgttgttaa ccagaatgct caagcattaa acacacttgt ttggtgcaat ttcaagtgtg ctaaatgata tcctttcgcg aggtacaaat tgacaggcta attacaggca gacttcaaag aacaactaat cagggctgct gaaatcaggg cttctgctaa ctgagtgtg tcttggacaa tcaaaaagag ttgactttg tgtccttccc acaagcagcc ccgcatggtg ttgtctcct cccaggagag gaacttcacc acagcgccag caatttgtca ctcgtgaagg tgttttgtg tttaatggca cttcttggtt tttctcaca aataattact acagacaata catttgtcc ttggcatcat taacaacaca gtttatgatc ctctgcaacc aagagctgga caagtacttc aaaaaatcata catcaccaga caggcattaa cgcttctgtc gtcaacatt aacaacaca ctcattgacc ttcaagaatt ttaaaatggcc ttggtatgt tggctcggct tcaatggtg ttacaatct gctttgtc atgactagtt gttgcagttg gtggttcttg ctgcaagtt gatgaggatg actctgagcc tacattacac ataaccaca ataaccaca gtttatgacc gttgcagttg gtggttcttg ctgcaagtt gatgaggatg actctgagcc tacattacac ataaccaca gttatggatt gttgcagttg gtggttcttg ctgcaagtt gatgaggatg actctgagcc tacattacac ataaacgaac ttatggattt ggttatgaga	acgitightaa ccagaatigct caagcattaa acacactigt taaacaacti titiggigcaat ticaagtigt ctaaaatigata tcctticgcg actigataaa aggitacaaat tigacaggcta attacaggca gacticaaag ccttcaaacc aacaactaat caggigctgct gaaatcaggg cttctigctaa tcttigctigct ctgagtigt tcttiggacaa tcaaaaaagag tigactittig tiggaaagggc tigiccticcc acaagcagcc ccgcatiggig tigiccticct acatigicac cccaggagag gaacticacc acagcigcag caattigica tigaaggcaaa ctcgigaagg tigitittigig titaatiggia cttcttiggit tattacacag titiccaca aataattact acagacaata cattigica aggaaaattigt tigicatcat taacaacaca gittatigat ctctigcaacc tigagctigac aagagictigaa caagtactic aaaaaatcata catcaccaga tigitigatcit caggicataa ciccitigic gicaacatic aaaaagaaat tigacciicciicaaaaatti aaatgaatca ctcattigacc ticaagaata tigacciicciicaaaaatti aaatgaatca ctcattigacc ticaagaata gigaaaatat tiaaaatggcc tiggitatigt tiggicciigic ticattigciig actaattigciigiigiicaagtii gitigcagtiig cctcaaggiigiigiiciicii ctgcaagtii gatgaggatg actctigagc agitictcaag	cgattagtca aattcaagaa tcacttacaa caacatcaac tgcattgggc aagctgcaag acgttgttaa ccagaatgct caagcattaa acacacttgt taaacaactt agctctaatt ttggtgcaat ttcaagtgg ctaaatgata tcctttcgcg acttgataaa gtcgagggcgg aggtacaaat tgacaggcta attacaggca gacttcaaag ccttcaaacc tatgtaacac aacaactaat cagggctgct gaaatcaggg cttctgtaa tcttgctgct actaaaatgt ctgaggtggt tcttggacaa tcaaaaagag ttgactttg tggaaagggc taccacctta tgtccttccc acaagcagcc ccgcatggtg ttgtcttcct acatgtcacg tatgtgccat cccaggagag gaacttcacc acagcgccag caatttgtca tgaaggcaaa gcatacttcc ctcgtgaagg tgtttttgtg tttaatggca cttcttggtt tattacacag aggaacttct tttctccaca aataattact acagacaata cattgtctc aggaaattgt gatgcgtta ttggcatcat taacaacaa gtttatgatc ctctgcaacc tgagcttga tcattcaaag aagagctgga caagtactc aaaaatcata catcaccaga tgttgatct ggcgacattt caggcattaa cgcttctgc gtcaacattc aaaaagaaat tgaccgcct aatgaggtcg ctaaaaattt aaatgaatca ctcattgacc ttcaagaatt gggaaaatata taaaatggcc ttggtatgt tggctcggct tcattgctg gtcaacattc ggggaaaatat ggacaatata ttaaaatggcc ttggtatgt tggctcggct tcattgctgg actaattgc accacggg gcatgctctt ggtggttcttg ctgcaagtt gatgaggatg acctctgagc agttctcaag ggtgtcaaat tacattacac ataaacgaa ttatggatt gttgatct gttgatcat gttggttcttg ctgcaagtt gatgaggatg acctctgagc agttctcaag ggtgtcaaat tacattacac ataaacgaa ttatggatt gttgatgg tttttacc ttggatcatt tacattacac ataaacgaa ttatggatt gtttatgaga ttttttactc ttggatcaat tacattacac ataaacgaa ttatggatt gtttatgaga ttttttactc ttggatcaattacttacctgacag ccagtaaaaa ttgacaatac ttccctgca agt

<210> 5 <211> 2049

<212> ADN

<213> CORONAVIRUS

<400> 5 60 ctcttctqga aaaaqqtaqq cttatcatta gagaaaacaa cagaqttgtg gtttcaagtg atattcttgt taacaactaa acgaacatgt ttattttctt attatttctt actctcacta 120 gtggtagtga ccttgaccgg tgcaccactt ttgatgatgt tcaagctcct aattacactc 180 240 aacatacttc atctatgagg ggggtttact atcctgatga aatttttaga tcagacactc 300 tttatttaac tcaqqattta tttcttccat tttattctaa tgttacaggg tttcatacta ttaatcatac gtttggcaac cctgtcatac cttttaagga tggtatttat tttgctgcca 360 420 cagagaaatc aaatgttgtc cgtggttggg tttttggttc taccatgaac aacaagtcac 480 agtcggtgat tattattaac aattctacta atgttgttat acgagcatgt aactttgaat 540 tgtgtgacaa ccctttcttt gctgtttcta aacccatggg tacacagaca catactatga 600 tattcgataa tgcatttaat tgcactttcg agtacatatc tgatgccttt tcgcttgatg tttcagaaaa gtcaggtaat tttaaacact tacgagagtt tgtgtttaaa aataaagatg 660 ggtttctcta tgtttataag ggctatcaac ctatagatgt agttcgtgat ctaccttctg 720 gttttaacac tttgaaacct atttttaagt tgcctcttgg tattaacatt acaaatttta 780 840 gagccattct tacagccttt tcacctgctc aagacatttg gggcacgtca gctgcagcct 900 attttgttgg ctatttaaag ccaactacat ttatgctcaa gtatgatgaa aatggtacaa tcacagatgc tgttgattgt tctcaaaatc cacttgctga actcaaatgc tctgttaaga 960 gctttgagat tgacaaagga atttaccaga cctctaattt cagggttgtt ccctcaggag 1020 atgttgtgag attccctaat attacaaact tgtgtccttt tggagaggtt tttaatgcta 1080 ctaaattccc ttctgtctat gcatgggaga gaaaaaaaat ttctaattgt gttgctgatt 1140 1200 actctgtgct ctacaactca acatttttt caacctttaa gtgctatggc gtttctgcca ctaagttgaa tgatctttgc ttctccaatg tctatgcaga ttcttttgta gtcaagggag 1260 atqatqtaaq acaaatagcg ccaggacaaa ctggtgttat tgctgattat aattataaat 1320 tgccagatga tttcatgggt tgtgtccttg cttggaatac taggaacatt gatgctactt 1380 caactggtaa ttataattat aaatataggt atcttagaca tggcaagctt aggccctttg 1440 agagagacat atctaatgtg cctttctccc ctgatggcaa accttgcacc ccacctgctc 1500 ttaattgtta ttggccatta aatgattatg gtttttacac cactactggc attggctacc 1560 aaccttacag agttgtagta ctttcttttg aacttttaaa tgcaccggcc acggtttgtg 1620 qaccaaaatt atccactgac cttattaaga accagtgtgt caattttaat tttaatggac 1680 tcactggtac tggtgttta actccttctt caaagagatt tcaaccattt caacaatttg 1740 1800 gccgtgatgt ctctgatttc actgattccg ttcgagatcc taaaacatct gaaatattag

acatttcacc	ttgctctttt	gggggtgtaa	gtgtaattac	acctggaaca	aatgcttcat	1860
ctgaagttgc	tgttctatat	caagatgtta	actgcactga	tgtttctaca	gcaatccatg	1920
cagatcaact	cacaccagct	tggcgcatat	attctactgg	aaacaatgta	ttccagactc	1980
aagcaggctg	tcttatagga	gctgagcatg	tcgacacttc	ttatgagtgc	gacattccta	2040
ttggagctg						2049

<210> 6

<211> 2027 <212> ADN <213> CORONAVIRUS

<400> 6

00>6						
catgcagatc	aactcacacc	agcttggcgc	atatattcta	ctggaaacaa	tgtattccag	60
actcaagcag	gctgtcttat	aggagctgag	catgtcgaca	cttcttatga	gtgcgacatt	120
cctattggag	ctggcatttg	tgctagttac	catacagttt	ctttattacg	tagtactagc	180
caaaaatcta	ttgtggctta	tactatgtct	ttaggtgctg	atagttcaat	tgcttactct	240
aataacacca	ttgctatacc	tactaacttt	tcaattagca	ttactacaga	agtaatgcct	300
gtttctatgg	ctaaaacctc	cgtagattgt	aatatgtaca	tctgcggaga	ttctactgaa	360
tgtgctaatt	tgcttctcca	atatggtagc	ttttgcacac	aactaaatcg	tgcactctca	420
ggtattgctg	ctgaacagga	tcgcaacaca	cgtgaagtgt	tcgctcaagt	caaacaaatg	480
tacaaaaccc	caactttgaa	atattttggt	ggttttaatt	tttcacaaat	attacctgac	540
cctctaaagc	caactaagag	gtcttttatt	gaggacttgc	tctttaataa	ggtgacactc	600
gctgatgctg	gcttcatgaa	gcaatatggc	gaatgcctag	gtgatattaa	tgctagagat	660
ctcatttgtg	cgcagaagtt	caatgggctt	acagtgttgc	cacctctgct	cactgatgat	720
atgattgctg	cctacactgc	tgctctagtt	agtggtactg	ccactgctgg	atggacattt	780
ggtgctggcg	ctgctcttca	aatacctttt	gctatgcaaa	tggcatatag	gttcaatggc	840
attggagtta	cccaaaatgt	tctctatgag	aaccaaaaac	aaatcgccaa	ccaatttaac	900
aaggcgatta	gtcaaattca	agaatcactt	acaacaacat	caactgcatt	gggcaagctg	960
caagacgttg	ttaaccagaa	tgctcaagca	ttaaacacac	ttgttaaaca	acttagctct	1020
aattttggtg	caatttcaag	tgtgctaaat	gatatccttt	cgcgacttga	taaagtcgag	1080
gcggaggtac	aaattgacag	gttaattaca	ggcagacttc	aaagccttca	aacctatgta	1140
acacaacaac	taatcagggc	tgctgaaatc	agggcttctg	ctaatcttgc	tgctactaaa	1200
atgtctgagt	gtgttcttgg	acaatcaaaa	agagttgact	tttgtggaaa	gggctaccac	1260
cttatgtcct	tcccacaagc	agccccgcat	ggtgttgtct	tcctacatgt	cacgtatgtg	1320
ccatcccagg	agaggaactt	caccacagcg	ccagcaattt	gtcatgaagg	caaagcatac	1380
	catgcagatc actcaagcag cctattggag caaaaatcta aataacacca gtttctatgg tgtgctaatt ggtattgctg tacaaaaccc cctctaaagc gctgatgctg ctcatttgtg atgattgctg ggtgctggcg attggagtta aaggcgatta caagacgttg aattttggtg gcggaggtac acacaacaac atgtctgagt cttatgtct	catgcagatc aactcacacc actcaagcag gctgtcttat cctattggag ctggcatttg caaaaaccta ttgtggctta aataacacca ttgctatacc gtttctatgg ctaaaacctc tgtgctaatt tgcttcca ggtattgctg ctgaacagga tacaaaaccc caactttgaa cctctaaagc caactaagag gctgatgctg gcttcatgaa ctcattgtg cgcagaagtt atgatgctg cctacactgc ggtgctggcg ctgctctca attggagtta cccaaaatgt aaggcgatta gtcaaattca caagacgttg ttaaccagaa aattttggtg caatttcaag gcggaggtac aaattgacag acacaacaac taatcagggc atgtctggt gtgttcttgg cttatgtct tcccacaagc	catgcagatc aactcacacc agcttggcgc actcaagcag gctgtcttat aggagctgag ctattggag tgctaattg tgctaagttac caaaaatcta ttgtggctta tactaacttt gttctatgg ctaaaacctc cgtagattgt tgctcatatg ctgctaatt tgcttcca atatggtagc ggtattgct caactagga tcgcaacaca tacaaaaccc caacttgaa atatttggt cctctaaagc caactaagag gtctttatt gctgatgct gctgaaggt caatgggct caattggt gctgatgct gctgaagtt caataggc ctcattgt gcgcagaagt caataggc tgctgatgct gctgaagtt tcatagag aggcgatta gccaaaatg tcctcatgag aggcgatta gccaaaatg tcctcatgag aaggcgatta gtcaaatca agaatcact caagacgtt taaccagaa tgctcaagca aatttggtg caattcaag gttaattaca agaaccaca taacaacaac taacagggc tgctgaaatc atgctgagt gtgttcttgg acaatcaaaa cttatgcct tcccacaagc agccccgcat	catgcagatc aactcacacc agcttggcgc ataatatcta actcaagcag gctgtcttat aggagctgag catgtcgaca cctattggag ctggcatttg tgctagttac catacagttt caaaaatcta ttgtggctta tactaagttt ttaggtgctg aataacacca ttgctatacc tactaacttt tcaattagca gtttctatgg ctaaaacctc cgtagattgt aatatgtaca tgggctaatt tgcttccca atatggtagc ttttgcacac ggtattgctg ctgaacagga tcgcaacaca cgtgaagtgt tacaaaaccc caactttgaa atattttggt ggttttaatt cctctaaagc caactagag gtctttatt gaggacttgc gctgatgct gctcatgaa gcaatatggc gaatgcctag ctcattgtg gcttcatga gcaatatggc gaatgcctag ctcattgtg cgcagaagtt caatgggctt acagtgtgc atgatgctg cctacactgc tgctctagtt agtggtactg ggtgctggcg ctgctctca aataccttt gctatgcaaa attggagtta cccaaaatgt tctctatgag aaccaaaaac aaggcgatta gcaaattca agaatcactt acaacacac caagacgttg taaccagaa tgctcaagca ttaaacacac aattttggtg caatttcaag gttgctaaat ggtatcctt gcggaggtac aaattgacag gttaattaca ggcagacttc acacacacac taatcagggc tgctgaaatc agggcttctg atgctctagt gtgttcttgg acaatcaaaa agagttgact cttatgtct tcccacaagc agcccccat ggtgttgtct tcccacaagc aggtgttgtct tcccacaagc aggctgctct acacacacac agggtgtcttgg acaatcaaaa agagttgact ctctatgtcct tcccacaagc agcccccat ggtgttgtct	catgcagatc aactcacacc agcttggcgc atatattcta ctggaaacaa actcaagcag gctgtcttat aggagctgag catgtcgaca cttcttatga cctattggag ctggcatttg tgctagtac catacagttt ctttattacg caaaaactta ttgtggctta tactatgtct ttaggtgctg atagtcaat aataacacca ttgctatacc tactaacttt tcaattagca ttactacaga gtttctatgg ctaaaacctc cgtagattgt aatatgtaca tctgcggaga tggtgctaatt tgcttctcca atatggtagc ttttgcacac aactaaatcg ggtattgctg ctgaacagga tcgcaacaca cgtgaagtgt tcgctcaagt tacaaaaccc caactttgaa atatttggt ggtttaatt tttcacaaat cctctaaagc gcttctataga gcaatatggc gaatgcctag gtgatataa gcaataaggg gtctttatt gaggacttgc tctttaataa gctgatgct g gcttcatgaa gcaatatggc gaatgcctag gtgatataa ctcatttgtg cgcagaagtt caatgggctt acagggctt acagggctt cacctctgct atgattgctg cctacactgc tgctctagt agtggtactg ccacctctgct atgattgctg cctacactgc tgctctagt agtggtactg ccacctctggg ggtgctggcg ctgctctca aatacctttt gctagcaaa tggcatatag attggagtta cccaaaatgt tctctatgag aaccaaaaca aaatcgccaa aaggcgatta gtcaaattca agaatcactt acaacaacac taactgcatt caagacgttg taaccagaa tgctcaagca ttaaacacac ttgttaaaca aattttggtg caatttcaag gttgctaaat ggcagagtac aaattgacag gttaaataca ggcagacttc aaagccttca acacaacaca	catgcagatc aactcacacc agcttggcgc atatattcta ctggaaacaa tgtattccag actcaagcag gctgtcttat aggagctgag catgtcgaca cttcttatga gtgcgacatt cctattggag ctggcattt tgctagttac catacagttt ctttattacg tagtactagc caaaaactca ttgtggctta tactatgtct ttaggtgctg atagttcaat tgcttactct aatacacca ttgctatacc tactaacttt tcaattagca ttactacaga agtaatgcct gtttctatgg ctaaaacctc cgtagattgt aatagtaca tctgcggaga ttctactggtttctatgg ctaaaacctc cgtagattgt aatagtaca tctgcggaga ttctactaggttgtgctaatt tgcttccca atatggtagc ttttgcacac aactaaatcg tgcactctca ggtattgctg ctgaacagga tcgcaacaca cgtgaagtgt tcgctcaagt caaacaaatg tacaaaaccc caacttgaa atatttggt ggttttaatt tttcacaaat attacctgac cctctaaagc caactaagag gtctttatt gaggacttgc tctttaataa ggtgacactc gctgatgctg gcttcatgaa gcaatatggc gaatgcctag gtgatattaa tgctagagat ccactttgga gcaatatggc gaatgcctag gtgatattaa tgctagagat ctcatttgg gccagaagtt caatgggctt acagtgtgc cacctctgct cactgatgat atgattgctg cctacactgc tgctctagtt agtggtactg ccactctgct cactgatgat atgattgctg cctacactgc tgctctagtt agtggtactg ccactgctgg atggacattt ggtgctggcg ctgctctca aataccttt gctatgcaaa tggcatatag gttcaatggc attgggggtta ccaaaatgt tcctctatgag aaccaaaaaca aaatcgccaa ccaatttaac aaggcgatta gtcaaattca agaatcact acaacaaca taaccgccaa ccaatttaac aaggcgatta gtaaccagaa tgctcaagca ttaaacaaca ttgtaaacaa acttagctct aattttggtg caatttcaag gttcaaatg gataatcctt cgcgacttga taaagtcgag gcggaggtac aaattgacag gttaattaca ggcagacttc caacacaca acactacagag gcggaggtac aaattgacag gttaattaca ggcagacttc caaaccacac taatcaggc tgctgaaatc agggcttctg ctaactttgc tgctactaaa atgtctgag gtgttcttgg acaatcaaaa agagttgact tttgtggaaa gggctaccac cttatgtcc tcccacaagc ggggtaccacac cagcacatt tcccacaaga gggctaccac cttatgtcc tcccacaaga agccccgcat ggtgttgtct tcctacatgt cacgcattgtgccacacccctcacacacacccccacacaca

ttccctcgtg	aaggtgtttt	tgtgtttaat	ggcacttctt	ggtttattac	acagaggaac	1440
ttcttttctc	cacaaataat	tactacagac	aatacatttg	tctcaggaaa	ttgtgatgtc	1500
gttattggcg	tcattaacaa	cacagtttat	gatcctctgc	aacctgagct	tgactcattc	1560
aaagaagagc	tggacaagta	cttcaaaaat	catacatcac	cagatgttga	tcttggcgac	1620
atttcaggca	ttaacgcttc	tgtcgtcaac	attcaaaaag	aaattgaccg	cctcaatgag	1680
gtcgctaaaa	atttaaatga	atcactcatt	gaccttcaag	aattgggaaa	atatgagcaa	1740
tatattaaat	ggccttggta	tgtttggctc	ggcttcattg	ctggactaat	tgccatcgtc	1800
atggttacaa	tcttgctttg	ttgcatgact	agttgttgca	gttgcctcaa	gggtgcatgc	1860
tcttgtggtt	cttgctgcaa	gtttgatgag	gatgactctg	agccagttct	caagggtgtc	1920
aaattacatt	acacataaac	gaacttatgg	atttgtttat	gagattttt	actcttggat	1980
caattactgc	acagccagta	aaaattgaca	atgcttctcc	tgcaagt		2027

<210> 7 <211> 1096 <212> ADN

<213> CORONAVIRUS

<400> 7

tcttgctttg ttgcatgact agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt	60
cttgctgcaa gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt	120
acacataaac gaacttatgg atttgtttat gagatttttt actcttggat caattactgc	180
acagccagta aaaattgaca atgcttctcc tgcaagtact gttcatgcta cagcaacgat	240
accgctacaa gcctcactcc ctttcggatg gcttgttatt ggcgttgcat ttcttgctgt	300
ttttcagagc gctaccaaaa taattgcgct caataaaaga tggcagctag ccctttataa	360
gggcttccag ttcatttgca atttactgct gctatttgtt accatctatt cacatctttt	420
gcttgtcgct gcaggtatgg aggcgcaatt tttgtacctc tatgccttga tatatttct	480
acaatgcatc aacgcatgta gaattattat gagatgttgg ctttgttgga agtgcaaatc	540
Caagaaccca ttactttatg atgccaacta ctttgtttgc tggcacacac ataactatga	600
ctactgtata ccatataaca gtgtcacaga tacaattgtc gttactgaag gtgacggcat	660
ttcaacacca aaactcaaag aagactacca aattggtggt tattctgagg ataggcactc	720
aggtgttaaa gactatgtcg ttgtacatgg ctatttcacc gaagtttact accagcttga	780
gtctacacaa attactacag acactggtat tgaaaatgct acattcttca tctttaacaa	840
gcttgttaaa gacccaccga atgtgcaaat acacacaatc gacggctctt caggagttgc	900
taatccagca atggatccaa tttatgatga gccgacgacg actactagcg tgcctttgta	960
agcacaagaa agtgagtacg aacttatgta ctcattcgtt tcggaagaaa caggtacgtt	1020
aatagttaat agcgtacttc tttttcttgc tttcgtggta ttcttgctag tcacactagc	1080
catccttact gcgctt	1096

<210> 8 <211> 1135 <212> ADN <213> CORONAVIRUS

<400> 8

60 attgccatcg tcatggttac aatcttgctt tgttgcatga ctagttgttg cagttgcctc aagggtgcat gctcttgtgg ttcttqctgc aagtttgatg aggatgactc tgagccagtt 120 ctcaagggtg tcaaattaca ttacacataa acgaacttat ggatttgttt atgagatttt 180 ttactcttgg atcaattact gcacagccag taaaaattga caatgcttct cctgcaagta 240 ctgttcatgc tacagcaacg ataccgctac aagcctcact ccctttcgga tggcttgtta 300 ttggcgttgc atttcttqct gtttttcaga qcgctaccaa aataattgcg ctcaataaaa 360 420 gatggcagct agccctttat aagggcttcc agttcatttg caatttactg ctgctatttg ttaccatcta ttcacatctt ttgcttqtcq ctgcaggtat ggaggcgcaa tttttgtacc 480 tctatgcctt gatatatttt ctacaatgca tcaacgcatg tagaattatt atgagatgtt 540 ggctttgttg gaagtgcaaa tccaagaacc cattacttta tgatgccaac tactttgttt 600 660 gctggcacac acataactat gactactgta taccatataa cagtgtcaca gatacaattg tcgttactga aggtgacggc atttcaacac caaaactcaa agaagactac caaattggtg 720 gttattctga ggataggcac tcaggtgtta aagactatgt cgttgtacat ggctatttca 780 ccgaagttta ctaccagctt gagtctacac aaattactac agacactggt attgaaaatg 840 ctacattctt catctttaac aagcttgtta aagacccacc gaatgtgcaa atacacacaa 900 960 tegacggete tteaggagtt getaateeag caatggatee aatttatgat gageegaega cgactactag cgtgcctttg taagcacaag aaagtgagta cgaacttatg tactcattcg 1020 tttcqqaaqa aacaqqtacq ttaataqtta ataqcqtact tcttttctt qctttcqtqq 1080 tattcttgct agtcacacta gccatcctta ctgcgcttcg attgtgtgcg tactg 1135

```
<210> 9
```

<211> 1096

<212> ADN

<213> CORONAVIRUS

<220>

<221> CDS

<222> (137)..(958)

<223>

<400> 9

tcttgctttg ttgc	atgact agttg	ttgca gttgcct	caa gggtgcatgc 1	cttgtggtt 60
cttgctgcaa gttt	gatgag gatga	ctctg agccagt	tct caagggtgtc a	aaattacatt 120
acacataaac gaac			ga ttt ttt act ci rg Phe Phe Thr Le 10	eu Gly Ser
			gct tct cct gca Ala Ser Pro Ala 25	
gtt cat gct aca Val His Ala Thr 30	gca acg ata Ala Thr Ile 35	ccg cta caa Pro Leu Gln	gcc tca ctc cct Ala Ser Leu Pro 40	ttc gga 268 Phe Gly
tgg ctt gtt att Trp Leu Val Ile 45	ggc gtt gca Gly Val Ala 50	ttt ctt gct Phe Leu Ala	gtt ttt cag agc Val Phe Gln Ser 55	gct acc 316 Ala Thr 60
aaa ata att gcg Lys Ile Ile Ala	ctc aat aaa Leu Asn Lys 65	aga tgg cag Arg Trp Gln 70	cta gcc ctt tat Leu Ala Leu Tyr	aag ggc 364 Lys Gly 75
			ttt gtt acc atc Phe Val Thr Ile 90	
cat ctt ttg ctt His Leu Leu Leu 95	gtc gct gca Val Ala Ala	ggt atg gag Gly Met Glu 100	gcg caa ttt ttg Ala Gln Phe Leu 105	tac ctc 460 Tyr Leu
		Gln Cys Ile	aac gca tgt aga Asn Ala Cys Arg 120	
			tcc aag aac cca Ser Lys Asn Pro 135	
			aca cat aac tat Thr His Asn Tyr	
tgt ata cca tat Cys Ile Pro Tyr 160	'Asn Ser Val	aca gat aca Thr Asp Thr 165	att gtc gtt act Ile Val Val Thr 170	gaa ggt 652 Glu Gly
gac ggc att tca Asp Gly Ile Ser 175	aca cca aaa Thr Pro Lys	ctc aaa gaa Leu Lys Glu 180	gac tac caa att Asp Tyr Gln Ile 185	ggt ggt 700 Gly Gly
		Gly Val Lys	gac tat gtc gtt Asp Tyr Val Val 200	
ggc tat ttc acc Gly Tyr Phe Thr 205	gaa gtt tac Glu Val Tyr 210	tac cag ctt Tyr Gln Leu	gag tct aca caa Glu Ser Thr Gln 215	att act 796 Ile Thr 220

aca gac act ggt att gaa aat gct aca ttc ttc atc ttt aac aag ctt Thr Asp Thr Gly Ile Glu Asn Ala Thr Phe Phe Ile Phe Asn Lys Leu 225 230 235	844
gtt aaa gac cca ccg aat gtg caa ata cac aca atc gac ggc tct tca Val Lys Asp Pro Pro Asn Val Gln Ile His Thr Ile Asp Gly Ser Ser 240 245 250	892
gga gtt gct aat cca gca atg gat cca att tat gat gag ccg acg Gly Val Ala Asn Pro Ala Met Asp Pro Ile Tyr Asp Glu Pro Thr Thr 255 260 265	940
act act agc gtg cct ttg taagcacaag aaagtgagta cgaacttatg Thr Thr Ser Val Pro Leu 270	988
tactcattcg tttcggaaga aacaggtacg ttaatagtta atagcgtact tctttttctt	1048
gctttcgtgg tattcttgct agtcacacta gccatcctta ctgcgctt	1096

<210> 10

<211> 274

<212> PRT

<213> CORONAVIRUS

<400> 10

Met Asp Leu Phe Met Arg Phe Phe Thr Leu Gly Ser Ile Thr Ala Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Val Lys Ile Asp Asn Ala Ser Pro Ala Ser Thr Val His Ala Thr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Thr Ile Pro Leu Gln Ala Ser Leu Pro Phe Gly Trp Leu Val Ile 35 40 45

Gly Val Ala Phe Leu Ala Val Phe Gln Ser Ala Thr Lys Ile Ile Ala 50 60

Leu Asn Lys Arg Trp Gln Leu Ala Leu Tyr Lys Gly Phe Gln Phe Ile 65 70 75 80

Cys Asn Leu Leu Leu Phe Val Thr Ile Tyr Ser His Leu Leu Leu 85 90 95

Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu Tyr Ala Leu Ile 100 105 110

Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile Met Arg Cys Trp 115 120 125

Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu Tyr Asp Ala Asn 130 135 140

		145	Pne	Vai	cys	ırp	150	ınr	HIS	ASII	ıyr	155	ıyr	Cys	тіб	PIO	160	
		Asn	Ser	val	Thr	Asp 165	Thr	Ile	val	val	Thr 170	Glu	Gly	Asp	Gly	Ile 175	Ser	
		Thr	Pro	Lys	Leu 180	Lys	Glu	Asp	Tyr	Gln 185	Ile	Gly	Gly	Tyr	Ser 190	Glu	Asp	
		Arg	His	Ser 195	Gly	۷al	Lys	Asp	Tyr 200	Val	Val	Val	His	G]y 205	Tyr	Phe	Thr	
		Glu	Val 210	Tyr	Tyr	Gln	Leu	G]u 215	Ser	Thr	Gln	Ile	Thr 220	Thr	Asp	Thr	Gly	
		Ile 225	Glu	Asn	Ala	Thr	Phe 230	Phe	Ile	Phe	Asn	Lys 235	Leu	۷a۱	Lys	Asp	Pro 240	
		Pro	Asn	Val	Gln	Ile 245	His	Thr	Ile	Asp	Gly 250	Ser	Ser	Gly	Val	Ala 255	Asn	
		Pro	Ala	Met	Asp 260	Pro	Ile	Tyr	Asp	G]u 265	Pro	Thr	Thr	Thr	Thr 270	Ser	∨al	
		Pro	Leu															
<'2 <'2	210> 11 211> 10 212> AE 213> CO)96 DN	AVIRI	US														
<'2	220> 221> CI 222> (5 223>		019)															
<4	100> 11																	
	tcttg	gctti	tg t	tgca [.]	tgact	t ag	ttgt	tgca	gtt	gcct	caa	gggt	gcat	gc t	cttg	tggt	t	60
	cttg	ctgca	aa g	tttg	atgaç	g ga	tgac [.]	tctg	agc	cagt	tct	caag	ggtg	tc a	aat t	acat	t	120
	acaca	ataaa	ac g	aact	tatgo	g at	ttgt	ttat	gag	attt	ttt	actc	ttgg	at c	aatt	actg	ıc	180
	acage	ccagi	ta a	aaat	tgaca	aat	gctt	ctcc	tgc	aagta	act	gttc	atgc	ta c	agca	acga	t	240

accgctacaa gcctcactcc ctttcggatg gcttgttatt ggcgttgcat ttcttgctgt

300

ttttcagagc gctaccaaaa taattgcgct caataaaaga tggcagctag ccctttataa	360
gggcttccag ttcatttgca atttactgct gctatttgtt accatctatt cacatctttt	420
gcttgtcgct gcaggtatgg aggcgcaatt tttgtacctc tatgccttga tatattttct	480
acaatgcatc aacgcatgta gaattattat gagatgttgg ctttgttgga agtgcaaatc	540
caagaaccca ttacttt atg atg cca act act ttg ttt gct ggc aca cac Met Met Pro Thr Thr Leu Phe Ala Gly Thr His 1 5 10	590
ata act atg act act gta tac cat ata aca gtg tca cag ata caa ttg Ile Thr Met Thr Thr Val Tyr His Ile Thr Val Ser Gln Ile Gln Leu 15 20 25	638
tcg tta ctg aag gtg acg gca ttt caa cac caa aac tca aag aag act Ser Leu Leu Lys Val Thr Ala Phe Gln His Gln Asn Ser Lys Lys Thr 30 35 40	686
acc aaa ttg gtg gtt att ctg agg ata ggc act cag gtg tta aag act Thr Lys Leu Val Val Ile Leu Arg Ile Gly Thr Gln Val Leu Lys Thr 45 50 55	734
atg tcg ttg tac atg gct att tca ccg adg ttt act acc agc ttg agt Met Ser Leu Tyr Met Ala Ile Ser Pro Lys Phe Thr Thr Ser Leu Ser 60 65 70 75	782
cta cac aaa tta cta cag aca ctg gta ttg aaa atg cta cat tct tca Leu His Lys Leu Leu Gln Thr Leu Val Leu Lys Met Leu His Ser Ser 80 85 90	830
tct tta aca agc ttg tta aag acc cac cga atg tgc aaa tac aca caa Ser Leu Thr Ser Leu Leu Lys Thr His Arg Met Cys Lys Tyr Thr Gln 95 100 105	878
tcg acg gct ctt cag gag ttg cta atc cag caa tgg atc caa ttt atg Ser Thr Ala Leu Gln Glu Leu Leu Ile Gln Gln Trp Ile Gln Phe Met 110 115 120	926
atg agc cga cga cta cta gcg tgc ctt tgt aag cac aag aaa gtg Met Ser Arg Arg Arg Leu Leu Ala Cys Leu Cys Lys His Lys Lys Val 125 130 135	974
agt acg aac tta tgt act cat tcg ttt cgg aag aaa cag gta cgt Ser Thr Asn Leu Cys Thr His Ser Phe Arg Lys Lys Gln Val Arg 140 145 150	1019
taatagttaa tagcgtactt ctttttcttg ctttcgtggt attcttgcta gtcacactag	1079
ccatccttac tgcgctt	1096

<400> 12

Met Met Pro Thr Thr Leu Phe Ala Gly Thr His Ile Thr Met Thr Thr 10 15

<210> 12 <211> 154

<212> PRT <213> CORONAVIRUS

	Val	Tyr	His	Ile 20	Thr	٧a٦	Ser	Gln	Ile 25	Gln	Leu	ser	Leu	Leu 30	Lys	Val	
	Thr	Ala	Phe 35	Gln	ніѕ	Gln	Asn	Ser 40	Lys	Lys	Thr	Thr	Lys 45	Leu	٧a٦	Val	
	Ile	Leu 50	Arg	Ile	Gly	Thr	Gln 55	٧a٦	Leu	Lys	Thr	Met 60	Ser	Leu	Tyr	Met	
	А]а 65	Ile	ser	Pro	Lys	Phe 70	Thr	Thr	Ser	Leu	ser 75	Leu	His	Lys	Leu	Leu 80	
	Gln	Thr	Leu	val	Leu 85	Lys	Met	Leu	нis	Ser 90	Ser	Ser	Leu	Thr	ser 95	Leu	
	Leu	Lys	Thr	ніs 100	Arg	Met	Cy5	Lys	Tyr 105	Thr	Gln	Ser	Thr	Ala 110	Leu	Gln	
	Glu	Leu	Leu 115		Gln	Gln	Trp	11e 120		Phe	Met	Met	Ser 125	Arg	Arg	Arg	
	Leu	Leu 130		Cys	Leu	Cys	Lys 135		Lys	Lys	val	Ser 140		Asn	Leu	Cys	
	Thr 145	His	5er	Phe	Arg	Lys 150		Gln	۷a٦	Arg							
<210> 13 <211> 33 <212> AI <213> C0	32 ON	IAVIR	US														
<220> <221> Cl <222> (3 <223>		63)															
<400> 13 tgcc		ta a	gcac	aaga	a ag	tgag	tacg	aac		et T			tc g he V 5				53
gaa Glu	gaa Glu	Thr	ggt Gly 10	acg Thr	tta Leu	ata Ile	٧al	aat Asn 15	agc ser	gta Val	ctt Leu	Leu	ttt Phe 20	ctt Leu	gct Ala		101
ttc Phe	gtg val	gta Val	ttc Phe	ttg Leu	cta Leu	gtc Val	aca Thr	cta Leu	gcc Ala	atc Ile	ctt Leu	act Thr	gcg Ala	ctt Leu	cga Arg		149

			25					30					35					
;	ttg Leu	tgt Cys 40	gcg Ala	tac Tyr	tgc Cys	tgc Cys	aat Asn 45	att Ile	gtt Val	aac Asn	gtg Val	agt Ser 50	tta Leu	gta Val	aaa Lys	cca Pro		197
٠	acg Thr 55	gtt Val	tac Tyr	gtc Val	tac Tyr	tcg Ser 60	cgt Arg	gtt Val	aaa Lys	aat Asn	ctg Leu 65	aac Asn	tct Ser	tct Ser	gaa Glu	gga Gly 70		245
					ctg Leu 75		taaa	acgaa	act a	aacta	atta	tt at	ttat [.]	tctg	t			293
	ttgg	gaact	ttt a	aacat	ttgct	et a	cat	ggca	gac	aacg	gta							332
21 21	0> 14 1> 76 2> PF 3> C0	S RT	AVIRU	JS														
40	0> 14		Tyr	Ser	Phe	∨a1	Ser	Glu	Glu	ı Thr	Gly 10	Thr	· Leu	Ile	. Val	Asn 15	Ser	
			Leu	Leu	Phe 20	Leu	ıAla	. Phe	val	Va 1 25		e Leu	ı Leu	val	Thr 30	Leu	Ala	
		Ile	Leu	Thr 35	Ala	Leu	, Arg	Leu	Cys 40	ala	Tyr	· Cys	Cys	Asn 45	ıle	e Val	Asn	
		۷a٦	Ser 50	Leu	val	Lys	Pro	Thr 55	· val	Tyr	` ∨al	Tyr	Ser 60	· Arg	, ∨a⊺	Lys	Asn	
		Leu 65	ı Asn	Ser	ser	Glu	i Gly 70	val	Pro) Asp	Leu	Leu 75	ı ∨al					
21 21	0> 15 1> 33 2> AE 3> C0	2 ON	AVIRU	JS														
40	0> 15	;																
	tgcc	tttç	jta a	agcad	aaga	ıa aç	gtgag	gtacg	g aad	cttai	tgta	ctca	attc	gtt 1	tcgga	agaa	a	60
	cagg	tacç	jtt a	atag	gttaa	ıt aç	gcgta	actto	tti	tttci	ttgc	ttt	gtg	gta 1	ttcti	gcta	g	120
,	tcac	acta	agc (atco	ttac	t go	gcti	cgat	t tg	tgtg	gta	ctg	tgc	aat a	attgi	ttaac	g	180
	tgaç)ttta	agt a	aaaa	caac	g gt	ttac	gtct	act	tcgc	gtgt	taaa	aat	ctg a	aacto	ttct	g	240
ä	aaqq	aqtt	cc t	gatc	ttct	a at	ctaa	acga	act	aact	att a	atta [.]	ttat [.]	tc t	gttt	ggaa	С	300
					catg									·		_		332

<210> 16 <211> 708 <212> ADN

<213> CORONAVIRUS <220> <221> CDS <222> (41)..(703) <223> <400> 16 55 tattattatt attctgtttg gaactttaac attgcttatc atg gca gac aac ggt Met Ála Ásp Asn Ğİy 103 act att acc gtt gag gag ctt aaa caa ctc ctg gaa caa tgg aac cta Thr Ile Thr Val Glu Glu Leu Lys Gln Leu Leu Glu Gln Trp Asn Leu gta ata ggt ttc cta ttc cta gcc tgg att atg tta cta caa ttt gcc Val Ile Gly Phe Leu Phe Leu Ala Trp Ile Met Leu Leu Gln Phe Ala 151 tat tot aat ogg aac agg tit tig tac ata ata aag ott git tic oto 199 Tyr Ser Asn Arg Asn Arg Phe Leu Tyr Ile Ile Lys Leu Val Phe Leu tgg ctc ttg tgg cca gta aca ctt gct tgt ttt gtg ctt gct gct gtc Trp Leu Leu Trp Pro Val Thr Leu Ala Cys Phe Val Leu Ala Ala Val 247 60 tac aga att aat tgg gtg act ggc ggg att gcg att gca atg gct tgt Tyr Arg Ile Asn Trp Val Thr Gly Gly Ile Ala Ile Ala Met Ala Cys 70 75 80 85 295 att gta ggc ttg atg tgg ctt agc tac ttc gtt gct tcc ttc agg ctg Ile Val Gly Leu Met Trp Leu Ser Tyr Phe Val Ala Ser Phe Arg Leu 343 100 ttt gct cgt acc cgc tca atg tgg tca ttc aac cca gaa aca aac att Phe Ala Arg Thr Arg Ser Met Trp Ser Phe Asn Pro Glu Thr Asn Ile 391 ctt ctc aat gtg cct ctc cgg ggg aca att gtg acc aga ccg ctc atg Leu Leu Asn Val Pro Leu Arg Gly Thr Ile Val Thr Arg Pro Leu Met 120 125 130 439 gaa agt gaa ctt gtc att ggt gct gtg atc att cgt ggt cac ttg cga Glu Ser Glu Leu Val Ile Gly Ala Val Ile Ile Arg Gly His Leu Arg 135 140 145 487 atg gcc gga cac tcc cta ggg cgc tgt gac att aag gac ctg cca aaa Met Ala Gly His Ser Leu Gly Arg Cys Asp Ile Lys Asp Leu Pro Lys 535

150					155					160					165	
gag Glu	atc Ile	act Thr	gtg Val	gct Ala 170	aca Thr	tca Ser	cga Arg	acg Thr	ctt Leu 175	tct Ser	tat Tyr	tac Tyr	aaa Lys	tta Leu 180	gga Gly	583
gcg Ala	tcg Ser	cag Gln	cgt Arg 185	gta Val	ggc Gly	act Thr	gat Asp	tca Ser 190	ggt Gly	ttt Phe	gct Ala	gca Ala	tac Tyr 195	aac Asn	cgc Arg	631
tac Tyr	cgt Arg	att Ile 200	gga Gly	aac Asn	tat Tyr	aaa Lys	tta Leu 205	aat Asn	aca Thr	gac Asp	cac His	gcc Ala 210	ggt Gly	agc Ser	aac Asn	679
gac Asp	aat Asn 215	att Ile	gct Ala	ttg Leu	cta Leu	gta Val 220	cag Gln	taag	gt							708

<210> 17

<211> 221

<212> PRT

<213> CORONAVIRUS

<400> 17

Met Ala Asp Asn Gly Thr Ile Thr Val Glu Glu Leu Lys Gln Leu Leu 15

Glu Gln Trp Asn Leu Val Ile Gly Phe Leu Phe Leu Ala Trp Ile Met 25

Leu Leu Gln Phe Ala Tyr Ser Asn Arg Asn Arg Phe Leu Tyr Ile Ile 35

Lys Leu Val Phe Leu Trp Leu Leu Trp Pro Val Thr Leu Ala Cys Phe 50 60

Val Leu Ala Ala Val Tyr Arg Ile Asn Trp Val Thr Gly Gly Ile Ala 65 70 75 80

Ile Ala Met Ala Cys Ile Val Gly Leu Met Trp Leu Ser Tyr Phe Val $85 \\ 90 \\ 95$

Ala Ser Phe Arg Leu Phe Ala Arg Thr Arg Ser Met Trp Ser Phe Asn $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro Glu Thr Asn Ile Leu Leu Asn Val Pro Leu Arg Gly Thr Ile Val 115 120 125

Thr Arg Pro Leu Met Glu Ser Glu Leu Val Ile Gly Ala Val Ile Ile 130 135 140

Arg Gly His Leu Arg Met Ala Gly His Ser Leu Gly Arg Cys Asp Ile

	145					150					155					160
	Lys	Asp	Leu	Pro	Lys 165	Glu	Ile	Thr	٧al	Ala 170	Thr	Ser	Arg	Thr	Leu 175	Ser
	Tyr	Туг	Lys	Leu 180	Gly	Ala	Ser	Gln	Arg 185	٧al	Gly	Thr	Asp	Ser 19 0	GТу	Phe
	Ala	Ala	Tyr 195	A5n	Arg	Tyr	Arg	Ile 200	GТу	Asn	Tyr	Lys	Leu 205	Asn	Thr	Asp
	His	Ala 210	Gly	Ser	Asn	Asp	Asn 215	Ile	Αla	Leu	Leu	Va1 220	Gln			
<210> 18 <211> 769 <212> AD																

<213> CORONAVIRUS

<400> 18

cctgatcttc tggtctaaac gaactaacta ttattattat tctgtttgga actttaacat 60 tgcttatcat ggcagacaac ggtactatta ccgttgagga gcttaaacaa ctcctggaac 120 aatggaacct agtaataggt ttcctattcc tagcctggat tatgttacta caatttgcct 180 attctaatcg gaacaggttt ttgtacataa taaagcttgt tttcctctgg ctcttgtggc 240 cagtaacact tgcttgttt gtgcttgctg ctgtctacag aattaattgg gtgactggcg 300 ggattgcgat tgcaatggct tgtattgtag gcttgatgtg gcttagctac ttcgttgctt 360 ccttcaggct gtttgctcgt acccgctcaa tgtggtcatt caacccagaa acaaacattc 420 ttctcaatgt gcctctccgg gggacaattg tgaccaqacc gctcatggaa agtgaacttg 480 tcattggtgc tgtgatcatt cgtggtcact tgcgaatggc cggacactcc ctagggcgct 540 gtgacattaa ggacctgcca aaagagatca ctgtggctac atcacgaacg ctttcttatt 600 acaaattagg agcgtcgcag cgtgtaggca ctgattcagg ttttgctgca tacaaccgct 660 accgtattgg aaactataaa ttaaatacag accacgccgg tagcaacgac aatattgctt 720 769 tgctagtaca gtaagtgaca acagatgttt catcttgttg acttccagg

<210> 19

<211> 1231

<212> ADN

<213> CORONAVIRUS

<400> 19

taccgtattg	gaaactataa	attaaataca	gaccacgccg	gtagcaacga	caatattgct	60
ttgctagtac	agtaagtgac	aacagatgtt	tcatcttgtt	gacttccagg	ttacaatagc	120
agagatattg	attatcatta	tgaggacttt	caggattgct	atttggaatc	ttgacgttat	180
aataagttca	atagtgagac	aattatttaa	gcctctaact	aagaagaatt	attcggagtt	240
agatgatgaa	gaacctatgg	agttagatta	tccataaaac	gaacatgaaa	attattctct	300
tcctgacatt	gattgtattt	acatcttgcg	agctatatca	ctatcaggag	tgtgttagag	360
gtacgactgt	actactaaaa	gaaccttgcc	catcaggaac	atacgagggc	aattcaccat	420
ttcaccctct	tgctgacaat	aaatttgcac	taacttgcac	tagcacacac	tttgcttttg	480
cttgtgctga	cggtactcga	catacctatc	agctgcgtgc	aagatcagtt	tcaccaaaac	540
ttttcatcag	acaagaggag	gttcaacaag	agctctactc	gccacttttt	ctcattgttg	600
ctgctctagt	atttttaata	ctttgcttca	ccattaagag	aaagacagaa	tgaatgagct	660
cactttaatt	gacttctatt	tgtgcttttt	agcctttctg	ctattccttg	ttttaataat	720
gcttattata	ttttggtttt	cactcgaaat	ccaggatcta	gaagaacctt	gtaccaaagt	780
ctaaacgaac	atgaaacttc	tcattgtttt	gacttgtatt	tctctatgca	gttgcatatg	840
cactgtagta	cagcgctgtg	catctaataa	acctcatgtg	cttgaagatc	cttgtaaggt	900
acaacactag	gggtaatact	tatagcactg	cttggctttg	tgctctagga	aaggttttac	960
cttttcatag	atggcacact	atggttcaaa	catgcacacc	taatgttact	atcaactgtc	1020
aagatccagc	tggtggtgcg	cttatagcta	ggtgttggta	ccttcatgaa	ggtcaccaaa	1080
ctgctgcatt	tagagacgta	cttgttgttt	taaataaacg	aacaaattaa	aatgtctgat	1140
aatggacccc	aatcaaacca	acgtagtgcc	ccccgcatta	catttggtgg	acccacagat	1200
tcaactgaca	ataaccagaa	tggaggacgc	a			1231

<210> 20

<211> 1242

<212> ADN

<213> CORONAVIRUS

<400> 20

gcatacaacc gctaccgtat tggaaactat aaattaaata cagaccacgc cggtagcaac 60 gacaatattg ctttgctagt acagtaagtg acaacagatg tttcatcttg ttgacttcca 120 ggttacaata gcagagatat tgattatcat tatgaggact ttcaggattg ctatttggaa 180 tcttgacgtt ataataagtt caatagtgag acagttattt aagcctctaa ctaagaagaa 240 ttattcggag ttagatgatg aagaacctat ggagttagat tatccataaa acgaacatga 300 aaattattct cttcctgaca ttgattgtat ttacatcttg cgagctatat cactatcagg 360 agtgtgttag aggtacgact gtactactaa aagaaccttg cccatcagga acatacgagg 420

gc	aattc	acc	attt	cacco	t c	ttgct	gaca	ata	aaatt	tgc	acta	actt	gc	acta	gcaca	ıc	480
ac	tttgc	ttt	tgct1	gtgc	t g	acggt	tacto	gae	catao	cta	tcag	ctg	gt	gcaa	gatca	ıg	540
tt	tcacc	aaa	actt	ttcat	c a	gacaa	agagg	age	gttca	aaca	agag	jctct	ac	tcgc	actt	t	600
tt	ctcat	tgt	tgct	gctct	a g	tattı	tttaa	ta	cttt	gctt	caco	atta	aag	agaa	agaca	ıg	660
as	tgaat	gag	ctca	cttta	a t	tgac1	ttcta	tt	tgtg	cttt	ttag	cctt	tc	tgct	attco	t	720
tg	tttta	ata	atgc	ttatt	a t	attt1	tggtt	tt	cacto	cgaa	atco	agga	atc	taga	agaad	cc	780
tt	gtacc	aaa	gtcta	aaacg	ja a	catga	aaact	tc.	tcati	tgtt	ttga	actto	gta	tttc	tctat	:g	840
ca	g ttgc	ata	tgca	ctgta	ıg t	acago	cgctg	tg(catc	taat	aaad	ctca	atg	tgct	tgaag	ja	900
to	cttgt	aag	gtaca	aacao	t a	ggggt	taata	ct.	tata	gcac	tgct	ttgg	: t t	tgtg	ctcta	ag	960
ga	aaggt	ttt	acct	tttca	ıt a	gatg	gcaca	cta	atgg	ttca	aaca	atgca	aca	ccta	atgti	a	1020
ct	atcaa	ctg	tcaa	gatco	a g	ctggi	tggtg	g cg	ctta	tagc	tagg	gtgti	tgg	tacc	ttcat	g	1080
aa	ggtca	cca	aact	gctgo	a t	ttaga	agacç	j ta	cttg	ttgt	ttta	aaata	aaa	cgaa	cgaat	ct	1140
aa	aatgt	ctg	ataa	tggad	:c c	caat	caaac	ca	acgta	agtg	ccc	ccg	cat	taca	tttgg	gt	1200
99	accca	cag	attc	aacto	ga c	aataa	accaç	j aa	tgga	ggac	gc						1242
<220> <221>	1231 ADN CORON		RUS														
<400>																	60
	ccgta															τ	60
tt	gctag	tac	agtaa	agtga	ic a	acag	atg Met 1	ttt Phe	cat His	ctt Leu	gtt Val 5	gac Asp	Phe	cag Gln	gtt Val		112
ac Th 10	a ata r Ile	gca Ala	gag Glu	ata Ile	ttg Leu 15	att Ile	atc Ile	att Ile	atg Met	agg Arg 20	act Thr	ttc Phe	agg Arg	att Ile	gct Ala 25		160
at Il	t tgg e Trp	aat Asn	ctt Leu	gac Asp 30	gtt Val	ata Ile	ata Ile	agt Ser	tca Ser 35	ata Ile	gtg Val	aga Arg	caa Gln	tta Leu 40	ttt Phe		208
a a Ly	g cct s Pro	cta Leu	act Thr 45	aag Lys	aag Lys	aat Asn	tat Tyr	tcg Ser 50	gag Glu	tta Leu	gat Asp	gat Asp	gaa Glu 55	gaa Glu	cct Pro		256

	gag Glu					taaa	ıacga	ac a	ıtgaa	aatt	a tt	ctct	tcct				304
gaca	attga	itt <u>c</u>	jtatt	taca	t ct	tgcg	jagct	ata	ıtcac	tat	cagg	agto	jtg 1	taga	ıggta	1C	364
gact	gtac	ta c	taaa	agaa	c ct	tgcc	cato	agg	aaca	itac	gagg	ıgcaa	itt (acca	ittt	a	424
ccct	cttg	ct g	jacaa	taaa	t tt	gcac	taac	ttg	jcact	agc	acac	actt	tg o	tttt	gctt	g	484
tgct	gacg	igt a	ictcg	acat	a co	tato	agct	gcg	gtgca	aga	tcag	tttc	ac o	caaaa	icttt	:t	544
cato	agac	aa g	jagga	ggtt	c aa	caag	jagct	cta	ictcg	jcca	cttt	ttct	ca t	tgtt	gctg	уc	604
tcta	igtat	tt t	taat	actt	t go	ttca	ccat	taa	igaga	aag	acaç	aatg	jaa 1	tgago	tcad	:t	664
ttaa	attga	ict t	ctat	ttgt	g ct	tttt	agco	ttt	ctgo	tat	tcct	tgt1	tt a	aataa	itgct	:t	724
atta	atatt	tt g	gttt	tcac	t cg	aaat	ccag	gat	ctag	jaag	aacc	ttgt	ac o	caaag	gtcta	ıa	784
acga	acat	:ga a	actt	ctca	t tg	tttt	gact	tgt	attt	ctc	tatg	ıcagı	tg (atat	gcad	t	844
gtag	gt <mark>ac</mark> a	igc g	gctgt	gcat	c ta	iataa	acct	cat	gtgc	ttg	aaga	tcct	tg 1	taagg	gtaca	aa	904
ca c 1	taggg	ggt a	atac	ttat	a go	acto	jcttg	gct	ttgt	gct	ctag	gaaa	igg 1	tttta	acctt	t	964
tcat	tagat	gg d	acac	tatg	ıg tt	caaa	icatg	cad	acct	aat	gtta	ctat	ca a	actgt	caaç	ya	1024
tcca	agcto	gt g	gtgc	gctt	a ta	igcta	iggtg	ttç	gtac	ctt	cato	jaagg	gtc a	accaa	acto	gc	1084
tgca	attta	ıga g	gacgt	actt	g tt	gttt	taaa	ı taa	acga	ıaca	aatt	aaaa	atg 1	tctga	ataat	tg	1144
gaco	ccaa	itc a	aacc	aacg	it ag	jtgco	cccc	gca	attac	att	tggt	ggao	cc a	acaga	attca	aa	1204
ctga	acaat	aa d	caga	atgg	a gg	jacgo	a										1231
<211> 6: <212> P <213> C	<210> 22 <211> 63 <212> PRT <213> CORONAVIRUS																
<400> 2		_1			7		-1	-3			7	. 7	-7	_7	_	7	
	Met 1	Pne	His	Leu	Vai 5	Asp	Phe	GIn	Val	Thr 10	Ile	Ala	Glu	Ile	Leu 15	Ile	
	Ile	Ile	Met	Arg 20	Thr	Phe	Arg	Ile	Ala 25	Ile	Trp	Asn	Leu	Asp 30	Val	Ile	
	Ile	Ser	ser 35	Ile	val	Arg	Gln	Leu 40	Phe	Lys	Pro	Leu	Thr 45	Lys	Lys	Asn	
	Tyr	ser 50	Glu	Leu	Asp	Asp	G]u 55	Glu	Pro	Met	Glu	Leu 60	Asp	Tyr	Pro		
<210> 23 <211> 13 <212> A <213> C	231 DN	IAVIR	US														
<220> <221> C <222> (2		650)															

<223>

taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	60
ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc	120
agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaac atg aaa att att Met Lys Ile Ile 1	296
ctc ttc ctg aca ttg att gta ttt aca tct tgc gag cta tat cac tat Leu Phe Leu Thr Leu Ile Val Phe Thr Ser Cys Glu Leu Tyr His Tyr 5 10 15 20	344
cag gag tgt gtt aga ggt acg act gta cta cta aaa gaa cct tgc cca Gln Glu Cys Val Arg Gly Thr Thr Val Leu Leu Lys Glu Pro Cys Pro 25 30 35	392
tca gga aca tac gag ggc aat tca cca ttt cac cct ctt gct gac aat Ser Gly Thr Tyr Glu Gly Asn Ser Pro Phe His Pro Leu Ala Asp Asn 40 45 50	440
aaa ttt gca cta act tgc act agc aca cac ttt gct ttt gct tgt gct Lys Phe Ala Leu Thr Cys Thr Ser Thr His Phe Ala Phe Ala Cys Ala 55 60 65	488
gac ggt act cga cat acc tat cag ctg cgt gca aga tca gtt tca cca Asp Gly Thr Arg His Thr Tyr Gln Leu Arg Ala Arg Ser Val Ser Pro 70 75 80	536
aaa ctt ttc atc aga caa gag gag gtt caa caa gag ctc tac tcg cca Lys Leu Phe Ile Arg Gln Glu Glu Val Gln Glu Leu Tyr Ser Pro 85 90 95 100	584
ctt ttt ctc att gtt gct gct cta gta ttt tta ata ctt tgc ttc acc Leu Phe Leu Ile Val Ala Ala Leu Val Phe Leu Ile Leu Cys Phe Thr 105 110 115	632
att aag aga aag aca gaa tgaatgagct cactttaatt gacttctatt Ile Lys Arg Lys Thr Glu 120	680
tgtgcttttt agcctttctg ctattccttg ttttaataat gcttattata ttttggtttt	740
cactcgaaat ccaggatcta gaagaacctt gtaccaaagt ctaaacgaac atgaaacttc	800
tcattgtttt gacttgtatt tctctatgca gttgcatatg cactgtagta cagcgctgtg	860
catctaataa acctcatgtg cttgaagatc cttgtaaggt acaacactag gggtaatact	920
tatagcactg cttggctttg tgctctagga aaggttttac cttttcatag atggcacact	980
atggttcaaa catgcacacc taatgttact atcaactgtc aagatccagc tggtggtgcg	1040
cttatagcta ggtgttggta ccttcatgaa ggtcaccaaa ctgctgcatt tagagacgta	1100
cttgttgttt taaataaacg aacaaattaa aatgtctgat aatggacccc aatcaaacca	1160
acgtagtgcc ccccgcatta catttggtgg acccacagat tcaactgaca ataaccagaa	1220
tggaggacgc a	1231

```
<210> 25
<211> 1231
<212> ADN
<213> CORONAVIRUS
<220>
<221> CDS
<222> (650)..(781)
<223>
```

taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	60
ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc	120
agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct	300
tcctgacatt gattgtattt acatcttgcg agctatatca ctatcaggag tgtgttagag	360
gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat	420
ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg	480
cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac	540
ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg	600
ctgctctagt atttttaata ctttgcttca ccattaagag aaagacaga atg aat gag Met Asn Glu 1	658
ctc act tta att gac ttc tat ttg tgc ttt tta gcc ttt ctg cta ttc Leu Thr Leu Ile Asp Phe Tyr Leu Cys Phe Leu Ala Phe Leu Leu Phe 5 10 15	706
ctt gtt tta ata atg ctt att ata ttt tgg ttt tca ctc gaa atc cag Leu Val Leu Ile Met Leu Ile Ile Phe Trp Phe Ser Leu Glu Ile Gln 20 25 30 35	754
gat cta gaa gaa cct tgt acc aaa gtc taaacgaaca tgaaacttct Asp Leu Glu Glu Pro Cys Thr Lys Val 40	801
cattgttttg acttgtattt ctctatgcag ttgcatatgc actgtagtac agcgctgtgc	861
atctaataaa cctcatgtgc ttgaagatcc ttgtaaggta caacactagg ggtaatactt	921
atagcactgc ttggctttgt gctctaggaa aggttttacc ttttcataga tggcacacta	981
tggttcaaac atgcacacct aatgttacta tcaactgtca agatccagct ggtggtgcgc	1041
ttatagctag gtgttggtac cttcatgaag gtcaccaaac tgctgcattt agagacgtac	1101
ttgttgtttt aaataaacga acaaattaaa atgtctgata atggacccca atcaaaccaa	1161
Cgtagtgccc cccgcattac atttggtgga cccacagatt caactgacaa taaccagaat	1221
ggaggacgca	1231

<210> 26 <211> 44 <212> PRT

<213> CORONAVIRUS

Met Asn Glu Leu Thr Leu Ile Asp Phe Tyr Leu Cys Phe Leu Ala Phe $1 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Leu Phe Leu Val Leu Ile Met Leu Ile Ile Phe Trp Phe Ser Leu 20 25 30

Glu Ile Gln Asp Leu Glu Glu Pro Cys Thr Lys Val 35

<210> 27

<211> 1231

<212> ADN

<213> CORONAVIRUS

<220>

<221> CDS

<222> (791)..(907)

<223>

<400> 27

taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct 60 ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc 120 agagatattg attatcatta tgaggacttt caggattgct atttgggaatc ttgacgttat 180 aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt 240 agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct 300 tectgaeatt gattgtattt acatettgeg agetatatea etateaggag tgtgttagag 360 gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat 420 ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg 480 cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac 540 600 ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg 660 ctgctctagt atttttaata ctttgcttca ccattaagag aaagacagaa tgaatgagct cactttaatt gacttctatt tgtgcttttt agcctttctg ctattccttg ttttaataat 720 780 gcttattata ttttggtttt cactcgaaat ccaggatcta gaagaacctt gtaccaaagt

ctaaacgaac atg aaa ctt ctc att gtt ttg act tgt att tct cta tgc Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys 1 5 10	829
agt tgc ata tgc act gta gta cag cgc tgt gca tct aat aaa cct cat Ser Cys Ile Cys Thr Val Val Gln Arg Cys Ala Ser Asn Lys Pro His 15 20 25	877
gtg ctt gaa gat cct tgt aag gta caa cac taggggtaat acttatagca Val Leu Glu Asp Pro Cys Lys Val Gln His 30 35	927
ctgcttggct ttgtgctcta ggaaaggttt taccttttca tagatggcac actatggttc	987
aaacatgcac acctaatgtt actatcaact gtcaagatcc agctggtggt gcgcttatag	1047
ctaggtgttg gtaccttcat gaaggtcacc aaactgctgc atttagagac gtacttgttg	1107
ttttaaataa acgaacaaat taaaatgtct gataatggac cccaatcaaa ccaacgtagt	1167
gcccccgca ttacatttgg tggacccaca gattcaactg acaataacca gaatggagga	1227
cgca	1231
210> 28 211> 39 212> PRT	

<2 <2 <2

<213> CORONAVIRUS

<400> 28

Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys Ser Cys Ile 1 10 15

Cys Thr Val Val Gln Arg Cys Ala Ser Asn Lys Pro His Val Leu Glu 20 25 30

Asp Pro Cys Lys Val Gln His 35

<210> 29

<211> 1231

<212> ADN

<213> CORONAVIRUS

<220>

<221> CDS

<222> (876)..(1127)

<223>

taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	60
ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc	120
agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct	300
tcctgacatt gattgtattt acatcttgcg agctatatca ctatcaggag tgtgttagag	360
gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat	420
ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg	480
cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac	540
ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg	600
ctgctctagt atttttaata ctttgcttca ccattaagag aaagacagaa tgaatgagct	660
cactttaatt gacttctatt tgtgcttttt agcctttctg ctattccttg ttttaataat	720
gcttattata ttttggtttt cactcgaaat ccaggatcta gaagaacctt gtaccaaagt	780
ctaaacgaac atgaaacttc tcattgtttt gacttgtatt tctctatgca gttgcatatg	840
cactgtagta cagcgctgtg catctaataa acctc atg tgc ttg aag atc ctt Met Cys Leu Lys Ile Leu 1 5	893
gta agg tac aac act agg ggt aat act tat agc act gct tgg ctt tgt Val Arg Tyr Asn Thr Arg Gly Asn Thr Tyr Ser Thr Ala Trp Leu Cys 10 15 20	941
gct cta gga aag gtt tta cct ttt cat aga tgg cac act atg gtt caa Ala Leu Gly Lys Val Leu Pro Phe His Arg Trp His Thr Met Val Gln 25 30 35	989
aca tgc aca cct aat gtt act atc aac tgt caa gat cca gct ggt ggt Thr Cys Thr Pro Asn Val Thr Ile Asn Cys Gln Asp Pro Ala Gly Gly 40 45 50	1037
gcg ctt ata gct agg tgt tgg tac ctt cat gaa ggt cac caa act gct Ala Leu Ile Ala Arg Cys Trp Tyr Leu His Glu Gly His Gln Thr Ala 55 60 65 70	1085
gca ttt aga gac gta ctt gtt gtt tta aat aaa cga aca aat Ala Phe Arg Asp Val Leu Val Val Leu Asn Lys Arg Thr Asn 75 80	1127
taaaatgtct gataatggac cccaatcaaa ccaacgtagt gccccccgca ttacatttgg	1187
tggacccaca gattcaactg acaataacca gaatggagga cgca	1231

<210> 30

<211> 84 <212> PRT <213> CORONAVIRUS

Met Cys Leu Lys Ile Leu Val Arg Tyr Asn Thr Arg Gly Asn Thr Tyr 15 Ser Thr Ala Trp Leu Cys Ala Leu Gly Lys Val Leu Pro Phe His Arg 20 Trp His Thr Met Val Gln Thr Cys Thr Pro Asn Val Thr Ile Asn Cys 45 Gln Asp Pro Ala Gly Gly Ala Leu Ile Ala Arg Cys Trp Tyr Leu His 50 Glu Gly His Gln Thr Ala Ala Phe Arg Asp Val Leu Val Val Leu Asn 80

Lys Arg Thr Asn

<210> 31

<211> 21221

<212> ADN

<213> CORONAVIRUS

<400> 31

atggagagcc ttgttcttgg tgtcaacgag aaaacacacg tccaactcag tttgcctgtc 60 120 cttcaggtta gagacgtgct agtgcgtggc ttcggggact ctgtggaaga ggccctatcg gaggcacgtg aacacctcaa aaatggcact tgtggtctag tagagctgga aaaaggcgta 180 ctgccccagc ttgaacagcc ctatgtgttc attaaacgtt ctgatgcctt aagcaccaat 240 300 cacggccaca aggtcgttga gctggttgca gaaatggacg gcattcagta cggtcgtagc ggtataacac tgggagtact cgtgccacat gtggqcgaaa ccccaattgc ataccgcaat 360 gttcttcttc gtaagaacgg taataaggga gccggtggtc atagctatgg catcgatcta 420 aagtettatg aettaggtga egagettgge aetgateeca ttgaagatta tgaacaaaae 480 tggaacacta agcatggcag tggtgcactc cgtgaactca ctcgtgagct caatggaggt 540 gcagtcactc gctatgtcga caacaatttc tgtggcccag atgggtaccc tcttgattgc 600 660 atcaaagatt ttCtcgcacg cgcgggcaag tcaatgtgca ctctttccga acaacttgat tacatcgagt cgaagagagg tgtctactgc tgccgtgacc atgagcatga aattgcctgg 720 ttcactgagc gctctgataa gagctacgag caccagacac ccttcgaaat taagagtgcc 780 aagaaatttg acactttcaa aggggaatgc ccaaagtttg tgtttcctct taactcaaaa 840 gtcaaagtca ttcaaccacg tgttgaaaag aaaaagactg agggtttcat ggggcgtata 900

cgctctgtgt	accctgttgc	atctccacag	gagtgtaaca	atatgcactt	gtctaccttg	960
atgaaatgta	atcattgcga	tgaagtttca	tggcagacgt	gcgactttct	gaaagccact	1020
tgtgaacatt	gtggcactga	aaatttagtt	attgaaggac	ctactacatg	tgggtaccta	1080
cctactaatg	ctgtagtgaa	aatgccatgt	cctgcctgtc	aagacccaga	gattggacct	1140
gagcatagtg	ttgcagatta	tcacaaccac	tcaaacattg	aaactcgact	ccgcaaggga	1200
ggtaggacta	gatgttttgg	aggctgtgtg	tttgcctatg	ttggctgcta	taataagcgt	1260
gcctactggg	ttcctcgtgc	tagtgctgat	at t ggctcag	gccatactgg	cattactggt	1320
gacaatgtgg	agaccttgaa	tgaggatctc	cttgagatac	tgagtcgtga	acgtgttaac	1380
attaacattg	ttggcgattt	tcatttgaat	gaagaggttg	ccatcatttt	ggcatctttc	1440
tctgcttcta	caagtgcctt	tattgacact	ataaagagtc	ttgattacaa	gtctttcaaa	1500
accattgttg	agtcctgcgg	taactataaa	gttaccaagg	gaaagcccgt	aaaaggtgct	1560
tggaacattg	gacaacagag	atcagtttta	acaccactgt	gtggttttcc	ctcacaggct	1620
gctggtgtta	tcagatcaat	ttttgcgcgc	acacttgatg	cagcaaacca	ctcaattcct	1680
gatttgcaaa	gagcagctgt	caccatactt	gatggtattt	ctgaacagtc	attacgtctt	1740
gtcgacgcca	tggtttatac	ttcagacctg	ctcaccaaca	gtgtcattat	tatggcatat	1800
gtaactggtg	gtcttgtaca	acagacttct	cagtggttgt	ctaatctttt	gggcactact	1860
gttgaaaaac	tcaggcctat	ctttgaatgg	attgaggcga	aacttagtgc	aggagttgaa	1920
tttctcaagg	atgcttggga	gattctcaaa	tttctcatta	caggtgtttt	tgacatcgtc	1980
aagggtcaaa	tacaggttgc	ttcagataac	atcaaggatt	gtgtaaaatg	cttcattgat	2040
gttgttaaca	aggcactcga	aatgtgcatt	gatcaagtca	ctatcgctgg	cgcaaagttg	2100
cgatcactca	acttaggtga	agtcttcatc	gctcaaagca	agggacttta	ccgtcagtgt	2160
atacgtggca	aggagcagct	gcaactactc	atgcctctta	aggcaccaaa	agaagtaacc	2220
tttcttgaag	gtgattcaca	tgacacagta	cttacctctg	aggaggttgt	tctcaagaac	2280
ggtgaactcg	aagcactcga	gacgcccgtt	gatagcttca	caaatggagc	tatcgttggc	2340
acaccagtct	gtgtaaatgg	cctcatgctc	ttagagatta	aggacaaaga	acaatactgc	2400
gcattgtctc	ctggtttact	ggctacaaac	aatgtctttc	gcttaaaagg	gggtgcacca	2460
attaaaggtg	taacctttgg	agaagatact	gtttgggaag	ttcaaggtta	caagaatgtg	2520
agaatcacat	ttg agcttga	tgaacgtgtt	gacaaagtgc	ttaatgaaaa	gtgctctgtc	2580
tacactgttg	aatccggtac	cgaagttact	gagtttgcat	gtgttgtagc	agaggctgtt	2640
gtgaagactt	tacaaccagt	ttctgatctc	cttaccaaca	tgggtattga	tcttgatgag	2700
tggagtgtag	ctacattcta	cttatttgat	gatgctggtg	aagaaaactt	ttcatcacgt	2760
atgtattgtt	ccttttaccc	tccagatgag	gaagaagagg	acgatgcaga	gtgtgaggaa	2820
gaagaaattg	atgaaacctg	tgaacatgag	tacggtacag	aggatgatta	tcaaggtctc	2880
cctctggaat	ttggtgcctc	agctgaaaca	gttcgagttg	aggaagaaga	agaggaagac	2940

tggctggatg	atactactga	gcaatcagag	attgagccag	aaccagaacc	tacacctgaa	3000
gaaccagtta	atcagtttac	tggttattta	aaacttactg	acaatgttgc	cattaaatgt	3060
gttgacatcg	ttaaggaggc	acaaagtgct	aatcctatgg	tgattgtaaa	tgctgctaac	3120
atacacctga	aacatggtgg	tggtgtagca	ggtgcactca	acaaggcaac	caatggtgcc	3180
atgcaaaagg	agagtgatga	ttacattaag	ctaaatggcc	ctcttacagt	aggagggtct	3240
tgtttgcttt	ctggacataa	tcttgctaag	aagtgtctgc	atgttgttgg	acctaaccta	3300
aatgcaggtg	aggacatcca	gcttcttaag	gcagcatatg	aaaatttcaa	ttcacaggac	3360
atcttacttg	caccattgtt	gtcagcaggc	atatttggtg	ctaaaccact	tcagtcttta	3420
caagtgtgcg	tgcagacggt	tcgtacacag	gtttatattg	cagtcaatga	caaagctctt	3480
tatgagcagg	ttgtcatgga	ttatcttgat	aacctgaagc	ctagagtgga	agcacctaaa	3540
caagaggagc	caccaaacac	agaagattcc	aaaactgagg	agaaatctgt	cgtacagaag	3600
cctgtcgatg	tgaagccaaa	aattaaggcc	tgcattgatg	aggttaccac	aacactggaa	3660
gaaactaagt	ttcttaccaa	taagttactc	ttgtttgctg	atatcaatgg	taagctttac	3720
catgattctc	agaacatgct	tagaggtgaa	gatatgtctt	tccttgagaa	ggatgcacct	3780
tacatggtag	gtgatgttat	cactagtggt	gatatcactt	gtgttgtaat	accctccaaa	3840
aaggctggtg	gcactactga	gatgctctca	agagctttga	agaaagtgcc	agttgatgag	3900
tatataacca	cgtaccctgg	acaaggatgt	gctggttata	cacttgagga	agctaagact	3960
gctcttaaga	aatgcaaatc	tgcattttat	gtactacctt	cagaagcacc	taatgctaag	4020
gaagagattc	taggaactgt	atcctggaat	ttgagagaaa	tgcttgctca	tgctgaagag	4080
acaagaaaat	taatgcctat	atgcatggat	gttagagcca	taatggcaac	catccaacgt	4140
aagtataaag	gaattaaaat	tcaagagggc	atcgttgact	atggtgtccg	attcttcttt	4200
tatactagta	aagagcctgt	agcttctatt	attacgaagc	tgaactctct	aaatgagccg	4260
cttgtcacaa	tgccaattgg	ttatgtgaca	catggtttta	atcttgaaga	ggctgcgcgc	4320
tgtatgcgtt	ctcttaaagc	tcctgccgta	gtgtcagtat	catcaccaga	tgctgttact	4380
acatataatg	gatacctcac	ttcgtcatca	aagacatctg	aggagcactt	tgtagaaaca	4440
gtttctttgg	ctggctctta	cagagattgg	tcctattcag	gacagcgtac	agagttaggt	4500
gttgaatttc	ttaagcgtgg	tgacaaaatt	gtgtaccaca	ctctggagag	ccccgtcgag	4560
tttcatcttg	acggtgaggt	tctttcactt	gacaaactaa	agagtctctt	atccctgcgg	4620
gaggttaaga	ctataaaagt	gttcacaact	gtggacaaca	ctaatctcca	cacacagctt	4680
gtggatatgt	ctatgacata	tggacagcag	tttggtccaa	catacttgga	tggtgctgat	4740
gttacaaaaa	ttaaacctca	tgtaaatcat	gagggtaaga	ctttctttgt	actacctagt	4800
gatgacacac	tacgtagtga	agctttcgag	tactaccata	ctcttgatga	gagttttctt	4860
ggtaggtaca	tgtctgcttt	aaaccacaca	aagaaatgga	aatttcctca	agttggtggt	4920
ttaacttcaa	ttaaatgggc	tgataacaat	tgttatttgt	ctagtgtttt	attagcactt	4980

caacagcttg	aagtcaaatt	caatgcacca	gcacttcaag	aggcttatta	tagagcccgt	5040
gctggtgatg	ctgctaactt	ttgtgcactc	atactcgctt	acagtaataa	aactgttggc	5100
gagcttggtg	atgtcagaga	aactatgacc	catcttctac	agcatgctaa	tttggaatct	5160
gcaaagcgag	ttcttaatgt	ggtgtgtaaa	cattgtggtc	agaaaactac	taccttaacg	5220
ggtgtagaag	ctgtgatgta	tatgggtact	ctatcttatg	ataatcttaa	gacaggtgtt	5280
tccattccat	gtgtgtgtgg	tcgtgatgct	acacaatatc	tagtacaaca	agagtcttct	5340
tttgttatga	tgtctgcacc	acctgctgag	tataaattac	agcaaggtac	attcttatgt	5400
gcgaatgagt	acactggtaa	ctatcagtgt	ggtcattaca	ctcatataac	tgctaaggag	5460
accctctatc	gtattgacgg	agctcacctt	acaaagatgt	cagagtacaa	aggaccagtg	5520
actgatgttt	tctacaagga	aacatcttac	actacaacca	tcaagcctgt	gtcgtataaa	5580
ctcgatggag	ttacttacac	agagattgaa	ccaaaattgg	atgggtatta	taaaaaggat	5640
aatgcttact	atacagagca	gcctatagac	cttgtaccaa	ctcaaccatt	accaaatgcg	5700
agttttgata	atttcaaact	cacatgttct	aacacaaaat	ttgctgatga	tttaaatcaa	5760
atgacaggct	tcacaaagcc	agcttcacga	gagctatctg	tcacattctt	cccagacttg	5820
aatggcgatg	tagtggctat	tgactataga	cactattcag	cgagtttcaa	gaaaggtgct	5880
aaattactgc	ataagccaat	tgtttggcac	attaaccagg	ctacaaccaa	gacaacgttc	5940
aaaccaaaca	cttggtgttt	acgttgtctt	tggagtacaa	agccagtaga	tacttcaaat	6000
tcatttgaag	ttctggcagt	agaagacaca	caaggaatgg	acaatcttgc	ttgtgaaagt	6060
caacaaccca	cctctgaaga	agtagtggaa	aatcctacca	tacagaagga	agtcatagag	6120
tgtgacgtga	aaactaccga	agttgtaggc	aatgtcatac	ttaaaccatc	agatgaaggt	6180
gttaaagtaa	cacaagagtt	aggtcatgag	gatcttatgg	ctgcttatgt	ggaaaacaca	6240
agcattacca	ttaagaaacc	taatgagctt	tcactagcct	taggtttaaa	aacaattgcc	6300
actcatggta	ttgctgcaat	taatagtgtt	ccttggagta	aaattttggc	ttatgtcaaa	6360
ccattcttag	gacaagcagc	aattacaaca	tcaaattgcg	ctaagagatt	agcacaacgt	6420
gtgtttaaca	attatatgcc	ttatgtgttt	acattattgt	tccaattgtg	tacttttact	6480
aaaagtacca	attctagaat	tagagcttca	ctacctacaa	ctattgctaa	aaatagtgtt	6540
aagagtgttg	ctaaattatg	tttggatgcc	ggcattaatt	atgtgaagtc	acccaaattt	6600
tctaaattgt	tcacaatcgc	tatgtggcta	ttgttgttaa	gtatttgctt	aggttctcta	6660
atctgtgtaa	ctgctgcttt	tggtgtactc	ttatctaatt	ttggtgctcc	ttcttattgt	6720
aatggcgtta	gagaattgta	tcttaattcg	tctaacgtta	ctactatgga	tttctgtgaa	6780
ggttcttttc	cttgcagcat	ttgtttaagt	ggattagact	cccttgattc	ttatccagct	6840
cttgaaacca	ttcaggtgac	gatttcatcg	tacaagctag	acttgacaat	tttaggtctg	6900
gccgctgagt	gggttttggc	atatatgttg	ttcacaaaat	tcttttattt	attaggtctt	6 960
tcagctataa	tgcaggtgtt	ctttggctat	tttgctagtc	atttcatcag	caattcttgg	7020

```
7080
ctcatgtggt ttatcattag tattgtacaa atggcacccg tttctgcaat ggttaggatg
tacatcttct ttgcttcttt ctactacata tggaagagct atgttcatat catggatggt
                                                                    7140
tgcacctctt cgacttgcat gatgtgctat aagcgcaatc gtgccacacg cgttgagtgt
                                                                    7200
acaactattg ttaatggcat gaagagatct ttctatgtct atgcaaatgg aggccgtggc
                                                                    7260
ttctgcaaga ctcacaattg gaattgtctc aattgtgaca cattttgcac tggtagtaca
                                                                    7320
                                                                    7380
ttcattagtg atgaagttgc tcgtgatttg tcactccagt ttaaaagacc aatcaaccct
                                                                    7440
actgaccagt catcgtatat tgttgatagt gttgctgtga aaaatggcgc gcttcacctc
tactttgaca aggctggtca aaagacctat gagagacatc cgctctccca ttttqtcaat
                                                                    7500
                                                                    7560
ttagacaatt tgagagctaa caacactaaa ggttcactgc ctattaatgt catagttttt
gatggcaagt ccaaatgcga cgagtctgct tctaagtctg cttctgtgta ctacagtcag
                                                                    7620
                                                                    7680
ctgatgtgcc aacctattct gttgcttgac caagctcttg tatcagacgt tggagatagt
                                                                    7740
actgaagttt ccgttaagat gtttgatgct tatgtcgaca ccttttcagc aacttttagt
gttcctatgg aaaaacttaa ggcacttgtt gctacagctc acagcgagtt agcaaagggt
                                                                    7800
                                                                    7860
gtagetttag atggtgteet ttetacatte gtgtcagetg ceegacaagg tgttgttgat
accgatgttg acacaaagga tgttattgaa tgtctcaaac tttcacatca ctctgactta
                                                                    7920
                                                                    7980
qaaqtqacaq qtqacaqttq taacaatttc atgctcacct ataataaggt tgaaaacatg
                                                                    8040
acgcccagag atcttggcgc atgtattgac tgtaatgcaa ggcatatcaa tgcccaagta
                                                                    8100
gcaaaaagtc acaatgtttc actcatctgg aatgtaaaag actacatgtc tttatctgaa
                                                                    8160
cagctgcgta aacaaattcg tagtgctgcc aagaagaaca acataccttt tagactaact
tgtgctacaa ctagacaggt tgtcaatgtc ataactacta aaatctcact caagggtggt
                                                                    8220
                                                                    8280
aagattgtta gtacttgttt taaacttatg cttaaggcca cattattgtg cgttcttgct
gcattggttt gttatatcgt tatgccagta catacattgt caatccatga tggttacaca
                                                                    8340
aatgaaatca ttggttacaa agccattcag gatggtgtca ctcgtgacat catttctact
                                                                    8400
                                                                    8460
gatgattgtt ttgcaaataa acatgctggt tttgacgcat ggtttagcca gcgtggtggt
                                                                    8520
tcatacaaaa atgacaaaag ctgccctgta gtagctgcta tcattacaag agagattggt
                                                                    8580
ttcatagtgc ctggcttacc gggtactgtg ctgagagcaa tcaatggtga cttcttgcat
                                                                    8640
tttctacctc gtgtttttag tgctgttggc aacatttgct acacaccttc caaactcatt
gagtatagtg attttgctac ctctgcttgc gttcttgctg ctgagtgtac aatttttaag
                                                                    8700
gatgctatgg gcaaacctgt gccatattgt tatgacacta atttgctaga gggttctatt
                                                                    8760
tcttatagtg agcttcgtcc agacactcgt tatgtgctta tggatggttc catcatacag
                                                                    8820
                                                                    8880
tttcctaaca cttacctgga gggttctgtt agagtagtaa caacttttga tgctgagtac
tgtaqacatg gtacatgcga aaggtcagaa qtaqqtattt gcctatctac cagtggtaga
                                                                    8940
                                                                    9000
tgqqttctta ataatqaqca ttacagagct ctatcaqqaq ttttctgtgg tgttgatgcg
                                                                     9060
atgaatctca tagctaacat ctttactcct cttgtgcaac ctgtgggtgc tttagatgtg
```

tctgcttcag	tagtggctgg	tggtattatt	gccatattgg	tgacttg t g c	tgcctactac	9120
tttatgaaat	tcagacgtgt	ttttggtgag	tacaaccatg	ttgttgctgc	taatgcactt	9180
ttgtttttga	tgtctttcac	tatactctgt	ctggtaccag	cttacagctt	tctgccggga	9240
gtctactcag	tcttttactt	gtacttgaca	ttctatttca	ccaatgatgt	ttcattcttg	9300
gctcaccttc	aatggtttgc	catgttttct	cctattgtgc	ctttttggat	aacagcaatc	9360
tatgtattct	gtatttctct	gaagcactgc	cattggttct	ttaacaacta	tcttaggaaa	9420
agagtcatgt	ttaatggagt	tacatttagt	accttcgagg	aggctgcttt	gtgtaccttt	9480
ttgctcaaca	aggaaatgta	cctaaaattg	cgtagcgaga	cactgttgcc	acttacacag	9540
tataacaggt	atcttgctct	atataacaag	tacaagtatt	tcagtggagc	cttagatact	9600
accagctatc	gtgaagcagc	ttgctgccac	ttagcaaagg	ctctaaatga	ctttagcaac	9660
tcaggtgctg	atgttctcta	ccaaccacca	cagacatcaa	tcacttctgc	tgttctgcag	9720
agtggtttta	ggaaaatggc	attcccgtca	ggcaaagttg	aagggtgcat	ggtacaagta	9780
acctgtggaa	ctacaactct	taatggattg	tggttggatg	acacagtata	ctgtccaaga	9840
catgtcattt	gcacagcaga	agacatgctt	aatcctaact	atgaagatct	gctcattcgc	9900
aa atccaac c	atagctttct	tgttcaggct	ggcaatgttc	aacttcgtgt	tattggccat	9960
tctatgcaaa	attgtctgct	taggcttaaa	gttgatactt	ctaaccctaa	gacacccaag	10020
tataaatttg	tccgtatcca	acctggtcaa	acattttcag	ttctagcatg	ctacaatggt	10080
tcaccatctg	gtgtttatca	gtgtgccatg	agacctaatc	ataccattaa	aggttctttc	10140
cttaatggat	catgtggtag	tgttggtttt	aacattgatt	atgattgcgt	gtctttctgc	10200
tatatgcatc	atatggagct	tccaacagga	gtacacgctg	gtactgactt	agaaggtaaa	10260
ttctatggtc	catttgtt g a	cagacaaact	gcacaggctg	caggtacaga	cacaaccata	10320
acattaaatg	ttttggcatg	gctgtatgct	gctgttatca	atggtgatag	gtggtttctt	10380
aatagattca	ccactacttt	gaatgacttt	aaccttgtgg	caatgaagta	caactatgaa	10440
cctttgacac	aagatcatgt	tgacatattg	ggacctcttt	ctgctcaaac	aggaattgcc	10500
gtcttagata	tgtgtgctgc	tttgaaagag	ctgctgcaga	atggtatgaa	tggtcgtact	10560
atccttggta	gcactatttt	agaagatgag	tttacaccat	ttgatgttgt	tagacaatgc	10620
tctggtgtta	ccttccaagg	taagttcaag	aaaattgtta	agggcactca	tcattggatg	10680
cttttaactt	tcttgacatc	actattgatt	cttgttcaaa	gtacacagtg	gtcactgttt	10740
ttctttgttt	acgagaatgc	tttcttgcca	tttactcttg	gtattatggc	aattgctgca	10800
tgtgctatgc	tgcttgttaa	gcataagcac	gcattcttgt	gcttgtttct	gttaccttct	10860
cttgcaacag	ttgcttactt	taatatggtc	tacatgcctg	ctagctgggt	gatgcgtatc	10920
atgacatggc	ttgaattggc	tgacactagc	ttgtctggtt	ataggcttaa	ggattgtgtt	10980
atgtatgctt	cagctttagt	tttgcttatt	ctcatgacag	ctcgcactgt	ttatgatgat	11040
gctgctagac	gtgtttggac	actgatgaat	gtcattacac	ttgtttacaa	agtctactat	11100

```
ggtaatgctt tagatcaagc tatttccatg tgggccttag ttatttctgt aacctctaac
                                                                   11160
tattctggtg tcgttacgac tatcatgttt ttagctagag ctatagtgtt tgtgtgtgtt
                                                                    11220
gagtattacc cattgttatt tattactggc aacaccttac agtgtatcat gcttgtttat
                                                                    11280
tgtttcttag gctattgttg ctgctgctac tttggccttt tctgtttact caaccgttac
                                                                    11340
                                                                    11400
ttcaggctta Ctcttggtgt ttatgactac ttggtctcta cacaagaatt taggtatatg
                                                                    11460
aactcccagg ggcttttgcc tcctaagagt agtattgatg ctttcaagct taacattaag
ttgttgggta ttggaggtaa accatgtatc aaggttgcta ctgtacagtc taaaatgtct
                                                                    11520
gacgtaaagt gcacatctgt ggtactgctc tcggttcttc aacaacttag agtagagtca
                                                                    11580
tcttctaaat tgtgggcaca atgtgtacaa ctccacaatg atattcttct tgcaaaagac
                                                                    11640
acaactgaag Ctttcgagaa gatggtttct cttttgtctg ttttgctatc catgcagggt
                                                                    11700
gctgtagaca ttaataggtt gtgcgaggaa atgctcgata accgtgctac tcttcaggct
                                                                    11760
attgcttcag aatttagttc tttaccatca tatgccgctt atgccactgc ccaggaggcc
                                                                    11820
                                                                    11880
tatgagcagg ctgtagctaa tggtgattct gaagtcgttc tcaaaaagtt aaagaaatct
ttgaatgtgg ctaaatctga gtttgaccgt gatgctgcca tgcaacgcaa gttggaaaag
                                                                    11940
                                                                    12000
atggcagatc aggctatgac ccaaatgtac aaacaggcaa gatctgagga caagagggca
aaagtaacta gtgctatgca aacaatgctc ttcactatgc ttaggaagct tgataatgat
                                                                    12060
gcacttaaca acattatcaa caatgcgcgt gatggttgtg ttccactcaa catcatacca
                                                                    12120
ttgactacag cagccaaact catggttgtt gtccctgatt atggtaccta caagaacact
                                                                    12180
tgtgatggta acacctttac atatgcatct gcactctggg aaatccagca agttgttgat
                                                                    12240
gcggatagca agattgttca acttagtgaa attaacatgg acaattcacc aaatttggct
                                                                    12300
tggcctctta ttgttacagc tctaagagcc aactcagctg ttaaactaca gaataatgaa
                                                                    12360
ctgagtccag tagcactacg acagatgtcc tgtgcggctg gtaccacaca aacagcttgt
                                                                    12420
actgatgaca atgcacttgc ctactataac aattcgaagg gaggtaggtt tgtgctggca
                                                                    12480
ttactatcag accaccaaga tctcaaatgg gctagattcc ctaagagtga tggtacaggt
                                                                    12540
acaatttaca cagaactgga accaccttgt aggtttgtta cagacacacc aaaagggcct
                                                                    12600
aaagtgaaat acttgtactt catcaaaggc ttaaacaacc taaatagagg tatggtgctg
                                                                    12660
ggcagtttag ctgctacagt acgtcttcag gctggaaatg ctacagaagt acctgccaat
                                                                    12720
tcaactgtgc tttccttctg tgcttttgca gtagaccctg ctaaagcata taagqattac
                                                                    12780
ctagcaagtg gaggacaacc aatcaccaac tgtgtgaaga tgttgtgtac acacactggt
                                                                    12840
acaggacagg caattactgt aacaccagaa gctaacatgg accaagagtc ctttggtggt
                                                                    12900
gcttcatgtt gtctgtattg tagatgccac attgaccatc caaatcctaa aggattctgt
                                                                    12960
gacttgaaag gtaagtacgt ccaaatacct accacttgtg ctaatgaccc agtgggtttt
                                                                    13020
acacttagaa acacagtctg taccgtctgc ggaatgtgga aaggttatgg ctgtagttgt
                                                                    13080
gaccaactcc gcgaaccctt gatgcagtct gcggatgcat caacgttttt aaacgggttt
                                                                    13140
```

```
gcggtgtaag tgcagcccgt cttacaccgt gcggcacagg cactagtact gatgtcgtct
                                                                   13200
acagggcttt tgatatttac aacgaaaaag ttgctggttt tgcaaagttc ctaaaaacta
                                                                   13260
attgCtgtCg cttccaggag aaggatgagg aaggcaattt attagactct tactttgtag
                                                                   13320
ttaagaggca tactatgtct aactaccaac atgaagagac tatttataac ttggttaaag
                                                                   13380
                                                                   13440
attgtccagc ggttgctgtc catgactttt tcaagtttag agtagatggt gacatggtac
                                                                   13500
cacatatatc acgtcagcgt ctaactaaat acacaatggc tgatttagtc tatgctctac
                                                                   13560
gtcattttga tgagggtaat tgtgatacat taaaagaaat actcgtcaca tacaattgct
gtgatgatga ttatttcaat aagaaggatt ggtatgactt cgtagagaat cctgacatct
                                                                   13620
tacgcgtata tgctaactta ggtgagcgtg tacgccaatc attattaaag actgtacaat
                                                                   13680
tctgcgatgc tatgcgtgat gcaggcattg taggcgtact gacattagat aatcaggatc
                                                                   13740
ttaatgggaa ctggtacgat ttcggtgatt tcgtacaagt agcaccaggc tgcggagttc
                                                                   13800
ctattgtgga ttcatattac tcattgctga tgcccatcct cactttgact agggcattgg
                                                                   13860
                                                                   13920
ctgCtgagtc ccatatggat gctgatctcg caaaaccact tattaagtgg gatttgctga
aatatgattt tacggaagag agactttgtc tcttcgaccg ttattttaaa tattgggacc
                                                                    13980
agacatacca tcccaattgt attaactgtt tggatgatag gtgtatcctt cattgtgcaa
                                                                    14040
actitaatgt gttattttct actgtgtttc cacctacaag ttttggacca ctagtaagaa
                                                                   14100
aaatatttgt agatggtgtt ccttttgttg tttcaactgg ataccatttt cgtgagttag
                                                                    14160
gagtcgtaca taatcaggat gtaaacttac atagctcgcg tctcagtttc aaggaacttt
                                                                    14220
tagtgtatgc tgctgatcca gctatgcatg cagcttctgg caatttattg ctagataaac
                                                                    14280
gcactacatg cttttcagta gctgcactaa caaacaatgt tgcttttcaa actgtcaaac
                                                                    14340
ccggtaattt taataaagac ttttatgact ttgctgtgtc taaaggtttc tttaaggaag
                                                                    14400
gaagttctgt tgaactaaaa cacttcttct ttgctcagga tggcaacgct gctatcagtg
                                                                    14460
attatgacta ttatcgttat aatctgccaa caatgtgtga tatcagacaa ctcctattcg
                                                                    14520
tagttgaagt tgttgataaa tactttgatt gttacgatgg tggctgtatt aatgccaacc
                                                                    14580
aagtaatcgt taacaatctg gataaatcag ctggtttccc atttaataaa tggggtaagg
                                                                    14640
ctagacttta ttatgactca atgagttatg aggatcaaga tgcacttttc gcgtatacta
                                                                    14700
agcgtaatgt catccctact ataactcaaa tgaatcttaa gtatgccatt agtgcaaaga
                                                                    14760
atagageteg cacegtaget ggtgteteta tetgtagtae tatgacaaat agacagttte
                                                                    14820
atcagaaatt attgaagtca atagccgcca ctagaggagc tactgtggta attggaacaa
                                                                    14880
gcaagtttta cggtggctgg cataatatgt taaaaactgt ttacagtgat gtagaaactc
                                                                    14940
cacaccttat gggttgggat tatccaaaat gtgacagagc catgcctaac atgcttagga
                                                                    15000
taatggcctc tcttgttctt gctcgcaaac ataacacttg ctgtaactta tcacaccgtt
                                                                    15060
tctacaggtt agctaacgag tgtgcgcaaq tattaagtga gatggtcatg tgtggcqqct
                                                                    15120
cactatatgt taaaccaggt ggaacatcat ccggtgatgc tacaactgct tatgctaata
                                                                    15180
```

```
gtgtctttaa Catttgtcaa gctgttacag ccaatgtaaa tgcacttctt tcaactgatg
                                                                   15240
gtaataagat agctgacaag tatgtccgca atctacaaca caggctctat gagtgtctct
                                                                    15300
atagaaatag ggatgttgat catgaattcg tggatgagtt ttacgcttac ctgcgtaaac
                                                                    15360
atttctccat gatgattctt tctgatgatg ccgttqtgtg ctataacagt aactatqcqq
                                                                    15420
ctcaaggttt agtagctagc attaagaact ttaaggcagt tctttattat caaaataatg
                                                                    15480
tgttcatgtc tgaggcaaaa tgttggactg agactgacct tactaaagga cctcacgaat
                                                                    15540
tttgctcaca gcatacaatg ctagttaaac aaggagatga ttacgtgtac ctgccttacc
                                                                    15600
cagatccatc aagaatatta ggcgcaggct gttttgtcga tgatattgtc aaaacagatg
                                                                    15660
gtacacttat gattgaaagg ttcgtgtcac tggctattga tgcttaccca cttacaaaac
                                                                    15720
attctaatca ggagtatgct gatgtctttc acttgtattt acaatacatt agaaagttac
                                                                    15780
atgatgaget tactggeeac atgttggaca tgtatteegt aatgetaact aatgataaca
                                                                    15840
cctcacggta Ctgggaacct gagttttatg aggctatgta cacaccacat acagtcttgc
                                                                    15900
aggctgtagg tgcttgtgta ttgtgcaatt cacagacttc acttcgttgc ggtgcctgta
                                                                    15960
ttaggagacc attcctatgt tgcaagtgct gctatgacca tgtcatttca acatcacaca
                                                                    16020
aattagtgtt gtctgttaat ccctatgttt gcaatgcccc aggttgtgat gtcactgatg
                                                                    16080
tgacacaact gtatctagga ggtatgagct attattgcaa gtcacataag cctcccatta
                                                                    16140
gttttccatt atgtgctaat ggtcaggttt ttggtttata caaaaacaca tgtgtaggca
                                                                    16200
gtgacaatgt Cactgacttc aatgcgatag caacatgtga ttggactaat gctggcgatt
                                                                    16260
acatacttgc caacacttgt actgagagac tcaagctttt cgcagcagaa acgctcaaag
                                                                    16320
ccactgagga aacatttaag ctgtcatatg gtattgccac tgtacgcgaa gtactctctg
                                                                    16380
acagagaatt gcatctttca tgggaggttg gaaaacctag accaccattg aacagaaact
                                                                    16440
atgtctttac tggttaccgt gtaactaaaa atagtaaagt acagattgga gagtacacct
                                                                    16500
ttgaaaaagg tgactatggt gatgctgttg tgtacagagg tactacgaca tacaagttga
                                                                    16560
atgttggtga ttactttgtg ttgacatctc acactgtaat gccacttagt gcacctactc
                                                                    16620
tagtgccaca agagcactat gtgagaatta ctggcttgta cccaacactc aacatctcag
                                                                    16680
atgagttttc tagcaatgtt gcaaattatc aaaaggtcgg catgcaaaag tactctacac
                                                                    16740
tccaaggacc acctggtact ggtaagagtc attttgccat cggacttgct ctctattacc
                                                                    16800
catctgctcg catagtgtat acggcatgct ctcatgcagc tgttgatgcc ctatgtgaaa
                                                                    16860
aggcattaaa atatttgccc atagataaat gtagtagaat catacctgcg cgtgcgcgcg
                                                                    16920
tagagtgttt tgataaattc aaagtgaatt caacactaga acagtatgtt ttctgcactg
                                                                    16980
taaatgcatt gccagaaaca actgctgaca ttgtagtctt tgatgaaatc tctatggcta
                                                                    17040
ctaattatga cttgagtgtt gtcaatgcta gacttcgtgc aaaacactac gtctatattg
                                                                    17100
gcqatcctqc tcaattacca gccccccqca cattqctqac taaaqqcaca ctaqaaccaq
                                                                    17160
aatattttaa ttcagtgtgc agacttatga aaacaatagg tccagacatg ttccttggaa
                                                                    17220
```

cttgtcgccg	ttgtcctgct	gaaattgttg	acactgtgag	tgctttagtt	tatgacaata	17280
agctaaaagc	acacaaggat	aagtcagctc	aatgcttcaa	aatgttctac	aaaggtgtta	17340
ttacacatga	tgtttcatct	gcaatcaaca	gacctcaaat	aggcgttgta	agagaatttc	17400
ttacacgcaa	tcctgcttgg	agaaaagctg	tttttatctc	accttataat	tcacagaacg	17460
ctgtagcttc	aaaaatctta	ggattgccta	cgcagactgt	tgattcatca	cagggttctg	17520
aatatgacta	tgtcatattc	acacaaacta	ctgaaacagc	acactcttgt	aatgtcaacc	17580
gcttcaatgt	ggctatcaca	agggcaaaaa	ttggcatttt	gtgcataatg	tctgatagag	17640
atctttatga	caaactgcaa	tttacaagtc	tagaaatacc	acgtcgcaat	gtggctacat	17700
tacaagcaga	aaatgtaact	ggacttttta	aggactgtag	taagatcatt	actggtcttc	17760
atcctacaca	ggcacctaca	cacctcagcg	ttgatataaa	gttcaagact	gaaggattat	17820
gtgttgacat	accaggcata	ccaaaggaca	tgacctaccg	tagactcatc	tctatgatgg	17880
gtttcaaaat	gaattaccaa	gtcaatggtt	accctaatat	gtttatcacc	cgcgaagaag	17940
ctattcgtca	cgttcgtgcg	tggattggct	ttgatgtaga	gggctgtcat	gcaactagag	18000
atgctgtggg	tactaaccta	cctctccagc	taggattttc	tacaggtgtt	aacttagtag	18060
ctgtaccgac	tggttatgtt	gacactgaaa	ataacacaga	attcaccaga	gttaatgcaa	18120
aacctccacc	aggtgaccag	tttaaacatc	ttataccact	catgtataaa	ggcttgccct	18180
ggaatgtagt	gcgtattaag	atagtacaaa	tgctcagtga	tacactgaaa	ggattgtcag	18240
acagagtcgt	gttcgtcctt	tgggcgcatg	gctttgagct	tacatcaatg	aagtactttg	18300
tcaagattgg	acctgaaaga	acgtgttgtc	tgtgtgacaa	acgtgcaact	tgcttttcta	18360
cttcatcaga	tacttatgcc	tgctggaatc	attctgtggg	ttttgactat	gtctataacc	18420
catttatgat	tgatgttcag	cagtggggct	ttacgggtaa	ccttcagagt	aaccatgacc	18480
aacattgcca	ggtacatgga	aatgcacatg	tggctagttg	tgatgctatc	atgactagat	18540
gtttagcagt	ccatgagtgc	tttgttaagc	gcgttgattg	gtctgttgaa	taccctatta	18600
taggagatga	actgagggtt	aattctgctt	gcagaaaagt	acaacacatg	gttgtgaagt	18660
ctgcattgct	tgctgataag	tttccagttc	ttcatgacat	tggaaatcca	aaggctatca	18720
agtgtgtgcc	tcaggctgaa	gtagaatgga	agttctacga	tgctcagcca	tgtagtgaca	18780
aagcttacaa	aatagaggaa	ctcttctatt	cttatgctac	acatcacgat	aaattcactg	18840
atggtgtttg	tttgttttgg	aattgtaacg	ttgatcgtta	cccagccaat	gcaattgtgt	18900
gtag g tttga	cacaagagtc	ttgtcaaact	tgaacttacc	aggctgtgat	ggtggtagtt	18960
tgtatgtgaa	taagcatgca	ttccacactc	cagctttcga	taaaagtgca	tttactaatt	19020
taaagcaatt	gcctttcttt	tactattctg	atagtccttg	tgagtctcat	ggcaaacaag	19080
tagtgtcgga	tattgattat	gttccactca	aatctgctac	gtgtattaca	cgatgcaatt	19140
taggtggtgc	tgtttgcaga	caccatgcaa	atgagtaccg	acagtacttg	gatgcatata	19200
atatgatgat	ttctgctgga	tttagcctat	ggatttacaa	acaatttgat	acttataacc	19260

tgtggaatac att	taccagg ttacagagt	t tagaaaatgt	ggcttataat	gttgttaata	19320
aaggacactt tga	tggacác gccggcgaa	g cacctgtttc	catcattaat	aatgctgttt	19380
acacaaaggt aga	tggtatt gatgtggag	a tctttgaaaa	taagacaaca	cttcctgtta	19440
atgttgcatt tga	gctttgg gctaagcgt	a acattaaacc	agtgccagag	attaagatac	19500
tcaataattt ggg	tgttgat atcgctgct	a atactgtaat	ctgggactac	aaaagagaag	19560
ccccagcaca tgt	atctaca ataggtgtc	t gcacaatgac	tgacattgcc	aagaaaccta	19620
ctgagagtgc ttg	ttcttca cttactgtc	t tgtttgatgg	tagagtggaa	ggacaggtag	19680
acctttttag aaa	cgcccgt aatggtgtt	t taataacaga	aggttcagtc	aaaggtctaa	19740
caccttcaaa ggg	accagca caagctagc	g tcaatggagt	cacattaatt	ggagaatc ag	19800
taaaaacaca gtt	taactac tttaagaaa	g tagacggcat	tattcaacag	ttgcctgaaa	19860
cctactttac tca	gagcaga gacttagag	g attttaagcc	cagatcacaa	atggaaactg	19920
actttctcga gct	cgctatg gatgaattc	a tacagcgata	taagctcgag	ggctatgcct	19980
tcgaacacat cgt	ttatgga gatttcagt	c atggacaact	tggcggtctt	catttaatga	20040
taggcttagc caa	gcgctca caagattca	c cacttaaatt	agaggatttt	atccctatgg	20100
acagcacagt gaa	aaattac t <mark>tca</mark> taaca	g atgcgcaaac	aggttcatca	aaatgtgtgt	20160
gttctgtgat tga	itctttta cttgatgac	t ttgtcgagat	aataaagtca	caagatttgt	20220
cagtgatttc aaa	agtggtc aaggttaca	a ttgactatgc	tgaaatttca	ttcatgcttt	20280
ggtgtaagga tgg	acatgtt gaaaccttc	t acccaaaact	acaagcaagt	caagcgtggc	20340
aaccaggtgt tgc	gatgcct aacttgtac	a agatgcaaag	aatgcttctt	gaaaagtgtg	20400
accttcagaa tta	itggtgaa aatgctgtt	a taccaaaagg	aataatgatg	aatgtcgcaa	20460
agtatactca act	gtgtcaa tacttaaat	a cacttacttt	agctgtaccc	tacaacatga	20520
gagttattca ctt	tggtgct g gctct gat	a aaggagttgc	accaggtaca	gctgtgctca	20580
gacaatggtt gcc	aactggc acactactt	g tcgattcaga	tcttaatgac	ttcgtctccg	20640
acgcagattc tac	tttaatt ggagactgt	g caacagtaca	tacggctaat	aaatgggacc	20700
ttattattag cga	tatgtat gaccctagg	a ccaaacatgt	gacaaaagag	aatgactcta	20760
aagaagggtt ttt	cacttat ctgtgtgga	t ttataaagca	aaaactagcc	ctgggtggtt	20820
ctatagctgt aaa	igataaca gagcattct	t ggaatgctga	cctttacaag	cttatgggcc	20880
atttctcatg gtg	ggacagct tttgttaca	a atgtaaatgc	atcatcatcg	gaagcatttt	20940
taattggggc taa	ictatctt ggcaagccg	a aggaacaaat	tgatggctat	accatgcatg	21000
ctaactacat ttt	ctggagg aacacaaat	c ctatccagtt	gtcttcctat	tcactctttg	21060
acatgagcaa att	tcctctt aaattaaga	g gaactgctgt	aatgtctctt	aaggagaatc	21120
aaatcaatga tat	gatttat t <mark>c</mark> tcttctg	g aaaaaggtag	gcttatcatt	agagaaaaca	21180
acagagttgt ggt	ttcaagt gatattctt	g ttaacaacta	a		21221

<211> 297 <212> ADN <213> CORONAVIRUS	
<400> 32	
atggacccca atcaaaccaa cgtagtgccc cccgcattac atttggtgga cccacagatt	60
caactgacaa taaccagaat ggaggacgca atggggcaag gccaaaacag cgccgacccc	120
aaggtttacc caataatact gcgtcttggt tcacagctct cactcagcat ggcaaggagg	180
aacttagatt ccctcgaggc cagggcgttc caatcaacac caatagtggt ccagatgacc	240
aaattggcta ctaccgaaga gctacccgac gagttcgtgg tggtgacggc aaaatga	297
<210> 33 <211> 98 <212> PRT <213> CORONAVIRUS	
<400> 33	
Met Asp Pro Asn Gln Thr Asn Val Val Pro Pro Ala Leu His Leu Val 1 5 10 15	
Asp Pro Gln Ile Gln Leu Thr Ile Thr Arg Met Glu Asp Ala Met Gly 20 25 30	
Gln Gly Gln Asn Ser Ala Asp Pro Lys Val Tyr Pro Ile Ile Leu Arg 35 40 45	
Leu Gly Ser Gln Leu Ser Leu Ser Met Ala Arg Arg Asn Leu Asp Ser 50 55 60	
Leu Glu Ala Arg Ala Phe Gln Ser Thr Pro Ile Val Val Gln Met Thr 65 70 75 80	
Lys Leu Ala Thr Thr Glu Glu Leu Pro Asp Glu Phe Val Val Thr 85 90 95	
Ala Lys	
<210> 34 <211> 213 <212> ADN <213> CORONAVIRUS	
<400> 34	
atgctgccac cgtgctacaa cttcctcaag gaacaacatt gccaaaaggc ttctacgcag	60
agggaagcag aggcggcagt caagcctctt ctcgctcctc atcacgtagt cgcggtaatt	120
caagaaattc aactcctggc agcagtaggg gaaattctcc tgctcgaatg gctagcggag	180
gtggtgaaac tgccctcgcg ctattgctgc tag	213

<210> 35 <211> 70 <212> PRT

<213> CORONAVIRUS

<400> 35

Met Leu Pro Pro Cys Tyr Asn Phe Leu Lys Glu Gln His Cys Gln Lys 10 15

Ala Ser Thr Gln Arg Glu Ala Glu Ala Ala Val Lys Pro Leu Leu Ala 20 25 30

Pro His His Val Val Ala Val Ile Gln Glu Ile Gln Leu Leu Ala Ala 35 40 45

Val Gly Glu Ile Leu Leu Glu Trp Leu Ala Glu Val Val Lys Leu 50 55 60

Pro Ser Arg Tyr Cys Cys 65 70

<210> 36

<211> 1377

<212> ADN

<213> CORONAVIRUS

<220>

<221> CDS

<222> (67)..(1335)

<223>

<400> 36

atgaaggtca ccaaactgct gcatttagag acgtacttgt tgttttaaat aaacgaacaa

60

attaa	Ņ	itg t Met s	ct (Ser A	gat a Asp /	aat (Asn (gga o Gly P	cc (Pro (caa 1 51n s	tca a Ser A	Asn G	caa o 31n A 10	cgt a Arg s	agt g Ser A	gcc (Ala (cc Pro	108
cgc a Arg I 15	att Ile	aca Thr	ttt Phe	ggt Gly	gga Gly 20	ccc Pro	aca Thr	gat Asp	tca Ser	act Thr 25	gac Asp	aat Asn	aac Asn	cag Gln	aat Asn 30	156
gga g Gly G	gga Gly	cgc Arg	aat Asn	ggg Gly 35	gca Ala	agg Arg	cca Pro	aaa Lys	cag Gln 40	cgc Arg	cga Arg	ccc Pro	caa Gln	ggt Gly 45	tta Leu	204
ccc a	aat As n	aat Asn	act Thr 50	gcg Ala	tct Ser	tgg Trp	ttc Phe	aca Thr 55	gct Ala	ctc Leu	act Thr	cag Gln	cat His 60	ggc Gly	aag Lys	252
gag g Glu d																300
agt g Ser G	ggt Gly 80	cca Pro	gat Asp	gac Asp	caa Gln	att Ile 85	ggc Gly	tac Tyr	tac Tyr	cga Arg	aga Arg 90	gct Ala	acc Thr	cga Arg	cga Arg	348
gtt d Val 4 95	cgt Arg	ggt Gly	ggt Gly	gac Asp	ggc Gly 100	aaa Lys	atg Met	aaa Lys	gag Glu	ctc Leu 105	agc Ser	ccc Pro	aga Arg	tgg Trp	tac Tyr 110	396
ttc t Phe T	tat Tyr	tac Tyr	cta Leu	gga Gly 115	act Thr	ggc Gly	cca Pro	gaa Glu	gct Ala 120	tca Ser	ctt Leu	ccc Pro	tac Tyr	ggc Gly 125	gct Ala	444
aac a Asn l	aaa Lys	gaa Glu	ggc Gly 130	atc Ile	gta Val	tgg Trp	gtt Val	gca Ala 135	act Thr	gag Glu	gga Gly	gcc Ala	ttg Leu 140	aat Asn	aca Thr	492
ccc a Pro L							cgc Arg 150									540
gtg d Val l																588
gag g Glu d 175	gga Gly	agc Ser	aga Arg	ggc Gly	ggc Gly 180	ser	caa Gln	gcc Ala	tct Ser	tct Ser 185	cgc Arg	tcc Ser	tca Ser	tca Ser	cgt Arg 190	636
agt (Ser A							tca Ser									684
tct (Ser F	cct Pro	gct Ala	cga Arg 210	atg Met	gct Ala	agc Ser	gga Gly	ggt Gly 215	ggt Gly	gaa Glu	act Thr	gcc Ala	ctc Leu 220	gcg Ala	cta Leu	732
ttg (Leu l	ctg Leu	cta Leu 225	gac Asp	aga Arg	ttg Leu	aac Asn	cag Gln 230	ctt Leu	gag Glu	agc Ser	aaa Lys	gtt Val 235	tct Ser	ggt Gly	aaa Lys	780
Gly (caa G1n 240	caa Gln	caa Gln	caa Gln	ggc Gly	caa Gln 245	act Thr	gtc Val	act Thr	aag Lys	aaa Lys 250	tct Ser	gct Ala	gct Ala	gag Glu	828
gca 1 Ala 5 255	tct Ser	aaa Lys	aag Lys	cct Pro	cgc Arg 260	caa Gln	aaa Lys	cgt Arg	act Thr	gcc Ala 265	aca Thr	aaa Lys	cag Gln	tac Tyr	aac Asn 270	876

gtc act caa gca ttt ggg aga cgt ggt cca gaa caa acc caa gga aat Val Thr Gln Ala Phe Gly Arg Arg Gly Pro Glu Gln Thr Gln Gly Asn 275 280 285	924								
ttc ggg gac caa gac cta atc aga caa gga act gat tac aaa cat tgg Phe Gly Asp Gln Asp Leu Ile Arg Gln Gly Thr Asp Tyr Lys His Trp 290 295 300	972								
ccg caa att gca caa ttt gct cca agt gcc tct gca ttc ttt gga atg Pro Gln Ile Ala Gln Phe Ala Pro Ser Ala Ser Ala Phe Phe Gly Met 305 310 315	1020								
tca cgc att ggc atg gaa gtc aca cct tcg gga aca tgg ctg act tat Ser Arg Ile Gly Met Glu Val Thr Pro Ser Gly Thr Trp Leu Thr Tyr 320 325 330	1068								
cat gga gcc att aaa ttg gat gac aaa gat cca caa ttc aaa gac aac His Gly Ala Ile Lys Leu Asp Asp Lys Asp Pro Gln Phe Lys Asp Asn 335 340 345 350	1116								
gtc ata ctg ctg aac aag cac att gac gca tac aaa aca ttc cca cca Val Ile Leu Leu Asn Lys His Ile Asp Ala Tyr Lys Thr Phe Pro Pro 355 360 365	1164								
aca gag cct aaa aag gac aaa aag aaa aag act gat gaa gct cag cct Thr Glu Pro Lys Lys Asp Lys Lys Lys Lys Thr Asp Glu Ala Gln Pro 370 375 380	1212								
ttg ccg cag aga caa aag aag cag ccc act gtg act ctt ctt cct gcg Leu Pro Gln Arg Gln Lys Lys Gln Pro Thr Val Thr Leu Leu Pro Ala 385 390 395	1260								
gct gac atg gat gat ttc tcc aga caa ctt caa aat tcc atg agt gga Ala Asp Met Asp Asp Phe Ser Arg Gln Leu Gln Asn Ser Met Ser Gly 400 405 410	1308								
gct tct gct gat tca act cag gca taa acactcatga tgaccacaca Ala Ser Ala Asp Ser Thr Gln Ala 415 420	1355								
aggcagatgg gctatgtaaa cg									

<210> 37

<211> 422

<212> PRT

<213> CORONAVIRUS

<400> 37

Met Ser Asp Asn Gly Pro Gln Ser Asn Gln Arg Ser Ala Pro Arg Ile 1 10 15

Thr Phe Gly Gly Pro Thr Asp Ser Thr Asp Asn Asn Gln Asn Gly Gly $20 \\ 25 \\ 30$

Arg Asn Gly Ala Arg Pro Lys Gln Arg Arg Pro Gln Gly Leu Pro Asn 35 40 45

Asn Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu

50 55 60

Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly 65 70 75 80 Pro Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ala Thr Arg Arg Val Arg 85 90 95 Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 105 110Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 120 125 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 135 140 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Ala Ala Thr Val Leu 145 150 160 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly
165 170 175 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Ser Arg Ser Arg 180 185 190Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro $195 \hspace{1cm} 200 \hspace{1cm} 205$ Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 220 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 230 235 240 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 250 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr 260 265 270 Gln Ala Phe Gly Arg Arg Gly Pro Glu Gln Thr Gln Gly Asn Phe Gly 275 280 285 Asp Gln Asp Leu Ile Arg Gln Gly Thr Asp Tyr Lys His Trp Pro Gln 290 295 300 Ile Ala Gln Phe Ala Pro Ser Ala Ser Ala Phe Phe Gly Met Ser Arg 305 310 315 320 Ile Gly Met Glu Val Thr Pro Ser Gly Thr Trp Leu Thr Tyr His Gly

325 330 335

Ala Ile Lys Leu Asp Asp Lys Asp Pro Gln Phe Lys Asp Asn Val Ile 340 345 350

Leu Leu Asn Lys His Ile Asp Ala Tyr Lys Thr Phe Pro Pro Thr Glu 355 360 365

Pro Lys Lys Asp Lys Lys Lys Lys Thr Asp Glu Ala Gln Pro Leu Pro 370 375 380

Gln Arg Gln Lys Lys Gln Pro Thr Val Thr Leu Leu Pro Ala Ala Asp 385 390 395 400

Met Asp Asp Phe Ser Arg Gln Leu Gln Asn Ser Met Ser Gly Ala Ser 405 410 415

Ala Asp Ser Thr Gln Ala 420

<210> 38 <211> 1377

<211> 1377 <212> ADN

<213> CORONAVIRUS

<400> 38

60 atgaaggtca ccaaactgct gcatttagag acgtacttgt tgttttaaat aaacgaacaa attaaaatgt ctgataatgg accccaatca aaccaacgta gtgccccccg cattacattt 120 180 ggtggaccca cagattcaac tgacaataac cagaatggag gacgcaatgg ggcaaggcca 240 aaacagcgcc qaccccaagg tttacccaat aatactgcgt cttggttcac agctctcact cagcatggca aggaggaact tagattccct cgaggccagg gcgttccaat caacaccaat 300 360 agtggtccag atgaccaaat tggctactac cgaagagcta cccgacgagt tcgtggtggt 420 gacggcaaaa tgaaagagct cagccccaga tggtacttct attacctagg aactggccca 480 gaagetteae tteectaegg egetaacaaa gaaggeateg tatgggttge aactgaggga 540 gccttgaata cacccaaaga ccacattggc acccgcaatc ctaataacaa tgctgccacc 600 gtgctacaac ttcctcaagg aacaacattg ccaaaaggct tctacgcaga gggaagcaga 660 ggcggcagtc aagcctcttc tcgctcctca tcacgtagtc gcggtaattc aagaaattca 720 actoctggca gcagtagggg aaattotoot gotogaatgg ctagoggagg tggtgaaact 780 gccctcgcgc tattgctgct agacagattg aaccagcttg agagcaaagt ttctggtaaa 840 ggccaacaac aacaaggcca aactgtcact aagaaatctg ctgctgaggc atctaaaaag cctcqccaaa aacqtactgc cacaaaacaq tacaacqtca ctcaagcatt tgggagacgt 900

ggtccagaac	aaacccaagg	aaatttcggg	gaccaagacc	taatcagaca	aggaactgat	960
tacaaacatt	ggccgcaaat	tgcacaattt	gctccaagtg	cctctgcatt	ctttggaatg	1020
tcacgcattg	gcatggaagt	cacaccttcg	ggaacatggc	tgacttatca	tggagccatt	1080
aaattggatg	acaaagatcc	acaattcaaa	gacaacgtca	tactgctgaa	caagcacatt	1140
gacgcataca	aaacattccc	accaacagag	cctaaaaagg	acaaaaagaa	aaagactgat	1200
gaagctcagc	ctttgccgca	gagacaaaag	aagcagccca	ctgtgactct	tcttcctgcg	1 260
gctgacatgg	atgatttctc	cagacaactt	caaaattcca	tgagtggagc	ttctgctgat	1320
tcaactcagg	cataaacact	catgatgacc	acacaaggca	gatgggctat	gtaaacg	1377
<210> 39 <211> 204 <212> ADN <213> CORONAV	'IRUS					
<400> 39	tttacctacc	C20022220C	caaccaacct	castetetta	tagatotatt	60
		caggaaaagc				120
		ctgtgtagct				180
		ttttactgtc	gityacaaya	aacyaytaac	ttgtttttt	204
tetgeagaet	gcttacggtt	tegt				204
<210> 40 <211> 809 <212> ADN <213> CORONAV	'IRUS					
<400> 40						
actcaagcat	ttgggagacg	tggtccagaa	caaacccaag	gaaatttcgg	ggaccaagac	60
ctaatcagac	aaggaactga	ttacaaacat	tggccgcaaa	ttgcacaatt	tgctccaagt	120
gcctctgcat	tctttggaat	gtcacgcatt	ggcatggaag	tcacaccttc	gggaacatgg	180
ctgacttatc	atggagccat	taaattggat	gacaaagatc	cacaattcaa	agacaacgtc	240
atactgctga	acaagcacat	tgacgcatac	aaaacattcc	caccaacaga	gcctaaaaag	300
gacaaaaaga	aaaagactga	tgaagctcag	cctttgccgc	agagacaaaa	gaagcagccc	360
actgtgactc	ttcttcctgc	ggctgacatg	gatgatttct	ccagacaact	tcaaaattcc	420
atgagtggag	cttctgctga	ttcaactcag	gcataaacac	tcatgatgac	cacacaaggc	480
agatgggcta	tgtaaacgtt	ttcgcaattc	cgtttacgat	acatagtcta	ctcttgtgca	540
gaatgaattc	tcgtaactaa	acagcacaag	taggtttagt	taactttaat	ctcacatagc	600
aatctttaat	caatgtgtaa	cattagggag	gacttgaaag	agccaccaca	ttttcatcga	660
ggccacgcgg	agtacgatcg	agggtacagt	gaataatgct	agggagagct	gcctatatgg	720
aagagcccta	atgtgtaaaa	ttaattttag	tagtgctatc	cccatgtgat	tttaatagct	780
tcttaggaga	atgacaaaaa	aaaaaaaaa				809

<211> 448 <212> ADN <213> CORONAVIRUS <400> 41 60 aatgaacaca tagggctgtt caagctgggg cagtacgcct ttttccagct ctactagacc acaaqtgcca tttttqaqqt qttcacqtqc ctccqataqq qcctcttcca caqaqtcccc 120 180 gaagccacgc actagcacgt ctctaacctg aaggacaggc aaactgagtt ggacgtgtgt 240 tttctcgttg acaccaagaa caaggctctc catcttacct ttcggtcaca cccggacgaa 300 acctaggtat gctgatgatc gactgcaaca cggacgaaac cgtaagcagt ctgcagaaga 360 qqqacqaqtt actcqtttct tqtcaacqac aqtaaaattt attattqttt atactqcqta 420 ggtgcactag gcatgcagcc gagcgacagc tacacagatt ttaaagttcg tttagagaac agatctacaa gagatcgagg ttggttgg 448 <210> 42 <211> 2033 <212> ADN <213> CORONAVIRUS <400> 42 60 atacctaggt ttcgtccggg tgtgaccgaa aggtaagatg gagagccttg ttcttggtgt caacgagaaa acacacgtcc aactcagttt gcctgtcctt caggttagag acgtgctagt 120 qcqtggcttc qqqgactctg tqgaagaqqc cctatcqqaq qcacqtqaac acctcaaaaa 180 tggcacttgt ggtctagtag agctggaaaa aggcgtactg ccccagcttg aacagcccta 240 tgtgttcatt aaacgttctg atgccttaag caccaatcac ggccacaagg tcgttgagct 300 ggttgcagaa atggacggca ttcagtacgg tcgtagcggt ataacactgg gagtactcgt 360 420 gccacatgtg ggcgaaaccc Caattgcata ccgcaatgtt cttcttcgta agaacggtaa taagggagcc ggtggtcata gctatggcat cgatctaaag tcttatgact taggtgacga 480 gcttggcact gatcccattg aagattatga acaaaactgg aacactaagc atggcagtgg 540

tgcactccqt qaactcactc gtgagctcaa tggagqtqca gtcactcqct atgtcgacaa

600

	caatttctgt	ggcccagatg	ggtaccctct	tgattgcatc	aaagattttc	tcgcacgcgc	660
	gggcaagtca	atgtgcactc	tttccgaaca	acttgattac	atcgagtcga	agagaggtgt	720
	ctactgctgc	cgtgaccatg	agcatgaaat	tgcctggttc	actgagcgct	ctgataagag	780
	ctacgagcac	cagacaccct	tcgaaattaa	gagtgccaag	aaatttgaca	ctttcaaagg	840
	ggaatgccca	aagtttgtgt	ttcctcttaa	ctcaaaagtc	aaagtcattc	aaccacgtgt	900
	tgaaaagaaa	aagactgagg	gtttcatggg	gcgtatacgc	tctgtgtacc	ctgttgcatc	960
	tccacaggag	tgtaacaata	tgcacttgtc	taccttgatg	aaatgtaatc	attgcgatga	1020
	agtttcatgg	cagacgtgcg	actttctgaa	agccacttgt	gaacattgtg	gcactgaaaa	1080
	tttagttatt	gaaggaccta	ctacatgtgg	gtacctacct	actaatgctg	tagtgaaaat	1140
	gccatgtcct	gcctgtcaag	acccagagat	tggacctgag	catagtgttg	cagattatca	1200
	caaccactca	aacattgaaa	ctcgactccg	caagggaggt	aggactagat	gttttggagg	1260
	ctgtgtgttt	gcctatgttg	gctgctataa	taagcgtgcc	tactgggttc	ctcgtgctag	1320
	tgctgatatt	ggctcaggcc	atactggcat	tactggtgac	aatgtggaga	ccttgaatga	1380
	ggatctcctt	gagatactga	gtcgtgaacg	tgttaacatt	aacattgttg	gcgattttca	1440
	tttgaatgaa	gaggttgcca	tcattttggc	atctttctct	gcttctacaa	gtgcctttat	1500
	tgacactata	aagagtcttg	attacaagtc	tttcaaaacc	attgttgagt	cctgcggtaa	1560
	ctataaagtt	accaagggaa	agcccgtaaa	aggtgcttgg	aacattggac	aacagagatc	1620
	agttttaaca	ccactgtgtg	gttttccctc	acaggctgct	ggtgttatca	gatcaatttt	1680
	tgcgcgcaca	cttgatgcag	caaaccactc	aattcctgat	ttgcaaagag	cagctgtcac	1740
	catacttgat	ggtatttctg	aacagtcatt	acgtcttgtc	gacgccatgg	tttatacttc	1800
	agacctgctc	accaacagtg	tcattattat	ggcatatgta	actggtggtc	ttgtacaaca	1860
	gacttctcag	tggttgtcta	atcttttggg	cactactgtt	gaaaaactca	ggcctatctt	1920
	tgaatggatt	gaggcgaaac	ttagtgcagg	agttgaattt	ctcaaggatg	cttgggagat	1980
	tctcaaattt	ctcattacag	gtgtttttga	catcgtcaag	ggtcaaatac	agg	2033
	<210> 43 <211> 2018 <212> ADN <213> CORONAV	IRUS					
<	<400> 43						
	ggattgaggc	gaaacttagt	gcaggagttg	aatttctcaa	ggatgcttgg	gagattctca	60
	aatttctcat	tacaggtgtt	tttgacatcg	tcaagggtca	aatacaggtt	gcttcagata	120

180

240

acatcaagga ttgtgtaaaa tgcttcattg atgttgttaa caaggcactc gaaatgtgca

ttgatcaagt cactatcgct ggcgcaaagt tgcgatcact caacttaggt gaagtcttca

```
300
tcgctcaaag caagggactt taccgtcagt gtatacgtgg caaggagcag ctgCaactaC
                                                                     360
tcatgcctct taaggcacca aaagaagtaa cctttcttga aggtgattca catgacacag
                                                                     420
tacttacctc tgaggaggtt gttctcaaga acggtgaact cgaagcactc gagacgcccg
                                                                     480
ttgatagctt cacaaatgga gctatcgttg gcacaccagt ctgtgtaaat ggcCtcatgc
                                                                     540
tcttagagat taaggacaaa gaacaatact gcgcattgtc tcctggttta ctggctacaa
                                                                     600
acaatgtctt tcgcttaaaa gggggtgcac caattaaagg tgtaaccttt ggagaagata
                                                                     660
ctgtttggga agttcaaggt tacaagaatg tgagaatcac atttgagctt gatgaacgtg
ttgacaaagt gcttaatgaa aagtgctctg tctacactgt tgaatccggt accgaagtta
                                                                     720
ctgagtttgc atgtgttgta gcagaggctg ttgtgaagac tttacaacca gtttctgatc
                                                                     780
                                                                     840
tccttaccaa catgggtatt gatcttgatg agtggagtgt agctacattc tacttatttg
                                                                      900
atgatgctgg tgaagaaaac ttttcatcac gtatgtattg ttccttttac cctccagatg
                                                                     960
aggaagaaga ggacgatgca gagtgtgagg aagaagaaat tgatgaaacc tgtgaacatg
                                                                    1020
agtacqqtac agaggatgat tatcaaggtc tccctctqqa atttggtgcc tcagctgaaa
                                                                    1080
cagttcgagt tgaggaagaa gaagaggaag actggctgga tgatactact gagCaatcag
agattgagcc agaaccagaa cctacacctg aagaaccagt taatcagttt actggttatt
                                                                    1140
                                                                    1200
taaaacttac tgacaatgtt gccattaaat gtgttgacat cgttaaggag gcacaaagtg
                                                                    1260
ctaatcctat qqtqattqta aatqctqcta acatacacct qaaacatggt ggtggtgtag
caggtgcact caacaaggca accaatggtg ccatgcaaaa ggagagtgat gattacatta
                                                                     1320
agctaaatgg ccctcttaca gtaggaggt cttgtttgct ttctggacat aatCttgcta
                                                                     1380
agaagtgtct gcatgttgtt ggacctaacc taaatgcagg tgaggacatc cagcttctta
                                                                     1440
aggcagcata tgaaaatttc aattcacagg acatcttact tgcaccattg ttgtcagcag
                                                                     1500
                                                                     1560
gcatatttgg tgctaaacca cttcagtctt tacaagtgtg cgtgcagacg gttcgtacac
aggtttatat tgcagtcaat gacaaagctc tttatgagca ggttgtcatg gattatcttg
                                                                     1620
ataacctgaa gcctagagtg gaagcaccta aacaagagga gccaccaaac acagaagatt
                                                                     1680
ccaaaactga ggagaaatct gtcgtacaga agcctgtcga tgtgaagcca aaaattaagg
                                                                     1740
cctgcattga tgaggttacc acaacactgg aagaaactaa gtttcttacc aataagttac
                                                                     1800
tcttgtttgc tgatatcaat qgtaagcttt accatgattc tcagaacatg cttagaggtg
                                                                     1860
aagatatgtc tttccttgag aaggatgcac cttacatggt aggtgatgtt atcactagtg
                                                                     1920
                                                                     1980
gtgatatcac tigigitgita atacceteca aaaaggeigg iggcactaci gagaigetei
                                                                     2018
caagagcttt gaagaaagtg ccagttgatg agtatata
```

<210> 44

<211> 1442

<212> ADN

<213> CORONAVIRUS

<400> 44

ttgatgaggt	taccacaaca	ctggaagaaa	ctaagtttct	taccaataag	ttactcttgt	60
ttgctgatat	caatggtaag	ctttaccatg	attctcagaa	catgcttaga	ggtgaagata	120
tgtctttcct	tgagaaggat	gcaccttaca	tggtaggtga	tgttatcact	agtggtgata	180
tcacttgtgt	tgtaataccc	tccaaaaagg	ctggtggcac	tactgagatg	ctctcaagag	240
ctttgaagaa	agtgccagtt	gatgagtata	taaccacgta	ccctggacaa	ggatgtgctg	300
gttatacact	tgaggaagct	aagactgctc	ttaagaaatg	caaatctgca	ttttatgtac	360
taccttcaga	agcacctaat	gctaaggaag	agattctagg	aactgtatcc	tggaatttga	420
gagaaatgct	tgctcatgct	gaagagacaa	gaaaattaat	gcctatatgc	atggatgtta	480
gagccataat	ggcaaccatc	caacgtaagt	ataaaggaat	taaaattcaa	gagggcatcg	540
ttgactatgg	tgtccgattc	ttcttttata	ctagtaaaga	gcctgtagct	tctattatta	600
cgaagctgaa	ctctctaaat	gagccgcttg	tcacaatgcc	aattggttat	gtgacacatg	660
gttttaatct	tgaagaggct	gcgcgctgta	tgcgttctct	taaagctcct	gccgtagtgt	720
cagtatcatc	accagatgct	gttactacat	ataatggata	cctcacttcg	tcatcaaaga	780
catctgagga	gcactttgta	gaaacagttt	ctttggctgg	ctcttacaga	gattggtcct	840
attcaggaca	gcgtacagag	ttaggtgttg	aatttcttaa	gcgtggtgac	aaaattgtgt	900
accacactct	ggagagcccc	gtcgagtttc	atcttgacgg	tgaggttctt	tcacttgaca	960
aactaaagag	tctcttatcc	ctgcgggagg	ttaagactat	aaaagtgttc	acaactgtgg	1020
acaacactaa	tctccacaca	cagcttgtgg	atatgtctat	gacatatgga	cagcagtttg	1080
gtccaacata	cttggatggt	gctgatgtta	caaaaattaa	acctcatgta	aatcatgagg	1140
gtaagacttt	ctttgtacta	cctagtgatg	acacactacg	tagtgaagct	ttcgagtact	1200
accatactct	tgatgagagt	tttcttggta	ggtacatgtc	tgctttaaac	cacacaaaga	1260
aatggaaatt	tcctcaagtt	ggtggtttaa	cttcaattaa	atgggctgat	aacaattgtt	1320
atttgtctag	tgttttatta	gcacttcaac	agcttgaagt	caaattcaat	gcaccagcac	1380
ttcaagaggc	ttattataga	gcccgtgctg	gtgatgctgc	taacttttgt	gcactcatac	1440
tc						1442

<400> 45

atatgtctat gacatatgga cagcagtttg gtccaacata cttggatggt gctgatgtta 60

<210> 45 <211> 1050 <212> ADN

<213> CORONAVIRUS

caaaaattaa	acctcatgta	aatcatgagg	gtaagacttt	ctttgtacta	cctagtgatg	120
acacactacg	tagtgaagct	ttcgagtact	accatactct	tgatgagagt	tttcttggta	180
ggtacatgtc	tgctttaaac	cacacaaaga	aatggaaatt	tcctcaagtt	ggtggtttaa	240
cttcaattaa	atgggctgat	aacaattgtt	atttgtctag	tgttttatta	gcacttcaac	300
agcttgaagt	caaattcaat	gcaccagcac	ttcaagaggc	ttattataga	gcccgtgctg	360
gtgatgctgc	taacttttgt	gcactcatac	tcgcttacag	taataaaact	gttggcgagc	420
ttggtgatgt	cagagaaact	atgacccatc	ttctacagca	tgctaatttg	gaatctgcaa	480
agcgagttct	taatgtggtg	tgtaaacatt	gtggtcagaa	aactactacc	ttaacgggtg	540
tagaagctgt	gatgtatatg	ggtactctat	cttatgataa	tcttaagaca	ggtgtttcca	600
ttccatgtgt	gtgtggtcgt	gatgctacac	aatatctagt	acaacaagag	tcttcttttg	660
ttatgatgtc	tgcaccacct	gctgagtata	aattacagca	aggtacattc	ttatgtgcga	720
atgagtacac	tggtaactat	cagtgtggtc	attacactca	tataactgct	aaggagaccc	780
tctatcgtat	tgacggagct	caccttacaa	agatgtcaga	gtacaaagga	ccagtgactg	840
atgttttcta	caaggaaaca	tcttacacta	caaccatcaa	gcctgtgtcg	tataaactcg	900
atggagttac	ttacacagag	attgaaccaa	aattggatgg	gtattataaa	aaggataatg	960
cttactatac	agagcagcct	atagaccttg	taccaactca	accattacca	aatgcgagtt	1020
ttgataattt	caaactcaca	tgttctaaca				1050

<210> 46 <211> 1995

<212> ADN <213> CORONAVIRUS

<400> 46

60 tttgtgcact catactcgct tacagtaata aaactgttgg cgagcttggt gatgtcagag 120 aaactatgac ccatcttcta cagcatgcta atttggaatc tgcaaagcga gttcttaatg 180 tggtgtgtaa acattgtggt cagaaaacta ctaccttaac gggtgtagaa gctgtgatgt 240 gtcgtgatgc tacacaatat ctagtacaac aagagtcttc ttttgttatg atgtctgcac 300 cacctgctga gtataaatta cagcaaggta cattcttatg tgcgaatgag tacactggta 360 actatcagtg tggtcattac actcatataa ctgctaagga gaccctctat cgtattgacg 420 gagctcacct tacaaagatg tcagagtaca aaggaccagt gactgatgtt ttctacaagg 480 aaacatctta cactacaacc atcaagcctg tgtcgtataa actcgatgga gttacttaca 540 600 cagagattga accaaaattg gatgggtatt ataaaaagga taatgcttac tatacagagc 660 agcctataga ccttgtacca actcaaccat taccaaatgc gagttttgat aatttcaaac

tcacatgttc	taacacaaaa	tttgctgatg	atttaaatca	aatgacaggc	ttcacaaagc	720
cagcttcacg	agagctatct	gtcacattct	tcccagactt	gaatggcgat	gtagtggcta	780
ttgactatag	acactattca	gcgagtttca	agaaaggtgc	taaattactg	cataagccaa	840
ttgtttggca	cattaaccag	gctacaacca	agacaacgtt	caaaccaaac	acttggtgtt	900
tacgttgtct	ttggagtaca	aagccagtag	atacttcaaa	ttcatttgaa	gttctggcag	960
tagaagacac	acaaggaatg	gacaatcttg	cttgtgaaag	tcaacaaccc	acctctgaag	1020
aagtagtgga	aaatcctacc	atacagaagg	aagtcataga	gtgtgacgtg	aaaactaccg	1080
aagttgtagg	caatgtcata	cttaaaccat	cagatgaagg	tgttaaagta	acacaagagt	1140
taggtcatga	ggatcttatg	gctgcttatg	tggaaaaca⊂	aagcattacc	attaagaaac	1200
ctaatgagct	ttcactagcc	ttaggtttaa	aaacaattgc	cactcatggt	attgctgcaa	1260
ttaatagtgt	tccttggagt	aaaattttgg	cttatgtcaa	accattctta	ggacaagcag	1320
caattacaac	atcaaattgc	gctaagagat	tagcacaacg	tgtgtttaac	aattatatgc	1380
cttatgtgtt	tacattattg	ttccaattgt	gtacttttac	taaaagtacc	aattctagaa	1440
ttagagcttc	actacctaca	actattgcta	aaaatagtgt	taagagtgtt	gctaaattat	1500
gtttggatgc	cggcattaat	tatgtgaagt	cacccaaatt	ttctaaattg	ttcacaatcg	1560
ctatgtggct	attgttgtta	agtatttgct	taggttctct	aatctgtgta	actgctgctt	1620
ttggtgtact	cttatctaat	tttggtgctc	cttcttattg	taatggcgtt	agagaattgt	1680
atcttaattc	gtctaacgtt	actactatgg	atttctgtga	aggttctttt	ccttgcagca	1740
tttgtttaag	tggattagac	tcccttgatt	cttatccagc	tcttgaaacc	attcaggtga	1800
cgatttcatc	gtacaagcta	gacttgacaa	ttttaggtct	ggccgctgag	tgggttttgg	1860
catatatgtt	gttcacaaaa	ttcttttatt	tattaggtct	ttcagctata	atgcaggtgt	1920
tctttggcta	ttttgctagt	catttcatca	gcaattcttg	gctcatgtgg	tttatcatta	1980
gtattgtaca	aatgg					1995
<210> 47 <211> 1884 <212> ADN <213> CORONA\	/IRUS					
<400> 47						
				tggcacccgt		60
				ggaagagcta		120
				agcgcaatcg		180
		-	_	tctatgtcta		240
ggccgtggct	tctgcaagac	tcacaattgg	aattgtctca	attgtgacac	attttgcact	300

```
360
ggtagtacat tCattagtga tqaagttgct cgtgatttgt cactccagtt taaaagacca
                                                                      420
atcaacccta Ctgaccagtc atcgtatatt gttgatagtg ttgctgtgaa aaatggcgcg
                                                                      480
cttcacctct actttgacaa ggctggtcaa aagacctatg agagacatcc gctctcccat
tttgtcaatt tagacaattt gagagctaac aacactaaag gttcactgcc tattaatgtc
                                                                      540
atagtttttg atggcaaqtc caaatgcgac gagtctgctt ctaagtctgc ttctgtgtac
                                                                      600
                                                                      660
tacagtcagc tgatgtgcca acctattctg ttgcttgacc aagctcttgt atcagacgtt
                                                                      720
ggagatagta Ctgaagtttc Cqttaaqatg tttgatgctt atgtcgacac cttttcagca
acttttagtg ttcctatgga aaaacttaag gcacttgttg ctacagctca cagcgagtta
                                                                      780
                                                                      840
gcaaagggtg tagctttaga tggtgtcctt tctaCattcg tgtcagctgc ccgacaaggt
                                                                      900
qttqttqata ccqatqttqa cacaaaqqat qttattqaat qtctcaaact ttcacatcac
tctgacttag aagtgacagg tgacagttgt aacaatttca tgctcaccta taataaggtt
                                                                      960
                                                                     1020
gaaaacatga cgcccagaga tcttggcgca tgtattgact gtaatgcaag gcatatcaat
gcccaagtag Caaaaagtca caatgtttca ctcatctgga atgtaaaaga ctacatgtct
                                                                     1080
ttatctgaac agctgcgtaa acaaattcgt agtgctgcca agaagaacaa catacctttt
                                                                     1140
agactaactt gtgctacaac tagacaggtt gtcaatgtca taactactaa aatctcactc
                                                                     1200
aagggtggta agattgttag tacttgtttt aaacttatgc ttaaggccac attattgtgc
                                                                     1260
gttcttgctg cattggtttg ttatatcgtt atgccagtac atacattgtc aatccatgat
                                                                     1320
ggttacacaa atgaaatcat tggttacaaa gccattcagg atggtgtcac tcgtgacatc
                                                                     1380
                                                                     1440
attictactg atgattgttt tgcaaataaa catgctggtt ttgacgcatg gtttagccag
cgtggtggtt catacaaaaa tgacaaaagc tgccctgtag tagctgctat cattacaaga
                                                                     1500
gagattggtt tcatagtgcc tggcttaccg ggtactgtgc tgagagcaat caatggtgac
                                                                     1560
ttcttgcatt ttctacctcg tgtttttagt gctgttggca acatttgcta cacaccttcc
                                                                     1620
                                                                     1680
aaactcattg agtatagtga tittgctacc tctgcttgcg ttcttgctgc tgagtgtaca
attittaagg atgctatggg caaacctgtg ccatattgtt atgacactaa titgctagag
                                                                     1740
ggttctattt cttatagtga gcttcgtcca gacactcgtt atgtgcttat ggatggttcc
                                                                     1800
atcatacagt ttcctaacac ttacctggag ggttctgtta gagtagtaac aacttttgat
                                                                     1860
gctgagtact gtagacatgg taca
                                                                     1884
```

cactcgttat gtgcttatgg atggttccat catacagttt cctaacactt acctggaggg 60

<210> 48 <211> 2020

<212> ADN

<213> CORONAVIRUS

<400> 48

ttctgttaga	gtagtaacaa	cttttgatgc	tgagtactgt	agacat g gta	catgcgaaag	120
gtcagaagta	ggtatttgcc	tatctaccag	tggtagatgg	gttcttaata	atgagcatta	180
cagagctcta	tcaggagttt	tctgtggtgt	tgatgcgatg	aatctcatag	ctaacatctt	240
tactcctctt	gtgcaacctg	tgggtgcttt	agatgtgtct	gcttcagtag	tggctggtgg	300
tattattgcc	atattggtga	cttgtgctgc	ctactacttt	atgaaattca	gacgtgtttt	360
tggtgagtac	aaccatgttg	ttgctgctaa	tgcacttttg	tttttgatgt	ctttcactat	420
actctgtctg	gtaccagctt	acagctttct	gccgggagtc	tactcagtct	tttacttgta	480
cttgacattc	tatttcacca	atgatgtttc	attcttggct	caccttcaat	ggtttgccat	540
gttttctcct	attgtgcctt	tttggataac	agcaatctat	gtattctgta	tttctctgaa	600
gcactgccat	tggttcttta	acaactatct	taggaaaaga	gtcatgttta	atggagttac	660
atttagtacc	ttcgaggagg	ctgctttgtg	tacctttttg	ctcaacaagg	aaatgtacct	720
aaaattgcgt	agcgagacac	tgttgccact	tacacagtat	aacaggtatc	ttgctctata	780
taacaagtac	aagtatttca	gtggagcctt	agatactacc	agctatcgtg	aagcagcttg	840
ctgccactta	gcaaaggctc	taaatgactt	tagcaactca	ggtgctgatg	ttctctacca	900
accaccacag	acatcaatca	cttctgctgt	tctgcagagt	ggttttagga	aaatggcatt	960
cccgtcaggc	aaagttgaag	ggtgcatggt	acaagtaacc	tgtggaacta	caactcttaa	1020
tggattgtgg	ttggatgaca	cagtatactg	tccaagacat	gtcatttgca	cagcagaaga	1080
catgcttaat	cctaactatg	aagatctgct	cattcgcaaa	tccaaccata	gctttcttgt	1140
tcaggctggc	aatgttcaac	ttcgtgttat	tggccattct	atgcaaaatt	gtctgcttag	1200
gcttaaagtt	gatacttcta	accctaagac	acccaagtat	aaatttgtcc	gtatccaacc	1260
tggtcaaaca	ttttcagttc	tagcatgcta	caatggttca	ccatctggtg	tttatcagtg	1320
tgccatgaga	cctaatcata	ccattaaagg	ttctttcctt	aatggatcat	gtggtagtgt	1380
tggttttaac	attgattatg	attgcgtgtc	tttctgctat	atgcatcata	tggagcttcc	1440
aacaggagta	cacgctggta	ctgacttaga	aggtaaattc	tatggtccat	ttgttgacag	1500
acaaactgca	caggctgcag	gtacagacac	aaccataaca	ttaaatgttt	tggcatggct	1560
gtatgctgct	gttatcaatg	gtgataggtg	gtttcttaat	agattcacca	ctactttgaa	1620
tgactttaac	cttgtggcaa	tgaagtacaa	ctatgaacct	ttgacacaag	atcatgttga	1680
catattggga	cctctttctg	ctcaaacagg	aattgccgtc	ttagatatgt	gtgctgcttt	1740
gaaagagctg	ctgcagaatg	gtatgaatgg	tcgtactatc	cttggtagca	ctattttaga	1800
agatgagttt	acaccatttg	atgttgttag	acaatgctct	ggtgttacct	tccaaggtaa	1860
gttcaagaaa	attgttaagg	gcactcatca	ttggatgctt	ttaactttct	tgacatcact	1920
attgattctt	gttcaaagta	cacagtggtc	actgtttttc	tttgtttacg	agaatgcttt	1980
cttgccattt	actcttggta	ttatggcaat	tgctgcatgt			2020

<211> 2040 <212> ADN <213> CORONAVIRUS

<400> 49

60 agcatttcca gcctgaagac gtactgtagc agctaaactg cccagcacca tacctctatt taggttgttt aagcctttga tgaagtacaa gtatttcact ttaggccctt ttggtgtgtc 120 180 tgtaacaaac ctacaaggtg gttccagttc tgtgtaaatt gtacctgtac catcactctt 240 agggaatcta gcccatttga gatcttggtg gtctgatagt aatgccagca caaacctacc tcccttcgaa ttgttatagt aggcaagtgc attgtcatca gtacaagctg tttgtgtggt 300 360 accagccgca caggacatct gtcgtagtgc tactggactc agttcattat tctgtagttt 420 aacagctqaq ttggctctta qaqctgtaac aataaqaqqc caagccaaat ttggtgaatt gtccatgtta atttcactaa gttgaacaat cttgctatcc gcatcaacaa cttgctggat 480 540 ttcccagagt gcagatgcat atgtaaaggt gttaccatca caagtgttct tgtaggtacc ataatcaggg acaacaacca tgagtttggc tgctgtagtc aatggtatga tgttgagtgg 600 aacacaacca tcacgcgcat tgttgataat gttgttaagt gcatcattat caagcttcct 660 aagcatagtg aagagcattg tttgcatagc actagttact tttgccctct tgtcctcaga 720 tcttgcctgt ttgtacattt gggtcatagc ctgatctgcc atcttttcca acttgcgttg 780 catggcagca tcacggtcaa actcagattt agccacattc aaagatttct ttaacttttt 840 gagaacgact tcagaatcac cattagctac agcctgctca taggcctcct gggcagtggc 900 960 ataagcggca tatgatggta aagaactaaa ttctgaagca atagcctgaa gagtagcacg gttatcgagc atttcctcgc acaacctatt aatgtctaca gcaccctgca tggatagcaa 1020 aacagacaaa agagaaacca tcttctcgaa agcttcagtt gtgtcttttg caagaagaat 1080 atcattgtgg agttgtacac attgtgccca caatttagaa gatgactcta ctctaagttg 1140 ttgaagaacc gagagcagta ccacagatgt gcactttacg tcagacattt tagactgtac 1200 agtagcaacc ttgatacatg gtttacctcc aatacccaac aacttaatgt taagcttgaa 1260 agcatcaata Ctactcttag gaggcaaaag cccctgggag ttcatatacc taaattcttg 1320 tgtagagacc aagtagtcat aaacaccaag agtaagcctg aagtaacggt tgagtaaaca 1380 gaaaaggcca aagtagcagc agcaacaata gcctaagaaa caataaacaa gcatgataca 1440 ctgtaaggtg ttgccagtaa taaataacaa tgggtaatac tcaacacaca caaacactat 1500 agctctagct aaaaacatga tagtcgtaac gacaccagaa tagttagagg ttacagaaat 1560 aactaaggcc cacatggaaa tagcttgatc taaagcatta ccatagtaga ctttgtaaac 1620 aagtgtaatg acattcatca gtgtccaaac acgtctagca gcatcatcat aaacagtgcg 1680 agctgtcatg agaataagca aaactaaagc tgaagcatac ataacaCaat ccttaagcct 1740

ataaccagac	aagctagtgt	cagccaattc	aagccatgtc	atgatacgca	tcacccagct	1800
agcaggcatg	tagaccatat	taaagtaagc	aactgttgca	agagaaggta	acagaaacaa	1860
gcacaagaat	gcgtgcttat	gcttaacaag	cagcatagca	catgcagcaa	ttgccataat	1920
accaagagta	aatggcaaga	aagcattctc	gtaaacaaag	aaaaacagtg	accactgtgt	1980
actttgaaca	agaatcaata	gtgatgtcaa	gaaagttaaa	agcatccaat	gatgagtgca	2040

<210> 50

<211> 2012 <212> ADN

<213> CORONAVIRUS

<400> 50

60 cttgtaggtt tgttacagac acaccaaaag ggcctaaagt gaaatacttg tacttcatca 120 aaggettaaa caacetaaat agaggtatgg tgetgggcag tttagetget acagtaegte 180 ttcaqqctqq aaatqctaca qaaqtacctq ccaattcaac tgtqctttcc ttctgtqctt ttgcagtaga ccctgctaaa gcatataagg attacctagc aagtggagga caaccaatca 240 ccaactgtgt gaagatgttg tgtacacaca ctggtacagg acaggcaatt actgtaacac 300 cagaagctaa catggaccaa gagtcctttg gtggtgcttc atgttgtctg tattgtagat 360 420 gccacattga ccatccaaat cctaaaggat tctgtgactt gaaaggtaag tacgtccaaa tacctaccac tigtgctaat gacccagtgg gitttacact tagaaacaca gictgtaccg 480 tctgcggaat gtggaaaggt tatggctgta gttgtgacca actccgcgaa cccttgatgc 540 agtctgcgga tgcatcaacg tttttaaacg ggtttgcggt gtaagtgcag cccgtcttac 600 660 accgtgcggc acaggcacta gtactgatgt cgtctacagg gcttttgata tttacaacga 720 aaaagttgct ggttttgcaa agttcctaaa aactaattgc tgtcgcttcc aggagaagga 780 tgaggaaggc aatttattag actcttactt tgtagttaag aggcatacta tgtctaacta ccaacatgaa gagactattt ataacttggt taaagattgt ccaqcggttg ctgtccatga 840 900 ctttttcaag tttagagtag atggtgacat ggtaccacat atatcacgtc agcgtctaac taaatacaca atggctgatt tagtctatgc tctacgtcat tttgatgagg gtaattgtga 960 tacattaaaa gaaatactcg tcacatacaa ttgctgtgat gatgattatt tcaataagaa 1020 ggattggtat gacttcgtag agaatcctga catcttacgc gtatatgcta acttaggtga 1080 gcqtgtacqc caatcattat taaagactgt acaattctqc gatqctatqc gtgatgcagg 1140 1200 cattgtaggc gtactgacat tagataatca ggatcttaat gggaactggt acgatttcgg tgatttcgta caagtagcac caggctgcgg agttcctatt gtggattcat attactcatt 1260 gctgatgccc atcctcactt tgactagggc attggctgct gagtcccata tggatgctga 1320 1380 tctcgcaaaa ccacttatta agtgggattt gctgaaatat gattttacgg aagagagact

ttgtctcttc	gaccgttatt	ttaaatattg	ggaccagaca	taccatccca	attgtattaa	144 O
ctgtttggat	gataggtgta	tccttcattg	tgcaaacttt	aatgtgttat	tttctactgt	1500
gtttccacct	acaagttttg	gaccactagt	aagaaaaata	tttgtagatg	gtgttccttt	1560
tgttgtttca	actggatacc	attttcgtga	gttaggagtc	gtacataatc	aggatgtaaa	162 O
cttacatagc	tcgcgtctca	gtttcaagga	acttttagtg	tatgctgctg	atccagctat	1680
gcatgcagct	tctggcaatt	tattgctaga	taaacgcact	acatgctttt	cagtagctgc	1740
actaacaaac	aatgttgctt	ttcaaactgt	caaacccggt	aattttaata	aagactttta	1800
tgactttgct	gtgtctaaag	gtttctttaa	ggaaggaagt	tctgttgaac	taaaacactt	1860
cttctttgct	caggatggca	acgctgctat	cagtgattat	gactattatc	gttataatct	1920
gccaacaatg	tgtgatatca	gacaactcct	attcgtagtt	gaagttgttg	ataaatactt	1980
tgattgttac	gatggtggct	gtattaatgc	ca			2012

<210> 51 <211> 1877 <212> ADN <213> CORONAVIRUS

<400> 51

gtacttcgcg tacagtggca ataccatatg acagcttaaa tgtttcctca gtggctttga 60 gcgtttctgc tgcgaaaagc ttgagtctct cagtacaagt gttggcaagt atgtaatcgc 120 cagcattagt ccaatcacat gttgctatcg cattgaagtc agtgacattg tcactgccta 180 cacatgtgtt tttgtataaa ccaaaaacct gaccattagc acataatgga aaactaatgg 240 gaggettatg tgacttgcaa taatagetea taceteetag atacagttgt gteacateag 300 tgacatcaca acctggggca ttgcaaacat agggattaac agacaacact aatttgtgtg 360 atgttgaaat gacatggtca tagcagcact tgcaacatag gaatggtctc ctaatacagg 420 caccgcaacg aagtgaagtc tgtgaattgc acaatacaca agcacctaca gcctgcaaga 480 ctgtatgtgg tgtgtacata gcctcataaa actcaggttc ccagtaccgt gaggtgttat 540 cattagttag cattacggaa tacatgtcca acatgtggcc agtaagctca tcatgtaact 600 ttctaatgta ttgtaaatac aagtgaaaga catcagcata ctcctgatta ggatgttttg 660 taagtgggta agcatcaata gccagtgaca cgaacctttc aatcataagt gtaccatctg 720 ttttgacaat atcatcgaca aaacagcctg cgcctaatat tcttgatgga tctgggtaag 780 gcaggtacac gtaatcatct ccttgtttaa ctagcattgt atgctgtgag caaaattcgt 840 gaggtccttt agtaaggtca gtctcagtcc aacattttgc ctcagacatg aacacattat 900 tttgataata aagaactgcc ttaaagttct taatgctagc tactaaacct tgagccgcat 960 agttactgtt atagcacaca acggcatcat cagaaagaat catcatggag aaatgtttac 1020

gcaggtaagc gtaaaactca tccacgaatt catgatcaac atccctattt ctatagagac	1080
actcatagag cctgtgttgt agattgcgga catacttgtc agctatctta ttaccatcag	1140
ttgaaagaag tgcatttaca ttggctgtaa cagcttgaca aatgttaaag acactattag	1200
cataagcagt tgtagcatca ccggatgatg ttccacctgg tttaacatat agtgagccgc	1260
cacacatgac catctcactt aatacttgcg cacactcgtt agctaacctg tagaaacggt	1320
gtgataagtt acagcaagtg ttatgtttgc gagcaagaac aagagaggcc attatcctaa	1380
gcatgttagg catggctctg tcacattttg gataatccca acccataagg tgtggagttt	1440
ctacatcact gtaaacagtt tttaacatat tatgccagcc accgtaaaac ttgcttgttc	1500
caattaccac agtagctcct ctagtggcgg ctattgactt caataatttc tgatgaaact	1560
gtctatttgt catagtacta cagatagaga caccagctac ggtgcgagct ctattctttg	1620
cactaatggc atacttaaga ttcatttgag ttatagtagg gatgacatta cgcttagtat	1680
acgcgaaaag tgcatcttga tcctcataac tcattgagtc ataataaagt ctagccttac	1740
cccatttatt aaatgggaaa ccagctgatt tatccagatt gttaacgatt acttggttgg	1800
cattaataca gccaccatcg taacaatcaa agtatttatc aacaacttca actacgaata	1860
ggagttgtct gatatca	1877

<210> 52

<211> 2051

<212> ADN

<213> CORONAVIRUS

<400> 52

60 tcaggtccaa tcttgacaaa gtacttcatt gatgtaagct caaagccatg cgcccaaagg acgaacacga ctctgtctga caatcctttc agtgtatcac tgagcatttg tactatctta 120 atacgcacta cattccaggg caagccttta tacatgagtg gtataagatg tttaaactgg 180 tcacctggtg gaggttttgc attaactctg gtgaattctg tgttattttc agtgtcaaca 240 taaccagtcg gtacagctac taagttaaca cctgtagaaa atcctagctg gagaggtagg 300 ttagtaccca cagcatctct agttgcatga cagccctcta catcaaagcc aatccacgca 360 420 cgaacgtgac gaatagcttc ttcgcgggtg ataaacatat tagggtaacc attgacttgg 480 taattCattt tgaaacccat catagagatg agtctacggt aggtcatgtc ctttggtatg cctggtatgt caacacataa tccttcagtc ttgaacttta tatcaacgct gaggtgtgta 540 600 ggtgcctgtg taggatgaag accagtaatg atcttactac agtccttaaa aagtccagtt acattttctg cttgtaatgt agccacattg cgacgtggta tttctagact tgtaaattgc 660 agtttgtcat aaagatctct atcagacatt atgcacaaaa tgccaatttt tgcccttgtg 720 780 atagccacat tgaagcggtt gacattacaa gagtgtgctg tttcagtagt ttgtgtgaat

atgacatagt	catattcaga	accctgtgat	gaatcaacag	tctgcgtagg	caatcctaag	840
atttttgaag	ctacagcgtt	ctgtgaatta	taaggtgaga	taaaaacagc	ttttctccaa	900
gcaggattgc	gtgtaagaaa	ttctcttaca	acgcctattt	gaggtctgtt	gattgcagat	960
gaaacatcat	gtgtaataac	acctttgtag	aacattttga	agcattgagc	tgacttatcc	1020
ttgtgtgctt	ttagcttatt	gtcataaact	aaagcactca	cagtgtcaac	aatttcagca	1080
ggacaacggc	gacaagttcc	aaggaacatg	tctggaccta	ttgttttcat	aagtctgcac	1140
actgaattaa	aatattctgg	ttctagtgtg	cctttagtca	gcaatgtgcg	gggggctggt	1200
aattgagcag	gatcgccaat	atagacgtag	tgttttgcac	gaagtctagc	attgacaaca	1260
ctcaagtcat	aattagtagc	catagagatt	tcatcaaaga	ctacaatgtc	agcagttgtt	1320
tctggcaatg	catttacagt	gcagaaaaca	tactgttcta	gtgttgaatt	cactttgaat	1380
ttatcaaaac	actctacgcg	cgcacgcgca	ggtatgattc	tactacattt	atctatgggc	1440
aaatatttta	atgccttttc	acatagggca	tcaacagctg	catgagagca	tgccgtatac	1500
actatgcgag	cagatgggta	atagagagca	agtccgatgg	caaaatgact	cttaccagta	1 560
ccaggtggtc	cttggagtgt	agagtacttt	tgcatgccga	ccttttgata	atttgcaaca	1620
ttgctagaaa	actcatctga	gatgttgagt	gttgggtaca	agccagtaat	tctcacatag	1680
tgctcttgtg	gcactagagt	aggtgcacta	agtggcatta	cagtgtgaga	tgtcaacaca	1740
aagtaatcac	caacattcaa	cttgtatgtc	gtagtacctc	tgtacacaac	agcatcacca	1800
tagtcacctt	tttcaaaggt	gtactctcca	atctgtactt	tactattttt	agttacacgg	1860
taac cagtaa	agacatagtt	tctgttcaat	ggtggtctag	gttttccaac	ctcccatgaa	1920
agatgcaatt	ctctgtcaga	gagtacttcg	cgtacagtgg	caataccata	tgacagctta	1980
aatgtttcct	cagtggcttt	gagcgtttct	gctgcgaaaa	gcttgagtct	ctcagtacaa	2040
gtgttggcaa	g					2051

<210> 53

<211> 2075

<212> ADN

<213> CORONAVIRUS

<400> 53

tgcttgtagt tttgggtaga aggtttcaac atgtccatcc ttacaccaaa gcatgaatga 60 aatttcagca tagtcaattg taaccttgac cacttttgaa atcactgaca aatcttgtga 120 ctttattatc tcgacaaagt catcaagtaa aagatcaatc acagaacaca cacattttga 180 tgaacctgtt tgcgcatctg ttatgaagta attttcact gtgctgtcca tagggataaa 240 atcctctaat ttaagtggtg aatcttgtga gcgcttggct aagcctatca ttaaatgaag 300 accgccaagt tgtccatgac tgaaatctcc ataaacgatg tgttcgaagg catagccctc 360

```
420
gagcttatat cgctgtatga attcatccat agcgagctcg agaaagtcag tttccatttg
tgatctgggc ttaaaatcct ctaagtctct gctctgagta aagtaggttt caggcaactg
                                                                      480
                                                                      540
ttgaataatg ccgtctactt tcttaaagta gttaaactgt gtttttactg attctccaat
                                                                      600
taatgtgact ccattgacgc tagcttgtgc tggtcccttt gaaggtgtta gacctttgac
tgaaccttct gttattaaaa caccattacg ggcgtttcta aaaaggtcta cctgtccttc
                                                                      660
                                                                      720
cactctacca tcaaacaaga cagtaagtga agaacaagca ctctcagtag gtttcttggc
                                                                      780
aatgtcagtc attgtgcaga cacctattgt agatacatgt gctggggctt ctcttttgta
                                                                      840
gtcccagatt acagtattag cagcgatatc aacacccaaa ttattgagta tcttaatctc
                                                                      900
tggcactggt ttaatgttac gcttagccca aagctcaaat gcaacattaa caggaagtgt
                                                                      960
tgtcttattt tcaaagatct ccacatcaat accatctacc tttgtgtaaa cagcattatt
                                                                     1020
aatgatggaa acaggtgctt cgccggcgtg tccatcaaag tgtcctttat taacaacatt
ataagccaca ttttctaaac tctgtaacct ggtaaatgta ttccacaggt tataagtatc
                                                                     1080
aaattgtttg taaatccata ggctaaatcc agcagaaatc atcatattat atgcatccaa
                                                                     1140
                                                                     1200
gtactgtcgg tactcatttg catggtgtct gcaaacagca ccacctaaat tgcatcgtgt
aatacacgta gcagatttga gtggaacata atcaatatcc gacactactt gtttgccatg
                                                                     1260
agactcacaa ggactatcag aatagtaaaa gaaaggcaat tgctttaaat tagtaaatgc
                                                                     1320
                                                                     1380
actittatcg aaaqciggag tgiggaatgc atgcttattc acatacaaac taccaccatc
acagcctggt aagttcaagt ttgacaagac tcttgtgtca aacctacaca caattgcatt
                                                                     1440
                                                                     1500
ggctgggtaa cgatcaacgt tacaattcca aaacaaacaa acaccatcag tgaatttatc
gtgatgtgta gcataagaat agaagagttc ctctattttg taagctttgt cactacatgg
                                                                     1560
ctgagcatcq tagaacticc attctactic agcctgaggc acacactiga tagcctitgg
                                                                     1620
atttccaatg tcatgaagaa ctggaaactt atcaqcaagc aatgcagact tcacaaccat
                                                                     1680
gtgttgtact tttctgcaag cagaattaac cctcagttca tctcctataa tagggtattc
                                                                     1740
aacagaccaa tcaacgcgct taacaaagca ctcatggact gctaaacatc tagtcatgat
                                                                     1800
agcatcacaa ctagccacat gtgcatttcc atgtacctgg caatgttggt catggttact
                                                                     1860
ctgaaggtta cccgtaaagc cccactgctg aacatcaatc ataaatgggt tatagacata
                                                                     1920
gtcaaaaccc acagaatgat tccagcaggc ataagtatct gatgaagtag aaaagcaagt
                                                                     1980
tgcacgtttg tcacacagac aacacgttct ttcaggtcca atcttgacaa agtacttcat
                                                                     2040
tgatgtaagc tcaaagccat gcgcccaaag gacga
                                                                     2075
```

<210> 54

<211> 1891

<212> ADN

<213> CORONAVIRUS

<400> 54

aagattcacc acttaaatta	gaggatttta	tccctatgga	cagcacagtg	aaaaattact	60
tcataacaga tgcgcaaaca	ggttcatcaa	aatgtgtgtg	ttctgtgatt	gatcttttac	120
ttgatgactt tgtcgagata	ataaagtcac	aagatttgtc	agtgatttca	aaagtggtca	180
aggttacaat tgactatgct	gaaatttcat	tcatgctttg	gtgtaaggat	ggacatgttg	240
aaaccttcta cccaaaacta	caagcaagtc	aagcgtggca	accaggtgtt	gcgatgccta	300
acttgtacaa gatgcaaaga	atgcttcttg	aaaagtgtga	ccttcagaat	tatggtgaaa	360
atgctgttat accaaaagga	ataatgatga	atgtcgcaaa	gtatactcaa	ctgtgtcaat	420
acttaaatac acttacttta	gctgtaccct	acaacatgag	agttattcac	tttggtgctg	480
gctctgataa aggagttgca	ccaggtacag	ctgtgctcag	acaatggttg	ccaactggca	540
cactacttgt cgattcagat	cttaatgact	tcgtctccga	cgcagattct	actttaattg	600
gagactgtgc aacagtacat	acggctaata	aatgggacct	tattattagc	gatatgtatg	660
accctaggac caaacatgtg	acaaaagaga	atgactctaa	agaagggttt	ttcacttatc	720
tgtgtggatt tataaagcaa	aaactagccc	tgggtggttc	tatagctgta	aagataacag	780
agcattcttg gaatgctgac	ctttacaagc	ttatgggcca	tttctcatgg	tggacagctt	840
ttgttacaaa tgtaaatgca	tcatcatcgg	aagcattttt	aattggggct	aactatcttg	900
gcaagccgaa ggaacaaatt	gatggctata	ccatgcatgc	taactacatt	ttctggagga	960
acacaaatcc tatccagttg	tcttcctatt	cactctttga	catgagcaaa	tttcctctta	1020
aattaagagg aactgctgta	atgtctctta	aggagaatca	aatcaatgat	atgatttatt	1080
ctcttctgga aaaaggtagg	cttatcatta	gagaaaacaa	cagagttgtg	gtttcaagtg	1140
atattcttgt taacaactaa	acgaacatgt	ttattttctt	attatttctt	actctcacta	1200
gtggtagtga ccttgaccgg	tgcaccactt	ttgatgatgt	tcaagctcct	aattacactc	1260
aacatacttc atctatgagg	ggggtttact	atcctgatga	aatttttaga	tcagacactc	1320
tttatttaac tcaggattta	tttcttccat	tttattctaa	tgttacaggg	tttcatacta	1380
ttaatcatac gtttggcaac	cctgtcatac	cttttaagga	tggtatttat	tttgctgcca	1440
cagagaaatc aaatgttgtc	cgtggttggg	tttttggttc	taccatgaac	aacaagtcac	1500
agtcggtgat tattattaac	aattctacta	atgttgttat	acgagcatgt	aactttgaat	1560
tgtgtgacaa ccctttcttt	gctgtttcta	aacccatggg	tacacagaca	catactatga	1620
tattcgataa tgcatttaat	tgcactttcg	agtacatatc	tgatgccttt	tcgcttgatg	1680
tttcagaaaa gtcaggtaat	tttaaacact	tacgagagtt	tgtgtttaaa	aataaagatg	1740
ggtttctcta tgtttataag	ggctatcaac	ctatagatgt	agttcgtgat	ctaccttctg	1800
gttttaacac tttgaaacct	atttttaagt	tgcctcttgg	tattaacatt	acaaatttta	1860
gagccattct tacagccttt	tcacctgctc	a			1891

<210> 55 <211> 32 <212> ADN

<213> SECUENCIA ARTIFICIAL	
<220> <223> cebador N sentido	
<400> 55 cccatatgtc tgataatgga ccccaatcaa ac	32
<210> 56 <211> 32 <212> ADN <213> secuencia artificial	
<220> <223> cebador N antisentido	
<400> 56 cccccgggtg cctgagttga atcagcagaa gc	32
<210> 57 <211> 31 <212> ADN <213> secuencia artificial	
<220> <223> cebador Sc sentido	
<400> 57 cccatatgag tgaccttgac cggtgcacca c	31
<210> 58 <211> 30 <212> ADN <213> secuencia artificial	
<220> <223> cebador SL sentido	
<400> 58 cccatatgaa accttgcacc ccacctgctc	30
<210> 59 <211> 33 <212> ADN <213> cebador Sc et SL antisentido	
<400> 59 cccccgggtt taatatattg ctcatatttt ccc	33
<210> 60 <211> 16 <212> ADN <213> cebador sentido serie 1	
<400> 60 ggcatcgtat gggttg	16
<210> 61 <211> 16 <212> ADN <213> cebador antisentido serie 2 (28774-28759)	
<400>61 cagtttcacc acctcc	16
<210> 62	

<211> 16 <212> ADN <213> cebador sentido serie 2 (28375-28390)	
<400> 62 ggctactacc gaagag	16
<210> 63 <211> 16 <212> ADN <213> cebador antisentido serie 2 (28702-28687)	
<400> 63 aattaccgcg actacg	16
<210> 64 <211> 26 <212> ADN <213> sonda 1/serie 1 (28561-28586)	
<400> 64 ggcacccgca atcctaataa caatgc	26
<210> 65 <211> 21 <212> ADN <213> sonda 2/serie 1 (28588-28608)	
<400> 65 gccaccgtgc tacaacttcc t	21
<210> 66 <211> 23 <212> ADN <213> sonda 1/serie 2 /sonda N/FL (28541-28563)	
<400> 66 atacacccaa agaccacatt ggc	23
<210> 67 <211> 25 <212> ADN <213> sonda 2/serie 2/sonda SRAS/N/LC705 (28565-	28589)
<400> 67 cccgcaatcc taataacaat gctgc	25
<210> 68 <211> 30 <212> ADN <213> secuencia artificial	
<220> <223> cebador anclaje 14T	
<400> 68 agatgaattc ggtacctttt tttttttttt	30
<210> 69 <211> 13 <212> PRT <213> secuencia artificial	
<220> <223> péntido M2-14	

```
<400> 69
               Ala Asp Asn Gly Thr Ile Thr Val Glu Glu Leu Lys Gln
1 10
<210> 70
<211> 12
<212> PRT
<213> secuencia artificial
<220>
<223> péptido E1-12
<400> 70
                 Met Tyr Ser Phe Val Ser Glu Glu Thr Gly Thr Leu 1 \hspace{1cm} 5 \hspace{1cm} 10
<210> 71
<211> 24
<212> PRT
<213> secuencia artificial
<220>
<223> péptido E53-72
<400> 71
        Lys Pro Thr Val Tyr Val Tyr Ser Arg Val Lys Asn Leu Asn Ser Ser
           1
                              5
                                                      10
                                                                              15
           Glu Gly Val Pro Asp Leu Leu Val
<210> 72
<211> 153
<212> ADN
<213> CORONAVIRUS
<400> 72
  gatattaggt ttttacctac ccaggaaaag ccaaccaacc tcgatctctt gtagatctgt
                                                                                      60
                                                                                     120
  tctctaaacg aactttaaaa tctgtgtagc tgtcgctcgg ctgcatgcct agtgcaccta
                                                                                     153
  cgcagtataa acaataataa attttactgt cgt
<210> 73
<211> 410
<212> ADN
<213> CORONAVIRUS
<400> 73
```

60	tcaggcataa	ctgattcaac	ggagcttctg	ttccatgagt	aacttcaaaa	ttctccagac
120	attccgttta	cgttttcgca	gctatgtaaa	aggcagatgg	tgaccacaca	acactcatga
180	caagtaggtt	ctaaacagca	attctcgtaa	tgcagaatga	tctactcttg	cgatacatag
240	ggaggacttg	gtaacattag	taatcaatgt	tagcaatctt	taatctcaca	tagttaactt
300	cagtgaataa	atcgagggta	gcggagtacg	tcgaggccac	cacattttca	aaagagccac
360	ttagtagtgc	aaaattaatt	cctaatgtgt	atggaagagc	agctgcctat	tgctagggag
410		aaaaaaaaaa	gagaatgaca	agcttcttag	taattttaat	tatccccata

<210> 74

<211> 4382

<212> PRT

<213> CORONAVIRUS

<400> 74

Met Glu Ser Leu Val Leu Gly Val Asn Glu Lys Thr His Val Gln Leu 1 5 10 15

Ser Leu Pro Val Leu Gln Val Arg Asp Val Leu Val Arg Gly Phe Gly

20 25 30

Asp Ser Val Glu Glu Ala Leu Ser Glu Ala Arg Glu His Leu Lys Asn 35 40 45 Gly Thr Cys Gly Leu Val Glu Leu Glu Lys Gly Val Leu Pro Gln Leu 50 60 Glu Gln Pro Tyr Val Phe Ile Lys Arg Ser Asp Ala Leu Ser Thr Asn 65 70 75 80 His Gly His Lys Val Val Glu Leu Val Ala Glu Met Asp Gly Ile Gln
85 90 95 Tyr Gly Arg Ser Gly Ile Thr Leu Gly Val Leu Val Pro His Val Gly 100 105 110Glu Thr Pro Ile Ala Tyr Arg Asn Val Leu Leu Arg Lys Asn Gly Asn 115 120 Lys Gly Ala Gly Gly His Ser Tyr Gly Ile Asp Leu Lys Ser Tyr Asp 130 135 140 Leu Gly Asp Glu Leu Gly Thr Asp Pro Ile Glu Asp Tyr Glu Gln Asn 145 150 155 160 Trp Asn Thr Lys His Gly Ser Gly Ala Leu Arg Glu Leu Thr Arg Glu 165 170 175 Leu Asn Gly Gly Ala Val Thr Arg Tyr Val Asp Asn Asn Phe Cys Gly 180 185 190 Pro Asp Gly Tyr Pro Leu Asp Cys Ile Lys Asp Phe Leu Ala Arg Ala 195 200 205 Gly Lys Ser Met Cys Thr Leu Ser Glu Gln Leu Asp Tyr Ile Glu Ser 210 220 Lys Arg Gly Val Tyr Cys Cys Arg Asp His Glu His Glu Ile Ala Trp 225 230 235 Phe Thr Glu Arg Ser Asp Lys Ser Tyr Glu His Gln Thr Pro Phe Glu 245 250 255 Ile Lys Ser Ala Lys Lys Phe Asp Thr Phe Lys Gly Glu Cys Pro Lys 260 265 270 Phe Val Phe Pro Leu Asn Ser Lys Val Lys Val Ile Gln Pro Arg Val 275 280 285 Glu Lys Lys Lys Thr Glu Gly Phe Met Gly Arg Ile Arg Ser Val Tyr

290 295 300 Pro Val Ala Ser Pro Gln Glu Cys Asn Asn Met His Leu Ser Thr Leu 305 310 315 320 Met Lys Cys Asn His Cys Asp Glu Val Ser Trp Gln Thr Cys Asp Phe 325 330 335 Leu Lys Ala Thr Cys Glu His Cys Gly Thr Glu Asn Leu Val Ile Glu 340 345 350 Gly Pro Thr Thr Cys Gly Tyr Leu Pro Thr Asn Ala Val Val Lys Met 355 360 365 Pro Cys Pro Ala Cys Gln Asp Pro Glu Ile Gly Pro Glu His Ser Val 370 375 380 Ala Asp Tyr His Asn His Ser Asn Ile Glu Thr Arg Leu Arg Lys Gly 385 390 395 Gly Arg Thr Arg Cys Phe Gly Gly Cys Val Phe Ala Tyr Val Gly Cys
405 410 415 Tyr Asn Lys Arg Ala Tyr Trp Val Pro Arg Ala Ser Ala Asp Ile Gly 420 425 430 Ser Gly His Thr Gly Ile Thr Gly Asp Asn Val Glu Thr Leu Asn Glu 435 440 445 Asp Leu Glu Ile Leu Ser Arg Glu Arg Val Asn Ile Asn Ile Val 450 455 Gly Asp Phe His Leu Asn Glu Glu Val Ala Ile Ile Leu Ala Ser Phe 465 470 480 Ser Ala Ser Thr Ser Ala Phe Ile Asp Thr Ile Lys Ser Leu Asp Tyr 485 490 495 Lys Ser Phe Lys Thr Ile Val Glu Ser Cys Gly Asn Tyr Lys Val Thr 500 505 Lys Gly Lys Pro Val Lys Gly Ala Trp Asn Ile Gly Gln Gln Arg Ser 515 525 Val Leu Thr Pro Leu Cys Gly Phe Pro Ser Gln Ala Ala Gly Val Ile 530 540 Arg Ser Ile Phe Ala Arg Thr Leu Asp Ala Ala Asn His Ser Ile Pro 545 550 555 560 Asp Leu Gln Arg Ala Ala Val Thr Ile Leu Asp Gly Ile Ser Glu Gln

565 570 575

Ser Leu Arg Leu Val Asp Ala Met Val Tyr Thr Ser Asp Leu Leu Thr 580 585 590 Asn Ser Val Ile Ile Met Ala Tyr Val Thr Gly Gly Leu Val Gln Gln 595 605 Thr Ser Gln Trp Leu Ser Asn Leu Leu Gly Thr Thr Val Glu Lys Leu 610 620 Arg Pro Ile Phe Glu Trp Ile Glu Ala Lys Leu Ser Ala Gly Val Glu 625 635 640 Phe Leu Lys Asp Ala Trp Glu Ile Leu Lys Phe Leu Ile Thr Gly Val 645 650 655 Phe Asp Ile Val Lys Gly Gln Ile Gln Val Ala Ser Asp Asn Ile Lys
660 665 670 Asp Cys Val Lys Cys Phe Ile Asp Val Val Asn Lys Ala Leu Glu Met 675 680 685 Ile Asp Gln Val Thr Ile Ala Gly Ala Lys Leu Arg Ser Leu Asn 690 700 Leu Gly Glu Val Phe Ile Ala Gln Ser Lys Gly Leu Tyr Arg Gln Cys 705 710 715 720 Ile Arg Gly Lys Glu Gln Leu Gln Leu Leu Met Pro Leu Lys Ala Pro 725 730 735 Lys Glu Val Thr Phe Leu Glu Gly Asp Ser His Asp Thr Val Leu Thr 740 745 750 Ser Glu Glu Val Val Leu Lys Asn Gly Glu Leu Glu Ala Leu Glu Thr 755 760 765 Pro Val Asp Ser Phe Thr Asn Gly Ala Ile Val Gly Thr Pro Val Cys 770 780 Val Asn Gly Leu Met Leu Leu Glu Ile Lys Asp Lys Glu Gln Tyr Cys 785 790 795 800 Ala Leu Ser Pro Gly Leu Leu Ala Thr Asn Asn Val Phe Arg Leu Lys 805 810 Gly Gly Ala Pro Ile Lys Gly Val Thr Phe Gly Glu Asp Thr Val Trp 820 825 830 Glu Val Gln Gly Tyr Lys Asn Val Arg Ile Thr Phe Glu Leu Asp Glu

		835					840					845			
Arg	Va1 850	Asp	Lys	val	Leu	Asn 855	Glu	Lys	Cys	Ser	va1 860	туr	Thr	Val	Glu
Ser 865	Gly	Thr	Glu	Val	Thr 870	Glu	Phe	Ala	Cys	Val 875	٧a٦	ΑΊа	G]u	Ala	Val 880
Val	Lys	Thr	Leu	G]n 885	Pro	Val	Ser	Asp	Leu 890	Leu	Thr	Asn	Met	Gly 895	Ile
Asp	Leu	Asp	G]u 900	Тгр	Ser	٧al	Ala	Thr 905	Phe	Tyr	Leu	Phe	Asp 910	Asp	Ala
Gly	Glu	Glu 915	Asn	Phe	Ser	ser	Arg 920	Met	Tyr	Cys	Ser	Phe 925		Pro	Pro
Asp	G]u 930	Glu	Glu	Glu	Asp	Asp 935	Ala	Glu	Cys	Glu	Glu 940	Glu	Glu	Ile	Asp
Glu 945	Thr	Cys	Glu	His	6] u 950	⊤yr	Gly	Thr	Glu	Asp 955	Asp	Tyr	·Gln	Gly	Leu 960
Pro	Leu	Glu	Phe	Gly 965	Ala	Ser	ΑTa	Glu	Thr 970	val	Arg	۷a٦	Glu	Glu 975	Glu
Glu	Glu	Glu	Asp 980	Trp	Leu	Asp	Asp	Thr 985	Thr	Glu	Gln	Ser	Glu 990	Ile	Glu
Pro	Glu	Pro 995	Glu	Pro	Thr	Pro	Glu 1000		u Pro	o Va	l As		n P)05	he T	hr Gl
туг	Leu 101(s Lei	ı Thi	ası	10:	n Va 15	al A	la I	le L		ys 020	Va1	Asp :	Ile
Val	Lys 1025	Glu	ı Ala	a Glr	ı Sei	10		sn P	ro Mu	et V	al I 1	le 035	val	Asn ,	Ala
Ala	Asn 1040		e His	s Lei	ı Ly:	5 Hi: 104		ly G	ly G	ly V		1a 050	Gly	Ala	Leu
Asn	Lys 105	Ala 5	a Thi	a Asr	ı Gly	/ Ala 10		et G	ln Ly	ys G		er 065	Asp	Asp '	Tyr
Ile	Lys 107(ı Ası	ı Gly	/ Pro	10	и Tl 75	hr V	al G	ly G		er 080	Cys	Leu	Leu
Ser	GТу 108!	Hi:	12A 2	ı Lei	ı Ala	a Ly: 10:	s L: 90	ys C	ys L	eu H		al 095	۷al	Gly	Pro

Asn Leu Asn Ala Gly Glu Asp Ile Gln Leu Leu Lys Ala Ala Tyr

	1100					1105					1110			
Glu	Asn 1115	Phe	Asn	Ser	Gln	Asp 11 20	Ile	Leu	Leu	Ala	Pro 1125	Leu	Leu	Ser
Ala	Gly 1130	Ile	Phe	Gly	Ala	Lys 11 35	Pro	Leu	Gln	Ser	Leu 1 140	G]n	Val	Cys
Va]	Gln 1145	Thr	Val	Arg	Thr	Gln 1150	Val	Tyr	Ile	Аlа	Val 1155	Asn	Asp	Lys
Ala	Leu 1160	Tyr	Glu	Gln	Val	val 1165	Met	Asp	туг	Leu	Asp 1170	Asn	Leu	Lys
Pro	Arg 1 1 75	٧a٦	Glu	Ala	Pro	Lys 1180	GΊn	Glu	Glu	Pro	Pro 1185	Asn	Thr	Glu
Asp	Ser 1190	Lys	Thr	Glu	Glu	Lys 1195	Ser	٧a٦	val	Gln	Lys 1200	Pro	val	Asp
٧a٦	Lys 1205	Pro	Lys	Ile	Lys	Ala 1210	Cys	Ile	Asp	Glu	Val 1215	Thr	Thr	Thr
Leu	Gไน 1220	Glu	⊤hr	Lys	Phe	Leu 1225	Thr	Asn	Lys	Leu	Leu 1230	Leu	Phe	Αla
Asp	Ile 1235	Asn	G∃y	Lys	Leu	Tyr 1240	His	Asp	ser	Gln	Asn 1245	мet	Leu	Arg
Gly	Glu 1250		Met	ser	Phe	Leu 1255	Glu	Lys	Asp	۸la	Pro 1260	туr	Met	val
Gly	Asp 1265	۷al	Ile	Thr	Ser	Gly 1270	Asp	Ile	Thr	Cys	Val 1275	Val	Ile	Pro
Ser	Lys 1280	Lys	Ala	Gly	Gly	Thr 1285	Thr	Glu	Met	Leu	Ser 1290	Arg	Ala	Leu
Lys	Lys 1295	۷al	Pro	va1	Asp	Glu 1300	Tyr	Ile	Thr	Thr	Tyr 1305	Pro	Gly	Gln
Gly	Cys 1310	Ala	GТу	Tyr	Thr	Leu 1315	Glu	Glu	Ala	Lys	Thr 1320	Ala	Leu	Lys
Lys	Cys 1325	Lys	ser	Ala	Phe	Tyr 1330	Val	Leu	Pro	Ser	G]u 1335	Ala	Pro	Asn
Ala	Lys 1340	Glu	Glu	Ile	Leu	Gly 1345	Thr	۷a٦	Ser	Trp	Asn 1350	Leu	Arg	Glu
Met	Leu	Ala	His	Ala	Glu	Glu	Thr	Arg	Lys	Leu	Met	Pro	Ile	Cys

	1355					13 60					1365			
Met	Asp 1370	va1	Arg	Ala	Ile	Met 1375	Ala	Thr	IJe	Gln	Arg 1380	Lys	Tyr	Lys
Glу	Ile 1385	Lys	Ile	G∫n	Glu	Gly 1390	Ile	val	Asp	Tyr	Gly 1395	Val	Arg	Phe
Phe	Phe 1400	Tyr	Thr	Ser	Lys	Glu 1405	Pro	val	Ala	Ser	Ile 1410	Ile	Thr	Lys
Leu	Asn 1415	Ser	Leu	Asn	Glu	Pro 1420	Leu	Val	Thr	Met	Pro 1425	Ile	Gly	Tyr
Val	Thr 1430	His	Glу	Phe	Asn	Leu 1435	Glu	Glu	Ala	Ala	Arg 1440	Cys	Met	Arg
Ser	Leu 1445	Lys	Ala	Pro	Ala	Val 1450	Val	Ser	val	Ser	Ser 1455	Pro	Asp	Ala
Val	Thr 1460	Thr	Tyr	Asn	Gly	Tyr 1465	Leu	Thr	Ser	Ser	Ser 1470	Lys	Thr	Ser
Glu	Glu 1475	His	Phe	val	Glu	⊤hr 1480	val	Ser	Leu	Аlа	Gly 1485	Ser	туr	Arg
Asp	Trp 1 490	Ser	туг	S er	GТу	Gln 1495	Arg	Thr	Glu	Leu	Gly 1500	val	Glu	Phe
Leu	Lys 1505	Arg	Gly	Asp	Lys	Ile 1510	va1	Tyr	His	Thr	Leu 1515	Glu	Ser	Pro
٧a٦	Glu 1520	Phe	ніѕ	Leu	Asp	Gly 1525	Glu	٧a٦	Leu	Ser	Leu 1530	Asp	Lys	Leu
Lys	ser 1535	Leu	Leu	ser	Leu	Arg 1540	Glu	va1	Lys	Thr	17e 1 545	Lys	val	Phe
Thr	Thr 1550	val	Asp	Asn	Thr	Asn 1555	Leu	His	Thr	G∖n	Leu 1560		Asp	Met
Ser	Met 1565	Thr	Tyr	GÌу	Gln	G]n 1570	Phe	Gly	Pro	Thr	Tyr 1575	Leu	Asp	Glу
Ala	Asp 1580	Val	Thr	Lys	Ile	Lys 1585	Pro	His	∨al	Asn	ніs 1590		Gly	Lys
Thr	Phe 1595	Phe	۷a٦	Leu	Pro	Ser 1600	Asp	Asp	Thr	Leu	Arg 1605	Ser	Glu	Ala
Dho	clu	TVP	Tyr	⊔ic	Thr	Leu	Acn	يران	Can	Dhe	וזם ו	داء	۸ra	T\/ 2

	1610					1615					1620			
Met	Ser 1625	Ala	Leu	Asn	His	Thr 1630		Lys	Trp	Lys	Phe 1635	Pro	Gln	۷al
Glу	Gly 1640	Leu	Thr	Ser	IJе	Lys 1645	Trp	Αla	Asp	Asn	Asn 1650	Cys	Tyr	Leu
Ser	Ser 1 6 55	Val	Leu	Leu	ΑΊа	∟eu 1660		Gln	Leu	Glu	Val 1665	Lys	Phe	Asn
ΑΊа	Pro 1670	Ala	Leu	Gln	Glu	Ala 1675	Tyr	туг	Arg	Ala	Arg 1680	Ala	GТу	Asp
Аla	Ala 1685	Asn	Phe	Суѕ	Ala	Leu 1690	Ile	Leu	Ala	Tyr	Ser 1695	Asn	Lys	Thr
∨al	Gly 1700	Glu	Leu	Gly	Asp	∨a1 1705	Arg	Glu	Thr	Met	Thr 1710	His	Leu	Leu
G∏n	ніs 171 5	Ala	Asn	Leu	Glu	Ser 1720	Ala	Lys	Arg	Val	Leu 1725	Asn	۷al	۷al
Cys	Lys 1730	His	Cys	Gly	Gln	Lys 1735	Thr	Thr	Thr	Leu	Thr 1740	Gly	Val	Glu
Ala	val 1745	Met	Туг	Met	Gly	Thr 1750	Leu	Ser	Туг	Asp	Asn 1755	Leu	Lys	Thr
Gly	Val 1760	Ser	Ile	Pro	Cys	va 1 1765	Cys	Gly	Arg	Asp	Ala 1770	Thr	Gln	Tyr
Leu	Val 1775	Gln	Gln	Glu	Ser	Ser 1780	Phe	val	Met	Met	Ser 1785	Ala	Pro	Pro
Αla	Glu 1790	Туг	Lys	Leu	Gln	Gln 1795	Gly	Thr	Phe	Leu	Cys 1800	Аlа	Asn	Glu
Tyr	Thr 1805	Gly	Asn	Tyr	Gln	Cys 1810	Gly	His	туг	Thr	ніs 1815	Ile	Thr	Аlа
Lys	Glu 1820	Thr	Leu	Tyr	Arg	Ile 1825		Gly	Αla	His	Leu 1830	Thr	Lys	Met
Ser	Glu 1835	Tyr	Lys	Gly	Pro	val 1840		Asp	val	Phe	Туг 1845	Lys	Glu	Thr
Ser	Туг 1850	Thr	Thr	Thr	Ile	Lys 1855	Pro	۷a٦	Ser	Tyr	Lys 1860	Leu	Asp	GΊy
∨al	Thr	Tyr	Thr	Glu	Ile	Glu	Pro	LVS	Leu	Asp	Gly	Tyr	Tyr	Lys

	1865					1870					1875			
Lys	Asp 1880	Asn	Ala	Tyr	Tyr	Thr 1885	Glu	Gln	Pro	Ile	Asp 1890	Leu	val	Pro
Thr	G]n 1895	Pro	Leu	Pro	Asn	Ala 1900	Ser	Phe	Asp	Asn	Phe 1905	Lys	Leu	Thr
Cys	Ser 1910	Asn	Thr	Lys	Phe	Ala 1915	Asp	Asp	Leu	Asn	Gln 1920	Met	Thr	Gly
Phe	Thr 1925	Lys	Pro	Ala	Ser	Arg 1930	Glu	Leu	Ser	٧a٦	Thr 1935	Phe	Phe	Pro
Asp	Leu 194 0	Asn	Gly	Asp	٧al	Val 1945	Ala	Ile	Asp	Tyr	Arg 1 950	His	Tyr	Ser
Ala	Ser 1955	Phe	Lys	Lys	Glу	Ala 1960	Lys	Leu	Leu	His	Lys 1 965	Pro	Ile	val
Тгр	ніs 1970	Ile	Asn	Gln	ΑΊa	Thr 1975	Thr	Lys	Thr	Thr	Phe 1980	Lys	Pro	Asn
Thr	Trp 1985	Cys	Leu	Arg	Cys	Leu 19 90	тгр	ser	Thr	Lys	Pro 1995	val	Asp	Thr
ser	Asn 2000	Ser	Phe	Glu	∨al	Leu 2005	Ala	val	Glu	Asp	Thr 2010	G∏n	Glу	Met
Asp	Asn 2015	Leu	Ala	Cys	Glu	ser 2020	Gln	Gln	Pro	Thr	ser 2025	Glu	Glu	۷a٦
val	G1u 2030	Asn	Pro	Thr	Ile	G1n 2035	Lys	Glu	Val	Ile	G1u 2040	Cys	Asp	۷a٦
Lys	Thr 2045	Thr	Glu	val	val	Gly 2050	Asn	٧a٦	Ile	Leu	Lys 2055	Pro	Ser	Asp
Glu	Gly 2060		Lys	∨al	Thr	G]n 2065	Glu	Leu	Gly	His	Glu 2070	Asp	Leu	Met
Ala	Ala 2075	Tyr	Va1	Glu	Asn	Thr 2080		Ile	Thr	Ile	Lys 2085	Lys	Pro	Asn
Glu	Leu 2090	Ser	Leu	Ala	Leu	Gly 2095	Leu	Lys	Thr	Ile	Ala 2100	Thr	нis	Gly
Ile	Ala 2105	Ala	Ile	Asn	ser	Val 2110	Pro	Trp	Ser	Lys	Ile 2115	Leu	Ala	Tyr
Val	Lys	Pro	Phe	Leu	σĭν	Gln	Ala	Ala	Ile	Thr	Thr	Ser	Asn	Cy5

		2120					2125					2130			
ΑÌ	la	Lys 2135	Arg	Leu	Ala	Gln	Arg 2140	Val	Phe	Asn	Asn	туг 2145	Met	Pro	Tyr
Vā	Ιſ	Phe 2150	Thr	Leu	Leu	Phe	Gln 2155	Leu	Cys	Thr	Phe	Thr 2160	Ly5	Ser	Thr
As	sn	Ser 2165	Arg	Ile	Arg	Ala	ser 2170	Leu	Pro	Thr	Thr	Ile 2175	Ala	Lys	Asn
Se	er	Val 2180	Lys	Ser	٧a٦	Ala	Lys 2185	Leu	Cys	Leu	Asp	Ala 2190	Gly	Ile	Asn
Ту	/r	val 2195	Lys	Ser	Pro	Lys	Phe 2200	Ser	Lys	Leu	Phe	Thr 2205	Ile	Ala	Met
TI	rp	Leu 2210	Leu	Leu	Leu	Ser	Ile 2215	Cys	Leu	Glу	ser	Leu 2220	Ile	Cys	val
Ti	nr	Ala 2225	Ala	Phe	σΊу	٧a٦	Leu 2230	Leu	Ser	Asn	Phe	Gly 2235	Аlа	Pro	ser
Ty	yr	Cys 224 0	Asn	Gly	val	Arg	Glu 2245	Leu	Tyr	Leu	Asn	Ser 2250	Ser	Asn	۷a٦
T	hr	Thr 2255	Met	Asp	Phe	Cy5	G]u 2260	Gly	Ser	Phe	Pro	Cys 2265	Ser	Ile	Cys
L	eu	Ser 2270	Gly	Leu	Asp	Ser	Leu 2275	Asp	Ser	Tyr	Pro	Ala 2280	Leu	Glu	Thr
I.	le	Gln 2285	Val	Thr	Ile	Ser	ser 2290		Lys	Leu	Asp	Leu 2295	Thr	Ile	Leu
G	۱y	Leu 2300	Ala	Аlа	Glu	Trp	Val 2305	Leu	Ala	туг	Met	Leu 2310	Phe	Thr	Ly5
Ρĺ	he	Phe 2315	Tyr	Leu	Leu	Gly	Leu 2320	Ser	Ala	Ile	Met	G]n 2325	٧a٦	Phe	Phe
G	Ìу	туг 2330	Phe	ΑΊа	Ser	ніѕ	Phe 2335	Ile	Ser	Asn	Ser	Trp 2340		Met	Trp
P	he	Ile 2345	Ile	ser	Ile	٧a٦	Gln 2350	Met	Аlа	Pro	۷al	ser 2355	Ala	Met	۷al
A	rg	Met 2360		Ile	Phe	Phe	Ala 2365		Phe	туr	Tyr	Ile 2370		Lys	Ser
T;	yr	val	His	īle	Met	Asp	Gly	Cys	Thr	Ser	ser	Thr	Cys	Met	Met

2375					2380					2385			
Cys Tyr 2390	Lys	Arg	Asn	Arg	Ala 2395	Thr	Arg	Val	Glu	Cys 2400	Thr	Thr	IJe
Val Asn 2405	Gly	Met	Lys	Arg	Ser 2410	Phe	Tyr	val	Tyr	Ala 2415	Asn	Gly	Glу
Arg Gly 2420	Phe	Cys	Lys	Thr	нis 2425	Asn	Trp	Asn	Cys	Leu 2430	Asn	Cys	Asp
Thr Phe 2435	Cys	Thr	GТу	Ser	Thr 2440	Phe	Ile	Ser	Asp	Glu 2445	val	Αla	Arg
Asp Leu 2450	Ser	Leu	Gln	Phe	Lys 2455	Arg	Pro	IJе	Asn	Pro 2460	Thr	Asp	Gln
Ser Ser 2465	Tyr	Ile	val	Asp	Ser 2470	Val	Ala	val	Lys	Asn 2475	G1y	Ala	Leu
His Leu 2480	Tyr	Phe	Asp	Lys	Ala 2485	Gly	Gln	Lys	Thr	туг 2490	Glu	Arg	ніѕ
Pro Leu 2495	Ser	His	Phe	Val	Asn 2500	Leu	Asp	Asn	Leu	Arg 2505	Ala	Asn	Asn
Thr Lys 2510	GЈу	Ser	Leu	Pro	Ile 2515	Asn	٧a٦	Ile	۷al	Phe 2520	Asp	Glу	Lys
Ser Lys 2525	Cys	Asp	Glu	Ser	Ala 2530	Ser	Lys	Ser	Ala	Ser 2535	۷al	Tyr	туг
Ser Gln 2540	Leu	Met	Cys	GÌn	Pro 2545	Ile	Leu	Leu	Leu	Asp 2550	Gln	Ala	Leu
Val Ser 2555	Asp	٧al	Gly	Asp	Ser 2560	Thr	Glu	va1	Ser	va1 2565	Lys	Met	Phe
Asp Ala 2570	Tyr	val	Asp	⊤hr	Phe 2575	Ser	Ala	Thr	Phe	ser 2580	val	Pro	Met
Glu Lys 2585	Leu	Lys	Ala	Leu	val 2590	Ala	Thr	Ala	His	ser 2595	Glu	Leu	Ala
Lys Gly 2600	Val	Ala	Leu	Asp	Gly 2605	Val	Leu	Ser	Thr	Phe 2610	٧a٦	Ser	Ala
Ala Arg 2615	G]n	GТу	٧a٦	٧a٦	Asp 2620		Asp	val	Asp	Thr 2625	Lys	Asp	val
Ile Glu	Cy5	Leu	Lys	Leu	Ser	His	His	Ser	Asp	Leu	Glu	val	Thr

	2630					2635					2640			
Gly	Asp 2645	ser	Cys	Asn	Asn	Phe 2650	Met	Leu	Thr	Tyr	Asn 2655	Lys	۷al	Glu
Asn	Met 2660	Thr	Pro	Arg	Asp	Leu 2665	Glу	Ala	Cys	Ile	Asp 2670	Cys	Asn	Ala
Arg	ніs 2675	IJе	Asn	Αla	Gln	val 2680	Ala	Lys	Ser	His	Asn 2685	∨al	Ser	Leu
Ile	Trp 2690	Asn	٧a٦	Lys	Asp	Tyr 2695	Met	ser	Leu	ser	G]u 2700	Gln	Leu	Arg
Lys	G1n 2 7 05	Ile	Arg	Ser	Ala	Ala 2710	Lys	Lys	Asn	Asn	Ile 2715	Pro	Phe	Arg
Leu	Thr 2720	Cys	Ala	Thr	Thr	Arg 2725	Gln	٧al	۷al	Asn	Val 2730	Ile	Thr	Thr
Lys	Ile 2735	Ser	Leu	Lys	Gly	Glу 2740	Lys	Ile	Val	Ser	Thr 2745	Cys	Phe	Lys
Leu	Met 2750	Leu	Lys	ΑΊа	Thr	Leu 2755	Leu	Cys	val	Leu	Ala 2760	Аla	Leu	۷al
Cys	T yr 2765	Ile	٧a٦	Met	Pro	Val 2770	His	Thr	Leu	Ser	Ile 2775	His	Asp	Gly
Tyr	Thr 2780	As n	Glu	Ile	Ile	Gly 2785	Tyr	Lys	Аlа	Ile	G]n 2790	Asp	G∃y	۷a۱
Thr	Arg 2795	Asp	Ile	Ile	Ser	Thr 2800	Asp	Asp	Cys	Phe	Ala 2805	Asn	Lys	His
A٦a	Gly 2810		Asp	Ala	Trp	Phe 2815	Ser	Gln	Arg	Gไу	Gly 2820	ser	Туг	Lys
Asn	Asp 2825	Lys	ser	Cys	Pro	va1 2830	Val	Ala	Ala	Ile	Ile 2835	Thr	Arg	Glu
Ile	Gly 2840	Phe	Ile	۷al	Pro	Gly 2845	Leu	Pro	Gly	Thr	val 2850	Leu	Arg	Αla
Ile	Asn 2855	Gly	Asp	Phe	Leu	ніs 2860	Phe	Leu	Pro	Arg	va1 2865	Phe	Ser	Аlа
۷al	G ¹ y 2870		Ile	Cys	Tyr	Thr 2875	Pro	Ser	Lys	Leu	Ile 2880	Glu	туг	Ser
Asp	Phe	Ala	Thr	Ser	ΑΊa	Cys	٧a٦	Leu	Ala	Αla	Glu	Cy5	Thr	Ile

	2885					2890					2895			
Ph	e Lys 2900	Asp	Ala	Met	Gly	Lys 2905	Pro	∨al	Pro	Tyr	Cys 2910	Tyr	Asp	Thr
As	n Leu 2915	Leu	Glu	σΊу	Ser	Ile 2920	Ser	Tyr	Ser	Glu	Leu 2925	Arg	Pro	Asp
Th	r Arg 2930	Tyr	٧a٦	Leu	Met	Asp 2935	Gly	Ser	Ile	Ile	Gln 2940	Phe	Pro	Asn
Th	r Tyr 2945		Glu	Gly	Ser	Val 2950	Arg	٧a٦	∨al	Thr	Thr 2955	Phe	Asp	Αla
G٦	u Tyr 2960	Cy5	Arg	His	Gly	Thr 2965	Cys	Glu	Arg	Ser	Glu 2970	Val	G٦y	Ile
Су	s Leu 2975	Ser	Thr	Ser	G ly	Arg 2980	Trp	۷al	Leu	Asn	Asn 2985	Glu	His	туг
Ar	g Ala 2990	Leu	Ser	Glу	∨al	Phe 2995	Cys	Gly	val	Asp	Ala 3000	Met	Asn	Leu
ΙΊ	e Ala 3005		Ile	Phe	Thr	Pro 3010	Leu	۷a٦	Gln	Pro	Val 3015	Gly	Аlа	Leu
As	p Val 3020		Αla	ser	٧a٦	val 3025	Ala	Gly	Gly	Ile	Ile 3030	Ala	Ile	Leu
va	.1 Thr 3035	Cys	Ala	Ala	Tyr	туг 3040	Phe	Met	Lys	Phe	Arg 3045	Arg	٧a٦	Phe
G٦	y Glu 3050	Tyr	Asn	His	∨al	Val 3055					Leu 3060		Phe	Leu
Me	t Ser 3065	Phe	Thr	Ile	Leu	Cys 3070	Leu	va1	Pro	Ala	Tyr 3075	Ser	Phe	Leu
Pr	o Gly 3080	Val	туг	ser	٧a٦	Phe 3085	туг	Leu	Tyr	Leu	Thr 3090	Phe	Tyr	Phe
Th	r Asn 3095	Asp	val	ser	Phe	Leu 3100	Ala	Нis	Leu	Gln	Trp 3105	Phe	Ala	Met
Ph	e Ser 3110		IJе	val	Pro	Phe 3115	тгр	Ile	Thr	Ala	Ile 3120		۷a٦	Phe
Су	's Ile 3125		Leu	Lys	ніѕ	Cys 3130	нis	Trp	Phe	Phe	Asn 3135		Tyr	Leu
Ar	g Lys	Arg	۷al	Met	Phe	Asn	σΊу	٧al	Thr	Phe	Ser	Thr	Phe	Glu

3140		3145					3150			
Glu Ala Ala Le 3155	u Cys Thr	Phe 3160	Leu	Leu	Asn	Lys	Glu 3165	Met	Tyr	Leu
Lys Leu Arg Se 3170	r Glu Thr	Leu 3175	Leu	Pro	Leu	Thr	Gln 3180	Tyr	Asn	Arg
Tyr Leu Ala Le 3185	u Tyr Asn	Lys 3190	Tyr	Lys	Tyr	Phe	Ser 3195	GÌу	Ala	Leu
Asp Thr Thr Se 3200	r Tyr Arg	Glu 3205	Ala	Ala	Cys	Cys	нis 3210	Leu	Аlа	Lys
Ala Leu Asn As 3215	p Phe Ser	Asn 3220	Ser	Gly	Ala	Asp	val 3225	Leu	Tyr	Gln
Pro Pro Gln Th 3230	r Ser Ile	Thr 3235	Ser	Ala	٧al	Leu	G]n 3240	ser	Gly	Phe
Arg Lys Met Al 3245	a Phe Pro	Ser 3250	Gly	Lys	val	Glu	G]y 3255	Cys	Met	Val
Gln Val Thr Cy 3260	s Gly Thr	Thr 3265	Thr	Leu	Asn	Gly	Leu 3270	Trp	Leu	Asp
Asp Thr Val Ty 3275	r Cys Pro	Arg 3280	His	٧al	Ile	Cys	Thr 3285	Ala	Glu	Asp
Met Leu Asn Pr 3290	o Asn Tyr	G1u 3295	Asp	Leu	Leu	Ile	Arg 3300	Lys	Ser	Asn
His Ser Phe Le 3305	u Val Gln	Ala 3310	Gly	Asn	۷al	G∏n	Leu 3315	Arg	val	Ile
Gly His Ser Me 3320	t Gln Asn	Cys 3325	Leu	Leu	Arg	Leu	Lys 3330	val	Asp	Thr
Ser Asn Pro Ly 3335	s Thr Pro	Lys 3340	Tyr	Lys	Phe	۷a٦	Arg 3345	Ile	Gln	Pro
Gly Gln Thr Ph 3350	e Ser Val	Leu 3355	Ala	Cy5	Tyr	Asn	Gly 3360		Pro	Ser
Gly val Tyr G	n Cys Ala	Met 3370	Arg	Pro	Asn	His	Thr 3375	Ile	Lys	Gly
Ser Phe Leu As 3380	n Gly Ser	Cys 3385	Glу	Ser	∨al	Gly	Phe 3390	Asn	Ile	Asp
Tyr Asp Cys Va	l Ser Phe	Cys	Tyr	Met	His	His	Met	Glu	Leu	Pro

	3395					3400					3405			
Thr	Gly 3410	Val	нis	Ala	Gly	Thr 3415	Asp	Leu	Glu	G1y	Lys 3420	Phe	Tyr	Gly
Pro	Phe 3425	۷al	Asp	Arg	Gln	Thr 3430	Ala	Gln	Ala	Ala	G]y 3435	Thr	Asp	Thr
Thr	Ile 3440	Thr	Leu	Asn	Val	Leu 3445	Ala	Тгр	Leu	Туг	Ala 3450	Ala	val	Ile
Asn	Gly 3455	Asp	Arg	Trp	Phe	Leu 3460	Asn	Arg	Phe	Thr	Thr 3465	Thr	Leu	Asn
Asp	Phe 3470	Asn	Leu	val	АÌа	Met 3475	Lys	Tyr	Asn	Tyr	G1u 3480	Pro	Leu	Thr
Gln	Asp 3485	His	۷al	Asp	Ile	Leu 3490	Glу	Pro	Leu	Ser	Ala 3495	Gln	Thr	ĢÌу
Ile	Ala 3500	۷al	Leu	Asp	Met	Cys 3505	Ala	Ala	Leu	Lys	Glu 3510	Leu	Leu	Gln
Asn	Gly 3515	Met	Asn	GТу	Arg	Thr 3520	Ile	Leu	Gly	ser	Thr 3525	Ile	Leu	Glu
Asp	G]u 3530	Phe	⊤hr	Pro	Phe	Asp 3535	Val	٧a٦	Arg	Gln	Cys 3540	Ser	Glу	٧a٦
Thr	Phe 3545	G∏n	Gly	Lys	Phe	Lys 3550	Lys	Ile	val	Lys	Gly 3555	Thr	His	His
Trp	Мет 3560	Leu	Leu	Thr	Phe	Leu 3565	Thr	Ser	Leu	Leu	Ile 3570	Leu	val	Gln
Ser	Thr 3575	Gln	Trp	Ser	Leu	Phe 3580	Phe	Phe	Val	Tyr	G1u 3585	Asn	Ala	Phe
Leu	Pro 3590	Phe	Thr	Leu	Glу	Ile 3595	Met	Ala	Ile	Ala	Ala 3600	Cys	Ala	Met
Leu	Leu 3605	٧a٦	Lys	His	Lys	ніs 3610	Аlа	Phe	Leu	Cys	Leu 3615	Phe	Leu	Leu
Pro	ser 3620	Leu	Ala	Thr	val	Ala 3625	Tyr	Phe	Asn	Met	val 3630	Tyr	Met	Pro
Ala	ser 3635	Trp	val	Met	Arg	Ile 3640	Met	Thr	Trp	Leu	Glu 3645	Leu	Ala	Asp
Thr	Ser	Leu	ser	Gly	Tyr	Arg	Leu	Lys	Asp	Cys	val	Met	Tyr	Ala

3650					3655					3660			
Ser Ala 3665		۷al	Leu	Leu	Ile 3670	Leu	Met	Thr	Ala	Arg 3675	Thr	٧a٦	Tyr
Asp Asp 3680		Ala	Arg	Arg	Val 3685	Trp	Thr	Leu	Met	Asn 3690	٧a٦	Ile	⊤hr
Leu Val 3695	Tyr	Lys	Val	Tyr	Tyr 3700	Gly	Asn	Αla	Leu	Asp 3705	Gln	Аla	Ile
Ser Met 3710		Ala	Leu	Va 7	Ile 3715	Ser	Val	Thr	Ser	Asn 3720	Tyr	Ser	Glу
Val Val 3725		Thr	Ile	Met	Phe 3730	Leu	Ala	Arg	Ala	Ile 3735	Val	Phe	Val
Cys Val 3740	Glu	Tyr	Tyr	Pro	Leu 3745	Leu	Phe	Ile	Thr	Gly 3750	Asn	Thr	Leu
Gln Cys 3755		Met	Leu	٧a٦	Tyr 3760	Cys	Phe	Leu	G1y	Tyr 3765	Cys	Cys	Cys
Cys Tyr 3770	Phe	Gly	Leu	Phe	Cys 3775	Leu	Leu	Asn	Arg	Tyr 3780	Phe	Arg	Leu
Thr Leu 3785	GТу	٧a٦	Tyr	Asp	Tyr 3790	Leu	val	Ser	Thr	Gln 3795	Glu	Phe	Arg
Tyr Met 3800		Ser	Gln	σΊу	Leu 3805	Leu	Pro	Pro	Lys	ser 3810	ser	Ile	Asp
Ala Phe 3815					Lys 3820			GТу	Ile	Gly 3825	Gly	Lys	Pro
Cys Ile 3830	Lys	٧al	Ala	Thr	val 3835	Gln	Ser	Lys	Met	Ser 3840		val	Lys
Cys Thr 3845		٧a٦	Val	Leu	Leu 3850	Ser	val	Leu	Gln	Gln 3855	Leu	Arg	∨al
Glu Ser 3860	Ser	Ser	Lys	Leu	тгр 3865	Α Ί α	Gln	Cys	Val	Gln 3870	Leu	His	Asn
Asp Ile 3875		Leu	Ala	Lys	Asp 3880		Thr	Glu	Αla	Phe 3885		Lys	Met
Val Ser 3890	Leu	Leu	Ser	۷al	Leu 3895	Leu	Ser	Met	Gln	G]y 3900	Ala	٧a٦	Asp
Ile Asn	Arg	Leu	Cys	Glu	Glu	Met	Leu	Asp	Asn	Arg	Ala	Thr	Leu

	3905					3910					3915			
Gln	Ala 3920	īle	Ala	ser	Glu	Phe 3925	Ser	Ser	Leu	Pro	Ser 3930	Туг	Ala	Αla
Tyr	Ala 3935	Thr	Ala	Gln	Glu	Ala 3940	Tyr	Glu	Gln	Ala	Val 3945	Ala	Asn	Gly
Asp	Ser 3950	Glu	Val	Val	Leu	Lys 3955	Lys	Leu	Lys	Lys	Ser 3960	Leu	Asn	∨a]
Ala	Lys 3965	Ser	Glu	Phe	Asp	Arg 3970	Asp	Ala	Αla	Met	G]n 3975	Arg	Lys	Leu
Glu	Lys 3980	Met	Ala	Asp	Gln	Ala 3985	Met	Thr	G∏n	Met	Tyr 3990	Lys	Gln	Ala
Arg	ser 3995	Glu	Asp	Lys	Arg	Ala 4000	Lys	Val	Thr	Ser	Ala 4005	Met	Gln	Thr
Met	Leu 4010	Phe	Thr	Met	Leu	Arg 4015	Lys	Leu	Asp	Asn	Asp 4020	Ala	Leu	Asn
Asn	Ile 4025	Ile	Asn	Asn	Ala	Arg 4030	Asp	Gly	Cys	Val	Pro 4035	Leu	Asn	Ile
Ile	Pro 4040	Leu	Thr	Thr	Аlа	Ala 4045	Lys	Leu	Met	٧a٦	val 4050	val	Pro	Asp
Tyr	G1y 4055	Thr	Туг	Lys	Asn	Thr 4060	Cys	Asp	Glу	Asn	⊤hr 4065	Phe	Thr	Tyr
Ala	ser 4070	Ala	Leu	Trp	Glu	11e 4075	Gln	Gln	val	Val	Asp 4080	Ala	Asp	Ser
Lys	11e 4085	val	Gln	Leu	Ser	Glu 4090	Ile	Asn	Met	Asp	Asn 4095	Ser	Pro	Asn
Leu	Ala 4100	Trp	Pro	Leu	Ile	Val 4105	Thr	Ala	Leu	Arg	Ala 4110	Asn	Ser	Αla
Val	Lys 4115	Leu	Gln	Asn	Asn	Glu 4120	Leu	Ser	Pro	Val	Ala 4125	Leu	Arg	Gln
Met	ser 4130	Cys	Ala	Ala	Gly	Thr 4135	Thr	Gln	Thr	Ala	Cys 4140	Thr	Asp	Asp
Asn	Ala 4145	Leu	Ala	Tyr	туг	Asn 4150	Asn	Ser	Lys	Gly	Gly 4155	Arg	Phe	۷al
Leu	Αla	Leu	Leu	Ser	Asp	หis	G∏n	Asp	Leu	Lys	Trp	ΑΊа	Arg	Phe

	4160					416 5					4170			
Pro	Lys 4175	Ser	Asp	Gly	Thr	Gly 4180	Thr	Ile	Tyr	Thr	Glu 4185	Leu	Glu	Pro
Pro	Cys 4190	Arg	Phe	Val	Thr	Asp 4195	Thr	Pro	Lys	GТу	Pro 4200	Lys	٧a٦	Lys
Tyr	Leu 4205	Tyr	Phe	Ile	Lys	Gly 4210	Leu	Asn	Asn	Leu	Asn 4215	Arg	GТу	Met
Val	Leu 4220	Gly	Ser	Leu	Ala	Ala 4225	Thr	Val	Arg	Leu	G1n 4230	Аla	GТу	Asn
Ala	Thr 4235	Glu	Val	Pro	Ala	Asn 4240	Ser	Thr	۷a٦	Leu	Ser 4245	Phe	Cys	Ala
Phe	Ala 4250	val	Asp	Pro	Ala	Lys 4255	Ala	Tyr	Lys	Asp	Tyr 4260	Leu	Ala	Ser
Gly	Gly 4265	Gln	Pro	Ile	Thr	Asn 4270	Cys	Val	Lys	Met	Leu 4275	Cys	Thr	His
Thr	G]y 4280	Thr	Gly	Gln	Ala	Ile 4285	Thr	Val	Thr	Pro	Glu 4290	Ala	Asn	Met
Asp	Gln 4295	Glu	Ser	Phe	Gly	Gly 4300	Ala	Ser	Cys	Cys	Leu 4305	Tyr	Cys	Arg
Cys	ніs 4310	Ile	Asp	His	Pro	Asn 4315	Pro	Lys	Gly	Phe	Cys 4320	Asp	Leu	Lys
Gly	Lys 4325	Tyr	٧a٦	Gln		Pro 4330		Thr	Cys	Ala	Asn 4335	Asp	Pro	Val
Gly	Phe 4340	Thr	Leu	Arg	Asn	Thr 4345	va1	Cys	Thr	۷al	Cys 4350	Gly	Met	Trp
Lys	Gly 4355	туr	Gly	Cys	Ser	Cys 4360	Asp	G In	Leu	Arg	G]u 4365	Pro	Leu	Met
Gln	Ser 4370	Ala	Asp	Ala	Ser	Thr 4375	Phe	Leu	Asn	Gly	Phe 4380	Аlа	val	

<400> 75

<210> 75 <211> 2695

<212> PRT

<213> CORONAVIRUS

Arg Val Cys Gly Val Ser Ala Ala Arg Leu Thr Pro Cys Gly Thr Gly
10 15 Thr Ser Thr Asp Val Val Tyr Arg Ala Phe Asp Ile Tyr Asn Glu Lys 20 25 30 Val Ala Gly Phe Ala Lys Phe Leu Lys Thr Asn Cys Cys Arg Phe Gln
35 40 45 Glu Lys Asp Glu Glu Gly Asn Leu Leu Asp Ser Tyr Phe Val Val Lys 50 55 60 Arg His Thr Met Ser Asn Tyr Gln His Glu Glu Thr Ile Tyr Asn Leu 65 70 75 80 Val Lys Asp Cys Pro Ala Val Ala Val His Asp Phe Phe Lys Phe Arg 85 90 95 Val Asp Gly Asp Met Val Pro His Ile Ser Arg Gln Arg Leu Thr Lys 100 105 Tyr Thr Met Ala Asp Leu Val Tyr Ala Leu Arg His Phe Asp Glu Gly 115 120 125 Asn Cys Asp Thr Leu Lys Glu Ile Leu Val Thr Tyr Asn Cys Cys Asp 130 135 140 Asp Asp Tyr Phe Asn Lys Lys Asp Trp Tyr Asp Phe Val Glu Asn Pro 145 150 155 160 Asp Ile Leu Arg Val Tyr Ala Asn Leu Gly Glu Arg Val Arg Gln Ser 165 170 175 Leu Leu Lys Thr Val Gln Phe Cys Asp Ala Met Arg Asp Ala Gly Ile 180 185 190 Val Gly Val Leu Thr Leu Asp Asn Gln Asp Leu Asn Gly Asn Trp Tyr 195 200 205 Asp Phe Gly Asp Phe Val Gln Val Ala Pro Gly Cys Gly Val Pro Ile 210 225 220 Val Asp Ser Tyr Tyr Ser Leu Leu Met Pro Ile Leu Thr Leu Thr Arg 225 230 235 240 Ala Leu Ala Ala Glu Ser His Met Asp Ala Asp Leu Ala Lys Pro Leu 245 250 255 Ile Lys Trp Asp Leu Leu Lys Tyr Asp Phe Thr Glu Glu Arg Leu Cys

260 265 270 Leu Phe Asp Arg Tyr Phe Lys Tyr Trp Asp Gln Thr Tyr His Pro Asn 275 280 285 Cys Ile Asn Cys Leu Asp Asp Arg Cys Ile Leu His Cys Ala Asn Phe 290 295 Asn Val Leu Phe Ser Thr Val Phe Pro Pro Thr Ser Phe Gly Pro Leu 305 310 315 320 Val Arg Lys Ile Phe Val Asp Gly Val Pro Phe Val Val Ser Thr Gly 325 330 335 Tyr His Phe Arg Glu Leu Gly Val Val His Asn Gln Asp Val Asn Leu 340 345 350 His Ser Ser Arg Leu Ser Phe Lys Glu Leu Leu Val Tyr Ala Ala Asp 355 360 365 Pro Ala Met His Ala Ala Ser Gly Asn Leu Leu Asp Lys Arg Thr 370 380 Thr Cys Phe Ser Val Ala Ala Leu Thr Asn Asn Val Ala Phe Gln Thr 385 390 395 400 Val Lys Pro Gly Asn Phe Asn Lys Asp Phe Tyr Asp Phe Ala Val Ser 405 410 415 Lys Gly Phe Phe Lys Glu Gly Ser Ser Val Glu Leu Lys His Phe Phe 420 425 430 Phe Ala Gln Asp Gly Asn Ala Ala Ile Ser Asp Tyr Asp Tyr Tyr Arg
435 440 445 Tyr Asn Leu Pro Thr Met Cys Asp Ile Arg Gln Leu Leu Phe Val Val 450 460 Glu Val Val Asp Lys Tyr Phe Asp Cys Tyr Asp Gly Gly Cys Ile Asn 465 470 475 Ala Asn Gln Val Ile Val Asn Asn Leu Asp Lys Ser Ala Gly Phe Pro
485 490 495 Phe Asn Lys Trp Gly Lys Ala Arg Leu Tyr Tyr Asp Ser Met Ser Tyr 500 510 Glu Asp Gln Asp Ala Leu Phe Ala Tyr Thr Lys Arg Asn Val Ile Pro 515 520 525 Thr Ile Thr Gln Met Asn Leu Lys Tyr Ala Ile Ser Ala Lys Asn Arg

530 535 540

Ala Arg Thr Val Ala Gly Val Ser Ile Cys Ser Thr Met Thr Asn Arg 545 550 555 560 Gln Phe His Gln Lys Leu Leu Lys Ser Ile Ala Ala Thr Arg Gly Ala 565 570 575 Thr Val Val Ile Gly Thr Ser Lys Phe Tyr Gly Gly Trp His Asn Met 580 585 590 Leu Lys Thr Val Tyr Ser Asp Val Glu Thr Pro His Leu Met Gly Trp 595 600 605 Asp Tyr Pro Lys Cys Asp Arg Ala Met Pro Asn Met Leu Arg Ile Met 610 620 Ala Ser Leu Val Leu Ala Arg Lys His Asn Thr Cys Cys Asn Leu Ser 625 630 635 640 His Arg Phe Tyr Arg Leu Ala Asn Glu Cys Ala Gln Val Leu Ser Glu 645 650 655 Met Val Met Cys Gly Gly Ser Leu Tyr Val Lys Pro Gly Gly Thr Ser 660 670 Ser Gly Asp Ala Thr Thr Ala Tyr Ala Asn Ser Val Phe Asn Ile Cys 675 680 685 Gln Ala Val Thr Ala Asn Val Asn Ala Leu Leu Ser Thr Asp Gly Asn 690 695 700 Lys Ile Ala Asp Lys Tyr Val Arg Asn Leu Gln His Arg Leu Tyr Glu 705 710 715 720 Cys Leu Tyr Arg Asn Arg Asp Val Asp His Glu Phe Val Asp Glu Phe 725 730 735 Tyr Ala Tyr Leu Arg Lys His Phe Ser Met Met Ile Leu Ser Asp Asp 745 750 Ala Val Val Cys Tyr Asn Ser Asn Tyr Ala Ala Gln Gly Leu Val Ala 755 760 765 Ser Ile Lys Asn Phe Lys Ala Val Leu Tyr Tyr Gln Asn Asn Val Phe 770 780 Met Ser Glu Ala Lys Cys Trp Thr Glu Thr Asp Leu Thr Lys Gly Pro
785 790 795 800 His Glu Phe Cys Ser Gln His Thr Met Leu Val Lys Gln Gly Asp Asp

				805					810					815	
Tyr	Val	туг	Leu 820	Pro	Tyr	Pro	Asp	Pro 825	Ser	Arg	Ile	Leu	Gly 830	Ala	σΊу
Cys	Phe	Val 835	Asp	Asp	Ile	Val	Lys 840	Thr	Asp	GЈу	Thr	Leu 845	Met	Ile	Glu
Arg	Phe 850	٧al	Ser	Leu	Ala	11e 855	Asp	Ala	Tyr	Pro	Leu 860	Thr	Lys	His	Pro
Asn 865	Gln	Glu	Tyr	Αla	Asp 870	Val	Phe	His	Leu	Tyr 875	Leu	Gln	Tyr	Ile	Arg 880
Lys	Leu	His	Asp	G]u 885	Leu	Thr	GТу	His	меt 890	Leu	Asp	Met	туr	Ser 895	val
Met	Leu	Thr	Asn 900	Asp	Asn	Thr	Ser	Arg 905	Туг	Trp	Glu	Pro	Glu 910	Phe	туг
Glu	Ala	Met 915	Tyr	Thr	Pro	His	Thr 920	Val	Leu	Gln	Ala	Val 925	GТу	Ala	Cys
val	Leu 930	Cys	Asn	Ser	Gln	Thr 935	Ser	Leu	Arg	Cys	Gly 940	Ala	Cys	Ile	Arg
Arg 945	Pro	Phe	Leu	Cys	Cys 950	Lys	Cys	Cys	Туг	Asp 955	His	Val	Ile	Ser	Thr 960
ser	нis	Lys	Leu	va1 965	Leu	Ser	val	Asn	Pro 970	туг	۷al	Cys	Asn	Ala 975	Pro
GТу	Cys	Asp	va7 980	Thr	Asp	val	Thr	G]n 985	Leu	туг	Leu	Gly	G]y 990	Met	Ser
Tyr	⊤yr	Cys 995	Lys	Ser	His	Lys	Pro 100		o Il	e Sei	r Ph	e Pr 10		eu C	ys Ala
Asn	Gly 1010	Gl:	n Va	l Phe	e Gly	y Le	u T) 15	yr L	ys A	sn Tl	hr C	ys 020	val	Gly	Ser
Asp	Asn 1025	Va [*]	l Th	r Ası	o Pho	2 Asi 10		la I	le A	la ⊤I	hr C	ys 035	Asp	Trp '	Thr
Asn	Ala 1040		y AS	р Ту	r Il	e Le 10		la A	sn T	hr C		hr 050	Glu	Arg	Leu
Lys	Leu 1055		e Ala	a Ala	a Glo	u ⊤h 10		eu Ly	ys A	la T∣		าน 065	Glu	Thr	Phe
Lve	Len	Sei	r TV	r Glv	v Tl	ľΔa	а Т	hr V	al A	ra G	lu v	al	Leu	Ser	Asn

	1070					1075					1080			
Arg	Glu 1085	Leu	ніѕ	Leu	Ser	Trp 10 90	Glu	val	Glу	Lys	Pro 1095	Arg	Pro	Pro
Leu	Asn 1100	Arg	Asn	Tyr	Val	Phe 1105	Thr	G ly	Tyr	Arg	val 1110	Thr	Lys	Asn
Ser	Lys 1115	val	Gln	Ile	G1y	Glu 1120	Tyr	Thr	Phe	Glu	Lys 1125	Gly	Asp	Tyr
Gly	Asp 1130	Аlа	Val	Val	Tyr	Arg 1135	Glу	Thr	Thr	Thr	туг 1140	Lys	Leu	Asn
∨al	Gly 1145	Asp	Tyr	Phe	val	Leu 1150	Thr	Ser	Нis	Thr	val 1155	Met	Pro	Leu
ser	д]а 1160	Pro	Thr	Leu	Val	Pro 1165	Gln	G∏u	His	Tyr	val 1170	Arg	Ile	Thr
GТу	Leu 1175	Туг	Pro	Thr	Leu	Asn 1180	Ile	Ser	Asp	G∏u	Phe 1185	Ser	Ser	Asn
val	Ala 1190	Asn	Tyr	Gln	Lys	va7 1195	Gly	Met	G∏n	Lys	Tyr 1200	Ser	Thr	Leu
Gln	Gly 1205	Pro	Pro	Gly	Thr	Gly 1210	Lys	ser	His	Phe	Ala 1215	Ile	Gly	Leu
Ala	Leu 1220	Tyr	туг	Pro	Ser	Ala 1225	Arg	Ile	٧al	Tyr	Thr 1230	Ala	Cys	Ser
His	Ala 1235	Ala	٧a٦	Asp	Аlа	Leu 1240		Glu	Lys	Ala	Leu 1245		Tyr	Leu
Pro	Ile 1250	Asp	Lys	Cys	Ser	Arg 1255	Ile	Ile	Pro	Аla	Arg 1260	Ala	Arg	۷a٦
Glu	Cys 1265	Phe	Asp	Lys	Phe	Lys 1270	val	Asn	Ser	Thr	Leu 1275	Glu	Gln	Tyr
۷al	Phe 1280	Cys	Thr	۷al	Asn	Ala 1285	Leu	Pro	Glu	Thr	Thr 1290	Ala	Asp	Ile
Val	Va] 1295	Phe	Asp	Glu	Ile	ser 1300		Αla	Thr	Asn	Туг 1305	Asp	Leu	Ser
Val	Val 1310	Asn	АÌа	Arg	Leu	Arg 1315	ΑΊа	Lys	His	Tyr	∨a1 1320	Tyr	Ile	Gly
Asp	Pro	Аlа	Gln	Leu	Pro	Ala	Pro	Arg	Thr	Leu	Leu	Thr	Lys	Gly

	1325					1330					1335			
Thr	Leu 1340	Glu	Pro	Glu	Tyr	Phe 1345	Asn	Ser	∨al	Cys	Arg 1350	Leu	Met	Lys
Thr	Ile 1355	glу	Pro	Asp	Met	Phe 1360	Leu	Gly	Thr	Cys	Arg 1365	Arg	Cys	Pro
Аlа	Glu 1370		Val	Asp	Thr	Val 1375	Ser	Ala	Leu	val	Tyr 1380	Asp	Asn	Lys
Leu	Lys 1385	Ala	His	Lys	Asp	Lys 1390	Ser	Αla	Gln	Cys	Phe 1395	Lys	Met	Phe
Tyr	Lys 1400	GТу	val	Ile	Thr	His 1405	Ąsp	∨a1	Ser	ser	Ala 1410	Ile	As n	Arg
Pro	Gln 1415	Ile	Glу	Val	Val	Arg 1420	Glu	Phe	Leu	Thr	Arg 1425	Asn	Pro	Ala
Trp	Arg 1430	Lys	Ala	Val	Phe	Ile 1435	Ser	Pro	Tyr	Asn	Ser 1440	Gln	Asn	Ala
٧a٦	Ala 1445	Ser	Lys	Ile	Leu	Gly 1450	Leu	Pro	Thr	Gln	Thr 1455	Val	Asp	Ser
Ser	Gln 1460	Gly	Ser	Glu	Tyr	Asp 1465	Tyr	Val	Ile	Phe	Thr 1470	Gln	⊤hr	Thr
Glu	Thr 1475	Ala	Нis	Ser	Cys	Asn 1480	٧a٦	Asn	Arg	Phe	Asn 1485	val	Ala	Ile
Thr	Arg 1490	Ala	Lys	Ile	Gly	Ile 1495	Leu	Cys	Ile	Met	ser 1500	Asp	Arg	Asp
Leu	Туг 1505		Lys	Leu	Gln	Phe 1510		Ser	Leu	Glu	Ile 1515	Pro	Arg	Arg
Asn	Val 1520	Ala	Thr	Leu	Gln	Ala 1525	Glu	Asn	٧a٦	Thr	Gly 1530	Leu	Phe	Lys
Аѕр	Cys 1535	Ser	Lys	Ile	Ile	Thr 1540	Gly	Leu	His	Pro	Thr 1545	Gln	Ala	Pro
Thr	ніs 1550	Leu	Ser	Val	Asp	Ile 1555	Lys	Phe	Lys	Thr	Glu 1560	Gly	Leu	Cys
Val	Asp 1565	Ile	Pro	Gly	Ile	Pro 1570		Asp	Met	Thr	Tyr 1 575	Arg	Arg	Leu
Tle	Ser	Met	Met	ςΊν	Phe	LVS	Met	Δsn	TVr	G]n	٧a٦	Δen	Glv	TVP

	1580					1585					1590			
Pro	Asn 1595	Met	Phe	Ile	Thr	Arg 1600	Glu	Glu	Ala	Ile	Arg 1605	His	val	Arg
Ala	тгр 1610	Ile	Glу	Phe	Asp	Val 1615	Glu	Glу	Cys	ніѕ	A 7 a 1620	Thr	Arg	Asp
Ala	Val 1625	Gly	Thr	Asn	Leu	Pro 1630	Leu	Gln	Leu	GТу	Phe 1 6 35	Ser	Thr	GТу
Val	Asn 1640	Leu	Val	Ala	∨al	Pro 1645	Thr	Gly	Tyr	∨al	Asp 1 6 50	Thr	Glu	Asn
Asn	Thr 1655	Glu	Phe	Thr	Arg	∨a1 1 660	As n	Аlа	Lys	Pro	Pro 1665	Pro	Gly	Asp
Gln	Phe 1670	Lys	His	Leu	ıle	Pro 1675	Leu	Met	Tyr	Lys	GТу 1 6 80	Leu	Pro	Тгр
Asn	Val 1685	val	Arg	Ile	Lys	Ile 1690	val	Gln	Met	Leu	ser 1695	Asp	Thr	Leu
Lys	Gly 1700	Leu	Ser	Asp	Arg	Val 1705	۷al	Phe	Val	Leu	Trp 1710	Ala	His	Glу
Phe	Glu 1715	Leu	Thr	Ser	Met	Lys 1720	Tyr	Phe	Val	Lys	Ile 1725	Gly	Pro	Glu
Arg	Thr 1730	Cys	Cys	Leu	Cys	Asp 1735	Lys	Arg	Аlа	Thr	Cys 1740	Phe	Ser	Thr
Ser	Ser 1745	Asp	Thr	Tyr	Ala	Cys 1750	Trp	Asn	нis	Ser	∨a1 1755	Gly	Phe	Asp
Tyr	val 1760		Asn	Pro	Phe	Met 1765	Ile	Asp	٧a٦	Gln	Gln 1 770	Trp	Gly	Phe
Thr	Gly 1775	Asn	Leu	Gln	Ser	Asn 1780	His	Asp	Gln	His	Cys 1785	Gln	٧a٦	His
Gly	Asn 1790	Ala	His	٧a٦	Ala	Ser 1795	Cys	Asp	Ala	Ile	Met 1 800	Thr	Arg	Cys
Leu	Ala 1805	Val	His	Glu	Cys	Phe 1810		Lys	Arg	Val	Asp 1815	Тгр	Ser	Val
Glu	туг 1820	Pro	Ile	Ile	Glу	Asp 1825	Glu	Leu	Arg	Val	Asn 1 830	Ser	Аlа	Cys
Arq	Lys	Val	Gln	His	Met	Val	val	Lys	ser	Ala	Leu	Leu	Ala	Asp

	1835					1840					1845			
Lys	Phe 1850	Pro	٧a٦	Leu	His	Asp 1855	Ile	Glу	Asn	Pro	Lys 1860	Ala	Ile	Lys
Cys	Val 1865	Pro	Gln	Ala	Glu	Val 1870	Glu	Trp	Lys	Phe	Tyr 1875	Asp	Ala	Gln
Pro	Cys 1880	Ser	Asp	Lys	Ala	Tyr 1885	Lys	Ile	Glu	Glu	Leu 1890	Phe	туr	ser
Tyr	Ala 1895	Thr	His	His	Asp	Lys 1900	Phe	Thr	Asp	Gly	val 1905	Cys	Leu	Phe
Trp	Asn 1910	Cys	Asn	val	Asp	Arg 1915	туг	Pro	Ala	Asn	Ala 1920	Ile	val	Cys
Arg	Phe 1925	Asp	Thr	Arg	va1	Leu 1930	Ser	Asn	Leu	Asn	Leu 1935	Pro	Gly	Cys
Asp	Gly 1940		ser	Leu	Tyr	Va7 1945	Asn	Lys	ніѕ	Ala	Phe 1950	His	Thr	Pro
Ala	Phe 1955	Ąsp	Lys	Ser	Ala	Phe 1960	Thr	Asn	Leu	Lys	Gln 1965	Leu	Pro	Phe
Phe	Tyr 1970	Tyr	Ser	Asp	ser	Pro 1975	Cys	Glu	Ser	His	Gly 1980	Lys	Gln	val
val	Ser 1985	Asp	Ile	Asp	Tyr	Val 1990	Pro	Leu	Lys	Ser	Ala 1995	Thr	Cys	Ile
Thr	Arg 2000	Cys	Asn	Leu	Gly	Gly 2005	Ala	val	Cys	Arg	ніs 2010	His	Ala	Asn
Glu	Tyr 2015	Arg	Gln	Tyr	Leu	Asp 2020	Ala	Туг	Asn	Met	Met 2025	Ile	ser	Ala
Gly	Phe 2030	Ser	Leu	Trp	Ile	Tyr 2035	Lys	Gln	Phe	Asp	Thr 2040	Tyr	Asn	Leu
Trp	Asn 2045	Thr	Phe	Thr	Arg	Leu 2050	Gln	Ser	Leu	Glu	Asn 2055	٧al	Ala	Tyr
Asn	va1 2060		Asn	Lys	Gly	His 2065	Phe	Asp	Gly	His	Ala 2070	Gly	Glu	Ala
Pro	Va] 2075	ser	Ile	Ile	Asn	Asn 2080	Ala	∨al	туг	Thr	Lys 2085	val	Asp	Gly
пle	Asp	٧a٦	Glu	ɪ٦e	Phe	Glu	Asn	Lys	Thr	Thr	Leu	Pro	٧a٦	Asn

2090	,				2095					2100			
Val Ala 2105	Phe	Glu	Leu	Trp	Ala 2110	Lys	Arg	Asn	Ile	Lys 2115	Pro	Val	Pro
Glu Ile 2120	Lys	Ile	Leu	Asn	Asn 2125	Leu	Gly	۷al	Asp	11e 2130	Ala	Αla	Asn
Thr Val 2135	Ile	Trp	Asp	Tyr	Lys 2140	Arg	Glu	Ala	Pro	А]а 2145	His	∨al	ser
Thr Ile 2150	Glу	Val	Cys	Thr	Met 2155	Thr	Asp	Ile	Ala	Lys 2160	Lys	Pro	Thr
Glu Ser 2165	Ala	Cys	Ser	Ser	Leu 2170	Thr	٧a٦	Leu	Phe	Asp 2175	Gly	Arg	Val
Glu Gly 2180	Gln	Val	Asp	Leu	Phe 2185	Arg	Asn	ΑΊа	Arg	Asn 2190	Gly	val	Leu
Ile Thr 2195	Glu	Gly	Ser	٧a٦	Lys 2200	Glу	Leu	Thr	Pro	Ser 2205	Lys	Gly	Pro
Ala Gln 2210	Ala	Ser	val	Asn	Gly 2215	٧a٦	Thr	Leu	Ile	Gly 2220	Glu	ser	٧a٦
Lys Thr 2225	Gln	Phe	Asn	Tyr	Phe 2230	Lys	Lys	۷al	Asp	Gly 2235	Ile	Ile	Gln
Gln Leu 2240	Pro	Glu	Thr	Tyr	Phe 2245	Thr	Gln	Ser	Arg	Asp 2250	Leu	Glu	Asp
Phe Lys 2255	Pro	Arg	Ser	Gln	Met 2260	Glu	Thr	Asp	Phe	Leu 2265	Glu	Leu	Ala
Met Asp 2270	Glu	Phe	Ile	Gln	Arg 2275	Tyr	Lys	Leu	Glu	G]y 2280	Tyr	Ala	Phe
Glu His 2285	Ile	۷al	Туг	Gly	Asp 2290	Phe	Ser	His	Gly	G]n 2295	Leu	Gly	Gly
Leu His 2300	Leu	Met	Ile	Gly	Leu 2305	Ala	Lys	Arg	Ser	G]n 2310	Asp	Ser	Pro
Leu Lys 2315	Leu	Glu	Asp	Phe	Ile 2320	Pro	Met	Asp	Ser	Thr 2325	val	Lys	Asn
Tyr Phe 2330	Ile	Thr	Asp	Αla	G]n 2335	Thr	Gไу	Ser	Ser	Lys 2340	Cys	۷al	Cys
Ser val	Ile	Asp	Leu	Leu	Leu	Asp	Asp	Phe	val	Glu	Ile	Ile	Lys

	2345					2350					2355			
Ser	Gln 2360	Asp	Leu	ser	Val	Ile 2365	Ser	Lys	Val	val	Lys 2370	val	⊤hr	Ile
Asp	Tyr 2375	Ala	Glu	Ile	Ser	Phe 2380	Met	Leu	Trp	Cys	Lys 2385	Asp	Gly	His
Val	G]u 2390	Thr	Phe	Tyr	Pro	Lys 2395	Leu	Gln	Ala	Ser	Gl n 2400	Ala	Trp	Gln
Pro	Gly 2405	val	Ala	Met	Pro	Asn 2410	Leu	Tyr	Lys	Met	Gln 2415	Arg	Met	Leu
Leu	G]u 2420	Lys	Cys	Asp	Leu	Gln 2425	Asn	Туг	Gly	Glu	Asn 2430	Ala	۷al	Ile
Pro	Lys 2435	Gly	Ile	Met	Met	As n 2440		Ala	Lys	туг	Thr 2445	Gln	Leu	Cys
G]n	Туг 2450	Leu	Asn	Thr	Leu	Thr 2455	Leu	Ala	∨al	Pro	Tyr 2460	Asn	Met	Arg
٧al	Ile 2465	His	Phe	Gly	Аlа	Gly 2470	Ser	Asp	Lys	Glу	val 2475	Ala	Pro	Glу
Thr	Ala 2480	Val	Leu	Arg	Gln	Trp 2485	Leu	Pro	Thr	Gly	Thr 2490	Leu	Leu	val
Asp	Ser 2495	A5p	Leu	Asn	Asp	Phe 2500	Val	Ser	Asp	Ala	Asp 2505	Ser	Thr	Leu
Ile	Gly 2510	Asp	Cys	Ala	Thr	Val 2515	His	Thr	Аlа	Asn	Lys 2 5 20	Trp	Asp	Leu
Ile	Ile 2525	ser	Asp	Met	Туг	Asp 2530	Pro	Arg	Thr	Lys	ніs 2535		Thr	Lys
Glu	Asn 2540	Asp	ser	Lys	Glu	G1y 2545	Phe	Phe	Thr	Tyr	Leu 2550	Cys	Gly	Phe
Ile	Lys 2555	Gln	Lys	Leu	Аlа	Leu 2560	Gly	Glу	Ser	Ile	Ala 2565	Va]	Lys	ΙÌe
Thr	Glu 2570	His	Ser	Trp	Asn	Ala 2575	Asp	Leu	Tyr	Lys	Leu 2580	Met	Gly	His
Phe	ser 2585	Trp	Trp	Thr	Ala	Phe 2590	٧a٦	Thr	Asn	۷a٦	Asn 2595	Ala	Ser	Ser
Ser	G lu	Аla	Phe	Leu	Ile	Gly	Ala	Asn	Tyr	Leu	σΊу	Lys	Pro	Lys

		2600					2605				2610				
	Glu	Gln 2615	Ile	Asp	Gly	Tyr	Thr 2620	Met	His	Ala	Asn	Tyr 2625	Ile	Phe	Trp
	Arg	Asn 2630	Thr	Asn	Pro	Ile	Gln 2635	Leu	ser	Ser	Туг	Ser 2640	Leu	Phe	Asp
	Met	Ser 2645	Lys	Phe	Pro	Leu	Lys 2650	Leu	Arg	Glу	Thr	Ala 2655	Val	Met	Ser
	Leu	Lys 2660	Glu	Asn	Gln	Ile	Asn 2665	Asp	Met	Ile	Tyr	ser 2670	Leu	Leu	Glu
	Lys	Gly 2675	Arg	Leu	Ile	Ile	Arg 2680	Glu	Asn	Asn	Arg	val 2685	Val	val	Ser
	Ser	Asp 2690	Ile	Leu	Val	Asn	Asn 2695								
<210> 76 <211> 20 <212> ADN <213> Secuencia artificial															
<220> <223> cebador S/L3/+/4932															
<400> 76		gtggata						20							
<210> 77 <211> 20 <212> ADN <213> Secuencia artificial															
<220> <223> ce	bador	S/L4/+/6	6401												
<400> 77		aatgtc						20							
<210> 78 <211> 20 <212> ADN <213> Secuencia artificial															
<220> <223> ce	bador	S/L4/+/6	6964												
<400> 78 tttggtgctc		ttg						20							
<210> 79)														
<211> 20 <212> AI <213> Se	NC	ia artific	ial												
<220>															

<223> cebador S/L4/-/6817	
<400> 79 20 ccggcatcca aacataattt	20
<210> 80 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L5/-/7633	
<400> 80 tggtcagtag ggttgattgg	20
<210>81 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> S/L5/-/8127	
<400> 81 catcetttgt gtcaacatcg	20
<210> 82 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L5/-/8633	
<400> 82 gtcacgagtg acaccatcct	20
<210> 83 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L5/+/7839	
<400> 83 atgcgacgag tctgcttcta	20
<210> 84 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L5/+/8785	
<400> 84 ttcatagtgc ctggcttacc	20
<210> 85 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador S/L5/+/8255	
<400> 85 atcttggcgc atgtattgac	20
<210> 86 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L6/-/9422	
<400> 86 tgcattagca gcaacaacat	20
<210> 87 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador 5/L6/-/9966	
<400> 87 tctgcagaac agcagaagtg	20
<210> 88 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L6/-/10542	
<400> 88 cctgtgcagt ttgtctgtca	20
<210> 89 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L6/+/10677	
<400> 89 ccttgtggca atgaagtaca	20
<210> 90 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L6/+/10106	
<400> 90 atgtcatttg cacagcagaa	20
<210>91 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador S/L6/+/9571	
<400> 91 cttcaatggt ttgccatgtt	20
<210> 92 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L7/-/11271	
<400> 92 tgcgagctgt catgagaata	20
<210> 93 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L7/-/11801	
<400> 93 aaccgagagc agtaccacag	20
<210> 94 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L7/-/12383	
<400> 94 tttggctgct gtagtcaatg	20
<210> 95 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L7/+/12640	
<400> 95 ctacgacaga tgtcctgtgc	20
<210> 96 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L7/+/12088	
<400> 96 gagcaggctg tagctaatgg	20
<210> 97 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador S/L7/+/11551	
<400> 97 ttaggctatt gttgctgctg	20
<210> 98 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L8/-/13160	
<400> 98 cagacaacat gaagcaccac	20
<210> 99 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L8/-/13704	
<400> 99 cgctgacgtg atatatgtgg	20
<210> 100 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L8/-/14284	
<400> 100 tgcacaatga aggatacacc	20
<210> 101 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L8/+/14453	
<400> 101 acatagctcg cgtctcagtt	20
<210> 102 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L8/+/13968	
<400> 102 ggcattgtag gcgtactgac	20
<210> 103 <211> 19 <212> ADN <213> Secuencia artificial	

<220>

<223> cebador S/L8/+/13401	
<400> 103 gtttgcggtg taagtgcag	19
<210> 104 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L9/-/15098	
<400> 104 tagtggcggc tattgacttc	20
<210> 105 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L9/-/15677	
<400> 105 ctaaaccttg agccgcatag	20
<210> 106 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L9/-/16247	
<400> 106 catggtcata gcagcacttg	20
<210> 107 <211> 21 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L9/+/16323	
<400> 107 ccaggttgtg atgtcactga t	21
<210> 108 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L9/+/15858	
<400> 108 ccttacccag atccatcaag	20
<210> 109 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador S/L9/+/15288	
<400> 109 cgcaaacata acacttgctg	20
<210> 110 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L10/-/16914	
<400> 110 agtgttgggt acaagccagt	20
<210> 111 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L10/-/17466	
<400> 111 gttccaagga acatgtctgg	20
<210> 112 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L10/-/18022	
<400> 112 aggtgcctgt gtaggatgaa	20
<210> 113 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L10/+/18245	
<400> 113 gggctgtcat gcaactagag	20
<210> 114 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L10/+/17663	
<400> 114 tcttacacgc aatcctgctt	20
<210> 115 <211> 20 <212> ADN <213> Secuencia artificial	

<220>

<223> cebador S/L10/+/17061	
<400> 115 tacccatctg ctcgcatagt	20
<210> 116 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L11/-/18877	
<400> 116 gcaagcagaa ttaaccctca	20
<210> 117 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L11/-/19396	
<400> 117 agcaccacct aaattgcatc	20
<210> 118 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L11/-/20002	
<400> 118 tggtcccttt gaaggtgtta	20
<210> 119 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L11/+/20245	
<400> 119 tcgaacacat cgtttatgga	20
<210> 120 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador S/L11/+/19611	
<400> 120 gaagcacctg tttccatcat	20
<210> 121 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador S/L11/+/19021	
<400> 121 acgatgctca gccatgtagt	20
<210> 122 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L1/F3/+/800	
<400> 122 gaggtgcagt cactcgctat	20
<210> 123 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L1/F4/+/1391	
<400> 123 cagagattgg acctgagcat	20
<210> 124 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L1/F5/+/1925	
<400> 124 cagcaaacca ctcaattcct	20
<210> 125 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L1/R3/-/1674	
<400> 125 aaatgatggc aacctcttca	20
<210> 126 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L1/R4/-/1107	
<400> 126 cacgtggttg aatgactttg	20
<210> 127 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador SRAS/L1/R5/-/520	
<400> 127 atttctgcaa ccagctcaac	20
<210> 128 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L2/F3/+/2664	
<400> 128 cgcattgtct cctggtttac	20
<210> 129 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L2/F4/+/3232	
<400> 129 gagattgagc cagaaccaga	20
<210> 130 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L2/F5/+/3746	
<400> 130 atgagcaggt tgtcatggat	20
<210> 131 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L2/R3/-/3579	
<400> 131 ctgccttaag aagctggatg	20
<210> 132 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L2/R4/-/2991	
<400> 132 tttcttcacc agcatcatca	20
<210> 133 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador SRAS/L2/R5/-/2529	
<400> 133 caccgttctt gagaacaacc	20
<210> 134 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L3/F3/+/4708	
<400> 134 tctttggctg gctcttacag	20
<210> 135 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L3/F4/+/5305	
<400> 135 gctggtgatg ctgctaactt	20
<210> 136 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L3/F5/+/5822	
<400> 136 ccatcaagcc tgtgtcgtat	20
<210> 137 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L3/R3/-/5610	
<400> 137 caggtggtgc agacatcata	20
<210> 138 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador SRAS/L3/R4/-/4988	
<400> 138 aacatcagca ccatccaagt	20
<210> 139 <211> 20 <212> ADN <213> Secuencia artificial	
<220>	

<223> cebador SRAS/L3/R5/-/4437 <400> 139 atcggacacc atagtcaacg 20 <210> 140 <211> 7788 <212> ADN <213> Secuencia artificial <220> <223> gen S sintético <400> 140 60 tcaatattgg ccattagcca tattattcat tggttatata gcataaatca atattggcta ttggccattg catacgttgt atctatatca taatatgtac atttatattg gctcatgtcc 120 180 aatatgaccg ccatgttggc attgattatt gactagttat taatagtaat caattacggg gtcattagtt catagcccat atatggagtt ccgcqttaca taacttacgg taaatggccc 240 gcctggctga ccgcccaacg acccccgccc attgacgtca ataatgacgt atgttcccat 300 agtaacgcca atagggactt tccattgacg tcaatgggtg gagtatttac ggtaaactgc 360 ccacttggca gtacatcaag tgtatcatat gccaagtccg cccctattg acgtcaatga 420 cggtaaatgg cccgcctggc attatgccca gtacatgacc ttacgggact ttcctacttg 480 gCagtaCatc tacgtattag tcatcgctat taccatggtg atgcggtttt ggcagtacac 540 600 caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt 660 Caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc gtaataaccc Cgccccgttg acqcaaatgg qcqqtagqcg tgtacqgtgg gaggtctata taaqcagagc 720 780 tcgtttagtg aaccgtcaga tcactagaag ctttattgcg gtagtttatc acagttaaat tgctaacgca gtcagtgctt ctgacacaac agtctcgaac ttaagctgca gaagttggtc 840

gtgaggCact gggcaggtaa gtatcaaggt tacaagacag gtttaaggag accaatagaa

900

actgggcttg	tcgagacaga	gaagactctt	gcgtttctga	taggcaccta	ttggtcttac	960
tgacatccac	tttgcctttc	tctccacagg	tgtccactcc	cagttcaatt	acagctctta	1020
aggctagagt	acttaatacg	actcactata	ggctagcgga	tccaccatgt	tcatcttcct	1080
gctgttcctg	accctgacca	gcggcagcga	cctggaccgg	tgcaccacct	tcgacgacgt	1140
gcaggccccc	aactacaccc	agcacaccag	cagcatgcgg	ggcgtgtact	accccgacga	1200
gatctttcgg	agcgacaccc	tgtacctga c	ccaggacctg	ttcctgccct	tctacagcaa	1260
cgtgaccggc	ttccacacca	tcaaccacac	cttcggcaac	cccgtgatcc	ccttcaagga	1320
cggcatctac	ttcgccgcca	ccgagaagag	caacgtggtg	cggggctggg	tgttcggcag	1380
caccatgaac	aacaagagcc	agagcgtgat	catcatcaac	aacagcacca	acgtggtgat	1440
cc gggcct gc	aacttcgagc	tgtgcgacaa	ccccttcttc	gccgtgtcca	aacccatggg	1500
cacccagacc	cacaccatga	tcttcgacaa	cgccttcaac	tgcaccttcg	agtacatcag	1560
cgacgccttc	agcctggacg	tgagcgagaa	gagcggcaac	ttcaagcacc	tgcgggagtt	1620
cgtgttcaag	aacaaggacg	gcttcctgta	cgtgtacaag	ggctaccagc	ccatcgacgt	1680
ggtgagagac	ctgcccagcg	gcttcaacac	cctgaagccc	atcttcaagc	tgcccctggg	1740
catcaacatc	accaacttcc	gggccatcct	gaccgccttt	agccctgccc	aggacatctg	1800
gggcaccagc	gccgccgcct	acttcgtggg	ctacctgaag	cctaccacct	tcatgctgaa	1860
gtacgacgag	aacggcacca	tcaccgacgc	cgtggactgc	agccagaacc	ccctggccga	1920
gctgaagtgc	agcgtgaaga	gcttcgagat	cgacaagggc	atctaccaga	ccagcaactt	1980
cagagtggtg	cctagcggcg	atgtggtgc g	gttccccaat	atcaccaacc	tgtgcccctt	2040
cggcgaagtg	ttcaacgcca	ccaagttccc	cagcgtgtac	gcctgggagc	ggaagaagat	2100
cagcaactgc	gtggccgact	acagcgtgct	gtacaactcc	accttcttca	gcaccttcaa	2160
gtgctacggc	gtgagcgcca	ccaagctgaa	cgacctgtgc	ttcagcaacg	tgtacgccga	2220
cagcttcgtg	gt g aagggcg	acgacgtgag	acagatcgcc	cctggccaga	ccggcgtgat	2280
cgccgactac	aactacaagc	tgcccgacga	cttcatgggc	tgcgtgctgg	cctggaacac	2340
ccggaacatc	gacgccacaa	gcaccggcaa	ctacaattac	aagtaccgct	acctgcggca	2400
cggcaagctg	cggcccttcg	agcgggacat	ctccaacgtg	cccttcagcc	ccgacggcaa	2460
gccctgcacc	cccctgccc	tgaactgcta	ctggcccctg	aacgactacg	gcttctacac	2520
caccaccggc	atcggctatc	agccctacag	agtggtggtg	ctgagcttcg	agctgctgaa	2580
cgcccctgcc	accgtgtgcg	gccccaagct	gagcaccgac	ctgatcaaga	accagtgcgt	2640
gaacttcaac	ttcaacggcc	tgaccggcac	cggcgtgctg	acccccagca	gcaagcgctt	2700
ccagcccttc	cagcagttcg	gccgggatgt	gagcgacttc	accgacagcg	tgcgggaccc	2760
caagaccagc	gagatcctgg	acatcagccc	ctgcagcttc	ggcggcgtgt	ccgtgatcac	2820
ccccggcacc	aacgccagca	gcgaagtg gc	cgtgctgtac	caggacgtga	actgcaccga	2880
cgtgagcacc	gccatccacg	ccgaccagct	gacccccgcc	tggcggatct	acagcaccgg	2940

gaacaacgtg	ttccagaccc	aggccggctg	cctgatcggc	gccgagcacg	tggacaccag	3000
ctacgagtgc	gacatcccca	ttggcgccgg	aatctgcgcc	agctaccaca	ccgtgagcct	3060
gctgcggagc	accagccaga	agtccatcgt	ggcctacacc	atgagcctgg	gcgccgacag	3120
cagcatcgcc	tacagcaaca	acaccatcgc	catccccacc	aacttcagca	tctccatcac	3180
caccgaagtg	atgcccgtga	gcatggccaa	gacaagcgtg	gattgcaaca	tgtacatctg	3240
cggcgacagc	accgagtgcg	ccaacctgct	gctgcagtac	ggcagcttct	gcacccagct	3300
gaaccgggcc	ctgagcggca	tcgccgccga	gcaggaccgg	aacaccagag	aagtgttcgc	3360
ccaagtgaag	cagatgtata	agacccccac	cctgaagtac	ttcgggggct	tcaacttctc	3420
tcagatcctg	cccgaccctc	tgaagcccac	caagcgctcc	ttcatcgagg	acctgctgtt	3480
caacaaagtg	accctggccg	acgccggctt	tatgaagcag	tacggcgagt	gcctgggcga	3540
catcaacgcc	cgggacctga	tctgcgccca	gaagtttaac	gggctgaccg	tgctgccccc	3600
cctgctgacc	gacgacatga	tcgccgccta	tacagccgcc	ctggtgagcg	gcaccgccac	3660
cgccggctgg	accttcggag	ccggagccgc	cctgcagatc	cccttcgcca	tgcagatggc	3720
ctaccggttc	aacggcatc g	g cgtgaccca	gaacgtgctg	tacgagaacc	agaagcagat	3780
cgccaaccag	ttcaacaagg	cc atcagcca	gatccaggag	agcctgacca	caaccagcac	3840
cgccctgggc	aagctgcagg	acgtggtgaa	ccagaacgcc	caggccctga	acaccctggt	3900
gaagcagctg	agcagcaact	tcggcgccat	cagctctgtg	ctgaacgaca	tcctgagcag	3960
gctggacaaa	gtggaggccg	aagtgcagat	cgaccggctg	atcaccggac	gcctgcagtc	4020
cctgcagacc	tacgtgaccc	agcagctgat	cagagccgcc	gagatccggg	ccagcgccaa	4080
tctggccgcc	accaagatga	gcgagtgcgt	gctgggccag	agcaagagag	tggacttctg	4140
cggcaagggc	tatcacctga	tgagcttccc	ccaggccgcc	ccccacggcg	tggtgttcct	4200
gcacgtgacc	tacgtgccta	gccaggagcg	gaacttcacc	accgccccag	ccatctgcca	4260
cgagggcaag	gcctacttcc	cccgggaggg	cgtgttcgtg	tttaacggca	ccagctggtt	4320
catcacccag	cgcaacttct	tcagccccca	gatcatcacc	acagacaaca	ccttcgtgtc	4380
cggcaactgt	gatgtggtga	tcggcatcat	caataacacc	gtgtacgacc	ccctgcagcc	4440
cgagctggac	agcttcaagg	aggagctgga	caaatacttc	aagaaccaca	cctcccccga	4500
cgtggacctg	ggcgatatca	gcggcatcaa	cgcctccgtg	gtgaacatcc	a gaa gg agat	4560
cgacagactg	aacgaagtgg	ccaagaacct	gaacgagagc	ctgatcgacc	tgcaggagct	4620
gggcaagtac	gagcagtaca	tcaagtggcc	ctggtacgtg	tggctgggct	tcatcgccgg	4680
cctgatcgcc	atcgtgatgg	tgaccatcct	gctgtgctgc	atgaccagct	gctgtagctg	4740
cctgaaaggc	gcctgcagct	gtggcagctg	ctgcaagttc	gacgaggacg	acagcgagcc	4800
cgtgctgaag	ggcgtgaagc	tgcactacac	ctgataactc	gagaattcac	gcgtggtacc	4860
tctagagtcg	acccgggcgg	ccgcttcgag	cagacatgat	aagatacatt	gatgagtttg	4920
gacaaaccac	aactagaatg	cagtgaaaaa	aatgctttat	ttgtgaaatt	tgtgatgcta	4980

						E040
	tgtaaccatt					5040
-	tcaggttcag					5100
acaaatgtgg	taaaatcgat	aaggatccgg	gctggcgtaa	tagcgaagag	gcccgcaccg	5160
atcgcccttc	ccaacagttg	cgcagcctga	atggcgaatg	gacgcgccct	gtagcggcgc	5220
attaagcgcg	gcgggtgtgg	tggttacgcg	cagcgtgacc	gctacacttg	ccagcgccct	5280
agcgcccgct	cctttcgctt	tcttcccttc	ctttctcgcc	acgttcgccg	gctttccccg	5340
tcaagctcta	aatcgggggc	tccctttagg	gttccgattt	agagctttac	ggcacctcga	5400
ccgcaaaaaa	cttgatttgg	gtgatggttc	acgtagtggg	ccatcgccct	gatagacggt	5460
ttttcgccct	ttgacgttgg	agtccacgtt	ctttaatagt	ggactcttgt	tccaaactgg	5520
aacaacactc	aaccctatct	cggtctattc	ttttgattta	taagggattt	tgccgatttc	5580
ggcctattgg	ttaaaaaaatg	agctgattta	acaaatattt	aacgcgaatt	ttaacaaaat	5640
attaacgttt	acaatttcgc	ctgatgcggt	attttctcct	tacgcatctg	tgcggtattt	5700
cacaccgcat	atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagccagc	5760
cccgacaccc	gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	5820
cttacagaca	agctgtgacc	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	5880
caccgaaacg	cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	5940
tgataataat	ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	6000
ctatttgttt	atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	6060
gataaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	6120
cccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	6180
tgaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	6240
tcaacagcgg	taagatcctt	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	6300
cttttaaagt	tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	6360
tcggtcgccg	catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	6420
agcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	6480
ataacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	6540
ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	6600
aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	6660
gcaaactatt	aactggcgaa	ctacttactc	tagcttcccg	gcaacaatta	atagactgga	6720
tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	ccttccggct	ggctggttta	6780
ttgctgataa	atctggagcc	ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	6840
cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg	6900
atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	6960
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	7020

ggatctaggt	gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	7080
cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	7140
ttctgcgcgt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	7200
tgccggatca	agagctacca	actctttttc	cgaaggtaac	tggcttcagc	agagcgcaga	7260
taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	7320
caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	7380
agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	7440
gctgaacggg	gggttcgtgc	acacagccca	gcttggagcg	aacgacctac	accgaactga	7500
gatacctaca	gcgtgagcta	tgagaaagcg	ccacgcttcc	cgaagggaga	aaggcggaca	7560
ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	7620
acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	7680
tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	7740
ggttcctggc	cttttgCtgg	ccttttgctc	acatggctcg	acagatct		7788
110> 141 111> 23						

```
<21
<211> 23
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador SNE-S1
<400> 141
ggttgggatt atccaaaatg tga
                                                   23
<210> 142
<211> 24
<212> ADN
<213> Secuencia artificial
<223> cebador SNE-AS1
<400> 142
gcatcatcag aaagaatcat catg
                                                   24
<210> 143
<211> 21
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador SAR1-s
<400> 143
                                                  21
cctctcttgt tcttgctcgc a
<210> 144
<211> 21
<212> ADN
```

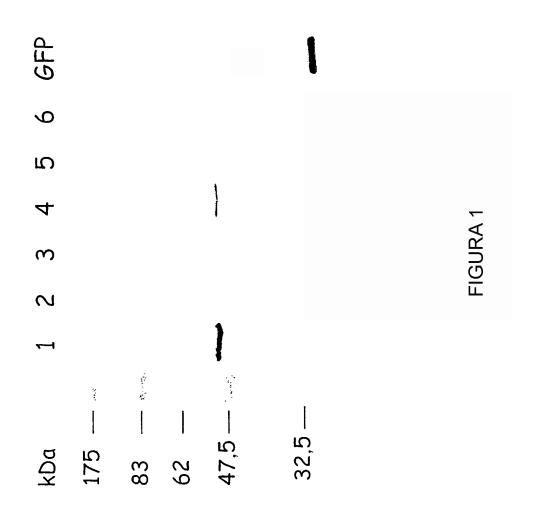
<213> Secuencia artificial

<220>

```
<223> cebador SAR1-AS
<400> 144
                                                     21
tatagtgagc cgccacacat g
<210> 145
<211> 45
<212> ADN
<213> Secuencia artificial
<223> cebador PCR
<400> 145
ataggateca ceatgtttat tttettatta tttettaete teaet
                                                     45
<210> 146
<211> 37
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador PCR
<400> 146
atactcgagt tatgtgtaat gtaatttgac accettg
                                                     37
<210> 147
<211> 45
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador PCR
<400> 147
ataggateca ceatgtttat tttettatta tttettaete teaet
                                                     45
<210> 148
<211> 36
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador PCR
<400> 148
acctccggat ttaatatatt gctcatattt tcccaa
                                                     36
<210> 149
<211> 13
<212> PRT
<213> Secuencia artificial
<223> extremo N-terminal de la proteína S del SRAS-CoV (aminoácidos 1 a 13)
<400> 149
                 Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly 1 \hspace{1cm} 5 \hspace{1cm} 10
<210> 150
<211> 10
<212> PRT
<213> Secuencia artificial
```

```
<220>
<223> oligopéptido
<400> 150
                       Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys 1 10
<210> 151
<211> 34
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador PCR
<400> 151
                                                34
actagctagc ggatccacca tgttcatctt cctg
<210> 152
<211> 33
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador PCR
<400> 152
agtatccgga cttgatgtac tgctcgtact tgc
                                                33
<210> 153
<211> 59
<212> ADN
<213> Secuencia artificial
<220>
<223> oligonucléotide
<400> 153
tatgagcttt tttttttttt tttttttggc atataaatag actcggcgcg ccatctgca
                                                      59
<210> 154
<211> 53
<212> ADN
<213> Secuencia artificial
<220>
<223> oligonucléotide
<400> 154
<210> 155
<211> 45
<212> ADN
<213> Secuencia artificial
<220>
<223> cebador PCR
atacgtacga ccatgtttat tttcttatta tttcttactc tcact
                                                45
<210> 156
```

<211> 40


<212> ADN <213> Secuencia artificial	
<220> <223> cebador PCR	
<400> 156 atagcgcgct cattatgtgt aatgtaattt gacacccttg	40
<210> 157 <211> 20 <212> ADN <213> Secuencia artificial	
<220> <223> cebador PCR	
<400> 157 ccatttcaac aatttggccg	20
<210> 158 <211> 45 <212> ADN <213> Secuencia artificial	
<220> <223> cebador PCR	
<400> 158 ataggatccg cgcgctcatt atttatcgtc gtcatcttta taatc	45

REIVINDICACIONES

- 1. Polipéptido aislado y purificado, caracterizado porque se trata del ectodominio de la proteína S de secuencia SEC ID nº 3, y porque está constituido por los aminoácidos que corresponden a las posiciones 1 a 1193 de la secuencia de aminoácidos de dicha proteína S o de los aminoácidos que corresponden a las posiciones 14 a 1193 de la secuencia de aminoácidos de dicha proteína S.
- 2. Ácido nucleico que codifica un polipéptido, según la reivindicación 1.
- 3. Vector de expresión recombinante, caracterizado porque comprende un ácido nucleico, según la reivindicación 2.
- 4. Vector de expresión recombinante, según la reivindicación 3, que codifica el ectodominio de la proteína S de secuencia SEC ID nº 3, caracterizado porque se selecciona entre los vectores contenidos en las capas bacterianas siguientes, depositadas en la Collection Nationale de Cultures de Microorganismes (CNCM), 25 rue du Docteur Roux, 75724 Paris Cedex 15
 - a) cepa n° I-3324, depositada el 22 de noviembre de 2004,
 - b) cepa n° 1-3327, depositada el 1 de diciembre de 2004,
 - c) cepa n° 1-3332, depositada el 1 de diciembre de 2004,
 - d) cepa n° I-3335, depositada el 1 de diciembre de 2004,
 - e) cepa n° I-3337, depositada el 1 de diciembre de 2004,
 - f) cepa n° 1-3339, depositada el 2 de diciembre de 2004, y
 - g) cepa n° I-3341, depositada el 2 de diciembre de 2004
- 5. Vector de expresión, según la reivindicación 3, caracterizado porque se trata de un vector viral, en forma de partícula viral o en forma de genoma recombinante.
- 6. Vector viral, en forma de partícula viral o en forma de genoma recombinante, según la reivindicación 5, caracterizado porque se trata de una partícula viral recombinante o de un genoma viral recombinante susceptible de ser obtenido por transfección de un plásmido según los apartados b) o d) a g) de la reivindicación 4, en un sistema celular apropiado.
- 7. Vector de expresión recombinante, según la reivindicación 3, caracterizado porque se trata de un vector lentiviral.
- 8. Vector de expresión recombinante, según la reivindicación 3, caracterizado porque se trata de un virus de la rubeola.
- 9. Vector de expresión recombinante, según la reivindicación 3, caracterizado porque se trata de un virus de la vacuna antivariólica.
- 10. Uso de un vector contenido en una cepa bacteriana, según la reivindicación 4, para la producción *in vitro*, en un sistema eucariota, del ectodominio de la proteína S del coronavirus asociado al SRAS, según la reivindicación 1.
- 11. Método de producción del ectodominio de la proteína S, según la reivindicación 1, en un sistema eucariota, que comprende una etapa de transfección de células eucariotas en cultivo por un vector seleccionado entre los vectores contenidos en las cepas bacterianas mencionadas en la reivindicación 5.
- 12. Célula eucariota aislada, genéticamente modificada, que expresa un polipéptido, según la reivindicación 1.
- 13. Célula, según la reivindicación 12, susceptible de ser obtenida mediante transfección por cualquiera de los vectores mencionados en los apartados d) o e) de la reivindicación 4.
- 14. Célula, según la reivindicación 13, caracterizada porque se trata de la célula FRhK4-Ssol-30, depositada en la CNCM el 22 de noviembre de 2004, bajo el n° l-3325.
- 15. Uso de un polipéptido, según la reivindicación 1, para detectar una infección por un coronavirus asociado al SRAS, a partir de una muestra biológica.
- 16. Método de detección de una infección por un coronavirus asociado al SRAS o de anticuerpos dirigidos contra un coronavirus asociado al SRAS, a partir de una muestra biológica, caracterizado porque la detección se efectúa por

ELISA utilizando un polipéptido, según la reivindicación 1, expresado en un sistema eucariota.

- 17. Método de detección, según la reivindicación 16, que comprende además una etapa de detección por ELISA que utiliza la proteína N recombinante.
- 18. Método, según la reivindicación 16 ó 17, caracterizado porque se trata de un método por ELISA doble epítopo, y porque el suero a ensayar se mezcla con el antígeno de revelado, siendo puesta después dicha mezcla en contacto con el antígeno fijado sobre un soporte sólido.
- 19. Complejo inmune aislado formado por un polipéptido, según la reivindicación 1, y un anticuerpo dirigido específicamente contra un epítopo del coronavirus asociado al SRAS.
- 20. Kit o estuche de detección de un coronarivus asociado al SRAS, caracterizado porque comprende el menos un agente reactivo seleccionado del grupo constituido por: un polipéptido, según la reivindicación 1, un ácido nucleico, según la reivindicación 2, una célula, según cualquiera de las reivindicaciones 12 a 14.
- 21. Composición inmunógena y/o de vacuna, caracterizada porque comprende un polipéptido recombinante, según la reivindicación 1, obtenido en un sistema de expresión eucariota.
- 22. Composición inmunógena y/o de vacuna, caracterizada porque comprende un vector o un virus recombinante, según cualquiera de las reivindicaciones 3, 4, y 5 a 9.

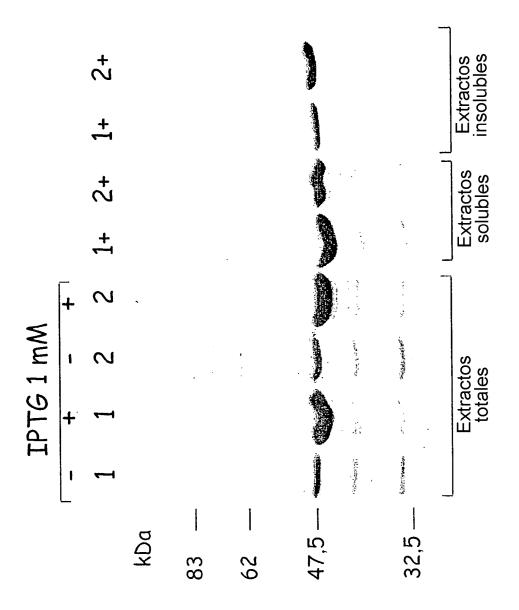
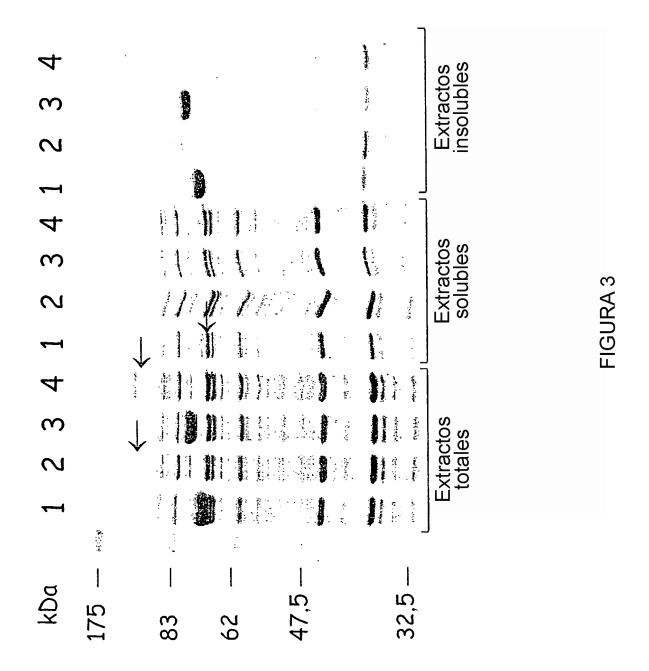
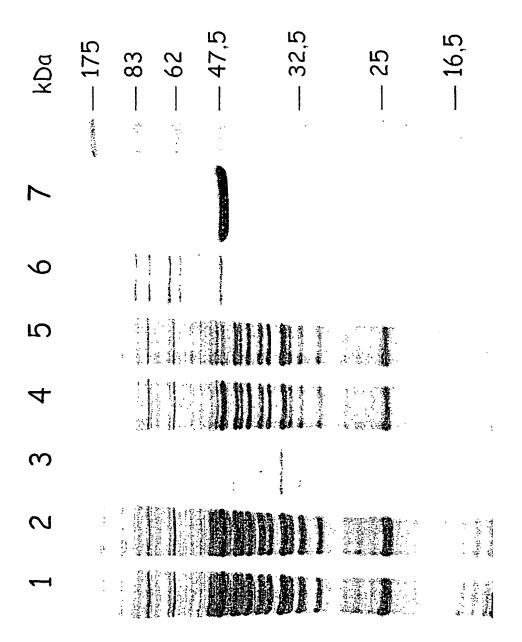




FIGURA 2

	A- proteínas totales	oteí	nas	tota	ales		Ш	3- รเ	lero	M12	B- suero M12 (D8)	≅	ن	C- suero M13 (D29)	0	M	3 (D	29)
KDa 175 —	₩.	~	m	4	ıΩ	9	.	2	m	4	ស	9	₩.	7	m	4	വ	9
83 — 62 — 47,5 —													A Property of the Party of the		a.	•		•
32,5 —		•	इ	100 mm m	· · · · · · · · · · · · · · · · · · ·	C		•	•		•	;					è	1
25 —	<u>.</u>		_										·					,
deb	ósito	de O	10 1	ep -	ext	racto	depósito de 10 μ l de extracto $$ depósito de 2 μ l de extracto	de	2 µ	de é	extra	cto	depósito de 2 μl de extracto	de	2 μ 1	qe qe	extr	acto
							<u></u>	-1GL	FIGURA 4	4								

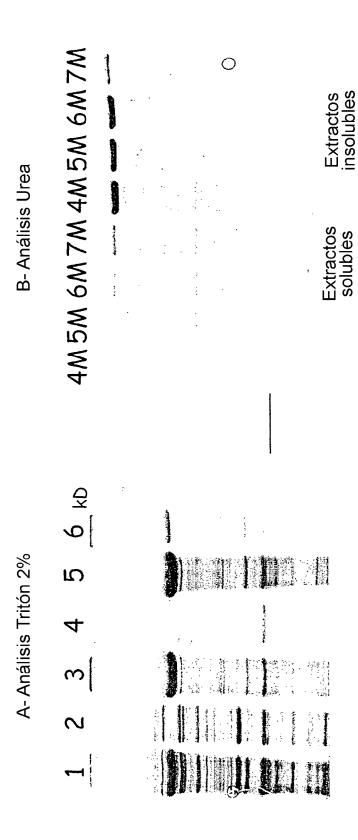


FIGURA 6

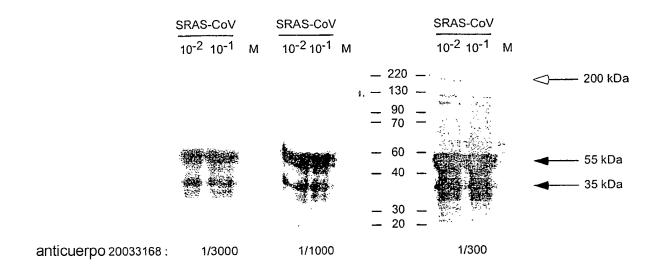


FIGURA 7

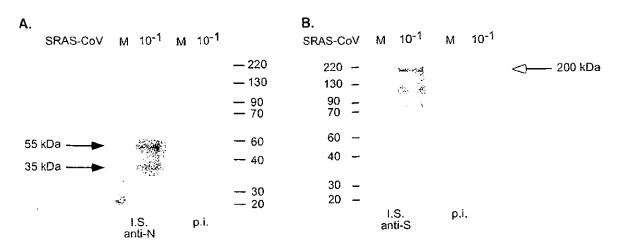
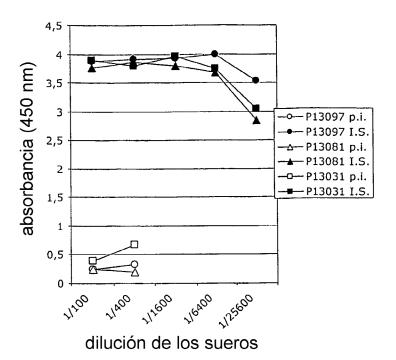



FIGURA 8

A

В

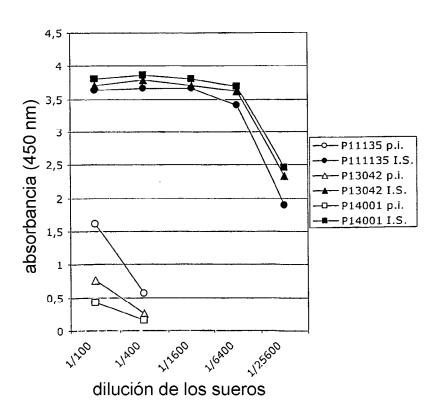
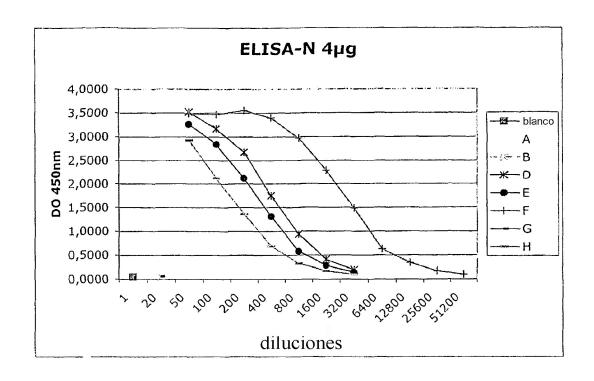



FIGURA 9

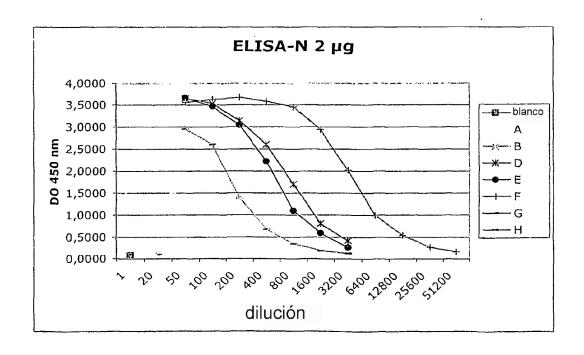


FIGURA 10a

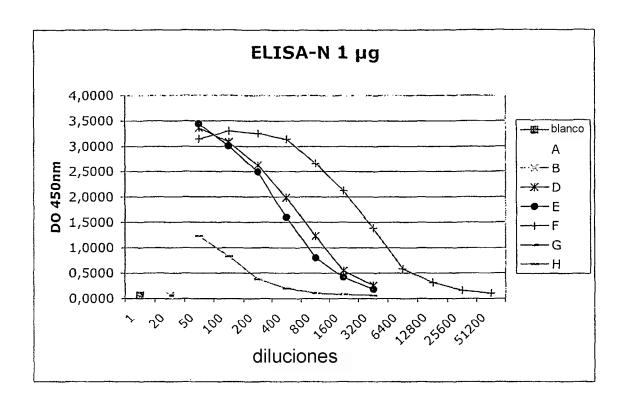


FIGURA 10b

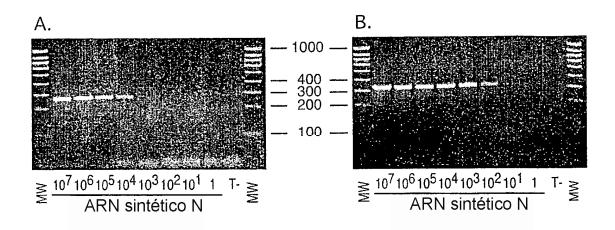
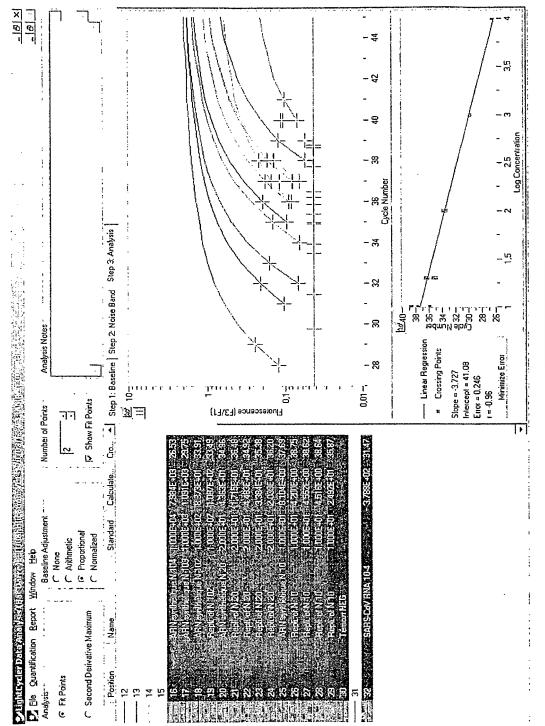



FIGURA 11


```
>< XhoII
                 >< ScrFI
                                             >< Sau3AI
                               > < TthHB8I >< NdeII
> < TaqI >< MflI
               >< MvaI
>< EcoRII
                                 >< Sau3AI >< MboI
>< NdeII >< DpnII
                 >< Ecl136I
               >< DsaV
                                            >< DpnII
                        >< Mbol>< Mnll>< DpnII
>< Mbol>< Mnll>< DpnI
>< DpnII >< BstYI
>< DpnI >< BspAI
>< BspAI >< Bsp14
>< Bsp143I>< BqlII
                 >< BstOI
                 >< BstNI
                                            >< BspAI
>< Bsp143I
                 >< BsiLI
               >< BsaJI
                 >< ApyI
                                    >< Bsp143I>< BglII</pre>
ATATTAGGTT TTTACCTACC CAGGAAAAGC CAACCAACCT CGATCTCTTG TAGATCTGTT CTCTAAACGA
               20 30 40 50 60
     1.0
                                   >< VneI
                              >< SphI
                                   >< SnoI
                                >< RmaI
                              >< PaeI >< SduI
                              >< NspI >< NspII
>< NspHI >< HqiAI</pre>
                              >< NlaIII >< Bsp1286I
                                >< MaeI >< BmyI
  >< Tru91
                                   >< ApaLI
  ACTITAAAAT CTGTGTAGCT GTCGCTCGGC TGCATGCCTA GTGCACCTAC GCAGTATAAA CAATAATAAA
         90 100
                             110 120 130 140
                                    >< SfcI
                                       >< PstI
                                       >< MnlI
                                     >< Ksp632I
          TTTTACTGTC GTTGACAAGA AACGAGTAAC TCGTCCCTCT TCTGCAGACT GCTTACGGTT TCGTCCGTGT
     150 160 170 180 190 200 210
    >< TthHB8I >< Styl
    >< TaqI
                >< Ecol30I >< MaeIII
>< BssTiI >< HpaII
>< BsaJI >< HapII
    >< MboI
>< DpnII
    TGCAGTCGAT CATCAGCATA CCTAGGTTTC GTCCGGGTGT GACCGAAAGG TAAGATGGAG AGCCTTGTTC
         230
                                         260 270
     220
                  240 250
                                                      >< RmaI
                                         >< Esp3I >< MaeII
                 >< MaeII> < Eco57I
     TTGGTGTCAA CGAGAAAACA CACGTCCAAC TCAGTTTGCC TGTCCTTCAG GTTAGAGACG TGCTAGTGCG
     290
             300
                      310
                               320 330
                                                 340
```

FIGURA 13. 1

```
>< Sau96I
                        >< PssI
                      >< PalI
                      >< NspIV
                       >< MnlI
                      >< HaeIII
                      >< EcoO109I
                      >< DraII>< MboII >< PmlI
                     >< MnlI
            >< Ksp632I >< BsuRI</pre>
         >< HinfI >< BsiZI>< EcoNI >< Eco72I
                     >< BshI >< BslI >< BsaAI
            >< EarI
            >< Eaml104I>< AsuI >< BsiYI>< BbrPI
                                                    >< MnlI
TGGCTTCGGG GACTCTGTGG AAGAGGCCCT ATCGGAGGCA CGTGAACACC TCAAAAATGG CACTTGTGGT
           370
                    380
                            390
      360
                                      400
                                                  410
                                                   >< Tru9I
                    >< RsaI
                                                   >< SfaNI
                                >< BspWI
                   >< Csp6I >< Bs
>< AfaI >< AluI
>< RmaI
                                                   >< MseI
>< MaeI >< AluI
CTAGTAGAGC TGGAAAAAGG CGTACTGCCC CAGCTTGAAC AGCCCTATGT GTTCATTAAA CGTTCTGATG
             440 450 460 470
     430
                                                480
                >< PalI
               >< HaeIII
                                                         >< RsaI
 >< Tru9I
              >< GdiII
                                                         McrI ><
              >< EaeI
 >< MseI
                                                         >< Csp6I
>< Esp4I
                                                  >< BsmI BsiEI ><
              >< BsuRI
                            >< AluI >< BscCI >< AfaI
               >< BshI
>< AflII
CCTTAAGCAC CAATCACGGC CACAAGGTCG TTGAGCTGGT TGCAGAAATG GACGGCATTC AGTACGGTCG
                   520
                            530 540 550 560
     500
               510
                               >< NspI
                  >< Scal
                              IHqzN ><
                  >< RsaI
                              >< NlaIII
                 > < Csp6I
                               >< BslI
                               >< BsiYI
                                                     >< MboII
               >< BsrI
               >< AfaI >< AflIII >< MunI >< AciI
 >< AciT
TAGCGGTATA ACACTGGGAG TACTCGTGCC ACATGTGGGC GAAACCCCAA TTGCATACCG CAATGTTCTT
                                           610
     570
               580
                      590
                                  600
                                                   620
                                          >< TthHB8I
                                          >< TaqI
                                           >< Sau3AI
                                           >< NdeII
                                           >< MboI
                                           >< DpnII
                                            > < DpnI
                                          >< ClaI
                                           >< Bsu15I
                                          >< BspDI
                     >< NlaIV
                                           >< BspAI
                      >< MspI
                                            > < Bsp143I
                      >< HpaII
                                          >< Bsp106I
                      >< HapII
                                          >< BsiXI
                                                         MaeIII >
                      >< Cfr10I
                                          >< BscI>< SfaNI DdeI ><
                     >< BscBI >< AluI >< BanIII BfrI ><
CTTCGTAAGA ACGGTAATAA GGGAGCCGGT GGTCATAGCT ATGGCATCGA TCTAAAGTCT TATGACTTAG
                    660
      640
               650
                                  670
                                        680
                                               690
```

FIGURA 13. 2

```
>< Sau3AI
              >< NdeII
             >< MboI
         >< HphI
                                                      VneI ><
             >< DpnII
                                                     SnoI ><
                                                   > < NlaIII</pre>
              >< BspAI
         >< AlwI>< DpnI
                                            >< DdeI ApaLI ><
     >< AluI >< Bsp143I >< MboII >< BsrI
                                                    Alw44I ><
GTGACGAGCT TGGCACTGAT CCCATTGAAG ATTATGAACA AAACTGGAAC ACTAAGCATG GCAGTGGTGC
     710
             720
                    730 740 750 760 770
                    >< SstI
                    >< SduI
                    >< SacI
                    >< NspII
                                                     Sau961 ><
                  >< MnlI
                   >< HqiAI
                                          >< TthHB8I PalI ><
                                           >< TaqI NspIV ><
>< SduI
                   >< Eco24I
                                          >< NspII
                  >< Ecl136II
                                                     HaeIII ><
                  >< Bsp1286I
>< BmyI
>< HgiAI
  HgiAl
>< DraIII
                                            >< HindII BsuRI ><
>< Bsp1286I
>< BmyI
                   >< BanII
                                            >< HincII BsiZI ><
                   >< Alw21I
                                             >< BsgI BshI ><
                 >< AluI >< MaeIII >< AccI
                                                     AsuI ><
ACTCCGTGAA CTCACTCGTG AGCTCAATGG AGGTGCAGTC ACTCGCTATG TCGACAACAA TTTCTGTGGC
                      800 810
                                      820 830 840
     780 790
                                       >< ThaI
                                      >< ThaI
                                      >< MvnI
                                      >< MvnI
       > < RsaI
                                     >< HinPlI
                                                  > < VneI
> < SnoI</pre>
       > < NlaIV
                                     >< Hin6I
                                      >< Hin6I
>< HhaI
        >< KpnI
                                      >< CfoI
                                                   >< SduI
     >< Eco64I
                                       >< BstUI NspII ><
< BstUI HgiAI ><
      >< Csp6I
       > < BscBI
                                      >< BstUI
                                      >< Bsp50I Bsp1286I ><
      >< BanT
                                      >< Bsp50I >< BmyI
      >< Asp718
       > < AfaI
                                      >< AciI
                                                   > < ApaLI
      > < Alw441
                                                 Alw2lI ><
CCAGATGGGT ACCCTCTTGA TTGCATCAAA GATTTTCTCG CACGCGCGGG CAAGTCAATG TGCACTCTTT
                    870
                           880 890 900
             860
                    >< TthHB8I
               >< TthHB8I
                   >< TagI
               >< TaqI
                   >< MnlI
                  >< Ksp632I
                                                 NlaIII ><
                 CCGAACAACT TGATTACATC GAGTCGAAGA GAGGTGTCTA CTGCTGCCGT GACCATGAGC ATGAAATTGC
                                         960
                                950
      920 930 940
                                                 970 980
                                         >< TthHB8I
                                         >< TaqI
                                         >< SfuI
                                         >< NspV>< Tru9I
>< ScrFI >< HinPlI
                                         >< LspI>< MseI
                          FIGURA 13. 3
```

```
>< Hin6I
                                 >< SduI
                                           >< Csp45I
>< Ecl136I >< HhaI
                                 >< NspII >< BstBI
>< HgiAI >< Bspl19I
>< Bsp1286I >< BsiCI
            >< HaeII
>< BstOI
            >< Eco47III
>< BstNI
CTGGTTCACT GAGCGCTCTG ATAAGAGCTA CGAGCACCAG ACACCCTTCG AAATTAAGAG TGCCAAGAAA
                                           1030
                                                               1050
      990
               1000
                        1010
                                 1020
                                                     1040
                                          >< Tru9I
                       >< BsmI
                                          >< MseI
                   >< BscCI
                                           > < MnlI
TTTGACACTT TCAAAGGGGA ATGCCCAAAG TTTGTGTTTC CTCTTAACTC AAAAGTCAAA GTCATTCAAC
                        1080 1090 1100
     1060
              1070
                                                    1110 1120
 >< PmlI
 >< PmaCI
 >< MaeII
 >< Eco72I
 >< BsaAI
                                >< NlaIII
                                                   >< RsaI
                                       >< Bst1107I >< Csp6I
 >< BbrPI
           >< MnlI>< DdeI
 >< AflIII
                                       >< AccI >< AfaI
CACGTGTTGA AAAGAAAAAG ACTGAGGGTT TCATGGGGCG TATACGCTCT GTGTACCCTG TTGCATCTCC
     1130 1140 1150 1160
                                         1170 1180
>< SfaNI
      >< MaeIII
                       >< AccI
                                                         NlaIII ><
ACAGGAGTGT AACAATATGC ACTTGTCTAC CTTGATGAAA TGTAATCATT GCGATGAAGT TTCATGGCAG
          1210 1220 1230 1240
                                                     1250
                                                          >< SinI
                                                          >< Sau96I
                                                          PssI ><
                                                          >< Psp5II
                                                          >< PpuMI
                                                          >< NspIV
                                                           >< NspHII
                                                          >< Eco47I
                                                          >< DraII
                                                          >< Cfr13I
                                                          >< BsiZI
                                                          >< Bme18I
                                                          >< AvaII
                                                          >< AsuI
                                                  EcoOl09I ><AflIII >
ACGTGCGACT TTCTGAAAGC CACTTGTGAA CATTGTGGCA CTGAAAATTT AGTTATTGAA GGACCTACTA
                       1290
                                1300
                                                      1320
     1270
               1280
                                           1310
                                                         Van91I ><
                                                             SinI ><
       >< RsaI
                                                           Sau96T ><
                                                          PflMI ><
   IgsN ><
                                                            NspIV ><
       >< NlaIV
   >< NlaIII
                                                            NspHII >
   >< NspHI>< KpnI
                                                           Eco471 ><
     >< Eco641
                                                           Cfr13I ><
      >< Csp6I
                                                          BslI ><
      >< BscBI
                                                            BsiZI ><
                                                          BsiYI ><
     >< BanI
     >< Asp718
                                                           Bme18I ><
       >< Afaï
                                                            AvaII ><
     >< AccBlI
                                                            AsuI ><
```

```
>< SfcI
                                    >< NlaIII</pre>
CATGTGGGTA CCTACCTACT AATGCTGTAG TGAAAATGCC ATGTCCTGCC TGTCAAGACC CAGAGATTGG
     1340 1350 1360 1370 1380 1390 1400
                                          >< TthHB8I
                                          >< TaqI>< MnlI
                                          >< Hinfl
                                       >< PleI >< AciI
 >< Ddel
ACCTGAGCAT AGTGTTGCAG ATTATCACAA CCACTCAAAC ATTGAAACTC GACTCCGCAA GGGAGGTAGG
                                      1450
    1410
           1420 1430 1440
                                               1460
>< RmaI
                                                    NlaIV ><
   >< MnlI
                                                       >< BsrI
                    >< BbvI >< Fnu4HI
>< MaeI
                                                   BscBI ><
ACTAGATGTT TTGGAGGCTG TGTGTTTGCC TATGTTGGCT GCTATAATAA GCGTGCCTAC TGGGTTCCTC
    1480 1490 1500 1510 1520 1530
                                                      XhoII ><
                                                      Sau3AI ><
                                                      NdeII ><
                                                       MflI ><
                                   >< MaeIII
                                                       MboI ><
   >< RmaI
  >< MaeI
GTGCTAGTGC TGATATTGGC TCAGGCCATA CTGGCATTAC TGGTGACAAT GTGGAGACCT TGAATGAGGA
                     1570 1580
    1550
            1560
                                      1590
                                                1600 1610
                         > < Tru9I
                         > < MseI
                     >< MaeII >< Tru9I
                          ..pal
>< HindII
                                                    > < MnlI
                                                    > < Ksp632I
            >< HinfI >< PleI >< HincII</pre>
                                                    > < EarI
    >< AlwI >< DdeI >< AflIII >< MseI
                                                    > < Eam11041
TCTCCTTGAG ATACTGAGTC GTGAACGTGT TAACATTAAC ATTGTTGGCG ATTTTCATTT GAATGAAGAG
           1630 1640 1650 1660 1670 1680
     >< MboII
                                                       PleE ><
         >< BstXI >< SfaNI
                                                    > < HinfI
GTTGCCATCA TTTTGGCATC TTTCTCTGCT TCTACAAGTG CCTTTATTGA CACTATAAAG AGTCTTGATT
            1700 1710 1720
                                      1730
                                                 1740
                                          >< StyI
                                      >< MaeIII
                                         >< EcoT14I
                           >< PleI
                                          >< Eco130I
                    >< MaeIII >< BssTiI
>< Hinfl>< AciI >< BsaJI
                                                   BsiYI ><
ACAAGTCTTT CAAAACCATT GTTGAGTCCT GCGGTAACTA TAAAGTTACC AAGGGAAAGC CCGTAAAAGG
     1760 1770
                   1780 1790 1800 1810 1820
                   >< Sau3AI
                                      >< Van91I
                   >< NdeII
                                      >< PflMI
                   >< MboI
                                      >< DraIII
                   >< DpnII
                                      >< BslI
                   >< DpnI >< Tru9I >< BsiYI >< BspAI >< MseI >< 8 cold 3 T
                                      >< BbvI >< 1
>< AccB7I Fnu4HI ><
                                                   >< MnlI
                     >< Bsp143I
                          FIGURA 13. 5
```

```
TGCTTGGAAC ATTGGACAAC AGAGATCAGT TTTAACACCA CTGTGTGGTT TTCCCTCACA GGCTGCTGGT
    1830 1840 1850 1860 1870 1880 1890
                 >< Thal
                 >< SfaNI
                 >< MvnI
                 >< HinPll
               >< HinPlI
                 >< Kin6I
               >< Hin6I
                  >< HhaI
    >< Sau3AI
                 >< HhaI
    >< NdeII
                                                     PvuII >
                 >< CfoI
    >< MboI
                 >< CfoI
                                                      Psp5I >
               >< BstUI
    >< DpnII
                                                    NspBII >
     >< DonI >< BssHII
     >< BspAI
                                                    Fnu4HI ><
                          >< Fnu4HI >< BbvI
                 >< AccII
                                                      AluI >
GTTATCAGAT CAATTTTTGC GCGCACACTT GATGCAGCAA ACCACTCAAT TCCTGATTTG CAAAGAGCAG
    1900 1910 1920
                          1930 1940 1950 1960
                                      >< TthH88I
                                            >< Styl
                                            >< NcoI
                                       >< HindII
                                       >< HincII
                                        >< HinlI
                                           >< EcoT14I
                                        >< Eco57I
                                      >< TagI>< Ecol30I
                                      >< SalI >< Dsal
                                      >< RtrI >< BssTlI
                                         >< BsaHI
                                         >< BbiII>< NlaIII</pre>
                                        >< Acyl >< Hgal
>< MaeIII
>< Bbvi >< MaeII >< AccI>< BsaJI HphI >< CTGTCACCAT ACTTGATGGT ATTTCTGAAC AGTCATTACG TCTTGTCGAC GCCATGGTTT ATACTTCAGA
          1980 1990 2000 2010 2020 2030
                                           >< RsaI
                         >< NdeI
                                         > < Csp6I
                          >< MaeIII >< BsrI >< AfaI
      >< BspMI
CCTGCTCACC AACAGTGTCA TTATTATGGC ATATGTAACT GGTGGTCTTG TACAACAGAC TTCTCAGTGG
    2040
          2050 2060 2070
                                   2080 2090
                                >< $tuI
                                >< PalI
                                >< HaeIII
                                >< Eco147I
               >< SduI
                           >< DdeI
               >< NspII
TTGTCTAATC TTTTGGGCAC TACTGTTGAA AAACTCAGGC CTATCTTTGA ATGGATTGAG GCGAAACTTA
    2110 2120 2130 2140 2150 2160 2170
                             >< TfiI
          AspI ><
GTGCAGGAGT TGAATTTCTC AAGGATGCTT GGGAGATTCT CAAATTTCTC ATTACAGGTG TTTTTGACAT
    2180 2190 2200 2210 2220 2230 2240
                         FIGURA 13.6
```

```
Tru9I ><
                                                        MseI ><
                                                         HpaI >
                                                        HindII >
      >< Eco57I
                                                        HincII >
CGTCAAGGGT CAAATACAGG TTGCTTCAGA TAACATCAAG GATTGTGTAA AATGCTTCAT TGATGTTGTT
            2260 2270 2280 2290 2300
                    >< Sau3AI
                     >< NdeII
                     >< MboI
                       > < MaeIII
                                                >< Sau3AI
                      >< FbaI
                                                >< NdeII</pre>
                     >< DpnII
                                                >< DpnII
                     >< DpnI
                                                 >< DpnlMboII ><
                                    >< HinPlI
>< Hin6I
                    >< BspAI
                                                      DdeI ><
                                               >< Bsp143I
                     >< Bsp143I
                                               >< MboIBfrI ><
                    >< TthHB8I
         >< TagI >< BclI
AACAAGGCAC TCGAAATGTG CATTGATCAA GTCACTATCG CTGGCGCAAA GTTGCGATCA CTCAACTTAG
    2320 2330 2340 2350 2360 2370 2380
                                                       >< PvuII
                                        >< MaeII
                                                      >< Psp5I
                                       >< Bst1107I
                                                      >< NspBII
                                          >< BsaAI Fnu4HI ><
                                          >< BbvI > < Fnu4HI
         >< HphI >< OrdI >< AccI
                                                      >< Aluī
GTGAAGTCTT CATCGCTCAA AGCAAGGGAC TTTACCGTCA GTGTATACGT GGCAAGGAGC AGCTGCAACT
     2390
         2400 2410 2420
                                    2430 2440 2450
          >< Tru9I
              >< NlaIV
          >< MseI
             >< MnlI
         >< Esp4I
                                                        >< ScaI
             >< Eco64I
                                                        >< RsaI
              >< BscBI
                                                 >< NlaIIIMnlI ><</pre>
     >< NlaIII >< BanI</pre>
                                                     MnlI ><
                                        >< Tfil
        >< AflII
                                                      >< Csp6I
          >< AccBlI >< MaeIII >< Hinfl >< Hphl >< AfaI
ACTCATGCCT CTTAAGGCAC CAAAAGAAGT AACCTTTCTT GAAGGTGATT CACATGACAC AGTACTTACC
    2460 2470 2480
                             2490 2500
                                                 2510
                                  > < XhoI
                                    >< TthHB8I
                            >< TthHB8I>< TaqI
                                  > < SlaI
                                  > < PaeR7I
                                  > < NspIII
                                >< HphI >< HinlI</pre>
                                  > < Eco88I
                                  > < CcrI
                                >< Esp3I >< BsaHI
                                  > < BcoI
                                >< BsmAI >< BbiII
                                  > < AvaI >< HgaI</pre>
                            >< TaqI > < Ama87I>< BsmBI
>< Ddel>< MnlI
                             >< Alw26I >< AcyI
TCTGAGGAGG TTGTTCTCAA GAACGGTGAA CTCGAAGCAC TCGAGACGCC CGTTGATAGC TTCACAAATG
         2540 2550 2560 2570 2580 2590
    2530
```

```
>< PalI >< NlaIII
                                >< HaeIII >< MnlI
                               >< BsuRI >< DdeI >< Tru9I
>< BshI >< BfrI >< MseI
 >< AluI
           >< BsrI
GAGCTATCGT TGGCACACCA GTCTGTGTAA ATGGCCTCAT GCTCTTAGAG ATTAAGGACA AAGAACAATA
                                                      2650
                                            2640
     2600
              2610
                      2620
                                2630
                                                      >< VneI
                                                         Tru91 ><
                                                      >< SnoI
             >< ScrfI
             >< MvaI
                                                          >< SduI
           >< EcoRII
                                                          >< NspII
  >< MstI
            >< Ec1136I
                                                          MseI ><
                                                          >< HgiAI
 >< HinPlI >< DsaV
           >< BstOI
>< BstNI
                                                  Bsp1286I ><BslI ><
 >< Hin6I
   >< HhaI
                                                           BsiYI ><
            >< BsmAI
                                                           >< BmyI
  >< FspI
                                                      >< ApaLI
            >< BsiLI
  >< FdiII
  >< CfoI >< ApyI
>< AviII >< Alw261 >< BsrI
                                            >< Tru91 >< Alw44I
                                            >< MseI
                                                      >< Alw211
CTGCGCATTG TCTCCTGGTT TACTGGCTAC AAACAATGTC TTTCGCTTAA AAGGGGGTGC ACCAATTAAA
                       2690
             2680
                               2700
                                            2710 2720
     2670
                                                     >< TfiI
                         >< MboII > < MaeIII
                                                    >< Hinf[ AluI ><
GGTGTAACCT TTGGAGAAGA TACTGTTTGG GAAGTTCAAG GTTACAAGAA TGTGAGAATC ACATTTGAGC
                                 2770
                                           2780
     2740
          2750 2760
                                                     2790
                                                           >< RsaI
                                                           >< NlaIV
                                                           MaeIII ><
                                                       >< MspI>< KpnI
                                                       >< HpaII
                                                       >< HapII
                                                        > < Eco641
                                    >< SduI
                                                          >< Csp6I
                                                 >< Tfil >< BscBI
                                    >< NspII
                                                  > < BanI
                                    >< HgiAI
                                    >< MaeII
            >< HindII</pre>
                                >< Alw21I
            >< HincII
                      >< Tru9I
      >< AflIII
                      >< MseI
TTGATGAACG TGTTGACAAA GTGCTTAATG AAAAGTGCTC TGTCTACACT GTTGAATCCG GTACCGAAGT
                               2840
             2820 2830
                                            2850
                                                  2860 2870
                                                       >< Sau3AI
                                                       >< NdeII
                                                       >< MboI
                                                       >< DpnII
                                                        > < DpnI
             >< NspI
             >< NspHI
                                              >< MboII >< BspAI
                                              > < BsrI > < Bsp143I
             >< NlaIII
                >< MnlI >< AlwNI >< BbsI >< AlwNI
 >< DdeI
TACTGAGTTT GCATGTGTTG TAGCAGAGGC TGTTGTGAAG ACTTTACAAC CAGTTTCTGA TCTCCTTACC
             2890
                        2900
                                  2910
                                        2920 2930 2940
           >< Sau3AI
          >< NdeII
          >< MboI
          >< DpnII
           >< DpnI
          >< BspAI
```

```
AACATGGGTA TTGATCTTGA TGAGTGGAGT GTAGCTACAT TCTACTTATT TGATGATGCT GGTGAAGAAA
     2950
            2960 2970 2980
                                            2990
                                                       3000 3010
                                             >< $faNI
                                          >< MnlI
    >< MboII >< GsuI
                                          >< Ksp632I
                                                        > < MboII
  ACTITICATC ACGIATGIAI IGITCCITTI ACCCICCAGA IGAGGAAGAA GAGGACGAIG CAGAGIGIGA
     3020 3030 3040 3050 3060 3070 3080
                                      > < RsaI
                                 >< RsaI
                               >< NlaIII
                                  >< MnlI
>< Mnli >< Foki >< Csp6I Eco3li >< Csp6I >< MamI BsmAI >< Foki >< Csp6I >< MamI BsmAI >< State >< MboII >< AfaI >< BsiBI BsaI >< GGAAGAAGAA ATTGATGAAA CCTGTGAACA TGAGTACGGT ACAGAGGATG ATTATCAAGG TCTCCCTCTG
                                                         >< FokI
           3100 3110 3120 3130 3140 3150
      >< NlaIV>< PvuII>< XmnI
     >< Eco64I >< Psp5I >< TthHB8I

< MnlI >< DdeI >< TaqI >< MnlI >< MboII

>< BscBI>< NspBII >< MnlI >< Ksp632I >< MboII >< MboII

>< BanI >< MnlI >< EarI >< BsrI

>< AccBII >< AluI >< Asp700I >< Eaml104I >< MboII>< BbsI
   >< MnlI >< DdeI
GAATTTGGTG CCTCAGCTGA AACAGTTCGA GTTGAGGAAG AAGAAGAGGA AGACTGGCTG GATGATACTA
     3160
            3170 3180 3190 3200
                                                   >< Tru9I
 >< FokI
                                                   >< MseI >< Eco57I
                                              >< BsrI>< MboII BsrI ><
>< DdeI
CTGAGCAATC AGAGATTGAG CCAGAACCAG AACCTACACC TGAAGAACCA GTTAATCAGT TTACTGGTTA
     3230 3240 3250 3260 3270
                                                    3280
>< Tru9I
                                         >< MnlI
         >< MseI
 >< DraI
TTTAAAACTT ACTGACAATG TTGCCATTAA ATGTGTTGAC ATCGTTAAGG AGGCACAAAG TGCTAATCCT
     3300 3310 3320 3330
                                            3340
                                                       3350
                                                       >< VneI
                                                       >< SnoI
                                                          > < SduI
                                                           > < NspII
                                                           > < HqiAI
                                                           > < Bsp1286I
                                                           > < BmvI
                                                       >< ApaLI
 >< HphI > < NlaIII >< Alw44I >< BbvI >< Fnu4HI >< BspMI > < Alw21I
ATGGTGATTG TAAATGCTGC TAACATACAC CTGAAACATG GTGGTGGTGT AGCAGGTGCA CTCAACAAGG
     3370 3380 3390 3400 3410 3420
                                                  >< Sau96I
                                                   >< PalI
                                                   VIgeN ><
                                                   >< HaeIII
          >< NlaIV
                                                  >< Cfr13I
                             FIGURA 13. 9
```

222

```
>< Eco64I
                                            >< BsuRI
                                 >< BscBI
      >< BanI
      >< AccBlI>< NlaIII
                                 >< AluI >< AsuI >< MnlI
CAACCAATGG TGCCATGCAA AAGGAGAGTG ATGATTACAT TAAGCTAAAT GGCCCTCTTA CAGTAGGAGG
                                       3480
           3450 3460 3470
                                                3490
                                             >< SinI
                                             >< Sau96I
                                             >< NspIV
                                        >< NspHI>< NspHII
                                             >< Eco47I
                                             >< Cfr13I
                                        >< NlaIII >< BspMI
                                             >< BsiZI
                                             >< Bme18I
                                             >< AvaII MnlI ><
                       GTCTTGTTTG CTTTCTGGAC ATAATCTTGC TAAGAAGTGT CTGCATGTTG TTGGACCTAA CCTAAATGCA
    3510 3520 3530 3540 3550 3560
               > < Tru9I
          >< HphI> < MseI
              >< Esp4I
            >< AluI
                        > < NdeI
               >< AflII>< Fnu4HI >< BbvI
GGTGAGGACA TCCAGCTTCT TAAGGCAGCA TATGAAAATT TCAATTCACA GGACATCTTA CTTGCACCAT
                             3610
                                      3620 3630 3640
    3580
            3590
                    3600
                                                      RsaI ><
                                                    Csp6I ><
                                     >< BcqI
                                                    AfaI ><
              >< Eco57I
TGTTGTCAGC AGGCATATTT GGTGCTAAAC CACTTCAGTC TTTACAAGTG TGCGTGCAGA CGGTTCGTAC
    3650 3660
                    3670 3680 3690 3700
     BsgI >< BspMI >< BcgI/a >< AluI
   >< BsgI
                                           >< NlaIII
ACAGGTTTAT ATTGCAGTCA ATGACAAAGC TCTTTATGAG CAGGTTGTCA TGGATTATCT TGATAACCTG
            3730 3740 3750 3760
                                              3770 3780
                                             >< MnlI
   AAGCCTAGAG TGGAAGCACC TAAACAAGAG GAGCCACCAA ACACAGAAGA TTCCAAAACT GAGGAGAAAT
    3790
          3800
                    3810
                               3820
                                     3830
                                               3840
                               >< Tru9I
                                    >< StuI
                                    >< PalI
                               >< MseI >< MnlI >< MaeIII
>< HaeIII >< Eco0651
>< Eco147I >< Eco91I
>< BsuRI RstX
                                    >< BsuRI
    >< RsaI
    >< BshI
>< AatI
    >< Csp6I
                                               >< BstEII
CTGTCGTACA GAAGCCTGTC GATGTGAAGC CAAAAATTAA GGCCTGCATT GATGAGGTTA CCACAACACT
                                              3910
    3860
           3870
                    3880 3890
                                      3900
                                                      Tfil ><
                                                     NlaIII ><
                                                     HinfI ><
      >< DdeI
                                       >< EcoRV >< HindIII
                         FIGURA 13. 10
```

223

```
GGAAGAAACT AAGTTTCTTA CCAATAAGTT ACTCTTGTTT GCTGATATCA ATGGTAAGCT TTACCATGAT
   3930 3940 3950 3960 3970 3980 3990
       IqzN ><
       >< NspHI
       >< NlaIII
                       >< SfaNI
                        > < EcoNI
     >< Mnlf
       TCTCAGAACA TGCTTAGAGG TGAAGATATG TCTTTCCTTG AGAAGGATGC ACCTTACATG GTAGGTGATG
   4000 4010 4020 4030 4040 4050 4060
   >< SpeI
   >< RmaI
                        >< SfaNI
>< MnlI     >< DdeI
   TTATCACTAG TGGTGATATC ACTTGTGTTG TAATACCCTC CAAAAAGGCT GGTGGCACTA CTGAGATGCT
   4070 4080 4090 4100 4110 4120
                                            4130
                                   >< ScrfI
                                >< RsaI
                                   >< MvaI
                                 >< EcoRII
                                  >< Ecl136I
                                 >< DsaV
                               >< Csp6I >< EcoNI
                                   >< BstOI
                                   >< BstNI
                                   >< BsiLI
                                 >< BsaJI
                              >< BsaAI >< BslI</pre>
               >< MboII >< MaeII>< ApyI
    >< AluI >< BsrI
                              >< AfaI >< BsiYI
CTCAAGAGCT TTGAAGAAAG TGCCAGTTGA TGAGTATATA ACCACGTACC CTGGACAAGG ATGTGCTGGT
  4140 4150 4160 4170 4180 4190 4200
                   >< Tru9I
      >< MnlI
>< Fok!
TATACACTTG AGGAAGCTAA GACTGCTCTT AAGAAATGCA AATCTGCATT TTATGTACTA CCTTCAGAAG
   4210 4220 4230
                       4240 4250
                                    4260 4270
                         >< ScrFI
                         >< MvaI
   >< EcoRII
                                           >< EarI
CACCTAATGC TAAGGAAGAG ATTCTAGGAA CTGTATCCTG GAATTTGAGA GAAATGCTTG CTCATGCTGA
   4280
         4290 4300 4310 4320 4330 4340
         >< VspI
                  >< Zsp2I
         >< Tru9I >< PpulOI
         >< MseI >< NsiI
           >< MboII
                    FIGURA 13, 11
```

```
AGAGACAAGA AAATTAATGC CTATATGCAT GGATGTTAGA GCCATAATGG CAACCATCCA ACGTAAGTAT
   4350 4360 4370 4380 4390 4400 4410
     >< Tru9I
     >< MseI
AAAGGAATTA AAATTCAAGA GGGCATCGTT GACTATGGTG TCCGATTCTT CTTTTATACT AGTAAAGAGC
    4420 4430 4440 4450
                                   4460 4470 4480
                                    >< MaeIII
  SfcI >< Fnu4HI >< MunI >< AluI >< AciI MaeIII ><
>< SfcI
CTGTAGCTTC TATTATTACG AAGCTGAACT CTCTAAATGA GCCGCTTGTC ACAATGCCAA TTGGTTATGT
        4500 4510 4520 4530 4540 4550
                        >< Thal
                        >< MvnI
                        >< MboII
                        >< HinPlI
                      >< HinPlI
                        >< Hin6I
                      >< Hin6I
                        >< HhaI
        >< Tru9I
                        >< HhaI
     >< NiaIII
>< MseI
                   >< fnu4HI
           MseI >< CfoI >< MnlI >< CfoI
          >< BbvI >< AcII >< AluI HphI >< GACACATGGT TTTAATCTTG AAGAGGCTGC GCGCTGTATG CGTTCTCTTA AAGCTCCTGC CGTAGTGTCA
    4560 4570 4580 4590 4600 4610
            >< MaeIII
 >< SfaNI >< AlwNI
                                     >< MnlI >< MnlI>< DdeI
GTATCATCAC CAGATGCTGT TACTACATAT AATGGATACC TCACTTCGTC ATCAAAGACA TCTGAGGAGC
    4630 4640 4650 4660 4670 4680 4690
                                 >< SinI
                                 >< Sau96I
                                 >< NspIV
                                 >< NspHII
>< SduI
                                 >< Eco47I
>< NspII
                                 >< Cfr13I
>< HgiAI
                                 >< BsiZI
>< Bsp1286I
                                 >< Bme18I
                                                >< Rsaî
                                 >< AvaII
>< BmyI
                                               >< Csp6I
                                 >< AsuI
>< Alw21T
                                                >< AfaI
ACTITGTAGA AACAGTITCT TIGGCIGGCI CITACAGAGA TIGGICCIAT TCAGGACAGC GIACAGAGIT
    4700 4710 4720 4730 4740
                                           4750 4760
                                              > < TthHB8I
                                              > < TaqI
                                           >< SduI
                                   >< Van91I >< NspII
                     >< Tru9I
          >< MseI
          >< Esp4I
                       FIGURA 13, 12
```

```
>< AflII >< MaeIII >< AfaI >< AccB7I >< BanIIBpmI ><
AGGTGTTGAA TTTCTTAAGC GTGGTGACAA AATTGTGTAC CACACTCTGG AGAGCCCCGT CGAGTTTCAT
           4780 4790 4800 4810 4820 4830
      4770
                                                                 >< Tru9I
                                                >< PleI >< EcoNI
                                                   >< MnlI >< BslI
                  >< BsmAI >< BsiYI
>< HphI >< Hinfl>< Alw26I>< AciI >< MseI
>< MnlI
CTTGACGGTG AGGTTCTTTC ACTTGACAAA CTAAAGAGTC TCTTATCCCT GCGGGAGGTT AAGACTATAA
      4840 4850 4860 4870 4880
                                             >< AluI
                                                                    >< NdeI
AAGTGTTCAC AACTGTGGAC AACACTAATC TCCACACAC GCTTGTGGAT ATGTCTATGA CATATGGACA
           4920 4930 4940 4950 4960
      4910
       >< SinI
       >< Sau96I
       >< NspIV
       >< NspHII
       >< Eco47I
       >< Cfr13I
                                                                 NlaIII ><
       >< BsiZI
                                                              >< NlaIII
       >< Bme18I
                                                                 > < MnlI
                                     >< AvaII
       >< AsuI
GCAGTTTGGT CCAACATACT TGGATGGTGC TGATGTTACA AAAATTAAAC CTCATGTAAA TCATGAGGGT
                                   5010
                                                 5020
           4990 5000
                                                              5030
                                                       > < TthHB8I
              >< RsaI
                                                      > < TaqI

      >< Rsal</td>
      > < Taql</td>

      >< Rmal</td>
      >< SnaBI</td>
      >< Scal</td>

      >< MaeI</td>
      >< MaeII</td>
      >< HindIII</td>
      >< Rsal</td>

      >< Csp6I</td>
      >< Ecol05I</td>
      >< Csp6I</td>

      >< AfaI</td>
      >< BsaAI</td>
      >< AluI</td>
      >< AfaI</td>

AAGACTTTCT TTGTACTACC TAGTGATGAC ACACTACGTA GTGAAGCTTT CGAGTACTAC CATACTCTTG
      5050
                 5060 5070 5080 5090 5100
                       >< RsaI
                            >< NspI
                            >< NspHI
                            >< NlaIII
                    MnlI >
                                                                   BslI ><
                                                                  BsiYI ><
ATGAGAGTTT TCTTGGTAGG TACATGTCTG CTTTAAACCA CACAAAGAAA TGGAAATTTC CTCAAGTTGG
                                                 5160 5170
      5120 5130
                          5140 5150
   >< Tru9I >< Tru9I >< RmaI
>< MseI >< MseI >< MunI >< MaeI
TGGTTTAACT TCAATTAAAT GGGCTGATAA CAATTGTTAT TTGTCTAGTG TTTTATTAGC ACTTCAACAG
               5200
                                                  5230 5240
      5190
                           5210 5220
                                                         >< SfaNI
                                                         >< SduI
                                                         >< NspII
                                                         >< Eco24I
                                                         >< Bsp1286I
                                                         >< BmyI
                                                                       HphI >
                                                         >< BbvI fnu4HI ><
                            >< MnlI
                                                         >< BanII >< BspWI</pre>
                                 FIGURA 13, 13
```

```
CTTGAAGTCA AATTCAATGC ACCAGCACTT CAAGAGGCTT ATTATAGAGC CCGTGCTGGT GATGCTGCTA
    5260. 5270 5280 5290 5300 5310 5320
    >< VneI
    >< SnoI
        >< SduI
        >< NspII
        >< HqiAI
        >< Bsp1286I
        >< BmyI
    >< ApaLI
    >< Alw441
                                                  MboII ><
                                    >< AluI
                                                  >< HphI
       >< Alw21I
ACTITIGIGC ACTCATACTC GCTTACAGTA ATAAAACTGT TGGCGAGCTT GGTGATGTCA GAGAAACTAT
    5330 5340 5350 5360 5370 5380 5390
               > < SphI
               > < Pael
               > < NspI
        > < NspHI >< TfiI >< Tru9I
>< SfcI > < NlaIII>< HinfI >< MseI
GACCCATCTT CTACAGCATG CTAATTTGGA ATCTGCAAAG CGAGTTCTTA ATGTGGTGTG TAAACATTGT
    5400 5410 5420 5430 5440 5450 5460
                                        >< RsaI
                                      GGTCAGAAAA CTACTACCTT AACGGGTGTA GAAGCTGTGA TGTATATGGG TACTCTATCT TATGATAATC
    5470 5480 5490 5500 5510 5520 5530
                                              >< RsaI
                                                >< MboII
                                           >< RmalHinfI ><
                                            >< Csp6I
>< Tru9I
                      >< SfaNI
                                           >< MaeI >< BbsI</pre>
>< MseI
                   >< NlaIII
                                           >< AfaI
TTAAGACAGG TGTTTCCATT CCATGTGTGT GTGGTCGTGA TGCTACACAA TATCTAGTAC AACAAGAGTC
    5540 5550 5560 5570 5580 5590 5600
                                         >< RsaI
 >< BsqI
TTCTTTTGTT ATGATGTCTG CACCACCTGC TGAGTATAAA TTACAGCAAG GTACATTCTT ATGTGCGAAT
   5610 5620 5630 5640 5650 5660 5670
                                     >< Eco3lI
                                     >< DdeI
  >< RsaI
     > < MaeIII</pre>
                                     >< BsmAI
 >< Csp6I
                                     >< BsaI MnlI ><
>< Alw26I HphI >
                                     >< BsaI
  >< AfaI >< BsrI
GAGTACACTG GTAACTATCA GTGTGGTCAT TACACTCATA TAACTGCTAA GGAGACCCTC TATCGTATTG
    5680 5690 5700 5710 5720 5730 5740
     >< SstI
                             >< SinI
     >< SduI
                            >< Sau96I
     >< SacI
                            >< NspIV
     >< NspII
                            >< NspHII
                    > < RsaI     >< MaeIII
    >< HgiAI
                            >< Eco47I
   >< Ecl136II
                            >< Cfr13I
                            >< BsiZI
                            >< Bme18I
```

```
>< AluI
ACGGAGCTCA CCTTACAAAG ATGTCAGAGT ACAAAGGACC AGTGACTGAT GTTTTCTACA AGGAAACATC
    5750 5760 5770
                            5780 5790 5800 5810
                              >< TthHB8I
                              >< TaqI >< MaeIII
TTACACTACA ACCATCAAGC CTGTGTCGTA TAAACTCGAT GGAGTTACTT ACACAGAGAT TGAACCAAAA

        5820
        5830
        5840
        5850
        5860
        5870
        5880

                                                  >< RsaI
                                                 >< Csp6I
                                       >< SfcI >< BbvI
            >< FokI
                                    >< Fnu4HI >< AfaI
TTGGATGGGT ATTATAAAAA GGATAATGCT TACTATACAG AGCAGCCTAT AGACCTTGTA CCAACTCAAC
    5890 5900 5910 5920 5930 5940 5950
                                                   Tru9I ><
                                                     SwaI ><
                                                    MseI ><
                                                    MamI ><
DraI ><
                                 > < NspI
                                 > < NspHI
                                 > < NiaIII
                              >< AflIII
CATTACCAAA TGCGAGTTTT GATAATTTCA AACTCACATG TTCTAACACA AAATTTGCTG ATGATTTAAA
    5960 5970 5980 5990
                                     6000 6010 6020
                                    >< MboII
                     >< AluI >< AluI>< MaeIII
TCAAATGACA GGCTTCACAA AGCCAGCTTC ACGAGAGCTA TCTGTCACAT TCTTCCCAGA CTTGAATGGC
     6030 6040 6050 6060 6070 6080 6090
              >< SfcI
GATGTAGTGG CTATTGACTA TAGACACTAT TCAGCGAGTT TCAAGAAAGG TGCTAAATTA CTGCATAAGC
    6100
             6110 6120 6130 6140 6150
            >< Tru9I
                >< ScrFI
                 >< MvaI
            >< MseI
               >< EcoRII
                 >< Ecl136I
               >< DsaV
                 >< BstOI
                 >< BstNI
  MunI >< BsiLI
>< BstXI >< ApyI
>< MunT
                                                 >< DraIII
                          >< MaeII
                                             >< BstXI
CAATTGTTTG GCACATTAAC CAGGCTACAA CCAAGACAAC GTTCAAACCA AACACTTGGT GTTTACGTTG
           6180 6190 6200 6210 6220 6230
      > < RsaI
      >< Csp6I
                                                     MboIT ><
       > < AfaI>< BsrI</pre>
TCTTTGGAGT ACAAAGCCAG TAGATACTTC AAATTCATTT GAAGTTCTGG CAGTAGAAGA CACACAAGGA
    6240 6250 6260 6270 6280 6290 6300
                    ATGGACAATC TTGCTTGTGA AAGTCAACAA CCCACCTCTG AAGAAGTAGT GGAAAATCCT ACCATACAGA
    6310 6320 6330 6340 6350 6360 6370
                         FIGURA 13, 15
```

```
>< MaeIII
                                                        >< Tru9I
                 >< MaeII
                                                        >< MseI
AGGAAGTCAT AGAGTGTGAC GTGAAAACTA CCGAAGTTGT AGGCAATGTC ATACTTAAAC CATCAGATGA
                        6400 6410 6420 6430
      6380
           6390
                                                                 6440
                                  >< XhoII
                                  >< Sau3AI
                                 >< NlaIII
                                  >< NdeII
                                  >< MflI
                                  >< MboI
                                  >< DpnII
                                    >< DpnI
                                  >< BstYI
     >< Tru9I
                                  >< BspAI
     >< MseI
                           >< BspHI >< Bspl43I>< Fnu4HI</pre>
      > < MaeIII > < Mnll > < BbvI > < AlwI
AGGTGTTAAA GTAACACAAG AGTTAGGTCA TGAGGATCTT ATGGCTGCTT ATGTGGAAAA CACAAGCATT
      6450
                6460
                          6470
                                  6480 6490
                                                      6500 6510
                                 >< SauI
                            >< RmaI
                                 >< MstII
                            >< MaeI
                                 >< Eco81I
                                  >< DdeI
                                  >< CvnI
                                  >< Bsu36T
                                  >< Bse21I
                                 >< BfrI> < Tru9I</pre>
>< Tru9I >< AxyI> < MseI>< MunI >< NlaIII >< MseI >< AluI >< AocI >< DraI >< BbvI Fnu4HI >< ACCATTAAGA AACCTAATGA GCTTTCACTA GCCTTAGGTT TAAAAACAAT TGCCACTCAT GGTATTGCTG
              6530 6540 6550 6560 6570 6580
  > < DdeI
                                                    >< BslI
                                                    >< BsiYI
                                                  > < BfrI >< Fnu4HI
CAATTAATAG TGTTCCTTGG AGTAAAATTT TGGCTTATGT CAAACCATTC TTAGGACAAG CAGCAATTAC
             6600
                      6610 6620 6630 6640
      6590
            >< HinP1I
            >< Hin6I
                                       >< Tru9I
             >< HhaI
>< DdeI
>< CfoT
                            >< MaeII>< MseI
             >< HhaI
                                >< DraIII
                               >< AflIII
>< BbvI
             >< CfoI
AACATCAAAT TGCGCTAAGA GATTAGCACA ACGTGTGTTT AACAATTATA TGCCTTATGT GTTTACATTA
      6660
              6670 6680
                                    6690
                                           6700 6710 6720
              >< RsaI
                             > < RsaI>< XbaI
      >< Rsa! > < Rsa!>< NDA!
>< Csp6I >< Csp6I >< RmaI
>< MunI >< AfaI > < AfaI >< AluI
TTGTTCCAAT TGTGTACTTT TACTAAAAGT ACCAATTCTA GAATTAGAGC TTCACTACCT ACAACTATTG
      6730
                                               6770 6780 6790
           6740 6750 6760
                                                 >< VspI
                                                 >< Tru9I
                                             >< NaeI
                                            >< MspI
                                                 >< MseI
                              FIGURA 13. 16
```

229

```
>< HpaII
                                        >< HapII
                                       >< Cfrl0I >< FokI
           >< Tru9I
                                            >< AsnI
                    >< SfaNI
           >< MseI
                                            >< Asel>< Hphl>< MaelII
CTAAAAATAG TGTTAAGAGT GTTGCTAAAT TATGTTTGGA TGCCGGCATT AATTATGTGA AGTCACCCAA
     6800 6810 6820 6830 6840 6850 6860
                                     ATTTTCTAAA TTGTTCACAA TCGCTATGTG GCTATTGTTG TTAAGTATTT GCTTAGGTTC TCTAATCTGT
                                         6910
               6880 6890
                             6900
                                                   6920
                                       >< SduI
                                       >< NspII
                                       >< HgiAI
                 > < RsaI
                                       >< Bsp1286I
                >< Csp6I
                                      >< BmyI
      >< Fnu4HI > < ĀfaI
                                      >< Alw21I
GTAACTGCTG CTTTTGGTGT ACTCTTATCT AATTTTGGTG CTCCTTCTTA TTGTAATGGC GTTAGAGAAT
     6940
            6950
                                          6980 6990 7000
                      6960 6970
                                                           Tru9I ><
                                                           MseI ><
             > < ...
>< MaeII
     >< Tru9I
               > < MaeIII</pre>
                                                       >< Fnu4HI
     >< MseI
                                                             BbvI >
TGTATCTTAA TTCGTCTAAC GTTACTACTA TGGATTTCTG TGAAGGTTCT TTTCCTTGCA GCATTTGTTT
     7010
              7020 7030 7040 7050
                                                     7060
                 > < TfiI
                                                        RsaI ><
                     >< MamI
                                                         >< HphI
                 > < HinfI
                                                      Csp6I ><
   > < HinfI
>< BsiBI >< XmnI>< MaeIII
>< PleI>< HinfI >< BsaBI >< AluI >< Asp700I
                                                      AluI >
AfaI ><
AAGTGGATTA GACTCCCTTG ATTCTTATCC AGCTCTTGAA ACCATTCAGG TGACGATTTC ATCGTACAAG
     7080
              7090 7100 7110 7120 7130 7140
                      >< PalI
                         >< NspBII
                      >< HaeIII
                     >< GdiII
                       >< Fnu4HI
                     >< EaeI
                         >< DdeI
                      >< BsuRI
>< RmaI
                     >< BshI >< BslI
                      >< AciI>< BsiYI
>< Mapī
CTAGACTTGA CAATTTTAGG TCTGGCCGCT GAGTGGGTTT TGGCATATAT GTTGTTCACA AAATTCTTTT
     7150
              7160 7170 7180
                                           7190 7200 7210
              >< BspMI
                                             >< RmaI
               >< AluI
                                            >< MaeI
ATTTATTAGG TCTTTCAGCT ATAATGCAGG TGTTCTTTGG CTATTTTGCT AGTCATTTCA TCAGCAATTC
     7220 7230 7240 7250 7260
                                                     7270 7280
                                                        RsaI ><
                                                         >< MboII
                                   >< NlaIV
                                                        MamI ><
                                  >< Eco641
                                                     Csp6I ><
                                                     BsiBI ><
                           > < RsaI >< BscBI
                                                      BsaBI ><
                          >< Csp6I >< BanI
                          > < AfaI>< AccBlI
                                                      AfaI ><
       > < NlaIII
                           FIGURA 13. 17
```

```
TTGGCTCATG TGGTTTATCA TTAGTATTGT ACAAATGGCA CCCGTTTCTG CAATGGTTAG GATGTACATC
      7290 7300 7310 7320 7330
                                                           7340 7350
                                                              TthHB8I ><
                                                                     >< TaqI
                                                                     MnlI ><
                       >< NdeI
                                                                Ksp632I ><
                        >< Ksp632I
                        >< EarI
                                                         >< MboII EarI ><
                       >< Eaml104I>< AluI>< MboII >< NlaIII Eaml104I ><
  >< FokI
TTCTTTGCTT CTTTCTACTA CATATGGAAG AGCTATGTTC ATATCATGGA TGGTTGCACC TCTTCGACTT
      7360
             7370
                         7380
                                      7390
                                                7400
                                                            7410
                                                                    XhoII ><
                                                                   Sau3AI ><
                                                                NlaIII ><
                                                                    NdeII ><
                                                                     MfLI ><
                                                                     MboI ><
                                    >< ThaI
                                                                 > < Ksp632I
                                    >< MvnI
                                                                 > < Earl
                 > < Eam1104I
                                  >< BstUI
>< Bsp50I >< RsaI
                 >< Hin6I
                                                                    DpnII ><

      >< HhaI</th>
      >< Bsp50I</th>
      >< RsaI</th>
      BstYI
      ><</th>

      >< NlaIII</th>
      >< CfoI</th>
      >< AfIIII</th>
      >< Csp6I</th>
      >< Tru9I</th>
      BspAI
      ><</th>

      >< BspWI</th>
      >< BspWI</th>
      >< AccII</th>
      >< AfaI</th>
      >< MseI</th>
      BglII
      ><</th>

    >< NlaIII
GCATGATGTG CTATAAGCGC AATCGTGCCA CACGCGTTGA GTGTACAACT ATTGTTAATG GCATGAAGAG
      7430
                7440
                         7450 7460 7470
                                                             7480 7490
                             >< Palí
                             >< HaeIII
                             >< DsaI
                                                                     >< MunI
                            >< BsuRI
                                                                  MaeIII ><
      >< MboII
BsmAI ><
                                                               Alw26I ><
ATCTTTCTAT GTCTATGCAA ATGGAGGCCG TGGCTTCTGC AAGACTCACA ATTGGAATTG TCTCAATTGT
               7510 7520 7530 7540
      7500
                                                            7550
                      >< RsaI
                                                                 Tru9I ><
                    > < Csp6I
                                                                 MseI ><
                   >< BsrI
GACACATTTT GCACTGGTAG TACATTCATT AGTGATGAAG TTGCTCGTGA TTTGTCACTC CAGTTTAAAA
                                                  7610
      7570
                 7580
                        7590 7600
                                                              7620
                                                                    >< ThaI
                                                                    >< MvnI
                                                                 > < MphI
                                                              HinPlI ><
                                                                  >< HinPlI
                                                                    >< Hin6I
                                                                   >< Hin6I
                                                                  HhaI ><
                                                                    >< HhaI
                                                                  CfoI ><
                                                                    >< CfoI
                                                                    >< BstUI
                                                                   >< BssHII
                                                              Bsp50I ><
                    > < BsrI
                                                                   >< AccII
GACCAATCAA CCCTACTGAC CAGTCATCGT ATATTGTTGA TAGTGTTGCT GTGAAAAATG GCGCGCTTCA
                            7660 7670 7680
      7640
                 7650
                                                             7690
                                FIGURA 13. 18
```

```
>< FokI
                            >< BsmAI
                             >< Alw26I >< AciI
          >< MnlI
CCTCTACTTT GACAAGGCTG GTCAAAAGAC CTATGAGAGA CATCCGCTCT CCCATTTTGT CAATTTAGAC
          7720 7730 7740
                                           7750 7760 7770
     7710
                                   >< VspI
                                   >< Tru9I
                                   >< MseI
                                   >< AsnI
       > < AluI
                                   >< AseI
                                                         >< BcgI/a
AATTTGAGAG CTAACAACAC TAAAGGTTCA CTGCCTATTA ATGTCATAGT TTTTGATGGC AAGTCCAAAT
            7790 7800
                             7810 7820
                                                 7830 7840
                                 >< SfcI >< PvuII
    >< RsaI >< Psp5I
>< PleI >< Csp6I >< NspBII
>< HinfI >< DdeI >< BcgI >< AfaI >< AluI
GCGACGAGTC TGCTTCTAAG TCTGCTTCTG TGTACTACAG TCAGCTGATG TGCCAACCTA TTCTGTTGCT
             7860 7870
                                7880
                                            7890
                                                      7900 7910
                                                          TthHB8I ><
                                                            TaqI ><
                                                            SalI ><
                                                            RtrI ><
                                >< Scal
                                                            HindII >
                              >< Scal HindII >
>< Rsal >< Tru9I HincII >
>< Csp6I >< SfaNI >< Eco57I
>< AfaI >< MseI AccI ><
               >< MaeII
TGACCAAGCT CTTGTATCAG ACGTTGGAGA TAGTACTGAA GTTTCCGTTA AGATGTTTGA TGCTTATGTC
                                                   7970 7980
               7930
                      7940 7950
                                            7960
                                       >< Tru9I
                                       >< MseI
                                     > < Esp4I
                                     GACACCTTTT CAGCAACTTT TAGTGTTCCT ATGGAAAAAC TTAAGGCACT TGTTGCTACA GCTCACAGCG
     7990
          8000 8010 8020
                                            8030
                                                      8040
                                                 >< PvuII
                                                 >< Psp5I
                                                 >< NspBII
                                                 >< Fnu4HI
               >< AluI
                                   >< BbvI
                                                >< AluI
AGTTAGCAAA GGGTGTAGCT TTAGATGGTG TCCTTTCTAC ATTCGTGTCA GCTGCCCGAC AAGGTGTTGT
          8070 8080 8090 8100 8110
     8060
                                                            8120
                                                         MaeIII ><
                                       >< BsmAI
           >< HindII
                     >< FokI>< Alw26I
           >< HincII
TGATACCGAT GTTGACACAA AGGATGTTAT TGAATGTCTC AAACTTTCAC ATCACTCTGA CTTAGAAGTG
                             8160 8170
     8130 8140 8150
                                                      8180
                                                            >< XhoII
                                                      Sau3AI ><
                                                            >< NdeII
                                                            >< MflI
                                                            >< MboI
                                                   >< NiaIII >< HgaI
                                                    >< HinlI >< DpnII
                                                          DpnI ><
                            FIGURA 13. 19
```

232

```
Bsp143I ><
                                              >< BsaHI >< BstYI
  >< MaeIII>< HphI
>< MaeIII >< HphI >< NlaIII
                                              >< BbiII >< BspAI
                                              >< Acyl >< BqlII
ACAGGTGACA GTTGTAACAA TTTCATGCTC ACCTATAATA AGGTTGAAAA CATGACGCCC AGAGATCTTG
    8200
            8210 8220 8230 8240 8250
    >< NspI
    >< NspHI
    >< NlaIII
>< HinPlT
>< Hin6I
 >< BhaT
 >< CfoI
                                   >< BspWf >< MaeIII
GCGCATGTAT TGACTGTAAT GCAAGGCATA TCAATGCCCA AGTAGCAAAA AGTCACAATG TTTCACTCAT
    8270 8280 8290 8300 8310 8320 8330
                  >< NspI
               >< AflIII
CTGGAATGTA AAAGACTACA TGTCTTTATC TGAACAGCTG CGTAAACAAA TTCGTAGTGC TGCCAAGAAG
    8340 8350 8360 8370 8380 8390 8400
                             >< RmaI
                            >< MaeI >< Eaml105I
      >< MboII
AACAACATAC CTTTTAGACT AACTTGTGCT ACAACTAGAC AGGTTGTCAA TGTCATAACT ACTAAAATCT
    8410 8420 8430 8440
                                     8450 8460 8470
                                       >< Tru9I
                                           >< PalI
                                       >< MseI
                                       >< HaeIII
                     >< Scal
                                     >< Esp4I
                    >< RsaI >< Tru9I >< BsuRI
>< Csp6I >< MseI >< BshI
>< AfaI >< DraI >< AflII >< BbvI
CACTCAAGGG TGGTAAGATT GTTAGTACTT GTTTTAAACT TATGCTTAAG GCCACATTAT TGTGCGTTCT
    8480 8490 8500 8510
                                    8520 8530 8540
                           >< RsaI
                          >< Csp6I
                           BsrI >< NlaIII
>< AfaI
                       >< BsrI
 >< Fnu4HI
                                              >< MaeIII
TGCTGCATTG GTTTGTTATA TCGTTATGCC AGTACATACA TTGTCAATCC ATGATGGTTA CACAAATGAA
    8550 8560 8570 8580 8590 8600 861o
                               >< MaeIII
                       > < MaeIII</pre>
    >< MaeIII
                              >< FokI
ATCATTGGTT ACAAAGCCAT TCAGGATGGT GTCACTCGTG ACATCATTTC TACTGATGAT TGTTTTGCAA
    8620 8630 8640 8650 8660 8670
                                                      8680
                                                      SfcI >
                                                  Fnu4HI ><
      >< NspI
     ATAAACATGC TGGTTTTGAC GCATGGTTTA GCCAGCGTGG TGGTTCATAC AAAAATGACA AAAGCTGCCC
    8690 8700 8710 8720 8730 8740 8750
```

```
>< ScrFI
                                       >< ScrfI >< RsaI
                                      >< MvaI >< MspI
>< EcoRII >< HpaII</pre>
                                       >< Ecl136I>< NciI
                                      >< DsaV >< RapII
                                       >< BstOI>< DsaV
                                       >< Fnu4HI
                                       >< ApyI >< AfaI
     >< AluI
TGTAGTAGCT GCTATCATTA CAAGAGAGAT TGGTTTCATA GTGCCTGGCT TACCGGGTAC TGTGCTGAGA
           8770 8780 8790
                                     8800
                                              8810
       > < MaeIII >< HphI
                                    >< MnlI
                                                    >< BspWI
GCAATCAATG GTGACTTCTT GCATTTTCTA CCTCGTGTTT TTAGTGCTGT TGGCAACATT TGCTACACAC
     8830 8840 8850 8860
                                     8870 8880
                                                         Tru9I >
                                                     SfaNI ><
                                                        >< RsaI
                                                         MseI >
                               CTTCCAAACT CATTGAGTAT AGTGATTTTG CTACCTCTGC TTGCGTTCTT GCTGCTGAGT GTACAACTTTT
                               8930
    8900
           8910 8920
                                        8940 8950 8960
                                           > < RmaI
                                        >< MnlI
              >< FokI
                                           > < MaeI
TAAGGATGCT ATGGGCAAAC CTGTGCCATA TTGTTATGAC ACTAATTTGC TAGAGGGTTC TATTTCTTAT
     8970
              8980 8990 9000 9010
                                               9020 9030
                                                         ScrFI >
                                                         MvaI >
                                                      MnlI ><
                                                       EcoRII ><
                                                        Ec11361 >
                                                        DsaV ><
                                                         BstOI >
                                     >< NlaIV
                                                         BstNI >
                                          >< FokI
                                                         BsiLI >
    >< AluI
                                     >< BscBI
                                                         Apyl >
AGTGAGCTTC GTCCAGACAC TCGTTATGTG CTTATGGATG GTTCCATCAT ACAGTTTCCT AACACTTACC
     9040 9050 9060
                                9070
                                     9080
                                                9090 9100
                                                  >< RsaI
                                      >< SfcI
                                                      >< NspI
                                     >< ScaI
                                                       >< NspHI
                   >< SfaNI
                                     >< RsaI
                                                      >< NlaIII
                 > < MaeIII
                                    >< Csp6I
                                                >< NlaIII
                                    >< AfaI
                  >< BpmI
                                                >< Csp6I
                                >< DdeI >< AccI >< AfaI
TGGAGGGTTC TGTTAGAGTA GTAACAACTT TTGATGCTGA GTACTGTAGA CATGGTACAT GCGAAAGGTC
     9110
         9120 9130
                                9140
                                         9150
                                                9160
                                                         >< $stI
                                                         >< SduI
                                                         >< SacI
                                                    NspII ><
                                                    HgiAI ><
                                                   Eco24I ><
                                                  Bsp1286I ><
```

```
Ec1136II ><>< BmyI
                                                 BanII ><
                                  >< Tru9I
>< MseI
                                                 Alw21I ><
                   >< BsrI
AGAAGTAGGT ATTTGCCTAT CTACCAGTGG TAGATGGGTT CTTAATAATG AGCATTACAG AGCTCTATCA
    9180 9190 9200 9210 9220
                                            9230
                      >< TfiI
     >< SfaNI
                     >< HinfI >< AluI
GGAGTTTTCT GTGGTGTTGA TGCGATGAAT CTCATAGCTA ACATCTTTAC TCCTCTTGTG CAACCTGTGG
    9250 9260 9270 9280 9290 9300 9310
                                             >< MaeIII
                                                  HphI ><
  >< Eco571
                                         > < BbvI Fnu4HI ><
GTGCTTTAGA TGTGTCTGCT TCAGTAGTGG CTGGTGGTAT TATTGCCATA TTGGTGACTT GTGCTGCCTA
    9320 9330 9340 9350 9360 9370 9380
                             >< RsaI
                            >< Csp6I >< NlaIII
                       >< BbvI >< Fnu4HI
              >< MaeII
              >< AflIII
                             >< AfaI>< HphI
                                           >< BspWI
CTACTTTATG AAATTCAGAC GTGTTTTTGG TGAGTACAAC CATGTTGTTG CTGCTAATGC ACTTTTGTTT
    9390 9400
                     9410 9420 9430 9440 9450
                       >< RsaI
                       >< NlaIV
                          >< KpnI
                      >< Eco64I
>< Csp6I
                                         > < ScrFI
                                         > < NciI
                      >< BscBI
>< Asp718
                                        >< MspI
                      >< Asp718
>< BanI >< AluI
>< AfaI
                                        >< HpaII
                                          >< Hinfl
                                        >< HapII >< PleI
                                         > < BcnI
                                                  > < DdeI
                      >< AccBlI
                      >< Acc65I >< AluI>< DsaV >< AccI
TTGATGTCTT TCACTATACT CTGTCTGGTA CCAGCTTACA GCTTTCTGCC GGGAGTCTAC TCAGTCTTTT
    9460 9470 9480 9490 9500 9510 9520
   >< RsaI
   >< Csp6I
   >< AfaI >< HphI
                               >< HphI
                                                   NlaIII ><
ACTTGTACTT GACATCTAT TTCACCAATG ATGTTTCATT CTTGGCTCAC CTTCAATGGT TTGCCATGTT
         9540 9550 9560 9570 9580 9590
TTCTCCTATT GTGCCTTTTT GGATAACAGC AATCTATGTA TTCTGTATTT CTCTGAAGCA CTGCCATTGG
    9600
            9610
                    9620
                              9630
                                       9640
                                               9650
                                                  >< TthHB8I
                                              >< RsaI
                                               >< MnlT
                                             >< MnlI
                            >< Tru9I
>< PleI
                                             >< Csp6I
  TTCTTTAACA ACTATCTTAG GAAAAGAGTC ATGTTTAATG GAGTTACATT TAGTACCTTC GAGGAGGCTG
           9680
                     9690 9700
                                      9710
                                              9720 9730
    >< RsaI
    >< Csp6I
                           >< RsaI
                          >< Csp6I >< BsmAI
         >< BcgI
                        FIGURA 13. 22
```

```
CTTTGTGTAC CTTTTTGCTC AACAAGGAAA TGTACCTAAA ATTGCGTAGC GAGACACTGT TGCCACTTAC
     9740 9750 9760 9770 9780 9790 9800
                                               >< NlaIV
                              ACAGTATAAC AGGTATCTTG CTCTATATAA CAAGTACAAG TATTTCAGTG GAGCCTTAGA TACTACCAGC

    9810
    9820
    9830
    9840
    9850
    9860
    9870

               >< Fnu4HI
                    >< DdeI
         >< Fnu4HI
                    >< BfrI
 >< Fnu4HI >< BfrI
>< BbvI >< AluI >< BbvI
                                                 >< DdeI >< AlwNI
TATCGTGAAG CAGCTTGCTG CCACTTAGCA AAGGCTCTAA ATGACTTTAG CAACTCAGGT GCTGATGTTC
           9890 9900 9910 9920 9930 9940
    9880
                                  >< SfcI
                                                          >< BsmI
                                    >< PstI >< BscCI
TCTACCAACC ACCACAGACA TCAATCACTT CTGCTGTTCT GCAGAGTGGT TTTAGGAAAA TGGCATTCCC
     9950 9960 9970 9980 9990 10000 10010
                       >< RsaI
                      >< NlaIII
                          >< MaeIII
                       >< Csp6I
                                                  >< Tru9I
                        >< AfaI
                                                  >< MseI
GTCAGGCAAA GTTGAAGGGT GCATGGTACA AGTAACCTGT GGAACTACAA CTCTTAATGG ATTGTGGTTG
    10020 10030 10040 10050 10060 10070 10080
                                                          XhoII ><
                                                         Sau3AI ><
                                                >< Tru9I NdeII ><</pre>
                                               >< NspI MflI ><
                                             >< NSPHI Mbol ><
>< NlaIII DpnII ><
>< MseI BstYI ><
>< Mboll Company</pre>
                        >< NspI
        >< Nsp1
>< FokI >< NspfiI
>< Bst1107I >< NlaIII
>< AccI >< AflIII
                                     > < MDOIL DOP....
> < BbsI BglII ><
GATGACACAG TATACTGTCC AAGACATGTC ATTTGCACAG CAGAAGACAT GCTTAATCCT AACTATGAAG
    10090 10100 10110 10120 10130 10140 10150
                                                            PalI >
                                                           HaeIII >
                                                           EaeI ><
>< DpnI >< MboII
                       >< AluI
>< Bsp143I
                                                            Ball >
ATCTGCTCAT TCGCAAATCC AACCATAGCT TTCTTGTTCA GGCTGGCAAT GTTCAACTTC GTGTTATTGG
    10160 10170 10180 10190 10200 10210
                    >< DdeI> < Tru9I</pre>
                                     >< DdeI
                    >< BfrI> < MseI
CCATTCTATG CAAAATTGTC TGCTTAGGCT TAAAGTTGAT ACTTCTAACC CTAAGACACC CAAGTATAAA
            10240 10250 10260 10270 10280 10290
              >< ScrFI
              >< MvaI
            >< EcoRII
              >< Ecl136I
                                       >< SphI
                           FIGURA 13. 23
```

```
>< DsaV
                                              >< PaeI
                >< BstOI
                                              >< NspI
                >< BstNI
                                              >< NspHI
                              >< RmaI >< NlaIII
>< MaeI >< HphI
                >< BsiLI
                >< ApyI
TTTGTCCGTA TCCAACCTGG TCAAACATTT TCAGTTCTAG CATGCTACAA TGGTTCACCA TCTGGTGTTT
    10300 10310 10320 10330 10340 10350 10360
                                                      >< Sau3AI
                                                       >< NdeII
                                                       >< MboI>< NlaIII
      >< Eco31I
                                                      >< DpnII
                                                >< Tru91>< DpnI
      >< BsmAI
      ATCAGTGTGC CATGAGACCT AATCATACCA TTAAAGGTTC TTTCCTTAAT GGATCATGTG GTAGTGTTGG
    10370 10380 10390
                                    10400
                                            10410 10420 10430
                                            >< Zsp2I
                                       >< PpulOI
                                            >< NsiI>< SfaNI
                                               >< NdeI
                                         >< Mphl103I RsaI ><
>< EcoT22I Csp6I ><
> < AvaIII >< AluI AfaI ><
 >< Tru9I
 >< MseI
TTTTAACATT GATTATGATT GCGTGTCTTT CTGCTATATG CATCATATGG AGCTTCCAAC AGGAGTACAC
    10440
            10450 10460 10470 10480
                                                         10490
                                >< SinI
                                >< Sau96I
                                >< NspIV
                                 >< NspHII
                                                                  >< SfcI
                                >< Eco47I
                                                                   RsaI ><
                                >< Cfr13I
                                                                  PstI ><
                                >< BsiZI
                                                                  >< Fnu4HI

      >< RsaI</td>
      >< Bmel8I</td>
      >< HindII</td>
      Csp6I ><</td>

      >< Csp6I>< OdeI</td>
      >< AvaII</td>
      >< HincII</td>
      >< BspWI</td>

      >< AfaI>< BfrI</td>
      >< AsuI>< BsgI</td>
      >< BbvI</td>
      >< BspMI</td>
      AfaI
      ><</td>

GCTGGTACTG ACTTAGAAGG TAAATTCTAT GGTCCATTTG TTGACAGACA AACTGCACAG GCTGCAGGTA
    10510
           10520 10530 10540 10550 10560 10570
                 >< Tru9I
                                 >< NlaIII
                 >< MseI >< BbvI >< Fnu4HI
                                                                   HphI ><
CAGACACAC CATAACATTA AATGTTTTGG CATGGCTGTA TGCTGCTGTT ATCAATGGTG ATAGGTGGTT
    10580 10590 10600 10610 10620 10630 10640
 >< Tru9I
     >< Tfil
 >< MseI
                                                        >< RsaI
                                                      >< Csp6I
                    >< Tru9I
>< MseI
  IdqH ><
                                                       >< AfaI
TCTTAATAGA TTCACCACTA CTTTGAATGA CTTTAACCTT GTGGCAATGA AGTACAACTA TGAACCTTTG
              10660 10670 10680 10690 10700
                         >< SinI
                         >< Sau96I
                             >< PssI
                          >< Psp5II
                         >< PpuMI
                         >< NspIV
                          >< NspHII
                          >< NlaIV
                               FIGURA 13, 24
```

```
>< EcoOl09I
                   >< Eco47I
   >< Sau3AI
                  >< DraII
   >< Sausar
>< NdeII
>< MboI
                  >< Cfr13I
   >< MboI
                 >< BsiZI
   >< DdeI
                                            >< BfrI
                                            >< BbvI
ACACAAGATC ATGTTGACAT ATTGGGACCT CTTTCTGCTC AAACAGGAAT TGCCGTCTTA GATATGTGTG
   10720 10730 10740 10750 10760 10770
                                                   10780
                                    >< StyI
                                >< RsaI
                                    >< EcoT14I
                                    >< Eco130I
          >< SfcI
                              > < Csp6I
            >< Fnu4HI
>< Fnu4HI
                                    >< BssTlT
>< BsaJI
CTGCTTTGAA AGAGCTGCTG CAGAATGGTA TGAATGGTCG TACTATCCTT GGTAGCACTA TTTTAGAAGA
   10790 10800 10810 10820
                                  10830 10840 10850
                                     >< StyI
                                     >< EcoT14I
                                     >< Eco130I
                                     >< BssTlI
    >< MboII
                             > < MaeIII>< BsaJI
TGAGTTTACA CCATTTGATG TTGTTAGACA ATGCTCTGGT GTTACCTTCC AAGGTAAGTT CAAGAAAATT
   10860
          10870 10880 10890 10900
                                           10910 10920
       >< SfaNI
      > < SduI
GTTAAGGGCA CTCATCATTG GATGCTTTTA ACTTTCTTGA CATCACTATT GATTCTTGTT CAAAGTACAC
   10930
          10940 10950
                         10 960 10 970 10 980
                         >< XmnI
                                                  >< MunI
                       AGTGGTCACT GTTTTCTTT GTTTACGAGA ATGCTTTCTT GCCATTTACT CTTGGTATTA TGGCAATTGC
        11010 11020
   11000
                         11.030
                                  11040
                                         11050
   >< NspI
   >< NspHI >< Tru9I
>< NlaIII >< MseI
                       >< BsmI
  >< BspWI >< Fnu4HI>< BspWI >< BscCI >< MaeIII
TGCATGTGCT ATGCTGCTTG TTAAGCATAA GCACGCATTC TTGTGCTTGT TTCTGTTACC TTCTCTTGCA
   11070
         11080
                 11090 11 100 11110 11120 11130
                          >< SfaNI
                          >< RmaI
                      > < NspI
> < NlaIII</pre>
                                     >< MamI
                                     >< HphI
  ACAGTTGCTT ACTTTAATAT GGTCTACATG CCTGCTAGCT GGGTGATGCG TATCATGACA TGGCTTGAAT
                 11160 11170 11180
   11140
         11150
                                         11190
                       FIGURA 13.25
```

```
>< Tru9I
                            >< MseI
       > < RmaI
                          > < Esp4I
       > < MaeI
         < MaeI >< > AflII > < AflII
                             >< Eco57I
TGGCTGACAC TAGCTTGTCT GGTTATAGGC TTAAGGATTG TGTTATGTAT GCTTCAGCTT TAGTTTTGCT
                             11240 11250 11260 11270
    11210 11220 11230
                                   >< RmaI
                                       >< MaeII
                                   >< MaeI
    > < NlaIII >< SfaNI
>< BspHI >< AluI >< BbvI
                                >< Fnu4HI
                                       >< AflIII
TATTCTCATG ACAGCTCGCA CTGTTTATGA TGATGCTGCT AGACGTGTTT GGACACTGAT GAATGTCATT
    11280 11290 11300 11310
                                        11320
                                                   11330 11340
                                                    >< Sau96I
                                                     >< PalI
                                                    >< NspIV
                                                  >< NlaIII
                                                      >< HaeIII
                                >< Sau3AI
>< NdeII
                                                       > < DdeI
                                                   >< Cfr13I
                                 >< MboI
                                                    >< BsuRI
                                 >< DpnII
                                                   >< BsiZI
                                  >< DpnI
                                                    >< BshI
                                  >< Bsp143I
                                                      > < BfrI
                                >< Bsp143I > <
>< BspAI>< AluI >< AsuI
              >< AccI
ACACTTGTTT ACAAAGTCTA CTATGGTAAT GCTTTAGATC AAGCTATTTC CATGTGGGCC TTAGTTATTT
    11350 11360 11370 11380 11390 11400 11410
                                             >< RmaI
                                      >< NlaIII
                                            >< MaeI>< SfcI
>< AluI>< AluI
CTGTAACCTC TAACTATTCT GGTGTCGTTA CGACTATCAT GTTTTTAGCT AGAGCTATAG TGTTTGTGTG
    11420 11430 11440 11450 11460
                                                   11470
                              >< BsrI
                                                   >< NlaIII BfrI >
TGTTGAGTAT TACCCATTGT TATTTATTAC TGGCAACACC TTACAGTGTA TCATGCTTGT TTATTGTTTC
    11490 11500 11510 11520 11530 11540 11550
                         >< PalI
                         >< HaeIII
               >< Fnu4HI >< BsuRI
  >< BbvI
            >< Fnu4HI >< BspWI</pre>
                       >< BshI >< Eco57I >< MaeIII</pre>
>< BbvI >< BspWI
TTAGGCTATT GTTGCTGCTG CTACTTTGGC CTTTTCTGTT TACTCAACCG TTACTTCAGG CTTACTCTTG
                                         11600 11610 11620
    11560 11570 11580
                                11590
                                               >< ScrfI
                                               >< MvaI
                                             >< EcoRII
                                                >< Ecl136I
                                             >< DsaV
                                               >< BstOI
                                               >< BstNI
                                             >< BsiLI
> < BsaJI
                    >< Eco31I
                    >< BsmAI
                                             >< BsaJI
                    >< BsaI
                           FIGURA 13. 26
```

```
>< DrdI >< Alw26I
                                           >< ApvI DdeI ><
GTGTTTATGA CTACTTGGTC TCTACACAAG AATTTAGGTA TATGAACTCC CAGGGGCTTT TGCCTCCTAA
   11630 11640 11650 11660 11670 11680 11690
                   >< Tru9I
                   >< MseI
>< SfaNI
>< MnlI
               >< SfaNI
GAGTAGTATT GATGCTTCA AGCTTAACAT TAAGTTGTTG GGTATTGGAG GTAAACCATG TATCAAGGTT
   11700 11710 11720 11730 11740 11750 11760
                           >< VneI
                           >< SnoI
                               >< SduI
                               >< NspII
                               >< HgiAI
                               >< Bsp12861
    >< BmyI >< RsaI
>< RsaI >< ApaLI >< MboII
>< Csp6I >< Alw44I >< Csp6I
>< AfaI >< MaeII >< Alw21I >< AfaI
                                                      DdeI >
BfrI >
GCTACTGTAC AGTCTAAAAT GTCTGACGTA AAGTGCACAT CTGTGGTACT GCTCTCGGTT CTTCAACAAC
   11770 11780 11790
                           11800 11810 11820 11830
                          >< NspII> < RsaI</pre>
                              >< OraIII
                          >< SduI>< Csp6I
    TTAGAGTAGA GTCATCTTCT AAATTGTGGG CACAATGTGT ACAACTCCAC AATGATATTC TTCTTGCAAA
   11840
           11850 11860 11870
                                     11880
                                               11890 11900
             >< TthHB8I
             >< TaqI
                                                     SfcI ><
         AGACACACT GAAGCTTTCG AGAAGATGGT TTCTCTTTTG TCTGTTTTGC TATCCATGCA GGGTGCTGTA
   11910 11920 11930 11940
                                     11950 11960 11970
   >< VspI
   >< Tru9I
                                          > < Ksp632I
   GACATTAATA GGTTGTGCGA GGAAATGCTC GATAACCGTG CTACTCTTCA GGCTATTGCT TCAGAATTTA
   11980 11990 12000
                                    12020 12030 12040
                             12010
                                   >< StuI
                              >< ScrfI
                                   >< PalI
                              >< MvaI>< HaeIII
                            >< EcoRII>< Eco147I
                             >< Ecl136I
                             >< DsaV >< BsuRI
                              >< BstOI
                              >< BstNI
                               >< Bsp₩I
           >< Fnu4HI >< BsaJI >< BshI TfiI ><
>< NdeI >< BspWI>< MnlI >< BglI >< SfcI HinfI ><
>< AciI >< ApyI>< AatI >< AluI
                             >< BsiLI</pre>
                         FIGURA 13. 27
```

```
GTTCTTTACC ATCATATGCC GCTTATGCCA CTGCCCAGGA GGCCTATGAG CAGGCTGTAG CTAATGGTGA
   12050 12060 12070 12080 12090 12100 12110
      >< XmnI
                 >< Tru9I
                                               >< SfaNI
     >< DdeI
     >< HphI
                                              >< BbvI Fnu4HI ><
TTCTGAAGTC GTTCTCAAAA AGTTAAAGAA ATCTTTGAAT GTGGCTAAAT CTGAGTTTGA CCGTGATGCT
         12130 12140 12150 12160
                                              12170 12180
                                                  XhoII ><
                                                 Sau3AI ><
                                                  NdeII ><
                                                       MnlI >
                                                     >< MnlI
                                                       >< MflI
                        > < Sau3AI
                                                       >< MboI
                        > < NdeII
                                                  DpnII ><
                                                    DpnI ><
                        > < MboI
                        > < DpnII
                                                      DdeI ><
                          >< DpnI
                                                  BstYI ><
                        >< NlaIII
GCCATGCAAC GCAAGTTGGA AAAGATGGCA GATCAGGCTA TGACCCAAAT GTACAAACAG GCAAGATCTG
   12190
           12200 12210 12220 12230
                                              12240
                 >< SpeI
                                       >< Ksp632I > < HindIII
             >< DdeI >< SfaNI
AGGACAAGAG GGCAAAAGTA ACTAGTGCTA TGCAAACAAT GCTCTTCACT ATGCTTAGGA AGCTTGATAA
                    12280 12290
   12260
            12270
                                     12300
                                               12310
                          >< Thal
                          >< MvnI
                       >< HinPlI
                        >< Hin6I
                          >< HhaI
                          >< CfoI
                          >< BstUI
                         >< Bsp50I
      >< Tru9I
      >< MseI
                         >< AccII
TGATGCACTT AACAACATTA TCAACAATGC GCGTGATGGT TGTGTTCCAC TCAACATCAT ACCATTGACT
   12330 12340 12350
                            12360 12370 12380 12390
                                >< RsaI
                               >< NlaIV
                              >< Eco64I
                               >< Csp6I
                            >< BslI
                            >< BsiYI>< KpnI
                                >< BscBI
                              >< BanI
                              >< Asp718
              >< NlaIII
                               >< AfaI
           >< BstXI
                              >< AccBlI
                                                    >< MaeIII
   >< Fnu4HI >< BbvI
                              >< Acc651
                                                     BsaI ><
ACAGCAGCCA AACTCATGGT TGTTGTCCCT GATTATGGTA CCTACAAGAA CACTTGTGAT GGTAACACCT
                                    12440 12450
           12410 12420 12430
        >< Zsp2I
    >< Ppul0I
```

```
>< NsiI
        >< Mph1103I
   >< NdeI>< EcoT22I
                                                  DdeI ><
      >< AvaIII >< SfaNI >< SfaNI >< AciI
                                                  BfrI ><
TTACATATGC ATCTGCACTC TGGGAAATCC AGCAAGTTGT TGATGCGGAT AGCAAGATTG TTCAACTTAG
                         12500 12510 12520 12530
   12470 12480 12490
                              >< PalI
                             >< Tru9I>< NlaIII
   TGAAATTAAC ATGGACAATT CACCAAATTT GGCTTGGCCT CTTATTGTTA CAGCTCTAAG AGCCAACTCA
   12540 12550 12560 12570 12580
                                             12590
                                                  RsaI ><
                                                  NlaIV ><
                                                   KpnI ><
                                                >< Fnu4HI
                                               Eco64I ><
                                                 Csp6I ><
  >< Tru9I
                                                  BscBI ><
>< PvuII
                                               Asp718 ><
                                                  AfaI ><
>< Psp5I
                                               >< AciI>< BanI
>< NspBII
                    >< HinfI >< PleI
                                               AccBlI ><
  >< MseI
>< AluI > < SfcI >< DdeI>< BsrI
                                   >< PshAI
                                               Acc65I ><
GCTGTTAAAC TACAGAATAA TGAACTGAGT CCAGTAGCAC TACGACAGAT GTCCTGTGCG GCTGGTACCA
   12610 12620 12630 12640 12650 12660 12670
                                       >< TthHB8I
                                       >< TaqI
                                       >< $fuI
                                       >< NspV
                                      >< MnlI
                                       >< LspI
                                       >< Csp45I
                                       >< BstBI
          >< RsaI
                                       >< Bsp119I
      >< Csp6I
                                       >< BsiCI
                                       >< Bpul4I
      >< AluI
                                       >< AsuII
CACAAACAGC TTGTACTGAT GACAATGCAC TTGCCTACTA TAACAATTCG AAGGGAGGTA GGTTTGTGCT
    12680 12690 12700 12710 12720 12730 12740
                 >< XhoII
                 >< Sau3AT
                 >< NdeII
                 >< MflI
                 >< MboI
                 >< DpnII
                  >< DpnI
                 GGCATTACTA TCAGACCACC AAGATCTCAA ATGGGCTAGA TTCCCTAAGA GTGATGGTAC AGGTACAATT
   12750 12760 12770 12780
                                   12790 12800 12810
                                        >< Sau96I
                                           >< PssI
                                          >< PalI
                                        >< NspIV
                        FIGURA 13.29
```

242

```
>< HaeIII
                                       >< Eco0109I
                                       >< DraII
                                       >< Cfr13I
                                          >< BsuRI
          >< NlaIV
                                       >< BsiZI
                                                     RsaT >
          >< BsrI
                                         >< BshI
                                                   Csp6I ><
          >< BsrI >< MaeIII >< AsuI
                                                     AfaI >
TACACAGAAC TGGAACCACC TTGTAGGTTT GTTACAGACA CACCAAAAGG GCCTAAAGTG AAATACTTGT
    12820 12830 12840 12850 12860
                                             12870 12880
                                                >< SfcI
                                                 > < MboII
                                                 MaeII ><
                                             >< Fnu4HI >< RsaI
                                            >< Eco57I >< Csp6I
           >< Tru9I
                                               > < BbsI
           >< MseI >< MnlI >< BbvI
                                          >< AluI >< AfaI
ACTTCATCAA AGGCTTAAAC AACCTAAATA GAGGTATGGT GCTGGGCAGT TTAGCTGCTA CAGTACGTCT
   12890 12900 12910 12920 12930 12940 12950
                   >< RsaI
          >< SfcI >< Csp6I
        >< BspWI >< AfaI >< BspMI
                                                  AccI ><
TCAGGCTGGA AATGCTACAG AAGTACCTGC CAATTCAACT GTGCTTTCCT TCTGTGCTTT TGCAGTAGAC
   12960 12970 12980 12990 13000 13010 13020
                   >< RmaI
                    >< MnlI
                   >< MaeI
                             >< HphI
CCTGCTAAAG CATATAAGGA TTACCTAGCA AGTGGAGGAC AACCAATCAC CAACTGTGTG AAGATGTTGT
   13030 13040 13050 13060 13070 13080 13090
                                           >< SinI
                                           >< Sau96I
                                            >< NspIV
                                            >< NspHII
                                           >< NlaIII
                                            >< Eco47I
                                                 >< Eam1105I
                                           >< Cfr13I
                                            >< BsiZI
>< RsaI
         >< RsaI
>< MboII >< Csp6I
                                           >< Bme18I >< XcmI
>< AvaII PleI ><
GTACACACA TGGTACAGGA CAGGCAATTA CTGTAACACC AGAAGCTAAC ATGGACCAAG AGTCCTTTGG
   13100 13110 13120 13130 13140
                                            13150
                                               >< TfiI
             >< SfaNI
                                                   >< MaeIII
         >< HinfI
TGGTGCTTCA TGTTGTCTGT ATTGTAGATG CCACATTGAC CATCCAAATC CTAAAGGATT CTGTGACTTG
   13170 13180 13190 13200 13210 13220
      > < RsaI
        >< MaeII
      >< Csp6I
                                   >< BsrI
      > < AfaI
AAAGGTAAGT ACGTCCAAAT ACCTACCACT TGTGCTAATG ACCCAGTGGG TTTTACACTT AGAAACACAG
    13240 13250 13260 13270 13280 13290
                                            >< Thal
```

```
>< SfaNI
                                                     >< MvnI
                                                     >< BstUI
   >< RsaI
                                                    >< Bsp50I
   >< Csp6I
                                                   >< Acii
   >< AfaI >< AciI
                               >< SfcI >< MaeIII
                                                   >< AccIISfaNI ><
TCTGTACCGT CTGCGGAATG TGGAAAGGTT ATGGCTGTAG TTGTGACCAA CTCCGCGAAC CCTTGATGCA
    13310
             13320 13330 13340
                                        13350
                                                     13360
           >< Zsp2I
                > < SfaNI
           >< Mph1103I>< Tru9I
       >< PpulOI>< MaeII
                                                         Fnu4HI ><
           >< NsiI> < FokI
                                                         BsqI ><
           >< EcoT22I >< MseI
                                                       >< BbvI
   >< AciI>< AvaIII >< DraI >< AciI >< Fnu4HI
                                                       AciI ><
GTCTGCGGAT GCATCAACGT TTTTAAACGG GTTTGCGGTG TAAGTGCAGC CCGTCTTACA CCGTGCGGCA
    13380 13390 13400 13410 13420 13430
    >< SpeI
         >< ScaI
         >< RsaI
     >< RmaI
     >< MaeI
       > < Csp6I
                    >< SfcI
                                                             >< BspWI
> < Csp6I > < SfcI
> < BspWI > < AfaI > < AccI > < BcgI/a
                                                              BcqI >
CAGGCACTAG TACTGATGTC GTCTACAGGG CTTTTGATAT TTACAACGAA AAAGTTGCTG GTTTTGCAAA
    13450
             13460
                       13470 13480 13490 13500 13510
                          >< ScrFI
                          >< MvaI
                              >< MnlI
                         >< EcoRII
                          >< Ecl136I
                          >< BstOI
                          >< BstNI
                               >< BslI
                         >< DsaV >< BsiYI
                          >< BsiLI
                                                  >< PleI
                                        > < FokI >< HinfI
                          >< ApyI
GTTCCTAAAA ACTAATTGCT GTCGCTTCCA GGAGAAGGAT GAGGAAGGCA ATTTATTAGA CTCTTACTTT
    13520 13530
                       13540
                               13550 13560
                                                  13570
                                  >< NlaIII
                              >< Ksp632I
                              >< EarI
   >< Tru9I
                              >< Eam1104I
   >< MseI
                                >< BsmAI
                                                        >< Tru9I
                               >< Alw26I >< MboII >< MseI
>< MnlI
GTAGTTAAGA GGCATACTAT GTCTAACTAC CAACATGAAG AGACTATTTA TAACTTGGTT AAAGATTGTC
             13600 13610
    13590
                               13620
                                           13630
                                                     13640
                                                  >< RsaI
                                                  >< NlaIV
                                               > < NlaIII
                                                   >< KpnI
                                                   >< HphI
                                               > < Eco64I
                                                 >< Csp6I
                                                 >< BscBI
                                               > < BanI
                                               > < Asp718
```

```
>< MaeIII >< AfaI
 >< NspBII
                                      > < AccBlI MaeII ><</pre>
        >< NlaIII
                                      > < Acc65I > < HgaI
 >< AciI
CAGCGGTTGC TGTCCATGAC TTTTTCAAGT TTAGAGTAGA TGGTGACATG GTACCACATA TATCACGTCA
   13660 13670 13680 13690 13700
                                         137 10
                                                  13720
                                    >< MnlI
                                 >< MaeII
GCGTCTAACT AAATACACAA TGGCTGATTT AGTCTATGCT CTACGTCATT TTGATGAGGG TAATTGTGAT
   13730 13740 13750 13760 13770 13780 13790
  >< Tru9I
  >< MseI >< MaeIII >< MunI
ACATTAAAAG AAATACTCGT CACATACAAT TGCTGTGATG ATGATTATTT CAATAAGAAG GATTGGTATG
                  13820 13830 13840 13850 13860
   13800 13810
                     >< Thal
                    >< MvnI
                   >< MluI
                    >< BstUI
                                          >< RsaI
       ACTTCGTAGA GAATCCTGAC ATCTTACGCG TATATGCTAA CTTAGGTGAG CGTGTACGCC AATCATTATT
   13870 13880 13890 13900 13910 13920
                                                  XhoII >
                                                 Sau3AT >
                                                  NdeII >
                                                  MflI >
                                       >< RsaI
      > < SfaNI
                                                 DpnII >
     >< RsaI
                                      > < Csp6I
                                   >< BspWI BstYI >
>< AfaI BspAI >
     >< Csp6I
                                   >< BspWI
     >< AfaI >< SfaNI
AAAGACTGTA CAATTCTGCG ATGCTATGCG TGATGCAGGC ATTGTAGGCG TACTGACATT AGATAATCAG
   13940 13950 13960 13970 13980
                                         13990
                                      > < ScrFI
                                      > < MvaI
                                        >< Fnu4HI
                                     >< EcoRII
                                      > < Ecl136I
                                      > < BstOI
                                      > < BstNI
GATCTTAATG GGAACTGGTA CGATTTCGTT GATTTCGTAC AAGTAGCACC AGGCTGCGGA GTTCCTATTG
   14010 14020 14030 14040 14050 14060
                                                 14070
                                                >< SfaNI
 TGGATTCATA TTACTCATTG CTGATGCCCA TCCTCACTTT GACTAGGGCA TTGGCTGCTG AGTCCCATAT
   14080 14090 14100 14110 14120 14130 14140
    >< Sau3AI
    >< NdeII
```

```
>< MboI
    >< MamI
                                                        Tth1111 ><
    >< DpnII
      >< DpnI
                                                        MboII ><
         >< BspWI
                                                 >< Ksp632I
     >< BspAI
                                                 >< Eam1104I
                                                    >< BsmAI
     >< Bsp143I
                      >< XcmI
    >< BsiBI >< Tru9I
>< BsaBI >< FokI >< MseI
                                                 >< EarI AspI ><</pre>
                                                    >< Alw26I
GGATGCTGAT CTCGCAAAAC CACTTATTAA GTGGGATTTG CTGAAATATG ATTTTACGGA AGAGAGACTT
           14160 14170 14180 14190 14200
                          > < SinI
                          > < Sau96I
                          > < NspIV
                            >< NspHII
     >< TthHB8I
                           >< NlaIV
     >< TaqI
                        >< FokI
                        > < Eco47I
> < Cfr13I
> < BsiZI
         >< McrI
       > < Ksp632I
       > < EarI
       > < Eam1104I > < SspI > < BscBI
    >< Tru9I
                                    >< MunI >< MseI
TGTCTCTTCG ACCGTTATTT TAAATATTGG GACCAGACAT ACCATCCCAA TTGTATTAAC TGTTTGGATG
    14220 14230 14240 14250 14260 14270 14280
                                                           SinI ><
                                                         Sau96I ><
                                                          NspIV ><
                                                          NspHII >
                                                         Eco47I ><
                                                         Cfrl3I ><
                                                          BsiZI ><
                                                         Bme18I ><
                        >< Tru91
                                                         AvaII ><
                        >< MseI
      >< FokI
                                                          AsuI ><
ATAGGTGTAT CCTTCATTGT GCAAACTTTA ATGTGTTATT TTCTACTGTG TTTCCACCTA CAAGTTTTGG
    14290
            14300 14310 14320
                                        14330
                                                14340
  >< SpeI
   >< RmaI
   >< MaeI
              >< SspI
                                                  >< BsrI
ACCACTAGTA AGAAAAATAT TTGTAGATGG TGTTCCTTTT GTTGTTCAA CTGGATACCA TTTTCGTGAG
                      14380 14390
           14370
    14360
                                       14400
                                                  14410
                                      >< ThaI>< Esp3I
                                         >< DdeI
                                      >< BstUI
         >< RsaI
                                      >< Bsp50I >< Bsm8I
                                      >< MvnI>< BsmAI
   >< HinfI >< PleI
       > < Csp6I
                            >< AfaI
                              >< FokI >< AccII
TTAGGAGTCG TACATAATCA GGATGTAAAC TTACATAGCT CGCGTCTCAG TTTCAAGGAA CTTTTAGTGT
    14430
            14440 14450 14460
                                        14470 14480
                                                          14490
                   >< 2sp2I
                     >< SphI
               >< Ppul0I
                    >< PaeI
                     >< NspI
                           FIGURA 13. 33
```

```
>< Sau3AI
                  >< NspHI
     >< NdeII
                 >< NsiI
     >< MboI
                  >< NlaIII
     >< DpnII
> < DpnI
                >< Mph1103I
                                                      >< NspI
                 >< Fnu4HI
                                                NspHI ><
  >< Fnu4HI>< BspWI >< EcoT22I</pre>
                                                NlaIII ><
     >< BspWI
 >< BsgI
                                                   >< BbvI
ATGCTGCTGA TCCAGCTATG CATGCAGCTT CTGGCAATTT ATTGCTAGAT AAACGCACTA CATGCTTTTC
                                     14540
   14500 14510 14520 14530
                                             14550 14560
                                     >< ScrFI
                                     >< NciI
                                     >< MspI
                                     >< MpaII
   >< Fnu4HI
                                     >< HapII
                                    >< DsaV
                                            >< Tru9I
>< MseI
   >< AlwNI
   >< AluI
                                     >< BcnI
AGTAGCTGCA CTAACAAACA ATGTTGCTTT TCAAACTGTC AAACCCGGTA ATTTTAATAA AGACTTTTAT
           14580 14590 14600 14610
                                            14620 14630
                     >< Tru9I
                                                     DdeT ><
                     >< MseI
                                          >< MboII
                                                     BbvI ><
GACTTTGCTG TGTCTAAAGG TTTCTTTAAG GAAGGAAGTT CTGTTGAACT AAAACACTTC TTCTTTGCTC
    14640
          14650 14660 14670 14680 14690 14700
                                                  EcoRV ><
            >< FokI
          >< Enu4HI
                                                 Eco32I ><
AGGATGGCAA CGCTGCTATC AGTGATTATG ACTATTATCG TTATAATCTG CCAACAATGT GTGATATCAG
    14710
          14720 14730 14740 14750
                                              14760
                                                     >< VspI
                                                     >< Tru 91
                                                     >< Mse I
                                                     >< Asn I
                                    >< MaeIII
                                                     >< Ase I
ACACTCCTA TTCGTAGTTG AAGTTGTTGA TAAATACTTT GATTGTTACG ATGGTGGCTG TATTAATGCC
    14780
           14790 14800 14810 14820 14830
           >< Tru9I
                       >< MseI
           >< HpaI
           >< HindII
           >< HincII
AACCAAGTAA TCGTTAACAA TCTGGATAAA TCAGCTGGTT TCCCATTTAA TAAATGGGGT AAGGCTAGAC
   14850
           14860
                    14870 14880 14890
                                              14900
                                                      14910
                   >< SfaNI
                                     >< Thal
                     >< Sau3A1
                     >< MvnI
                                     >< Bst1107I
                      >< Bsp143I
                                     >< AccII>< DdeI
                    >< BspAI >< AlwI >< AccI
    >< HinfI>< MnlI
TTTATTATGA CTCAATGAGT TATGAGGATC AAGATGCACT TTTCGCGTAT ACTAAGCGTA ATGTCATCCC
           14930 14940 14950
   14920
                                      14960 14970 14980
                                            >< SstI
                                           >< SduI
                                           >< SacI
```

```
>< NspII
                                                 >< HgiAI
                                                 >< Eco24I
                  >< Tru9I
                                              > < Ecl136II
              >< TfiI
                                                 >< Bsp1286I
                   >< MseI
                                                 >< BmyI
              >< HinfI
                                                 >< BanII
                 > < Esp4I
                                                 >< Alw21I
                          >< BspWI > < AluI
                 > < AflII
TACTATAACT CAAATGAATC TTAAGTATGC CATTAGTGCA AAGAATAGAG CTCGCACCGT AGCTGGTGTC
            15000 15010 15020 15030
                                                    15040
                                                         RmaI ><
          >< ScaI
                                                        > < MnlI
    >< SfcI>< RsaI
                                                        MaeI ><
 >< BsmAI >< Csp6I
                                                       >< Fnu4HI
 >< Alw26I >< AfaI
                                                       >< AciI
TCTATCTGTA GTACTATGAC AAATAGACAG TTTCATCAGA AATTATTGAA GTCAATAGCC GCCACTAGAG
          15070 15080 15090 15100 15110 15120
                                                   >< Tru9I
 >< AluI
                                                   >< MseI
GAGCTACTGT GGTAATTGGA ACAAGCAAGT TTTACGGTGG CTGGCATAAT ATGTTAAAAA CTGTTTACAG
    15130 15140 15150 15160 15170 15180 15190
                                                          NspI ><
                                                         NspHI ><
                                                         NlaIII ><
                                                      >< NlaIII
                                                           DdeI ><
                                                       Bsp₩I ><
                                         >< MaeIII
                                                       Bfrĭ ><
TGATGTAGAA ACTCCACACC TTATGGGTTG GGATTATCCA AAATGTGACA GAGCCATGCC TAACATGCTT
    15200 15210 15220 15230 15240 15250 15260
       > < PalI
       > < HaeIII
       > < BsuRI
       > < BshI >< MnlI
                                           >< MaeIII SfcI ><
AGGATAATGG CCTCTCTTGT TCTTGCTCGC AAACATAACA CTTGCTGTAA CTTATCACAC CGTTTCTACA
    15270 15280 15290 15300 15310
                                                   15320 15330
                                                       Tru91 ><
                                                            ScrFI >
                                                             MvaI >
                                                            >< MseI
                >< MstI
                                                            FokI ><
               >< HinPlI
                                                          EcoRII ><
                                                           Ecl136I >
               >< Hin6I
                 > < HhaI
                                                           DsaV ><
                >< FspI
                                                            BstOI >
                >< FdiII
                                        >< NlaIII</pre>
                                                            BstNI >
                > < CfoI>< Tru9I
                                    > < Fnu4HI
                >< AviII >< MseI
                                             >< AciI
GGTTAGCTAA CGAGTGTGCG CAAGTATTAA GTGAGATGGT CATGTGTGGC GGCTCACTAT ATGTTAAACC
    15340
            15350 15360 15370 15380 15390 15400
       > < SfaNI
             >< MspI
                         >< HphI
>< BspWI
                                               >< Tru9I MaeIII ><
>< MseI AluI ><</pre>
             >< HpaII
             >< HapII
                            FIGURA 13. 35
```

```
AGGTGGAACA TCATCCGGTG ATGCTACAAC TGCTTATGCT AATAGTGTCT TTAACATTTG TCAAGCTGTT
    15410 15420 15430 15440 15450 15460 15470
                                               >< DrdI
                                       >< AluI
                                                > < AciI
>< BspWI
ACAGCCAATG TAAATGCACT TCTTTCAACT GATGGTAATA AGATAGCTGA CAAGTATGTC CGCAATCTAC
    15480 15490 15500 15510
                                       15520 15530 15540
                                   >< Sau3AI
                                   >< NdeII
                                   >< MboI
                                  > < MamI
                                    >< FbaI
                                   >< DpnII
                                    >< DpnI
                                     >< BspHI
                                   >< BspAI
                                    >< Bsp143I
                                   >< BsiQI
                   >< SfcI
                    > < BsiBI>< NlaIII
AACACAGGCT CTATGAGTGT CTCTATAGAA ATAGGGATGT TGATCATGAA TTCGTGGATG AGTTTTACGC
   15550 15560 15570 15580 15590 15600 15610
                       >< TfiI
                         >< SfaNI
                    >< NlaIII
         >< BspMI
                    >< HinfI
TTACCTGCGT AAACATTTCT CCATGATGAT TCTTTCTGAT GATGCCGTTG TGTGCTATAA CAGTAACTAT
    15620
          15630 15640 15650 15660 15670 15680
               > < RmaI
              >< NheI >< Tru9I</pre>
>< Fnu4HI
              >< AciI
GCGGCTCAAG GTTTAGTAGC TAGCATTAAG AACTTTAAGG CAGTTCTTTA TTATCAAAAT AATGTGTTCA
   15690 15700
                                      15730 15740
                    15710 15720
                                    >< SinI
                                    >< Sau96I
                                       >< PssI
                                     >< Psp5II
                                    >< PpuMI
                                    >< NspIV
                                     IIHqzN ><
                                    >< Eco0109I
                                    >< Eco47I
                                    >< DraII
                                    >< Cfr13I
                                    >< BsiZI
                  >< DdeI
                                    >< Bme18I
>< Avall
                                   >< AsuI
TGTCTGAGGC AAAATGTTGG ACTGAGACTG ACCTTACTAA AGGACCTCAC GAATTTTGCT CACAGCATAC
   15760 15770 15780 15790
                                      15800 15810 15820
                                       >< XhoII
                                       >< Sau3AI
                                       >< NdeII
                                       >< MflI
                                       >< MboI
                         FIGURA 13. 36
```

```
      >< RsaI</td>
      >< DpnII</td>

      >< MaeII</td>
      >< DpnI</td>
      >

      >< Tru9I</td>
      >< Csp6I</td>
      >< BstYI</td>
      H

      RmaI
      >< BsaAI</td>
      >< BspMI</td>
      I

      MaeI
      >< AflIII</td>
      >< BspAI</td>
      I

      I>< MseI</td>
      >< AfaI</td>
      >< AlwI><< Bsp143I</td>
      Sp24I

                                                     >< DpnI > < SspI
>< BstYI HinPlI ><
    >< RmaI
                                                                     Hin6I ><
    >< MaeI
>< BspWI>< MseI
AATGCTAGTT AAACAAGGAG ATGATTACGT GTACCTGCCT TACCCAGATC CATCAAGAAT ATTAGGCGCA
                                        15860 15870 15880
     15830
              15840 15850
                                                                            15890
                                         >< RsaI
                                                                         >< SfaNI
           >< TthHB8I
                                        >< Csp6I
                                                                    >< MaeIII
           >< TaqI
                                        >< AfaI
                                                                         BsrI ><
GGCTGTTTTG TCGATGATAT TGTCAAAACA GATGGTACAC TTATGATTGA AAGGTTCGTG TCACTGGCTA
            15910 15920 15930 15940 15950 15960
     15900
         > < FokI
 >< BspWI
TTGATGCTTA CCCACTTACA AAACATCCTA ATCAGGAGTA TGCTGATGTC TTTCACTTGT ATTTACAATA
    15970 15980 15990 16000 16010 16020 16030
                                          >< Van9lI
                                          >< PflMI
                                          >< NspI
                                 > < PalI>< NspHI
                                  > < MscI>< NlaIII
                                  > < HaeIII
                                  > < BsuRI
                                    >< BsrI
                               >< EaeI >< BslI >< NspI
> < BshI>< BsiYI >< NspHI
                                   >< AflIII >< AflIII
                 >< NlaIII
        CATTAGAAAG TTACATGATG AGCTTACTGG CCACATGTTG GACATGTATT CCGTAATGCT AACTAATGAT
     16040
               16050
                           16060
                                       16070
                                                    16080
                                                                16090 16100
             >< RsaI> < NlaIV</pre>
               >< MnlI
            >< Csp6I >< DdeI >< RsaI
>< BsrI >< MnlI >< Csp6I
>< AfaI> < BscBI >< AfaI
AACACCTCAC GGTACTGGGA ACCTGAGTTT TATGAGGCTA TGTACACACC ACATACAGTC TTGCAGGCTG
              16120
                           16130 16140
                                                    16150
                                                            16160 16170
                                                      >< NlaIV
                                                              >< EcoNI
                                                              >< Eco31I
                                                    >< Eco64I>< BsmAI
                                                      >< BscBI >< BslI
                                                    >< AciI >< BsaI
                                                   >< AccBlI>< Alw26I
  >< BspWI
TAGGTGCTTG TGTATTGTGC AATTCACAGA CTTCACTTCG TTGCGGTGCC TGTATTAGGA GACCATTCCT
               16190 16200 16210 16220
                                                               16230
             >< TthlllI
>< Fnu4HI >< NlaIII
                                                                      > < Tru9I
             >< BspWI >< AspI
                                                                      > < MseI
ATGTTGCAAG TGCTGCTATG ACCATGTCAT TTCAACATCA CACAAATTAG TGTTGTCTGT TAATCCCTAT
     16250 16260
                           16270 16280 16290 16300 16310
               >< ScrFI
               >< MvaI
```

```
>< EcoRII
                          >< Ecl136I
                       >< DsaV
                           >< BstOI
                           >< BstNI
                           >< BsiLI
                                                                                                     >< RmaI
                                                                                                                        BspWI ><
>< AluI
                       >< BsaJI
                                                                                              >< MnlI
                           >< Apyl >< MaeIII >< MaeIII >< MaeI
GTTTGCAATG CCCCAGGTTG TGATGTCACT GATGTGACAC AACTGTATCT AGGAGGTATG AGCTATTATT
         16320 16330 16340 16350 16360 16370 16380
     >< MaeIII
                                                  >< MnlI
GCAAGTCACA TAAGCCTCCC ATTAGTTTTC CATTATGTGC TAATGGTCAG GTTTTTGGTT TATACAAAAA
         16390 16400 16410 16420 16430 16440 16450
         >< NspI
                                                                                                            >< NspI
          >< NspHI > < Tth111I
                                                                                                            >< NspHI
          >< NlaIII>< MaeIII>< MaeIII
                                                                                                            >< NlaIII
 >< AflIII >< AspI
                                                                                                  >< AFILLE
CACATGTGTA GGCAGTGACA ATGTCACTGA CTTCAATGCG ATAGCAACAT GTGATTGGAC TAATGCTGGC
                      16470
                                                 16480
          16460
                                                                        16490 16500 16510
                                                 >< RsaI
                                                     >< PleI
                                                      >< DdeI
                                               >< Csp6I
                                                 >< BsmAI >< HinfI
                                                                                                                                    >< Mn l I
                                                 >< Alw26I >< HindIII
                                                                                                                                     DdeI ><
                                                                            >< AluI >< Fnu4HI >< BbvI
                                                 >< AfaI
GATTACATAC TTGCCAACAC TTGTACTGAG AGACTCAAGC TTTTCGCAGC AGAAACGCTC AAAGCCACTG
          16530 16540 16550 16560
                                                                                          16570 16580 16590
                                                                                   > < ThaI
                                                                                               >< Scal
                                                                             >< RsaI >< RsaI</pre>
                                                                                  > < MvnI
                                                                           >< Csp6I >< Csp6I
                                                                                   > < BstUI
                 > < Tru9I
                                                                                  > < Bsp50I
                 > < MseI > < NdeI
                                                                            >< AfaI >< AfaI</pre>
                       >< AluT
                                                                             > < AccII
                                                                                                                                        Mn 1 1 >
AGGAAACATT TAAGCTGTCA TATGGTATTG CCACTGTACG CGAAGTACTC TCTGACAGAG AATTGCATCT
          16600 16610 16620 16630 16640
                                                                                                                     16650 16660
                                                                                                                         MaeIII ><
                                                                                                                      >< MaeIII
                                                                                                                      >< Eco0651
                                                                                                                      >< Eco91I
                                                                                                                       >< BstPI
        < SfaNI >< RmaI
>< NlaIII >< MaeI
     >< SfaNI
                                                                                                                      >< BstEII
                                                                                                                        >< BsrI
TTCATGGGAG GTTGGAAAAC CTAGACCACC ATTGAACAGA AACTATGTCT TTACTGGTTA CCGTGTAACT
                           16680 16690 16700 16710
         16670
                                                                                                                      16720
                                                                                                                                           16730
                                                                                                                                    RsaI ><
                                                                                                                                      >< MnlI
                         >< RsaI >< RsaI >< Csp6I >< Csp6I >< SfaNI Csp6I >< AfaI >< AfaI >< MaeIII >< HphI AfaI >< MaeIII >< MaeII
                                                                                                                                       >< HphI
AAAAATAGTA AAGTACAGAT TGGAGAGTAC ACCTTTGAAA AAGGTGACTA TGGTGATGCT GTTGTGTACA
         16740
                            16750
                                            16760 16770 16780
                                                                                                             16790
                                                                                                                                           16800
                                                             FIGURA 13. 38
```

```
>< RsaI
                                         >< HphI
                                            >< HindII DdeI >< + HincII BfrI ><
  >< Csp6I
   >< AfaI
GAGGTACTAC GACATACAAG TTGAATGTTG GTGATTACTT TGTGTTGACA TCTCACACTG TAATGCCACT
    16810 16820 16830 16840 16850 16860 16870
 >< VneI
 >< SnoI
     >< SduI
     >< NspII
     >< HgiAI
                          > < SduI
                     > < NspII
> < HgiAI
 >< DralII
TAGTGCACCT ACTCTAGTGC CACAAGAGCA CTATGTGAGA ATTACTGGCT TGTACCCAAC ACTCAACATC
    16880 16890 16900 16910 16920 16930 16940
                                                            StyI ><
                                                               Sint >
                                                              Sau96I >
                                                               NspIV >
                                                         EcoT14I ><
                                                              Eco471 >
                                                          Eco130I ><
                                                      >< Scal Cfr13I >
                                                          BssTlf ><
                                               >< SphI >< RsaI BsiZI >
                                               >< Pael BsaJI >< >< NlaIII Bmel8I >
                                              >< NspI>< Csp6I AvaII >
>< NspHI>< AfaI AsuI >
            >< RmaI
            >< MaeI
TCAGATGAGT TTTCTAGCAA TGTTGCAAAT TATCAAAAGG TCGGCATGCA AAAGTACTCT ACACTCCAAG
    16950 16960 16970 16980 16990 17000 17010
     >< ScrFI
        >< RsaI
     >< MvaI
   >< EcoRII
     >< Ecl136I
       > < Csp6I
     >< BstOI
     >< BstNI
>< XcmI >< BslI
>< NspHII >< BsiYI
    >< BsiLI
              >< BsrI
   >< DsaV>< AfaI > < HinfI>< PleI
GACCACCTGG TACTGGTAAG AGTCATTTTG CCATCGGACT TGCTCTCTAT TACCCATCTG CTCGCATAGT
          17030 17040 17050 17060 17070 17080
    17020
                 >< SfaNI
          >< SphI >< PvuII
          >< PaeI >< Psp5I
>< NspI >< NspBII
>< NspI >< NspBII
>< NspHI >< Fnu4HI >< Tru9I
>< Bst1107I >< NlaIII>< BspWI >< MseI
>< AccI >< NlaIII >< AluI >< BbvI >< MseI
                                               > < Tru9I
                                                  >< SspI
GTATACGGCA TGCTCTCATG CAGCTGTTGA TGCCCTATGT GAAAAGGCAT TAAAATATTT GCCCATAGAT
    17090 17100 17110 17120 17130 17140
                            FIGURA 13. 39
```

```
> < Thal
                      >< ThaI
                          > < MvnI
                      >< MvnI >< ThaI
                          > < HinPlI
                         >< HinPlI
                    >< HinPlI >< MvnI
                          > < Hin6I
                         >< Hin6I
                          > < HhaI
                      >< HhaI >< HhaI
                          > < CfoI
                      >< CfoI >< CfoI
                          > < BstUI
                      >< BstUI >< BstUI
                         >< BssHII
                        >< BspMI
                          > < Bsp50I
                     >< Bsp50I>< Bsp50I
                                                             RmaI >
         >< TfiI
                    >< Hin6I> < AccII
                                                             MaeI >
         >< HinfI
                    >< AccII >< AccII
AAATGTAGTA GAATCATACC TGCGCGTGCG CGCGTAGAGT GTTTTGATAA ATTCAAAGTG AATTCAACAC
                    17180 17190
                                         17200 17210 17220
                             >< 2sp2I
                         >< Ppul0I
                              >< NsiI
                              >< Mph1103I
                             >< EcoT22I
>< BsgI
                           > < AvaIII
                                                     >< DrdI
TAGAACAGTA TGTTTTCTGC ACTGTAAATG CATTGCCAGA AACAACTGCT GACATTGTAG TCTTTGATGA
    17230 17240 17250 17260 17270 17280 17290
                                       >< RmaI
                                       >< MaeI
AATCTCTATG GCTACTAATT ATGACTTGAG TGTTGTCAAT GCTAGACTTC GTGCAAAACA CTACGTCTAT
    17300 17310 17320 17330
                                       17340 17350 17360
    >< Sau3AI
    >< NdeII
    >< MboI
    >< OpnII
     >< DpnI
                                                   >< RmaI
    >< BspAI
>< AlwI>< Bsp143I > < AciI
                                                   >< MaeI SspI ><
ATTGGCGATC CTGCTCAATT ACCAGCCCCC CGCACATTGC TGACTAAAGG CACACTAGAA CCAGAATATT
                                                   17420
                      17390
                                17400
    17370
             17380
                                         17410
                               >< SinI
                               >< Sau96I
                                           >< StyI
                               >< NspIV
                               >< NspHII >< NspI
                               >< Eco47I >< NspHI
                                        >< NlaIII
                               >< Cfr13I
                               >< BsiZI >< EcoTl4I
                              >< BsgI
                                            >< Ecol30I
                              >< Bme18I
                                           >< BssTlI
>< Tru9I
                              >< AvaII
                                          >< BsaJI
                              >< AsuI> < AflIII
>< MseI
TTAATTCAGT GTGCAGACTT ATGAAAACAA TAGGTCCAGA CATGTTCCTT GGAACTTGTC GCCGTTGTCC
    17440 17450 17460 17470
                                        17480 17490 17500
                            FIGURA 13, 40
```

```
>< HindII
                                          >< AluI
          >< HincII
TGCTGAAATT GTTGACACTG TGAGTGCTTT AGTTTATGAC AATAAGCTAA AAGCACACAA GGATAAGTCA
    17510 17520 17530 17540 17550 17560 17570
>< AluI
                                       >< NlaIII
GCTCAATGCT TCAAAATGTT CTACAAAGGT GTTATTACAC ATGATGTTTC ATCTGCAATC AACAGACCTC
    17580 17590 17600 17610 17620 17630 17640
    >< MnlI
>< EcoNI
 >< BslI
                                                   >< HphI
 >< BsiYI
                                               >< AluI
AAATAGGCGT TGTAAGAGAA TTTCTTACAC GCAATCCTGC TTGGAGAAAA GCTGTTTTTA TCTCACCTTA
    17650
            17660 17670 17680 17690
                                                   17700
                            >< DdeI
                                                    >< TfiI
             >< SfcI
                > < AluI >< BfrI
                                                    >< Hinfl
TAATTCACAG AACGCTGTAG CTTCAAAAAT CTTAGGATTG CCTACGCAGA CTGTTGATTC ATCACAGGGT
    17720 17730 17740 17750 17760 17770
                                                       > < HindII
           >< TthlllI
                                                       > < HincII
         >< AspI
                                                          >< AciT
TCTGAATATG ACTATGTCAT ATTCACACAA ACTACTGAAA CAGCACACTC TTGTAATGTC AACCGCTTCA
    17790
           17800 17810 17820 17830 17840 17850
                                                 >< XhoII
                                                 >< Sau3AI
                                                 >< NdeII
                                                 >< MflI
                                                 >< MboI
                                                >< MamI
                                                 >< DpnII
                                                  >< DpnI
                                                 >< BstYI
                                                 >< BspAI
                                                  >< Bsp143I
                                                 >< BsiBI
                                                >< BsaBI
                              >< BspWI
                                                >< BqlII
ATGTGGCTAT CACAAGGGCA AAAATTGGCA TTTTGTGCAT AATGTCTGAT AGAGATCTTT ATGACAAACT
            17870 17880 17890
                                         17900
    17860
                                                   17910
                                                            17920
           >< XbaI
            >< RmaI
                                                     >< MaeIII
           >< MaeI >< MaeII
                                                       BsrI ><
GCAATTTACA AGTCTAGAAA TACCACGTCG CAATGTGGCT ACATTACAAG CAGAAAATGT AACTGGACTT
    17930
             17940
                      17950
                               17960 17970 17980
                                                            17990
              >< Sau3AI
              >< NdeII
                   >< MboII
              >< MboI
                > < FokI
              >< DpnII
                                          >< NlaïV
               >< DpnI
                                         >< Eco641
              >< BspAI
                                          >< BscBI
                                        >< BanI Mnl
>< AccBlI >< DdeI
>< Tru9I
               >< Bsp143I
                                                         MnlI ><
>< MseI>< SfcI
                  >< BbsI > < BsrI</pre>
                           FIGURA 13. 41
```

```
TTTAAGGACT GTAGTAAGAT CATTACTGGT CTTCATCCTA CACAGGCACC TACACACCTC AGCGTTGATA
    18000 18010 18020 18030 18040 18050 18060
                                >< ScrFI
                                >< MvaI
                              >< EcoRII
                              >< Eco57I
                                >< Ecl136I
                              >< ĐsaV
                                >< BstOI
                                                      >< PleI
                        >< BstNI
>< HindII>< BsiLI
>< HincII>< ApyI
                                                >< NlaIII
                                                     HinfI ><</pre>
                                                     AccI ><
TAAAGTTCAA GACTGAAGGA TTATGTGTTG ACATACCAGG CATACCAAAG GACATGACCT ACCGTAGACT
   18070 18080 18090 18100 18110 18120 18130
                                    >< MaeIII
                                                      ThaI ><
                                    >< EcoO651
>< Eco91I
BstXI
>< BstPI
                                                     MvnI ><
                                                     BstUI ><
                                 >< BstXI
                                                    Bsp50I ><
                                    >< BstEII >< HphI AccII ><
CATCTCTATG ATGGGTTTCA AAATGAATTA CCAAGTCAAT GGTTACCCTA ATATGTTTAT CACCCGCGAA
           18150 18160 18170
                                       18180
                                               18190 18200
   >< XmnI
      > < MboII
                                                >< SfaNI
       > < MaeIII
                                                   >< RmaI
   >< Asp700I
                                                >< NlaIII
  >< AluI >< MaeII >< MnlI
                                                   >< MaeI
GAAGCTATTC GTCACGTTCG TGCGTGGATT GGCTTTGATG TAGAGGGCTG TCATGCAACT AGAGATGCTG
    >< Tru9I
                                      >< MseI
   >< RsaI
                                       >< HpaI
                                      >< HindII >< RsaI
>< HincII >< Csp6I
 >< GsuI
                   >< RmaI
  >< Csp6I
                    >< MnlI
 TGGGTACTAA CCTACCTCTC CAGCTAGGAT TTTCTACAGG TGTTAACTTA GTAGCTGTAC CGACTGGTTA
    18280 18290 18300 18310 18320
                                                 18330 18340
                                                >< ScrFI
                                                >< MvaI
                                                  >< MnlI
                                                 >< MaeIII
                                              >< EcoRII
                                                 >< Eco0651
                                             >< EcoNI
                                                 >< Eco91I
                                                >< Ec1136I
                                              >< OsaV Tru9I ><
                                                 >< DraIII
                                                 >< BstPI
                                                >< BstOI
                                                >< BstNI PmeI ><</pre>
                                                 >< BstEII
                                               >< BslI MseI ><
                                               >< BsiYI HphI ><
              >< HindII
                                               >< BsitI DraI ><
  >< HincII
                                               >< ApyI >< BsrI
                         FIGURA 13. 42
```

```
TGTTGACACT GAAAATAACA CAGAATTCAC CAGAGTTAAT GCAAAACCTC CACCAGGTGA CCAGTTTAAA
    18350 18360 18370 18380 18390 18400 18410
                             >< ScrFI
                             >< MvaI
                           >< EcoRII
                            >< Ecl136I
                            >< DsaV
                             >< BstOI
                             >< BstNI
                                                    >< RsaI
                             >< BsiLI
                                                       DdeI ><
                           >< NlaIII</pre>
CATCTTATAC CACTCATGTA TAAAGGCTTG CCCTGGAATG TAGTGCGTAT TAAGATAGTA CAAATGCTCA
    18420 18430 18440 18450 18460 18470
                                                >< NlaIII
                                         >< HinPlI
                     GTGATACACT GAAAGGATTG TCAGACAGAG TCGTGTTCGT CCTTTGGGCG CATGGCTTTG AGCTTACATC
    18490 18500
                    18510 18520 18530
                                                18540 18550
                    >< SinI
                    >< Sau96I
                   >< NspIV
                    >< NspHII
                   >< Eco47I
                   >< Cfr13I
                   >< BsiZI
>< Bme18I
     >< Scal
     >< RsaI
     >< Csp6I
                >< AvaII >< MaeII
>< AsuI >< AflIII >< MaeIII>< MaeII
     >< Afaī
AATGAAGTAC TTTGTCAAGA TTGGACCTGA AAGAACGTGT TGTCTGTGTG ACAAACGTGC AACTTGCTTT
    18560 18570 18580 18590 18600 18610
                         > < TfiI
                                              >< TthlllI
                         TCTACTTCAT CAGATACTTA TGCCTGCTGG AATCATTCTG TGGGTTTTGA CTATGTCTAT AACCCATTTA
    18630 18640 18650
                                       18670
                              18660
                                                 18680
                                                          18690
                                                         >< ScrFI
                                                        RsaI ><
                                                        >< MvaI
                                                       >< EcoRII
                                                  Ecl1361 ><
                                                       >< DsaV
                                                      Csp6I ><
                                                         BstXI ><
                         > < MaeIII</pre>
                                                         >< BstOI
                          > < EcoO651
                                                         >< BstNI
                          > < Eco911
                                                        >< BsiLI
                          > < BstPI
                  >< Eco57I> < BstEII >< MaeIII >< NlaIII AfaI ><
TGATTGATGT TCAGCAGTGG GGCTTTACGG GTAACCTTCA GAGTAACCAT GACCAACATT GCCAGGTACA
                     18720 18730
    18700
             18710
                                       18740
                                                 18750
             >< SfaNI
              >< Rma1
           lazW ><
           >< NspHI
                           FIGURA 13.43
```

```
>< NlaIII
                               >< RmaI
>< NlaIII
                                                 >< NlaIII
TGGAAATGCA CATGTGGCTA GTTGTGATGC TATCATGACT AGATGTTTAG CAGTCCATGA GTGCTTTGTT
   18770
          18780 18790 18800 18810 18820 18830
  >< ThaI
  >< MvnI
 >< HinPlT
 >< Hin6I
   >< HhaI
   >< CfoI
   >< BstUI
                           >< EcoNI> < MnlI
                           >< Bsp50I
                                            >< Tru9I
   >< AccII
AAGCGCGTTG ATTGGTCTGT TGAATACCCT ATTATAGGAG ATGAACTGAG GGTTAATTCT GCTTGCAGAA
   18840 18850 18860 18870 18880 18890 18900
  >< RsaI
                                                > < NlaIII
 >< Csp6I
                                      >< MboII
 >< AfaI >< NlaIII >< BspWI >< BsrI >< BspHI
AAGTACAACA CATGGTTGTG AAGTCTGCAT TGCTTGCTGA TAAGTTTCCA GTTCTTCATG ACATTGGAAA
         18920 18930 18940 18950 18960 18970
                    >< SauI
                    >< MstII
                    >< Eco81T
                    >< DdeI
                                                   NlaIII ><
                    >< CvnI
                                                 >< EspI
                    >< Bsu36I
                                            >< Eco57I MaeIII ><
                    >< Bse21I
                                                 >< DdeI
                    >< AxyI
                                                 >< CelII
                    >< AocI >< MnlI >< SfaNI >< BpullO2I
TCCAAAGGCT ATCAAGTGTG TGCCTCAGGC TGAAGTAGAA TGGAAGTTCT ACGATGCTCA GCCATGTAGT
   18980 18990 19000 19010 19020 19030
        >< MnlI
                          >< Ksp632I
   >< HindIII
             >< EarI
>< MboII >< Eaml104I
GACAAAGCTT ACAAAATAGA GGAACTCTTC TATTCTTATG CTACACATCA CGATAAATTC ACTGATGGTG
   19050
         19060 19070 19080 19090 19100 19110
                     >< Sau3AI
                     >< NdeII
                     >< MboI
                  >< MaeII> < MaeIII</pre>
                     llnqd ><
                       >< DpnI
                     >< BspAI
                                                       HinfI >
              >< MaeIII >< Bsp143I >< MunI
TTTGTTTGTT TTGGAATTGT AACGTTGATC GTTACCCAGC CAATGCAATT GTGTGTAGGT TTGACACAAG
    19120 19130 19140 19150 19160
                                              19170 19180
                                                   Zsp2I ><
                                                     >< SphI
                                                   > < Ppu10I
                                                     >< PaeI
                                                      >< NspI
                    >< ScrFI
                                                      >< NspHI
                   >< MvaI
                                                     >< NlaIII
                  >< EcoRII
                                               Mph1103I ><
                         FIGURA 13. 44
```

```
>< Ecl136I
                                                     >< GsuI
                                                     EcoT22I ><
                    >< DsaV
                     >< BstOI
                                                          >< BsmI
                                                      >< BscCI
                     >< BstNI
                     >< BsiLI
                                                     >< BpmI >< NsiI
                     >< ApyI
                                                          >< AvaIII
     >< PleI
AGTCTTGTCA AACTTGAACT TACCAGGCTG TGATGGTGGT AGTTTGTATG TGAATAAGCA TGCATTCCAC
    19190
          19200 19210
                                19220 19230 19240
                               >< Tru9I
                                   > < MunI
         >< TthHB8I
                               >< MseI
>< BcgI/a >< TaqI
                                >< DraI
     >< AluI
                                >< BcqI
ACTCCAGCTT TCGATAAAAG TGCATTTACT AATTTAAAGC AATTGCCTTT CTTTTACTAT TCTGATAGTC
    19260
            19270 19280 19290 19300 19310 19320
            >< PleI
                                                        SfaNI ><
            >< NlaIII
                                                          >< MaeII
           >< BsmAI
                                                       BsaAI ><
    >< HinfI>< Alw26I
                                                     AflIII ><
CTTGTGAGTC TCATGGCAAA CAAGTAGTGT CGGATATTGA TTATGTTCCA CTCAAATCTG CTACGTGTAT
    19330
             19340
                     19350 19360 19370
                                                   19380
                                                            Zsp2I >
                                                       >< ScaI
                                                       PpulOI ><
                                                       >< RsaINsiI >
                                                         Mph1103I >
                                                   >< SfaNIEcoT22I >
                                              > < RsaI >< Csp6I
                                             >< Csp6I
                                                       AvaIII ><
                                      >< NlaIII> < AfaI >< AfaI
TACACGATGC AATTTAGGTG GTGCTGTTTG CAGACACCAT GCAAATGAGT ACCGACAGTA CTTGGATGCA
    19400 19410 19420 19430 19440 19450
TATAATATGA TGATTTCTGC TGGATTTAGC CTATGGATTT ACAAACAATT TGATACTTAT AACCTGTGGA
          19480 19490 19500 19510 19520 19530
    19470
         >< ScrfI
         >< MvaI
          >< MaeIII
       >< EcoRII
         >< Ec1136I
       >< DsaV
         >< BstOI
         >< BstNI
                                             >< Tru9I
         >< BsiLI
                                             >< MseI
         >< ApyI
ATACATTAC CAGGTTACAG AGTTTAGAAA ATGTGGCTTA TAATGTTGTT AATAAAGGAC ACTTTGATGG
                                                  19590
    19540 19550 19560 19570 19580
   >< SgrAI
    >< NaeI
                           > < VspI
    >< MspI
    >< HpaII
                           > < Tru9I
    >< HapII
                           > < MseI
                          > < AsnI
   >< Cfrl0I
        >< BspWI
                          > < AseI
ACACGCCGGC GAAGCACCTG TTTCCATCAT TAATAATGCT GTTTACACAA AGGTAGATGG TATTGATGTG
    19610 19620 19630 19640 19650 19660 19670
                            FIGURA 13. 45
```

```
>< XhoII
>< Sau3AI
 >< NdeII
>< MflI
>< MboI
>< DpnII
 >< DpnI
                                                           >< MaeIII
>< BstYI
                                                      >< EspI
>< BspAI
                                                      >< DdeITru9I ><
 >< Bsp1431
                              >< Tru9I
                                                      >< CelIIMseI ><
                                       >< AluI >< Bpull02I
                               >< MseI
>< BglII
GAGATCTTTG AAAATAAGAC AACACTTCCT GTTAATGTTG CATTTGAGCT TTGGGCTAAG CGTAACATTA
    19680 19690 19700 19710
                                          19720
                                                     19730 19740
                                               >< Fnu4HI
              >< Tru9I
                                          >< EcoRV
                        >< BbvI >< Eco32I
 >< BsrI
             >< MseI
AACCAGTGCC AGAGATTAAG ATACTCAATA ATTTGGGTGT TGATATCGCT GCTAATACTG TAATCTGGGA
    19750
              19760
                       19770 19780
                                         19790
                                                    19800 19810
                        >< NspI
                        >< NspHI
                        >< NlaIII
                          >< BsqI
                    >< AflIII
CTACAAAAGA GAAGCCCCAG CACATGTATC TACAATAGGT GTCTGCACAA TGACTGACAT TGCCAAGAAA
    19820
          19830 19840 19850
                                            19860
                                                      19870
   >< DdeI>< MboII
                                                            >< Acct
CCTACTGAGA GTGCTTGTTC TTCACTTACT GTCTTGTTTG ATGGTAGAGT GGAAGGACAG GTAGACCTTT
                                            19930
    19890
            19900 19910 19920
                                                      19940
                                                            SinI ><
                                                          Sau96I ><
                                                          NspIV ><
                                                          NspHII ><
                                                           NlaIV ><
                                                          Eco47I ><
                                                          Cfr13I ><
                                                             >< BslI
                                                           BsiZI ><
                                                             >< BsiYI
                                                           BscBI ><
                                                          Bmel8I ><
                      >< Tru9I
                                                           AvaII ><
                      >< MseI
                                                           AsuI ><
TTAGAAACGC CCGTAATGGT GTTTTAATAA CAGAAGGTTC AGTCAAAGGT CTAACACCTT CAAAGGGACC
    19960
             19970
                      19980
                               19990 20000
                                                    20010
                           >< VspI
                           >< Tru9I
                           >< PleI
                          >< MseI
      >< RmaI
                                                           Tru9I ><
     >< NheI
                    >< MaeIII
                                                       >< Tru9I
>< MaeI >< AsnI >< TfiI
>< HgaI>< AluI >< HinfI>< AseI >< HinfI
                                                           MseI ><
                                                       >< MseI
AGCACAAGCT AGCGTCAATG CAGTCACATT AATTGGAGAA TCAGTAAAAA CACAGTTTAA CTACTTTAAG
            20040 20050 20060
                                                    20080
                                                               20090
    20030
                                           20070
                                          >< DdeI >< MnlI Tru9I ><
                                             >< BsmAI >< OdeI
```

```
>< Alw26I >< BfrIMseI ><</pre>
   >< AccI
AAAGTAGACG GCATTATTCA ACAGTTGCCT GAAACCTACT TTACTCAGAG CAGAGACTTA GAGGATTTTA
    20100
             20110 20120 20130 20140 20150 20160
                            >< TthHB8I
                            >< TaqI
                                 >< SstI
                                 >< SduI
                                                          XhoI ><
                                 >< SacI
                                                         TthHB8I >
                          > < PaeR7I
                                                          TaqI >
                          > < NspIII
                                                          $laI ><
                                 >< NspII
                                                         PaeR7I ><
                                 >< HgiAI
                                                        NspIII ><
                          > < Eco88I
                                                          >< MnlI
                          > < XhoI>< Eco24I
         >< XcmI
                                                         Eco88I ><
    >< Sau3AI
                               >< Ec1136II
                                                         CcrI ><
                  >< NdeII
    >< MboI
    >< DpnII
     >< DpnI
                                                         Ama87I ><
    >< BspAI
     >< Bsp143I
AGCCCAGATC ACAAATGGAA ACTGACTTTC TCGAGCTCGC TATGGATGAA TTCATACAGC GATATAAGCT
    20170 20180 20190 20200 20210 20220 20230
            >< TthHB8I
            >< TagI
            >< SfuI
            >< NspV
            >< LspI
             >< Csp45I
            >< BstBI
            >< Bsp119I
            >< BsiCI
                                                >< MboII
                                                >< BbsI Tru9I ><
            >< Bpul4I
            >< AsuII >< BcgI
                                          >< NlaIII >< AciIMseI ><</pre>
CGAGGGCTAT GCCTTCGAAC ACATCGTTTA TGGAGATTTC AGTCATGGAC AACTTGGCGG TCTTCATTTA
                      20260 20270 20280 20290
    20240
         20250
                                                           20300
                    >< HphI
               >< HinPlI
      >< Hin6I
                >< HaeII
      >< CelII >< Eco47III
                                 >< Tru9I
      >< Bpull02I > < CfoI >< HinfI >< MseI >< BfrI >< Bspl43II >< MnlI
ATGATAGGCT TAGCCAAGCG CTCACAAGAT TCACCACTTA AATTAGAGGA TTTTATCCCT ATGGACAGCA
             20320
                      20330 20340 20350 20360 20370
    20310
                        >< MstI
                        >< HinPlI
                                                     Sau3AI ><
                                                      NdeII ><
                        >< Hin6I
                         >< HhaI
                                                      MboI ><
                         >< FspI
                                                      DpnII ><</pre>
                         >< FdiII
                                                        DpnI ><
                         >< CfoI
                                                      BspAI ><
            >< SfaNI
                       >< AviII
                                                      Bsp143I ><
CAGTGAAAAA TTACTTCATA ACAGATGCGC AAACAGGTTC ATCAAAATGT GTGTTCTG TGATTGATCT
    20380
            20390 20400 20410 20420 20430 20440
               >< TthHB8I
```

```
>< Tth111I
              >< TaqI
                      > < MaeIII
          >< AspI
TTTACTTGAT GACTTTGTCG AGATAATAAA GTCACAAGAT TTGTCAGTGA TTTCAAAAGT GGTCAAGGTT
                                20480 20490
    20450
            20460 20470
                                                   20500
                                                >< NspI
                                                >< NspHI
                                                >< NlaIII
                                                  >< FokI
                                          >< AflIII
>< MunI
                         > < NlaIII
ACAATTGACT ATGCTGAAAT TTCATTCATG CTTTGGTGTA AGGATGGACA TGTTGAAACC TTCTACCCAA
    20520 20530 20540 20550 20560 20570 20580
                        >< SfaNI
                        >< ScrFI
                        >< MvaI
                       >< EcoRII
                        >< Ecl136I
                                  >< SfaNI
><
> < C
                       >< DsaV
                        >< BstOI
                        >< BstNI
                                             >< RsaI BspWI ><
                                             > < Csp6I BsmI >
                        >< BsiLI</pre>
            >< BspWI
                        >< ApvI
                                              >< AfaI
                                                       BscCI ><
AACTACAAGC AAGTCAAGCG TGGCAACCAG GTGTTGCGAT GCCTAACTTG TACAAGATGC AAAGAATGCT
   20590 20600 20610 20620 20630 20640
>< Eco57I >< MaeIII</pre>
                                     >< HphI
TCTTGAAAAG TGTGACCTTC AGAATTATGG TGAAAATGCT GTTATACCAA AAGGAATAAT GATGAATGTC
    20660 20670 20680 20690
                                      20700 20710 20720
                                             > < RsaI
                                           >< Csp6I
     >< AluI
                                          > < AfaINlaIII ><</pre>
    >< AccI
                        >< MseI
GCAAAGTATA CTCAACTGTG TCAATACTTA AATACACTTA CTTTAGCTGT ACCCTACAAC ATGAGAGTTA
            20740 20750
                                20760 20770 20780 20790
    20730
                                 >< ScrFI
                                     >< RsaI
                                 >< MvaI
                                >< EcoRII >< NspBII
                                 >< BstOI >< PvuII>< HgiAI
                                 >< BstNI >< DdeI
                                 >< BsiLI >< Psp5I>< Bsp1286I</pre>
                                 >< ApyI >< AluI >< BmyI</pre>
                               >< DsaV>< AfaI >< Alw21I
TTCACTTTGG TGCTGGCTCT GATAAAGGAG TTGCACCAGG TACAGCTGTG CTCAGACAAT GGTTGCCAAC
    20800
             20810
                      20820
                               20830
                                         20840
                                                  20850
                   >< XhoII
                        >< Tru9I
                   >< Sau3AI
                   >< NdeII
             >< TthHB8I >< MseI
                   >< MflI
                   >< MboI
                   >< MamI
                   >< DpnII
              >< TfiI >< DpnI
                           FIGURA 13. 48
```

```
>< BstYI
                                            > < TfiI
                   >< BspAI
                                           > < Hinfl
              >< Hinfl>< Bsp143I
                                      >< Esp3I >< Tru9I
                               >< BsiBI >< TthlllI >< BsmBI
                  >< BsaBI
  >< Bsrl >< Taql >< Bglii >< Aspl
TGGCACACTA CTTGTCGATT CAGATCTTAA TGACTTCGTC TCCGACGCAG ATTCTACTTT AATTGGAGAC
          20880 20890 20900 20910
                                                 20920 20930
    20870
                                                   >< StyI
                                                       >< SinI
                                                       >< Sau96I
                          > < SinI
                                                    >< RmaI
                          > < Sau96I
                                                      >< NspIV
                             >< PssI
                                                   NspHII ><
                           >< Psp5II
                                                   >< MaeI
                          > < PpuMI
                                                   >< EcoT14I
                          > < NspIV
                                                       >< Eco47I
                           >< NspHII
                                                   >< Ecol30I
                           >< NlaIV
                                                       >< Cfr13I
                          > < EcoOl09I
                                                  >< BssTlI
                          > < Eco47I
                                                       >< BsiZI
                          > < DraII
                                                   >< BsaJI
                          > < Cfr13I
                                                      >< Bmel8I
                                                   >< BlnI
                          > < BsiZI
                           >< BscBI
                                                   >< AvrII
                          > < Bme18I
         >< RsaI
                                                       >< AvaII
                  > < AvaII
> < AsuI
       > < Csp6I
                                                       >< AsuI
        >< AfaI
                                                       AflIII ><
TGTGCAACAG TACATACGGC TAATAAATGG GACCTTATTA TTAGCGATAT GTATGACCCT AGGACCAAAC
    20940 20950 20960 20970 20980 20990
 >< NspI
 >< NspHI
 >< NlaIII >< PleI
                                                         Rmaĭ ><
>< MaeIII >< HinfI
ATGTGACAAA AGAGAATGAC TCTAAAGAAG GGTTTTTCAC TTATCTGTGT GGATTTATAA AGCAAAAACT
   21010 21020 21030 21040 21050 21060 21070
  >< ScrFI
   >< MvaI
 >< EcoRII
  >< Ecl136I
 >< DsaV
   >< BstOI
                                                        Sau96I >
   >< BstNI
                                                         < VIqeN
  >< BsiLI
                                                        Cfr13I >
                                                         BsiZI >
  >< BsaJI
 >< BsaJI >< SfcI >< BsmI >< BsmI >< SsmI >< AsuI >
>< ApyI >< AluI >< BscCI >< BscCIHindIII ><> AluI
AGCCCTGGGT GGTTCTATAG CTGTAAAGAT AACAGAGCAT TCTTGGAATG CTGACCTTTA CAAGCTTATG
   21080 21090
                      21100
                            21110
                                        21120
                                                 21130 21140
                                        >< Zsp2I
                                     >< Ppul0I
                                        >< NsiI
>< PalI
                                      >< Mph1103I Tru9I ><
>< EcoT22I >< MseI
>< MaeIII
>< MaeIII
GGCCATTTCT CATGGTGGAC AGCTTTTGTT ACAAATGTAA ATGCATCATC ATCGGAAGCA TTTTTAATTG
    21150 21160 21170 21180 21190 21200 21210
```

```
>< Zsp2I
                                                  >< SphI
                                            >< Ppu10I
                                                  >< Paeï
                                                  >< NspI
                                                  >< NspHI
                                                >< NsiI
                                                  >< NlaIII
                                              > < NlaIII
                                                >< Mph1103I
                                                >< EcoT22I
                                              > < AvaIII
GGGCTAACTA TCTTGGCAAG CCGAAGGAAC AAATTGATGG CTATACCATG CATGCTAACT ACATTTTCTG
    21220
             21230 21240 21250
                                          21260
                                                   21270
                                                             21280
                                                          Tru9I ><
               >< MboII
                                                          >< Tru9I
                >< GsuI
                                                          MseI ><
                >< BsrI
                                                          >< MseI
                >< BpmI
                                                           MnlI ><
               >< BbsI
                                             >< NlaIII
GAGGAACACA AATCCTATCC AGTTGTCTTC CTATTCACTC TTTGACATGA GCAAATTTCC TCTTAAATTA
             21300
    21290
                     21310 21320 21330 21340 21350
                    >< Tru9I
                    >< MseI
                    >< Esp4I> < TfiI
                    >< BsmAI
                                                  Ksp632I ><
                    >< Alw26I
                                            >< MboII >< EarI
                                             Eam1104I ><
                    >< AflII> < HinfI
21360 21370 21380 21390 21400
                                                  21410
                                                          21420
                                                   >< Tru9I
                                                   >< MseI
                                                   >< HindII
                                                    >< HincII
                                                    >< HpaI AflIII >
GTAGGCTTAT CATTAGAGAA AACAACAGAG TTGTGGTTTC AAGTGATATT CTTGTTAACA ACTAAACGAA
    21430
             21440 21450 21460
                                          21470
                                                  21480
                                                             21490
                                                   >< VneI
                                                   >< SnoI
                                                      >< SduI
                                                      >< NspII
                                                >< HpaII
                                                      >< HgiAI
                                                >< HapII
                                               >< Cfr10I
                                                      >< Bsp1286I
                                                >< MspI>< BmyI
                             >< SpeI
  >< NspI
                                                   >< ApaLI
  >< NspHI
                              >< RmaI
                                                   >< Alw44I
                              >< MaeI >< MaeIII >< AgeI >< Alw2lI
  >< NlaIII
CATGITTATT TICTTATTAT TICTTACTCT CACTAGTGGT AGTGACCTTG ACCGGTGCAC CACTITTGAT
                                21530
             21510
                      21520
                                          21540
                                                    21550
       > < AluI
                               >< MnlI
GATGTTCAAG CTCCTAATTA CACTCAACAT ACTTCATCTA TGAGGGGGGT TTACTATCCT GATGAAATTT
    21570
           21580 21590
                             21600 21610 21620 21630
 >< Sau3AI
```

```
>< NdeII
 >< MboI
 >< DpnII
  >< DpnI >< Tru9I

< BspAI >< MseI > < MboII

>< Bsp143I >< DdeI
 >< BspAI
TTAGATCAGA CACTCTTAT TTAACTCAGG ATTTATTTCT TCCATTTTAT TCTAATGTTA CAGGGTTTCA
    21640 21650 21660 21670 21680 21690 21700
    >< VspI
    >< Tru91
    >< MseI
    TACTATTAAT CATACGTTTG GCAACCCTGT CATACCTTTT AAGGATGGTA TTTATTTTGC TGCCACAGAG
    21710 21720 21730 21740 21750 21760 21770
                  >< BslI
            >< DsaI>< BsiYI >< NlaIII
            >< BsaJI
                                     > < MaeIII
AAATCAAATG TTGTCCGTGG TTGGGTTTTT GGTTCTACCA TGAACAACAA GTCACAGTCG GTGATTATTA
    21780 21790 21800 21810 21820 21830 21840
                             >< NspI
>< Tru9I
                             >< NspHI
>< MseI
                             >< NlaIII
>< HphI
                             >< MaeIII >< MaeIII
TTAACAATTC TACTAATGTT GTTATACGAG CATGTAACTT TGAATTGTGT GACAACCCTT TCTTTGCTGT
    21850 21860 21870 21880 21890 21900 21910
       >< StyI
                                          >< Zsp2I
                                       >< Tru9I
>< Ppul0I TthHB8I ><
         >< NlaIII</pre>
       >< NcoI >< RsaI
                                          >< NsiI >< TaqI
       >< EcoT14I
       >< Eco130I
                                           >< MseI
                                                     SfaNI ><
       >< DsaI>< Csp6I
                                          >< Mph1103I RsaI ><
                          >< TthHB8I >< EcoT22I Csp6I ><
>< TaqI >< AvaIII AfaI ><
       >< BssTlI
      >< BsaJI>< AfaI
TTCTAAACCC ATGGGTACAC AGACACATAC TATGATATTC GATAATGCAT TTAATTGCAC TTTCGAGTAC
                                      21960 21970 21980
    21920 21930 21940 21950
                                         >< Tru9I
                                         >< MseI
                                         >< DraI
ATAT CTGATG CCTTTTCGCT TGATGTTTCA GAAAAGTCAG GTAATTTTAA ACACTTACGA GAGTTTGTGT
    21990 22000 22010 22020 22030 22040 22050
                                                      >< Sau3AI
                                                      >< NdeII
                                                      >< MboI
>< Tru9I
                                                       >< DonI
>< MseI
                                                      >< BspAI
                                       >< SfcI Bsp1431 ><
TTAAAAATAA AGATGGGTTT CTCTATGTTT ATAAGGGCTA TCAACCTATA GATGTAGTTC GTGATCTACC
    22060 22070 22080 22090 22100
                                         >< Tru91
               >< Tru9I
      >< MseI
TTCTGGTTTT AACACTTTGA AACCTATTT TAAGTTGCCT CTTGGTATTA ACATTACAAA TTTTAGAGCC
    22130 22140 22150 22160 22170 22180 22190
                         FIGURA 13. 51
```

```
> < SduI>< $fcI
                                        >< PvuII
                                        >< Psp5I
                                   > < NspII
                                        >< NspBII
                                   > < MaeII > < Fnu4HI
                                  > < Bsp1286I >< PstI
                                                       Tru9I >
                                  >< BspMI
                                                         MseI >
     >< HphI
                       >< BbvI >< AluI
ATTCTTACAG CCTTTTCACC TGCTCAAGAC ATTTGGGGCA CGTCAGCTGC AGCCTATTTT GTTGGCTATT
                              22230 22240 22250 22260
    22200 22210 22220
                                    >< SfaNI
                                    >< RsaI
                                   > < Csp6I
                                    >< AfaI
>< DraI
TAAAGCCAAC TACATTTATG CTCAAGTATG ATGAAAATGG TACAATCACA GATGCTGTTG ATTGTTCTCA
    22270 22280 22290 22300 22310 22320 22330
                         > < Tru9I
                         > < MseI
                               >< AluI
AAATCCACTT GCTGAACTCA AATGCTCTGT TAAGAGCTTT GAGATTGACA AAGGAATTTA CCAGACCTCT
    22340 22350 22360 22370 22380 22390 22400
               >< SauI
               >< MstII
               >< Eco81I
               >< DdeI
               >< CvnI
               >< Bsu36I
               >< Bse21I
               >< AxyI
                              >< TfiI
             >< AocI >< MnlI >< HinfI >< SspI >< MnlI
    >< MnlI
AATTTCAGGG TTGTTCCCTC AGGAGATGTT GTGAGATTCC CTAATATTAC AAACTTGTGT CCTTTTGGAG
    22410 22420 22430 22440
                                     22450 22460 22470
                                 >< Zsp2I
                              >< Ppu10I
                                 >< NsiI
                                  > < NlaIII
                                 >< Mph1103I
                                 >< EcoT221
     >< Tru9I
    >< MseI
                               >< AvaIII
AGGTTTTTAA TGCTACTAAA TTCCCTTCTG TCTATGCATG GGAGAGAAAA AAAATTTCTA ATTGTGTTGC
            22490 22500 22510 22520 22530 22540
    22480
            >< SduI
            >< NspII
            >< HgiAI
            >< Bsp1286I
            >< BmyI
                                     >< Tru9I
            >< Alw21I
                                     >< MseI
                                                     DdeI ><
TGATTACTCT GTGCTCTACA ACTCAACATT TTTTTCAACC TTTAAGTGCT ATGGCGTTTC TGCCACTAAG
    22550 22560 22570 22580 22590 22600
                                                          22610
    >< Sau3AI
    >< NdeII
    >< MboI
    >< DpnII
     >< DpnI
```

```
>< BspAI
                              >< TfiI
    >< Bsp143I
                              >< HinfI
TTGAATGATC TTTGCTTCTC CAATGTCTAT GCAGATTCTT TTGTAGTCAA GGGAGATGAT GTAAGACAAA
    22620 22630 22640 22650 22660 22670
     >< ScrFI
    >< MvaI
 >< HinPlT
 >< Hin6I
   >< HhaI
    >< HaeII
   >< EcoRII
    >< Ec1136I
   >< DsaV
   >< CfoI
    >< BstOI
    >< BstNI
    >< Bsp143II
    >< BsiLI
              > < BsrI
    >< ApyI
TAGCGCCAGG ACAAACTGGT GTTATTGCTG ATTATAATTA TAAATTGCCA GATGATTTCA TGGGTTGTGT
    22690 22700 22710 22720 22730 22740 22750
             >< SfaNI
                                     DdeI >< > SsrI RfrI ><
            >< RmaI
             >< MaeI
CCTTGCTTGG AATACTAGGA ACATTGATGC TACTTCAACT GGTAATTATA ATTATAAATA TAGGTATCTT
    22760
           22770 22780 22790 22800 22810 22820
              >< Sau96I
               >< PalI
              >< NspIV
       > < HindIII
               >< HaeIII
              >< EcoO109I
              >< DraII
           >< DdeI
              >< Cfr13I
               >< BsuRI
              >< Bsi2I
               >< BshI
           >< BfrI >< PssI
     >< NlaIII >< AsuI>< 8smAI
          >< AluI >< Alw26I
                                                        BspWI ><
AGACATGGCA AGCTTAGGCC CTTTGAGAGA GACATATCTA ATGTGCCTTT CTCCCCTGAT GGCAAACCTT
    22830
         22840
                    22850 22860 22870 22880 22890
                              >< Tru9I
                         >< PalI
                         >< MscI
                         >< HaeIII
                        >< EaeI>< MseI
              >< Tru9I
                         >< BsuRI
              >< MseI
                                                      BsrI ><
GCACCCCACC TGCTCTTAAT TGTTATTGGC CATTAAATGA TTATGGTTTT TACACCACTA CTGGCATTGG
    22900
         22910 22920 22930 22940 22950 22960
                                                     Sau96I ><
                                                >< PallNspIV ><
                                             > < MspI NspHII ><
                                                >< HaeIII
                          FIGURA 13. 53
```

266

```
> < HpaII Eco47I ><
                                                          >< DsaI
                                                     > < HapII Cfr13I ><</pre>
                                                         >< BsuRISinI ><
                                                       >< GdiII BsiZI ><
                         >< ScaI
                                                          >< BsaJI

      >< RsaI</td>
      >< Tru9I</td>
      >< EaeI Bme18I ><</td>

      >< Csp6I</td>
      >< MseI >< Cfr10I</td>
      AvaII ><</td>

      >< AfaI</td>
      >< DraI</td>
      >< RshI AsuI</td>
      ><</td>

                        >< Csp6I
CTACCAACCT TACAGAGTTG TAGTACTTTC TTTTGAACTT TTAAATGCAC CGGCCACGGT TTGTGGACCA
     22970 22980 22990 23000 23010
                                                          23020 23030
                                                  >< Tru9I
                                                                   >< RsaI
                                            >< Tru9I
                                                                   >< Csp6I
                                                               BsrI ><
                                                  >< PleI
                    > < Tru9I
                                                  >< MseI
                                                                   >< BsrI
                    AAATTATCCA CTGACCTTAT TAAGAACCAG TGTGTCAATT TTAATTTTAA TGGACTCACT GGTACTGGTG
     23040 23050 23060 23070 23080 23090
                                                                     23100
                                                 >< PalI
  >< Tru91
  >< MseI
                                                 >< HaeIII
  >< MboII
                                               >< GdiII
  >< HpaI
                                                >< EaeI
                                                 >< BsuRI
                                                                    Tfil ><
   >< HindII
                                                 >< BsuRI TIII ><
>< BshI HinfI ><
  >< HincII
TGTTAACTCC TTCTTCAAAG AGATTTCAAC CATTTCAACA ATTTGGCCGT GATGTTCTG ATTTCACTGA
               23120 23130 23140 23150 23160 23170
     23110
         > < XhoII
      >< TthHB8I
      >< TaqI
         > < Sau3AI
         > < NdeII
         > < MflI
         > < MboI
         > < DpnII
           >< DpnI
         > < BstYI
    > < BspAI > < SspI
>< AlwI >< Bsp143I >< HphI
TTCCGTTCGA GATCCTAAAA CATCTGAAAT ATTAGACATT TCACCTTGCT CTTTTGGGGG TGTAAGTGTA
             23190 23200 23210 23220 23230 23240
       >< ScrFI
       >< MvaI
     >< EcoRII
                                                         >< Tru9I
       >< Ecl136I
                                                         >< MseI
     >< DsaV
                                                          >< HpaI
       >< BstOI
                                                          >< HindII
       >< BstNI
                                                   >< Eco57I
       >< BsiLI
                                              >< Bsgl >< HincII
       >< ApyI
ATTACACCTG GAACAAATGC TTCATCTGAA GTTGCTGTTC TATATCAAGA TGTTAACTGC ACTGATGTTT
              23260 23270 23280 23290
                                                          23300
     23250
                 >< Sau3AI
               >< NlaIII
                 >< NdeII
                 >< MboI
                 >< DpnII
                                       >< HinPlI
                    >< DpnI
                                FIGURA 13. 54
```

```
BspWI >< Hin6I
>< BspAI >< HhaI
>< Bsp143I >< AluI> < CfoI
          >< BspWI
                                              >< BsrI
CTACAGCAAT TCATGCAGAT CAACTCACAC CAGCTTGGCG CATATATTCT ACTGGAAACA ATGTATTCCA
    23320 23330
                       23340
                                23350
                                          23360 23370
                                                             23380
                                 >< TthHB8I
                                 >< TagI
                                 >< SalI
                                 >< RtrI
                                 >< NspI
                         >< EspI >< NspHI
                         >< DdeI >< NlaIII
                         >< CelII >< HindII
                         >< Bpull02I>< HincII
                        >< AluI >< AccI
GACTCAAGCA GGCTGTCTTA TAGGAGCTGA GCATGTCGAC ACTTCTTATG AGTGCGACAT TCCTATTGGA
    23390
           23400 23410
                                23420
                                          23430 23440 23450
                                     > < SnaBI
                                           >< ScaI
                                           >< RsaI
                                            >< RmaI
                                    >< MaeII >< MaeI
                                     > < Eco105I
           >< Rmaï
                                         >< Csp6I
             >< MaeIII
                                    > < BsaAI
            >< MaeI
                                           >< AfaI
GCTGGCATTT GTGCTAGTTA CCATACAGTT TCTTTATTAC GTAGTACTAG CCAAAAATCT ATTGTGGCTT
    23460 23470 23480 23490 23500 23510 23520
                         >< MunI
ATACTATGTC TTTAGGTGCT GATAGTTCAA TTGCTTACTC TAATAACACC ATTGCTATAC CTACTAACTT
    23530 23540 23550 23560 23570 23580 23590
                                                           RsaI ><
                                                       >< MnlI
                                                          Csp6I ><
             >< SfcT
                                                           AfaT ><
TTCAATTAGC ATTACTACAG AAGTAATGCC TGTTTCTATG GCTAAAACCT CCGTAGATTG TAATATGTAC
    23600 23610 23620 23630 23640 23650 23660
        > < TfiI
        > < HinfI
                                              > < Aluī
   >< AciI
ATCTGCGGAG ATTCTACTGA ATGTGCTAAT TTGCTTCTCC AATATGGTAG CTTTTGCACA CAACTAAATC
            23680 23690 23700 23710 23720 23730
   23670
>< VneI
   >< SduI
   >< NspII
                                       >< PmlI
   >< HqiAI
                        >< Pm1I
>< Sau3AI >< PmaCI
>< NdeII >< MaeII
>< MboI >< Eco72I
>< DpnI >< BsaAI
>< SnoI>< DdeI
   >< Bsp1286I
   >< BmyI
   >< BbvI
                             >< Bsp143I >< BbrPI
>< ApaLI
>< Alw44I
                          >< DpnII >< AlwI
   GTGCACTCTC AGGTATTGCT GCTGAACAGG ATCGCAACAC ACGTGAAGTG TTCGCTCAAG TCAAACAAAT
    23740 23750 23760 23770 23780 23790 23800
```

```
>< Rsaï
>< Csp6I
                 >< Tru9I
>< SspI >< MseI >< SspI
GTACAAAACC CCAACTTTGA AATATTTTGG TGGTTTTAAT TTTTCACAAA TATTACCTGA CCCTCTAAAG
     23810 23820 23830 23840 23850 23860 23870
>< MnlI
>< MnlI
                                          >< Tru9I >< SfaNI >< HphI NlaIII ><</pre>
    >< DdeI >< MnlI
                                          >< MseI >< MaeIII BspHI ><
CCAACTAAGA GGTCTTTTAT TGAGGACTTG CTCTTTAATA AGGTGACACT CGCTGATGCT GGCTTCATGA
    23880 23890 23900 23910 23920 23930 23940
                                              >< XhoII
                                              >< Sau3AI
                   >< Styl
                                       >< RmaI
                    >< 3c<sub>1</sub>..
>< RmaI
                                             >< NdeII
                   >< HinPlI

      >< Ecol301</td>
      >< MaeI</td>
      >< HinPlI</td>

      >< BssT11</td>
      >< VspI</td>
      >< DpnII</td>
      >< Hin6I</td>

      >< BsmI</td>
      >< HphI> < DpnI</td>
      >< HhaI</td>

      BscCI
      >< Tru9I</td>
      >< BstYI</td>
      >< FspI</td>

      >< BsaJI</td>
      >< MseI</td>
      >< BspAI</td>
      >< FdiII</td>

      >< BlnI</td>
      >< AsnI</td>
      >< Bsp143I</td>
      >< CfoI</td>

      >< AvrII</td>
      >< AseI</td>
      >< Bg1II</td>
      >< AviII</td>

                >< BscCI
AGCAATATGG CGAATGCCTA GGTGATATTA ATGCTAGAGA TCTCATTTGT GCGCAGAAGT TCAATGGACT
    23950 23960 23970 23980 23990
                                                                     24000
                                                                     >< RmaIRsaI ><
                 >< MnlI >< Fnu4HI >< Fnu4HI Csp6I ><
>< BspWI >< BbvI >< BspWI >< MaeIAfaI ><
TACAGTGTTG CCACCTCTGC TCACTGATGA TATGATTGCT GCCTACACTG CTGCTCTAGT TAGTGGTACT
     24020 24030 24040 24050 24060 24070
                                 >< MboII
                                  >< HinPlI
                                   >< Hin6I
                                      >< Hhai
                                        >< HaeII
                                       >< Fnu4HI >< Ksp632I
                          >< CfoI >< EarI
>< FokI >< BspWI >< Eamll04I
                     >< BbvI >< Bsp143II
GCCACTGCTG GATGGACATT TGGTGCTGGC GCTGCTCTTC AAATACCTTT TGCTATGCAA ATGGCATATA
     24090 24100
                          24110 24120 24130 24140 24150
                                                                             Tru9I ><
                   >< MaeIII
GGTTCAATGG CATTGGAGTT ACCCAAAATG TTCTCTATGA GAACCAAAAA CAAATCGCCA ACCAATTTAA
     24160 24170 24180 24190 24200 24210 24220
                                                                           MaeII ><
                            >< TfiI
                                                                         >< Fnu4fiI
                          >< HinfI >< BbvI >< AluI
CAAGGCGATT AGTCAAATTC AAGAATCACT TACAACAACA TCAACTGCAT TGGGCAAGCT GCAAGACGTT
     24230 24240 24250 24260 24270 24280 24290
 >< Tru9I
 >< MseI
  >< HpaI
                                                     >< DdeI
 >< HindII >< BsmI >< Tru9I >< Tru9I >< BfrI >< HincII>< BscCI >< MseI >< MseI >< AluI
                                     FIGURA 13, 56
```

```
GTTAACCAGA ATGCTCAAGC ATTAAACACA CTTGTTAAAC AACTTAGCTC TAATTTTGGT GCAATTTCAA
             24310 24320 24330 24340
                                                   24350
    24300
                    >< ThaI
                    >< SpoI
                    >< NruI
                    >< MvnI
            >< Eco32I >< AccII >< MnlI >< AciI>< AfaI
                                                          >< MseI
GTGTGCTAAA TGATATCCTT TCGCGACTTG ATAAAGTCGA GGCGGAGGTA CAAATTGACA GGTTAATTAC
    24370
            24380
                      24390
                                24400
                                         24410
                                                  24420
                         >< MaeIII >< BbvI
                                              >< Fnu4HI BbvI ><
AGGCAGACTT CAAAGCCTTC AAACCTATGT AACACAACAA CTAATCAGGG CTGCTGAAAT CAGGGCTTCT
    24440
            24450
                     24460 24470 24480
                                                  24490 24500
        >< Fnu4HI
                                                    >< HindII
    >< BspWI
                       >< DdeI
                                                    >< HincII
GCTAATCTTG CTGCTACTAA AATGTCTGAG TGTGTTCTTG GACAATCAAA AAGAGTTGAC TTTTGTGGAA
    24510 24520 24530 24540 24550 24560 24570
                                                       > < NspI
                                                       > < NspHI
                                                       > < NlaIII
                                                      >< MaeIII
                                      >< NlaIII
                                                       >< MaeII
                                      >< MboII
                            >< Fnu4HI >< BbsI
>< Acil>< BbvI
                                                     BsaAI ><
                                                   >< AflIII
AGGGCTACCA CCTTATGTCC TTCCCACAAG CAGCCCCGCA TGGTGTTGTC TTCCTACATG TCACGTATGT
    24580 24590 24600 24610 24620 24630
     >< ScrFI
     >< MvaI
    >< EcoRII
     >< Ecl136I
    >< MnlI >< BslI >< HinPlI
>< DsaV>< BsiYI
>< BsiLI
     >< BstOI
   >< MnlI >< BslI
                           >< HhaI
                             >< HaeII
                           >< CfoI
    >< BsaJI>< HphI
                                          >< NlaIII
                            >< Bsp143II >< BspHI</pre>
GCCATCCCAG GAGAGGAACT TCACCACAGC GCCAGCAATT TGTCATGAAG GCAAAGCATA CTTCCCTCGT
           24660 24670 24680 24690 24700 24710
   >< MnlI
>< BslI
              >< Tru9I
              >< MseI
                                >< MnlI
GAAGGTGTTT TTGTGTTTAA TGGCACTTCT TGGTTTATTA CACAGAGGAA CTTCTTTTCT CCACAAATAA
    24720 24730
                     24740 24750 24760
                                                  24770 24780
                    >< DdeI
                                                   >< Tru9I
                       >< BsmAI
                                                    >< SfaNI
  >< SfcI
                       >< Alw26I
                                                   >< MseIAlwI ><
TTACTACAGA CAATACATTT GTCTCAGGAA ATTGTGATGT CGTTATTGGC ATCATTAACA ACACAGTTTA
          24800
                   24810 24820 24830
    24790
                                                   24840
>< Sau3AI
>< NdeII
                           FIGURA 13, 57
```

270

```
> < ScaI
>< MboI
>< DpnII
                                           > < RsaI
                                         >< MboII
>< BspAI
TGATCCTCTG CAACCTGAGC TTGACTCATT CAAAGAAGAG CTGGACAAGT ACTTCAAAAA TCATACATCA
    24860 24870 24880 24890 24900 24910 24920
      >< Sau3AI
      >< NdeII
      >< MboI
     >< MamI
      >< DpnII
        >< DpnI
      >< BspAI
        >< Bsp143I
                                   >< HindII
>< HincII
     >< BsiBI
                            >< Tru9I
     >< BsaBI
                           >< MseI
                                                    AciI ><
CCAGATGTTG ATCTTGGCGA CATTTCAGGC ATTAACGCTT CTGTCGTCAA CATTCAAAAA GAAATTGACC
           24940
                   24950 24960 24970 24980 24990
    24930
                    >< Tru9I
                         > < TfiI
                    >< SwaI
         >< MnlI
    >< EcoNI
                    >< MseI
     >< BslI
                     > < HinfI
>< BslI > < >< MnlI>< BsiYI >< DraI
GCCTCAATGA GGTCGCTAAA AATTTAAATG AATCACTCAT TGACCTTCAA GAATTGGGAA AATATGAGCA
    25000
           25010 25020 25030 25040 25050
                                                           25060
           >< StyI
          >< PalI
          >< HaeIII
           >< EcoT14I
           >< Eco130I
          >< BsuRI
           >< BssTlI
                                                   NlaIII ><
    >< Tru9I>< BshI
                                                   MaeIII ><
    >< MseI >< BsaJI</pre>
ATATATAAA TGGCCTTGGT ATGTTTGGCT CGGCTTCATT GCTGGACTAA TTGCCATCGT CATGGTTACA
    25070 25080 25090 25100 25110 25120
                                            > < SphI
                                            > < PaeI
               >< SpeI
                                            > < NspI
               > < RmaI
                                            > < NspHI
              >< NlaIII
                                            > < NlaIII
                > < Mael
                                        >< MnlI>< BbvI Fnu4HI ><</pre>
ATCTTGCTTT GTTGCATGAC TAGTTGTTGC AGTTGCCTCA AGGGTGCATG CTCTTGTGGT TCTTGCTGCA
            25150 25160 25170
    25140
                                     25180 25190 25200
                    >< FokI
               >< DdeI
>< MnlI >< PleI>< HinfI >< BsrI</pre>
AGTTTGATGA GGATGACTCT GAGCCAGTTC TCAAGGGTGT CAAATTACAT TACACATAAA CGAACTTATG
                    25230 25240 25250 25260 25270
    25210 25220
                        >< Sau3AI
                        >< NdeII
                        >< MboI
                        >< DpnII
                         > < DpnI
                          FIGURA 13. 58
```

```
>< BspAT
                      > < Bsp143I
                 >< BsgI >< AlwI >< BsrI
GATTTGTTTA TGAGATTTTT TACTCTTGGA TCAATTACTG CACAGCCAGT AAAAATTGAC AATGCTTCTC
   25280 25290 25300 25310 25320 25330 25340
     >< ScaI
     >< RsaI
    >< MnlI
CTGCAAGTAC TGTTCATGCT ACAGCAACGA TACCGCTACA AGCCTCACTC CCTTTCGGAT GGCTTGTTAT
                    25370 25380 25390 25400 25410
   25350
           25360
                        > < HinPlI
                        > < Hin6I
                          >< HhaI
                                                     RmaI ><
                        >< Hnal Rmal ><
> HaeII >< HinPlI NheI ><
> Eco47III >< Hin6I MaeI ><
> CfoI >< HhaI Fnu4HI ><
> Spl43II >< CfoI AluI ><
          >< BspWI
TGGCGTTGCA TTTCTTGCTG TTTTTCAGAG CGCTACCAAA ATAATTGCGC TCAATAAAAG ATGGCAGCTA
   25420 25430 25440 25450 25460
                                             25470 25480
    >< EcoNI
     >< BslI
      >< BsiYI
                                       >< MaeIII
   >< BsiYI >< MaeIII
>< BbvI >< BsrI >< BbvI >< Fnu4HI
GCCCTTTATA AGGGCTTCCA GTTCATTTGC AATTTACTGC TGCTATTTGT TACCATCTAT TCACATCTTT
   25490 25500
                  25510 25520 25530 25540 25550
                                                     2sp2I ><
                                                 Ppul0I ><
 NsiI ><
                                                   Mph1103I ><
TGCTTGTCGC TGCAGGTATG GAGGCGCAAT TTTTGTACCT CTATGCCTTG ATATATTTTC TACAATGCAT
   25560 25570 25580 25590 25600 25610 25620
   >< SfaNI
      >< NspI
      >< NspHI
      >< Nlafit
CAACGCATGT AGAATTATTA TGAGATGTTG GCTTTGTTGG AAGTGCAAAT CCAAGAACCC ATTACTTTAT
                           25660 25670
   25630 25640 25650
                                              25680 25690
                                        >< Bstl107I
                                       >< AccI MaeIII ><</pre>
GATGCCAACT ACTTTGTTTG CTGGCACACA CATAACTATG ACTACTGTAT ACCATATAAC AGTGTCACAG
   25700 25710 25720 25730 25740 25750 25760
                                                     >< MboII
  ATACAATTGT CGTTACTGAA GGTGACGGCA TTTCAACACC AAAACTCAAA GAAGACTACC AAATTGGTGG
   25770 25780 25790 25800
                                     25810 25820 25830
                                     >< RsaI
                                        > < NlaIII
                                        >< HphI
                     >< Tru9I >< Tth111I>< Csp6I</pre>
   FIGURA 13. 59
```

```
TTATTCTGAG GATAGGCACT CAGGTGTTAA AGACTATGTC GTTGTACATG GCTATTTCAC CGAAGTTTAC
     25840 25850 25860 25870 25880 25890 25900
                                                                Tru9I ><
         > < HinfI>< PleI
                                        >< BsrI
                                                                MseI ><
                                                                 HindIII >
     >< AluI >< AccI >< SfcI >< AlwNI >< MboII
TACCAGCTTG AGTCTACACA AATTACTACA GACACTGGTA TTGAAAATGC TACATTCTTC ATCTTTAACA
            25920 25930 25940 25950 25960 25970
                                          > < TthHB8I
                                  > < TaqI > < Ksp632I
> < MboII > < Earl BspWI > <
> < Eco57I > < Eaml104I AlwI > <
     >< Tru9I
     >< MseI
 >< Alut
AGCTTGTTAA AGACCCACCG AATGTGCAAA TACACACAAT CGACGGCTCT TCAGGAGTTG CTAATCCAGC
     25980 25990 26000 26010 26020 26030 26040
  >< XhoII
  >< Sau3AI
    >< NlaIV
  >< NdeII
  >< MflI
  >< MboI
  >< DpnII
    >< DpnI
  >< BstYI
  >< BstI
   >< BspAI
    >< Bsp143I
                                                                    RsaI ><
                                     >< RmaI
>< MaeI
    >< BscBI
                                                                  Csp6I ><
  >< BamHI >< AlwI
                                                                   AfaI ><
AATGGATCCA ATTTATGATG AGCCGACGAC GACTACTAGC GTGCCTTTGT AAGCACAAGA AAGTGAGTAC
    26050 26060 26070 26080 26090 26100 26110
                                         > < Tru9I
                                      >< RsaI
                                          > < MseI
                                       >< MboII
        > < RsaI
                                       >< MaeII</pre>
                                     >< Csp6I
        > < AfaI
GAACTTATGT ACTCATTCGT TTCGGAAGAA ACAGGTACGT TAATAGTTAA TAGCGTACTT CTTTTTCTTG
                                                           26170 26180
     26120 26130 26140 26150 26160
                                                  >< TthHB8I
                                                  >< TaqI
                                            >< HinPlI
                  >< RmaI
                                                               > < RsaI

      >< RMat</td>
      >< RMaPII</td>
      >< Rsai</td>

      >< MaeIII</td>
      >< Hin6I</td>
      Fnu4HI ><</td>

      >< MaeI</td>
      >< RmaI</td>
      >< Csp6I</td>

      >< FokI</td>
      >< MaeI</td>
      >< CfoI >< BbvI >< AfaI</td>

                                                               Enu4HI ><
CTTTCGTGGT ATTCTTGCTA GTCACACTAG CCATCCTTAC TGCGCTTCGA TTGTGTGCGT ACTGCTGCAA
    26190 26200 26210 26220 26230
                                                          26240
                                                      >< Tru9I
                                                 >< ThaI
     >< Tru9I
     >< MseI
                                                 >< MvnI
>< SspI >< MaeII</pre>
                                                       >< MseI
                                      >< BstUI
>< MaeII >< Bsp50I ><
      >< HpaI
                                                                   Ksp632I >
      >< HindII
                                                             >< MboII EarI >
                                      >< AccI >< AccII Eaml104I >
      >< HincII
TATTGTTAAC GTGAGTTTAG TAAAACCAAC GGTTTACGTC TACTCGCGTG TTAAAAATCT GAACTCTTCT
     26260 26270 26280 26290 26300 26310 26320
                                FIGURA 13. 60
```

273

```
>< Sau3AI
          >< NdeII
          >< MboI
          >< DpnII
     >< MboII>< DpnI
   >< XmnI >< BspAI> < Eco57I</pre>
                                                           >< Tru9I
   >< Asp700I>< Bsp143I</pre>
                                                           >< MseI
GAAGGAGTIC CTGATCTTCT GGTCTAAACG AACTAACTAT TATTATTATT CTGTTTGGAA CTTTAACATT
          26340 26350 26360 26370
                                                   26380
                                                 >< ScrFI
                                                 >< MvaI
                                                >< EcoRII
                                                 >< Ecl136I
                                                >< DsaV NlaIV ><
                   >< RsaI
                                                 >< BstOI
                      >< MnlI >< Tru9I
                                                >< BstNI
                                                         RmaI ><
                  MaeI ><
       > < NlaIII
                  >< AfaI
GCTTATCATG GCAGACAACG GTACTATTAC CGTTGAGGAG CTTAAACAAC TCCTGGAACA ATGGAACCTA
    26400
            26410
                     26420 26430 26440 26450 26460
                     >< $crFI
                >< RmaI
                    >< MvaI
                >< MaeI
                   >< EcoRII
                    >< Ecl136I
                   >< DsaV
                     >< BstOI
                     >< BstNI
                     >< BsiLI
>< Apyl >< MaeIII
GTAATAGGTT TCCTATTCCT AGCCTGGATT ATGTTACTAC AATTTGCCTA TTCTAATCGG AACAGGTTTT
    26470 26480
                   26490
                                26500 26510 26520 26530
                                  >< PalI
                                  >< MscI
                              >< MnlI >< MaeIII
                                  >< HaeIII
                                 >< EaeI
                                  >< BsuRI
                                   >< BsrI
                                >< BspWI
 >< RsaI
>< Csp6I >< HindIII
                                  >< BshI
 >< AfaI
         >< AluI
                                  >< BalI
                                                 >< BbvI Fnu4HI ><
TGTACATAAT AAAGCTTGTT TTCCTCTGGC TCTTGTGGCC AGTAACACTT GCTTGTTTTG TGCTTGCTGC
           26550 26560 26570 26580 26590
    26540
                                                            26600
          >< VspI
          >< Tru9I
          >< MseI >< BsrI
                        >< HphI
  >< SfcI >< AsnI
 >< AccI >< AseI>< MaeIII>< AciI
TGTCTACAGA ATTAATTGGG TGACTGGCGG GATTGCGATT GCAATGGCTT GTATTGTAGG CTTGATGTGG
    26610 26620 26630
                               26640 26650 26660 26670
>< Espl
   >< Eco571
>< DdeI
>< CelII
                                   >< RsaI
>< Bpul102I
                                  >< Csp6I
                           FIGURA 13. 61
```

```
>< AfaI
>< BfrI
                                 >< AciI
   >< AluI
CTTAGCTACT TCGTTGCTTC CTTCAGGCTG TTTGCTCGTA CCCGCTCAAT GTGGTCATTC AACCCAGAAA
          26690 26700 26710 26720 26730 26740
   26680
                    >< ScrfI
                    >< NciI
                    >< MspI
                    >< HpaII
                    >< HapII
                   >< DsaV>< MnlI
                     >< BslI
                    >< BsiYI
                    >< BsaJI >< MunI > < XcmI</pre>
                    >< BcnI >< MaeIII >< AciI >< NlaIII
CAAACATTCT TCTCAATGTG CCTCTCCGGG GGACAATTGT GACCAGACCG CTCATGGAAA GTGAACTTGT
           26760 26770 26780
                                   26790
   26750
                                             26800
                                                 Tru9I ><
                                                    SinI >
                                                   Sau961 >
                                                   PpuMI >
                                                    NspIV >
                                                  MseI ><
                                               >< MaeIII
         >< Sau3AI
                                       > < RmaI >< HaeII
        >< NdeII
        >< MboI
        >< DpnII
>< DpnI
>< BspAI
        CATTGGTGCT GTGATCATTC GTGGTCACTT GCGAATGGCC GGACACTCCC TAGGGCGCTG TGACATTAAG
        26830 26840 26850 26860 26870 26880
   26820
          >< Sau3AI
          >< NdeII
          >< MboI
          >< DpnII
           >< DpnI
  >< PssI >< BspMI
GACCTGCCAA AAGAGATCAC TGTGGCTACA TCACGAACGC TTTCTTATTA CAAATTAGGA GCGTCGCAGC
   26890 26900
                   26910 26920 26930 26940 26950
        >< Tfil
        >< Hinfl
        >< BbvI
                  >< Tru9I
>< Fnu4HI >< AciI >< MseI
     >< BbvT
GTGTAGGCAC TGATTCAGGT TTTGCTGCAT ACAACCGCTA CCGTATTGGA AACTATAAAT TAAATACAGA
          26970 26980
                          26990 27000 27010
                            >< RsaI
   >< MspI
                         >< RmaI
   >< HpaII
                          >< Csp6I
   >< HapII
                          >< MaeI>< BcgI
                                                 HindII ><
   >< Cfrl0I
                         >< Mael>< BCg1
>< Afal >< MaelII
   >< BcgI/a >< SspI
                                                 HincII ><
```

```
CCACGCCGGT AGCAACGACA ATATTGCTTT GCTAGTACAG TAAGTGACAA CAGATGTTTC ATCTTGTTGA
  27030 27040 27050 27060 27070 27080 27090
   >< ScrFI
   >< MvaI
    >< MaeIII
 >< EcoRII
  >< Ec1136I
 >< DsaV
   >< BstOI
   >< BstNI
   >< ApyI
                           >< MnlI
                                                   HinfI ><
CTTCCAGGTT ACAATAGCAG AGATATTGAT TATCATTATG AGGACTTTCA GGATTGCTAT TTGGAATCTT
    27100 27110 27120 27130 27140 27150 27160
             > < MnlI
>< MaeII
GACGTTATAA TAAGTTCAAT AGTGAGACAA TTATTTAAGC CTCTAACTAA GAAGAATTAT TCGGAGTTAG
    27170 27180 27190 27200 27210 27220 27230
                                                       >< Ksp632I
                                         >< MboII
                                >< NlaIIIEaml104I ><
              >< MboII
ATGATGAAGA ACCTATGGAG TTAGATTATC CATAAAACGA ACATGAAAAT TATTCTCTTC CTGACATTGA
    27240 27250 27260 27270 27280 27290
                                           > < RsaI >< RsaI
                                          >< Csp6I >< Csp6I
               > < Aluf >< Mnli > < AfaI >< AfaI
TTGTATTTAC ATCTTGCGAG CTATATCACT ATCAGGAGTG TGTTAGAGGT ACGACTGTAC TACTAAAAGA
                    27330 27340 27350
    27310
           27320
                                                 27360
>< Mnli >< Hphi >< Hphi >< Mnli
ACCTTGCCCA TCAGGAACAT ACGAGGGCAA TTCACCATTT CACCCTCTTG CTGACAATAA ATTTGCACTA
    27380 27390 27400 27410 27420 27430
                                                        Sau3AT >
                                                     > < PvuII
                                                     > < Psp5I
                                                     > < NspBII
                                                        NdeII >
                                       >< TthHB8I
                                       >< TaqI
                                                     MDG.
>< Fnu4HI
                                                         MboI >
                                    >< RsaI
                                    >< Csp6I
                                    >< BbvI BspA
>< AfaI >< AluI
     >< RmaI
                                                         BspAI >
     >< MaeI
ACTTGCACTA GCACACACTT TGCTTTTGCT TGTGCTGACG GTACTCGACA TACCTATCAG CTGCGTGCAA
    27450 27460 27470 27480 27490 27500 27510
                                              >< SstI
                                               >< SduI
                                               >< SacI
                                               >< NspII
                                               >< HqiAI
                                              >< Eco24I
                                            > < Ecl136II
                                                  >< BspWI
                                               >< Bsp1286I
                                              >< BmyI
>< HphI
                                              >< BanII
                       >< MnlI
>< DpnI
                                              >< Alw21I
                          FIGURA 13. 63
```

```
> < AluI BbvI ><
                    >< MnlI
>< Bsp143I
GATCAGTTTC ACCAAAACTT TTCATCAGAC AAGAGGAGGT TCAACAAGAG CTCTACTCGC CACTTTTCT
    27520 27530 27540 27550 27560
                                                     27570
                                                            SstI ><
                                                            SduI ><
                                                            SacI ><
                                                           NspII ><
                                                           HqiAI ><
                                                          Eco24I ><
                                                       Ecl136II ><
                                                         Bsp1286I ><
                                                           BmyI ><
            >< RmaI >< Tru9I</pre>
                                                           BanII ><
                        Msel >< Tru9I
>< HphI >< MseI
            >< MaeI >< MseI
44HI >< Hob
                                                          Alw21I ><
      >< Fnu4HI
                                                          AluI ><
CATTGTTGCT GCTCTAGTAT TTTTAATACT TTGCTTCACC ATTAAGAGAA AGACAGAATG AATGAGCTCA
    27590
            27600 27610 27620 27630 27640
 >< Tru9I
                                                 >< Tru9I
 >< MseI
                                                 >< MseI
CTTTAATTGA CTTCTATTTG TGCTTTTTAG CCTTTCTGCT ATTCCTTGTT TTAATAATGC TTATTATATT
                                                    27710 27720
          27670 27680 27690 27700
    27660
                    >< XhoII
                       >< XbaI
                  > < ScrFI
                    >< Sau3AI
                       >< RmaI
                    >< NdeII
                 > < MvaI
                    >< MflI
                    >< MboI
                >< EcoRII>< MaeI
                  > < Ec1136I
                    >< DpnII
                     IngG ><
                    >< BstYI
                 > < BstOI
                 > < BstNI
          >< NlaIII
TTGGTTTTCA CTCGAAATCC AGGATCTAGA AGAACCTTGT ACCAAAGTCT AAACGAACAT GAAACTTCTC
              27740
                     27750
                                 27760
                                          27770 27780
                                                 >< HinPlI
                                                 >< Kin6I
                                                  >< HhaI
                                            >< RsaI >< HaeII
                                       >< SfcI >< Eco47III
                                            >< Csp6I>< CfoI SfaNI ><</pre>
                                            >< AfaI >< Bsp143II
                               >< NdeI
ATTGTTTTGA CTTGTATTTC TCTATGCAGT TGCATATGCA CTGTAGTACA GCGCTGTGCA TCTAATAAAC
                                          27840 27850
            27810
    27800
                    27820
                                27830
                                                             27860
            >< XhoII
            >< Sau3AI
            >< NdeII
        > < MnlI
            >< MflI
                            FIGURA 13, 64
```

```
>< MboI
              >< DonII
              >< DpnI >< Rs
>< BstYI >< MboII</pre>
                         >< RsaI
     >< AlwI >< Bspl43I >< AfaI >< MaeI</pre>
CTCATGTGCT TGAAGATCCT TGTAAGGTAC AACACTAGGG GTAATACTTA TAGCACTGCT TGGCTTTGTG
     27870
               27880
                         27890
                                      27900
                                                  27910 27920
 >< SduI
 >< RmaI
 >< NspII
 >< MaeI
 >< HgiAI
 >< Bsp1286I
                                                          >< NspI
>< BmyI
                                                          IHqzN ><
>< Alw21T
                                                          >< NlaIII >< MaeIII
CTCTAGGAAA GGTTTTACCT TTTCATAGAT GGCACACTAT GGTTCAAACA TGCACACCTA ATGTTACTAT
     27940
                27950
                                      27970
                                                  27980
                                                              27990
                          27960
         > < XhoII
         > < Sau3AI > < Van91I
                                                   >< RsaI
                 >< PvuII
                                                   >< NlaIV
                 >< Psp5I
                                                    >< KpnI >< NlaIII
         > < NdeII > < PflMI
                                                 >< Eco64I >< MaeIII
                                                >< Csp6I>< HphI
         > < MflI>< NspBII
            < DpnII >< HinPlI >< Bspl43I >< Hin6I
         > < DpnII
                                                  >< BscBI >< EcoO651
                                                >< BanI >< BspHI
    > < BstYI > < BslI >< HhaI >< RmaI >< Asp718 >< Eco91I
> < BspAI > < BsiYI>< CfoI >< MaeI >< AfaI >< BstPI
> < MboI>< AluI>< BspWI >< AccB1I >< BstEII
>< AlwI >< OpnI > < AccB7I >< AluI >< Acc65I >< BbvI
CAACTGTCAA GATCCAGCTG GTGGTGCGCT TATAGCTAGG TGTTGGTACC TTCATGAAGG TCACCAAACT
               28020
                          28030 28040
                                                 28050
                                                              28060
                                                                     >< SinI
                                                                     >< Sau961
                                                                     >< NspIV
                                                               >< IIHqaN
                                                                 NlaIV ><
                                                                     >< Eco47I
                                                                     >< Cfrl3I
                 >< RsaI
                                                                     >< BsiZI
 >< Fnu4HI
                                                                 BscBI ><
              >< MaeII
                            >< Tru9I
    >< Esp3I
               >< Csp6I
                                                                     >< Bme18I
                                           >< Tru9I
                           >< MseI
>< DraI
                >< BsmBI
    >< BsmAI
                                                >< MseI
    >< Alw26I
                >< AfaI
GCTGCATTTA GAGACGTACT TGTTGTTTTA AATAAACGAA CAAATTAAAA TGTCTGATAA TGGACCCCAA
     28080
                28090
                           28100
                                      28110
                                             28120 28130
                                        >< SinI
                                        >< Sau96I
                                        >< NspIV
                                        >< NspHII
                                         >< NlaIV
                                        >< Eco47I
                                        >< Cfrl3I
                   >< SduI
                                        >< BsiZI
                   >< NspII
                                        >< BscBI
                                        >< Bme18I
                   >< Bsp1286I
                                       >< AvaII >< TfiI
>< AsuI >< HinfI</pre>
                   >< BmyI
                      >< AciI
        >< MaeII
                                                              >< MnlI
                                 FIGURA 13. 65
```

```
TCAAACCAAC GTAGTGCCCC CCGCATTACA TTTGGTGGAC CCACAGATTC AACTGACAAT AACCAGAATG
    28150 28160 28170 28180 28190 28200 28210
                            >< HinPlI >< StyI</pre>
                               >< HaeII
                  > < PalI >< Hin6I >< EcoT14I
                  > < HaeIII >< HhaI>< Ecol30I
                        >< BspWI >< BssTlI
                  >< HgaI> < BshI >< CfoI>< BsaJI >< HgaI
GAGGACGCAA TGGGGCAAGG CCAAAACAGC GCCGACCCCA AGGTTTACCC AATAATACTG CGTCTTGGTT
    28220 28230
                       28240
                                  28250
                                            28260
                                                       28270 28280
                                           >< TthHB8I
                                                > < ScrFI
                                                >< PalI
                                          >< PaeR7I
                                          >< NspIII
                                                 > < MvaI
                                                >< HaeIII
                                                >< EcoRII
                                          >< Eco88I
                                          >< XhoI > < Ecl136I
                                               >< DsaV
                                               >< BsuRI
                                          >< SlaI > < BstOI
                                    >< MnlI>< TaqI> < BstNI</pre>
                                         >< CcrI > < BsiLI
                                   >< HinfI >< BshI
                                   >< Tfil>< Bcol>< BsaJI
   >< MnlI >< DdeI >< AvaI > < ApyI >< AluI >< DdeI > < MnlI >< BfrI >< Ama87I >< MnlI
CACAGCTCTC ACTCAGCATG GCAAGGAGGA ACTTAGATTC CCTCGAGGCC AGGGCGTTCC AATCAACACC
    28290
             28300
                       28310
                                  28320
                                           28330
                                                     28340 28350
     >< SinI
     >< Sau96I
     >< NspIV
     >< NspHII
     >< Eco47I
     >< Cfr13I
     >< BsiZI
                           > < Ksp632I
     >< Bme18I
                     > < Eam1104I
> < EarI >
     >< AvaII
     >< AsuI
                            > < EarI > < AluI>< MboII >< MaeIII</pre>
AATAGTGGTC CAGATGACCA AATTGGCTAC TACCGAAGAG CTACCCGACG AGTTCGTGGT GGTGACGGCA
             28370 28380
                                  28390
                                             28400
                                                      28410
    28360
            >< SstI
            >< SduI
            >< SacI
            >< NspII
            >< HqiAI
           >< EspI
           >< Eco24I
                                     >< StyI
          >< Ecl136II
                                               >< PalI
                                      >< RmaI >< NspIV
           >< DdeI
           >< CelII
                                      >< MaeI
                                                >< HaeIII
           >< Cerri
>< Bspl286I
>< Bpull02I
                                     >< EcoT14I >< Cfr13I
                                     >< Ecol30I >< BsuRI</pre>
            >< BmyI
                                     >< BssTlI > < BsrI</pre>
                        >< BssTlf > < Bs:
>< RsaI >< BsaJI >< BsiZI
            >< BanII
                             FIGURA 13. 66
```

```
>< Alw21I >< Csp6I >< BlnI >< BshI>< HindIII >< HphI >< AluI >< AfaI >< AvrII >< AsuI >< AluI
AAATGAAAGA GCTCAGCCCC AGATGGTACT TCTATTACCT AGGAACTGGC CCAGAAGCTT CACTTCCCTA
    28430 28440 28450 28460 28470 28480
 >< HinPlI
 >< Hin6I
   >< HhaI
    >< HaeII
    >< CfoI > < MnlI >< NlaIV
>< Bsp143II >< SfaNI >< DdeI >< BscBI
   >< CfoI
CGGCGCTAAC AAAGAAGGCA TCGTATGGGT TGCAACTGAG GGAGCCTTGA ATACACCCAA AGACCACATT
    28500 28510 28520 28530 28540
                                                     28550
 >< NlaIV
>< Eco64I
>< BscBI
>< BanI
   >< AciI
>< AccBlI >< BbvI >< Fnu4HI
                                                     >< MnlI
GGCACCCGCA ATCCTAATAA CAATGCTGCC ACCGTGCTAC AACTTCCTCA AGGAACAACA TTGCCAAAAG
    28570
             28580 28590 28600 28610 28620
                                                             >< ThaI
                                                      >< MnlI
                                                     >< MaeII >< MvnI</pre>
                                                     BstUI ><
                                            >< MnlI
                       >< Fnu4HI
                                                      Bsp50I ><
                                         >< Ksp632I
                      >< BspWI >< EarI >< BsaAI>< AciI
>< AciI>< MboII >< Eaml104I AccII ><
  >< MnlI >< MnlI
GCTTCTACGC AGAGGGAAGC AGAGGCGGCA GTCAAGCCTC TTCTCGCTCC TCATCACGTA GTCGCGGTAA
             28650 28660 28670 28680
    28640
                                                  28690 28700
               >< ScrFI
               >< MvaI
              >< EcoRII
                                           >< TthHB8I
                                                   >< RmaI
               >< Ec1136I
              >< DsaV>< Fnu4HI
                                                  >< NheI
                >< BstOI
                                                 >< MnlI
                                                   >< MaeI
                >< BstNI
                TTCAAGAAAT TCAACTCCTG GCAGCAGTAG GGGAAATTCT CCTGCTCGAA TGGCTAGCGG AGGTGGTGAA
    28710
             28720 28730 28740
                                          28750
                                                   28760
        > < ThaI
       > < MvnI
     >< HphI >< MnlI
       > < HinPlI
        > < Hin6I
          >< KhaI
       > < BstUI >< RmaI
> < Bsp50I >< MaeI
                                                          PalI ><
                                                        HaeIII ><
   > < BSpJoi
> < BbvI > < CfoI> < Fnu4HI
- Tage Total SpWI > < AluI
                                                        BsuRI ><
                                                         AshT ><
ACTGCCCTCG CGCTATTGCT GCTAGACAGA TTGAACCAGC TTGAGAGCAA AGTTTCTGGT AAAGGCCAAC
            28790
    28780
                      28800 28810
                                         28820
                                                     28830
                                                              28840
                                                            RsaI ><
       > < PalI>< MaeIII
                                                            >< MnlI
        >< Fnu4HI
                                                        MaeII ><
                                                         Csp6I ><
                            FIGURA 13. 67
```

```
> < BshI > < BbvI >< MnlI >< BspWI >< SfaNI
AACAACAAGG CCAAACTGTC ACTAAGAAAT CTGCTGCTGA GGCATCTAAA AAGCCTCGCC AAAAACGTAC
     28850 28860 28870
                                     28880 28890 28900 28910
                                               >< Tth111I
                                                 >< SinI
                                                 >< Sau96I
                                                 VIqzN ><
                                                 >< NspHII
                                            > < MaeII
                                                 >< Eco47I
                                                 >< Cfr13I
                                                >< BsmBI

      >< RsaI</td>
      >< BsiZI</td>
      >< StyI</td>

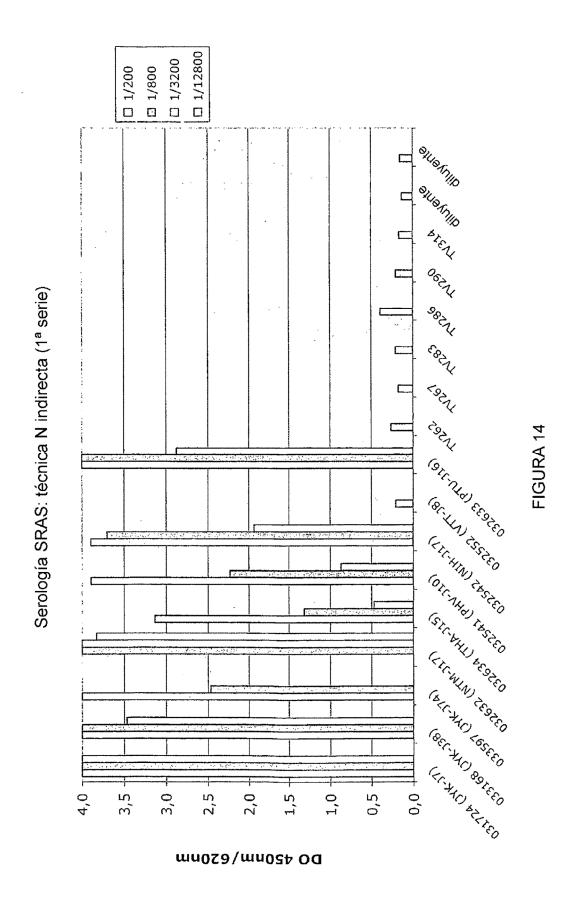
      >< MaeIII</td>
      >< Bme18I</td>
      >< EcoT14I</td>

      >< MaeII</td>
      >< Esp3I</td>
      >< AvaII</td>
      >< Eco130I</td>

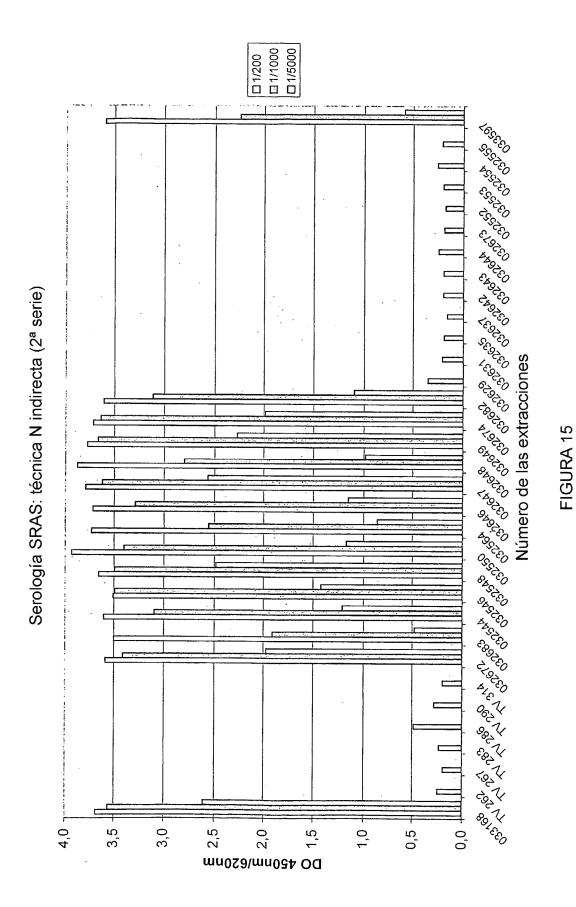
      >< Csp6I</td>
      >< BsmAI</td>
      >< AsuI</td>
      >< BssT1I</td>

      >< AfaI</td>
      >< Alw26I>
      AspI
      >< BsaJI</td>

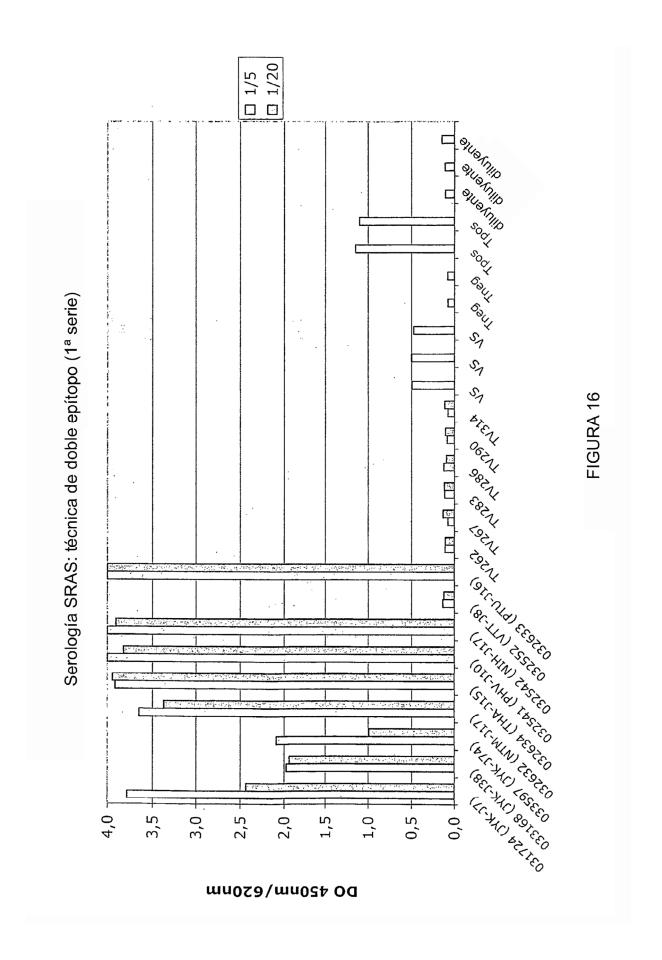
TGCCACAAAA CAGTACAACG TCACTCAAGC ATTTGGGAGA CGTGGTCCAG AACAAACCCA AGGAAATTTC
              28930 28940 28950 28960 28970
     28920
  >< SinI
  >< Sau96I
  >< NspIV
  >< NspHII
  >< NlaIV
                                                 >< PalI
  >< Eco47I
                                                  >< HaeIII
  >< Cfr13I
                                                >< GdiII
                                                  >< Fnu4HI
  >< BsiZI
                                                >< EaeI
  >< BscBI
  >< Bme18I
                                                  >< BsuRI
  >< AvaII
                                                 >< BshI BspWI
>< AciI >< BspWI
                                                                       BspWI >
  >< AsuI
GGGGACCAAG ACCTAATCAG ACAAGGAACT GATTACAAAC ATTGGCCGCA AATTGCACAA TTTGCTCCAA
     28990 29000 29010 29020 29030 29040 29050
    >< BsmI >< NlaIII
>< BscCI >< MnlI >< MaeIII >< MaeIII
GTGCCTCTGC ATTCTTTGGA ATGTCACGCA TTGGCATGGA AGTCACACCT TCGGGAACAT GGCTGACTTA
     29060 29070
                          29080 29090 29100 29110
                              >< XhoII
                              >< Sau3AI
                              >< NdeII
                              >< MflI
                              >< MboI
                                  >< FokI
           >< Tru9I >< DpnII
     >< NlaIV
                               > < DpnI
      >< TthlllI
>< MaeII
    >< NlaIII
                                                                BspWI ><
TCATGGAGCC ATTAAATTGG ATGACAAAGA TCCACAATTC AAAGACAACG TCATACTGCT GAACAAGCAC
     29130 29140 29150 29160 29170
                                                            29180
                                                                       EspI ><
                                                                       DdeI ><
                                                                      CelII ><
            >< HgaI
ATTGACGCAT ACAAAACATT CCCACCAACA GAGCCTAAAA AGGACAAAAA GAAAAAGACT GATGAAGCTC
     29200 29210 29220 29230 29240 29250 29260
                                  FIGURA 13. 68
```

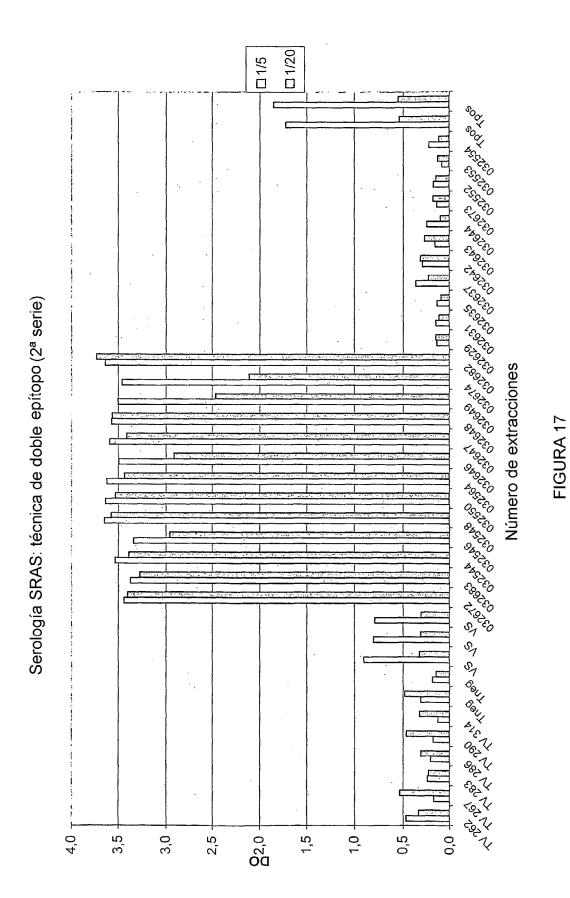

```
>< Fnu4HI
                          >< PleI
                             >< MboII
                           >< BspWI
     >< BsmAI
              >< Hinfl >< Eamll04I>< BpmI
>< Fnu4HI >< BbvI >< AciI >< NlaIII
     >< Alw26I
      >< AciI
AGCCTTTGCC GCAGAGACAA AAGAAGCAGC CCACTGTGAC TCTTCTTCCT GCGGCTGACA TGGATGATTT
    29270 29280 29290 29300 29310 29320 29330
>< NlaIII >< Hinfl NlaIII >< Sphi CTCCAGACAA CTTCAAAATT CCATGAGTGG AGCTTCTGCT GATTCAACTC AGGCATAAAC ACTCATGATG
    29340 29350 29360 29370 29380 29390 29400
                      >< MaeII
                                                 >< AccI
ACCACACAG GCAGATGGGC TATGTAAACG TTTTCGCAAT TCCGTTTACG ATACATAGTC TACTCTTGTG
    29410 29420 29430 29440 29450 29460
                                       >< Tru9I
                                   >< Tru9I
                                       >< MseI
                                   >< MseI
     >< XmuI
                                    >< HpaI
                                    >< HindII
     >< EcoRI>< MaeIII
                                                    Tru9I ><
                                    >< HincII
     >< Asp700I >< BsqI
CAGAATGAAT TCTCGTAACT AAACAGCACA AGTAGGTTTA GTTAACTTTA ATCTCACATA GCAATCTTTA
    29480 29490 29500 29510 29520 29530 29540
                                                      XorII >
                                                     TthHB8T >
                                                      TaqI >.
                                                   Sau3AI ><
                                                   RsaI ><
                                                  >< ThalPvul >
                                                    NdeII ><
                                                      >< MnlI
                                                 >< MvnIMcrI >
                                                    MboI ><
                                                    DpnII ><
                                                     DpnI ><
                                                 Csp6I ><
                                                 >< BstUI
                                             >< HaeIII BspCI >
                                                  BspAI ><
                                         >< BsuRI BsiEI >
                                             >< BshIAfaI ><
         >< MnlI
                                         >< TaqI >< AciI
                                   >< MnlI
                                                 >< AccII
     >< MaeIII
ATCAATGTGT AACATTAGGG AGGACTTGAA AGAGCCACCA CATTTTCATC GAGGCCACGC GGAGTACGAT
           29560 29570 29580
    29550
                                      29590 29600
                                                      29610
                                         >< SduI
                                         >< NspII
                                            >< MboII >< VspI
                                         >< Ksp632I
            >< RmaI
>< MaeI
                         >< fnu4HI
>< EarI</pre>
    >< RsaI
    >< Csp6I
```

CGAGGGTACA GTGAATAATG CTAGGGAGAG CTGCCTATAT GGAAGAGCCC TAATGTGTAA AATTAATTTT 29620 29630 29640 29650 29660 29670 29680


>< NlaIII > < AluI

AGTAGTGCTA TCCCCATGTG ATTTTAATAG CTTCTTAGGA GAATGACAAA AAAAAAAAA AAAAAA


29690 29700 29710 29720 29730 29740



284

285

287

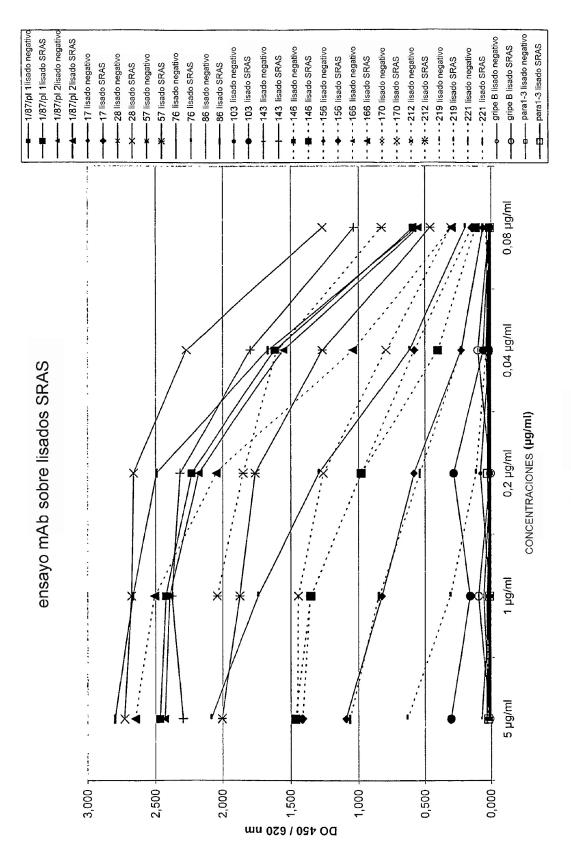
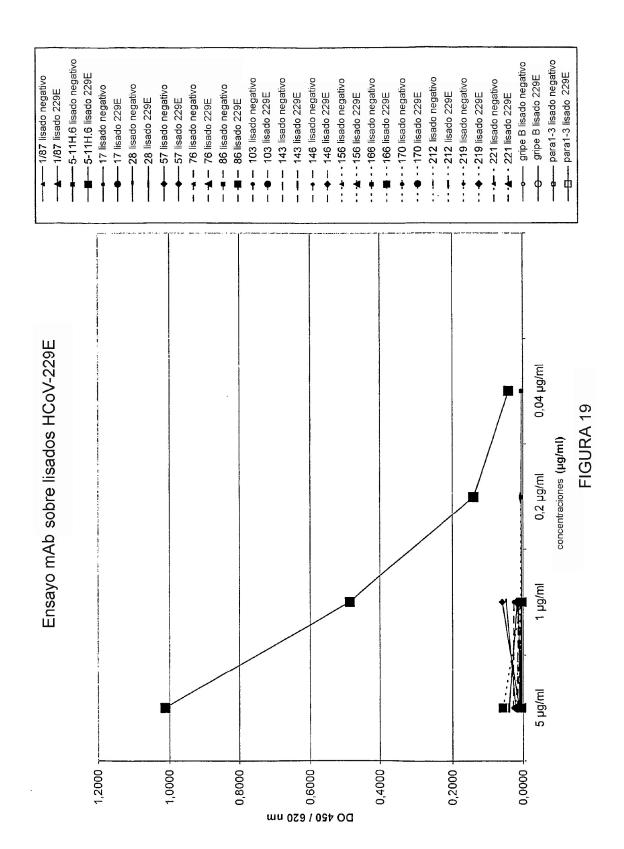
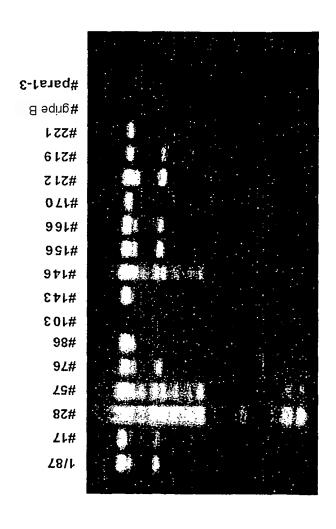




FIGURA 18

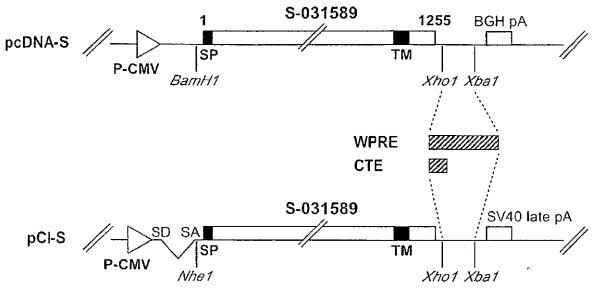
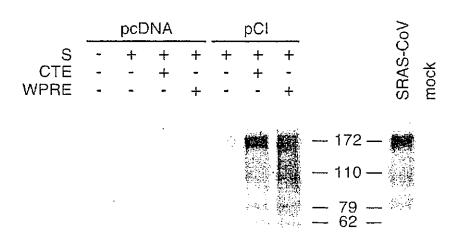
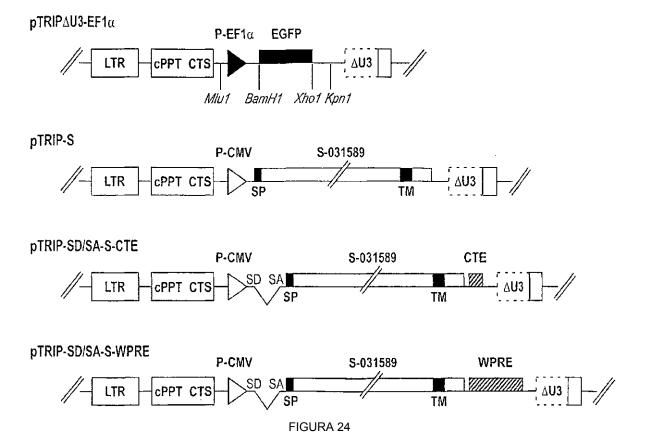
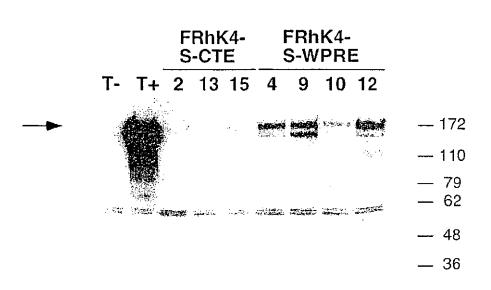
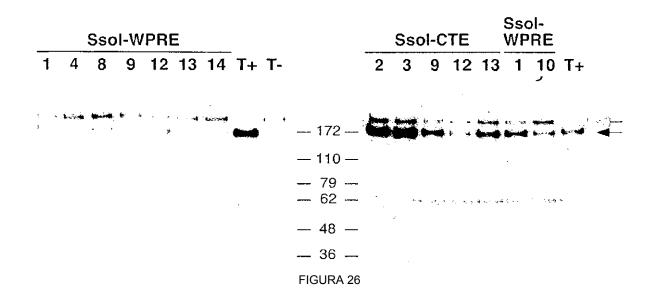



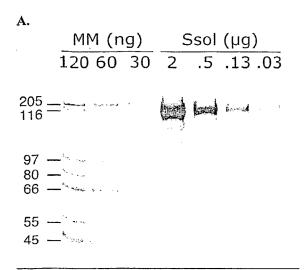
FIGURA 21

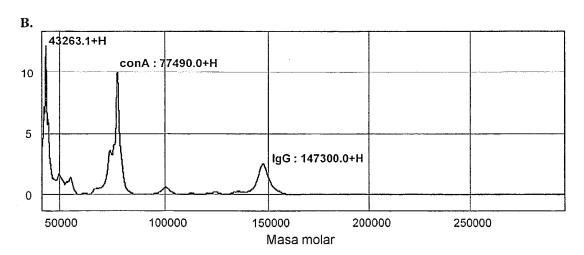
FIGURA 22


A.




B.


		pcDNA			pCl			
S	-	+	+	+	+	+	+	
CTE	-	-	+	-	-	+	-	
WPRE	-	-	-	+	-	•	+	
							E S	 172
							· ·	- 110
								— 79 — 62


FIGURA 23

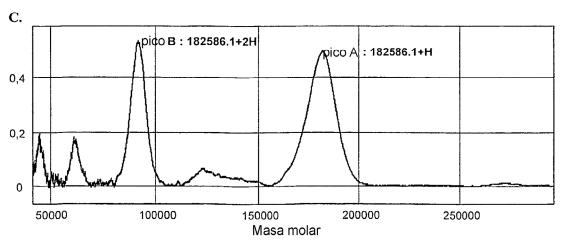
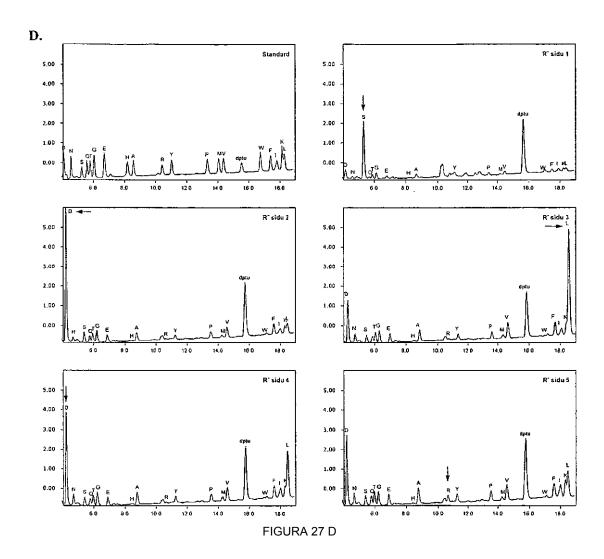
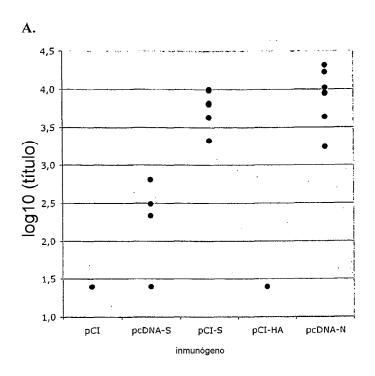




FIGURA 27 A-C

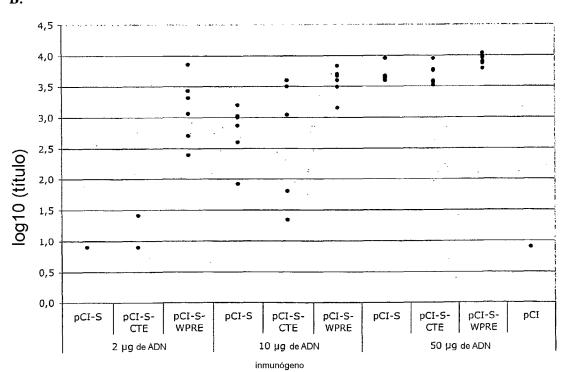
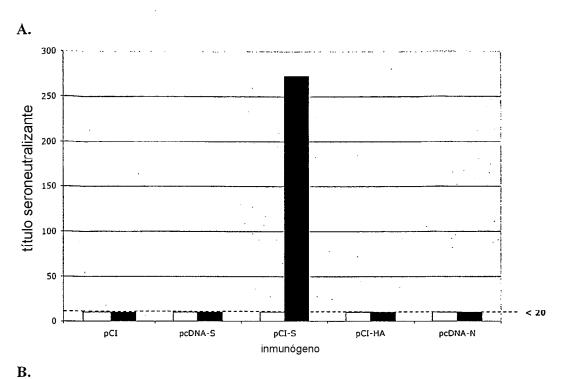



FIGURA 28

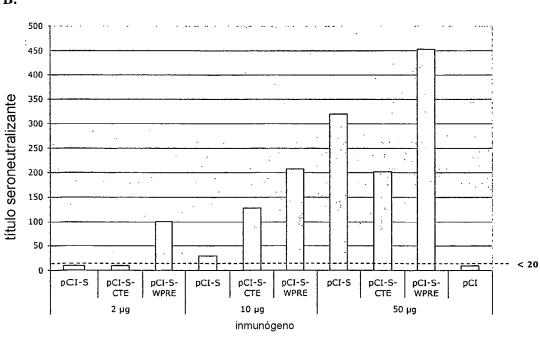


FIGURA 29

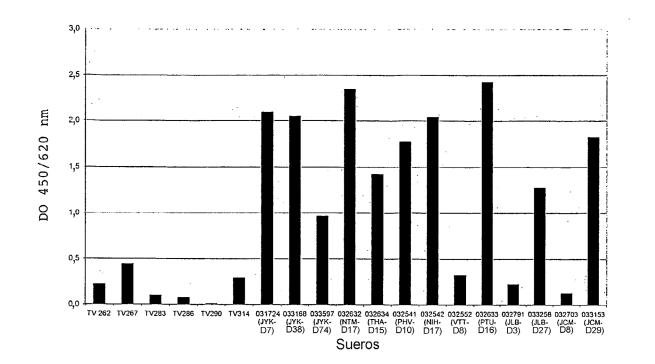
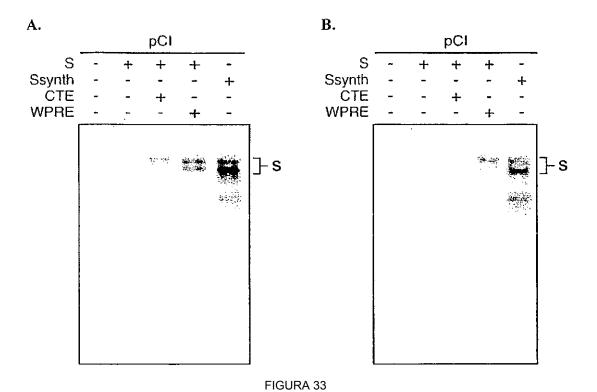


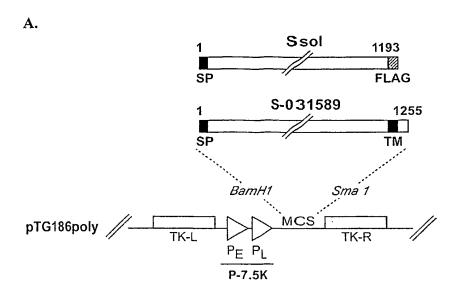

FIGURA 30

ES 2 396 127 T3

1-3059 S-040530	1	CTCTTCTGGAAAAAGGTAGGCTTATCATTAGAGAAAACAACAGAGTTGTGGTTTCAAGTG
I-3059 S-040530	61 1	ATATTCTTGTTAACAACTAAACGAACATGTTTATTTTCTTATTATTTCTTACTCTCACTA
I-3059 S-040530	121 44	GTGGTAGTGACCTTGACCGGTGCACCACTTTTGATGATGTTCAAGCTCCTAATTACACTC "C""C""C""C""C""C""C""C""C""C""C""C""C
I-3059 S-040530	181 104	AACATACTT_CATCTATGAGGGGGGTTTACTATCCTGATGAAATTTTTAGATCAGACACT "G""C""CAG""G""C"""C""C""C""C""C""C""C""C""C""C""
I-3059 S-040530	240 163	CTTTATTTAACTCAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCATACT ""G""CC"G""C"""""C""C""C""C""C""C""C""C"
I-3059 S-040530	300 223	ATTAATCATACGTTTGGCAACCCTGTCATACCTTTTAAGGATGGTATTTATT
I-3059 S-040530	360 283	ACAGAGAAATCAAATGTTGTCCGTGGTTTGGGTTTTTGGTTCTACCATGAACAACAAGTCA
I-3059 S-040530	420 343	CAGTCGGTGATTATTATTAACAATTCTACTAATGTTGTTATACGAGCATGTAACTTTGAA
I-3059 S-040530	480 403	TTGTGTGACAACCCTTTCTTTGCTGTTTCTAAACCCATGGGTACACAGACACATACTATG
I-3059 S-040530	540 463	ATATTCGATAATGCATTTAATTGCACTTTCGAGTACATATCTGATGCCTTTTCGCTTGAT ""C"""""C""C""C""C""C""C"""""C""C"""""CAGC""C"""""CAGC"""C"""
I-3059 S-040530	600 523	GTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAGAGTTTGTGTTTAAAAATAAAGAT ""GAGC""G"""AGC""C""C""C""G"""C"G"""C""G""""C"""""C"""""C"""""C"""""
1-3059 5-040530	660 583	GGGTTTCTCTATGTTTATAAGGGCTATCAACCTATAGATGTAGTTCGTGATCTACCTTCT ""C""C""C""G""C""G""C""C""C""C""G""GA"A""C""G""CAGC
I-3059 S-040530	720 643	GGTTTTAACACTTTGAAACCTATTTTTAAGTTGCCTCTTGGTATTAACATTACAAATTTT ""C""C"""""C"""C"""C"""C"""C"""C"""
I-3059 S-040530	780 703	AGAGCCATTCTTACAGCCTTTTCACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCCC"G"""""C""G"""""CAGC""C""""""CAGC""""""""
1-3059 S-040530	840 763	TATTTTGTTGGCTATTTAAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACA
I-3059 S-040530	900 823	ATCACAGATGCTGTTGATTGTTCTCAAAATCCACTTGCTGAACTCAAATGCTCTGTTAAG
I-3059 S-040530	960 883	AGCTTTGAGATTGACAAAGGAATTTACCAGACCTCTAATTTCAGGGTTGTTCCCTCAGGA
I-3059 S-040530	1020 943	GATGTTGTGAGATTCCCTAATATTACAAACTTGTGTCCTTTTGGAGAGGTTTTTAATGCT
I-3059 S-040530	1080 1003	ACTAAATTCCCTTCTGTCTATGCATGGGAGAGAAAAAAATTTCTAATTGTGTTGCTGAT
I-3059 S-040530	1140 1063	TACTCTGTGCTCTACAACTCAACATTTTTTTCAACCTTTAAGTGCTATGGCGTTTCTGCC
I-3059 S-040530	1200 1123	ACTAAGTTGAATGATCTTTGCTTCTCCAATGTCTATGCAGATTCTTTTGTAGTCAAGGGA
I-3059 S-040530	1260 1183	GATGATGTAAGACAAATAGCGCCAGGACAAACTGGTGTTATTGCTGATTATAATTATAAA

ES 2 396 127 T3


1-3059 S-040530		TTGCCAGATGATTTCATGGGTTGTGCTTGCTTGGAATACTAGGAACATTGATGCTACT C""""C""C""C""C""C""C""C""C""C""C""A
1-3059 5-040530		TCAACTGGTAATTATAATTATAAATATAGGTATCTTAGACATGGCAAGCTTAGGCCCTTT AGC""C""C""C"""""C""G""CC""C""GC"G""C""""""
I-3059 S-040530	1440 1363	GAGAGAGACATATCTAATGTGCCTTTCTCCCCTGATGGCAAACCTTGCACCCCACCTGCT
I-3059 S-040530	1500 1423	CTTAATTGTTATTGGCCATTAAATGATTATGGTTTTTACACCACTACTGGCATTGGCTAC
I-3059 S-040530	1560 1483	CAACCTTACAGAGTTGTAGTACTTTCTTTTGAACTTTTAAATGCACCGGCCACGGTTTGT
I-3059 S-040530	1620 1543	GGACCAAAATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATTGGA
I-3059 S-040530	1680 1603	CTCACTGGTACTGGTGTTTAACTCCTTCTTCA AAGAGATTTCAACCATTTCAACAAT
I-3059 S-040530	1738 1661	TTGGCCGTGATGTCTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTGAAATAT "C"""""G"""""GAGC""C""""""C""CAGC""G""C""C""C""G""CAGC""G""CC
I-3059 S-040530	1798 1721	TAGACATTTCACCTTGCTCTTTTGGGGGTGTAAGTGTAATTACACCTGGAACAAATGCTT "G"""""CAGC""C"""AGC""C""C""C""GTCC"""G""C""C""C""C""C""C"
I-3059 S-040530	1858 1781	_CATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGATGTTTCTACAGCAATC G""G"_""""G""C""G""G""G""C""G""C""G"C"""
I-3059 S-040530	1917 1840	CATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTACTGGAAACAATGTATTCCAG
I-3059 S-040530	1977 1900	ACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATT
I-3059 S-040530	2037 1960	CCTATTGGAGCTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAGC
I-3059 S-040530	2097 2020	CAAAAATCTATTGTGGCTTATACTATGTCTTTAGGTGCTGATAGTTCAATTGCTTACTCT ""G""G""C""C""""C""C""C"""AGCC"G""C""C""C""CAGC""C""C""C""CAGC
I-3059 S-040530	2157 2080	AATAACACCATTGCTATACCTACTAACTTTTCAATTAGCATTACTACAGAAGTAATGCCT ""C"""""""""""""""""""""""""""""""
I-3059 S-040530	2217 2140	
I-3059 S-040530	2277 2200	TGTGCTAATTTGCTTCCAATATGGTAGCTTTTGCACACAACTAAATCGTGCACTCTCA ""C""C""C"""G""G""G""C""C"""""C""""C"
I-3059 S-040530	2337 2260	GGTATTGCTGCTGAACAGGATCGCAACACACGTGAAGTGTTCGCTCAAGTCAAACAAA
I-3059 S-040530	2397 2 320	· · · · · · · · · · · · · · · · · · ·
I-3059 S-040530	2457 2380	CCTCTAAAGCCAACTAAGAGGTCTTTTATTGAGGACTTGCTCTTTAATAAGGTGACACTC
1-3059 S-040530	2517 2440	
I-3059 S-040530	2577 2500	CTCATTTGTGCGCAGAAGTTCAATGGGCTTACAGTGTTGCCACCTCTGCTCACTGATGAT
I-3059 S-040530	2637 2560	ATGATTGCTGCCTACACTGCTGCTCTAGTTAGTGGTACTGCCACTGCTGGATGGA


FIGURA 32.2

ES 2 396 127 T3

1-3059 5-040530	2697 2620	GGTGCTGGCGCTGCTCTTCAAATACCTTTTGCTATGCAAATGGCATATAGGTTCAATGGC ""A""C""A""C""G""G""G""C""C""C""C""C"""C"
I-3059 S-040530	2757 2680	ATTGGAGTTACCCAAAATGTTCTCTATGAGAACCAAAAACAAATCGCCAACCAA
I-3059 S-040530	2817 2740	AAGGCGATTAGTCAAATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTG
I-3059 S-040530		CAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCT ""G"""""G""G""G"""""""""""""""""""
I-3059 S-040530	2937 2860	AATTTTGGTGCAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAG
I-3059 S-040530	2997 2920	
1-3059 S-040530	3057 2980	ACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTGCTAATCTTGCTGCTACTAAA
I-3059 S-040530	3117 3040	ATGTCTGAGTGTGTTCTTGGACAATCAAAAAGAGTTGACTTTTGTGGAAAGGGCTACCAC
I-3059 S-040530	3177 3100	CTTATGTCCTTCCCACAAGCAGCCCCGCATGGTGTTGTCTTCCTACATGTCACGTATGTG
I-3059 S-040530	3237 3160	CCATCCCAGGAGAACTTCACCACAGCGCCAGCAATTTGTCATGAAGGCAAAGCATAC
I-3059 S-040530	3297 3220	
I-3059 S-040530	3357 3280	TTCTTTTCTCCACAAATAATTACTACAGACAATACATTTGTCTCAGGAAATTGTGATGTC """"CAGC""C""C""C""C""C""C""C""C""C""C""C""C""
I-3059 S-040530		GTTATTGGCATCATTAACAACACAGTTTATGATCCTCTGCAACCTGAGCTTGACTCATTC ""G""C""""""""""""""""""""""""""""""
I-3059 S-040530	3477 3400	AAAGAAGAGCTGGACAAGTACTTCAAAAATCATACATCACCAGATGTTGATCTTGGCGAC ""G""G"""""""""""""""""""""""""""
I-3059 S-040530	3537 3460	ATTTCAGGCATTAACGCTTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAG
I-3059 S-040530	3597 3520	GTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAAAATATGAGCAA ""G""C""G""CC""G""C""GAGC""G""C""""""""G""G""GC""""C"""G""C""""""
I-3059 S-040530		TATATTAAATGGCCTTGGTATGTTTGGCTCGGCTTCATTGCTGGACTAATTGCCATCGTC ""C""C""G""""C""G""""C"""G""""""""""
I-3059 S-040530	3717 3640	ATGGTTACAATCTTGCTTTGTTGCATGACTAGTTGTTGCAGTTGCCTCAAGGGTGCATGC
I-3059 S-040530		TCTTGTGGTTCTTGCTGCAAGTTTGATGAGGATGACTCTGAGCCAGTTCTCAAGGGTGTCAGC"""""CAGC""""""""""
I-3059 S-040530		AAATTACATTACACATAAACGAACTTATGGATTTGTTTATGAGATTTTTTACTCTTGGAT ""GC"G""C"""""C"G"T""""CGA"
I-3059 S-040530	3897	CAATTACTGCACAGCCAGTAAAAATTGACAATGCTTCTCCTGCAAGT

FIGURA 32.3

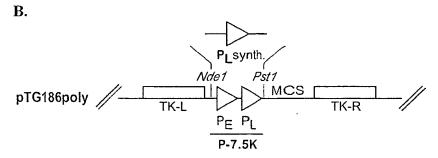


FIGURA 34 A-C

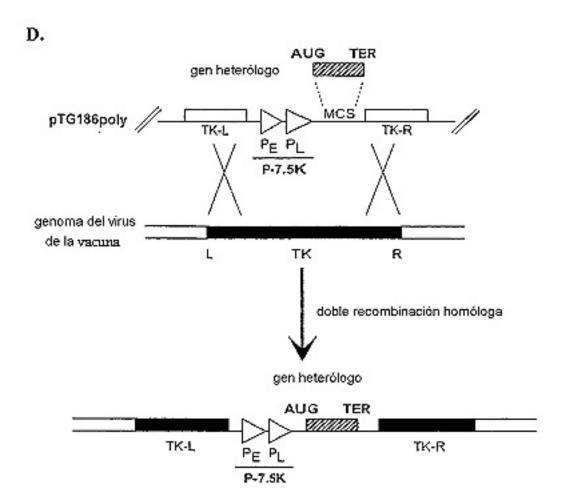
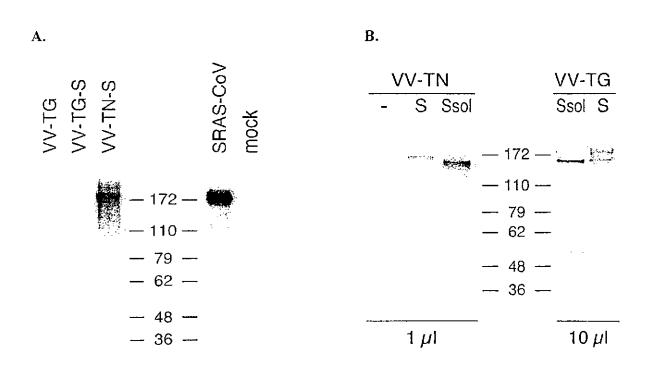
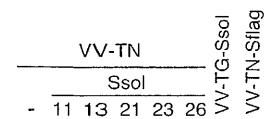
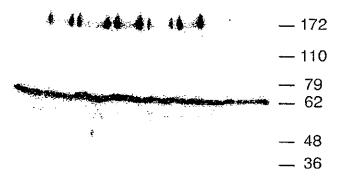





FIGURA 34 D

Ā.

B.

FIGURA 36

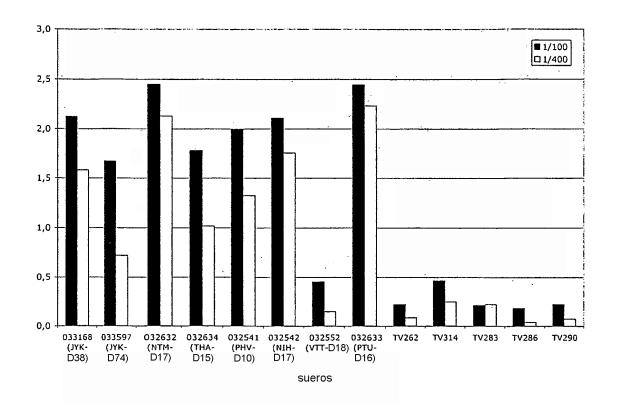
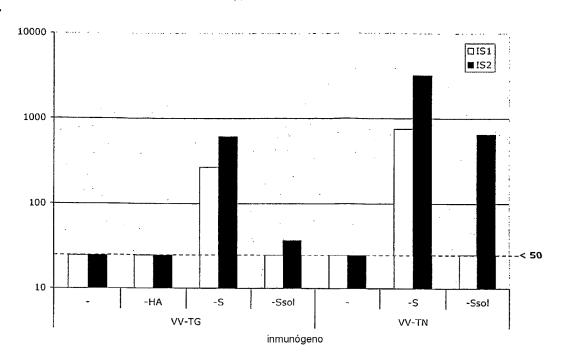



FIGURA 38

A.

В.

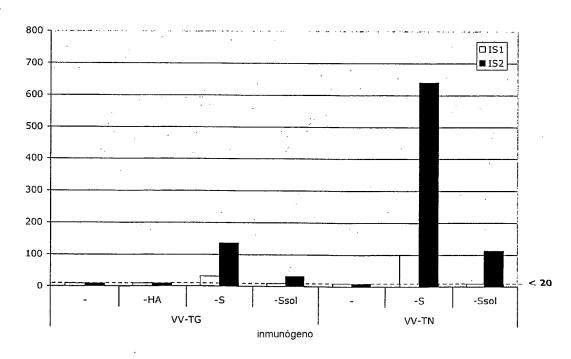
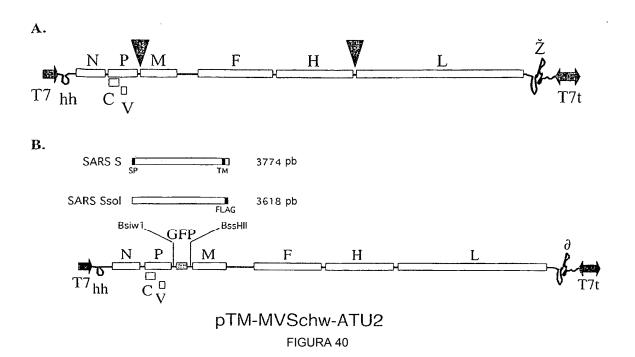
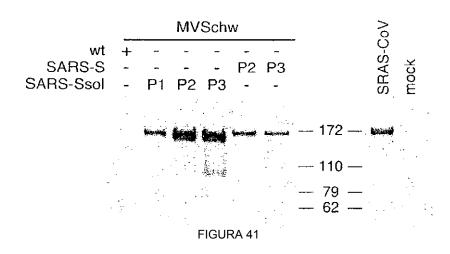
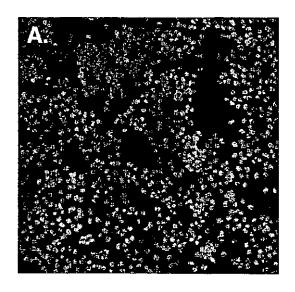
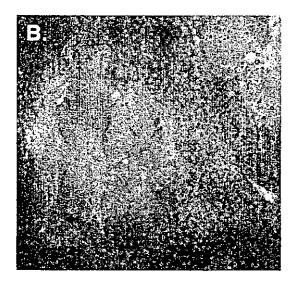






FIGURA 39

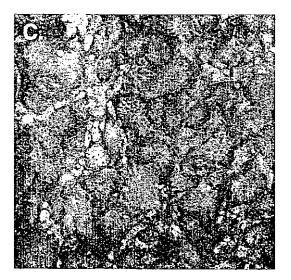
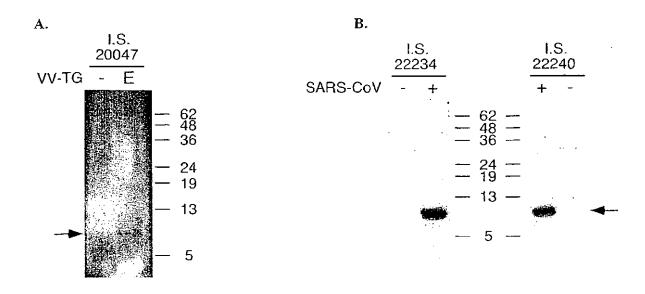
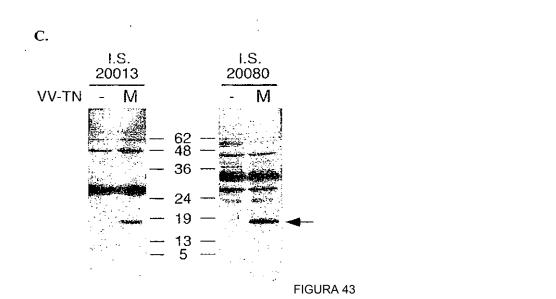




FIGURA 42

