

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 399 071

51 Int. Cl.:

C07D 471/04 (2006.01)
A61K 31/5025 (2006.01)
A61P 25/22 (2006.01)
A61K 31/4375 (2006.01)
A61K 31/519 (2006.01)
C07D 471/12 (2006.01)
A61K 31/4985 (2006.01)
A61P 25/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 16.10.2007 E 07815371 (5)
 (97) Fecha y número de publicación de la concesión europea: 05.12.2012 EP 2074123
- (54) Título: Nuevos compuestos ansiolíticos
- (30) Prioridad:

16.10.2006 US 851983 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 25.03.2013

(73) Titular/es:

BIONOMICS LIMITED (100.0%) 31 DALGLEISH STREET THEBARTON, SOUTH AUSTRALIA 5031, AU

(72) Inventor/es:

BAELL, JONATHAN BAYLDON; SLEEBS, BRAD; FLYNN, BERNARD LUKE; STREET, IAN PHILLIP; QUAZI, NURUL y BUI, CHINH THIEN

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

S 2 399 071 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Nuevos compuestos ansiolíticos

Campo de la invención

5

20

25

30

35

40

45

50

La presente invención se refiere en general a compuestos químicos y a métodos para su uso y preparación. En particular, la invención se refiere a compuestos químicos que pueden tener actividad terapéutica útil en el campo de los trastornos del sistema nervioso central, y en particular, en los trastornos de ansiedad. La invención se refiere también al uso de estos compuestos en métodos de terapia y en la fabricación de medicamentos así como a las composiciones que contienen estos compuestos.

Antecedentes de la invención

El ácido γ-aminobutírico (GABA) es uno de los principales aminoácidos inhibidores transmisores del sistema nervioso central (SNC) de los mamíferos y actúa mediante la unión a receptores específicos en la membrana plasmática de las neuronas tanto presinápticas como postsinápticas. La unión de GABA a receptores específicos causa la apertura de los canales iónicos en la membrana celular que permite el flujo de iones cloruro cargados negativamente hacia dentro de la célula o de iones potasio cargados positivamente hacia fuera de la célula. Esto produce típicamente un cambio negativo en el potencial transmembranal que normalmente produce hiperpolarización.

Antes se creía que había tres tipos de receptores para el GABA en el sistema nervioso central de los mamíferos, denominados A, B, y C. Los receptores GABA_A y GABA_C son canales conductores de ion cloruro controlados por GABA mientras que el receptor B de GABA es un miembro de la superfamilia de receptores de la proteína G. Los receptores GABA_A y GABA_C se distinguieron inicialmente uno de otro por su sensibilidad al ligando bicuculina siendo los primeros antagonizados por la bicuculina mientras que los últimos fueron insensibles. Sin embargo, ha llegado a estar cada vez más claro desde la mitad de los años 90, que los receptores GABA_A y GABA_C son simples variantes del mismo canal de cloruro controlado por GABA. Por lo tanto, estos receptores se indican ahora con la designación de receptor "GABA_A". Aunque las variedades del receptor GABA_A se encuentran todas sobre el SNC, los receptores GABA_C (variante de GABA_A definida también ahora de forma muy diversa GABA_{AOC}) se encuentran principalmente en la retina.

Cada subunidad del receptor GABA_A tiene una estructura común que consiste en una gran porción amino-terminal, cuatro hélices transmembranales - denominadas transmembrana (TM) una a cuatro, y un corto bucle citoplásmico hacia el carboxi terminal que está compuesto del bucle que se extiende entre TM3 y TM4. Las subunidades del receptor se ordenan pseudo-simétricamente de forma que la hélice TM2 de cada subunidad cubre el poro central. Los modelos recientes de la estructura del receptor GABA_A se han basado en la estructura cristalina de la proteína de unión a la acetilcolina relacionada.

Los receptores GABA_A pueden existir al menos en tres conformaciones diferentes: abierta, cerrada, y desensibilizada. La activación del receptor GABA_A por la unión de GABA al sitio de GABA permite que los iones cloruro fluyan a través del poro central e hiperpolaricen la neurona, reduciendo la probabilidad de la propagación de una acción potencial. En esta actividad, el receptor GABA_A no difiere de cualquier otro canal iónico controlado por un ligando. Sin embargo, se han propuesto hasta 14 sitios diferentes de unión al ligando que explican la modulación de GABA. Por lo tanto entre los receptores neurotransmisores, los receptores GABA_A son únicos dado que hay un gran número de ligandos a los que se pueden unir y que modulan alostéricamente su función.

La unión de ligandos al receptor GABA_A puede alterar la conformación del receptor GABA_A de tal modo que aumente o disminuya el flujo de cloruro en respuesta a la unión del GABA. Algunos anestésicos (por ejemplo etomidato y pentobarbitona) aumentan el flujo de cloruro en respuesta a la unión del GABA y también lo activan directamente en

ausencia de GABA. Otros ligandos, tales como los convulsivantes para jaulas (*cage convulsants*) del tipo de la picrotoxina, se unen dentro del poro central del receptor, ocluyendo de este modo el canal y evitando el flujo de cloruro, un efecto que tiene lugar independientemente de que otro ligando se una posteriormente. Por lo tanto, los efectos neurofisiológicos de GABA resultan de un cambio conformacional que tiene lugar después de la unión de GABA al receptor GABA_A.

Los documentos US-A-6143760 y WO 02/069948A1 describen derivados de tetrahidro-1,6-naftiridina-3-carboxamida como ligandos del receptor GABA_A.

La clase de moduladores alostéricos del complejo de GABA-receptor GABA_A más ampliamente estudiada y caracterizada es una clase de compuestos conocidos como benzodiazepinas (un ejemplo de las cuales es el diazepam una 1,4-benzodiazepina, comúnmente conocido como Valium®) que interactúan con el sitio de la benzodiazepina (BZ) en el receptor GABA_A. Se requiere la posesión de una subunidad γ y de un tipo particular de subunidad α (1, 2, 3, o 5) para conferir sensibilidad a esta clase de compuestos.

Diazepam

Las benzodiazepinas no abren directamente el canal iónico, sino que modifican alostéricamente el receptor GABA_A después de la unión, potenciando el efecto de la unión del GABA cuando hay una concentración submáxima de GABA presente y aumentando por ello las respuestas de hiperpolarización e inhibición neuronal. Las benzodiazepinas producen efectos sistémicos que incluyen sedación, amnesia, relajación muscular, y ansiolisis. Por ello, estos compuestos son ampliamente usados como ansiolíticos, hipnóticos-sedantes, relajantes musculares, y anti-convulsivos. Las benzodiazepinas fueron la clase de fármacos más ampliamente prescritas durante los años 70 y, como grupo, tienen uno de los mayores índices terapéuticos. Aunque el sitio de unión del GABA_A se llama el sitio de la benzodiazepina, fármacos de otros tipos pueden modificar también alostéricamente al receptor en dicho sitio. Estos incluyen fármacos con estructuras de β-carbolina, imidazopiridina, y triazolopiridazina. Se cree que los compuestos que actúan como agonistas BZ en los subtipos α₁βγ₂, α₂βγ₂ ο α₃βγ₂ tendrán una actividad ansiolítica deseable. Tales moduladores del sitio de unión BZ del GABA_A son conocidos aquí como "agonistas del receptor GABA_A".

Sin embargo, aunque las 1,4-benzodiazepinas son una clase eficaz de ansiolíticos tienen el efecto secundario de la sedación a menudo no deseada. Se cree que al menos parte de la sedación no deseada producida por fármacos ansiolíticos conocidos que actúan a través del sitio de unión BZ está mediada por los receptores GABA_A que contienen la subunidad α_1 . Esto ha sido determinado principalmente a partir de los efectos presentados por los agentes hipnóticos bien estudiados Alpidem y Zolpidem que son agonistas selectivos del receptor GABA_A α_1 .

Por lo tanto con el fin de minimizar el efecto de sedación, a la vez que se mantiene la actividad ansiolítica efectiva, la investigación reciente se ha dirigido a encontrar agonistas del receptor GABA_A que interactúen más favorablemente con la subunidad α_2 y/o α_3 que con la subunidad α_1 .

Sumario de la invención

5

10

30

35

Se inició un programa de química medicinal dirigida, con el propósito de producir compuestos con mejor solubilidad, estabilidad metabólica, y eficacia.

En resumen, se determinó el perfil fisicoquímico y de estabilidad en las preparaciones microsómicas para cada compuesto por métodos convencionales. La estrategia usada para identificar los compuestos de interés fue como sigue. Los compuestos que presentaban mejor solubilidad y estabilidad eran ensayados entonces en cuanto a eficacia en la caja de luz/oscuridad, un modelo de ansiedad en ratón que se utilizó como el tamiz primario de eficacia. Los compuestos que funcionaron bien en el ensayo de luz/oscuridad inicial se evaluaron entonces en cuanto a los efectos sobre la actividad motora espontánea en ratones en un aparato modificado de campo abierto (oscuridad). Los compuestos que presentaron efectos secundarios sedantes no se siguieron ensayando. La evaluación *in vivo* de las propiedades ansiolíticas y sedantes de los compuestos permitió la identificación de los agonistas del receptor GABA_A y también de los compuestos ansiolíticos que interactuaban con otras dianas, tanto conocidos como nuevos.

La presente invención proporciona compuestos representados por la fórmula (If) o una de sus sales:

en la que

5

10

15

20

30

35

40

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfonilo, sulfinilo, y sulfonilo);

Y representa NR₃R₄;

R representa H o alquilo:

cada R' se selecciona independientemente de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquilo, alquinilo, alquinilo, ariloxi, aminoaciloxi, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heteroacilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxisulfonilamino, oxisulfonilamino, tio, tioacilo, y tioacilamino;

R₁ representa cicloalquilo, cicloalquenilo, arilo, heterociclilo, o heteroarilo;

25 R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, oxisulfonilo;

R₃ y R₄ representa cada uno independientemente alquilo, o junto con el átomo de N, heteroarilo que contiene N o heterociclilo que contiene N; y

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquenilo, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfonilamino, oxisulfinilamino, oxisulfinilamino, oxisulfonilamino, tio, tioacilo, y tioacilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquinilo, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterocicliloxi, oxiacilo, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-(alquil sustituido)amino, mono- y di-arilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, mono- y di-heteroarilo, heteroarilo y heterociclilo.

La presente invención proporciona también un compuesto de la fórmula (l') o una de sus sales;

$$R_1 \xrightarrow{X} \underbrace{P}_{E} \underbrace{Q}_{N} \underbrace{Q}_{R_2}$$
 (l')

en la que

A, E, y D se seleccionan independientemente de CR' (donde R' se selecciona de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alqueniloxi, alcoxi, alquilo, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiaciloxi, sulfinilamino, sulfonilamino, sulfonilamino, tio, tioacilo, y tioacilamino) o N, y en la que al menos uno de A, E, y D es N;

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, sulfinilo, y sulfonilo);

10 R representa H o alquilo;

5

R₁ representa cicloalquilo, cicloalquenilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, osulfinilo, o sulfonilo; y

Q representa heterociclilo que contiene N o heteroarilo que contiene N.

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alqueniloxi, alcoxi, alquilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterociclilo, heterocicliloxi, oxiacilo, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-(alquil sustituido)amino, mono- y di-arilamino, mono- y di-heteroarilamino, mono- y di-heterociclilamino, y aminas disustituidas asimétricas que tienen diferentes sustituyentes seleccionados de alquilo, arilo, heteroarilo y heterociclilo.

La presente invención proporciona también el uso en la fabricación de un medicamento para tratar trastornos del sistema nervioso central, de un compuesto de la fórmula (I) o una de sus sales farmacéuticamente aceptables;

$$R_1 \xrightarrow{X} E \xrightarrow{D} Q \xrightarrow{Q} Q$$

$$R_1 \xrightarrow{X} E \xrightarrow{N} R$$

$$R_2 \qquad (1)$$

30 en la que

35

A, E, y D se seleccionan independientemente de CR' (donde R' se selecciona de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiaciloxi, oxiaciloxi, oxiaciloxi, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino) o N, y en la que al menos uno de A, E, y D es N;

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, sulfinilo, y sulfonilo);

40 Y representa OR" (donde R" es H o alquilo) o NR₃R₄;

R representa H o alquilo;

R₁ representa cicloalquilo, cicloalquenilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfonilo, sulfinilo, o sulfonilo; y

45 R₃ y R₄ representa cada uno independientemente alquilo, o junto con el átomo de N, heteroarilo que contiene N o heterociclilo que contiene N; y

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquenilo, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, oxisulfinilamino, sulfinilamino, sulfinilamino, sulfonilo, sulfinilamino, tio, tioacilo, y tioacilamino, puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquinilo, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterocicliloxi, oxiacilo, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-larilamino, mono- y di-heteroarilamino, mono- y di-heterociclilamino, y aminas disustituidas asimétricas que tienen diferentes sustituyentes seleccionados de alquilo, arilo, heteroarilo y heterociclilo.

Descripción detallada de la invención

5

10

40

45

- La invención se basa en el descubrimiento de que los compuestos de la fórmula general I, como se ha descrito en el anterior Sumario de la invención tienen propiedades útiles como posibles ligandos para los receptores GABA_A y/o para otros receptores y dianas biológicas que producen un efecto ansiolítico. Tales compuestos tienen un potencial importante para el tratamiento de una variedad de trastornos del sistema nervioso central, y en particular los trastornos de ansiedad.
- "Alquilo" se refiere a grupos alquilo monovalentes que pueden ser de cadena lineal o ramificada y preferiblemente tienen de 1 a 10 átomos de carbono o más preferiblemente 1 a 6 átomos de carbono. Los ejemplos de tales grupos alquilo incluyen metilo, etilo, *n*-propilo, *iso*-propilo, *iso*-butilo, *n*-hexilo, y similares.
 - "Alquileno" se refiere a grupos alquilo divalentes que preferiblemente tienen de 1 a 10 átomos de carbono y más preferiblemente 1 a 6 átomos de carbono. Los ejemplos de tales grupos alquileno incluyen metileno (-CH₂-), etileno (-CH₂CH₂), y los isómeros de propileno (por ejemplo, -CH₂CH₂CH₂-y -CH(CH₃)CH₂-), y similares.
- "Arilo" se refiere a un grupo carbocíclico aromático insaturado que tiene un anillo único (por ejemplo fenilo) o múltiples anillos condensados (por ejemplo naftilo o antrilo), que tienen preferiblemente de 6 a 14 átomos de carbono. Los ejemplos de grupos arilo incluyen fenilo, naftilo y similares.
 - "Arileno" se refiere a un grupo arilo divalente en el que el grupo arilo es como se ha descrito antes.
 - "Ariloxi" se refiere al grupo aril-O- en el que el grupo arilo es como se ha descrito antes.
- "Arilalquilo" se refiere a grupos -alquileno-arilo que tienen preferiblemente de 1 a 10 átomos de carbono en el resto alquileno y de 6 a 10 átomos de carbono en el resto arilo. Son ejemplos de tales grupos arilalquilo, bencilo, fenetilo y similares.
 - "Arilalcoxi" se refiere al grupo arilalquil-O- en el que el grupo arilalquilo es como se ha descrito antes. Son ejemplos de tales grupos arilalcoxi, benciloxi y similares.
- "Alcoxi" se refiere al grupo alquil-O- en el que el grupo alquilo es como se ha descrito antes. Los ejemplos incluyen, metoxi, etoxi, *n*-propoxi, *iso*-propoxi, *n*-butoxi, *terc*-butoxi, *sec*-butoxi, *n*-pentoxi, *n*-hexoxi, 1,2-dimetilbutoxi, y similares.
 - "Alquenilo" se refiere a un grupo alquenilo monovalente que puede ser de cadena lineal o ramificada y que tiene preferiblemente de 2 a 10 átomos de carbono y más preferiblemente 2 a 6 átomos de carbono y que tiene al menos 1 y preferiblemente de 1-2 dobles enlaces, carbono a carbono. Los ejemplos incluyen etenilo (-CH=CH₂), *n*-propenilo (-CH₂CH=CH₂), *iso*-propenilo (-C(CH₃)=CH₂), but-2-enilo (-CH₂CH=CHCH₃), y similares.
 - "Alqueniloxi" se refiere al grupo alquenil-O- en el que el grupo alquenilo es como se ha descrito antes.
 - "Alquenileno" se refiere a grupos alquenilos divalentes que tienen preferiblemente de 2 a 8 átomos de carbono y más preferiblemente 2 a 6 átomos de carbono. Los ejemplos incluyen etenileno (-CH=CH-), y los isómeros de propenileno (por ejemplo, -CH₂CH=CH. y -C(CH₃)=CH-), y similares.
 - "Alquinilo" se refiere a grupos alquinilo que tienen preferiblemente de 2 a 10 átomos de carbono y más preferiblemente 2 a 6 átomos de carbono y que tienen al menos 1, y preferiblemente de 1-2 triples enlaces, carbono a carbono. Los ejemplos de grupos alquinilo incluyen etinilo (-C≡CH), propargilo (-CH₂C≡CH), pent-2-inilo (-CH₂C≡CCH₂-CH₃), y similares.
- 50 "Alquiniloxi" se refiere al grupo alquinil-O- en el que el grupo alquinilo es como se ha descrito antes.

- "Alquinileno" se refiere a los grupos alquinilos divalentes que tienen preferiblemente de 2 a 8 átomos de carbono y más preferiblemente 2 a 6 átomos de carbono. Los ejemplos incluyen etinileno (-C≡C-), propinileno (-CH₂-C≡C-), y similares.
- "Acilo" se refiere a grupos H-C(O)-, alquil-C(O)-, cicloalquil-C(O)-, aril-C(O)-, heteroaril-C(O)-y heterociclil-C(O)-, donde los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

5

35

50

- "Oxiacilo" se refiere a grupos HOC(O)-, alquil-OC(O)-, cicloalquil-OC(O)-, aril-OC(O)-, heteroaril-OC(O)-, beteroaril-OC(O)-, donde los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.
- "Amino" se refiere al grupo -NR"R" donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.
 - "Aminoacilo" se refiere al grupo -C(O)NR"R" donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.
- "Acilamino" se refiere al grupo -NR"C(O)R" donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo es como se describe en esta memoria.
 - "Aciloxi" se refiere a los grupos -OC(O)-alquilo, -OC(O)-arilo, -C(O)O-heteroarilo, y -C(O)O-heterociclilo donde alquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.
- "Aminoaciloxi" se refiere a los grupos -OC(O)NR"-alquilo, -OC(O)NR"-arilo, -OC(O)NR"-heteroarilo, y -OC(O)NR"-heteroarilo, y -OC(O)NR"-heteroarilo, y heterociclilo donde R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.
- "Oxiacilamino" se refiere a los grupos -NR"C(O)O-alquilo, -NR"C(O)O-arilo, -NR"C(O)O-heteroarilo, y NR"C(O)O-heteroarilo donde R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.
 - "Oxiaciloxi" se refiere a los grupos -OC(O)O-alquilo, -O-C(O)O-arilo, -OC(O)O-heteroarilo, y -OC(O)O-heteroarilo, donde alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo son como se describen en esta memoria.
- "Acilimino" se refiere a los grupos -C(NR")-R" donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo es como se describe en esta memoria.
 - "Aciliminoxi" se refiere a los grupos -O-C(NR")-R" donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo es como se describe en esta memoria.
 - "Oxiacilimino" se refiere a los grupos -C(NR")-OR" donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo es como se describe en esta memoria.
- "Cicloalquilo" se refiere a grupos alquilo cíclicos que tienen un único anillo cíclico o múltiples anillos condensados, preferiblemente incorporando 3 a 11 átomos de carbono. Dichos grupos cicloalquilo incluyen, a modo de ejemplo, estructuras de anillo simple tales como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclooctilo, y similares, o estructuras de anillos múltiples tales como adamantanilo, indanilo, 1,2,3,4-tetrahidronaftalenilo y similares.
- "Cicloalquenilo" se refiere a grupos alquenilo cíclicos que tienen un único anillo cíclico o múltiples anillos condensados, y al menos un punto de insaturación interna, preferiblemente incorporando 4 a 11 átomos de carbono.

 Los ejemplos de grupos cicloalquenilo adecuados incluyen, por ejemplo, ciclobut-2-enilo, ciclopent-3-enilo, ciclohex-4-enilo, ciclooct-3-enilo, indenilo y similares.
 - "Halo" o "halógeno" se refiere a fluoro, cloro, bromo y yodo.
 - "Heteroarilo" se refiere a un grupo heterocíclico aromático monovalente que cumple los criterios de Hückel para la aromaticidad (esto es contiene 4n + 2 electrones π) y preferiblemente tiene de 2 a 10 átomos de carbono y 1 a 4 heteroátomos seleccionados de oxígeno, nitrógeno, selenio, y azufre dentro del anillo (e incluye óxidos de azufre, selenio y nitrógeno). Dichos grupos heteroarilo pueden tener un único anillo (por ejemplo piridilo, pirrolilo o N-óxidos de los mismos o furilo) o múltiples anillos condensados (por ejemplo indolizinilo, benzoimidazolilo, cumarinilo,

quinolinilo, isoquinolinilo o benzotienilo). Se debe entender que cuando, por ejemplo, R_2 o R' es un heteroarilo opcionalmente sustituido que tiene uno o más heteroátomos en el anillo, el grupo heteroarilo puede estar conectado a la molécula central de los compuestos de la presente invención, mediante un enlace C-C o C-heteroátomo, en particular un enlace C-N.

"Heterociclilo" se refiere a un grupo monovalente saturado o insaturado que tiene un único anillo o múltiples anillos condensados, preferiblemente de 1 a 8 átomos de carbono y de 1 a 4 heteroátomos seleccionados de nitrógeno, azufre, oxígeno, selenio o fósforo dentro del anillo. El heteroátomo más preferido es el nitrógeno. Se debe entender que cuando, por ejemplo, R₂ o R' es un heterociclilo opcionalmente sustituido que tiene uno o más heteroátomos en el anillo, el grupo heterociclilo puede estar conectado a la molécula central de los compuestos de la presente invención, mediante un enlace C-C o C-heteroátomo, en particular un enlace C-N.

Ejemplos de grupos heterocicilio y heteroarilo incluyen, pero sin limitarse a ellos, oxazol, pirrol, imidazol, pirazol, piridina, pirazina, pirimidina, piridazina, indolizina, isoindol, indol, indazol, purina, quinolizina, isoquinolina, quinolina, ftalazina, naftilopiridina, quinoxalina, quinazolina, cinnolina, pteridina, carbazol, carbolina, fenantridina, acridina, fenantrolina, isotiazol, fenazina, isoxazol, isotiazol, fenoxazina, fenotiazina, imidazolidina, imidazolina, piperidina, piperazina, indolina, ftalimida, 1,2,3,4-tetrahidroisoquinolina, 4,5,6,7-tetrahidrobenzo[b]tiofeno, tiazol, tiadiazoles, oxadiazol, oxatriazol, tetrazol, tiazolidina, tiofeno, benzo[b]tiofeno, morfolino, piperidinilo, pirrolidina, tetrahidrofuranilo, triazol, y similares.

"Heteroarileno" se refiere a un grupo heteroarilo divalente en el que el grupo heteroarilo es como se ha descrito anteriormente.

"Heterociclileno" se refiere a un grupo heterociclilo divalente en el que el grupo heterociclilo es como se ha descrito anteriormente.

15

45

50

"Tio" se refiere a los grupos H-S-, alquil-S-, cicloalquil-S-, aril-S-, heteroaril-S-, y heterociclil-S-, donde alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

"Tioacilo" se refiere a los grupos H-C(S)-, alquil-C(S)-, cicloalquil-C(S)-, aril-C(S)-, heteroaril-C(S)-, y heterociclil-C(S)-, donde alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

"Oxitioacilo" se refiere a los grupos HO-C(S)-, alquilO-C(S)-, cicloalquilO-C(S)-, arilO-C(S)-, heteroarilO-C(S)-, y heterociclilO-C(S)-, donde alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

"Oxitioaciloxi" se refiere a los grupos HO-C(S)-O-, alquilO-C(S)-O-, cicloalquilO-C(S)-O-, arilO-C(S)-O-, heteroarilO-C(S)-O-, y heterociclilO-C(S)-O-, donde alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

"Fosforilamino" se refiere a los grupos -NR"-P(O)(R"")(OR"") donde R" representa H, alquilo, cicloalquilo, alquenilo, o arilo, R"" representa OR"" o es hidroxi o amino y R"" es alquilo, cicloalquilo, arilo o arilalquilo, donde alquilo, amino, alquenilo, arilo, cicloalquilo, y arilalquilo son como se describen en esta memoria.

"Tioaciloxi" se refiere a los grupos H-C(S)-O-, alquil-C(S)-O-, cicloalquil-C(S)-O-, aril-C(S)-O-, heteroaril-C(S)-O-, heteroaril-C(S)-O-, donde alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo son como se describen en esta memoria.

"Sulfinilo" se refiere a los grupos H-S(O)-, alquil-S(O)-, cicloalquil-S(O)-, aril-S(O)-, heteroaril-S(O)-, y heterociclil-S(O)-, donde alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

40 "Sulfonilo" se refiere a los grupos H-S(O)₂-, alquil-S(O)₂-, cicloalquil-S(O)₂-, aril-S(O)₂-, heteroaril-S(O)₂-, y heterociclil-S(O)₂-, donde alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo son como se describen en esta memoria.

"Sulfinilamino" se refiere a los grupos H-S(O)-NR"-, alquil-S(O)-NR"-, cicloalquil-S(O)-NR"-, aril-S(O)-NR"-, heteroaril-S(O)-NR"-, y heterociclil-S(O)-NR"-, donde R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Sulfonilamino" se refiere a los grupos $H-S(O)_2.NR$ "-, alquil- $S(O)_2.NR$ "-, cicloalquil- $S(O)_2.NR$ "-, heteroaril- $S(O)_2.NR$ "-, y heterociclil- $S(O)_2.NR$ "-, donde R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Oxisulfinilamino" se refiere a los grupos HO-S(O)-NR"-, alquilO-S(O)-NR"-, cicloalquilO-S(O)-NR"-, arilO-S(O)-NR"-, heteroarilO-S(O)-NR"-, y heterociclilO-S(O)-NR"-, donde R" es independientemente hidrógeno, alquilo, cicloalquilo,

arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Oxisulfonilamino" se refiere a los grupos HO-S(O)₂-NR"-, alquilO-S(O)₂-NR"-, cicloalquilO-S(O)₂-NR"-, arilO-S(O)₂-NR"-, heteroarilO-S(O)₂-NR"-, y heterociclilO-S(O)₂-NR"-, donde R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Aminotioacilo" se refiere a los grupos R"R"N-C(S)-, donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heteroarilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Tioacilamino" se refiere a los grupos H-C(S)-NR"-, alquil-C(S)-NR"-, cicloalquil-C(S)-NR"-, aril-C(S)-NR"-, heteroaril-C(S)-NR"-, y heterociclil-C(S)-NR"-, donde R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heterociclilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Aminosulfinilo" se refiere a los grupos R"R"N-S(O)-, donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heteroarilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

"Aminosulfonilo" se refiere a los grupos R"R"N-S(O)₂₋, donde cada R" es independientemente hidrógeno, alquilo, cicloalquilo, arilo, heteroarilo, y heteroarilo y donde cada uno de los grupos alquilo, cicloalquilo, arilo, heteroarilo y heterociclilo es como se describe en esta memoria.

En esta memoria descriptiva "opcionalmente sustituido" significa que un grupo puede estar o no estar adicionalmente sustituido o fusionado (de manera que forme un grupo policíclico condensado) con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquinilo, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterociclilo, heterocicliloxi, oxiacilo, oxima, oxima éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y di-alquilamino, mono- y di-(alquil sustituido)amino, mono- y di-arilamino, mono- y diheteroarilamino, mono- y di-heterociclil- amino, y aminas asimétricas di-sustituidas que tienen diferentes sustituyentes seleccionados de alquilo, arilo, heteroarilo y heterociclilo, y similares, y puede incluir también un enlace a un material sólido de soporte, (por ejemplo, sustituido sobre una resina polimérica). Por ejemplo, un grupo "amino opcionalmente sustituido" puede incluir residuos de aminoácidos y péptidos.

Los compuestos preferidos se representan por la fórmula (If):

5

15

35

40

$$\begin{array}{c|c} R_1 & X & P_1 & O & O \\ \hline R_1 & N & N & R \\ \hline R_2 & & & & & & & & & & & & & \\ \end{array}$$
 (If)

en la que R, R₁ - R₄, R', Y y X son como se han descrito antes para los compuestos de la fórmula (I).

En las realizaciones anteriores R' en CR' incluye los siguientes grupos:

hidrógeno, halógeno, ciano, nitro, y amino

grupo alquilo, preferiblemente metilo y etilo;

grupo alquilo sustituido, preferiblemente 1-hidroxietilo, 1-tioetilo, metoxiiminometilo, etoxiiminometilo, 1-(hidroxiimino)etilo, 1-(hidroxiimino)propilo, 1-hidrazinoetilo, 1-hidrazinopropilo, hidroxiiminometilo, 2-oxopropilo, 2-oxobutilo, 3-oxopentilo, nitrometilo, 1-nitrometilo, y 2-nitroetilo;

grupo arilo, preferiblemente fenilo y naftilo;

grupo arilo sustituido, preferiblemente halofenilo, aminofenilo, carboxifenilo, hidroxifenilo, cianofenilo, nitrofenilo, trihaloalquilfenilo, y alquilfenilo.

grupo acilo, preferiblemente formilo acetilo, propionilo, benzoilo (opcionalmente sustituido con metilo, metoxi, halógeno, nitro, trifluorometilo o ciano);

45 grupo alcoxi, preferiblemente metoxi y etoxi;

grupo oxiacilo, preferiblemente metoxicarbonilo, etoxicarbonilo, propoxicarbonilo, butiloxicarbonilo, isobutiloxicarbonilo;

grupo aciloxi, preferiblemente acetoxi y propioxi;

5

10

15

25

grupo arilalquilo sustituido, preferiblemente 1-hidroxibencilo, y 1-tiobencilo;

grupo sulfinilo, preferiblemente metilsulfinilo, etilsulfinilo, bencenosulfinilo (opcionalmente sustituido con metilo, metoxi, halógeno, nitro, trifluorometano o ciano), metoxisulfinilo, etoxisulfinilo;

grupo sulfonilo, preferiblemente metilsulfonilo, etilsulfonilo, bencenosulfonilo (opcionalmente sustituido con metilo, metoxi, halógeno, nitro, trifluorometano o ciano), metoxicarbo, trifluorometano;

grupo oxiacilamino, preferiblemente metoxicarbonilamido, y etoxicarbonilamido;

grupo oxitioacilo, preferiblemente metoxitiocarbonilo y etoxitiocarbonilo;

grupo tioaciloxi, preferiblemente tionoacetoxi y tionopropionoxi;

grupo sulfinilamino, preferiblemente metilsulfinilamino, etilsulfinilamino, y bencenosulfinilamino (opcionalmente sustituido con metilo, metoxi, halógeno, nitro, trifluorometano o ciano);

grupo amino, preferiblemente N-metilamino, y N,N'-dimetilamino;

grupos amino sustituido, preferiblemente residuos de L-valina, D-valina, L-alanina, D-alanina, ácido aspártico, y alanilserina;

grupo sulfonilamino, preferiblemente metilsulfonilamino, etilsulfonilamino y benceno-sulfonilamino (opcionalmente sustituido con metilo, metoxi, halógeno, nitro, trifluorometano o ciano);

grupo tio sustituido, preferiblemente alquiltio;

20 grupo oxisulfinilamino, preferiblemente metoxisulfinilamino y etoxisulfinilamino;

grupo oxisulfonilamino, preferiblemente metoxisulfonilamino y etoxisulfonilamino;

grupo alquenilo opcionalmente sustituido, preferiblemente, 1-propenilo, vinilo, nitrovinilo, ciano vinilo, o trifluorovinilo y estirilo (opcionalmente sustituido con metilo, metoxi, halógeno, nitro, trifluorometano o ciano); y

grupo alquinilo, preferiblemente 1-propinilo, etinilo o trimetilsililetinilo.

Más preferiblemente, cuando está presente, CR' es CH.

En una realización preferida Y es NR^3R^4 . En una realización preferida ambos R_3 y R_4 se seleccionan cada uno independientemente de alquilo C_{1-3} opcionalmente sustituido.

En otra realización preferida Y es NR³R⁴ donde R₃ y R₄ junto con el átomo de N, representan heteroarilo que contiene N o heterociclilo que contiene N.

Por consiguiente, en una realización aún más preferida, los compuestos de la presente invención se representan por la fórmula (I') o sales de la misma

$$R_1 \xrightarrow{X} E \xrightarrow{Q} Q \qquad (1')$$

en la que A, E, y D se seleccionan independientemente de CR' (donde R' se selecciona de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo; fosfono, fosforilamino, fosfinilo, sulfo, trihalometanotio, trihalometoxi, acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquilo, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arila, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino) o N, y en la que al menos uno de A, E y D es N;

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heterociclilo, heterociclilo, oxisulfinilo, oxisulfinilo, y sulfinilo, sulfonilo);

R representa H o alquilo;

R₁ representa cicloalquilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfonilo, sulfinilo, o sulfonilo; y

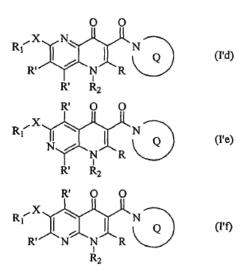
5 Q representa heterociclilo que contiene N o heteroarilo que contiene N,

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alqueniloxi, alcoxi, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterociclilo, heterocicliloxi, oxiacilo, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, mono- y di-heteroariloxi, heterociclilo.

En una realización preferida dos de A, E y D son N y el otro CR'. Por lo tanto, los compuestos preferidos de la fórmula (l') se representan por las fórmulas (l'a), (l'b), y (l'c):

$$\begin{array}{c|c} R_1 & N & Q & \\ \hline R' & N & R & Q & \\ \hline R_2 & & R_2 & \\ \end{array} \hspace{1cm} (I'a)$$

$$R_1 \xrightarrow{X} \xrightarrow{N} \xrightarrow{Q} R \xrightarrow{Q} Q \qquad (I'b)$$


20

10

15

donde R, R₁, Q, R' y X son como se han definido antes.

En una realización más preferida solamente uno de A, E, y D es N y los otros dos son independientemente CR'. En consecuencia, los compuestos preferidos se representan por las fórmulas (l'd), (l'e), y (l'f):

donde R, R₁, Q, R' y X son como se han definido antes.

Preferiblemente, y con respecto a los compuestos de la fórmula (l'), Q representa heterociclilo que contiene N opcionalmente sustituido. Más preferiblemente, Q representa un heterociclilo que contiene N seleccionado de morfolinilo, piperidilo, piperazinilo, pirrolidinilo, pirazolinilo, pirazolinilo, imidazolinilo o indolinilo. Lo más preferiblemente Q representa morfolinilo.

Para los compuestos de las fórmulas (I) y (I') preferiblemente X es NR" donde R" se selecciona de hidrógeno, alquilo C_{1-3} , bencilo, o acetilo. Más preferiblemente X es NH.

Para los compuestos de las fórmulas (I) y (I') preferiblemente R es H o alquilo C₁₋₆. Más preferiblemente R es hidrógeno o metilo y aún más preferiblemente hidrógeno.

Preferiblemente para los compuestos de las fórmulas (I) y (I'), R_1 se selecciona de alquilo opcionalmente sustituido, cicloalquilo opcionalmente sustituido. Los sustituyentes preferidos incluyen acilo opcionalmente sustituido (por ejemplo, fenilacilo opcionalmente sustituido o alquilacilo opcionalmente sustituido), arilo opcionalmente sustituido, halógeno, COON, NH_2 , mono o dialquilamino o CF_3 . Más preferiblemente R_1 es cicloalquilo C_5 . C_7 benzofusionado (donde el anillo bencénico puede estar opcionalmente sustituido). Lo más preferiblemente, R_1 es indanilo o 1,2,3,4-tetrahidronaftalenilo.

Para los compuestos de las fórmulas (I) y (I') preferiblemente R_2 es hidrógeno, alquilo C_{1-6} , bencilo o acetilo. Más preferiblemente R_2 es alquilo C_{1-3} .

Por consiguiente, en una realización aún más preferida la invención proporciona compuestos de las fórmulas (l'd), (l'e), y (l'f) o sales de los mismos, donde Q representa heterociclilo que contiene N, X representa NR" (donde R" se selecciona de hidrógeno, alquilo C₁₋₃, bencilo o acetilo), R es hidrógeno, R₁ representa cicloalquilo opcionalmente sustituido o cicloalquenilo opcionalmente sustituido, R₂ representa alquilo C₁₋₃ y cada R' es hidrógeno.

Los compuestos de la presente invención se pueden preparar según el Esquema 1 que sigue:

25

5

10

15

20

Esquema 1

10

$$\begin{array}{c} R_1 \times D \\ R_1 \times D \\ R_2 \times D \\ R_3 \times D \\ R_4 \times D \\ R_4 \times D \\ R_5 \times R \\ \end{array}$$

$$\begin{array}{c} CO_2Et \\ R_2L \\ R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} CO_2Et \\ R_2L \\ R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} CO_2Et \\ R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} CO_2Et \\ R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} CO_2Et \\ R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} R_1 \times D \\ R_2 \times R \\ \end{array}$$

$$\begin{array}{c} R_1 \times D \\ R_2 \times R \\ \end{array}$$

En el Esquema anterior, preferiblemente solamente uno de A, E, o D es N.

Como se muestra en el Esquema 1 un heteroarilo que contiene N sustituido con amino (por ejemplo una 2-sustituida-5-amino-piridina) se puede calentar en presencia de malonato de dietil-etoximetileno en un disolvente adecuado (por ejemplo éter dietílico) para obtener el malonato de dietil-aminometileno deseado.

Este producto puede ser ciclado entonces a temperaturas por encima de 200 °C (por ejemplo en éter difenílico) para obtener el producto cerrado en anillo (donde Y es OEt). Por hidrólisis del éster etílico en condiciones estándar se puede obtener el correspondiente ácido carboxílico. Alternativamente cuando se desea preparar compuestos en los que R₂ es distinto de H, se puede hacer reaccionar el producto cerrado en anillo con un grupo electrófilo apropiado (por ejemplo alquilación con un haluro de alquilo) en condiciones estándar.

El acoplamiento del ácido con HNR₄R₃ se puede alcanzar en condiciones típicas de acoplamiento de péptidos. Por ejemplo, el ácido carboxílico se puede convertir inicialmente en un éster activado con cloroformiato de etilo o HBTU en presencia de una base no nucleófila adecuada (por ejemplo trietilamina, base de Hünigs, etc).

Alternativamente se pueden producir otros grupos en los que Y es OR" por metodología estándar de formación de ésteres con un alcohol (R"OH) y un ácido adecuado.

Otro método para los compuestos de la presente invención se detalla en el Esquema 2:

Esquema 2

5

10

30

Como se muestra en el Esquema 2 un heteroarilo que contiene N sustituido con carboxi (por ejemplo un ácido nicotínico 2,5-disustituido) se puede convertir en el éster malonato por reacción con cloruro de tionilo y etilmalonato de potasio en condiciones estándar. El grupo L representado en el Esquema 2 representa cualquier grupo saliente adecuado que puede ser halógeno, metoxi, tosilato, mesilato, etc. El éster malonato se puede hacer reaccionar con ortoformiato de trietilo en ácido acético seguido por la adición de una amina nucleófila (HNR2) para obtener la etilenamina que posteriormente puede ser ciclada o promovida para ciclar (por ejemplo en presencia de una base suave (por ejemplo K_2CO_3) para obtener el producto cerrado en anillo. La adición del grupo K_1 se puede conseguir mediante química de sustitución nucleófila con un nucleófilo eficaz por ejemplo K_1 0 nucleo ser introducido utilizando la química de acoplamiento catalizado con paladio. En consecuencia, Z puede ser un grupo saliente basado en oxígeno (o un precursor del mismo) tal como un tosilato o mesilato, o un halógeno por ejemplo, K_1 1, K_2 2, K_3 3, K_4 3, K_4 4, K_5 4, K_5 5, K_5 6, K_5 6, K_5 7, K_5 8, K_5 8, K_5 8, K_5 8, K_5 9, K_5 9

En el Esquema 2 Z puede ser alternativamente NO₂. En las etapas finales de la síntesis (y preferiblemente después de la etapa de cierre del anillo) el grupo NO₂ se puede reducir a NH₂ con el uso de, por ejemplo, níquel de Raney/H₂. El correspondiente grupo NH₂ se puede hacer reaccionar con RL' (L' es un grupo saliente) para producir compuestos en los que -XR₁ es -NHR₁.

Se puede apreciar entonces que la introducción del grupo X-R₁ puede tener lugar en cualquier etapa conveniente durante el proceso sintético y que esto se aplica a las dos estrategias representadas en los Esquemas 1 y 2.

La preparación de heteroarilos que contienen N di- y tri-sustituidos como materiales de partida en los anteriores procedimientos sintéticos se puede llevar a cabo utilizando la química convencional (véase por ejemplo, D. T. Davies, Aromatic Heterocyclic Chemistry, 1993, Oxford Press, New York). Muchos de tales compuestos de partida han sido descritos también en las publicaciones científicas.

Otros compuestos de las fórmulas I y I' se pueden preparar mediante la adición, separación o modificación de sustituyentes existentes. Esto se puede conseguir utilizando técnicas estándar para la inter-conversión de grupos funcionales que son bien conocidas en la industria, tales como las descritas en "Comprehensive organic transformations: a guide to functional group preparations" by Larock R. C., New York, VCH Publishers, Inc. 1989.

Son ejemplos de inter-conversiones de grupos funcionales: $-C(O)NR^*R^{**}$ a partir de $-CO_2CH_3$ calentando con o sin cianuro metálico catalítico, por ejemplo NaCN, y HNR $^*R^{**}$ en CH $_3$ OH; -OC(O)R a partir de -OH con por ejemplo, CIC(O)R en piridina; $-NC(S)NR^*R^{**}$ a partir de -NHR con un isotiocianato de alquilo o ácido tiociánico; $-NRC(O)OR^*$ a partir de -NHR por tratamiento con un isocianato, por ejemplo HN=C=O o RN=C=O; $-NRC(O)R^*$ a partir de -NHR por tratamiento con CIC(O)R * en piridina; $-C(-NR)NR^*R^{**}$ a partir de $-C(NR^*R^{**})SR$ con $H_3NR^*OAc^-$ calentando en alcohol; $-C(NR^*R^{**})SR$ a partir de $-C(-NR^*R^{**})SR$ a partir de $-C(-NR^*R^{**})SR$

C(S)NR*R** con R-I en un disolvente inerte, por ejemplo acetona; -C(S)NR*R** (donde R* o R** no es hidrógeno) a partir de -C(S)NH₂ con HNR*R**; -C(=NCN)-NR*R** a partir de -C(=NR*R**)-SR con NH₂CN calentando en alcohol anhidro, alternativamente a partir de -C(=NH)-NR*R** por tratamiento con BrCN y NaOEt en EtOH; -NR-C(=NCN)SR a partir de -NHR* por tratamiento con (RS)₂C=NCN; -NR**SO₂R a partir de -NHR* por tratamiento con CISO₂R calentando en piridina; -NR*C(S)R a partir de -NR*C(O)R por tratamiento con reactivo de Lawesson [2,4-bis(4-metoxifenil)-1,3,2,4-ditiadifosfetano-2,4-disulfuro]; -NRSO₂CF₃ a partir de -NHR con anhídrido tríflico y base, -CH(NH₂)CHO a partir de -CH(NH₂)C(O)OR* con Na(Hg) y HCl/EtOH; -CH₂C(O)OH a partir de -C(O)OH por tratamiento con SOCl₂ después CH₂N₂ después H₂O/Ag₂O; -C(O)OH a partir de -CH₂C(O)OCH₃ por tratamiento con PhMgX/HX después anhídrido acético después CrO₃; R-OC(O)R* a partir de RC(O)R* por R**CO₃H; -CCH₂OH a partir de -C(O)OR* con Na/R*OH; -CHCH₂ a partir de -CH₂CH₂OH por la reacción de Chugaev; -NH₂ a partir de -C(O)OH por la reacción de Curtius; -NH₂ a partir de -C(O)NHOH con TsCl/base y después H₂O; -CHC(O)CHR a partir de -CHCHOHCHR utilizando el reactivo de Dess-Martin Periodinane o CrO₃/H₂SO₄ acuoso/acetona; -C₆H₅CHO a partir de -C₆H₅CH₃ con -CrO₂Cl₂; -CHO a partir de -CN con SnCl₂/HCl; -CN a partir de -C(O)NHR con PCl₅; -CH₂R a partir de -C(O)R con N₂H₄/KOH.

10

20

25

30

35

40

45

50

Durante las reacciones descritas antes puede ser necesario que varios de los restos sean protegidos. Son bien conocidos en la industria los grupos protectores adecuados y han sido descritos en muchas referencias tales como Protecting Groups in Organic Synthesis, Greene T W, Wiley-Interscience, New York, 1981.

Sin querer limitarse a la teoría, se cree que los compuestos de la presente invención son agonistas del receptor $GABA_A$ que interactúa preferencialmente o más favorablemente con la subunidad α 2 y/o la subunidad α 3 que con la α 1, aunque sus efectos puedan estar mediados por la interacción con otras biomoléculas.

Los compuestos de la presente invención se pueden usar en el tratamiento de una variedad de trastornos del sistema nervioso central.

Tales trastornos incluyen trastornos de ansiedad, tales como trastorno de pánico con o sin agorafobia, agorafobia sin historia de trastorno de pánico, fobias a animales y otras fobias incluyendo fobias sociales, trastorno obsesivo-compulsivo, trastornos de estrés incluyendo estrés post-traumático y trastorno de estrés agudo, y trastorno de ansiedad generalizada o inducida por sustancias; neurosis; convulsiones; migraña; trastornos depresivo o bipolar, por ejemplo trastorno depresivo de episodio único o trastorno depresivo mayor recurrente, trastorno distímico, trastornos maniacos bipolar I y bipolar II, y trastorno ciclotímico; trastornos psicóticos incluyendo esquizofrenia; neurodegeneración producida por isquemia cerebral; trastorno de hiperactividad y déficit de atención; síndrome de Tourette; trastornos del habla, incluyendo tartamudez; y trastornos del ritmo circadiano, por ejemplo en sujetos que sufren de desfase de horario (*jet lag*) o de trabajo a turnos.

Otros trastornos para los que los compuestos de la invención pueden ser beneficiosos incluyen el dolor y la nocicepción; emesis, incluyendo emesis aguda, retrasada y anticipatoria, en particular la emesis inducida por quimioterapia o radiación, así como los mareos de viaje, y náuseas y vómitos post-operatorios; trastornos de alimentación incluyendo anorexia nerviosa y bulimia nerviosa; síndrome premenstrual; espasmo o parálisis muscular, por ejemplo en pacientes parapléjicos; trastornos de oídos, incluyendo tinnitus y deficiencias auditivas relacionadas con la edad; incontinencia urinaria; y los efectos de abuso o dependencia de sustancias, incluyendo la abstinencia del alcohol. Los compuestos de la invención pueden ser beneficiosos para mejorar la cognición, por ejemplo en sujetos que sufren de condiciones de demencia tales como la enfermedad de Alzheimer; y pueden ser eficaces también como pre-medicación antes de la anestesia o procedimientos menores tales como endoscopia, incluyendo endoscopia gástrica.

La invención proporciona también el uso de un compuesto de las fórmulas (I) y (I') en la fabricación de un medicamento para tratar trastornos del sistema nervioso central.

Se proporciona también un método de tratamiento de los trastornos del sistema nervioso central que comprende la administración de una cantidad eficaz de al menos un compuesto de la fórmula (I) o (I') a un sujeto que lo necesite.

Los compuestos de la invención pueden ser particularmente útiles en terapia de combinación, por ejemplo combinando el tratamiento con otros tratamientos quimioterapéuticos (por ejemplo relajantes musculares, anticonvulsivos, hipnóticos, anestésicos, analgésicos u otros ansiolíticos, etc).

Se debe entender que los compuestos de la invención se pueden usar en el tratamiento de cualquier enfermedad que se pueda mejorar por la modulación del complejo del receptor GABA_A.

Los compuestos de la invención se administran al sujeto en una cantidad eficaz de tratamiento. Como se usa aquí, se pretende que una cantidad eficaz de tratamiento incluya al menos parcialmente la obtención del efecto deseado, o el retraso del inicio, o la inhibición de la evolución de la enfermedad, o parar o invertir conjuntamente el inicio o la evolución de la enfermedad particular o trastorno a tratar.

Como se usa aquí, el término "cantidad eficaz" se refiere a una cantidad de compuesto que, cuando se administra según un régimen de dosificación deseado, proporciona la actividad terapéutica deseada. La administración puede

tener lugar a intervalos de minutos, horas, días, semanas, meses o años o de forma continua a lo largo de cualquiera de estos períodos. Las dosis adecuadas están dentro del intervalo de aproximadamente 0,1 ng por kg de peso corporal a 1 g por kg de peso corporal por dosis. La dosis puede estar en el intervalo de 1 µg a 1 g por kg de peso corporal por dosis, tal como en el intervalo de 1 mg a 1 g por kg de peso corporal por dosis. En una realización, la dosis puede estar en el intervalo de 1 mg a 500 mg por kg de peso corporal por dosis. En otra realización, la dosis puede estar en el intervalo de 1 mg a 250 mg por kg de peso corporal por dosis. En otra realización preferida, la dosis puede estar en el intervalo de 1 mg a 100 mg por kg de peso corporal por dosis, tal como hasta 50 mg por kg de peso corporal por dosis.

Las cantidades de dosis adecuadas y los regímenes posológicos pueden ser determinados por el médico asistente y pueden depender de la afección particular a tratar, de la gravedad de la afección así como en general de la edad, salud y peso del sujeto.

15

El ingrediente activo se puede administrar en una dosis única o en una serie de dosis. Aunque es posible que el ingrediente activo se administre solo, es preferible que se presente como una composición, preferiblemente como una composición farmacéutica. La formulación de dichas composiciones es bien conocida por los expertos en la técnica. La composición puede contener algunos vehículos, diluyentes o excipientes adecuados. Estos incluyen todos los disolventes, medios de dispersión, cargas, vehículos sólidos, recubrimientos, agentes antifúngicos y antibacterianos, agentes de penetración dérmica, tensioactivos, agentes isotónicos y de absorción convencionales y similares. Se entenderá que las composiciones de la invención pueden incluir también otros agentes suplementarios fisiológicamente activos.

- El vehículo debe ser farmacéuticamente "aceptable" en el sentido de ser compatible con los otros ingredientes de la composición y no ser perjudicial para el sujeto. Las composiciones incluyen aquellas que son adecuadas para administración oral, rectal, nasal, tópica (incluyendo bucal y sublingual), vaginal o parental (incluyendo subcutánea, intramuscular, intravenosa e intradérmica). Las composiciones se pueden presentar convenientemente en formas farmacéuticas unitarias y se pueden preparar por métodos bien conocidos en la técnica de la farmacia. Tales métodos incluyen la etapa de asociar el ingrediente activo con el vehículo que está constituido por uno o más ingredientes auxiliares. En general, las composiciones se preparan asociando de modo uniforme e íntimo el ingrediente activo con vehículos líquidos o vehículos sólidos finamente divididos o ambos, y después si es necesario dando forma al producto.
- Las composiciones de la presente invención adecuadas para administración oral se pueden presentar como unidades discretas tales como cápsulas, sobres o comprimidos que contienen cada uno una cantidad predeterminada del ingrediente activo; como un polvo o gránulos; como una solución o una suspensión en un líquido acuoso o no acuoso; o como una emulsión líquida de aceite en agua o una emulsión líquida de agua en aceite. El ingrediente activo se puede presentar también como un bolo, electuario o pasta.
- Un comprimido puede ser preparado por compresión o por moldeo, opcionalmente con uno o más ingredientes auxiliares. Los comprimidos por compresión se pueden preparar comprimiendo en una máquina adecuada el ingrediente activo en una forma fluida tal como un polvo o gránulos, opcionalmente mezclado con un aglutinante (por ejemplo, un diluyente inerte, conservante, disgregante (por ejemplo glicolato de almidón sódico, polivinil pirrolidona reticulada, carboximetilcelulosa sódica reticulada) un agente tensioactivo o dispersante. Los comprimidos por moldeo se pueden preparar moldeando en una máquina adecuada una mezcla del compuesto pulverizado humedecido con un diluyente líquido inerte. Los comprimidos se pueden recubrir o ranurar de forma opcional y se pueden formular de manera que proporcionen la liberación lenta o controlada del ingrediente activo mediante el uso, por ejemplo, de hidroxipropilmetilcelulosa en proporciones variables para proporcionar el perfil de liberación deseado. Los comprimidos se pueden preparar opcionalmente con una cubierta entérica, para proporcionar la liberación en otras partes del intestino distintas del estómago.
- Las composiciones adecuadas para administración tópica en la boca incluyen comprimidos para chupar que comprenden el ingrediente activo en una base aromatizada, usualmente sacarosa y goma arábiga o goma tragacanto; pastillas que comprenden el ingrediente activo en una base inerte tal como gelatina y glicerina, o sacarosa y goma arábiga; y colutorios que comprenden el ingrediente activo en un vehículo líquido adecuado.
- Las composiciones adecuadas para administración tópica a la piel pueden comprender los compuestos disueltos o suspendidos en un vehículo o base adecuado y pueden estar en la forma de lociones, gel, cremas, pastas, pomadas y similares. Los vehículos adecuados incluyen aceite mineral, propilenglicol, polioxietileno, polioxipropileno, cera emulsionante, monoestearato de sorbitán; polisorbato 60, cera de ésteres cetílicos, alcohol cetearílico, 2-octildodecanol, alcohol bencílico y agua. Para administrar los compuestos de la invención también se pueden usar parches transdérmicos.
- Las composiciones para administración rectal se pueden presentar como supositorios con una base adecuada que comprende, por ejemplo, manteca de cacao, glicerina, gelatina o polietilenglicol.

Las composiciones adecuadas para administración vaginal se pueden presentar como pesarios, tampones, cremas, geles, pastas, espumas o formulaciones para pulverización que contienen en adición al ingrediente activo vehículos de los tipos que son conocidos como apropiados en la técnica.

Las composiciones adecuadas para administración parenteral incluyen soluciones inyectables estériles isotónicas acuosas y no acuosas que pueden contener anti-oxidantes, tampones, bactericidas y solutos que hacen a la composición isotónica con la sangre del posible receptor; y suspensiones estériles acuosas y no acuosas que pueden incluir agentes de suspensión y agentes espesantes. Las composiciones se pueden presentar en envases sellados de dosis unitarias o de multi-dosis, por ejemplo, ampollas y viales, y se pueden conservar en condiciones de secado por congelación (liofilizadas) que requieren solamente la adición del vehículo líquido estéril, por ejemplo agua para inyectables, inmediatamente antes de su uso. Las soluciones y suspensiones inyectables extemporáneas se pueden preparar a partir de polvos, gránulos y comprimidos estériles del tipo previamente descrito.

5

10

30

35

40

50

55

Las composiciones de dosis unitarias preferidas son aquellas que contienen una dosis o unidad diaria, una sub-dosis diaria, como se ha descrito antes, o una fracción apropiada de la misma, del ingrediente activo.

Se debe entender que en adición a los ingredientes activos particularmente mencionados antes, las composiciones 15 de esta invención pueden incluir otros agentes convencionales en la técnica teniendo en cuenta el tipo de composición en cuestión, por ejemplo, aquellas que son adecuadas para administración oral pueden incluir agentes adicionales tales como aglutinantes, edulcorantes, espesantes, agentes aromatizantes, agentes disgregantes, agentes de recubrimiento, conservantes, lubricantes y/o agentes retardantes. Los edulcorantes adecuados incluyen sacarosa, lactosa, glucosa, aspartamo o sacarina. Los agentes disgregantes adecuados incluyen almidón de maíz, 20 metilcelulosa, polivinilpirrolidona, goma xantano, bentonita, ácido algínico o agar. Los agentes aromatizantes adecuados incluyen esencia de menta, esencia de gaulteria, esencia de cerezas, de naranja o de frambuesa. Los agentes de recubrimiento adecuados incluyen polímeros o copolímeros de ácido acrílico y/o ácido metacrílico y/o sus ésteres, ceras, alcoholes grasos, zeína, shellac o gluten. Los conservantes adecuados incluyen benzoato de sodio, vitamina E, alfa-tocoferol, ácido ascórbico, metilparabeno, propilparabeno o bisulfito de sodio. Los lubricantes 25 adecuados incluyen estearato de magnesio, ácido esteárico, oleato de sodio, cloruro de sodio o talco. Los agentes retardantes adecuados incluyen monoestearato de glicerilo o diestearato de glicerilo.

Preferiblemente, los compuestos de la presente invención pueden ser administrados a un sujeto como una sal farmacéuticamente aceptable. Se debe apreciar sin embargo que las sales no farmacéuticamente aceptables también están dentro del alcance de la presente invención ya que pueden ser útiles como intermedios en la preparación de sales farmacéuticamente aceptables. Las sales farmacéuticamente aceptables adecuadas incluyen, pero sin limitarse a ellas, sales de ácidos inorgánicos farmacéuticamente aceptables tales como los ácidos clorhídrico, sulfúrico, fosfórico, nítrico, carbónico, bórico, sulfámico, y bromhídrico, o sales de ácidos orgánicos farmacéuticamente aceptables tales como los ácidos acético, propiónico, butírico, tartárico, maleico, hidroximaleico, fumárico, maleico, cítrico, láctico, múcico, glucónico, benzoico, succínico, oxálico, fenilacético, metanosulfónico, toluenosulfónico, bencenosulfónico, salicílico, sulfanílico, aspártico, glutámico, edético, esteárico, palmítico, oleico, láurico, pantoténico, tánico, ascórbico y valérico.

Las sales de base incluyen, pero sin limitarse a ellas, las formadas con cationes farmacéuticamente aceptables, tales como sodio, potasio, litio, calcio, magnesio, amonio y alquilamonio. En particular, la presente invención incluye dentro de su alcance sales catiónicas por ejemplo sales de sodio o potasio, o ésteres de alquilo (por ejemplo metilo, etilo) del grupo fosfato.

Los grupos que contienen nitrógeno básico pueden ser cuaternizados con agentes tales como haluros de alquilo inferior, tales como cloruros, bromuros y yoduros de metilo, etilo, propilo, y butilo; sulfatos de dialquilo como sulfato de dimetilo y dietilo; y otros.

Los compuestos de la invención pueden estar en forma cristalina como compuestos libres o como solvatos (por ejemplo hidratos) y se pretende que ambas formas estén dentro del alcance de la presente invención. Los métodos de solvatación son conocidos en general dentro de la técnica.

Se reconocerá también que los compuestos de la invención pueden tener centros asimétricos y son por tanto capaces de existir en más de una forma estereoisómera. La invención se refiere por lo tanto también a compuestos en forma isomérica en uno o más centros asimétricos sustancialmente pura por ejemplo, mayor que aproximadamente 90 % ee, tal como aproximadamente 95 % o 97 % ee o mayor que 99 % ee, así como las mezclas, incluyendo las mezclas racémicas, de los mismos. Tales isómeros se pueden preparar por síntesis asimétrica, por ejemplo utilizando intermedios quirales, o se pueden resolver las mezclas por métodos convencionales, por ejemplo, cromatografía, o por el uso de un agente de resolución.

Además, dependiendo del modelo de sustitución los compuestos de la presente invención pueden ser capaces de sufrir tautomerismo. Por lo tanto, todos los posibles tautómeros de un compuesto de la presente invención están dentro del alcance y espíritu de la invención.

Los métodos y procesos sintéticos descritos aquí para preparar los compuestos de la presente invención son adecuados para las técnicas sintéticas de fase sólida y/o de la química combinatoria para producir compuestos individuales o colecciones de compuestos.

Tradicionalmente, los fármacos candidatos han sido sintetizados individualmente, siendo esto un proceso laborioso y que consume mucho tiempo incluso si la secuencia sintética contiene sólo unas etapas y se tienen que evaluar grandes números de compuestos en cuanto a su actividad biológica. La síntesis combinatoria es una técnica emergente para efectuar la generación de grandes colecciones de moléculas y ha sido explotada satisfactoriamente en la síntesis y evaluación de colecciones de compuestos orgánicos pequeños. Estas colecciones y sus sustratos de partida pueden existir como moléculas en solución libre o preferiblemente, ligadas a un soporte sólido, por ejemplo, perlas, pernos, placas de microtitulación (pocillos) o microchips que pueden ser sustrato polimérico, vidrio, sílice u otro sustrato adecuado. Se puede alcanzar la diversidad química mediante síntesis paralelas o de escisión (escisión y mezcla) en las que cada etapa tiene el potencial para obtener una multitud de compuestos.

5

10

15

20

25

30

35

40

45

50

55

Los colecciones de fase en solución se pueden preparar por síntesis paralelas cuando se sintetizan diferentes compuestos en vasos de reacción separados en paralelo, a menudo de forma automática. Alternativamente, la unión de los componentes individuales empleados en una secuencia sintética a un soporte apropiado de fase sólida permite la posterior creación de una diversidad química utilizando no solamente la síntesis paralela sino también la síntesis de escisión en la que el soporte sólido que contiene los compuestos preparados en la etapa anterior se puede escindir en un número de lotes, tratar con el reactivo apropiado y recombinar.

Los sustratos se pueden unir a un soporte sólido mediante enlazadores conocidos en la técnica. Los enlazadores pueden ser cualquier componente capaz de ser escindido para liberar el sustrato o el compuesto final del soporte.

Preferiblemente, el soporte sólido es un soporte polimérico. Los ejemplos de soportes poliméricos usados normalmente en la síntesis de fase sólida incluyen: resinas de alquenilo: por ejemplo resinas REM; resinas BHA: por ejemplo benzhidrilamina (hidrocloruro unido a polímero, reticulado al 2 %), cloruro de benzhidrilo (unido a polímero); resinas funcionalizadas con Br: por ejemplo resina PPOA bromada; resina Wang bromada; resinas de clorometilo: por ejemplo cloruro de 4-metoxibenzhidrilo (unido a polímero); resinas funcionalizadas con CHO: por ejemplo resina de indol, formilpoliestireno; resinas funcionalizadas con Cl: por ejemplo resina de Merrifield, cloroacetilo (unido a polímero); resinas funcionalizadas con I: por ejemplo 4-yodofenol (unido a polímero); Janda Jels™; resinas MBHA: por ejemplo hidrocloruro de 4-metilbenzhidrilamina (unido a polímero), ácido 4-hidroximetilbenzoico-4-metil-benzhidrilamina (unido a polímero); resinas funcionalizadas con amina: por ejemplo (aminometil)poliestireno, resina PAL, resina amida Sieber; resinas de carbonato de nitrofenilo: por ejemplo carbonato de 4-nitrofenilo (unido a polímero); resinas funcionalizadas con OH: por ejemplo alcohol 4-benciloxibencílico (unido a polímero); resinas de hidroximetilo: por ejemplo alcohol bencílico (unido a polímero); resinas de tritil-amina; resinas de tritilo: por ejemplo tritil-cloruro (unido a polímero); alcohol 2-clorotritílico, 1,3-diaminopropanotritilo.

Por lo tanto, los compuestos individuales o colecciones de compuestos se pueden sintetizar uniendo inicialmente el sustrato del primer compuesto a la superficie de un soporte sólido lo que se puede llevar a cabo proporcionando una pluralidad de superficies de soporte sólido derivando adecuadamente cada una de las superficies con grupos capaces de reaccionar con el sustrato del compuesto o con un resto enlazador unido al mismo. Las diferentes superficies de soporte con el sustrato del primer compuesto unido se pueden someter entonces a diferentes condiciones de reacción y a los sustratos del segundo compuesto para proporcionar una colección de compuestos unidos, que si fuera necesario, se pueden hacer reaccionar después con los sustratos del tercer compuesto y compuestos subsiguientes o variando las condiciones de las reacciones. La unión y separación de sustratos y productos se pueden realizar en condiciones similares a las descritas en Johnson, M. G., et al., Tetrahedron, 1999, 55, 11641; Han Y., et al. Tetrahedron 1999, 55, 11669; y Collini, M. D., et al., Tetrahedron Lett., 1997, 58, 7963.

Los expertos en la técnica podrán apreciar que la invención descrita aquí es susceptible a variaciones y modificaciones aparte de las descritas específicamente. Se debe entender que la invención incluye todas estas variaciones y modificaciones que están dentro de su espíritu y alcance. La invención incluye también todas las etapas, características, composiciones y compuestos mencionados o indicados en esta memoria descriptiva, individual o colectivamente, y cualquiera y todas las combinaciones de cualquiera de dos o más de dichas etapas o características.

A lo largo de esta memoria descriptiva y las reivindicaciones que siguen, a menos que el contexto requiera otra cosa, la palabra "comprender", y variaciones tales como "comprende" y "comprendiendo", se entenderá que implica la inclusión de un número entero o etapa o grupo de enteros o etapas indicados pero no la exclusión de cualquier otro número entero o etapa o grupo de enteros o etapas.

La referencia en esta memoria descriptiva a cualquier publicación anterior (o información derivada de ella), o a cualquier materia que sea conocida, no es, y no debe ser tomada como un reconocimiento o admisión o como

ninguna otra forma de sugerencia de que la publicación anterior (o información derivada de ella), o materia conocida forma parte del conocimiento común general en el campo del intento al que se refiere esta memoria descriptiva.

Ciertas realizaciones de la invención se describirán ahora con referencia a los siguientes ejemplos que tienen solamente el propósito de ilustración y no pretenden limitar el alcance de lo indicado de forma general en el texto anterior.

Ejemplos

5

10

25

35

Protocolos sintéticos

Ejemplo 1

Preparación de Morfolino-6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida (Ejemplo 1)

a) Ácido 2-hidroxi-5-nitro-nicotínico

$$CO_2H$$
 O_2N O_2N O_2H O_2H

Al ácido 2-hidroxi-nicotínico (3,6 mmol) en ácido sulfúrico (30 % de SO₃ libre, 2 ml) se añadió nitrato de sodio (7,2 mmol) en porciones durante 20 min. Se dejó agitando la solución durante 20 h a temperatura ambiente. Se vertió entonces la solución sobre hielo-agua y el precipitado que se formó se separó por filtración, se lavó con agua y se secó en una estufa de vacío para obtener un sólido amarillo pálido (45 %).

ESIMS: M-1: encontrado 183; esperado 183; y

¹H NMR (300 MHz, DMSO) δ 8,94 (1H, d, H-4), 8,67 (1H, d, H-6).

20 b) Ácido 2-cloro-5-nitro-nicotínico

$$O_2N$$
 O_2N
 O_2N

Se calentó a 80 °C durante 1 h ácido 2-hidroxi-5-nitro-nicotínico (2,7 mmol) en una mezcla de N,N-dimetilformamida (2,7 mmol) y cloruro de tionilo (5 ml). Se dejó enfriar la mezcla y se concentró a vacío. Se añadió al residuo resultante hielo-agua (20 ml) y con agitación vigorosa se formó un precipitado. El precipitado se separó por filtración y se secó en una estufa de vacío para dar un sólido blanco (68 %).

ESIMS: M-1: encontrado 201; esperado 201; y

NMR (300 MHz, DMSO) δ 9,30 (1H, d, H-4), 8,83 (1H, d, H-6).

c) Ácido 2-metoxi-5-nitro-nicotínico

$$O_2N$$
 CO_2H
 O_2N
 O_2N
 O_2H
 O_2H

Al ácido 2-cloro-5-nitro-nicotínico (1,0 mmol) en metanol se añadió una solución de metóxido de sodio en metanol (2,4 mmol, recientemente preparada a partir de sodio metal en metanol). Se mantuvo la solución a reflujo durante 2 h y se dejó que la mezcla se enfriara y se concentró a vacío. Se añadió al residuo resultante una solución de ácido cítrico al 10 % (20 ml) y se extrajo la solución con acetato de etilo (20 mL). La capa orgánica se secó (MgSO₄) y se concentró a vacío. Se recristalizó el residuo en agua para dar un sólido blanco amarillento (73 %).

ESIM-1: encontrado 197; esperado 197; y

¹H NMR (300 MHz, DMSO) δ 9,30 (1H, d, H-4), 8,83 (1H, d, H-6), 4,05 (3H, s, OCH₃).

d) Preparación de 3-oxo-3-(5-nitro-2-metoxi-piridin-3-il)-propionato de etilo

$$O_2N \xrightarrow[N]{CO_2H} O_2N \xrightarrow[N]{COCl} O_2N \xrightarrow[N]{OCH_3} OEt \xrightarrow[N]{OCH_3} OEt$$

Se calentaron ácido 2-metoxi-5-nitro-nicotínico (36 mmol) y pentacloruro de fósforo (72 mmol) a 100 °C durante 2 h. Se separó el exceso de reactivo a vacío para dar un residuo oleoso.

A una solución de etilmalonato de potasio (75,6 mmol) y trietilamina (72 mmol) en acetonitrilo (110 mL) se añadió cloruro de magnesio (90 mmol) en porciones durante 10 min. Se dejó esta solución en agitación durante 8 h a 35 °C. Se añadió a esta solución gota a gota una solución del cloruro de piridilo (anterior) en acetonitrilo (15 mL) a 0 °C durante 20 min. Se dejó que la solución se calentara a temperatura ambiente y se agitó durante 20 h. Se añadió a esta solución éter dietílico (100 mL) y solución 1 N de ácido clorhídrico hasta que se alcanzó un pH 5-6. Se separaron las dos capas y la capa orgánica se lavó con agua (100 mL). Se secó entonces la capa orgánica (MgSO₄) y se concentró a vacío. El residuo resultante se sometió entonces a cromatografía en columna eluyendo con diclorometano para obtener un líquido oleoso límpido (78 %). El espectro NMR de este compuesto demostró el tautomerismo de cetona-enol.

15 ESIMS: M-1: encontrado 267; esperado 267;

5

10

20

25

 1 H NMR (300 MHz, DMSO) δ 9,17 (d, 0,6H), 9,05 (d, 0,4H), 8,96 (d, 0,4H), 8,94 (d, 0,6H), 6,20 (s, 0,4H), 4,31-4,13 (m, 5H, OMe+OCH₂), 3,99 (s, 1,21), 1,33 (t, 3×0,4H), 1,22 (t, 3×0,6H); y

R_f: 0,94 (95:5, diclorometano:metanol).

e) 1-Etil-1,4-dihidro-6-nitro-4-oxo-1,8-naftiridina-3-carboxilato de etilo

Se mantuvieron a reflujo el malonato de piridilo (18 mmol) y ortoformiato de trietilo (23,4 mmol) en anhídrido acético (8 mL) durante 1 h. Se dejó que se enfriara la solución y se separó el exceso de anhídrido acético por destilación a vacío. Al residuo resultante en acetonitrilo (40 mL) se añadió gota a gota etilamina (36 mmol) en éter dietílico (20 mL) y se dejó la solución en agitación durante 5 h a temperatura ambiente. Se dejó entonces que se enfriara la solución y se concentró a vacío. Se disolvió el residuo en diclorometano (60 mL) y se lavó con agua (2 x 60 mL). Se secó entonces la capa orgánica (MgSO₄) y se concentró a vacío. El residuo resultante se sometió a cromatografía en columna eluyendo con diclorometano al 100 %, y después metanol al 2 % /diclorometano para dar un sólido blanco (78 %).

ESIMS: M+1: encontrado 292; esperado 292;

¹H NMR (300 MHz, CDCl₃) δ 9,50 (1H, d, H-5), 9,44 (1H, d, H-7), 8,66 (1H, s, H-2), 4,53 (2H, q, OCH₂), 4,39 (2H, q, NCH₂), 1,51 (3H, t, OCH₂CH₃), 1,40 (3H, t, NCH₂CH₃); y

R_f: 0,65 (95:5, diclorometano:metanol).

f) 1-Etil-1,4-dihidro-6-amino-4-oxo-1,8-naftiridina-3-carboxilato de etilo

$$O_2N$$
 O_2N
 O_2E
 O_2E
 O_2E
 O_3
 O_4
 O_5
 O_7
 O_7

35 Se hidrogenó la naftiridina (1,7 mmol) en N,N-dimetilformamida (10 mL) sobre níquel de Raney (0,17 mmol) durante 4 h a temperatura ambiente. Se filtró la mezcla a través de Celita y se lavó con tetrahidrofurano. Se evaporó el filtrado a seguedad. Por cristalización en etanol del residuo se obtuvo un sólido amarillo pálido (67 %).

ESIMS: M+1: encontrado 262; esperado 262;

 1 H NMR (300 MHz, DMSO) δ 8,43 (1H, s, H2), 7,49 (1H, d, J=9,0 Hz), 7,34 (1H, s, NCH), 7,02 (1H, d, J=9,0 Hz, ArH), 5,50 (2H, s, NH₂), 4,28 (2H, q, J=7,0 HZ, OCH₂), 4,16 (2H, q, J=7,1 Hz, NCH₂), 1,31 (3H, t, J=7,0 Hz, OCH₂CH₃), 1,23 (3H, t, J=7,1 Hz, NCH₂CH₃); y

R_f: 0,40 (90:0, CH₂CI₂:CH₃OH).

5

10

15

20

g) 6-(2,3-Dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxilato de etilo

Se dejó madurar una solución en agitación de la naftiridina (0,1 mmol), sulfato de sodio (1,0 mmol), 2-indanona (0,15 mmol) y AcOH (7,5 mL) en dicloroetano (30 mL) en atmósfera de nitrógeno durante 15 minutos a temperatura ambiente. Se añadió entonces triacetoxiborohidruro de sodio (0,15 mmol) en una porción y se dejó la solución en agitación durante 4 h a temperatura ambiente (se hizo seguimiento de la reacción por cromatografía en capa fina). Fue necesaria una segunda adición de sulfato de sodio (1,0 mmol), 2-indanona (0,15 mmol) y triacetoxiborohidruro de sodio (0,15 mmol) y agitación durante la noche para que se completara la reacción. Se sofocó la mezcla de reacción con solución de hidrogenocarbonato de sodio al 10 % y se añadió diclorometano para diluir la solución. Se separó la capa orgánica de la capa acuosa y se secó la capa orgánica (MgSO₄). Se concentró la capa orgánica a vacío y el residuo resultante se sometió a cromatografía en columna de sílice, eluyendo en gradiente con diclorometano al 100 % y después MeOH al 1 %/diclorometano para dar un residuo oleoso. Se trituró el residuo utilizando éter dietílico y se separó el sólido por filtración con bomba para obtener un sólido amarillo pálido (78 %).

ESIMS: M+1: encontrado 378; esperado 378;

¹H NMR (300 MHz, CDCl₃) δ 8,64 (1H, s, H-2), 8,30 (1H, d, H-5), 7,55 (1H, d, H-7), 7,23-7,10 (4H, m, 3×ArH), 6,69 (1H, d, NH), 4,41 (3H, q, OCH₂), 4,38-4,23 (1H, m, NCH), 4,17 (2H, q, NCH₂), 3,32 (2H, dd, CH<u>CH₂</u>), 2,81 (2H, dd, CH<u>CH₂</u>), 1,32 (3H, t, OCH₂<u>CH₃</u>), 1,25 (3H, t, NCH₂<u>CH₃</u>); y

R_f: 0,45 (95:5, CH₂CI₂:CH₃OH).

h) Ácido 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxílico

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

- A la naftiridina (0,29 mmol) en EtOH (2,5 mL) se añadió NaOH 2 N en agua (12,5 mL) a temperatura ambiente. Se dejó entonces la solución en agitación durante 2 h a 90 °C. Se separó entonces el disolvente orgánico a vacío y la solución acuosa remanente se acidificó con solución de ácido cítrico al 10 %. El sólido que se forma se separó por filtración con bomba y se lavó con agua. Se secó entonces este sólido en una estufa de vacío para obtener un sólido amarillo pálido (90 % de rendimiento).
- 30 ESIMS: M+1: encontrado 350; esperado 350;

 ^1H NMR (300 MHz, DMSO-d₆) $\bar{\text{O}}$ 8,96 (1H, s, H-2), 8,48 (1H, d, H-5), 7,55 (1H, d, H-7), 7,25-7,12 (4H, m, 4×ArH), 7,02 (1H, d, NH), 4,58 (3H, q, NCH₂), 4,36-4,31 (1H, m, NCH), 3,32 (2H, dd, CH<u>CH₂</u>), 2,83 (2H, dd, CH<u>CH₂</u>), 1,36 (3H, t, NCH₂<u>CH₃</u>); y

R_f: 0,68 (90:10, CH₂Cl₂:CH₃OH).

35 i) Morfolino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida

Se añadió trimetilaluminio (0,8 mmol, 2 M en tolueno) gota a gota a una solución en agitación de morfolina (0,8 mmol) en diclorometano (5 mL). Se agitó la mezcla durante 15 minutos y después se añadió la naftiridina (0,4 mmol) en diclorometano (5 mL). Se agitó entonces la mezcla durante 20 h a 35 °C. Se enfrió la mezcla y después se sofocó añadiendo ácido clorhídrico 2 N (10 mL) gota a gota. Se separó entonces la capa orgánica, se secó (MgSO₄) y se concentró a vacío. El residuo resultante se trituró con éter dietílico para dar un sólido blanco (78 %).

ESIMS: M+1: encontrado 419; esperado 419;

¹H NMR (300 MHz, CDCl₃) δ 8,34 (1H, d, H-5), 8,23 (1H, s, H-2), 7,52 (1H, d, H-7), 7,23-7,11 (4H, m, 4×ArH), 6,61 (1H, d, NH), 4,38 (31-1, q, NCH₂), 4,34-4,27 (1H, m, NCH), 3,36 (2H, dd, CH<u>CH₂</u>), 1,31 (3H, t, NCH₂<u>CH₃</u>); y

10 R_f: 0,31 (90:10, diclorometano:metanol).

Ejemplo 2

5

25

30

Preparación de 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,5-naftiridina-3-morfolinoamida (Ejemplo 2)

a) N-(2,3-Dihidro-1H-inden-2-il)-5-nitropiridin-2-amina

$$CI$$
 NO_2 NO_2 NO_2

Se calentó una mezcla de 2-cloro-5-nitropiridina (4 g) y N,N-diisopropiletilamina (3 mL) a reflujo en etanol seco (100 mL) durante 2 h. Se enfrió la mezcla de reacción a 0 °C, se filtró el sólido que se separó, se lavó con una pequeña cantidad de etanol frío, se secó para dar el producto (6,25 g, 88 %).

¹H NMR (300 MHz, CDCl₃) δ 8,98 (1H, s, H-6), 8,23 (1H, d, H-4), 7,26-7,17 (4H, m, Ar), 6,43 (1H, d, H-3), 6,12 (1H, bs, NH), 4,71 (1H, bs, NCH), 3,44 (2H, dd; CHCH₂), 2,93 (2H, dd CHCH₂); γ

M+1: encontrado 256; esperado 256

b) N²-(2,3-Dihidro-1H-inden-2-il)piridina-2,5-diamina & 2-((6-(2,3-dihidro-1H-inden-2-ilamino)piridina-3-ilamino)metilen)malonato de dietilo

Se agitó una mezcla de N-(2,3-dihidro-1H-inden-2-il)-5-nitropiridin-2-amina (5,5 g) y níquel de Raney (50 mg) en DMF (30 mL) bajo hidrógeno durante la noche. Se filtró la mezcla de reacción a través de celita y se separó el disolvente a vacío, dando un residuo crudo de N²-(2,3-dihidro-1H-inden-2-il)piridina-2,5-diamina, que se hizo reaccionar sin más caracterización que la de establecer que el compuesto era una mancha en la cromatografía en capa fina con el peso molecular esperado (M+1) de 226.

Se calentó una mezcla de N^2 -(2,3-dihidro-1H-inden-2-il)piridina-2,5-diamina (5 g) y etoximetilenmalonato de dietilo (5,5 g) a reflujo en éter dietílico seco (50 mL) durante 1 h. Se enfrió entonces la mezcla de reacción a temperatura ambiente, y se separó el disolvente a presión reducida y el residuo remanente se recristalizó finalmente en acetonitrilo para dar el 2-((6-(2,3-dihidro-1H-inden-2-ilamino)piridin-3-ilamino)metilen)malonato de dietilo (6 g).

¹H NMR (300 MHz, DMSO-d₆) δ 10,58 (1H, d, 3-NHCH), 8,15 (1H, d, 3-NHCH), 8,02 (1H, s, 7,45 (1H, dd, H-4), 7,20-7,10 (4H, m, Ar), 6,49 (1H, d, 2-NH), 4,51 (1H, m, 2-NH<u>CH</u>), 6,16-4,04 (4H, 2q, 2×OCH₂), 3,44 (2H, dd, CH<u>CH₂</u>), 2,93 (2H, dd CH<u>CH₂</u>), 1,24-1,16 (6H, 2t, OCH₂CH₃); y

ESIMS: M+1: encontrado 396; esperado 396

10

15

30

c) 6-(2,3-Dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo

Se añadió muy cuidadosamente una solución de 2-((6-(2,3-dihidro-1H-inden-2-ilamino)piridin-3-ilamino)metileno)malonato de dietilo (1,3 g) en diclorometano (10 mL) a éter difenílico (20 mL) pre-calentado (230 °C) con agitación y se continuó agitando durante otros 20 min una vez que se hubo completado la adición. Se dejó entonces que se enfriara a temperatura ambiente, se añadió éter de petróleo (200 mL), y se filtró el sólido que se separó, se secó para dar el producto crudo (600 mg), que se hizo reaccionar sin más caracterización que la de establecer que el compuesto era una mancha en la cromatografía en capa fina con el peso molecular esperado (M+1) de 350,

d) 6-(2,3-Dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo

Se calentó una mezcla de 6-(2,3-dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3- carboxilato de etilo (600 mg), yodoetano (1 g) y carbonato de potasio (600 mg) a 90 °C en DMF (20 mL) durante la noche. Después de un tratamiento estándar con acetato de etilo/acuoso, se calentó el residuo procedente de la capa orgánica evaporada (éster etílico ciclado crudo), a 80 °C en una mezcla de etanol (25 mL) y NaOH 2 M (10 mL) durante 2 h. Se enfrió entonces a temperatura ambiente, se añadió HCl acuoso para ajustar el pH a 5, en cuyo punto precipitó el producto y se filtró, se lavó con agua, y se secó para dar el producto crudo (~350 mg).

 1 H NMR (300 MHz, DMSO-d₆) δ 8,78 (1H, s, H-2), 8,10 (1H, dd, H-8), 7,71 (1H, d, H-7), 7,24-7,11 (4H, m, Ar), 7,06 (1H, d, NH), 4,75 (1H, m, NH<u>CH</u>), 4,46 (2H, q, NCH₂), 3,32 (2H, dd, CH<u>CH₂</u>), 2,83 (2H, dd CH<u>CH₂</u>), 1,33 (3H, t, NCH₂<u>CH₃</u>); y

ESIMS: M+1: encontrado 350; esperado 350

e) 6-(2,3-Dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,5-naftiridina-3-morfolinoamida

Se agitó una mezcla de ácido 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxílico (200 mg), HBTU (250 mg) y N,N-diisopropiletilamina (150 mg) en DMF seca (1,5 mL) durante 1 h a temperatura

ambiente. Finalmente se añadió morfolina (100 mg) y se agitó la mezcla de reacción durante la noche. Después de un tratamiento estándar con acetato de etilo/acuoso, se purificó el residuo procedente de la capa orgánica evaporada pasándolo a través de una columna de gel de sílice utilizando acetona como fase móvil para dar la 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,5-naftiridina-3-morfolinoamida (~150 mg).

¹H NMR (300 MHz, DMSO-d₆) δ 8,00 (1H, s, H-2), 7,89 (1H, dd, H-8), 7,30 (1H, d, H-7), 7,22-7,10 (4H, m, Ar), 6,93 (1H, d, NH), 4,75 (1H, m, NH<u>CH</u>), 4,23 (2H, q, N<u>CH₂</u>), 3,56-3,27 (8H, bm, morfolino), (3,27 (2H, dd, CH<u>CH₂</u>), 2,76 (2H, dd CH<u>CH₂</u>), 1,27 (3H, t, NCH₂<u>CH₃</u>); y

ESIMS: M+1: encontrado 419; esperado 419.

Ejemplo 3

25

30

35

Preparación de 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-morfolino-4-oxo-1,7-naftiridina-3-carboxamida (Ejemplo 3)

a) Ácido 2,5-dicloropiridina-4-carboxílico

Se añadió 2,5-dicloropiridina (3,7 g) a -75 °C, a una solución de butillitio (25 mL, 1 M) y N,N,N',N",N"-pentametildietilentriamina (5,3 mL) en THF (50 mL) en atmósfera de nitrógeno a -75 °C y se agitó la mezcla de reacción durante 2 h, se vertió sobre hielo seco, y se añadió agua (50 mL). Se lavó la fase acuosa con éter dietílico; se acidificó a pH 2 y el sólido blanco se filtró y se secó para dar el producto (2,5 g), un compuesto conocido, para la siguiente reacción, sin más caracterización sin más caracterización que la de establecer que el compuesto era una mancha en la cromatografía en capa fina con el peso molecular esperado (M-1) de 190.

b) 3-(2,5-Dicloropiridin-4-il)-3-oxopropionato de etilo

Se calentó una mezcla de ácido 2,5-dicloropiridina-4-carboxílico (2 g) y SOCl₂ (10 mL) y 1 gota de DMF a reflujo durante 2 h, y se separaron todo el SOCl₂ y DMF a presión reducida para dar el cloruro de ácido crudo como el residuo remanente. Por separado, se enfrió una suspensión de etilmalonato de potasio (5 g) en acetonitrilo (100 mL) a 0 °C, se añadieron cloruro de magnesio (4 g) y trietilamina (4 mL), se separó el baño de hielo y se agitó la reacción a temperatura ambiente durante 3 h. Se añadió cuidadosamente una solución del cloruro de ácido crudo en DCM (25 mL) a la suspensión de malonato y se agitó la mezcla resultante a temperatura ambiente durante la noche. Se añadió HCl acuoso (100 mL, 1 M) y se continuó agitando durante 1 h. Se extrajo entonces esta mezcla con éter dietílico (200 mL x 3), se lavó la capa orgánica con bicarbonato de sodio saturado (200 mL x 2) y salmuera (200 mL), se secó sobre sulfato de magnesio anhidro, se filtró y se concentró. Se obtuvo el compuesto del título como un aceite amarillo claro (1,6 g) que se hizo reaccionar sin purificación adicional y sin más caracterización que la de establecer que el compuesto era una mancha en la cromatografía en capa fina con el peso molecular esperado (M-1) de 260.

c) Preparación de 3-(2,5-dicloropiridin-4-il)-2-(2-etilamino)-etileno-1-il)-3-oxopropanoato

Se calentó una solución de 3-(2,5-dicloropiridin-4-il)-3-oxopropanoato de etilo (1,6 g) y ortoformiato de trietilo (1,6 mL) en anhídrido acético (6 mL) a 130 °C durante 2 h con agitación. Después de enfriar a temperatura ambiente, se separó todo el disolvente a vacío, se añadió tolueno, se separó a vacío, y se repitió este procedimiento una vez más. El residuo remanente crudo se re-disolvió en THF (50 mL) y se añadió la etilamina (al 70 % en agua, 5 mL) gota a gota con agitación a temperatura ambiente y se continuó agitando durante 3 h. Se extrajo entonces la mezcla de reacción con DCM (200 mL × 3), se lavó la capa orgánica con agua, se secó sobre sulfato de magnesio, se filtró, y después se separó todo el DCM a presión reducida para dar el producto crudo. Este producto crudo se trituró con éter dietílico para dar el compuesto (A) puro (1,5 g).

10 ESIMS: m/z 317,0 [M+H]⁺; y

5

¹H NMR (300 MHz, CDCl₃): δ 11,05 (bs, 0,8H, NH), 9,75 (bs, 0,2H, NH), 8,34 (s, 1H), 8,24 (s, 0,5H), 8,19 (s, 0,5H), 7,15 (s, 1H), 3,9-4,1 (m, 2H), 3,5-3,6 (m, 2H), 1,41 (t, 3H), 1,03 (t, 3H).

d) Preparación de 6-cloro-1-etil-1,4-dihidro-4-oxo-1,7-naftiridina-3-carboxilato de etilo

Se calentó una mezcla de 3-(2,5-dicloropiridin-4-il)-2-(2-etilamino)-etileno-1-il)-3-oxopropano- ato (1,2 g) y carbonato de potasio (1 g) a 100 °C en DMF (30 mL) durante 12 horas. Después de un tratamiento estándar con acetato de etilo/acuoso, el residuo procedente de la capa orgánica evaporada dio el producto, 6-cloro-1-etil-1,4-dihidro-4-oxo-1,7-naftiridina-3-carboxilato de etilo (1 g).

ESIMS: m/z 281,0 [M+H]+; y

- 20 ¹H NMR (300 MHz, CDCl₃): δ 8,80 (s, 1H), 8,53 (s, 1H), 8,33 (s, 1H), 4,43 (q, J=6 Hz., 2H), 4,36 (q, J=7 Hz, 2H), 1,63 (t, J=7 Hz., 3H), 1,43 (t, J=6 Hz, 3H).
 - e) Preparación de 6-cloro-1-etil-1,4-dihidro-morfolino-4-oxo-1,7-naftiridina-3-carboxamida

Se agitó una mezcla de trimetilaluminio (4 mL, 2 M), morfolina (600 mg) en DCM seco (15 mL) durante 1 h a 35 °C bajo nitrógeno. Después de 1 h, se añadió 6-cloro-1-etil-1,4-dihidro-4-oxo-1,7-naftiridina-3-carboxilato de etilo (900 mg) y se agitó la mezcla de reacción a la misma temperatura. Al día siguiente, se añadió cuidadosamente HCl 1 M (10 mL) con agitación. Después de un tratamiento estándar con acetato de etilo/acuoso, el residuo procedente de la capa orgánica evaporada dio la 6-cloro-1-etil-1,4-dihidro-morfolino-4-oxo-1,7-naftiridina-3-carboxamida (700 mg).

ESIMS: m/z 322,0 [M+H]+; y

 1 H NMR (300 MHz, CDCl₃): δ 8,84 (s, 1H), 8,29 (s, 1H), 8,11 (s, 1H), 4,34 (q, J=7,3 Hz, 2H), 4,22 (m, 1H), 3,3-3,8 (m, 8H), 1,63 (t, J=7,3 Hz, 3H).

f) Preparación de 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-morfolino-4-oxo-1,7-naftiridina-3-carboxamida (Ejemplo 3)

Se calentó una mezcla de 6-cloro-1-etil-1,4-dihidro-morfolino-4-oxo-1,7-naftiridina-3-carboxa- mida (100 mg) y 2-aminoindano (en exceso) a 135 °C durante 12 h. Se enfrió la mezcla de reacción a temperatura ambiente, y se añadieron acetato de etilo (100 mL) y agua (20 mL). Se separó la fase orgánica, se concentró a presión reducida y se sometió a cromatografía (SiO₂, acetato de etilo al 80 % en hexano) y se obtuvo el producto del Ejemplo 3 (22 % de rendimiento).

Cromatografía de líquidos: Tiempo de retención = 1,55 min;

MS: m/z 419,0 [M+H]⁺; y

 1 H NMR (300 MHz, CDCl₃): δ 8,62 (s, 1H, ArH), 8,01 (s, 1H, ArH), 7,28-7,18 (m, 5H, 5×ArH), 5,57 (bs, 1H, NH). 4,61 (m, 1H, NH<u>CH</u>), 4,27 (q, 2H, <u>CH2</u>CH3), 3,80 (m, 6H (morfolino), 3,49 (m, 4H, (morfolino + CH<u>CH2</u>), 2,98 (dd, 2H, CH<u>CH2</u>), 1,60 (t, 3H, CH3).

Ejemplo 4

5

10

15

30

Preparación de metilpiperazino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida (Ejemplo 4)

Se inyectó trimetilaluminio (1 mL, 2 M en tolueno) mediante una jeringa en una solución en agitación de 1-metilpiperazina (100 mg, 1 mmol) en DCM (10 mL). Se agitó la reacción a temperatura ambiente durante 1 h y después se trató con 6-(2,3-dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo (188,5 mg, 0,5 mmol). Se agitó la mezcla resultante a temperatura ambiente durante 16 h y después se vertió sobre 5 mL de HCl 2 M acuoso. Se extrajo el compuesto orgánico con acetato de etilo (3 x 10 mL) y los extractos reunidos se secaron sobre MgSO₄, se filtraron y se concentraron a presión reducida para obtener el aceite crudo (120 mg de crudo). Por cromatografía de una pequeña cantidad del crudo se obtuvo el producto deseado (40 mg).

ESIMS: m/z=432,0 [M+H]+.

¹H-NMR (300 MHz, CDCl₃): δ 8,15 (d J=2,2, 1H), 8,09 (s, 1H), 7,80 (d, J=2,2 Hz, 1H), 7,15-7,25 (m, 4H), 4,30-4,50 (m, 4H), 3,78 (s, 2H), 3,35-3,50 (m, 4H), 2,86 (dd, 1,1 Hz, 2H), 2,48 (t, J=2 Hz., 4H), 2,30 (s, 3H), 1,47 (t, J=2,4 Hz., 3H).

Ejemplo 5 (Referencia)

Preparación de ciclopropilamino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida (Ejemplo 5)

35 Se inyectó trimetilaluminio (1 mL, 2 M en tolueno) mediante una jeringa en una solución en agitación de ciclopropilamina (57 mg, 1 mmol) en DCM (10 mL). Se agitó la reacción a temperatura ambiente durante 1 h y después se trató con 6-(2,3-dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo (188,5 mg, 0,5 mmol). Se agitó la mezcla resultante a temperatura ambiente durante 16 h y después se vertió sobre 5 mL

de solución acuosa de HCl 2 M. Se extrajo el compuesto orgánico con acetato de etilo (3 x 10 mL) y los extractos reunidos se secaron sobre MgSO₄, se filtraron y se concentraron a presión reducida para obtener el aceite crudo (150 mg de crudo). Por cromatografía de una pequeña cantidad del crudo se obtuvo el producto deseado (80 mg).

ESIMS: m/z=389,0 [M+H]+.

¹H-NMR (300 MHz, CDCl₃): δ 10,01 (s, 1H), 8,81 (s, 1H), 8,18 (s, 1H), 7,80 (s, 1H), 7,15-7,25 (m, 4H), 4,30-4,51 (m, 4H), 3,42 (dd, J=5,0, 5,0 Hz., 2H), 2,88-2,97 (m, 3H), 1,45 (t, J=4,2 Hz., 3H); 0,77-0,82 (m, 2H), 0,60-0,65 (m, 2H).

Ejemplo 6

Preparación de dietilamino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida (Ejemplo 6)

10

15

20

Se inyectó trimetilaluminio (1 mL, 2 M en tolueno) mediante una jeringa en una solución en agitación de dietilamina (73 mg, 1 mmol) en DCM (10 mL). Se agitó la reacción a temperatura ambiente durante 1 h y después se trató con 6-(2,3-dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo (188,5 mg, 0,5 mmol). Se agitó la mezcla resultante a temperatura ambiente durante 16 h y después se vertió sobre 5 mL de solución acuosa de HCl 2 M. Se extrajo el compuesto orgánico con acetato de etilo (3 x 10 mL) y los extractos reunidos se secaron sobre MgSO4, se filtraron y se concentraron a presión reducida para obtener el aceite crudo (135 mg de crudo). Por cromatografía de una pequeña cantidad del crudo se obtuvo el producto deseado (100 mg).

ESIMS: m/z=405,0 [M+H]+.

¹H-NMR (300 MHz, CDCl₃): δ 8,15 (d, J=2,2 Hz., 1H), 7,85 (s, 1H), 7,76 (d, J=2,2 Hz, 1H), 7,09-7,25 (m, 4H), 4,56 (d, J=5,6 Hz, 1H), 4,28-4,38 (m, 3H), 3,4-3,52 (m, 2H), 3,32-3,40 (m, 4H), 2,85 (dd, J=11, 3 Hz, 2H), 1,39 (t, J=5,6 Hz, 3H); 1,38 (t, J=5 Hz, 3H), 1,07 (t, J 5 Hz., 3H).

Ejemplo 7

Preparación de 6-(3,4,5-trimetoxibenzoilamida)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxilato de etilo (Ejemplo 7)

25

30

La solución de 1-etil-1,4-dihidro-6-amino-4-oxo-1,8-naftalidina-3-carboxilato de etilo (261 mg, 1 mmol) en diclorometano (5 mL) se trató con cloruro de 3,4,5-trimetoxibenzoilo (460 mg, 2 mmol) a 5 °C. Se calentó entonces la mezcla de reacción a 60 °C durante 16 h. Se vertió la mezcla de reacción sobre hielo y se extrajo el producto con acetato de etilo (3 × 10 mL). Los extractos reunidos se secaron sobre MgSO₄ y se concentraron a presión reducida para obtener el producto crudo (220 mg). Por cromatografía de una pequeña cantidad del crudo utilizando acetato de etilo al 10 % en hexano se obtuvo el producto deseado (30 mg).

ESIMS: m/z=455,9 [M+H]+.

 1 H-NMR (300 MHz, CDCl₃): δ 9,69 (s, 1H), 9,42 (s, 1H), 8,87 (s, 1H), 8,68 (s, 1H), 7,24 (s, 1H), 7,14 (s, 1H), 4,51 (q, J=9, 5 Hz, 2H), 3,88 (s, 9H), 3,38-3,47 (m, 2H), 1,48 (t, J=6 Hz., 3H), 1,18 (t, J=6 Hz., 3H).

35 Ejemplo 8 (Referencia)

Preparación de 4-fluorofenilamino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida (Ejemplo 8)

Se inyectó trimetilaluminio (1 mL, 2 M en tolueno) mediante una jeringa en una solución en agitación de 4-fluoroanilina (111 mg, 1 mmol) en DCM (10 mL). Se agitó la reacción a temperatura ambiente durante 1 h y después se trató con 6-(2,3-dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo (188,5 mg, 0,5 mmol). Se agitó la mezcla resultante a temperatura ambiente durante 16 h y después se vertió sobre 5 mL de solución acuosa de HCl 2 M. Se extrajo el compuesto orgánico con acetato de etilo (3 x 10 mL) y los extractos reunidos se secaron sobre MgSO4, se filtraron y se concentraron a presión reducida para obtener el crudo (160 mg). Por cromatografía de una pequeña cantidad del crudo se obtuvo el producto deseado (90 mg).

ESIMS: m/z=443,0 [M+H]+

5

15

20

10 ¹H-NMR (300 Mhz, CDCl₃): δ 8,86 (s, 1H), 8,20 (d, J=1,8 Hz., 1H), 7,83 (d, J 1,8 Hz., 1H), 7,69-7,74 (m, 2H), 7,16-7,24 (m, 4H), 6,98-7,04 (t, J=7 Hz., 2H), 4,50 (q, J=14, 6 Hz., 2H), 4,44 (s ancho, 2H), 3,45 (d, 14 Hz., 2H), 2,91 (d, J=14 Hz., 2H), 1,46 (t, 8 Hz., 3H).

Ejemplo 9 (Referencia)

Preparación de 4-bifenilamino-6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4- oxo-1,8-naftiridina-3-carboxamida (Ejemplo 9)

Se inyectó trimetilaluminio (1 mL, 2 M en tolueno) mediante una jeringa en una solución en agitación de 4-aminobifenilo (169 mg, 1 mmol) en DCM (10 mL). Se agitó la reacción a temperatura ambiente durante 1 h y después se trató con 6-(2,3-dihidro-1H-inden-2-ilamino)-1,4-dihidro-4-oxo-1,5-naftiridina-3-carboxilato de etilo (188,5 mg, 0,5 mmol). Se agitó la mezcla resultante a temperatura ambiente durante 16 h y después se vertió sobre 5 mL de solución acuosa de HCl 2 M. Se extrajo el compuesto orgánico con acetato de etilo (3 x 10 mL) y los extractos reunidos se secaron sobre MgSO₄, se filtraron y se concentraron a presión reducida para obtener el producto crudo (140 mg). Por cromatografía de una pequeña cantidad del crudo se obtuvo el producto deseado (50 mg).

ESIMS: m/z=501,0 [M+H]+.

¹H-NMR (300 MHz, CDCl₃): δ 8,90 (s, 1H), 8,21 (d, J=3,5 Hz, 1H), 7,84-7,88 (m, 3H), 7,57-7,61 (m, 4H), 7,41 (t, J=6,8 Hz, 3H), 7,16-7,32 (m, 5H), 4,52 (q, J=10, 6 Hz, 2H), 4,37-4,44 (m, 2H), 3,46 (dd, J=15, 5 Hz., 2H), 2,92 (dd, J=15, 3 Hz., 2H), 1,52 (t, J=6 Hz., 3H).

Ejemplo 10

Preparación de 6-(isobutirilamida)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxilato de etilo (Ejemplo 10)

30

35

La solución de 1-etil-1,4-dihidro-6-imino-4-oxo-1,8-naftalidina-3-carboxilato de etilo (261 mg, 1 mmol) en diclorometano (5 mL) se trató con cloruro de isobutirilo (213 mg, 2 mmol) a 5 °C. Se calentó entonces la mezcla de reacción a 60 °C durante 16 h. Se vertió la mezcla de reacción sobre hielo y se extrajo el producto con acetato de etilo (3 x 10 mL). Los extractos reunidos se secaron sobre MgSO₄ y se concentraron a presión reducida para obtener el producto crudo (220 mg). Por cromatografía de una pequeña cantidad del crudo utilizando acetato de etilo al 10 % en hexano se obtuvo el producto deseado (los datos de la NMR indican que el producto era una mezcla de isómeros cis y trans (debido a la unión amida).

ESIMS: m/z=332,0 [M+H]+.

 1 H-NMR (300 MHz, CDCl₃): δ 9,74 (s), 9,54 (d, J=2,5 Hz.), 9,3-9,31 (m), 8,85 (s), 8,72 (d, J=2,5 Hz.), 8,66 (s), 8,62 (d, J=2,5 Hz.), 8,59 (s), 4,43-4,53 (m, 2H), 4,28-4,35 (m, 2H), 3,41-3,50 (m, 2H), 2,77-2,86 (m, 1H), 2,60-2,69 (m, 1H), 1,41-1,50 (m), 1,31-1,36 (t), 1,18-1,25 (m).

5 Datos biológicos

10

20

25

35

Cribado del efecto ansiolítico

Ensavo de luz-oscuridad

El paradigma de luz-oscuridad se basa en un conflicto entre la aversión innata de los roedores a las áreas intensamente iluminadas y el comportamiento exploratorio espontáneo de los ratones. Si se les deja elegir entre un compartimento grande con mucha luz frente a un compartimento pequeño oscuro ellos prefieren de forma espontánea la parte oscura. Se ha encontrado que los compuestos ansiolíticos aumentan el número de entradas en el compartimento con mucha luz y el tiempo total que permanecen allí. Se observó que los compuestos ansiogénicos funcionan de modo opuesto.

El aparato consiste en dos cajas de PVC (poli(cloruro de vinilo)) (19 x 19 x 15 cm) tapadas con plexiglás. Una de estas cajas está en la oscuridad. La otra caja está iluminada con una lámpara de mesa de 100 W colocada 15 cm por encima y que proporciona una iluminación de aproximadamente 4400 Lux. Un túnel de plástico opaco (5 x 7 x 10 cm) separa la caja oscura de la caja iluminada.

Se pusieron los animales individualmente en la caja iluminada, con la cabeza dirigida hacia el túnel. Se registró el tiempo que pasan en la caja iluminada y el número de transiciones entre las dos cajas durante un período de 5 min después de la primera entrada del animal en la caja oscura. Se registró también la distancia total recorrida en la caja iluminada. Los animales que no entraron en la caja iluminada fueron excluidos del análisis.

Compuestos de ensayo y tratamiento

Los compuestos de la Tabla 1 se ensayaron según el ensayo de luz-oscuridad (indicado en la columna LD). + = un efecto ansiolítico significativo en uno de los tres parámetros medidos en el modelo de luz-oscuridad (LD), ++ representa un efecto significativo en 2 parámetros y +++ es significativo en los tres. Los parámetros son: tiempo de permanencia en el área iluminada, número de transiciones hacia dentro del área iluminada, o distancia total recorrida en el área iluminada. Se muestra también la dosis eficaz mínima en mg/kg.

Se preparó el compuesto de ensayo en PEG400 al 5 % - NaCl al 0,9 %.

Se administró oralmente, 60 minutos antes de la realización del ensayo.

30 Media ± sem (error estándar de la media) de 10 ratones

Ensayo del laberinto en cruz elevado

La situación de laberinto en cruz elevado (EPM, siglas del término inglés Elevated Plus Maze) se basa en el conflicto entre las tendencias innatas de los roedores a explorar los ambientes nuevos y a evitar las áreas abiertas e intensamente iluminadas. En este ensayo se coloca el ratón en el centro del laberinto. Desde aquí puede bajar por cualquiera de los cuatro caminos. Dos de los brazos están bien iluminados y abiertos, y los otros dos están cerrados y débilmente iluminados. Los ratones prefieren los brazos cerrados pero se aventurarán hacia los brazos abiertos. Se registra el tiempo que pasan en los brazos abiertos y el número de veces que los ratones entran en los brazos abiertos. Se registra también la distancia total recorrida en los brazos abiertos. Los ratones "ansiosos" pasarán poco tiempo en los brazos abiertos y harán muy pocas entradas en los brazos abiertos.

El aparato está hecho de materiales de cloruro de polivinilo y consiste en cuatro brazos exploratorios iguales (45 x 10 cm) que están interconectados por una pequeña plataforma (10 x 10 cm). Dos brazos están abiertos y los otros dos están cerrados con paredes (30 cm de altura). El aparato se coloca 66 cm por encima del suelo. Se utiliza un sistema de seguimiento por video para registrar el ensayo (ViewPoint, France). Se coloca la cámara de video a 2,50 m por encima del equipo y se conecta al ordenador mediante una tarjeta para captura de video (Pinnacle Systems, France).

Un ensayo consiste en poner un animal en la plataforma central de frente a un brazo cerrado. Se registran automáticamente el número de entradas y la duración del tiempo pasado en los brazos abiertos mediante un sistema de seguimiento por video durante un período de 5 minutos.

Se limpia el aparato entre cada animal utilizando alcohol (del 70 %).

50 Compuestos de ensayo y tratamiento

Los compuestos de la Tabla 1 se ensayaron en el laberinto en cruz elevado (indicado en la columna EPM). + = un efecto ansiolítico significativo en uno de los tres parámetros medidos en el modelo de luz-oscuridad (LD), ++ representa un efecto significativo en 2 parámetros y +++ es significativo en los tres. Los parámetros son: tiempo de permanencia en los brazos abiertos, número de transiciones hacia dentro de los brazos abiertos, o distancia total recorrida en los brazos abiertos. Se muestra también la dosis eficaz mínima en mg/kg.

Se preparó el compuesto de ensayo en PEG400 al 5 % - NaCl al 0,9 %.

Se administró oralmente, 60 minutos antes de la realización del ensayo.

Media ± sem (error estándar de la media) de 10 ratas

Ensayo de esconder esferas

5

20

35

El ensayo de esconder esferas (MB, siglas del término inglés Marble Burying) se utiliza como un modelo tanto para los trastornos de ansiedad como para los trastornos obsesivos compulsivos. Los ratones tienen una tendencia natural a esconder esferas debajo de la cama cuando se les pone en jaulas con filas de esferas uniformemente espaciadas sobre el suelo. La supresión de esta acción espontánea de esconder esferas ha sido utilizada como una medida de la acción de un fármaco ansiolítico. Los ratones pre-tratados con benzodiazepinas y diferentes clases de antidepresivos esconden menos esferas en comparación con los ratones control.

El aparato consiste en jaulas de policarbonato transparente (30 cm x 18 cm x 19 cm) que contienen una capa de 5 cm de cama de serrín fino y 20 esferas de vidrio (diámetro: 1,5 cm) espaciadas uniformemente a lo largo de las paredes de la jaula. Se coloca cada animal individualmente en la jaula donde permanece durante una sesión de ensayo de 20 min. A la terminación de la sesión de ensayo se sacan los animales de la jaula y se registra el número de esferas que han sido escondidas al menos dos tercios en el serrín.

Compuestos de ensayo y tratamiento

Se ensayó el Ejemplo 1 en el modelo de esconder esferas. La dosis eficaz mínima en mg/kg se indica en la columna MB de la Tabla 1.

Se preparó el compuesto de ensayo en PEG400 al 5 % - NaCl al 0,9 %.

25 Se administró oralmente, 60 minutos antes de la realización del ensayo.

Media ± sem (error estándar de la media) de 10 ratones

Cribado del efecto sedante o estimulante de los compuestos en el campo abierto modificado

Ensayo de campo abierto

Se utiliza el ensayo de campo abierto (oscuro) (OF, siglas del término inglés Open Field) para medir la actividad motora espontánea de los ratones en un ambiente oscuro, tranquilo. Este sistema es útil para distinguir las propiedades sedantes o estimulantes de los compuestos de ensayo sobre la locomoción espontánea y puede proporcionar de este modo una indicación preliminar de efectos potencialmente adversos tales como la sedación.

El aparato es una jaula abierta de plexiglás (52 x 52 cm) con paredes de 40 cm. Se siguen los movimientos del animal mediante un sistema informatizado de seguimiento por video, que consiste en una cámara elevada, sensores de diodos colocados por debajo del suelo de la jaula, ordenador y software analizador del video (ViewPoint, France). La cámara de video se coloca 2,50 m por encima de la jaula y se conecta al ordenador mediante una tarjeta de captura de video (Pinnacle Systems, France). El sistema de seguimiento por video se fija de modo que el suelo del campo abierto (OF) se divide en nueve cuadrados iguales. Se registran el número total de cuadrados cruzados y la distancia total recorrida.

40 Cada animal se coloca individualmente en un rincón del aparato y se registra automáticamente su actividad locomotora durante un período de 20 minutos.

El aparato se limpia entre cada animal con alcohol (del 70 %).

Compuestos de ensayo y tratamiento

Se ensayaron los compuestos que siguen en el ensayo de campo abierto como se indica por una entrada en la columna OF. NS = no sedación; S = sedación. Se muestra la dosis máxima no sedante en mg/kg.

Se preparó el compuesto de ensayo en PEG400 al 5 % - NaCl al 0,9 %. Se administró oralmente, 60 minutos antes de la realización del ensayo.

Media ± sem (error estándar de la media) de 10 ratones

(Nótese que NT significa "No ensayado"

Tabla 1

Ejemplo número	Estructura	LD	OF	EPM rata	MB
1		++ 0,01	NS 100	+++ 0,1	1
2		+++ 30	S 5	NT	NT
3		++ 10	NT	NT	NT
4*	H N N N	++ 20	NT	NT	NT
5*	N N N N	+ 20	NT	NT	NT
6*		++ 20	NS 20	NT	NT
7*	MeO H O O O O O O O O O O O O O O O O O O	++ 20	S 20	NT	NT
8*	N N N N N N N N N N N N N N N N N N N	++ 20	NS 20	NT	NT
9*	H O O N	+++ 20	NS 20	NT	NT

Ejemplo número	Estructura	LD	OF	EPM rata	MB
10*	H N N N	+++	NS 20	NT	NT

^{*20} mg/kg es la única dosis ensayada en la caja de luz-oscuridad (LD) y en campo abierto (OF).

REIVINDICACIONES

1. Un compuesto representado por la fórmula (If) o una de sus sales:

en la que

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfonilo, sulfinilo, y sulfonilo);

Y representa NR₃R₄;

R representa H o alquilo;

cada R' se selecciona independientemente de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino;

15 R₁ representa cicloalquilo, cicloalquenilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, oxisulfinilo, osulfinilo, osulfinilo, osulfinilo;

 R_3 y R_4 representa cada uno independientemente alquilo, o junto con el átomo de N, heteroarilo que contiene N o heterociclilo que contiene N; y

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquilo, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterociclilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-(alquil sustituido)amino, mono- y di-arilamino, mono- y di-heteroarilamino, y aminas disustituidas asimétricas que tienen diferentes sustituyentes seleccionados de alquilo, arilo, heteroarilo y heterociclilo.

2. Un compuesto de la fórmula (l') o una de sus sales:

$$R_1 \xrightarrow{X} E \xrightarrow{Q} Q \qquad (I')$$

en la que

A, E, y D se seleccionan independientemente de CR' (donde R' se selecciona de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alqueniloxi, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilmino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino) o N, y en la que al menos uno de A, E, y D es N;

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, sulfinilo, y sulfonilo);

R representa H o alquilo;

R₁ representa cicloalquilo, cicloalquenilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, oxisulfinilo, osulfinilo, osulfonilo; y

5 Q representa heterociclilo que contiene N o heteroarilo que contiene N,

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alquinilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquinilo, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterociclilo, heterocicliloxi, oxiacilo, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-(alquil sustituido)amino, mono- y di-arilamino, mono- y di-heteroarilamino, mono- y di-heteroariloxi, heterociclilo.

3. Un compuesto de la fórmula (l') según la reivindicación 2, o una de sus sales, donde el compuesto se representa por la fórmula (l'a), (l'b), o (l'c):

$$\begin{array}{c|c} R_1 & X & Q & Q \\ \hline R_1 & N & R_2 & Q & \\ \hline R_2 & R_2 & Q & \\ \end{array} \tag{I'a}$$

$$R_1 \xrightarrow{X} \xrightarrow{N} \xrightarrow{Q} R$$

$$R_1 \xrightarrow{X} \xrightarrow{N} Q$$

$$R_2 \xrightarrow{R} R$$

$$Q$$

$$(I'b)$$

$$R_1 \xrightarrow{X} \xrightarrow{R'} \xrightarrow{O} \xrightarrow{O} \underset{R_2}{\overset{O}{\bigvee}} N \xrightarrow{Q} \qquad (I'c)$$

20

10

15

o un compuesto representado por la fórmula (I'd), (I'e), o (I'f):

donde R, R₁, Q, R', R₂ y X son como se han definido en la reivindicación 2.

- 4. Un compuesto según la reivindicación 3, o una sal del mismo, que es un compuesto de la fórmula (l'f).
- Un compuesto según una cualquiera de las reivindicaciones 2 a 4, o una de sus sales, en el que Q representa
 heterociclilo, preferiblemente Q se selecciona de morfolinilo, piperidilo, piperazinilo, pirrolidinilo, pirazolinilo, pirazolidinilo, imidazolinilo o indolinilo, o más preferiblemente Q representa morfolinilo.
 - 6. Un compuesto según una cualquiera de las reivindicaciones 2 a 5, o una de sus sales, en el que cada R', cuando está presente, se selecciona independientemente de hidrógeno, halógeno, ciano, nitro, amino, alquilo opcionalmente sustituido, acilo, alcoxi, arilo opcionalmente sustituido, oxiacilo, aciloxi, arilalquilo, sulfinilo, sulfonilo, oxiacilamino, oxitioacilo, tioaciloxi, sulfinilamino, amino, sulfonilamino, tio, oxisulfinilamino, oxisulfonilamino, alquenilo, y alquinilo, preferiblemente cada R' en CR', cuando está presente, es hidrógeno.
 - 7. Un compuesto según una cualquiera de las reivindicaciones 2 a 6, o una de sus sales, en el que X es NR'' donde R'' se selecciona de hidrógeno, alquilo C_{1-3} , bencilo o acetilo y donde R es hidrógeno o metilo.
- 8. Un compuesto según una cualquiera de las reivindicaciones 2 a 7, o una de sus sales, en el que R₁ se selecciona de alquilo, cicloalquilo, o cicloalquenilo, preferiblemente R₁ es indanilo o 1,2,3,4-tetrahidronaftalenilo, y en el que R₂ es hidrógeno, alquilo C₁₋₆, bencilo, o acetilo.
 - 9. Un compuesto según la reivindicación 2, o una de sus sales, en el que Q representa heterociclilo que contiene N, X representa NR" (donde R" se selecciona de hidrógeno, alquilo C₁₋₃, bencilo o acetilo), R es hidrógeno, R₁ representa cicloalquilo o cicloalquenilo, R₂ representa alquilo C₁₋₃ y cada R' es hidrógeno.
- 20 10. Un compuesto según la reivindicación 1, seleccionado de:

10

Morfolino-6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida

Metilpiperazino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida

25 Dietilamino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida

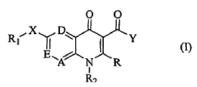
o una de sus sales.

11. Un compuesto según la reivindicación 2, seleccionado de:

Morfolino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,5-naftiridina-3-amida;

Morfolino 6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,7-naftiridina-3-carboxamida

o una de sus sales.


12. Morfolino-6-(2,3-dihidro-1H-inden-2-ilamino)-1-etil-1,4-dihidro-4-oxo-1,8-naftiridina-3-carboxamida

10

5

o una de sus sales.

13. El uso de un compuesto de la fórmula (I) o de una de sus sales:

en la que

A, E, y D se seleccionan independientemente de CR' (donde R' se selecciona de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alqueniloxi, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiaciloxi, oxiaciloxi, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino) o N, y en la que al menos uno de A, E, y D es N;

X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, sulfinilo, y sulfonilo);

Y representa OR" (donde R" es H o alquilo) o NR₃R₄;

25 R representa H o alquilo;

R₁ representa cicloalquilo, cicloalquenilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, osulfinilo, osulfinilo, osulfonilo; y

 R_3 y R_4 representa cada uno independientemente alquilo, o junto con el átomo de N, heteroarilo que contiene N o heterociclilo que contiene N,

- donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiacilimino, oxisulfinilamino, oxisulfonilamino, oxitioacilo, oxitioaciloxi, sulfinilo, sulfinilamino, sulfonilo, sulfonilamino, tio, tioacilo, y tioacilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquiniloxi, amino, aminoacilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, heteroarilo, heteroariloxi, heterociclilo, heterocicliloxi, oxiacilo, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-(alquil sustituido)amino, mono- y di-arilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, mono- y di-heteroarilo y heterociclilo,
 - en la fabricación de un medicamento para el tratamiento y/o prevención de un trastorno del sistema nervioso central, preferiblemente un trastorno de ansiedad.
- 14. El uso según la reivindicación 13, en el que el trastorno de ansiedad se selecciona entre trastorno de ansiedad generalizada (GAD), fobias sociales, trastorno de pánico, trastorno obsesivo-compulsivo (OCD), trastorno de estrés post-traumático (PTSD), y fobias tales como agorafobia, agorafobias sin historia de trastorno de pánico, fobias a animales y trastornos depresivos.
 - 15. El uso según la reivindicación 13, en el que el trastorno del sistema nervioso central es trastorno de ansiedad inducida por sustancias, isquemia cerebral, trastornos del ritmo circadiano, o dolor y nocicepción.
- 25 16. El uso según la reivindicación 13, en el que el trastorno del sistema nervioso central es la enfermedad de Alzheimer.
 - 17. El uso según una cualquiera de las reivindicaciones 13 a 16, en el que el medicamento es adecuado para administración oral, rectal, nasal, tópica (incluyendo bucal y sublingual), vaginal o parental (incluyendo subcutánea, intramuscular, intravenosa e intradérmica.
- 30 18. El uso de un compuesto según una cualquiera de las reivindicaciones 1 a 12, o una de sus sales, en la fabricación de un medicamento para el tratamiento y/o prevención de un trastorno del sistema nervioso central, preferiblemente un trastorno de ansiedad.
 - 19. El uso según la reivindicación 18, en el que el trastorno de ansiedad se selecciona entre trastorno de ansiedad generalizada (GAD), fobias sociales, trastorno de pánico, trastorno obsesivo-compulsivo (OCD), trastorno de estrés post-traumático (PTSD), y fobias tales como agorafobia, agorafobias sin historia de trastorno de pánico, fobias a animales y trastornos depresivos.
 - 20. El uso según la reivindicación 18, en el que el trastorno del sistema nervioso central es trastorno de ansiedad inducida por sustancias, isquemia cerebral, trastornos del ritmo circadiano, o dolor y nocicepción.
- 21. El uso según la reivindicación 18, en el que el trastorno del sistema nervioso central es la enfermedad de 40 Alzheimer.
 - 22. El uso según una cualquiera de las reivindicaciones 18 a 21, en el que el medicamento es adecuado para administración oral, rectal, nasal, tópica (incluyendo bucal y sublingual), vaginal o parental (incluyendo subcutánea, intramuscular, intravenosa e intradérmica).
- 23. Una composición farmacéutica que comprende al menos un compuesto según una cualquiera de las reivindicaciones 1 a 11, o una de sus sales farmacéuticamente aceptables, y al menos uno entre un vehículo, diluyente y excipiente.
 - 24. Una composición farmacéutica que comprende un compuesto según la reivindicación 12, o una de sus sales farmacéuticamente aceptables, y al menos uno entre un vehículo, diluyente y excipiente.
- 25. Una composición farmacéutica según la reivindicación 23 o la reivindicación 24, adecuada para administración oral, rectal, nasal, tópica (incluyendo bucal y sublingual), vaginal o parental (incluyendo subcutánea, intramuscular, intravenosa e intradérmica).
 - 26. Un compuesto de la fórmula (I) o una de sus sales:

35

$$R_1 \xrightarrow{X} E \xrightarrow{D} Q \xrightarrow{Q} Q$$

$$R_1 \xrightarrow{X} R$$

$$R_2 \qquad (1)$$

en la que

5

30

35

A, E, y D se seleccionan independientemente de CR' (donde R' se selecciona de H, carboxilo, ciano, dihalometoxi, halógeno, hidroxi, nitro, pentahaloetilo, fosfono, fosforilamino, fosfinilo, sulfo, trihaloetenilo, trihalometanotio, trihalometilo, trihalometoxi, acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alqueniloxi, alcoxi, alquilo, alquiniloxi, amino, aminoacilo, aminoaciloxi, aminosulfonilo, aminotioacilo, arilo, arilamino, ariloxi, cicloalquenilo, cicloalquilo, heteroarilo, heterociclilo, oxiacilo, oxiacilamino, oxiaciloxi, oxiaciloxi, oxiaciloxi, sulfinilamino, sulfonilamino, tio, tioacilo, y tioacilamino) o N, y en la que al menos uno de A, E, y D es N;

10 X representa O o NR" (donde R" se selecciona de H, alquilo, arilo, cicloalquilo, acilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfonilo, sulfinilo, y sulfonilo);

Y representa OR" (donde R" es H o alquilo) o NR₃R₄;

R representa H o alquilo;

R₁ representa cicloalquilo, cicloalquenilo, alquilo, acilo, arilo, heterociclilo, o heteroarilo;

R₂ representa H, cicloalquilo, alquilo, acilo, arilo, alquenilo, heterociclilo, heteroarilo, oxisulfinilo, oxisulfinilo, osisulfonilo; y

R₃ y R₄ representa cada uno independientemente alquilo, o junto con el átomo de N, heteroarilo que contiene N o heterociclilo que contiene N; y

donde cada uno de los grupos acilo, acilamino, acilimino, aciliminoxi, aciloxi, arilalquilo, arilalcoxi, alquenilo, alquenilo, alqueniloxi, alqueniloxi, alqueniloxi, alqueniloxi, alqueniloxi, amino amino aciloxi, amino aciloxi, amino amino aciloxi, amino amino aciloxi, oxiacilamino, oxiacilamino, oxiaciloxi, oxiacilimino, oxiacilimino, oxiaciloxi, oxiaciloxi, sulfinilamino, sulfonilo, sulfonilamino, tio, tio acilo, y tio acilamino puede estar opcionalmente sustituido con uno o más grupos seleccionados de hidroxilo, acilo, alquilo, alcoxi, alquenilo, alqueniloxi, alquiniloxi, amino, amino acilo, tio, arilalquilo, arilalcoxi, arilo, ariloxi, carboxilo, acilamino, ciano, halógeno, nitro, fosfono, sulfo, fosforilamino, fosfinilo, hetero arilo, hetero aciloxi, trihalometilo, hetero aciloxi, oxima, oxima-éter, hidrazona, oxiacilamino, oxisulfonilamino, amino aciloxi, trihalometilo,

heterocicliloxi, oxiacilo, oxima, oxima-èter, hidrazona, oxiacilamino, oxisulfonilamino, aminoaciloxi, trihalometilo, trialquilsililo, pentafluoroetilo, trifluorometoxi, difluorometoxi, trifluorometanotio, trifluoroetenilo, mono- y dialquilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, mono- y di-heteroarilamino, y aminas disustituidas asimétricas que tienen diferentes sustituyentes seleccionados de alquilo, arilo, heteroarilo y heterociclilo,

para uso en el tratamiento y/o prevención de un trastorno del sistema nervioso central, preferiblemente un trastorno de ansiedad.

27. Un compuesto según la reivindicación 26, en el que el trastorno de ansiedad se selecciona entre trastorno de ansiedad generalizada (GAD), fobias sociales, trastorno de pánico, trastorno obsesivo-compulsivo (OCD), trastorno de estrés post-traumático (PTSD), y fobias tales como agorafobia, agorafobias sin historia de trastorno de pánico, fobias a animales y trastornos depresivos.

- 28. Un compuesto según la reivindicación 26, en el que el trastorno del sistema nervioso central es trastorno de ansiedad inducida por sustancias, isquemia cerebral, trastornos del ritmo circadiano, o dolor y nocicepción.
- 29. Un compuesto según la reivindicación 26, en el que el trastorno del sistema nervioso central es la enfermedad de 40 Alzheimer.
 - 30. Un compuesto según una cualquiera de las reivindicaciones 26 a 29, en el que el medicamento es adecuado para administración oral, rectal, nasal, tópica (incluyendo bucal y sublingual), vaginal o parental (incluyendo subcutánea, intramuscular, intravenosa e intradérmica).
- 31. Un compuesto según una cualquiera de las reivindicaciones 1 a 12 o una de sus sales, para el tratamiento y/o prevención de un trastorno del sistema nervioso central, preferiblemente un trastorno de ansiedad.
 - 32. Un compuesto según la reivindicación 31, en el que el trastorno de ansiedad se selecciona entre trastorno de ansiedad generalizada (GAD), fobias sociales, trastorno de pánico, trastorno obsesivo-compulsivo (OCD), trastorno

de estrés post-traumático (PTSD), y fobias tales como agorafobia, agorafobias sin historia de trastorno de pánico, fobias a animales y trastornos depresivos.

- 33. Un compuesto según la reivindicación 31, en el que el trastorno del sistema nervioso central es trastorno de ansiedad inducida por sustancias, isquemia cerebral, trastornos del ritmo circadiano, o dolor y nocicepción.
- 5 34. Un compuesto según la reivindicación 31, en el que el trastorno del sistema nervioso central es la enfermedad de Alzheimer.
 - 35. Un compuesto según una cualquiera de las reivindicaciones 31 a 35, en el que el medicamento es adecuado para administración oral, rectal, nasal, tópica (incluyendo bucal y sublingual), vaginal o parental (incluyendo subcutánea, intramuscular, intravenosa e intradérmica).

10