

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 397 138

61 Int. Cl.:

A61B 17/12 (2006.01) A61B 17/34 (2006.01) A61B 17/00 (2006.01) A61F 2/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 06.05.2009 E 09159586 (8)
 (97) Fecha y número de publicación de la concesión europea: 24.10.2012 EP 2248471
- (54) Título: Dispositivo de suministro intravascular
- (45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.03.2013**

(73) Titular/es:

OCCLUTECH HOLDING AG (50.0%) Vordergasse 3 8201 Schaffhausen, CH y MASLANKA, HERBERT (50.0%)

(72) Inventor/es:

NIELSEN, STEVAN y MASLANKA, HERBERT

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Dispositivo de suministro intravascular

5 Campo de la invención

10

20

25

30

35

40

Esta invención pertenece en general al campo de los implantes médicos y los dispositivos de suministro para tales implantes, así como ejemplos de procedimientos para el suministro transluminal de dispositivos médicos dentro de un cuerpo.

Antecedentes de la invención

Es conocido ese despliegue de un implante médico dentro del sistema cardiovascular de un paciente.

Por ejemplo el documento WO 9742878 A1 revela un implante médico provisto de un extremo para un accesorio de forma que se pueda roscar a un cable de suministro.

Sin embargo, el accesorio roscado en ciertas situaciones clínicas puede no desbloquearse en el interior del cuerpo, cuando se coloca el implante. Por consiguiente el implante se tiene que quitar del cuerpo junto con el cable de suministro. Esto aumenta innecesariamente el tiempo de la cirugía y los costes relacionados. También, la seguridad del paciente se reduce debido a un procedimiento no pretendido e indeseable de este tipo.

Adicionalmente, el accesorio roscado se puede aflojar antes de que el implante esté en la posición final y se libere intencionadamente en el cuerpo del paciente. El aflojamiento por ejemplo se puede iniciar cuando el implante está comprimido en un catéter y el cable de suministro es girado durante el suministro con relación al catéter que lo rodea. Esto se puede realizar de forma no intencionada por el factor humano. Se pueden causar embolias por el aflojamiento de dispositivos médicos incontroladamente liberados en el cuerpo.

Ambos fallos anteriores tienen consecuencias nefastas para el paciente y el sistema sanitario. El riesgo para el paciente se incrementa.

También, cuando el dispositivo médico se libera del catéter, y todavía está fijado al cable de suministro roscado, el implante médico se somete a plegado, con relación al eje longitudinal del cable de suministro, por lo menos en ciertas posiciones anatómicas. Éste es por ejemplo el caso en el corazón en donde el suministro es difícil perpendicular a una pared del tabique que tiene un orificio que se va a cerrar mediante el implante. Esto puede afectar al material del dispositivo conduciendo a una fatiga del dispositivo.

El implante también está afectado por una fuerza en la liberación la cual tanto se traslada a través del implante médico puede entonces tener un impacto negativo en el tejido de los alrededores como el implante médico de forma inherente se apodera de la fuerza y se ve afectado como ha sido descrito antes en este documento.

También, se desea un suministro más flexible en términos de ajustes del dispositivo utilizado y los procedimientos aplicados, debido al hecho de que diferentes pacientes son anatómicamente ligeramente diferentes unos de otros y que la deficiencia que se va a tratar es lo más a menudo individual y única para cada paciente tratado.

En el documento US 2003/0181945 se revela un sistema de acoplamiento para la colocación de implantes. Utilizando por ejemplo un anillo de centrar atado de un implante médico, dos clavijas de contacto se utilizan para capturar el implante. Un movimiento de articulación del implante se permite a lo largo de un plano de un arco o muesca semicircular que forma las dos clavijas cuando están capturando el implante.

En el documento WO 2009/016265 A2 se enseña un procedimiento para la producción de una conexión entre dos componentes de materiales que difieren. Está provisto un casquillo el cual se coloca de una manera sin apretar alrededor del extremo soldado de un haz de filamentos que comprende el dispositivo médico. El casquillo se sostiene entonces durante el procedimiento médico.

En el documento US 2003/0045901 A1 se proporciona un sistema de suministro flexible. Este dispositivo emplea una bola en el extremo distante del elemento del cuerpo alargado la cual sirve para conectar el dispositivo médico a un oclusor. Una bola en el oclusor se utiliza para que la bola entre en contacto en el dispositivo médico y esta conexión se asegura estando retirada en el interior del lumen del catéter.

En el documento US 2004/0176797 A1 se revela un dispositivo de accesorio magnético. Éste se utiliza para suministrar por ejemplo un oclusor del tabique a un paciente. El dispositivo médico que se va a suministrar se fija al transcatéter a través de una conexión magnética de bola y casquillo adaptador. El magnetismo mantiene la conexión de los dispositivos hasta que el dispositivo médico se coloca encima del imán y se libera.

Por eso, existe la necesidad de un dispositivo de despliegue el cual se ajuste a las diferencias en el sistema

2

50

45

55

60

cardiovascular entre pacientes permitiendo todavía un despliegue seguro de un implante médico.

Por lo tanto, resultaría ventajoso un dispositivo o sistema y procedimiento de suministro mejorado. También, sería ventajoso un implante médico que facilitara un suministro mejorado de este tipo.

5

Por lo tanto, sería ventajoso un dispositivo o sistema de suministro, un implante médico y un procedimiento mejorados y en particular que permitieran una flexibilidad incrementada, eficacia en los costes y en la seguridad del paciente.

10 Resumen de la invención

Por consiguiente, las formas de realización de la presente invención preferiblemente buscan mitigar, aliviar o eliminar una o más deficiencias, desventajas o asuntos de la técnica, tales como los identificados antes en este documento, individualmente o en cualquier combinación proporcionando un dispositivo, según las reivindicaciones adjuntas de la patente.

Formas de realización adicionales de la invención se definen en las reivindicaciones subordinadas, en las que las características para los aspectos secundarios y subsiguientes de la invención son al igual que para los primeros aspectos mutatis mutandis.

20

40

15

Más particularmente la invención se refiere a un aparato para el suministro de un dispositivo de oclusión y más particularmente a un dispositivo de suministro intravascular para el suministro de un dispositivo de oclusión en el sistema cardiovascular.

Algunas formas de realización de la invención proporcionan un suministro flexible de un implante médico a sitios del cuerpo de un ser humano o de un animal anatómicamente difíciles de alcanzar.

Algunas formas de realización de la invención también proporciona un suministro seguro de un implante médico.

30 El nuevo sistema de suministro permite mejoras significantes en la manipulación del producto. Antes de liberar el oclusor, el sistema permite un ángulo de inclinación de hasta aproximadamente 45 grados sin ninguna tensión o tracción en el implante. Especialmente en casos desafiantes esta característica ha probado ser vital.

Esto permite que el producto sea colocado en la posición final sin ninguna tracción adversa desde el cable de suministro. El sistema de fijación de manipulación segura evita cualquier riesgo de liberación no intencionada durante la manipulación y permite una retirada segura en el interior del catéter si la implantación se interrumpe.

Se debe enfatizar que el término "comprende/comprendiendo" cuando se utiliza en esta memoria se adopta para especificar la presencia de características establecidas, enteros, etapas o componentes pero no excluye la presencia o la adición de una o más de otras características, enteros, etapas, componentes o grupos de los mismos.

Breve descripción de los dibujos

Estos y otros aspectos, características y ventajas de las cuales las formas de realización de la invención son capaces se pondrán de manifiesto y se aclararán a partir de la siguiente descripción de formas de realización de la presente invención, haciendo referencia a los dibujos adjuntos, en los cuales:

la figura 1 es una vista en conjunto del juego;

50 la figura 2 es una composición gráfica representada;

la figura 3 es una vista en sección transversal del dispositivo:

las figuras 4a y 4b son ilustraciones del dispositivo en posición bloqueada (figura 4a) y en posición que se puede 55 liberar (figura 4b);

la figura 5 es una vista esquemática de la punta distante en una posición bloqueada;

la figura 6 es una vista esquemática de la punta distante en la configuración liberada;

60

la figura 7 es una vista esquemática que ilustra el principio del bloqueo de un dispositivo que se puede desprender utilizado en una forma de realización de la invención;

la figura 8 es una vista esquemática de un dispositivo de inter bloqueo;

65

las figuras 9a, b y c son vistas esquemáticas que ilustran otra forma de realización de la invención del inter bloqueo

de un implante médico;

5

10

15

30

35

45

50

las figuras 10 a y b son vistas esquemáticas que muestran todavía una forma de realización adicional de la invención del inter bloqueo del implante médico;

las figuras 11 a, b y c son vistas esquemáticas que muestran la flexibilidad en la junta entre el catéter suministrado con respecto al implante médico;

la figura 12 es una ilustración de un extremo de un dispositivo médico que se puede implantar;

la figura 13 es una ilustración de un conjunto de soporte en diversas posiciones entre el bloqueo y la liberación;

la figura 14 es una vista en perspectiva de una parte próxima ante un dispositivo de suministro provisto de un conjunto elásticamente flexible;

las figuras 15 a y b son ilustraciones de un conjunto de soporte en la posición de liberación y de bloqueo.

Descripción de formas de realización

Formas de realización específicas de la invención se describirán ahora con referencia a los dibujos adjuntos. Esta invención, sin embargo, se puede realizar de muchas formas diferentes y no se debe considerar como limitada a las formas de realización establecidas en este documento; más bien, estas formas de realización se proporcionan de modo que esta revelación sea rigurosa y completa y comunicará completamente el ámbito de la invención a aquellos expertos en la técnica. La terminología utilizada en la descripción detallada de las formas de realización ilustradas en los dibujos adjuntos no se pretende que sea limitativa de la invención. En los dibujos, números iguales se refieren a elementos iguales.

La siguiente descripción se enfoca en una forma de realización de la presente invención aplicable a un oclusor del tabique. Sin embargo, se apreciará que la invención no está limitada a esta aplicación sino que se puede aplicar a muchos otros dispositivos médicos que se pueden implantar, incluyendo por ejemplo filtros, stents, oclusores del apéndice auricular izquierdo, dispositivos de tratamiento de aneurismas, injertos, etcétera.

Un dispositivo de suministro intravascular 1 comprende un cable de suministro 100 provisto de un extremo próximo 10a y un extremo distante 10b y un lumen interior 151 que se extiende entre ellos (figura 3). El extremo distante 10b comprende una interfaz de conexión 140 adaptada para el inter bloqueo de forma acoplada con una parte extrema próxima 200 de un dispositivo médico que se puede implantar 2. El dispositivo de suministro comprende un conjunto de bloqueo 110 instalado para asegurar la interfaz de conexión en una posición de bloqueo.

El dispositivo médico está por lo tanto bloqueado de forma que puede articular antes de una liberación controlada.

40 Bloqueado de forma articulada significa que el dispositivo médico está fijado de forma segura al extremo distante del dispositivo de suministro, mientras todavía es capaz de moverse con un cierto grado de libertad con relación a un eje longitudinal del extremo distante del dispositivo de suministro. Un grado de libertad es por ejemplo el giro alrededor del eje longitudinal o inclinación con relación al mismo. Esto se describe con mayor detalle más adelante en este documento.

En una forma de realización, el dispositivo de suministro intravascular comprende un cable de bloqueo 150 instalado de forma móvil en el interior del lumen 151 del cable de suministro 100 para el movimiento longitudinal relativo en el interior del mismo, el cable de bloqueo estando provisto de un extremo distante que comprende una estructura de soporte 141, por lo que la estructura de soporte es axialmente móvil con relación al cable de suministro 100 entre la posición de bloqueo (15b) en la cual el cable de suministro encierra la estructura de soporte y una segunda posición en la cual la estructura de soporte sobresale por lo menos parcialmente más allá del extremo distante del cable de suministro (figuras 13, 15a) de tal modo que la interfaz de conexión se desbloquea y el dispositivo médico que se puede implantar se libera de forma que se puede controlar.

En una forma de realización, el dispositivo médico que se puede implantar es un dispositivo de oclusión para ocluir un lugar seleccionado del cuerpo. El dispositivo médico que se puede implantar puede ser comprimible o extensible, tal como auto extensible. El dispositivo médico que se puede implantar 2 por lo tanto puede ser suministrado de forma ventajosa y segura a un lugar objetivo a través de un lumen del cuerpo. En el lugar objetivo, el dispositivo se mueve hacia adelante fuera del catéter, pero todavía fijado de forma segura al cable de suministro en la interfaz de conexión 140.

El dispositivo de oclusión es por ejemplo un oclusor del defecto del tabique auricular (ASD) o un foramen oval permeable (PFO) para una oclusión del tabique.

65 El dispositivo de oclusión es por ejemplo un oclusor de apéndice auricular en otras formas de realización.

En relación con esto, por ejemplo un primer diámetro extendido del dispositivo médico que se puede implantar 2 puede estar colocado en un lado distal de un orificio en una pared, tal como un tabique o pared auricular. Entonces un segundo diámetro extendido del dispositivo médico que se puede implantar 2 puede estar colocado en un lado próximo del orificio en la pared. Por lo tanto el orificio es ocluido de forma fiable cuando el dispositivo se hace crecer en el interior del tejido de la pared, por ejemplo mediante endotelización.

La colocación en esta aplicación de suministro anatómicamente demandante se facilita por el dispositivo de suministro de las presentes formas de realización.

Sin embargo, el dispositivo tiene que ser liberado de forma fiable del dispositivo de suministro 1. Con este propósito, un conjunto de bloqueo 110 se desbloquea. En este caso por un movimiento de roscado a partir de la posición bloqueada (figura 4A) hasta la posición desbloqueada (figura 4B). Alternativamente, o además del bloqueo roscado, pueden estar provistos otros conjuntos de bloqueo, tales como un pestillo, un pestillo de resorte, un tapón, una cubierta, una tapa, una junta, una envoltura, etcétera. El cable de bloqueo interno 150 en el lumen puede ahora ser movido hacia adelante para empujar el conjunto de soporte 141 en la interfaz de conexión fuera de un casquillo del mismo 150. Como se puede ver en la figura 9 por ejemplo, el dispositivo médico que se puede implantar está ahora libre para la liberación.

Durante el suministro, el dispositivo médico que se puede implantar 2, cuando se extiende fuera del catéter, y también durante el suministro en el interior del catéter está giratoriamente libre y puede articular tanto axial como radialmente. Esto incrementa la flexibilidad durante el suministro a través de pasos estrechos del lumen para el suministro. Además, cuando se extiende fuera del catéter, pero todavía está bloqueado de forma móvil a la interfaz de conexión, el dispositivo médico que se puede implantar 2 puede girar libremente y articular o inclinarse tanto axial como radialmente, véanse por ejemplo las figuras 10 u 11. Esto proporciona un grado de flexibilidad grande durante el suministro y la adaptación a diferentes situaciones anatómicas en el lugar objetivo del dispositivo médico que se puede implantar 2.

En una forma de realización, la interfaz de conexión que sostiene el dispositivo médico que se puede implantar proporciona una flexibilidad axial de tal tipo que el dispositivo médico que se puede implantar se puede inclinar con relación al eje longitudinal del dispositivo de suministro.

Ángulos de inclinación de aproximadamente 45 grados se pueden obtener de ese modo.

5

30

40

45

50

En una forma de realización, la estructura de soporte 141 está provista radialmente alargada hasta entrar en contacto por lo menos parcialmente con el lumen interior del extremo distante del cable de suministro, véase por ejemplo la figura 13.

La estructura de soporte puede tener una ranura distante en el interior de la cual se ajusta de forma deslizante un haz de cables. Cuando el haz de cables tiene un espesamiento, por ejemplo el extremo de forma esférica como se representa la figura 12, inter bloquea con el conjunto de soporte, una vez éste es arrastrado al interior del casquillo 145.

El bloqueo del dispositivo médico 2 en el conjunto de soporte está provisto mediante un ajuste positivo el cual permite un grado de movimiento libre con relación al cable de suministro cuando se bloquea.

En una forma de realización, la parte distante de la estructura de soporte 141 es en forma de un bol y tiene una ranura en el borde de la parte en forma de bol en el extremo distante de la estructura de soporte para recibir una parte del dispositivo médico que se puede implantar. La parte en forma de bol, junto con un coágulo soldado en el extremo próximo 200 que tiene una forma sustancialmente esférica (véase la figura 12) proporciona la articulación en una forma de realización.

En una forma de realización, la ranura está configurada para encerrar la parte extrema próxima del dispositivo médico que se puede implantar por lo menos parcialmente.

La carga del dispositivo médico que se pueden implantar en el dispositivo de suministro y el bloqueo en la interfaz de conexión se ilustra por ejemplo en las figuras 7, 9 y 10. La posición bloqueada flexiblemente se representa en la figura 8.

En una forma de realización, el dispositivo de suministro intravascular comprende un dispositivo de control conectado al extremo próximo del cable de suministro para desbloquear de forma que se puede controlar la interfaz de conexión. Por eso puede estar integrado en el interior de un mango para un funcionamiento conveniente. El conjunto de accionamiento de empuje 130 puede ser accionado para mover el cable de suministro entero con el dispositivo médico que se puede implantar 2 inter bloqueado en el extremo distante 10b a través de un catéter (no representado). Cuando está en el lugar objetivo, y el dispositivo médico que se puede implantar está provisto fuera del extremo distante del catéter, puede ser convenientemente desbloqueado para el desprendimiento. El conjunto de bloqueo 110 se desbloquea. Un resorte 115 proporciona una carga previa del conjunto de accionamiento de

liberación 120. El resorte puede estar tensado contra un conjunto de tope 112. En el momento del empuje contra la carga del resorte, el cable de bloqueo 150 es empujado en la dirección distal y el conjunto de soporte se mueve fuera del extremo distante 10b. De ese modo el dispositivo médico que se puede implantar es liberado y desprendido del dispositivo de suministro 1.

5

En una forma de realización, el dispositivo de control está asegurado cuando la estructura de soporte está en la posición de bloqueo de tal modo que el dispositivo de control tiene que ser accionado manualmente para permitir el desbloqueo de la interfaz de conexión para una liberación controlada del dispositivo médico que se puede implantar del dispositivo de suministro, véanse las figuras 4A y 4B.

10

En una forma de realización se provee un dispositivo médico que se puede implantar provisto de una parte extrema próxima adaptada para el inter bloqueo de forma acoplada con la interfaz de conexión. Este es por ejemplo el coágulo soldado esféricamente del dispositivo médico que se puede implantar 2 en el extremo próximo 200 del mismo que se acopla con la ranura esférica (en forma de bol) en el conjunto de soporte 141.

15

La figura 14 es una vista en perspectiva de una parte próxima de un dispositivo de suministro que tiene un conjunto elásticamente flexible 115b. El conjunto elásticamente flexible es por ejemplo un disco. El conjunto elásticamente flexible está fabricado por ejemplo de caucho, silicona o materiales similares. El conjunto de bloqueo 110b tiene un extremo próximo ensanchado, a fin de proporcionar un área de ajuste mayor al conjunto elásticamente flexible 115b.

20

El conjunto elásticamente flexible 115b proporciona flexibilidad al sistema de suministro incluso cuando el conjunto de soporte está en la posición bloqueada. De esta manera, se puede proveer una flexibilidad axial cuando un dispositivo médico está bloqueado en la unidad de soporte 141 en la interfaz de conexión 140.

El resorte 115 proporciona una tensión previa de la estructura de soporte 141 en el casquillo de la interfaz de conexión 140 hacia la posición de bloqueo. Esto mejora adicionalmente la seguridad del sistema de suministro. Un aflojamiento no intencionado del dispositivo médico en la posición bloqueada se evita eficazmente. Adicionalmente, cuando el dispositivo médico está colocado en la estructura de soporte extendida 141, la estructura de soporte 141 es arrastrada de vuelta al interior del casquillo de la interfaz de conexión 140 cuando el husillo o el conjunto de accionamiento de liberación 120 se libera. Roscando el conjunto de bloqueo 110 próximamente, la interfaz de conexión se asegura en la posición de bloqueo.

30

25

El conjunto elásticamente flexible 115b proporciona en esta posición de bloqueo diversas propiedades ventajosas.

35

En primer lugar se provee una ligera movilidad axial del dispositivo médico cuando está bloqueado de forma segura al conjunto de soporte 141 en la interfaz de conexión 140. El movimiento axial es por supuesto menor que cuando el conjunto de soporte 140 se mueve fuera del casquillo de la estructura de soporte 141. La posición de bloqueo retraída también puede estar provista tan lejos en el casquillo de la estructura de soporte 141 que su flexibilidad axial termine con el extremo distante de la estructura de soporte 141 a nivel en el extremo distante 10b, como se representa en la figura 15b.

40

En segundo lugar, el dispositivo de suministro entero se mantiene flexible durante el suministro y a una tensión de endurecimiento del árbol flexible 103. El árbol flexible está enrollado en forma de una espiral. El plegado del árbol flexible se realiza a un radio mayor que el plegado del cable de suministro 150 en el árbol 103. Las fuerzas pueden ser prolongadas, las cuales pueden dañar el instrumento de suministro. El conjunto elásticamente flexible 115b resuelve este tema proporcionando una flexibilidad suficiente del dispositivo de suministro, en particular el árbol 103 y el cable de suministro 150 en su interior, mientras mantiene de forma segura el dispositivo médico fijado al dispositivo de suministro.

50

45

En una forma de realización, el dispositivo médico que se puede implantar comprende un haz de filamentos o cables (véase la figura 12), en el que el haz de filamentos del dispositivo comprende un extremo soldado provisto de una parte extrema próxima soldada, en el que la parte extrema próxima soldada tiene proporciones y dimensiones definidas configuradas como una interfaz de conexión adaptada para el inter bloqueo de forma acoplada con una estructura de soporte. El dispositivo médico que se puede implantar puede ser trenzado.

55

En una forma de realización, la interfaz de conexión tiene una forma globalmente esférica.

En formas de realización, la interfaz de conexión permite un movimiento de articulación cuando está bloqueada.

60

En una forma de realización, está provisto un conjunto que comprende:

un dispositivo de suministro 1 según lo anterior; y

un dispositivo médico que se puede implantar 2 según lo anterior, instalado en un catéter para el suministro intravascular del dispositivo médico que se puede implantar 2.

En una forma de realización, el conjunto comprende un dispositivo de suministro intravascular que comprende un cable de suministro que tiene un extremo próximo y uno distante y un lumen interior que se extiende entre ellos y en el que el extremo distante comprende una interfaz de conexión adaptada para el inter bloqueo de forma acoplada con una parte extrema próxima de un dispositivo médico que se puede implantar,

un cable interno que se extiende en el interior del lumen del cable de suministro el cual se puede controlar para el movimiento longitudinal relativo desde el extremo próximo del cable de suministro, el cable interno estando provisto de un extremo distante que transporta una estructura de soporte en el que la estructura de soporte es móvil axialmente con relación al cable de suministro desde una primera posición en la cual el cable de suministro encierra la estructura de soporte por lo que la interfaz de conexión está adaptada para el inter bloqueo de forma acoplada con la parte extrema próxima del dispositivo médico que se puede implantar hasta una segunda posición en la cual la estructura de soporte sobresale por lo menos parcialmente más allá del extremo distante del cable de suministro de tal modo que la interfaz de conexión se desbloquea y el dispositivo médico que se puede implantar se libera;

un dispositivo de control conectado al extremo próximo del cable de suministro;

- un dispositivo médico que se puede implantar que comprende un haz de filamentos, el haz de filamentos del dispositivo comprendiendo un extremo soldado que tiene una parte extrema próxima soldada, en el que la parte extrema próxima soldada tiene proporciones y dimensiones definidas configuradas como una interfaz de conexión adaptada para el interbloqueo de forma acoplada con una estructura de soporte; y
- en el que el dispositivo médico que se puede implantar es extensible desde una condición relajada capaz de adoptar una condición de espira, hasta una condición lineal extendida en la cual el dispositivo médico que se puede implantar puede ser avanzado a través del lumen del catéter.
- En un ejemplo, se proporciona un procedimiento para el suministro controlado del dispositivo médico que se puede implantar según lo anterior en un lugar seleccionado de un vaso del cuerpo. El procedimiento comprende:
 - la introducción de un extremo distante del conjunto descrito antes en este documento en el interior de un lumen del cuerpo hasta un lugar de suministro;
- la liberación del dispositivo médico que se puede implantar desde el extremo distante del catéter empujando el cable de suministro de forma distante;
 - el desbloqueo de forma que se puede controlar del dispositivo médico que se puede implantar de la interfaz de conexión accionando el conjunto de bloqueo para desbloquearlo; y

la extracción del catéter y el cable de suministro del cuerpo.

El implante médico puede estar fabricado de un material de polímero con memoria de forma.

45 El implante médico puede estar fabricado de metal, tal como Nitinol.

La bola de retención 200 está conformada a partir de Nitinol biológicamente compatible soldado con láser únicamente, sin utilizar otros metales. Además de reducir la cantidad de material implantado y de proporcionar una punta menos traumática, esto proporciona diversas ventajas adicionales. La más importante, al no bloquear los filamentos en la parte distante en una estructura rígida, los oclusores permanecen más flexibles proporcionando:

- una adaptación superior al tejido del tabique en el momento de la implantación
- una adaptación superior a una anatomía desafiante
- una flexibilidad de tamaño reduciendo el número de tamaños necesarios en almacén
- cantos más blandos.

5

40

50

- 60 Como dispositivo oclusor no tiene ningún cubo roscado o pinza para proporcionar una fijación para el sistema de suministro. La cantidad de material implantado en esta área se reduce sustancialmente, tal como más del 70% utilizando un proceso de soldadura específico para formar una bola específicamente diseñada para la compatibilidad con el sistema de suministro.
- Adicionalmente, la fabricación de un implante médico ha sido perfeccionada mediante esta tecnología superficial de Nitinol para obtener una capa exterior extremadamente suave y flexible. Un color dorado del implante se ha

convertido en sinónimo de la norma más elevada en compatibilidad biológica sin riesgo de grietas o deformaciones que se forman en el momento de la compresión/extensión. La composición de la capa es idéntica a aquella que ha sido utilizada en 100.000 de los implantes médicos de Nitinol con la ventaja añadida de ser más flexible.

La presente invención ha sido descrita antes en este documento con referencia a formas de realización específicas. Sin embargo, otras formas de realización distintas de las descritas anteriormente son igualmente posibles dentro del ámbito de la invención. Las diferentes características y etapas de la invención se pueden combinar en otras combinaciones distintas a aquellas descritas. El ámbito de la invención únicamente está limitado por las reivindicaciones adjuntas de la patente.

Lista de signos de referencia:

15	1	dispositivo de suministro
	2	dispositivo médico que se puede implantar
	3	conjunto
20	10	mango
	10a	extremo distante
25	10b	extremo próximo
	100	cable de suministro
	110	conjunto de bloqueo
30	110a	conjunto de bloqueo
	103	espiral – árbol flexible
35	111	rosca
	112	conjunto de tope
	115	resorte
40	115b	elemento elásticamente flexible
	120	conjunto de accionamiento de liberación
45	130	conjunto de accionamiento de empuje
	140	interfaz de conexión
	141	conjunto de soporte
50	150	cable de bloqueo
	200	parte extrema próxima con soldadura

REIVINDICACIONES

1. Un dispositivo de suministro intravascular (1) que comprende un cable de suministro (100) provisto de un extremo próximo (10a) y uno distante (10b) y un lumen interior (151) que se extiende longitudinalmente entre ellos y en el que dicho extremo distante (10b) comprende una interfaz de conexión (140) adaptada para el interbloqueo de forma acoplada con una parte extrema próxima (200) de un dispositivo médico que se puede implantar (2), en el que dicho dispositivo de suministro (1) comprende un conjunto de bloqueo (110) instalado para asegurar dicha interfaz de conexión (140) en una posición de bloqueo en la cual dicho dispositivo médico que se puede implantar está bloqueado de forma articulada antes de una liberación controlada, un cable de bloqueo (150) instalado de forma móvil en el interior del lumen de dicho cable de suministro (100), dicho cable de bloqueo (150) estando provisto de un extremo distante que comprende una estructura de soporte (141), en el que una parte distante de dicha estructura de soporte (141) tiene una estructura en forma de bol, caracterizado porque la parte distante tiene una ranura en el borde distante de la parte en forma de bol en el extremo distante de dicho dispositivo médico que se puede implantar por lo que dicho dispositivo médico que se puede implantar está articulado axial y radialmente.

5

10

15

20

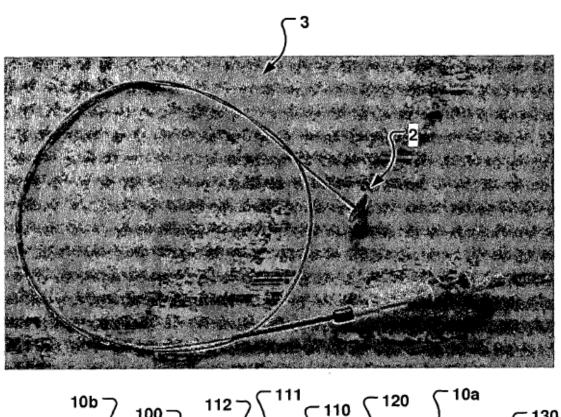
30

35

60

- 2. El dispositivo de suministro intravascular (1) según la reivindicación 1 en el que dicha estructura de soporte (141) es móvil axialmente con relación a dicho cable de suministro (100) entre dicha posición de bloqueo en la cual dicho cable de suministro (100) encierra dicha estructura de soporte (141) y una segunda posición en la cual dicha estructura de soporte (141) sobresale por lo menos parcialmente más allá de dicho extremo distante de dicho cable de suministro (100) de tal modo que la interfaz de conexión (140) se desbloquea y dicho dispositivo médico que se puede implantar (2) es liberado de forma que se puede controlar.
- 3. El dispositivo de suministro intravascular (1) según la reivindicación 1 en el que dicho dispositivo médico que se puede implantar (2) es un dispositivo de oclusión para ocluir un lugar seleccionado en un cuerpo.
 - 4. El dispositivo de suministro intravascular (1) según cualquiera de las reivindicaciones 1 a 3 en el que dicha interfaz de conexión (140) que sostiene dicho dispositivo médico que se puede implantar (2) proporciona una flexibilidad axial de tal modo que dicho dispositivo médico que se puede implantar (2) se puede inclinar con relación al eje longitudinal de dicho dispositivo de suministro (1).
 - 5. El dispositivo de suministro intravascular (1) según cualquiera de las reivindicaciones 1 a 4 en el que dicha estructura de soporte (141) se amplia radialmente para entrar en contacto por lo menos parcialmente con el lumen interior de dicho extremo distante (10b) de dicho cable de suministro (100).
 - 6. El dispositivo de suministro intravascular (1) según la reivindicación 1 en el que dicha ranura está configurada para encerrar dicha parte extrema próxima (200) de dicho dispositivo médico que se puede implantar (2) por lo menos parcialmente.
- 7. El dispositivo de suministro intravascular (1) según cualquiera de las reivindicaciones 1 a 6 que comprende un dispositivo de control conectado a dicho extremo próximo (10a) de dicho cable de suministro (100) para el desbloqueo de forma que se puede controlar de dicha interfaz de conexión (140).
- 8. El dispositivo de suministro intravascular (1) según la reivindicación 7 en el que dicho dispositivo de control está asegurado cuando dicha estructura de soporte (141) está en dicha posición de bloqueo de tal modo que dicho dispositivo de control tiene que ser accionado manualmente para permitir dicho desbloqueo de dicha interfaz de conexión (140) para la liberación controlada de dicho dispositivo médico que se puede implantar (2) de dicho dispositivo de suministro (1).
- 50 9. El dispositivo de suministro intravascular (1) según cualquiera de las reivindicaciones 1 a 8 que comprende un conjunto elásticamente flexible (115b) instalado para proporcionar flexibilidad del sistema de suministro en dicha posición de bloqueo.
- 10. El dispositivo de suministro intravascular (1) según cualquiera de las reivindicaciones 1 a 9 que comprende 55 un resorte (115) instalado para proporcionar una tensión previa de la estructura de soporte (141) hacia dicha posición de bloqueo.
 - 11. En combinación un dispositivo de suministro intravascular (1) según cualquiera de las reivindicaciones 1 a 10 y un dispositivo médico que se puede implantar (2) que tiene una parte extrema próxima (200) adaptada para el interbloqueo de forma acoplada con dicha interfaz de conexión (140) de dicho dispositivo de suministro (1).
 - 12. La combinación de la reivindicación 11 en la que dicho dispositivo médico que se puede implantar (2) comprende un haz de filamentos, dicho haz de filamentos de dicho dispositivo comprendiendo un extremo soldado que tiene una parte extrema próxima soldada (200), en el que dicha parte extrema próxima soldada (200) tiene proporciones y dimensiones definidas configuradas como una interfaz de conexión adaptada para el interbloqueo de

forma acoplada con una estructura de soporte (141) en la que dicha interfaz de conexión tiene una forma globalmente esférica.


13. La combinación de la reivindicación 11 o 12 en la que dicha interfaz de conexión (140) permite un movimiento articulado cuando está bloqueada.

5

15

30

- 14. La combinación de la reivindicación 11 hasta 13 instalada en un catéter para el suministro intravascular de dicho dispositivo médico que se puede implantar.
- 10 15. La combinación de la reivindicación 11 para utilizarla con un catéter que comprende un dispositivo de suministro intravascular (1) que comprende
 - un cable de suministro (100) que tiene un extremo próximo (10a) y uno distante (10b) y un lumen interior (151) que se extiende entre ellos y en el que dicho extremo distante (10b) comprende una interfaz de conexión (140) adaptada para el interbloqueo de forma acoplada con una parte extrema próxima (10a) de un dispositivo médico que se puede implantar (2).
- un cable interno que se extiende en el interior del lumen de dicho cable de suministro (100) el cual se puede controlar para el movimiento longitudinal relativo desde dicho extremo próximo (10a) de dicho cable de suministro (100), dicho cable interno estando provisto de un extremo distante que transporta una estructura de soporte (141) en el que dicha estructura de soporte (141) es axialmente móvil con relación a dicho cable de suministro (100) desde una primera posición en la cual dicho cable de suministro encierra dicha estructura de soporte por lo que dicha interfaz de conexión (140) está adaptada para el inter bloqueo de forma acoplada con dicha parte extrema próxima (10a) de dicho dispositivo médico que se puede implantar (2) hasta una segunda posición en la cual dicha estructura de soporte (141) sobresale por lo menos parcialmente más allá de dicho extremo distante (10a) de dicho cable de suministro (100) de tal modo que dicha interfaz de conexión (140) se desbloquea y dicho dispositivo médico que se puede implantar (2) se libera:
 - un dispositivo de control conectado a dicho extremo próximo (10a) de dicho cable de suministro;
 - un dispositivo médico que se puede implantar que comprende un haz de filamentos, dicho haz de filamentos de dicho dispositivo comprendiendo un extremo soldado que tiene una parte extrema próxima soldada (200) en el que dicha parte extrema próxima soldada (200) tiene proporciones y dimensiones definidas configuradas como una interfaz de conexión adaptada para el inter bloqueo de forma acoplada con dicha estructura de soporte (140); y
 - en el que dicho dispositivo médico que se puede implantar (2) es extensible desde una condición relajada capaz de adoptar una condición de espira, hasta una condición lineal extendida en la cual dicho dispositivo médico que se puede implantar (2) puede ser avanzado a través del lumen de dicho catéter.

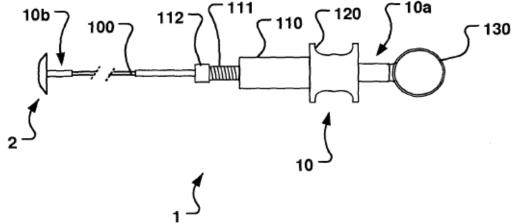
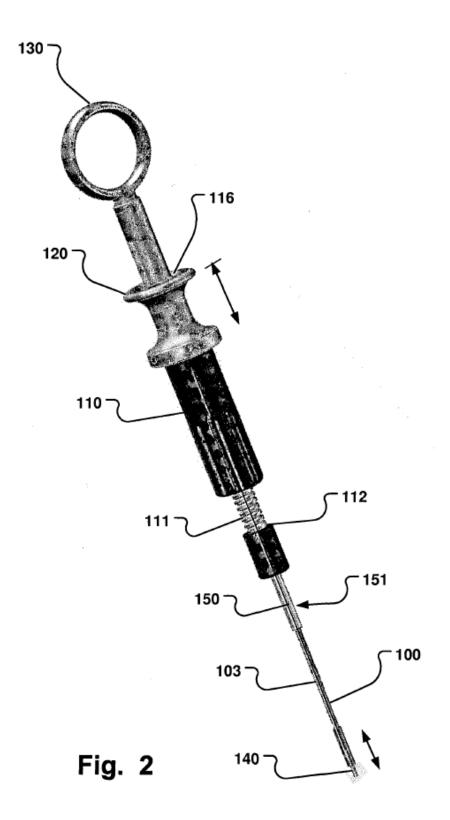
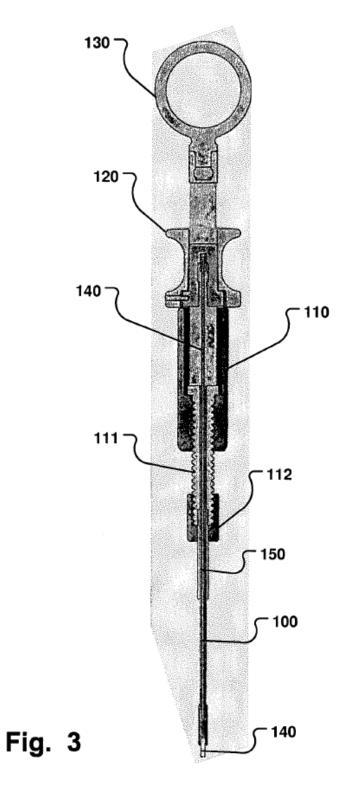




Fig. 1

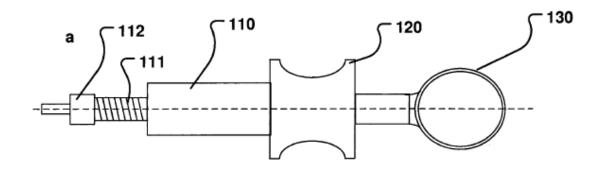


Fig. 4A

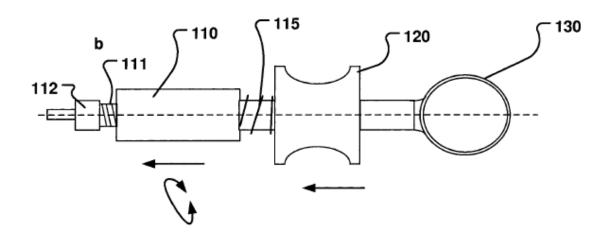


Fig. 4B

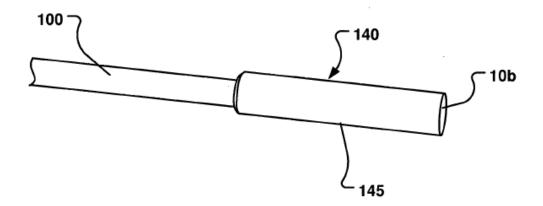


Fig. 5

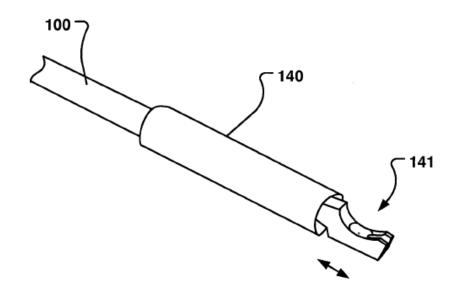


Fig. 6

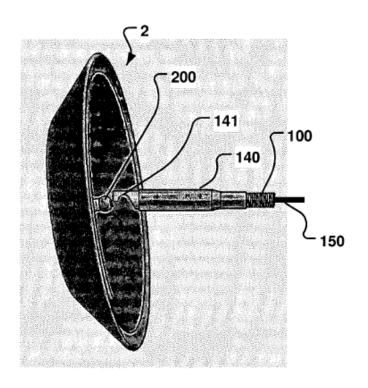


Fig. 7

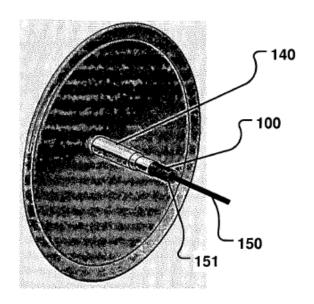
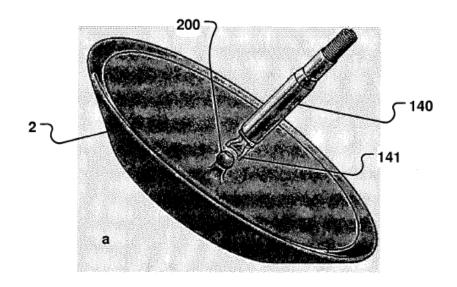
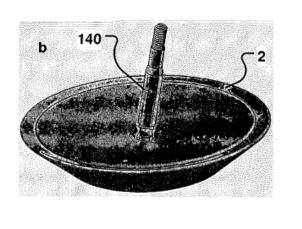




Fig. 8

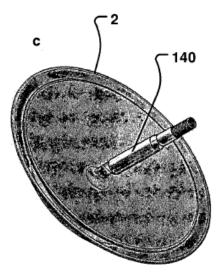


Fig. 9

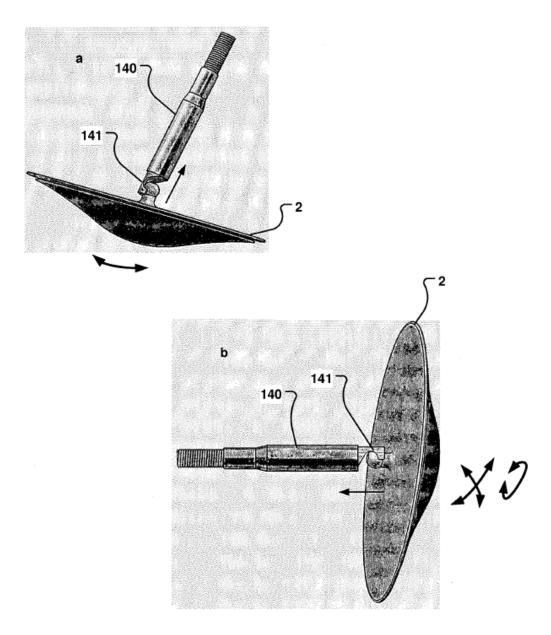
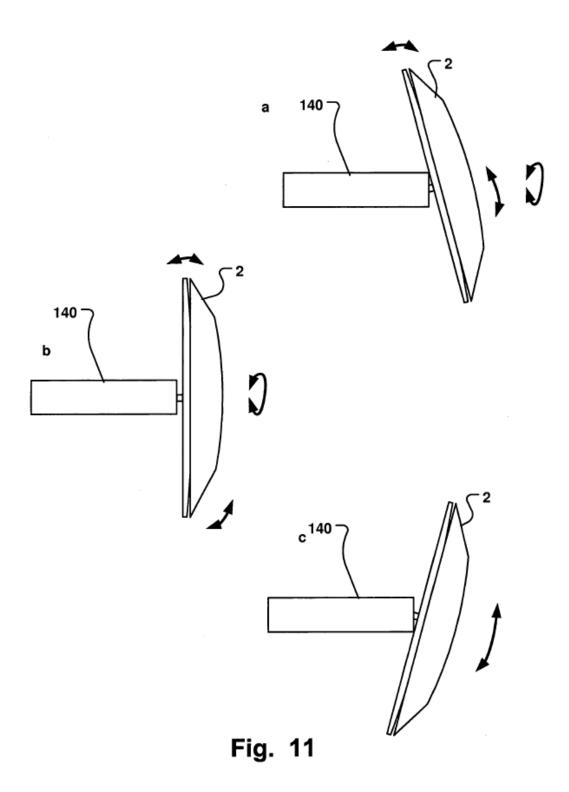



Fig. 10

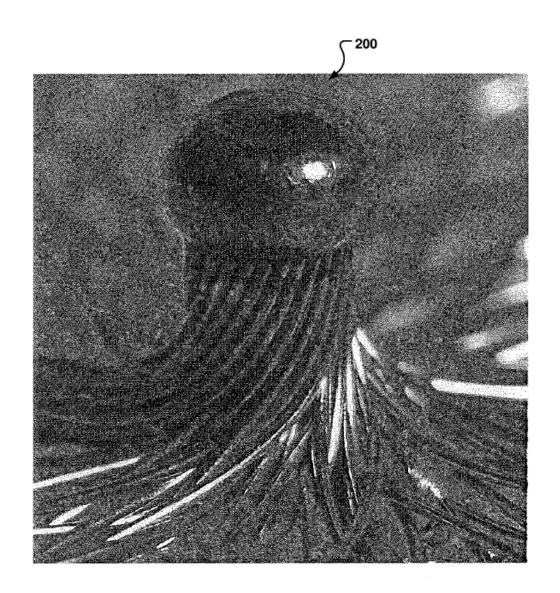


Fig. 12

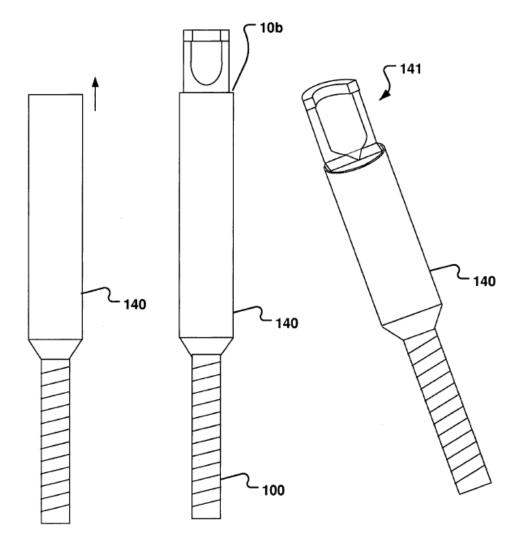


Fig. 13

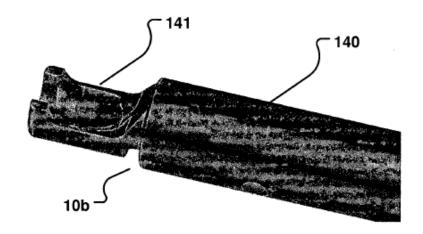


Fig. 15a

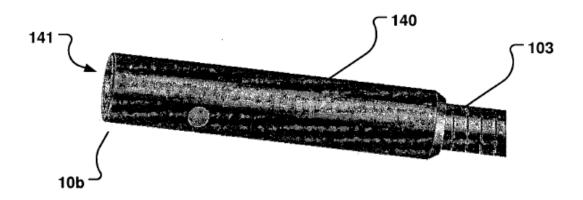


Fig. 15b