

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 398 970

61 Int. Cl.:

C09D 11/02 (2006.01)
B41M 5/00 (2006.01)
B41J 2/01 (2006.01)
B41M 3/14 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 26.06.2003 E 03733575 (9)
 Fecha y número de publicación de la concesión europea: 09.01.2013 EP 1624035

(54) Título: Tinta de impresión que contiene colorantes fluorescentes y procedimiento de impresión por chorros de tinta

(30) Prioridad:

02.05.2003 JP 2003127618

Fecha de publicación y mención en BOPI de la traducción de la patente: **25.03.2013**

(73) Titular/es:

CANON KABUSHIKI KAISHA (100.0%) 3-30-2, Shimomaruko Ohta-ku Tokyo 146-8501, JP

(72) Inventor/es:

UDAGAWA, MASAKO; SUGAMA, SADAYUKI; KOIKE, SHOJI; AOKI, MAKOTO; NAGASHIMA, AKIRA y HAKAMADA, SHINICHI

(74) Agente/Representante:

DURÁN MOYA, Carlos

S 2 398 970 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Tinta de impresión que contiene colorantes fluorescentes y procedimiento de impresión por chorros de tinta

5 SECTOR TÉCNICO DE LA INVENCIÓN

La presente invención se refiere a una tinta de impresión que contiene una pluralidad de materiales colorantes fluorescentes aplicables a impresoras, incluyendo aparatos de impresión por chorros de tinta, impresoras de offset, plotters, e impresoras en línea, etc., una tinta de impresión capaz de incrementar las propiedades de fluorescencia de una imagen impresa utilizando dicha tinta de impresión, un método de impresión por chorros de tinta que utiliza dicha tinta de impresión y un método de inspección de la imagen para su autentificación. Específicamente, la presente invención da a conocer una nueva técnica para mejorar las características de emisión de fluorescencia de un segundo material colorante fluorescente que está contenido en una tinta de impresión que contiene un primer material colorante fluorescente, en la que el primer material colorante emite fluorescencia con luz de una longitud de onda de excitación predeterminada, y las longitudes de onda de la fluorescencia emitida incluyen una longitud de onda de fluorescencia predeterminada para la medición o la determinación.

TÉCNICA ANTERIOR

10

15

50

55

En los últimos años, se han requerido varias exigencias para las tintas. Como ejemplo de tales exigencias, además de la formación de bellas imágenes en color, se ha propuesto, por ejemplo, la utilización de tinta fluorescente para proporcionar información (tal como información sobre seguridad) además de información visual, mediante la impresión de información tal como caracteres, números, símbolos o códigos de barras con dicha tinta sobre un soporte de impresión, e irradiando luz UV de una longitud de onda apropiada para generar una fluorescencia en color a partir de la tinta fluorescente. Específicamente, en un sistema para una lectura de la autentificación de la información (contra falsificaciones) o de seguridad de la información, utilizando un aparato para excitar la fluorescencia y leer la intensidad de emisión de la misma, se excita un agente colorante fluorescente mediante una luz de excitación de una longitud de onda predeterminada (por ejemplo, 254 nm) para emitir fluorescencia, y la fluorescencia se determina o se mide.

Con respecto a los materiales colorantes de la tinta, los colorantes pueden proporcionar fácilmente un color predeterminado pero, en ocasiones, una escasa resistencia al agua, mientras que los pigmentos pueden proporcionar una excelente resistencia al agua pero, en ocasiones, no el tono de color predeterminado. En vista de lo anterior, se ha propuesto una tinta que contenga tanto colorantes como pigmentos para obtener una tinta capaz de proporcionar una imagen excelente tanto en lo que se refiere a la resistencia al agua como al tono de color. Por ejemplo, la publicación de la patente japonesa nº S60-45669 (Documento de patente 1) da a conocer un líquido para impresión que contiene un colorante rojo soluble en agua (por ejemplo Rojo Ácido 52) y un pigmento rojo como

En los sistemas de correo de los Estados Unidos, es habitual la impresión con rojo fluorescente, y se utiliza un colorante tal como el Rojo Ácido 52 (AR52); descrito en la publicación anterior, como un colorante fluorescente. La patente U.S.A. nº 6.176.908 (Documento de patente 2) da a conocer una tinta que contiene un colorante fluorescente, un pigmento y un polímero como dispersante del pigmento, poniendo como ejemplo el AR52 como colorante fluorescente. Se debe tener en cuenta que, mucho antes de la patente U.S.A. nº 6.176.908 ha sido un tema de diseño bien conocido el ajuste de la tonalidad final del color, de acuerdo con la sensación visual humana por medio de la combinación de colorantes.

agentes de impresión, y un dispersante del polímero para dispersar el pigmento en un medio líquido.

La patente U.S.A. nº 6.176.908 (Documento de patente 2) da a conocer una tinta para la impresión por chorros de tinta que contiene un pigmento además de un colorante fluorescente para mejorar la resistencia al agua de la tinta, al igual que la publicación de la patente japonesa nº S60 -45669 (Documento de patente 1), y en ella se describe la adición de dos tipos de colorantes fluorescentes para el objetivo conocido del ajuste del color visible (visualmente), y asimismo aditivos para mejorar la intensidad de la fluorescencia (nivel PMU) en el sistema. Unos ejemplos concretos de tinta de una intensidad mejorada de la fluorescencia (nivel PMU) contienen disolventes tales como agua, 2-pirrolidona y tetraetilenglicol, y los materiales colorantes fluorescentes siguientes distintos del componente relacionado con el pigmento compuesto de un pigmento, un polímero y tetraetilenglicol o dietilenglicol. En lo que se refiere a materiales colorantes fluorescentes se describe, por ejemplo, una combinación de AR52 (0,4% en masa, 0,5% en masa a 3,0% en masa) y uno de AY7, AY73 y DY96, y una combinación de violeta básico (RHDB) y amarillo básico (BY40).

La solicitud de patente japonesa a información pública nº H11-80632 (Documento de patente 3) da a conocer una tinta acuosa fluorescente invisible, que contiene tres materiales colorantes fluorescentes diferentes (un agente que aviva la fluorescencia, un colorante fluorescente amarillo de un derivado de cumarina, y un colorante fluorescente rojo de rodamina-B o de rodamina-6G), y la impresión de tarjetas postales utilizando dicha tinta. En las descripciones técnicas de la misma, cada uno de estos tres materiales colorantes fluorescentes emite luz bajo irradiación con luz UV para excitar el otro material colorante de manera secuencial, lo que conduce a la emisión final de fluorescencia que tiene una longitud de onda pico en 587 nm. Sin embargo, en esta publicación, no existe una descripción

concreta sobre las longitudes de onda de excitación, y la descripción técnica está realizada utilizando el resultado de que la tinta y la imagen impresa muestran las mismas características de fluorescencia. En general, el agua absorbe la luz UV, de tal manera que la fluorescencia de una imagen impresa será diferente de la de la tinta utilizada. Juzgando por esto, la invención descrita en la publicación carece de credibilidad técnica.

5

10

El documento WO 02/092707 (Documento de patente 4) da a conocer una tinta que puede formar una imagen oscura y presentar asimismo fluorescencia de un color predeterminado cuando está expuesta a una radiación de excitación. La tinta contiene una pluralidad de colorantes (por ejemplo, colorantes fluorescentes rojo y amarillo, un colorante azul y un colorante negro), como en el caso de la patente japonesa a información pública nº H11-80632, pero difiere de dicha patente japonesa a información pública nº H11-80632 en que los colorantes se han seleccionado de tal modo que la banda de absorción de la longitud de onda más larga y la banda de emisión de la longitud de onda más corta no se superponen. En esta publicación, la relación entre los materiales colorantes fluorescentes no está analizada suficientemente, de manera que no siempre se puede obtener la intensidad de fluorescencia deseada.

15

20

30

40

45

50

55

La solicitud de patente japonesa a información pública nº 2003-113331 (Documento de patente 5) da a conocer una invención para la mejora de las características de fluorescencia de una tinta en lo que se refiere a la relación entre disolventes y materiales colorantes fluorescentes. En otras palabras, el Documento de patente 5, da a conocer una tinta de impresión que incluye dos materiales colorantes fluorescentes del mismo color (existe un ejemplo en el que se añade un material colorante no fluorescente); dos disolventes orgánicos diferentes (por ejemplo, glicerina y un tensosactivo no iónico) que no son compatibles entre sí, y agua pura para disolver estos componentes.

Documentos de patentes

25 1. Publicación de la patente japonesa nº S60-045669

- 2. Patente U.S.A. nº 6.176.908
- 3. Solicitud de patente japonesa a información pública nº H11-080632
- 4. Documento WO 02/092707

emisión de fluorescencia.

5. Solicitud de patente japonesa a información pública nº 2003-113331

35 CARACTERÍSTICAS DE LA INVENCIÓN

Las tintas convencionales que contienen una combinación de una pluralidad de colorantes fluorescentes, son solamente para combinar parte de sus características con el objeto de mejorar la intensidad de la fluorescencia a una longitud de onda de fluorescencia predeterminada (por ejemplo, una banda que varía desde 580 nm hasta 620 nm, o una longitud de onda de fluorescencia dentro de esta gama). En otras palabras, las publicaciones anteriores no dan a conocer ninguna tecnología que pueda mejorar la intensidad de la fluorescencia de un primer material colorante fluorescente en una zona predeterminada de longitud de onda (por ejemplo, 580 nm a 620 nm) con exposición a una luz de excitación predeterminada en una relación con otros materiales colorantes fluorescentes (denominados en adelante como un segundo material colorante). Por consiguiente, los problemas tecnológicos a resolver por medio de la presente invención incluyen el análisis de la relación entre una pluralidad de colorantes fluorescentes, las características de la tinta, la composición de la tinta y la imagen formada. Por consiguiente, un objetivo principal de la presente invención, es dar a conocer un método nuevo para obtener una intensidad de fluorescencia de una forma muy eficiente con una pluralidad de colorantes fluorescentes, en base al análisis sustancial del fenómeno de la "fluorescencia". En consecuencia, los inventores han realizado una investigación técnica fundamental teniendo en cuenta el fenómeno de la "fluorescencia" y el mecanismo de la misma. Por ejemplo, los inventores han investigado el fenómeno de que aunque el colorante fluorescente AR52 mencionado anteriormente emite una fluorescencia roja suficiente incluso en una tinta que contiene aqua que absorbe la luz UV. la imagen impresa con el colorante muestra una fluorescencia débil bajo la luz UV de excitación. Dicha investigación sobre el fenómeno reveló que la longitud de onda de excitación para que el AR52 emita fluorescencia roja se distribuye no solamente en la zona UV sino también en la zona de la luz visible, y la intensidad de la fluorescencia está influenciada por el estado de fijación del colorante en el soporte de impresión. Por consiguiente, el objetivo principal de la presente invención es llevar a cabo análisis técnicos de cómo proporcionar tanta luz de excitación como sea posible y cómo hacer que el estado de fijación del colorante en la imagen impresa sea adecuado para la

60

65

Además, cuando se utiliza AR52 como un primer material colorante, se obtiene una intensidad de fluorescencia suficiente cuando se evapora el agua de una tinta que contiene el 0,01% de AR52 en masa, o menos. No obstante, existen temas adicionales a considerar, que incluyen: pérdida del material colorante en un soporte de impresión, tal como una hoja de papel o un sobre, no fijado en la superficie de las fibras; y el problema de la reducción de la concentración, de que la intensidad de la fluorescencia del material colorante disminuye con el incremento de los primeros y segundos materiales colorantes en la tinta. Asimismo, se debe tener en cuenta que la fuente de energía

está limitada a la luz de excitación predeterminada. Mediante la descripción siguiente se comprenderán otros análisis.

Por consiguiente, la presente invención resuelve, por lo menos, uno de los problemas siguientes (preferentemente, una pluralidad de problemas) para mejorar la intensidad de la fluorescencia en comparación con la técnica estándar convencional.

5

10

15

20

25

30

55

60

Un primer objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de la fluorescencia de la misma a una longitud de onda de excitación estándar, de tal modo que la eficiencia de la energía de la misma se mejora al concentrar la atención en una correlación entre la emisión de fluorescencia de un segundo material colorante que se genera mediante la transmisión de una luz que tenga la longitud de onda de excitación predeterminada y una longitud de onda de excitación de un primer material colorante para obtener una longitud de onda de emisión predeterminada (denominada en adelante longitud de onda de fluorescencia predeterminada de una única longitud de onda o de un intervalo de longitudes de onda).

Un segundo objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de fluorescencia de la misma a una longitud de onda de emisión predeterminada, de tal manera que la eficiencia de la energía de la misma se incrementa de forma significativa concentrando la atención en el espectro de absorción de un primer material colorante y en la emisión de fluorescencia de un segundo material colorante que se genera al transmitir una luz que tiene la longitud de onda de excitación predeterminada.

Un tercer objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de fluorescencia de la misma a una longitud de onda de emisión predeterminada, concentrando la atención en el conocimiento obtenido por medio del análisis de una diferencia estructural entre colorantes fluorescentes (es decir, las cantidades de los colorantes fluorescentes respectivos que deben ser añadidos pueden ser incrementadas impidiendo razonablemente que los colorantes fluorescentes se acumulen).

Un cuarto objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de fluorescencia de la misma a una longitud de onda de emisión predeterminada, concentrando la atención en la participación en la emisión de fluorescencia del segundo material colorante que se genera al transmitir una luz que tiene la longitud de excitación predeterminada y las características de la longitud de onda de excitación para obtener la longitud de onda de emisión predeterminada de fluorescencia del primer material colorante, como adición al tercer objetivo.

Un quinto objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de fluorescencia de la misma a una longitud de onda de emisión predeterminada, de una manera más estable que las características de la propia tinta que contiene una serie de materiales colorantes fluorescentes.

Un sexto objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de fluorescencia de la misma a una longitud de onda de emisión predeterminada, sin depender sustancialmente del tipo o de las características de un soporte de impresión sobre el cual se debe formar una imagen, esto es, debido al conocimiento obtenido mediante el análisis de una imagen a formar.

Un séptimo objetivo de la presente invención es dar a conocer una tinta de impresión capaz de incrementar la intensidad de fluorescencia de la misma a una longitud de onda de emisión predeterminada, concentrando la atención en una correlación entre las características de excitación del primer material colorante y el espectro de absorción del segundo material colorante, adicionalmente al primer objetivo. Otros problemas y objetivos de la presente invención serán evidentes a partir de la descripción siguiente. Por consiguiente, la presente invención se propone alcanzar, por lo menos, uno de los objetivos anteriores (preferentemente, la pluralidad de objetivos) y dar a conocer una tinta de impresión que tiene una intensidad de fluorescencia excelente. Además, la presente invención se propone asimismo dar a conocer un método de impresión por chorros de tinta que utiliza la tinta de impresión.

La presente invención, para alcanzar los objetivos anteriores da a conocer las realizaciones siguientes. La relación entre longitudes de onda en la invención se resume como sigue: la gama de longitudes de onda de emisión de fluorescencia (ver la figura 3 descrita más adelante) de un segundo material colorante fluorescente cubre, por lo menos, la gama de las longitudes de onda pico (ver figura 2 descrita más adelante) del espectro de las longitudes de onda de excitación de un primer material colorante fluorescente para obtener fluorescencia a una longitud de onda de emisión predeterminada (por ejemplo, 600 nm), y opcionalmente la gama de longitudes de onda de absorción en la zona de la luz visible del primer material colorante fluorescente (ver el gráfico inferior de la figura 6, que se describirá más adelante).

En primer lugar, según una primera realización de la presente invención, para alcanzar, por lo menos, el primer objetivo, se da a conocer una tinta de impresión según la reivindicación 1.

De este modo, el primer material colorante fluorescente emite fluorescencia a una longitud de onda de emisión predeterminada, para ser utilizada para la medición o la determinación de la excitación a una longitud de onda de excitación predeterminada; y

5 el segundo material colorante fluorescente emite una fluorescencia al ser excitado a la longitud de onda de excitación predeterminada,

en el que el espectro de excitación del primer material colorante en la tinta para obtener la fluorescencia a la longitud de onda de emisión predeterminada tiene una gama de longitudes de onda pico, próxima a la longitud de onda de fluorescencia predeterminada, y el espectro de emisión de fluorescencia del segundo material colorante tiene una zona de longitudes de onda de emisión que incluye sustancialmente, por lo menos, la gama de longitudes de onda pico.

En este caso, la expresión "una gama de longitudes de onda pico que corresponde a una zona pico próxima a la longitud de onda de fluorescencia predeterminada" de la emisión de fluorescencia del primer material colorante fluorescente de la presente invención, tiene un significado práctico considerando la eficiencia de la conversión de la energía del mismo. En otras palabras, en el espectro de las longitudes de onda de excitación para obtener una longitud de onda de fluorescencia predeterminada del primer material colorante fluorescente, una zona que tiene un pico próximo a la longitud de onda de fluorescencia predeterminada cuya intensidad es de 100 o más, se define como una zona pico, y la gama de longitudes de onda correspondiente a esta zona se define como una gama de longitudes de onda pico.

La longitud de onda de excitación predeterminada es preferentemente de 254 nm, y la gama de la longitud de onda pico está comprendida preferentemente de 430 nm a 600 nm, incluidas ambas. Es preferente que la gama de las longitudes de onda de emisión del segundo material colorante fluorescente incluya la longitud de onda de fluorescencia predeterminada (600 nm) y varíe de 425 nm a 600 nm, incluidas ambas. Además, en la tinta según la primera realización de la presente invención, es preferente que el espectro de absorción del primer material colorante fluorescente tenga una zona pico en la zona de luz visible, y que la gama de longitudes de onda de la emisión de fluorescencia del segundo material colorante fluorescente abarque una zona de longitudes de onda más cortas que la zona pico anterior del espectro de absorción. Las realizaciones preferentes están definidas en las reivindicaciones dependientes.

Cuando las tintas de impresión anteriores son utilizadas en una impresión por chorros de tinta, se obtiene una imagen impresa excelente en lo que se refiere a la intensidad de fluorescencia. Un método de impresión por chorros de tinta de la presente invención que emplea dicha ventaja es un método que comprende las etapas de expulsión de la tinta a través de una abertura de descarga y de fijación de la tinta sobre un soporte de impresión, para llevar a cabo de esta forma la impresión, en el que la tinta es una de las tintas de impresión según una de las realizaciones anteriores.

La presente invención da a conocer además un método de inspección de la imagen para su autentificación, que comprende la irradiación con luz UV de una imagen formada con una tinta de impresión según cualquiera de las reivindicaciones 1 a 4, para obtener fluorescencia en la zona de luz visible.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

10

25

30

35

45

50

55

La figura 1 muestra un espectro de emisión de fluorescencia de C.I. Rojo Ácido 52 con excitación a 254 nm;

la figura 2 muestra un espectro de excitación de C.I. Rojo Ácido 52 impreso a una longitud de onda de emisión de 600 nm;

la figura 3 muestra un espectro de fluorescencia del Compuesto (A) con excitación a 254 nm;

la figura 4 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a una longitud de onda de emisión de 600 nm, y el espectro de emisión de fluorescencia del Compuesto (A) con excitación a 254 nm;

la figura 5 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a una longitud de onda de emisión de 600 nm, y un espectro de absorción del Compuesto (A);

la figura 6 muestra una comparación entre un espectro de emisión de fluorescencia del compuesto (A) con excitación a 254 nm y un espectro de absorción de C.I. Rojo Ácido 52;

la figura 7 muestra un espectro de fluorescencia de una tinta que contiene una mezcla de C.I. Rojo Ácido 52 y del compuesto (A).

la figura 8 muestra un espectro de fluorescencia de un material impreso con la tinta que contiene una mezcla de C.I. Rojo Ácido 52 y del compuesto (A);

la figura 9 muestra el espectro de excitación de C.I. Rojo Ácido 52 impreso a longitudes de onda de emisión de fluorescencia de 580, 600 y 620 nm, respectivamente;

- la figura 10 muestra un espectro de emisión de fluorescencia de C.I. Amarillo Ácido 73 con excitación a 254 nm;
- la figura 11 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a 600 nm y el espectro de emisión de fluorescencia de C.I. Amarillo Ácido 73 con excitación a 254 nm;
- la figura 12 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a 600 nm y un espectro de absorción de C.I. Amarillo Ácido 73;
 - la figura 13 muestra una comparación entre un espectro del fluorescencia de C.I. Amarillo Ácido 73 con excitación a 254 nm y el espectro de absorción de C.I. Rojo Ácido 52;
- 15 la figura 14 muestra un espectro de emisión de fluorescencia de C.I. Violeta Básico 10 con excitación a 254 nm;
 - la figura 15 muestra un espectro de excitación de C.I. Violeta Básico 10 impreso a 600 nm;
- la figura 16 muestra una comparación entre el espectro de excitación de C.I. Violeta Básico 10 a 600 nm y el espectro de emisión de fluorescencia del compuesto (A) con excitación a 254 nm;
 - la figura 17 muestra una comparación entre el espectro de excitación de C.I. Violeta Básico 10 impreso a 600 nm y el espectro de absorción del compuesto (A);
- la figura 18 muestra una comparación entre el espectro de fluorescencia del compuesto (A) con excitación a 254 nm y un espectro de absorción de C.I. Violeta Básico 10;
 - la figura 19 muestra un espectro de emisión de fluorescencia de C.I. Verde Disolvente 7 con excitación a 254 nm;
- la figura 20 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a 600 nm y el espectro de emisión de fluorescencia de C.I. Verde Disolvente 7 con excitación a 254 nm;
 - la figura 21 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a 600 nm y un espectro de absorción de C.I. Verde Disolvente 7;
 - la figura 22 muestra una comparación entre el espectro de fluorescencia de C.I. Verde Disolvente 7 excitado a 254 nm y un espectro de absorción de C.I. Rojo Ácido 52:
 - la figura 23 muestra un espectro de emisión de fluorescencia del C.I. Amarillo Ácido 184 con excitación a 254 nm;
 - la figura 24 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a 600 nm y el espectro de emisión de fluorescencia de C.I. Amarillo Ácido 184 excitado a 254 nm;
- la figura 25 muestra una comparación entre el espectro de excitación de C.I. Rojo Ácido 52 impreso a 600 nm y un espectro de absorción de C.I. Amarillo Ácido 184; y
 - la figura 26 muestra una comparación entre el espectro de emisión de fluorescencia de C.I. Amarillo Ácido 184 excitado a 254 nm y el espectro de absorción de C.I. Rojo Ácido 52.
- 50 MODOS DE LLEVAR A CABO LA INVENCIÓN

5

35

40

- La presente invención se refiere a una tinta de impresión, según la reivindicación 1, que contiene un primer material colorante fluorescente que emite fluorescencia con una cierta intensidad a una longitud de onda de fluorescencia predeterminada, para ser utilizada en la medición o en la determinación con excitación a una longitud de onda de excitación predeterminada, que define la relación del primer material colorante fluorescente con un segundo material colorante fluorescente que emite fluorescencia con excitación a la longitud de onda de excitación predeterminada, tal como se ha descrito anteriormente.
- Adicionalmente a lo descrito en los objetivos, los inventores de la presente invención se han concentrado en la intensidad de fluorescencia de una imagen formada con materiales colorantes fluorescentes, estudiando la influencia de varios materiales colorantes fluorescentes y las intensidades de fluorescencia de la tinta de impresión en la imagen formada con los mismos. La investigación de los factores que afectan a las intensidades de fluorescencia de materiales colorantes fluorescentes tales como colorantes fluorescentes, ha revelado que la disposición de las moléculas de material colorante afecta considerablemente las intensidades de fluorescencia de los mismos. Esto es, en el caso de AR52, se observó una intensidad de fluorescencia suficiente en la zona visible con una tinta acuosa que contenía únicamente el colorante a una concentración del 0,01% en masa o menor, debido a que las moléculas

del colorante estaban dispersadas en un estado monomolecular. Por otra parte, con una solución acuosa que contenía de 0,2% a 0,3% de AR52 en masa, se observó una reducción de la concentración (disminución de la intensidad de la fluorescencia con el incremento de la concentración). Esto significa que se obtuvo una intensidad de fluorescencia suficiente cuando las moléculas de material colorante estaban presentes individualmente y a una concentración elevada, siempre que se mantuviera el estado molecular, pero si se producía una asociación, agregación o acumulación de moléculas, o un encuentro de moléculas próximas debido a la elevada concentración, disminuye la eficiencia de radiación de la luz de excitación a cada molécula, o la emisión de fluorescencia de cada molécula queda impedida por otras moléculas, disminuyendo la intensidad de la fluorescencia en su conjunto.

Por consiguiente, cuando se utiliza una tinta que contiene un material colorante fluorescente que puede producir una reducción de la concentración, para imprimir sobre un soporte de impresión, las moléculas de material colorante fluorescente no pueden mantener su estado de moléculas independientes (estado monomolecular) en el transcurso de la difusión y la penetración de la tinta en la superficie y en el interior del soporte de impresión. Como resultado de ello, la asociación, agregación o acumulación molecular, etc. realizan un progreso rápido, con el resultado de una disminución en la intensidad de la fluorescencia. En este caso, el material colorante fluorescente que ha atravesado por permeación y se ha fijado en el interior del soporte de impresión, apenas contribuye a la intensidad de la fluorescencia. Además, cuando se incrementa la concentración de un material colorante fluorescente en la tinta con el objeto de incrementar la intensidad de la fluorescencia, la asociación, agregación, acumulación molecular, etc. del material colorante tiende a producirse mayormente en el soporte de impresión, de tal manera que es posible que la intensidad de la fluorescencia no se incremente en proporción al incremento de material colorante.

Considerando dicho comportamiento del material colorante fluorescente, los inventores de la presente invención han concentrado su atención en cómo conseguir el estado molecular independiente o un estado similar para obtener una intensidad de fluorescencia suficiente sobre un soporte de impresión. Gracias a un estudio profundo, los inventores hallaron que este objetivo se puede alcanzar por medio de una cierta combinación de un primer material colorante fluorescente y un segundo material colorante fluorescente, y consiguieron la presente invención. Según la presente invención, el estado monomolecular del material colorante fluorescente que realiza la fluorescencia a una longitud de onda predeterminada, se mantiene de acuerdo con las propiedades del disolvente y/o del material colorante, incluso sobre un soporte de impresión. Además, según la presente invención, la combinación de un primer y un segundo materiales colorantes fluorescentes, permite un incremento en la concentración del material colorante fluorescente en la tinta para incrementar la intensidad de la fluorescencia. Además, una interacción energética entre el primer material colorante fluorescente y el segundo material colorante fluorescente puede incrementar la intensidad de la fluorescencia. Estos efectos pueden ser ejercidos con una imagen formada con la tinta sobre un soporte de impresión, así como con una solución.

Tal como se describirá más adelante, según la presente invención, la tinta de impresión con la mejor combinación de colorantes, es capaz de incrementar el nivel PMU de la imagen impresa (medida mediante la utilización de un dispositivo de medición de la luminancia LM-2C tal como el descrito en el documento U.S.A. 6.176.908 B) por lo menos al doble, en comparación con la tinta fluorescente convencional (el triple cuando los disolventes han sido seleccionados de acuerdo con el Aspecto 3, descrito más adelante).

A continuación, se describirá la tinta de impresión de la presente invención haciendo referencia a los dibujos. Excepto que se indique como una imagen impresa o material impreso, los resultados son con una tinta evaporada en la que el agua fue eliminada por evaporación y los materiales colorantes están dispersos en un disolvente orgánico. La tinta de impresión, según la presente invención, contiene un primer material colorante fluorescente que emite fluorescencia de una longitud de onda predeterminada que se utiliza para medición o determinación, con excitación a una longitud de onda de excitación predeterminada, un segundo material colorante fluorescente que emite fluorescencia con excitación a la misma longitud de onda de excitación, y un medio líquido para disolver o dispersar estos materiales en el mismo.

El primer y el segundo materiales colorantes fluorescentes de la presente invención están definidos según la reivindicación 1.

Las cantidades totales de los respectivos primer y segundo materiales colorantes fluorescentes en la tinta están comprendidos, preferentemente, dentro de la gama de 0,01% en masa o más, y de 15% en masa o menos, más preferentemente dentro de la gama de 0,05% en masa o más y de 10% en masa o menos de la cantidad total de tinta para una utilización práctica. Según los materiales colorantes, cuando la cantidad total de materiales colorantes en la tinta no es mayor de 0,01% en masa, no se puede obtener una intensidad de fluorescencia suficiente para un material impreso. Cuando la tinta es para impresión por chorros de tinta, las características de descarga de la misma pueden quedar afectadas cuando la cantidad total de los materiales anteriores es del 15% en masa o más. Desde un punto de vista práctico, es preferente que la cantidad del primer material colorante fluorescente sea seleccionada dentro de la gama de 0,01% a 1% en masa, y la cantidad del segundo material colorante fluorescente puede ser preferentemente mayor que la del primer material colorante fluorescente en la tinta para mejorar todavía más la eficiencia de la energía de excitación.

65

5

25

30

35

40

45

50

55

Para mejorar la intensidad de la fluorescencia, el primer y el segundo materiales colorantes fluorescentes es una combinación de los primer y segundo materiales colorantes fluorescentes, tal como se define en la reivindicación 1.

En la presente invención, un ejemplo muy preferente de la combinación de materiales colorantes fluorescentes es una combinación de C.I. Rojo Ácido 52 como primer material colorante fluorescente y el compuesto (A) descrito más adelante como el segundo material colorante fluorescente. En la descripción siguiente, pero sin estar limitada a la misma, la longitud de onda de emisión predeterminada utilizada para la medición o la determinación es de 600 nm, aunque puede ser una banda o cualquier longitud de onda comprendida dentro de la gama de 580 nm a 620 nm, incluidas ambas.

Tal como se muestra en la figura 1, cuando el AR52, el primer material colorante fluorescente, es excitado a 254 nm, el espectro de fluorescencia muestra una amplia zona de fluorescencia desde 550 nm a cerca de 675 nm con un pico a 600 nm. En otras palabras, el AR52 emite fluorescencia no solamente a la longitud de onda de emisión predeterminada de 600 nm, tal como se ha definido anteriormente, pero también en la gama de 580 nm a 620 nm, ambas inclusive. Por otra parte, la banda de absorción de AR52 en la zona visible varía desde 460 nm hasta 610 nm, con un pico a 565 nm tal como se muestra en el gráfico inferior de la figura 6.

La estructura del compuesto (A) es como sigue:

5

10

15

20

25

30

35

40

45

50

El compuesto (A) tiene una estructura dimérica que tiene varios grupos de emisión. De este modo, el compuesto (A) tiene una función de prevención de asociación, y asimismo la intensidad de fluorescencia se puede mejorar incrementando la cantidad del compuesto (A). El compuesto (A) es un colorante directo que tiene grupos sulfona y tiene una reducida solubilidad en agua (inferior al 2% en peso en agua pura), pero muestra una buena solubilidad en disolventes orgánicos. Tal como se muestra en la figura 3, un espectro de fluorescencia del compuesto (A) con excitación a 254 nm muestra una amplia zona de emisión de fluorescencia que varía desde 425 nm hasta cerca de 650 nm con un pico a 510 nm. Por consiguiente, cuánto más compuesto (A) se añade, más elevada se hace la intensidad de su fluorescencia, de tal manera que aumenta la energía de excitación en el caso del primer material colorante fluorescente. Además, tal como se muestra en el gráfico inferior de la figura 5, la absorción en la zona visible del compuesto (A) llega hasta 440 nm, teniendo un pico a 380 nm, y tiene asimismo absorción de UV. Por consiguiente, incluso si el compuesto (A) se añade en una cantidad sustancialmente grande, no deteriora las características de fluorescencia del compuesto (A), ni la intensidad de la fluorescencia en la zona correspondiente a la zona de la longitud de onda de excitación para el primer material colorante fluorescente, o las características de fluorescencia de primer material colorante fluorescente.

Los disolventes preferentes para la tinta son agua pura, que puede disolver el primer material colorante fluorescente en una gran proporción, y un disolvente orgánico que puede disolver el segundo material colorante fluorescente en una gran proporción. Más preferentemente, se puede incluir un producto tensoactivo en el medio líquido. Dicho medio líquido sirve para formar imágenes en las que el primer material colorante fluorescente está fijado en un estado monomolecular, y el primer y el segundo materiales colorantes están fijados y dispersos de manera uniforme. Como resultado, cuando son excitados a 254 nm, las características de fluorescencia de una imagen impresa (figura 8) son mucho mejores en comparación con las de la tinta evaporada (figura 7). De este modo, el compuesto (A) es un ejemplo preferente que tiene una estructura y unas características para conseguir varios objetivos de la presente invención.

A continuación, la combinación de C.I. Rojo Ácido 52 como un primer material colorante fluorescente y el compuesto (A) como un segundo material colorante fluorescente, se describe utilizando un estándar de determinación de una

longitud de onda de emisión predeterminada de 600 nm y una longitud de onda de excitación predeterminada de 254 nm, incluyendo realizaciones de la presente invención.

[Aspecto 1]

5

10

15

20

25

30

35

40

45

50

55

60

65

El Aspecto 1 se caracteriza porque la zona de la longitud de onda de emisión de la fluorescencia del segundo material colorante fluorescente cubre, por lo menos, la gama de la longitud de onda pico del espectro de excitación del primer material colorante fluorescente medido para emisión a 600 nm (ver figura 2) y/o a las longitudes de onda de absorción en la zona visible del primer material colorante fluorescente (ver la parte inferior de la figura 6). Según el Aspecto 1, la relación relativa de las zonas de longitud de onda es complementaria, o la eficiencia mejora. En primer lugar, se preparó una tinta evaporada de la forma siguiente: una cantidad predeterminada (en este caso 0.3% en masa de la solución) de C.I. Rojo Ácido 52 (AR52) como primer material colorante fluorescente fue disuelta en una solución acuosa (un disolvente orgánico (por ejemplo, glicerina) y agua pura), y la solución fue calentada a 60°C para evaporar completamente el aqua. Cuando la tinta evaporada fue sometida a excitación a 254 nm utilizando un dispositivo de medición (FP 750, fabricado por la firma JASCO Corporation), el espectro de emisión de fluorescencia era como el mostrado en la figura 1 y, en la figura 2, se muestra el espectro de la longitud de onda de excitación para una predeterminada longitud de onda de emisión de 600 nm. La figura 2 muestra que la zona UV de 380 nm o menor tiene una zona pico que tiene un pico alrededor de 265 nm y una zona pico que tiene un pico alrededor de 360 nm, y asimismo una zona pico en la zona de la luz visible. En general, la longitud de onda de excitación UV a utilizar para la demanda es de 254 nm o 365 nm. Cuando se estudió la eficiencia de la conversión de la energía, se halló que cuando la intensidad de excitación registrada en el eje vertical de la figura 2, es de 100 o mayor, la determinación es efectiva, esto es, la intensidad es suficiente para la demanda. Por consiguiente, "la gama de la longitud de onda pico correspondiente a la zona pico próxima a la longitud de onda de emisión predeterminada" de la emisión de fluorescencia del primer material colorante fluorescente en la presente invención tiene un significado práctico teniendo en cuenta la anterior eficiencia de conversión de la energía. En otras palabras, en el "espectro de la longitud de onda de excitación para obtener la emisión a la longitud de onda predeterminada" del primer material colorante fluorescente (figura 2), "zona pico" es una zona cuya intensidad es de 100 o mayor en el espectro que tiene un pico próximo a la longitud de onda de fluorescencia predeterminada. Una gama de la longitud de onda correspondiente a esta zona es una gama de la longitud de onda pico. Por consiguiente, en la figura 2, cuando la longitud de onda de fluorescencia predeterminada de AR52 es de 600 nm (longitud de onda de excitación predeterminada: 254 nm), la gama de la longitud de onda pico de la misma varía de 430 nm a 600 nm, ambas

La figura 4 es un gráfico que muestra la relación entre las características de la longitud de onda de emisión del compuesto (A) y una longitud de onda de excitación para obtener la emisión de AR52 a 600 nm, en la que el espectro de la longitud de onda de excitación (figura 2) del primer material colorante fluorescente y el espectro de emisión (figura 3) del segundo material colorante fluorescente están superpuestos. Tal como se puede comprender por la figura 4, en comparación con la intensidad de fluorescencia de AR52 a la longitud de onda de 600 nm en la que la intensidad de emisión del AR52 es máxima, tal como se muestra en la figura 1, la máxima intensidad de emisión del compuesto (A) es tan elevada como 800 o más a la longitud de onda de 510 nm. Haciendo referencia a estas figuras, se puede comprender esta realización. Por consiguiente, la longitud de onda de emisión del segundo material colorante fluorescente incluye la gama de la longitud de onda pico del primer material colorante fluorescente, de tal modo que la conversión de la energía se puede llevar a cabo de forma eficiente y se puede mejorar de forma sinérgica la intensidad de la fluorescencia a la longitud de onda de fluorescencia predeterminada en la excitación a una longitud de onda de excitación predeterminada.

A continuación, se debe tomar en consideración en cuanto a pérdidas el espectro de absorción de un material colorante a utilizar. La figura 5 muestra el espectro de excitación de AR52 en el caso de la emisión de fluorescencia

inclusive. Por otra parte, tal como se muestra en la figura 3, el compuesto (A) dispuesto como segundo material colorante fluorescente tiene una emisión principal de fluorescencia que varía de 450 nm a 600 nm, ambas inclusive, que cubre casi toda la gama de la longitud de onda pico de 430 nm a 600 nm, ambas inclusive. A partir de cada una

de las figuras, cuando la intensidad de fluorescencia anterior está fijada en 100, se puede comprender asimismo que

a 600 nm (gráfico superior) y un espectro de absorción de la luz del compuesto (A) (gráfico inferior), en el que los gráficos superior e inferior están comparados entre sí con la misma escala de longitudes de onda. En este caso, la absorción y la excitación no pueden ser comparadas cuantitativamente entre sí, pero se puede hallar la relación relativa entre las mismas. En general, la banda de absorción se superpone parcialmente con la banda de emisión, pero desviándose hacia la longitud de onda más corta. El espectro de absorción de la luz del compuesto (A) se superpone asimismo con la zona de la longitud de onda de emisión de fluorescencia mostrada en la figura 3, que muestra la absorción a una longitud de onda de 440 nm o más corta. El espectro de absorción tiene un significado

el compuesto (A) emite fluorescencia para satisfacer dicha gama.

pero desviándose hacia la longitud de onda más corta. El espectro de absorción de la luz del compuesto (A) se superpone asimismo con la zona de la longitud de onda de emisión de fluorescencia mostrada en la figura 3, que muestra la absorción a una longitud de onda de 440 nm o más corta. El espectro de absorción tiene un significado práctico alrededor de los picos. Por consiguiente, es preferente que la zona de la longitud de onda que incluye la longitud de onda de absorción máxima (380 nm) del compuesto (A) no se superponga con la zona de la longitud de onda de la excitación principal de AR52 que varía de 425 nm a 600 nm, ambas inclusive, en las que la intensidad de fluorescencia es de 100 o mayor, más preferentemente no se superponen entre la zona de la absorción máxima de 425 nm o más corta y la zona de excitación principal de AR52. En cualquier caso, la banda de absorción del compuesto (A) no se superpone con la gama de la longitud de onda pico de AR52, de tal modo que la banda de

absorción no afecta directamente a la anterior conversión de energía.

Si un gran porcentaje de la emisión del segundo material colorante fluorescente correspondiente a la zona de la longitud de onda de excitación del primer material colorante fluorescente es absorbido por el segundo material colorante por sí mismo, constituirá una pérdida en la mejora de la intensidad de fluorescencia.

5

10

15

20

25

30

35

40

55

Dado que la gama de longitudes de onda de la emisión de fluorescencia del compuesto (A) se superpone a la gama de la longitud de onda de excitación de AR52 que es efectiva para obtener la emisión a la longitud de onda predeterminada, la emisión desde el compuesto (A) se utiliza para excitar el AR52. Además, la absorción mediante el compuesto (A) no disminuye la eficiencia de la conversión de energía. Por consiguiente, la emisión de fluorescencia desde el segundo material colorante fluorescente se convierte en una nueva energía de excitación para el primer material colorante fluorescente para incrementar la fluorescencia.

Como es evidente a partir de una comparación entre la figura 1 y la figura 3, la emisión de fluorescencia de AR52 y la emisión de fluorescencia del compuesto (A) se superponen en una gama de longitudes de onda, por lo menos, de 580 nm o mayor, y de 620 nm o menor. La superposición proporciona una relación más efectiva para la determinación, a la longitud de onda de emisión predeterminada.

A continuación, se describirá la característica de la presente invención con respecto al espectro de absorción del primer material colorante fluorescente. La figura 6 es un gráfico que incorpora el espectro de absorción de AR52 (gráfico inferior) y el espectro de la emisión de fluorescencia del compuesto (A) (gráfico superior) en la misma escala de longitud de onda. Se puede considerar que el espectro de absorción de AR52 muestra la pérdida de energía a la emisión de fluorescencia del compuesto (A). El espectro de absorción de AR52 tiene un pico principal cerca de los 560 nm, variando de 600 nm a 460 nm, ambas inclusive, en la zona de la luz visible. La gama de absorción sustancial de AR52 es más estrecha que la anterior, variando de 500 nm a 590 nm, ambas inclusive. Considerando la gama de la emisión de fluorescencia de AR52 (550 nm o más) y la intensidad de la misma, tal como se muestra en la figura 1, se considera que la absorción se produce en la gama de 500 nm a 560 nm, ambas inclusive. Dado que esta banda de absorción está presente en la zona de la luz visible, se ha mantenido fuera de la argumentación técnica en la emisión de fluorescencia de AR52. Sin embargo, dado que en la presente invención se utilizan diferentes materiales colorantes fluorescentes, esta banda de absorción se ha convertido en un punto a tener en cuenta en la conversión de la energía de excitación en dos etapas. Esto es, una vez reconocida esta banda de absorción, una solución es que la emisión de fluorescencia del segundo material colorante fluorescente esté comprendida dentro de una gama que cubra la longitud de onda de excitación de AR52 para obtener la emisión a la longitud de onda de fluorescencia predeterminada, pero sin incluir esta gama de absorción. La figura 6 muestra esta relación. Tal como se puede reconocer por los gráficos superior e inferior de la figura 6, la emisión principal de fluorescencia del compuesto (A) está dentro de una gama de 430 nm a 515 nm, ambas inclusive, no afectadas por la banda de absorción. La emisión de fluorescencia del compuesto (A) incluye una gama de emisión de fluorescencia indicada como -α- en la figura 6 (430 nm≤ α < 500 nm) en una gama de longitudes de onda que no se superpone con la banda de absorción sustancial de AR52 que varía de 500 nm a 590 nm, ambas inclusive, que tiene un pico a 560 nm. La energía luminosa de esta zona -α- se utiliza como energía adicional de excitación para el primer material colorante fluorescente. Por consiguiente, se puede incrementar la totalidad de la intensidad de la fluorescencia a la longitud de onda de emisión predeterminada. En otras palabras, la zona -α- contribuye a la mejora de la intensidad de fluorescencia de AR52, debido a que, por lo menos, la zona -α- está superpuesta a la zona de la longitud de onda de la segunda excitación de AR52.

A continuación, como ejemplo de referencia, se explicará una combinación de C.I. Amarillo Ácido 73 (AY73) y de AR52, haciendo referencia a las figuras 10 a 13, una combinación descrita en el documento U.S.A. 6.176.908 B. En cada una de las figuras, se utilizó tinta evaporada cuando se aplicó luz UV, mientras que la absorción fue medida con la tinta normal. Tal como se muestra en la figura 10, el AY73 emite fluorescencia en una zona de longitud de onda de unos 500 a 600 nm, ambas inclusive (pico: 530 nm) cuando es excitada a una longitud de onda de excitación predeterminada de 254 nm.

En la figura 11, el espectro de fluorescencia de AY73 de la figura 10 está superpuesto sobre el espectro de excitación de AR52 mostrado en la figura 2. Tal como se ve en esta figura, la emisión de fluorescencia de AY73 está en una zona de longitud de onda de unos 500 a 600 nm, ambas inclusive (pico: 530 nm), y la gama de la longitud de onda con la intensidad de emisión efectiva es estrecha. La gama de emisión de fluorescencia de AY73 está dentro de la gama de la longitud de onda de excitación pico de AR52 (475 nm a 600 nm, ambas inclusive). Por consiguiente, el AY73 no emite una fluorescencia suficiente para hacer que el AR52 tenga fluorescencia.

La figura 12 muestra una comparación entre el espectro de excitación de AR52 para obtener la emisión a 600 nm y un espectro de espectro de absorción de luz de AY73. La banda de absorción de la luz de AY73 está dentro de la zona de la luz visible, no superior a 525 nm y tiene un pico a 490 nm. Cuando una tinta contiene el compuesto (A) y tanto AR52 como AY73, como un ejemplo de la presente invención, el AY73 actúa para reducir el efecto del compuesto (A) según el espectro de absorción de la luz. Por consiguiente, es necesario incrementar la cantidad a añadir del compuesto (A) tanto como se desee (ver el Aspecto 2 descrito más adelante) para compensar la pérdida debida a la absorción por el AY73. Además, tal como se muestra en la figura 12, la longitud de onda de absorción

máxima (490 nm) de AY73 está presente en la zona de la longitud de onda de excitación (450 nm a 600 nm, ambas inclusive) de AR52.

La figura 13 muestra una combinación del espectro de absorción de AR52 mostrado en el gráfico inferior de la figura 6 y el espectro de fluorescencia de AY73. Tal como se ve en la figura 13, la banda de fluorescencia de AY73 está incluida en la zona de absorción sustancial (500 nm a 590 nm, ambas inclusive) de AR52, y no se observa ninguna longitud de onda de emisión a longitudes de onda más cortas que las de la zona de absorción anterior. Por consiguiente, la combinación únicamente de AR52 y AY73 no da a conocer ninguna de las configuraciones de la presente invención descritas anteriormente y no proporciona las ventajas de la presente invención.

5

10

15

20

25

30

35

40

45

50

55

60

65

Haciendo referencia de nuevo a las figuras 7 y 9, la presente invención será descrita adicionalmente teniendo en cuenta la tinta y una imagen impresa. La figura 7 representa las mediciones obtenidas mediante la preparación de la tinta de impresión que contiene tanto AR52 como el compuesto (A), agua pura y un disolvente orgánico, seguido de la excitación de la tinta de impresión como la tinta evaporada a una longitud de onda de excitación predeterminada de 254 nm mediante el aparato FP-750. La figura 8 representa las mediciones obtenidas mediante la excitación de una imagen impresa en un soporte de impresión utilizando la tinta de impresión a una longitud de onda de excitación predeterminada de 254 nm mediante el FP-750. En otras palabras, la figura 7 muestra los resultados del estudio de las características de la tinta de impresión de la presente invención con tinta evaporada, y la figura 8 muestra las características de una imagen impresa con la tinta de impresión de la presente invención, y la utilización de la tinta de impresión de la presente invención, puede ser verificada en lo que se refiere a la imagen impresa.

Los efectos de la presente invención serán confirmados mediante la comparación de la figura 7 y la figura 8. Esto es debido a que se utiliza la misma tinta en ambas figuras, lo cual es efectivo en una comparación relativa. En cada una de las figuras 7 y 8, el gráfico tiene dos picos en la proximidad de los 500 nm y en los 590 nm, respectivamente. Tal como es evidente a partir de cada una de las figuras 1 y 3, descritas anteriormente, el compuesto (A) proporciona un pico aproximadamente a 500 nm, y el AR52 proporciona un pico a 590 nm. Tal como se puede ver a partir de la comparación entre la figura 7 y la figura 8, con respecto a la figura 7 que muestra el AR52 y el compuesto (A) que están en un estado de disolución ideal, una imagen impresa recibe un incremento adicional en la intensidad de la fluorescencia, en particular un incremento en la intensidad de la fluorescencia de la longitud de onda de emisión predeterminada (600 nm. o la gama completa de 580 nm a 620 nm). Estos hechos demuestran lo siguiente. En la imagen impresa, cada uno de los materiales colorantes utiliza la longitud de onda de excitación predeterminada de forma eficiente, y se puede obtener la emisión a partir del compuesto (A) dispuesto como un segundo material colorante fluorescente y la emisión a partir del primer material colorante fluorescente que utiliza la emisión desde el compuesto (A). En general, cuando los materiales colorantes fluorescentes están asociados entre sí, la longitud de onda pico se desplaza hacia longitudes de onda más largas. No obstante, en la comparación entre la figura 7 y la figura 8, no existe ningún desplazamiento como antes. De este modo, la ausencia de dicho desplazamiento significa que la acción de prevención de asociación de la presente invención y otros contenidos tecnológicos demostraron ser un resultado. La figura 7 muestra un resultado obtenido mediante la investigación de las características de la tinta de impresión de la presente invención con la tinta evaporada. La figura 8 muestra las características de la imagen impresa con la tinta de impresión de la presente invención, demostrando la utilización de la tinta de impresión de la presente invención en lo que se refiere a la imagen impresa.

Además, la tinta evaporada que contiene tanto AR52 como el compuesto (A) tiene dos picos, tal como se muestra en la figura 7. Por consiguiente, es evidente que el compuesto (A) compensa todas las características del AR52 incluso en el caso de utilizar tinta de impresión, y la emisión de fluorescencia del compuesto (A) ejerce sus características de manera suficiente como para incrementar la longitud de onda de emisión predeterminada. Además, tal como se muestra en la figura 8, la imagen impresa tiene dos picos, de tal manera que se muestra que la tinta fluorescente en la que apenas se genera reducción de la concentración está completada y proporciona una durabilidad que continua incrementando la intensidad de la fluorescencia a largo plazo.

Se debe tener en cuenta que, en la presente invención, la longitud de onda de fluorescencia predeterminada puede ser seleccionada dependiendo de la aplicación de la tinta y de las imágenes formadas con la tinta. Por ejemplo, la figura 9 muestra el espectro de excitación de AR52 obtenido utilizando longitudes de onda de emisión de la fluorescencia (longitud de onda de fluorescencia predeterminada) de 580, 600 y 620 nm, respectivamente. De este modo, la gama de longitudes de onda pico correspondientes a la zona pico próxima a cada longitud de onda de fluorescencia predeterminada puede ser definida según la presente invención. Tal como se ha descrito anteriormente, cuando la longitud de onda de emisión predeterminada está definida como una banda que varía de 580 nm a 620 nm inclusive, es preferente que las longitudes de onda de emisión del segundo material colorante fluorescente excitado a la longitud de onda de excitación predeterminada, abarquen la mayor parte de las gamas de longitudes de onda pico del espectro de excitación. Sin embargo, en este caso, con el objeto de obtener un nivel de eficiencia más elevado que en las técnicas anteriores, la longitud de onda de emisión puede ser una onda única de eficiencia elevada o, preferentemente, puede ser una banda más ancha, por ejemplo, de 600 nm ± 5 nm. ó ± 10 nm. cuando la longitud de onda de emisión predeterminada está definida como una cierta gama de longitudes de onda. Esto es, la longitud de onda de emisión de la fluorescencia incluye longitudes de onda en número suficiente en el espectro de excitación en el que se obtiene de forma eficiente la emisión de fluorescencia predeterminada. Por ejemplo, en el caso de AR52, tal como se muestra en la figura 9, es más eficiente satisfacer la gama de la longitud de onda pico del espectro de excitación para una gama de emisión de 600 nm tal como se ha descrito anteriormente, y no el espectro de excitación para 580 nm y 620 nm. Los efectos del Aspecto 1 anterior se pueden incrementar de manera natural si se puede incrementar la cantidad añadida del segundo material colorante fluorescente.

[Aspecto 2]

5

10

15

20

25

30

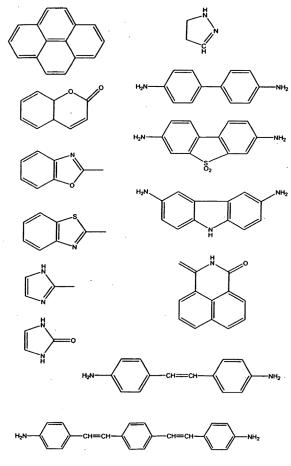
35

40

45

50

55


El Aspecto 2 se refiere a la característica requerida, convencionalmente no reconocida, en la estructura del segundo material colorante fluorescente que permite la adición incrementada del segundo material colorante fluorescente a la tinta. Esto es, las condiciones para las longitudes de onda descritas en el Aspecto 1 para el segundo material colorante fluorescente están facilitadas de tal manera que, por lo menos, una parte de la zona de la longitud de onda de fluorescencia está superpuesta al espectro de excitación del primer material colorante. La relación de energía entre la longitud de onda de excitación y la longitud de onda de emisión puede ser mejorada mediante el incremento de la cantidad añadida del segundo material colorante fluorescente. Más específicamente, la cantidad añadida del segundo material colorante fluorescente puede ser incrementada impidiendo la asociación molecular de los materiales colorantes. Como resultado, la intensidad de fluorescencia a la longitud de onda de emisión predeterminada puede ser incrementada. La intensidad de la emisión de fluorescencia del primer material colorante fluorescente a la longitud de onda de excitación predeterminada puede ser mejorada mediante la utilización de una combinación del primer y el segundo material colorante fluorescente, al menos uno de los cuales, preferentemente el segundo material colorante fluorescente, tiene una estructura básica de los átomos o grupos atómicos siguientes, o del grupo de fluorescencia siguiente.

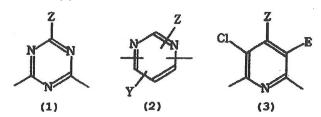
En particular, la estructura de un material colorante contiene preferentemente la pluralidad de los grupos de fluorescencia. Esto es, un material colorante que tiene una pluralidad de grupos de fluorescencia en la misma estructura molecular es estructuralmente de gran tamaño y muestra una adecuación tridimensional incrementada, si se compara con el material colorante fluorescente convencional. De este modo, resulta difícil agregar o asociar el material colorante con regularidad si se compara con el material colorante fluorescente convencional. Por consiguiente, incluso si se incrementa el contenido del material colorante fluorescente en la tinta, en comparación con el del material colorante convencional, es difícil disminuir la intensidad de la fluorescencia. Además, un material colorante que tiene una pluralidad de grupos de fluorescencia en la misma estructura molecular, contiene una pluralidad de grupos de fluorescencia en la única molécula del material colorante. De este modo, la emisión de fluorescencia por molécula resulta intensa, de tal modo que se puede incrementar la intensidad de la emisión de fluorescencia. Adicionalmente, tal como se ha descrito anteriormente, comparado con el material colorante fluorescente convencional, el material colorante fluorescente de la presente invención es estructuralmente de gran tamaño y muestra una adecuación tridimensional incrementada, de tal manera que los materiales colorantes pueden ser absorbidos fácilmente en los componentes del material de impresión, obteniendo el resultado de una buena resistencia al agua. Además, cuando el material colorante fluorescente tiene sustantividad, su resistencia al agua puede ser mejorada, y asimismo la sustantividad puede contribuir a la durabilidad de la emisión de fluorescencia. Además, el material colorante que tiene una pluralidad de grupos de fluorescencia en la misma estructura molecular, apenas se agrega o asocia con regularidad, en comparación con el material colorante convencional. Por consiguiente, por ejemplo, incluso si se evapora el contenido de agua en la tinta, la agregación del material colorante apenas tiene regularidad. En consecuencia, apenas se ocasiona un estado de agregación intenso, de tal modo que se puede obtener una excelente resistencia a la adherencia. Este mecanismo permite que la tinta de la presente invención tenga una buena intensidad de fluorescencia y una buena resistencia al agua. Adicionalmente, el material colorante que tiene una pluralidad de grupos de fluorescencia en la misma estructura molecular, mejora además los efectos de la presente invención si se utiliza como grupo hidrófilo un ácido sulfónico con una fuerte afinidad al agua.

Además, el grupo de fluorescencia que satisface los requisitos anteriores y es funcionalmente efectivo es un aminoestilbeno derivado del ácido disulfónico. La estructura del compuesto (A) contiene asimismo este derivado.

En el caso de un material colorante fluorescente tal como el material colorante convencional, incluso si se aumenta la concentración del material colorante en la tinta, es posible que no se incremente la intensidad de la fluorescencia del material colorante, sino que puede disminuir la intensidad de la fluorescencia. En el caso de utilizar dicho material colorante fluorescente, se estrecha la gama de concentración aplicable (contenido en la tinta), y existe un límite para la elevación de la intensidad de la fluorescencia. Por otra parte, en una combinación del primer y el segundo materiales colorantes fluorescentes, según la presente invención, que aporta emisión de color en la luz visible, la intensidad de la fluorescencia se puede incrementar más cuando se incrementa el contenido de material colorante fluorescente dependiendo de un incremento del contenido.

<Grupos de fluorescencia>

<Grupo de conexión (1)>


5

10

15

20

<Grupo de conexión (2)>

En las fórmulas anteriores (1) a (3), Z representa de forma independiente NR_1R_2 , SR_3 , u OR_3 ; Y representa H, Cl, los anteriores Z, SR_4 u OR_4 ; y E representa Cl ó CN, en los que cada uno de R_1 , R_2 , R_3 y R_4 representa de forma independiente H, un grupo alquilo, un grupo alquilo sustituido, un grupo arilo, un grupo arilo sustituido, un grupo

aralquilo, un grupo aralquilo sustituido o un grupo hidroxilo; y R1 y R2 pueden formar un anillo de 5- ó 6- elementos junto con un átomo de nitrógeno.

Grupo de conexión (3)

5

10 HO N HO N HO 15 (6)

En la anterior fórmula (4), R⁵ está seleccionado de forma independiente entre un grupo consistente en un átomo de hidrógeno, un grupo alquilo, un grupo alquilo sustituido, un grupo alcoxi, un átomo de halógeno, CN, un grupo ureido, y NHCOR⁶, en que el R⁶ está seleccionado entre el grupo consistente en un átomo de hidrógeno, un grupo alquilo, un grupo alquilo sustituido; un grupo aralquilo sustituido; en la fórmula (5), T representa un grupo alquilo, y W está seleccionado entre el grupo consistente en un átomo de hidrógeno, CN, CONR₇R₈, un grupo piridio, y un grupo carboxilo; en el que cada uno de los R₇ y R₈ es seleccionado de forma independiente entre el grupo consistente en un átomo de hidrógeno, un grupo alquilo, un grupo alquilo sustituido, m representa una cadena de alquileno que tiene de 2 a 8 átomos de carbono; y en la fórmula (6), B está seleccionado entre el grupo consistente en un átomo de hidrógeno, un grupo alquilo y un grupo carboxilo.

Tal como se muestra por medio de la anterior fórmula estructural (A), el compuesto (A) tiene una estructura dimérica que tiene varios grupos de fluorescencia y grupos sulfona.

De este modo, cuando el material colorante fluorescente contiene los grupos de fluorescencia, incrementa la intensidad de la fluorescencia del primer material colorante fluorescente con excitación en la longitud de onda de excitación predeterminada debido a la excelente emisión de fluorescencia correspondiente a la zona de la longitud de onda de excitación predeterminada del primer material colorante fluorescente. En particular, son preferentes los derivados de aminoestilbeno de ácido disulfónico debido a una amplia zona de emisión de fluorescencia.

40 [Aspecto 3]

30

35

45

50

55

60

65

El Aspecto 3 es efectivo solo o en combinación con cada uno de los Aspectos 1 y 2. El Aspecto 3 es una tecnología para la mejora de la intensidad de fluorescencia mediante una disposición apropiada del material colorante fluorescente sobre el soporte de impresión, utilizando un medio líquido tal como una mezcla de un primer disolvente que tiene una solubilidad elevada con respecto a un primer material colorante y una solubilidad reducida con respecto a un segundo material colorante y un segundo disolvente que tiene una solubilidad elevada con respecto al segundo material colorante.

Ciertos colorantes ocasionan un fenómeno químico conocido como asociación manteniendo un estado energéticamente estable. En este fenómeno de asociación, en el caso de una molécula de un colorante que tenga una estructura casi plana que tenga dos estructuras en anillo o menos, dos moléculas están situadas una frente a la otra, y se produce un suministro y una pérdida de energía entre dichas moléculas. Por consiguiente, con un colorante fluorescente, dicho fenómeno puede ser un factor de inhibición de las propiedades de fluorescencia del colorante. Dado que este estado de acumulación se mantiene no solo en la tinta sino también en un material impreso sobre papel, se requieren medios para impedir la asociación del colorante. En general, es conocida la adición de urea, de ácido naftaleno sulfónico o un producto similar como un agente de prevención de asociación que impide la asociación. No obstante, si el propio agente de prevención de asociación tiene adecuación a la fluorescencia para incrementar la intensidad de fluorescencia del primer material colorante fluorescente, y tiene una función de prevención de asociación, es posible conseguir ambos efectos de incremento de la intensidad de fluorescencia y de una generación eficiente de fluorescencia gracias a la prevención de la asociación.

Entonces, en la preparación de una tinta que contenga un primer material colorante fluorescente y un segundo material colorante fluorescente capaz de incrementar la intensidad de fluorescencia de un primer material colorante fluorescente cuando es excitado a la misma longitud de onda de excitación, se utiliza una mezcla de disolventes que contiene un primer disolvente que tiene una solubilidad elevada para el primer material colorante y una solubilidad

reducida para el segundo material colorante, y un segundo disolvente que tiene una solubilidad elevada para el segundo material colorante.

En este caso, el término "tener una solubilidad elevada" o "buen disolvente" significa que el material colorante puede ser disuelto a una concentración aproximada del 3% en masa, o superior, y el término "tener una solubilidad reducida" o "mal disolvente" significa que el material colorante puede ser disuelto, aproximadamente, a una concentración menor del 3% en masa.

5

10

15

20

25

30

35

40

55

65

Por ejemplo, cuando se selecciona agua como primer disolvente y se selecciona glicerina como segundo disolvente, el agua tiene una solubilidad elevada para el AR52 y una solubilidad reducida para el compuesto (A), y la glicerina tiene una solubilidad elevada para el compuesto (A). A continuación, se prepara la tinta añadiendo AR52 y el compuesto (A) a un disolvente que contiene agua y glicerina. En la tinta, el compuesto (A) está bajo un ambiente de exceso del disolvente malo, de tal modo que el compuesto (A) se disuelve en un estado de asociación débil, formando un sistema estable junto con el AR52. Sin embargo, cuando se coloca la tinta en un soporte de impresión, al ser el agua un mal disolvente, se difunde rápidamente y permea en el soporte de impresión. Por otra parte, la glicerina se difunde lentamente y permea en el soporte de impresión debido a su elevada viscosidad. En este punto, el compuesto (A) se disuelve, no en el aqua que es un mal disolvente, sino en la glicerina que es un buen disolvente. De este modo, el compuesto (A) se difunde lentamente y permea en el soporte de impresión junto con la glicerina. Además, debido a que la glicerina es un buen disolvente, el compuesto (A) es absorbido en un estado monomolecular por los componentes del soporte de impresión. Por consiguiente, se produce una buena emisión de fluorescencia. Además, el compuesto (A) es disuelto en estado monomolecular, de tal modo que el compuesto (A) puede impedir asimismo la asociación de AR52. En otras palabras, las moléculas del compuesto (A) y de AR52 están fijadas conjuntamente en el soporte de impresión en un estado de mezcla y dispersión a un nivel apropiado. De este modo, el efecto de incremento de la intensidad de fluorescencia del AR52 mediante el compuesto (A) resulta significativo. En este caso, el primer material colorante fluorescente y el segundo material colorante fluorescente tienen cada uno de ellos preferentemente una pluralidad de grupos sulfona.

Además, para una expresión preferente del fenómeno anterior, el contenido del material colorante fluorescente a utilizar es preferentemente no mayor que la cantidad que puede disolver el mal disolvente.

Por otra parte, cuando se considera la prevención de la asociación teniendo en cuenta la estructura molecular de los materiales colorantes fluorescentes si, por lo menos, uno de los primer y segundo materiales colorantes tiene una estructura molecular que tenga tres o más estructuras en anillo, se impide que las moléculas del primer y del segundo material colorante se acumulen, pero que estén presentes en las proximidades, permitiendo una fácil transferencia y recepción de la energía, mencionada anteriormente. Como resultado, se intensifica la fluorescencia.

De este modo, el segundo material colorante fluorescente a utilizar en la presente invención tiene una pluralidad de grupos de fluorescencia. El segundo material colorante fluorescente a utilizar en la presente invención tiene además una estructura básica para el brillo de la fluorescencia. Además, el grupo de fluorescencia en el segundo material colorante fluorescente es un dímero.

La estructura en anillo de un segundo colorante fluorescente es un ácido disulfónico y diaminoestilbeno unidos a través de un grupo de conexión.

- Cuando el primer material colorante fluorescente y el segundo material colorante fluorescente son solubles ambos en agua, estos dos materiales colorantes fluorescentes son preferentemente del mismo grupo de solubilidad en el agua, para impedir más fácilmente la asociación. El grupo de solubilidad en agua es un grupo sulfona cuya solubilidad no se ve afectada por el pH de la tinta.
- 50 En la presente invención la tinta puede contener un material colorante fluorescente o no fluorescente como tercer material colorante además de los dos materiales colorantes fluorescentes anteriores.

A continuación, se describe un medio acuoso que constituye una tinta fluorescente de la presente invención junto con los colorantes descritos anteriormente. El medio acuoso a utilizar en la presente invención es preferentemente un medio acuoso que contiene principalmente agua. El contenido de agua en la tinta es del 10 al 95% en masa, preferentemente del 25 al 93% en masa, más preferentemente del 40 al 90% en masa con respecto a la masa total de la tinta. El agua a utilizar en la invención es preferentemente agua desionizada.

Además, en el caso de la tinta de la presente invención, se puede utilizar únicamente agua como medio acuoso o puede ser utilizada en combinación con un disolvente orgánico soluble en agua para incrementar todavía más los efectos de la presente invención.

Ejemplos específicos del disolvente orgánico soluble en agua que puede ser utilizado en la presente invención incluyen: alcoholes alquílicos que tengan de 1 a 5 átomos de carbono, tales como alcohol metílico, alcohol etílico, alcohol n-propílico, alcohol isopropílico, alcohol n-butílico, alcohol butílico secundario, alcohol butílico terciario, alcohol isobutílico, y n-pentanol; amidas tales como dimetilformamida y dimetilacetamida; cetonas o cetoalcoholes

tales como acetona y alcohol de diacetona; éteres tales como tetrahidrofurano y dioxano; polímeros de adición de oxietileno y de oxipropileno, tales como dietilenglicol, trietilenglicol, tetraetilenglicol, dipropilenglicol, tripropilenglicol, polietilenglicol y polipropilenglicol; glicoles de alquileno que tengan un grupo alquileno con 2 a 6 átomos de carbono, tales como etilenglicol, propilenglicol, trimetilenglicol, butilenglicol, pentanodiol y hexilenglicol; trioles tales como glicerina, trimetiloletano, trimetilolpropano, y 1, 2, 6- hexanotriol; tiodiglicol; bishidroxietilsulfona; éteres de glicol de alquilos inferiores, tales como éter monometilo (o etilo, o butilo) de etilenglicol, éter monometilo (o etilo, o butilo) de dietilenglicol y éter monometilo (o etilo, o butilo) de trietilenglicol; éteres de glicol de dialquilos inferiores, tales como éter dimetilo (o etilo) de trietilenglicol; y éter dimetilo (o etilo) de tetraetilenglicol; alcanolaminas, tales como monoetanolamina, dietanolamina y trietanolamina; sulforano; N-metil-2-pirrolidona; 2-pirrolidona; y 1, 3-dimetil-2-imidazolidinona. Los disolventes orgánicos solubles en agua, tales como los anteriores pueden ser utilizados por separado o como una mezcla de los mismos.

El contenido de la solución orgánica soluble en agua en la tinta es generalmente igual o inferior al 50% en masa, preferentemente del 5 al 40% en masa, y más preferentemente del 10 al 30% en masa, con respecto a la masa total de la tinta.

Entre dichos disolventes, se utilizan preferentemente etilenglicol, dietilenglicol, trietilenglicol, 2-pirrolidona, glicerina y 1, 2, 6-hexanotriol.

- Además, la tinta de la presente invención contiene preferentemente urea, urea de etileno, o trimetilolpropano como un humectante similar a un disolvente. Entre las mismas, la urea de etileno y el trimetilolpropano son particularmente adecuadas para la presente invención. El contenido de los mismos es preferentemente del 1% en masa o mayor, y del 20% en masa o menor con respecto a la masa total de la tinta.
- En la tinta de la presente invención, si se precisa, se pueden mezclar agentes aditivos tales como un antiespumante, un regulador de la tensión superficial, un regulador del pH, un modificador de la viscosidad, un incrementador de la fluorescencia, un antioxidante, un incrementador de la evaporación, un antióxido, un fungicida y un agente quelador, además de los componentes descritos anteriormente, para proporcionar la tinta con las propiedades predeterminadas de emisión.

Además, la viscosidad de la tinta de la presente invención está comprendida preferentemente dentro de la gama de 0,7 a 12 cP a 25°C. Si la viscosidad de la tinta está fuera de esta gama, la impresión por chorros de tinta se puede realizar sin una descarga normal de tinta. La tinta con una viscosidad superior a 12 cP es lenta para permear en el soporte de impresión debido a su resistencia por la viscosidad, lo cual no es preferente desde el punto de vista de la capacidad de fijación.

Además, la tensión superficial de la tinta a utilizar en la presente invención está ajustada preferentemente dentro de la gama de 20 a 60 dinas/cm a 25°C. Una tensión superficial menor de 20 dinas/cm no es preferible. La razón de ello es la siguiente. Después de la descarga de pequeñas gotas de líquido en la impresión por chorros de tinta, la fuerza para hacer retroceder el menisco puede estar debilitada, o bien la fuerza para hacer retroceder el menisco que sobresale puede ser relativamente débil. Por consiguiente, pueden aparecer burbujas y los orificios pueden quedar humedecidos, de tal modo que una tensión superficial pequeña puede convertirse en la causa del arrugado. Al preparar la tinta tal como se ha descrito anteriormente, la tinta propuesta en la presente invención puede estar dispuesta como la utilizada para la impresión por chorros de tinta correspondiente al papel normal, en particular una tinta que tiene excelente estabilidad durante el almacenamiento, concentración para la impresión, fijabilidad en seco y calidad de impresión.

La tinta fluorescente de la presente invención, fabricada tal como se ha descrito anteriormente, es particularmente efectiva cuando es utilizada en una impresión por chorros de tinta. Como método de impresión por chorros de tinta, existe un método de impresión que incluye la actuación de energía mecánica sobre la tinta para descargar pequeñas gotas de líquido, y un método de impresión por chorros de tinta que incluye la expansión de la tinta con el suministro de energía térmica a la tinta para descargar gotas pequeñas de líquido. La tinta fluorescente de la presente invención es particularmente adecuada para estos métodos de impresión por chorros de tinta.

Ejemplos

10

15

35

40

45

50

55

60

65

A continuación, se describirá la presente invención más concretamente haciendo referencia a los ejemplos y a los ejemplos de referencia. En este caso, se utilizaron valores medidos obtenidos con diluyentes de agua pura de materiales colorantes para una zona de la longitud de onda de absorción, una zona de la longitud de onda de absorción máxima y una zona de la longitud de onda de fluorescencia. Se midieron las longitudes de onda de absorción utilizando un espectrómetro de absorción. Se preparó un diluyente de tal forma que su absorbencia estaba comprendida dentro de una gama de 0,5 a 0,7. Una zona más elevada a partir de una línea base como un pico de absorción del material colorante fue definida como la zona de la longitud de onda de absorción; y el valor pico se definió como la zona de la longitud de onda de absorción máxima. Además, en el caso de las longitudes de onda de fluorescencia, las condiciones de medición se definieron de tal modo que las intensidades de fluorescencia no superaran la medición del valor umbral. A continuación, se realizó la medición de las longitudes de onda de

fluorescencia mediante la utilización del diluyente usado en la medición de la absorbencia y mediante la fijación de las longitudes de onda de excitación del primer y del segundo materiales colorantes a longitudes de onda predeterminadas. Una zona más elevada que la línea base fue definida como la zona de la longitud de onda de emisión de fluorescencia.

5

Las tintas de los ejemplos siguientes satisfacen la configuración de una de las tintas de impresión según las realizaciones primera a sexta de la presente invención, descritas anteriormente.

Ejemplo 1

10

Los componentes siguientes fueron añadidos para ajustarse a concentraciones predeterminadas y, a continuación, dichos componentes se mezclaron y agitaron suficientemente, seguido de un filtrado bajo presión a través de un microfiltro (fabricado por la firma Fuji Photo Film Co., Ltd.) con un tamaño de poro de 0,2 µm, para preparar una tinta

15

C.I. Rojo Ácido 52 (primer material colorante fluorescente): 0,25 partes en masa

Compuesto (A) (segundo material colorante fluorescente): 1 parte en masa

20 Glicerina: 7,5 partes en masa

Dietilenglicol: 5 partes en masa

Urea: 5 partes en masa

25

Acetinelol E100 (producto de adición de acetilenglicol EO fabricado por la firma Kawaken Fine Chemicals Co., Ltd.)

1 parte en masa

Agua: 80,25 partes en masa

30

El espectro de emisión de fluorescencia y el espectro de excitación del primer y del segundo materiales colorantes fluorescentes se midieron utilizando el fluorómetro FP-750 fabricado por la firma JASCO Corporation, respectivamente. Cada muestra era una tinta de la que se había evaporado el contenido en agua para eliminar la influencia del agua en la medición.

35

40

50

Las zonas de la longitud de onda de absorción del primer y del segundo materiales colorantes fueron medidas utilizando el espectrofotómetro U-3200 fabricado por la firma Hitachi Ltd., después que la muestra fuera diluida 100.000 veces en agua pura. La zona de la longitud de onda de absorción del primer material colorante variaba desde 450 a 620 nm, ambas inclusive, y la longitud de onda de absorción máxima de dicho material era de 565 nm. Además, la zona de la longitud de onda de absorción del segundo material colorante variaba de 300 a 450 nm, ambas inclusive, y la longitud de onda de absorción máxima del mismo era de 372 nm.

Ejemplo de referencia 1

Los componentes siguientes fueron añadidos a concentraciones predeterminadas, y a continuación dichos componentes se mezclaron y agitaron suficientemente, seguido de un filtrado bajo presión a través de un microfiltro (fabricado por la firma Fuji Photo Film Co., Ltd.) con un tamaño de poro de 0,2 μm, para preparar una tinta.

C.I. Rojo Ácido 52 (primer material colorante fluorescente): 0,25 partes en masa

Glicerina: 7,5 partes en masa

Dietilenglicol: 5 partes en masa

55 Urea: 5 partes en masa

Acetinelol E100 (producto de adición de acetilenglicol EO fabricado por la firma Kawaken Fine Chemicals Co., Ltd.)

1 parte en masa

60 Agua: 81,25 partes en masa

(Evaluación)

(1) Intensidad de fluorescencia

Utilizando un aparato de impresión por chorros de tinta (BJS600 fabricado por la firma Canon Inc.) que tenía un cabezal del tipo bajo demanda para impresión múltiple desde el que se descarga la tinta al proporcionar energía térmica a la tinta dependiendo de una señal de impresión a la tinta, se imprimió una configuración continua del 50% de utilización, sobre papel corriente para impresión por chorro de tinta (SW -101, fabricado por la firma Canon Inc.). A continuación, bajo las condiciones siguientes, se midió la intensidad de la fluorescencia utilizando un fluorómetro (FP-750, fabricado por la firma JASCO Corporation). Los resultados se evaluaron en base a los criterios descritos más adelante y fueron anotados en la Tabla 1. Las condiciones de la medición eran las siguientes: la longitud de onda de excitación fue fijada a 254 nm; se midió la intensidad de fluorescencia a la longitud de onda de la fluorescencia máxima; y se normalizó la intensidad resultante de la fluorescencia máxima definiendo la intensidad de fluorescencia de la tinta del Ejemplo de referencia 1 como 100, seguido de la evaluación con los criterios siguientes:

AA: la intensidad medida de la fluorescencia era de 150 o superior;

A: la intensidad medida de la fluorescencia era de 110 o superior, e inferior a 150; y

B: la intensidad medida de la fluorescencia era inferior a 110.

(2) Revelado del color

Utilizando un aparato de impresión por chorros de tinta (BJS600 fabricado por la firma Canon Inc.) que tenía un cabezal del tipo bajo demanda para impresión múltiple desde el que se descarga la tinta al proporcionar energía térmica a la tinta dependiendo de una señal de impresión a la tinta, se imprimió una configuración continua del 50% de utilización sobre papel corriente para impresión por chorros de tinta (SW-101, fabricado por la firma Canon Inc.). A continuación, se midió la propiedad de revelado del color utilizando un densitómetro Macbeth de un tema de impresión de la impresión (RD-918, fabricado por la firma Macbeth Co., Ltd).

AA: 0,7 o superior, en el que un material impreso es legible visualmente de inmediato;

A: 0,5 o superior, e inferior a 0,7, en el que un material impreso es legible visualmente;

B: 0,3 o superior, e inferior a 0,5, en el que un material impreso es legible visualmente con dificultades;

C: inferior a 0,3, en el que un material impreso no es legible visualmente.

35 (3) Fijeza

5

10

15

30

40

50

55

Utilizando un aparato de impresión por chorros de tinta (BJS600 fabricado por la firma Canon Inc.) que tenía un cabezal del tipo bajo demanda para impresión múltiple desde el que se descarga la tinta al proporcionar energía térmica a la tinta dependiendo de una señal de impresión a la tinta, se imprimió una configuración continua del 50% de utilización sobre papel corriente para impresión por chorros de tinta (SW-101, fabricado por la firma Canon Inc.). A continuación, se dejó reposar el papel durante 24 horas y, a continuación, fue sumergido en agua corriente durante 5 minutos. A continuación, se evaluó el cambio de la densidad de impresión utilizando un densitómetro Macbeth RD-918 en base a los criterios siguientes:

45 AA: cambio de densidad menor del 50%, en la que un material impreso es legible visualmente de inmediato;

A: 50% o superior, e inferior al 70%, en la que un material impreso es legible visualmente; y

B: 70% o superior, en la que un material impreso no es legible visualmente.

Tabla 1

	(1) Intensidad de fluorescencia	(2) Propiedad de revelado del color	(3) Propiedad de fijación				
Ejemplo 1	AA	Α	Α				
Ejemplo de referencia 1	В	A	В				

Cada una de las tintas fue preparada de acuerdo con la composición mostrada en la Tabla 2 en cada uno de los Ejemplos 2 a 6 y en los Ejemplos de referencia 2 y 3. Además, las figuras 14 a 18, respectivamente, muestran las relaciones de fluorescencia, excitación y absorción mediante la combinación de los primer y segundo materiales colorantes del Ejemplo 4. Las figuras 19 a 22 muestran, respectivamente, las relaciones de fluorescencia, excitación

y absorción mediante la combinación de los primer y segundo materiales colorantes del Ejemplo 5. Las figuras 23 a 26 muestran, respectivamente, las relaciones de fluorescencia, excitación y absorción mediante la combinación del primer y el segundo materiales colorantes del Ejemplo de referencia 3. Se han omitido las descripciones de estas figuras, pero estos ejemplos y los ejemplos de referencia se comprenderán a partir de la descripción técnica de la presente invención y de la descripción de los ejemplos de referencia. Además, cada uno de los ejemplos de referencia anteriores utiliza la combinación de los materiales colorantes convencionales usando las mismas condiciones de disolventes que las de la presente invención. De este modo, cada uno de los ejemplos de referencia anteriores se facilita como el ejemplo de referencia.

Tabla 2

Ejemplo de referencia 3	AR52 0,25% en masa	AY18 41% en masa		Glicerina 7,5% en masa	5% en masa	5% en masa	1% en masa	80,25% en masa
Ejemplo de referencia 2	AR52 0,5% en masa	AY73 0,5% en masa		Glicerina 7,5% en masa	5% en masa	5% en masa	1% en masa	80,5% en masa
Ejemplo 6	AR52 0,25% en masa	DY87 1% en masa			5% en masa	5% en masa	1% en masa	87,75% en masa
Ejemplo de referencia 5	AR52 0,25% en masa	SG7 0,3% en masa		Xilitol 7,5% en masa	5% en masa	5% en masa	1% en masa	80,95% en masa
Ejemplo de referencia 4	BV10 0,25% en masa	DY87 1% en masa		Trietilenglicol 7,5% en masa	5% en masa	5% en masa	1% en masa	80,25% en masa
Ejemplo 3	AR52 0,25% en masa	DY87 1% en masa	AR92 0,6% en masa	Glicerina 7,5% en masa	5% en masa	5% en masa	1% en masa	78,65 en masa
Ejemplo 2	AR52 0,25% en masa	DY87 1% en masa	AR92 0,6% en masa	Glicerina 7,5% en masa	5% en masa	5% en masa	1% en masa	79,65% en masa
	Primer material colorante	Segundo material colorante	Tercer material colorante	Primer disolvente	Dietilenglicol	Urea	Acetilenol 100	Segundo disolvente (agua)

Cada una de las tintas preparadas de la forma anterior fue irradiada con luz a una longitud de onda de excitación de 254 nm. A continuación, se obtuvo el espectro de la emisión de fluorescencia resultante. En el caso de las tintas de los Ejemplos 2 y 3, se obtuvieron efectos tales como dos picos considerables en las intensidades de fluorescencia, tal como se ve en las figuras 7 y 8, y en la comparación entre las mismas. Por otra parte, una relación tal como la hallada en las figuras 7 y 8 no se halló en las tintas de los Ejemplos de referencia 1 a 3.

Además, las intensidades de fluorescencia y demás fueron evaluadas al igual que en el caso del Ejemplo 1 y del Ejemplo de referencia 1. Tal como se muestra en la Tabla 3, existían diferencias sustanciales entre los ejemplos y los ejemplos de referencia.

Tabla 3

5

10

	(1) Intensidad de fluorescencia	(2) Revelado del color	(3) Fijación
Ejemplo 2	AA	AA	AA
Ejemplo 3	AA	AA	AA
Ejemplo de referencia 4	AA	А	А
Ejemplo de referencia 5	AA	А	А
Ejemplo 6	А	А	А
Ejemplo de referencia 2	В	AA	В
Ejemplo de referencia 3	В	А	В

Tal como se ha descrito anteriormente, según la presente invención, se dan a conocer: una tinta fluorescente que tiene una intensidad de fluorescencia elevada, elevadas propiedades de revelado de color, y capacidad de fijación elevada, que no se pueden conseguir con la técnica anterior; y un método de impresión por chorros de tinta utilizando dicha tinta fluorescente.

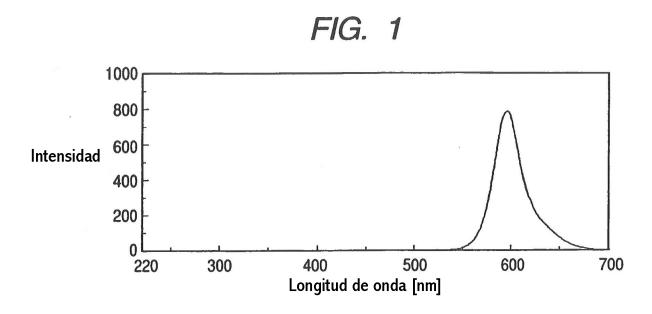
REIVINDICACIONES

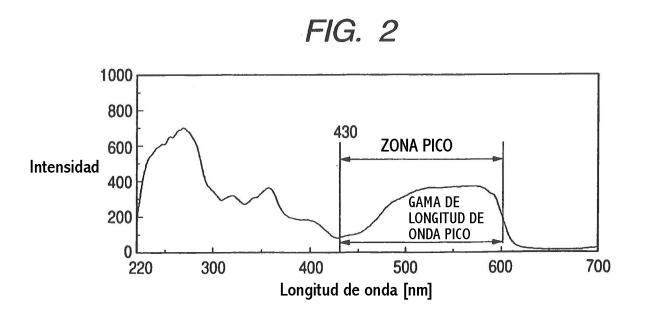
1. Tinta de impresión que comprende un primer material colorante fluorescente y un segundo material colorante fluorescente,

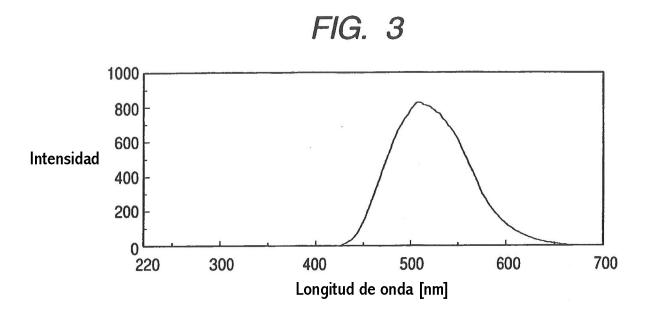
en la que el primer material colorante fluorescente es C.I. Rojo Ácido 52 y el segundo material colorante fluorescente es el compuesto (A) que tiene la estructura siguiente:

ó C.I. Amarillo directo 87.

5


10


20


- 2. Tinta de impresión, según la reivindicación 1, en la que el segundo material colorante fluorescente es el Compuesto (A).
- 3. Tinta de impresión, según la reivindicación 1 ó 2, en la que la cantidad del primer material colorante fluorescente se ha seleccionado entre la gama de 0,01 a 1% en masa y la tinta contiene más cantidad del segundo material colorante fluorescente que del primer material colorante fluorescente.
 - 4. Tinta de impresión, según cualquiera de las reivindicaciones 1 a 3, en la que la tinta contiene además agua y glicerina.
 - 5. Método de impresión por chorros de tinta, que comprende las etapas de:

expulsar una tinta a través de una abertura de descarga; y

fijar la tinta sobre un soporte de impresión para llevar a cabo de esta forma la impresión, siendo la tinta la tinta de impresión según cualquiera de las reivindicaciones 1 a 4.

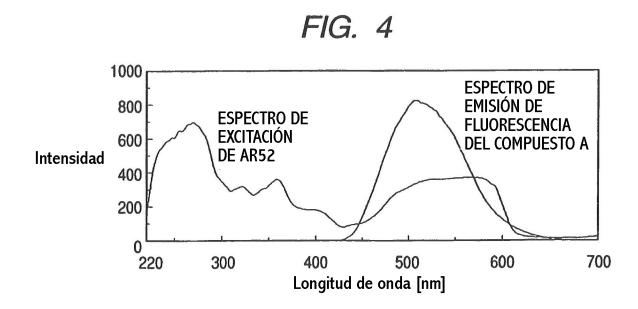


FIG. 5

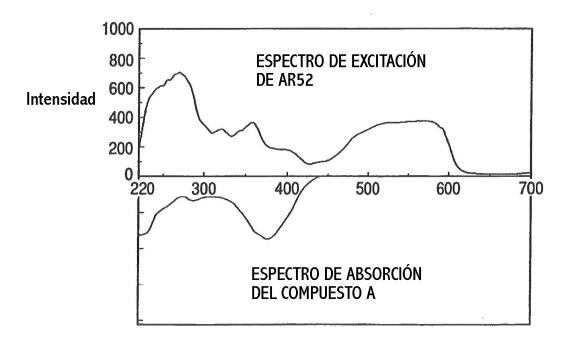
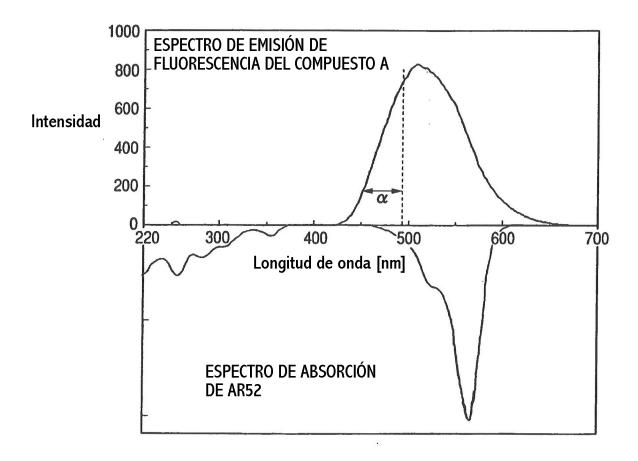
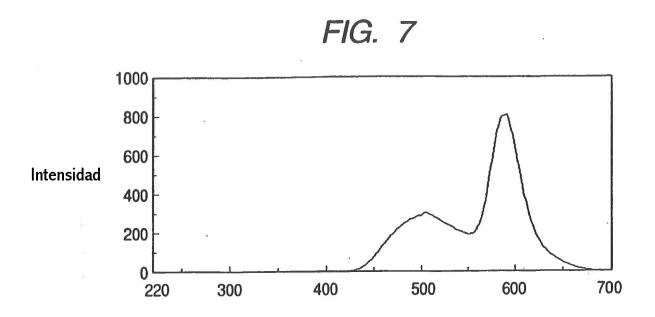
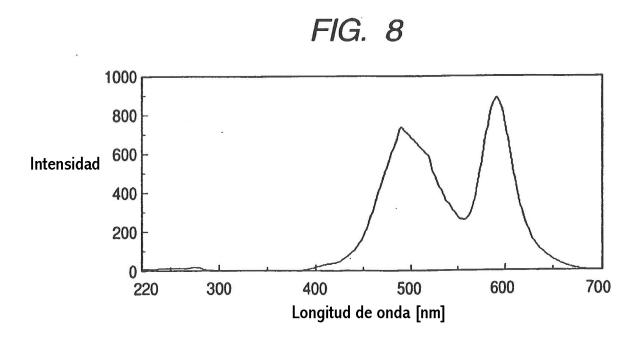
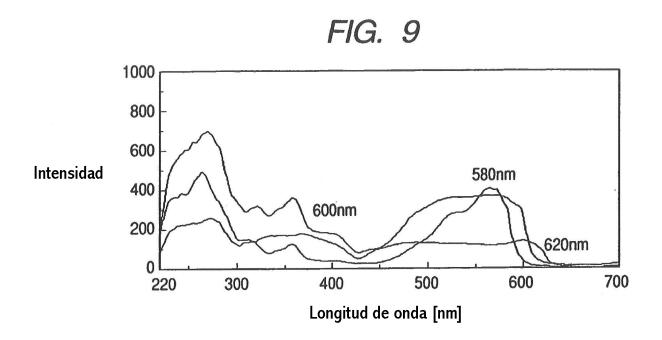






FIG. 6

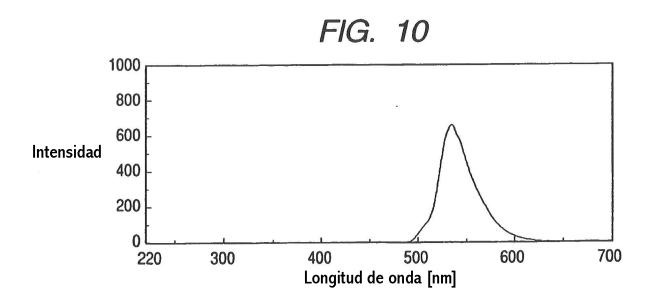


FIG. 11

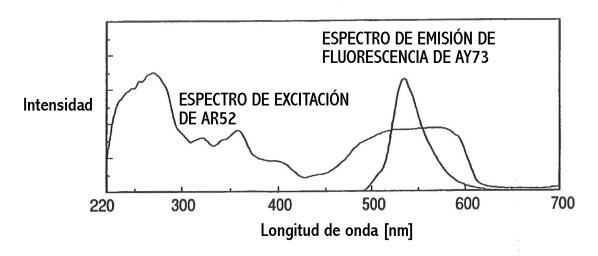


FIG. 12

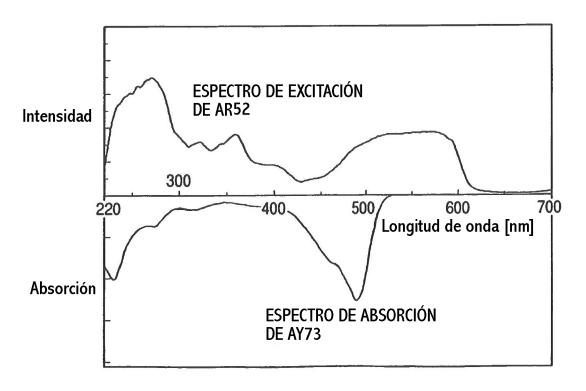


FIG. 13

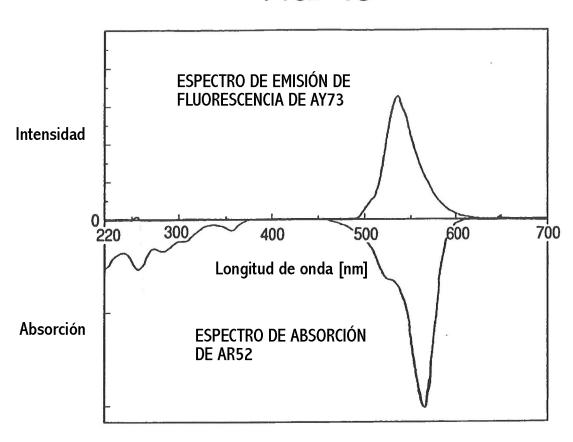
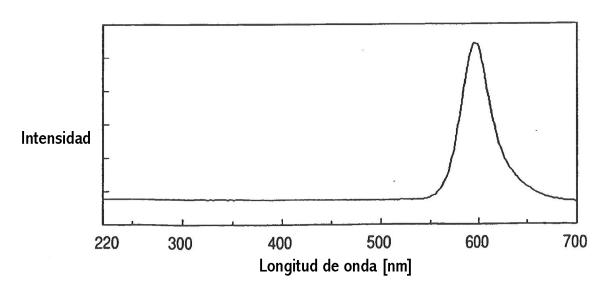
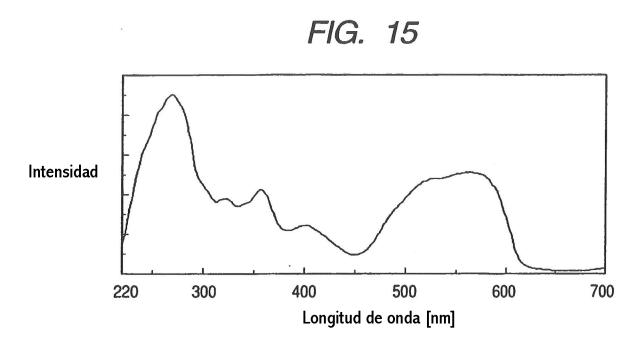




FIG. 14

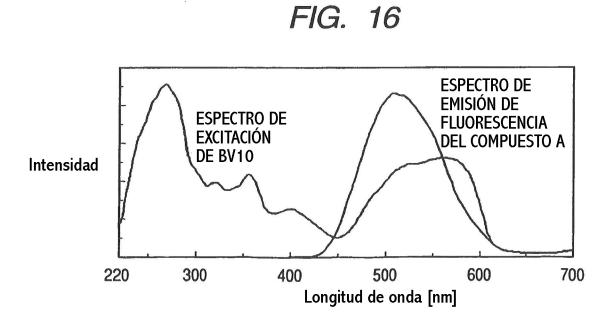


FIG. 17

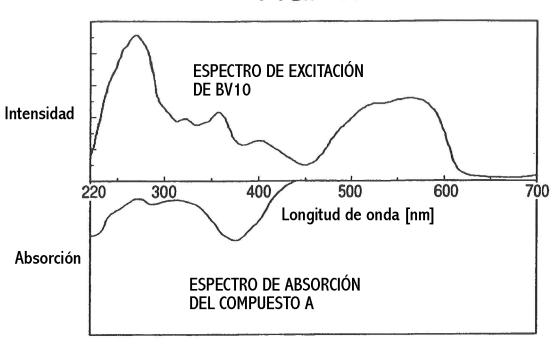
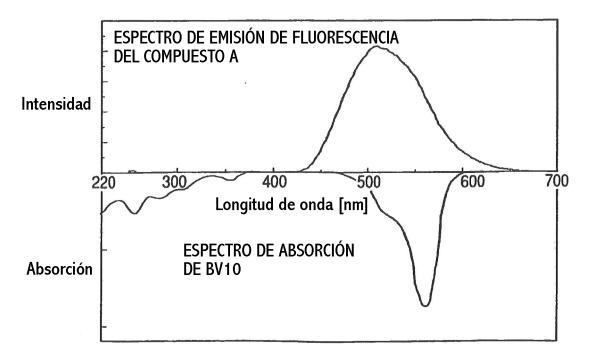
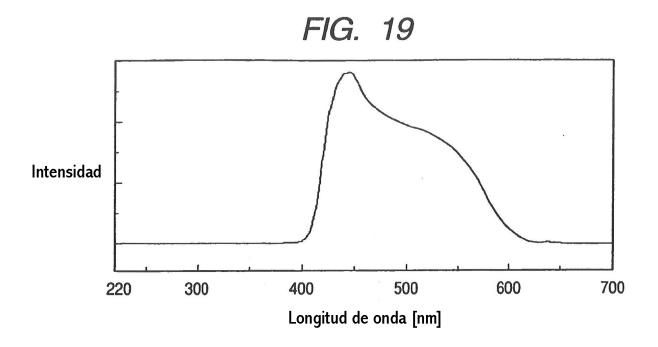




FIG. 18

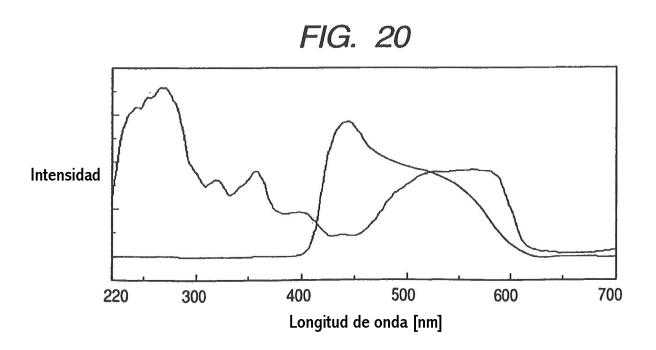


FIG. 21

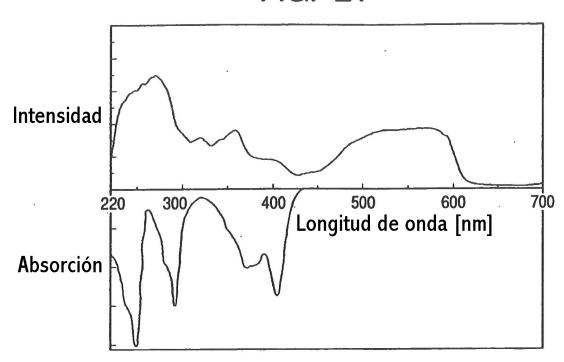


FIG. 22

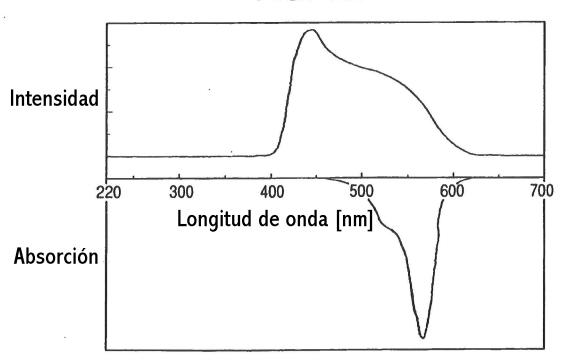


FIG. 23

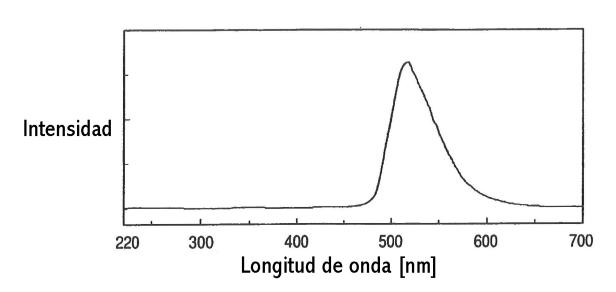
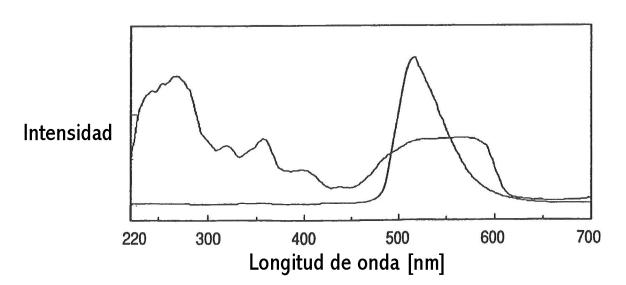



FIG. 24

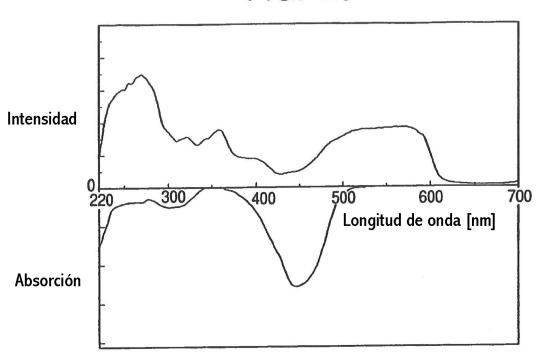
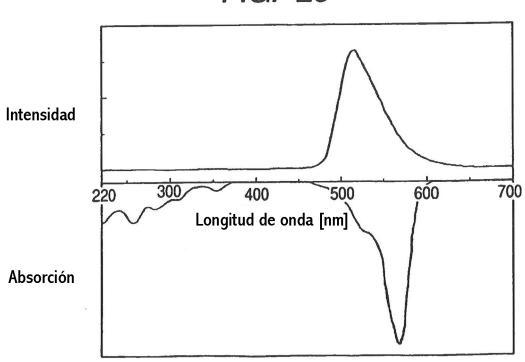



FIG. 26

