

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 401 335

51 Int. Cl.:

A61K 31/497 (2006.01)
A61K 31/437 (2006.01)
A61K 31/506 (2006.01)
A61K 31/5355 (2006.01)
A61K 31/551 (2006.01)
A61K 31/541 (2006.01)
C07D 471/04 (2006.01)
A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 15.03.2005 E 05725560 (6)
 Fecha y número de publicación de la concesión europea: 12.12.2012 EP 1737461
- (54) Título: Derivados de carbolina útiles en la inhibición de la angiogénesis
- (30) Prioridad:

15.03.2004 US 552725 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 18.04.2013

(73) Titular/es:

PTC THERAPEUTICS, INC. (100.0%) 100 CORPORATE COURT, MIDDLESEX BUSINESS CENTER SOUTH PLAINFIELD, NJ 07080, US

(72) Inventor/es:

MOON, YOUNG-CHOON; CAO, LIANGXIAN; TAMILARASU, NADARAJAN; QI, HONGYAN; CHOI, SOONGYU; LENNOX, WILLIAM JOSEPH; CORSON, DONALD THOMAS y HWANG, SEONGWOO

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

S 2 401 335 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de carbolina útiles en la inhibición de la angiogénesis

Campo de la invención

La presente invención se refiere a compuestos para la inhibición de la angiogénesis.

5 Antecedentes de la invención

10

15

20

25

30

35

40

45

50

55

La angiogénesis aberrante desempeña un papel crítico en la patogénesis de numerosas enfermedades, incluyendo enfermedades malignas, isquémicas, inflamatorias e inmunes (Carmeliet, *Nat. Med., 9*(6):653-60 (2003), Ferrara, *Semin. Oncol, 29*(6 Suppl 16):10-4 (2002)). Las más conocidas de estas enfermedades son cáncer, degeneración macular exudativa y retinopatía diabética (DR), siendo las dos últimas la causa principal de ceguera en los Estados Unidos de América (Witmer *y col., Prog. Retin Eye Res., 22*(1): 1-29 (2003), Clark *y col, Nat. Rev. Drug Discovery, 2*:448-459 (2003)). Durante la última década nuestra comprensión de las bases moleculares de la angiogénesis ha aumentado considerablemente. Se han identificado numerosas citoquinas y factores de crecimiento que estimulan la angiogénesis, tales como VEGF, FGF-2, PDGF, IGF-1, TGF, TNF-α, G-CSF (Ferrara *y col., Nat. Med., 5*(12):1359-64 (1999), Kerbel *y col, Nat. Rev. Cancer, 2*(10):727-39 (2002), Rofstad *y col, Cancer Res., 60*(17):4932-8 (2000)). Entre estos factores de crecimiento, el Factor de Crecimiento Endotelial Vascular (VEGF) desempeña un papel fundamental en la angiogénesis (Ferrara, *Semin. Oncol, 29*(6 Suppl 16):10-4 (2002)).

VEGF, también conocido como VEGF-A, se identificó inicialmente por su capacidad de inducir permeabilidad vascular y de estimular la proliferación de células endoteliales vasculares (Leung y col, Science, 246:1306-1309 (1989), Plouet y col, EMBO J., 8:3801-3806 (1989), Connolly y col, J. Biol. Chem., 264:20017-20024 (1989)). VEGF se codifica por un único gen que da lugar a cuatro isoformas por empalme alternativo (Tischer y col, J. Biol. Chem., 266:11947-11954 (1991)). Las cuatro isoformas comparten una misma 5'-UTR inusualmente larga y rica en GC, así como una 3'-UTR que incluye múltiples determinantes de estabilidad de ARN. Los receptores VEGFR-2 (también conocidos como KDR o Flk-1) y VEGFR-1 (previamente conocidos como Flt1) reconocen la forma dimérica de VEGF (Ortega y col, Front. Biosci., 4:D141-52 (1999), Sato y col, Annals of New York Academy of Science, 902:201-207, (2000)). El receptor VEGFR-2 altamente específico se expresa en células endoteliales. La unión de VEGF al receptor VEGFR-2 activa la actividad de tirosina quinasa del receptor, conduciendo a la proliferación, diferenciación y formación de vasos primitivos de las células endoteliales (Shalaby y col, Nature, 376:62-66, (1995)). VEGFR-1 inhibe el crecimiento celular endotelial al actuar como señuelo o bien al suprimir las rutas de señalización a través de VEGFR-2 (Fong y col., Nature, 376:66-70 (1995)).

Hace más de 30 años, se propuso que la inhibición de la angiogénesis tumoral podría ser un enfoque eficaz para el tratamiento del cáncer (Folkman, N. Engl. J. Med. 285(21):1182-6 (1971)). Se ha demostrado que VEGF y su receptor desempeñan un papel fundamental en la angiogénesis tumoral, especialmente en los estadios iniciales del crecimiento tumoral (Hanahan y col., Cell, 86:353-364, 1996)). De hecho, se ha correlacionado el aumento de los niveles de la expresión de VEGF con la densidad microvascular en tejidos tumorales primarios (Gasparini y col, J. Natl. Cancer Inst., 89:139-147 (1997)). Además, se ha descubierto un aumento de los niveles de transcripción de VEGF en prácticamente todos los tumores sólidos comunes (Ferrara y col., Endocr. Rev., 18:4-25, 1997)). En general, los pacientes con tumores tienen mayores niveles de VEGF en comparación con los individuos sin tumores, y los niveles de VEGF elevados en suero/plasma se asocian con una mala prognosis (Dirix y col, Br. J. Cancer, 76:238-243 (1997)). De forma consecuente con el papel de VEGF en la angiogénesis tumoral, las células madre embrionarias sin VEGF mostraron una reducción drástica en la capacidad de formación de tumores en ratones desnudos (Carmeliet y col., Nature, 380:435-439 (1996)). La prueba directa de la relación de VEGF en la génesis tumoral se demostró con el uso de anticuerpos específicos frente a VEGF en xenoinjertos humanos implantados en ratones desnudos (Kim y col, Nature, 362:841-844 (1993), Hichlrn y col, Drug Discovery Today, 6:517-528 (2001)). En estos estudios, la inhibición del crecimiento tumoral correlacionó de forma positiva con el descenso en la formación de vasos en los tumores tratados con anticuerpos. Los experimentos posteriores que usan receptores solubles confirmaron la importancia de la actividad de VEGF en el crecimiento tumoral (Lin y col., Cell Growth Differ., 9(1):49-58 (1998)), y demostraron que la inactivación de VEGF mediante el tratamiento con anticuerpos específicos resultó directamente en una supresión casi completa de la neovascularización asociada a tumores (Borgstrom y col, Prostate, 35:1-10 (1998), Yuan y col. Proc. Natl. Acad. Sci. USA, 93:14765-14770 (1996)).

En la degeneración macular exudativa y en la retinopatía diabética, los experimentos preclínicos y los ensayos clínicos han demostrado que la sobreproducción de VEGF es fundamental para la neovascularización retinal o coroidal aberrante (revisado en Witmer y col, Prog. Retin Eye Res., 22(1):1-29 (2003)). Se han obtenido evidencias de que los niveles de VEGF intraoculares están claramente correlacionados con la neovascularización retinal/coroidal activa (CNV) en pacientes con enfermedades tales como retinopatía diabética y degeneración macular de forma húmeda (Funatsu y col., Am. J. Oftalmol., 133(4):537-43 (2002), Lip y col., Oftalmology, 108(4):705-10 (2001)). Además, los estudios que usan ratones transgénicos han demostrado que la sobreexpresión de VEGF en células del epitelio pigmentario retinal o en células fotoreceptoras resulta en neovascularización coroidal o retinal (Schwesinger y col, Am. J. Pathol, 158(3):1161-72 (2001), Ohno-Matsui y col, Am. J. Pathol., 160(2):711-9 (2002)). En estudios recientes, la neutralización con anticuerpos, receptor soluble, antagonistas del receptor, o

siARN ha probado ser eficaz en la reducción de la formación de vasos sanguíneos mediada por VEGF en modelos animales y en la clínica (Eyetech Study Group, 22(2):143-52 (2002), Krzystolik y col, Arch. Oftalmol., 120(3):338-46 (2002), Shen y col Lab Invest., 82(2):167-82 (2002), Honda y col, Gene Ther., 7(11):978-85 (2000), Saishin y col, J. Cell Physiol, 195(2):241-8 (2003)).

La expresión de VEGF se regula mediante un determinado número de factores y agentes que incluyen citoquinas, factores de crecimiento, hormonas esteroides y compuestos químicos, y mutaciones que modula la actividad de oncogenes tales como ras o el gen supresor de tumores VHL (Maxwell y col, Nature, 399:271-275 (1999), Rak y col, Cancer Res., 60:490-498 (2000)). Sin embargo, la hipoxia es la señal fisiológica más importante para la regulación de la expresión de VEGF. La hipoxia da como resultado un aumento de la expresión de VEGF por aumento tanto de 10 la velocidad de transcripción como de la estabilidad de transcripción de VEGF (Ikeda y col, J. Biol Chem. 270:19761-19766 (1995), Stein y col, Mol Cell Biol. 18:3112-3119 (1998), Levy y col, J. Biol Chem. 271:2746-2753 (1996)). El factor 1α inducido por hipoxia (HIF- 1α) es un factor de transcripción que aumenta la expresión génica de VEGF en células que experimentan hipoxia mediante la unión del elemento de respuesta a hipoxia (HRE) localizado en el promotor de VEGF (Liu y col, Circ. Res., 77:638-643 (1995), Semenza, Armu. Rev. Cell Dev. Biol, 5:551-578 (1999)). 15 La estabilidad del ARNm de VEGF también aumenta mucho como consecuencia de la unión de factores a elementos de la 3'-UTR (Goldberg y col, J. Biol. Cell J. Biol Chem., 277(16):13635-40 (2002)). Además, el inicio de la traducción de la transcripción de VEGF se regula de forma única. En condiciones de hipoxia, la traducción de la mayoría de las transcripciones celulares mediadas por procesos de iniciación de traducción dependientes de cap se reduce mucho (Kraggerud y col, Anticancer Res., 15:683-686 (1995)). El inicio de la traducción del ARNm de VEGF, sin embargo, 20 es único en condiciones de hipoxia, en las que está mediado a través de un sitio interno de entrada al ribosoma (IRES) dentro de la 5'UTR de VEGF (Stein y col, Mol. Cell. Biol 18:3112-3119 (1998), Levy y col, J. Biol Chem. 271:2746-2753 (1996), Huez y col, Mol Cell. Biol, 18:6178-6190 (1998), Akiri y col, Oncogene, 17:227-236 (1998)).

25

30

35

40

45

50

55

60

Hay un extenso cuerpo de evidencia experimental que indica que el crecimiento tumoral se puede inhibir mediante la prevención de la neovascularización (Lin y col. Cell Growth Differ., 9(1):49-58 (1998), Zhu y col. Invest. New Drugs, 17:195-212 (1999)). Los vasos tumorales son generalmente inmaduros y experimentan una remodelación constante (Carmeliet, Nat. Med., 9(6):653-60 (2003), Carmeliet y col, Nature, 407:249-257 (2000)). La angiogénesis activa y aberrante es el resultado de una alteración del equilibrio normal de factores proangiogénicos y antiangiogénicos, que incluyen diversas citoquinas, factores de crecimiento y hormonas esteroides. A pesar de la complejidad de la regulación de la angiogénesis tumoral, las evidencias acumuladas indican que fijar como diana un único factor proangiogénico podría ser suficiente para inhibir la angiogénesis tumoral y suprimir el crecimiento tumoral (Kim y col, Nature, 362:841-844 (1993), Millauer y col, Nature, 367:576-579 (1994), Fong y col, Cancer Res., 59:99-106 (1999)). Entre las numerosos dianas de la angiogénesis, VEGF y su receptor son las más atractivas (Carmeliet, Nat. Med., 9(6):653-60 (2003), Ortega y col., Front. Biosci., 4:D141-52 (1999)). Como se ha indicado anteriormente, el tratamiento con un anticuerpo monoclonal dirigido específicamente a VEGF inhibió el crecimiento de tumores en xenoinjertos humanos implantados en ratones desnudos. Posteriormente, se han ensayado diversos enfoques diseñados para inactivar la señalización de VEGF en modelos tumorales y han demostrado que son altamente eficaces en una gran variedad de líneas celulares tumorales que incluyen carcinomas, sarcomas y gliomas (Ferrara y col, Endocr. Rev., 18:4-25, (1997), Kim y col., Nature, 362:841-844 (1993), Millauer y col, Nature, 367:576-579 (1994), Fong y col, Cancer Res., 59:99-106 (1999), Geng y col, Cancer Res., 61:2413-2419 (2001)). Además, la inhibición de VEGF mediante anticuerpos anti-VEGF no condujo a efectos secundarios importantes en roedores o primates completamente desarrollados (Ryan y col. Toxicol. Pathol, 27:78-86 (1999), Ferrara y col. Nat. Med., 4:336-340 (1998)). Tomados en conjunto, estos resultados indican que VEGF es una diana válida para el desarrollo de una terapia tumoral. De hecho, se encuentran en desarrollo un determinado número de ensayos clínicos que usan inhibidores de VEGF (Matter, Drug Discovery Today, 6:1005-1024 (2001), Hichlin y col, Drug Discovery Today, 6:517-528 (2001)).

Aunque la patología de la degeneración macular exudativa relacionada con la edad involucra varios factores proangiogénicos, VEGF parece ser el más importante en la patogénesis y en el desarrollo de esta enfermedad (Witmer y col, Prog. Retin Eye Res., 22(1):1-29 (2003), Holash y col, Science, 284:1994-1998 (1999)). Los datos de los experimentos preclínicos y de los ensayos clínicos han demostrado que solo el bloqueo de VEGF es suficiente para aliviar o estabilizar el progreso de la enfermedad (Eyetech Study Group, 22(2):143-52 (2002), Krzystolik y col, Arch. Oftalmol, 120(3):338-46 (2002), Shen y col, Lab Invest., 82(2):167-82 (2002), Honda y col, Gene Ther., 7(11):978-85 (2000), Saishin y col, J. Cell Physiol, 195(2):241-8 (2003)). Por ejemplo, la inhibición de la señalización de VEGFR mediante un inhibidor específico de tirosina quinasa es suficiente para prevenir completamente la neovascularización retinal en un modelo murino de retinopatía de prematuridad (Ozaki H, Seo MS, Ozaki y col, Am. J. Pathol, 156(2):697-707 (2000)). Además, se ha demostrado recientemente que los ARN de pequeña interferencia (siARN) dirigidos frente a VEGF murina inhibieron significativamente la neovascularización ocular después de fotocoagulación por láser en un modelo de razón (Reich y col, Mol Vis. 30;9:210-6 (2003)). Estos resultados indican que se puede conseguir la inhibición selectiva que la expresión de VEGF y ofrecen la validación de este enfoque para el tratamiento de enfermedades neovasculares oculares tales como degeneración macular exudativa y retinopatía diabética.

Se han usado tres enfoques para inhibir la actividad de VEGF, incluyendo (1) neutralización de la actividad de VEGF mediante el uso de un anticuerpo específico, un receptor soluble de VEGF u oligonucleótidos aptámeros frente a la

interacción VEGF/VEGFR (Kim y col, Nature, 362:841-844 (1993), Lin y col, Cell Growth Differ., 9(1):49-58 (1998), Borgstrom y col, Prostate, 35:1-10 (1998), Zhu y col, Invest. New Drugs, 17:195-212 (1999), Millauer y col, Nature, 367:576-579 (1994), Asano y col, Jpn. J. Cancer Res., 90(1):93-100 (1999), Brekken y col, Cancer Res., 60(18):5117-24 (2000)); (2) inhibición de la transducción de señal mediada por VEGFR mediante inhibidores 5 específicos de tirosina quinasa de molécula pequeña (Fong y col, Cancer Res., 59:99-106 (1999), Wedge y col, Cancer Res., 60(4):970-5 (2000) Laird y col, Cancer Res., 60(15):4152-60 (2000)); y (3) inhibición de la expresión de VEGF/VEGFR mediante el uso de antisentido, siARN o ribozima (Reich y col, Mol Vis. 30;9:210-6 (2003), Parry y col, Nucleic Acids Res., 27:2569-2577 (1999), Ellis v col. Surgery, 120:871-878 (1996), Filleur v col. Cancer Res., 63(14):3919-22 (2003)). Mientras que todos estos enfoques muestran una inhibición importante de la angiogénesis in 10 vivo, todos ellos poseen limitaciones importantes. Por ejemplo, las proteínas terapéuticas (anticuerpos y receptores solubles) v los oligonucleótidos (antisentido, siARN v ribozima) son moléculas grandes con una mala permeabilidad que normalmente requieren administración parenteral y su producción es costosa. Para el tratamiento de neovascularización ocular crónica, las inyecciones múltiples pueden ser poco prácticas debido a complicaciones potenciales tales como desprendimiento de retina e infecciones relacionadas con el procedimiento. Además, los 15 inhibidores de tirosina quinasa tienen una capacidad de especificidad limitada. VEGF se expresa constitutivamente a un nivel bajo en los ojos y otros tejidos normales y por lo tanto puede ser perjudicial suprimir completamente la función de VEGF mediante la administración sistémica de anticuerpos o inhibidores de tirosina quinasa, especialmente en pacientes con AMD y RD, muchos de los cuales también son hipertensos (Giles y col. Cancer, 97(8):1920-8 (2003), Sugimoto y col, J. Biol. Chem., 278(15):12605-8 (2003), Bergsland y col, American Society of Clinical Oncology 36th Annual Meeting, 20-23 de mayo de 2000, Nueva Orleans, LA, USA, Abstract 939), DeVore *y col*, American Society of Clinical Oncology 36th Annual Meeting, 20-23 de mayo de 2000, Nueva Orleans, LA, USA, 20 Abstract 1896).

Por lo tanto, sigue existiendo una necesidad para desarrollar, caracterizar y optimizar moléculas ventajosas para el desarrollo de nuevos fármacos antiangiogénesis. Por consiguiente, es un objetivo de la presente invención proporcionar tales compuestos.

Se conocen tetrahidro- β -carbolinas para diversas indicaciones en los documentos de Patente EP-A-0549916, WO 97/37658 A, US 2003/040527 A, WO 03/033496, WO 03/099821 A, y en Ishida *y col. Bioorg. Med. Chem. Lett.* 9:3319-3324 (1999).

Compendio de la invención

25

45

50

30 De acuerdo con la presente invención, se han identificado compuestos que inhiben la expresión de VEGF posttranscripcionalmente.

En un aspecto de la presente invención, se proporcionan compuestos de fórmula (IV) que son útiles para la inhibición de la producción de VEGF, para la inhibición de la angiogénesis, y/o para el tratamiento de cáncer, retinopatía diabética o degeneración macular exudativa.

- En otro aspecto de la presente divulgación, se proporcionan métodos para la inhibición de la producción de VEGF, para la inhibición de la angiogénesis, y/o para el tratamiento de cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, inflamación crónica, otras enfermedades y trastornos crónicos relacionados con la inflamación, obesidad, o degeneración macular exudativa usando los compuestos descritos en la presente memoria.
- 40 En una realización, la presente divulgación se refiere a métodos para la inhibición de la producción de VEGF que comprenden la administración de una cantidad inhibitoria de la expresión de VEGF de al menos un compuesto de la presente invención a un sujeto con necesidad del mismo.
 - En otra realización de la presente divulgación, se proporcionan métodos para la inhibición de la angiogénesis y que comprenden la administración de una cantidad antiangiogénica de al menos un compuesto de la presente invención a un sujeto con necesidad del mismo.

En otra realización más de la presente divulgación, se proporcionan métodos para el tratamiento de cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, inflamación crónica, otras enfermedades y trastornos crónicos relacionados con la inflamación, obesidad, o degeneración macular exudativa que comprenden la administración de una cantidad terapéuticamente eficaz de al menos un compuesto de la presente invención a un sujeto con necesidad del mismo.

Estos y otros aspectos de la presente invención se comprenderán con mayor claridad por referencia a las realizaciones preferentes y a la descripción detallada que siguen a continuación.

Breve descripción de las figuras

Figura 1. La Figura 1 ilustra la inhibición de la expresión de VEGF mediante cierto compuesto de la presente invención.

Figura 2. La Figura 2 ilustra que la actividad de fosfodiesterasa 5 (PDE-5) no se ve afectada por ciertos compuestos de la presente invención.

Descripción detallada de la invención

La regulación positiva aberrante del Factor de Crecimiento Endotelial Vascular (VEGF), un factor clave para la angiogénesis, contribuye de manera importante a la patogénesis de patologías tales como cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, inflamación crónica, otras enfermedades y trastornos crónicos relacionados con la inflamación, obesidad, o degeneración macular exudativa. De acuerdo con la presente invención, se han identificado compuestos que inhiben la expresión de VEGF post-transcripcionalmente, y se proporcionan métodos para su uso. Los compuestos de la presente invención presentan una actividad de orden nanomolar a sub-nanomolar para la inhibición de la expresión de VEGF.

A. Compuestos de la invención

5

10

15

30

35

40

45

En un aspecto de la presente invención, se proporcionan compuestos que son útiles para la inhibición de la producción de VEGF, para la inhibición de la angiogénesis, y/o para el tratamiento de cáncer, retinopatía diabética o degeneración macular exudativa. En ciertas realizaciones, los compuestos de la presente invención inhiben específicamente la producción de VEGF, mientras que en otras realizaciones, los compuestos de la presente invención inhiben la expresión de VEGF así como la de otros factores de la angiogénesis tales como FGF-2. A este respecto, un inhibidor pan-angiogénico puede ser preferente para los métodos de inhibición de crecimiento tumoral, mientras que los inhibidores específicos de VEGF pueden ser preferentes para el tratamiento de trastornos neovasculares oculares (Eyetech Study Group, 22(2):143-52 (2002)).

Los compuestos de la presente invención incluyen generalmente uno o más centros quirales, y como tales pueden existir en forma de mezclas racémicas (*R*/*S*) o en forma de composiciones enantioméricamente puras. Los compuestos pueden existir en forma de los isómeros (*R*) o (*S*) (cuando esté presente un centro quiral) en composiciones enantioméricamente puras. En una realización preferente, los compuestos de la presente invención son los isómeros (*S*) y pueden existir en forma de composiciones enantioméricamente puras que comprenden solamente el isómero (*S*). Como podrá reconocer un experto en la materia, cuando está presente en más de un centro quiral, los compuestos de la presente invención pueden existir en forma del isómero (*R*,*R*), (*R*,*S*), (*S*,*R*), etc. Los compuestos preferentes incluyen los isómeros (*S*,*S*) y (*S*,*R*).

Como se usa en la presente memoria, "enantioméricamente puro" se refiere a composiciones que consisten básicamente en un isómero único, preferentemente que consisten en 90%, 92%, 95%, 98%, 99%, o 100% de un isómero único.

Los compuestos preferentes de la presente invención útiles en la inhibición de la producción de VEGF incluyen los de fórmula (IV) como se definen en las reivindicaciones anexas.

Como será evidente para un experto en la materia, los compuestos de Fórmula (IV) comprenden al menos un estereocentro, y pueden existir en forma de una mezcla racémica o en forma de una composición enantioméricamente pura. En una realización preferente, los compuestos de Fórmula (IV) son el isómero (S), en una composición enantioméricamente pura.

Como se usa en la presente memoria, el término "alquilo" se refiere generalmente a radicales hidrocarbilo saturado de configuración lineal, ramificada o cíclica que incluyen metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, secbutilo, terc-butilo, n-pentilo, n-hexilo, ciclohexilo, n-heptilo, octilo, n-octilo, y similares. En algunas realizaciones, los sustituyentes alquilo pueden incluir grupos alquilo C₁ a C₈, C₁ a C₆, o C₁ a C₄. El grupo alquilo puede estar opcionalmente sustituido con uno o más grupos halógeno o alcoxi. Por ejemplo, el grupo alquilo puede ser un haloalquilo, dihaloalquilo, o trihaloalquilo.

Como se usa en la presente memoria, "alquenilo" se refiere generalmente a radicales alqueno lineal, ramificado o cíclico que tienen uno o más dobles enlaces carbono-carbono, tales como grupos alquenilo C_2 a C_8 y C_2 a C_6 , incluyendo 3-propenilo.

Como se usa en la presente memoria, "alquinilo" se refiere generalmente a radicales alquino lineal, ramificado o cíclico que tienen uno o más triples enlaces carbono-carbono, tales como grupos alquenilo C_2 a C_8 y C_2 a C_6 , incluyendo hex-3-ino.

Como se usa en la presente memoria, "arilo" se refiere a una estructura anular aromática carbocíclica. Se incluyen en el ámbito de los grupos arilo los anillos aromáticos que tienen de cinco a veinte átomos de carbono. Las estructuras con anillos arilo incluyen compuestos que tienen una o más estructuras anulares, tales como los compuestos mono, bi o tricíclicos. Los ejemplos de grupos arilo incluyen estructuras anulares de fenilo, tolilo, antracenilo, fluorenilo, indenilo, azulenilo, fenantrenilo (es decir, fenantreno), y naftilo (es decir, naftaleno). En ciertas realizaciones, el grupo arilo puede estar opcionalmente sustituido.

ES 2 401 335 T3

Como se usa en la presente memoria, "heteroarilo" se refiere a una estructura anular aromática cíclica en la que uno o más átomos en el anillo, el heteroátomo o heteroátomos, son un elemento distinto del carbono. Los heteroátomos son típicamente átomos de O, S o N. Se incluyen dentro del ámbito de heteroarilo, e independientemente seleccionables, estructuras anulares heteroarilo con O, N, y S. La estructura anular puede incluir compuestos que tienen una o más estructuras anulares, tales como compuestos mono, bi o tricíclicos. En algunas realizaciones, los grupos heteroarilo se pueden seleccionar entre grupos heteroarilo que contienen uno o más heteroátomos, dos o más heteroátomos, tres o más heteroátomos, o cuatro o más heteroátomos. Las estructuras anulares heteroarilo se pueden seleccionar entre las que contienen cinco o más átomos, seis o más átomos, u ocho o más átomos. Los ejemplos de estructuras anulares heteroarilo incluyen: acridina, benzoimidazol, benzoxazol, benzoxazol, benzodioxol, benzofurano, dihidro-cromen-4-onilo, 1,3-diazina, 1,2-diazina, 1,2-diazol, 1,4-diazanaftaleno, furano, furazano, imidazol, indol, isoxazol, isoquinolina, isotiazol, isoindolilo, oxazol, purina, piridazina, pirazol, piridina, pirazina, pirimidina, pirrol, quinolina, quinoxalina, tiazol, tiofeno, 1,3,5-triazina, 1,2,4-triazina, 1,2,3-triazina, tetrazol y quinazolina. En ciertas realizaciones, el heteroarilo puede estar opcionalmente sustituido.

10

Como se usa en la presente memoria, "heterociclo" se refiere a estructuras anulares cíclicas en las que uno o más átomos en el anillo, el heteroátomo o heteroátomos, son un elemento distinto del carbono. Los heteroátomos son típicamente átomos de O, S o N. Se incluyen dentro del ámbito de heterociclo, e independientemente seleccionables, estructuras anulares heterociclo con O, N, y S. La estructura anular puede incluir compuestos que tienen una o más estructuras anulares, tales como compuestos mono, bi o tricíclicos. En algunas realizaciones, los grupos heterociclo se pueden seleccionar entre grupos heterociclo que contienen uno o más heteroátomos, dos o más heteroátomos, tres o más heteroátomos, o cuatro o más heteroátomos. Los ejemplos de grupos heterociclo incluyen morfolinilo, pirrolidinonilo, pirrolidinilo, piperidinilo, piperazinilo, hidantoinilo, valerolactamaílo, oxiranilo, oxetanilo, tetrahidrofuranoílo, tetrahidropiranilo, tetrahidropirimidinilo, tetrahidropirimidinilo, tetrahidrotiofenilo o tetrahidrotiopiranilo y similares. En ciertas realizaciones, el heterociclo puede estar opcionalmente sustituido.

Como se usa en la presente memoria, "alcanoílo" se refiere generalmente a un grupo con la estructura -C(O)-R. En ciertas realizaciones, R puede ser un hidrógeno, un alquilo, un grupo 4-morfolinilo, o un grupo tiazolamino.

Como se usa en la presente memoria, "alcoxi" se refiere generalmente a un grupo con la estructura -O-R. En ciertas realizaciones, R puede ser un grupo alquilo, tal como un grupo alquilo C_1 a C_5 .

Para los fines de la presente invención, los sustituyentes halo se pueden seleccionar independientemente entre los halógenos tales como flúor, cloro, bromo, yodo, y astato.

30 En ciertas realizaciones preferentes, X puede ser hidrógeno, metoxi, hidroxilo, benzoxi, o un halógeno, preferentemente bromuro o cloruro. En otras realizaciones, X puede ser preferentemente un alquilo o un haloalquilo C₁ a C₄.

Los compuestos preferentes de la presente invención se definen en las reivindicaciones 4 y 5. Compuestos adicionales de la presente divulgación incluyen los siguientes:

		Br N-O Br 3
Br Co		CI O O O H F F 6
Br NO	Br. No.H	Br NO O
CI NO		CI N H

CI NO H	CI NO H	
Br NO CI	0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CI CI NO O
CI NO H F F	CI NO CI 20	CI N F
CI N H _F 22	CI NO NO F	CI NO H

25	CI NO H	Br 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CI NO H 28	Br N O H F 29	CI N-0 30
CI NO NO H	Br N O F F F F S 32	CI N H F F
CI NO H	CI N H F 35	CI NO

CI NO F F F F F F F F F F F F F F F F F F	CI N N N N N N N N N N N N N N N N N N N	CI NO F F S 39
CI NO CI 40	CI NO H Br	CI NO H
CI N O O O O O O O O O O O O O O O O O O	Br O Br 44	CI NO
CI N Br	CI NO Br	CI V V V V V V V V V V V V V V V V V V V
CI NO CI 49	Br NO CI	CI N F 51

CI NO H	CI NO H F 53	CI NO Br
CI N H CI 55	CI NO N-O 56	CI NO
CI NO Br	Br N-0 N+=0	GG 60
CI N H	CI NO H	Br. NO NO F 63

		
Br NOF	Br N 0 65	CI 200 200 666
Br N 0 H 67	CI NO H SE	CI NO Br
CI NO CI 70	CI NO H	CI N-O H CI 72
Br. H	CI NO	CI N-0 H F 75
Br N 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CI NO F	Br N O F F 78

CI N F F F F F F F F F F F F F F F F F F	Br NOFF	Br H O CI 81
CI NO F	CI C	CI NO F
CI	CI 2 0 0 0 86	CI NO CI 87
CI 2 - 1 - 88	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CI N O F 90
CI NO H	CI N F F 92	CI NO Br

,		
CI NO 94	CI N-O Br	CI N N N N N N N N N N N N N N N N N N N
CI NO	Br N-O H CI 98	CI N H Br 99
CI NO	CI N N N N N N N N N N N N N N N N N N N	102
CI N O N O N O N O N O N O N O N O N O N	CI CI CI 104	Ci N N N N N N N N N N N N N N N N N N N
CI NO H _F 106	CI NO 0 107	CI H _F N-0 108

CI NO	Br N-O H O-CH ₃	CI NH
Br N-H H 112	CI NO H NO 1113	CI O O O O O O O O O O O O O O O O O O O
Br NO	CI NO F	CI O O O O O O O O O O O O O O O O O O O
118	CI NO BI	CI NO
CI NO NH NO 121	CI NO 122	CI N-H F N-H F 123

CI N-H CI CI 124	CI NOF F	CI NO
CI NO 0 127	CI NO O-H	Br N-0 Br 129
130	131	Br N-H F 132
CI NO	CI NO H F	Br CI CI CI 135
Ci NO	Br N-H 137	Br H N-O H

CI N O O O O O O O O O O O O O O O O O O	Br N N CI	CI N H CI CI CI
142	CI NOO NOO NOO NOO NOO NOO NOO NOO NOO NO	CI NO
CI NO 145	CI N-H S 146	CH N-0 H N-0 147
Br Ci-V-0-148	CI CI CI 149	Br H N S CI 150
Br N-H CI N-H CI 151	Br N-O H 152	Br N-H N-O 153

	** H. b #	
CI NO H _F	Br N-H F 155	156
	155	CI
Br N-H Br 157	Br H N S 158	N-H H F F F F
F		Cl. /
CI H N-O	Br N-H F	H N-H
160 .	161	162
CI N-H F F 163	CI N-0-164	CI NO H
CI NO H-NO	CI H O O O O O O O O O O O O O O O O O O	CI N-H CI 168
166		

		
Ci NO O O O O O O O O O O O O O O O O O O	CI N-H CI CI CI	CI N-H N-H Br 171
172	CI N-H F 173	Br N-H N H
CI N O O O O O O O O O O O O O O O O O O	CI	CI H N O H N O O O O O O O O O O O O O O O
Br N-H F F 178	179	180
Br N-H CI 181	CI NO CI NO CI NO	CI N-O H CI 183

CI NO H	CI N-H N-H N=0 185	186
Br N 0 187	CI NO 188	0==0 N=H 189
CI N-H H CI 190	F N O O O O O O O O O O O O O O O O O O	CI NO
193	CI N-H F F 194	Ci N N N N N N N N N N N N N N N N N N N
F N O Br	CI N-H CI H 297	CI N-H H CI 198

Br N O CI 1999	CI N-H N Br 200	Br N-H F F P
Br N S CI 202	CI N-H H PF 203	Br N O H 204
CI N-H E 205	206	Br N-H F F F 207
CI N N N N N N N N N N N N N N N N N N N	209	CI N-H N-H 210
Br N 0	CI N-H N-H 212	Br N-H N-H 213

Br N-H N-H 214	CI N-H H F 215	CI N-H N 216
217	Br N O Ci 218	CI N-H N-H 220
CI NO	CI N-H CI 222	CI N-H Br 223
CI N-H N-H 224	CI	CI NO
CI N-H H 227	CI, N O O O O O O O O O O O O O O O O O O	F N O O O O O O O O O O O O O O O O O O

Br N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N	CI N-H N-H 231	232
233	CI N-H O A A A A A A A A A A A A A A A A A A	235
CI N N N N N N N N N N N N N N N N N N N	Br CI CI 237	Br N-O CI 238
CI N-H N-H O=N O- 239	CI NO H 240	Br O Br 241
F N N N N N N N N N N N N N N N N N N N	Br N H 243	Br NH NH H

Br NH NH NH 245	Br NH NH NH 246	Br NH NH 247
CI N H 248	Br N O-H 249	CI N H 250
CI N-H N H 251	Br N-H 252	F N-H N Ci 253
F N-H CI 254	255	F N-H Br 256
F CI N H CI CI 257	Br N O H 258	Br N O CI 259

260	CI H 00 261	CI
CI N H O-H 263	CI H 0 264	265
266	CI N O S N S 267	CI N O O O O O O O O O O O O O O O O O O
CI N H 0 269	CI N S 270	271
272	CI N H N-H 273	CI N O O O O O O O O O O O O O O O O O O
275	CI H N 276	277

278	279	Br N CI CI 280
Br H S S S S S S S S S S S S S S S S S S	Br. O O O O O O O O O O O O O O O O O O O	283
F N O CI 284	285	CI N-H 286
CI N-H N H 287	288	289
290	CI N-H H 291	292

293	CI N-H HN-O 294	295
CI N-H N H 296	CI N-H N-H N-	CI N-H 298
CI N-H F F 299	Br. N. H. 300	CI N-H O-
302	303	304
N-H H Br 305	306	307

308	CI NO	CI N-H S 310
311	309 H	N-H H
0 H N-H N H	312 F N-H N H	313 H 316
317	318	CI N-H N 319
320 N-H	321	322 N-H
323	о — N-H Н — N 324	HON-H 325

326	CI N-H N 327	CI N N N N N N N N N N N N N N N N N N N
329	330	CI
332	333	CI N H O 334
CI N S HN S 335	CI N H N H N S H N S	337
338	CI N N N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N

		, <u>.</u> <u>.</u>
341	N N N N N N N N N N N N N N N N N N N	343
344	345	346
347	CI NO	349
350	351	352
353	354	355

356	357	CI NO
359	360	CI NO
362	CI H N N N N N N N N N N N N N N N N N N	CI NO
365	366	CI N- CI N- O- O- 367
368	369	CI O O O O O O O O O O O O O O O O O O O

371	0=\$=0 H-N H-N 372	CI NO F
374	CI NO	376
Br NH OH H OH 377	378	Br NH OH 379
Br NH OH H S80	Br NH OH CI 381	Br OH Br 382
CI N S N S N S N S N S N S N S N S N S N	CI N S N S N S N S N S N S N S N S N S N	385

CI N N N N N N N N N N N N N N N N N N N	CI N O F N O N N N N N N N N N N N N N N N	388
389	Ci	391
392	Br N N N S - 393	Br N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
395	396	Br
398	399	CO C
401	402	403

		,
CI C	Br CI	CI NO
CI N N N N N N N N N N N N N N N N N N N	408	409
CI NO F H 0 - 410	CI N O Y	CI N N N N N N N N N N N N N N N N N N N
CI N O O O O O O O O O O O O O O O O O O	CI NO	CI
CI N-H H 416	CI N=N N=N A17	CI C

CI N-6	Br	CI C
CI N N O CI N N O CI N N O CI	423	424
Br N N N N N N N N N N N N N N N N N N N	Br 0 F F F F F F F F F F F F F F F F F F	CI N N O CI O M O 427
Ci N N O CI 428	CI NI NI OCI H OCI 429	Br N O H 430

Br 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CI N 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	CI N N N O CI 433
Br N O H F F F	Br N O N N N N N N N N N N N N N N N N N	CI N O O O O O O O O O O O O O O O O O O
HN O CI	438	CI NO H
CI N H N H N O CI 440	CI N N N N N N N N N N N N N N N N N N N	CI NO NO S
Br N N N N N N N N N N N N N N N N N N N	G	CI N N N N N N N N N N N N N N N N N N N

CI NH ₂ 446	CI ————————————————————————————————————	CI HN CO 448
CI N O H O A49	450	CI C
CI	453	Ci
CI NO O O O O O O O O O O O O O O O O O O	Ci N-0	CI N N N N N N N N N N N N N N N N N N N

The state of the s	<u> </u>	
458	CI N- 459	CI C
461	CI OH NA 462	CI N H O CI 463
CI NO	465	BE NO H
CI NH HN 0 467	468	469

CI N N N N O CI HN O CI	C C C C C C C C C C C C C C C C C C C	CI NO
CI	474	CI C
CI NO	CI N-H 477	478
CI C	Br N O H	CI N-S - N-S
CI N N O CI HN O CI 482	Br N O N	Br N-0

CI NO 485	CI NO	CI NO
Br	C	490
CI HN CO 491	CI N N N N N N N N N N N N N N N N N N N	493
CI NO H	CI N N N N N N N N N N N N N N N N N N N	Br N O N H N N H 496

CI N-H S-497	498	CI NO
CI N H N S 500	501	502
Вг. — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	CI N H S 504	Br NO H 505
CI NO	CI N N N N N N N N N N N N N N N N N N N	508
CI H H H H H H H H H H H H H H H H H H H	CI NO	CI N O N O N O N O N O N O N O N O N O N

512	CI N S 513	CI C
CI N O N O N O N O N O N O N O N O N O N	516	CI O O O O O O O O O O O O O O O O O O O
CI N-0	Br O CI	CI N-0-1
CI NO		CI NO
CI N-H 524	522 CI N N N S	525 Br. N- N- 526

527	CI N H S 528	CI N N N N N N N N N N N N N N N N N N N
CI H N S S S S S S S S S S S S S S S S S S	531	Ci N-H H 532
533	534	535
CI H N S S S S S S S S S S S S S S S S S S	CI N S S S S S S S S S S S S S S S S S S	CI S S S S S S S S S S S S S S S S S S S
CI N-H 539	CI N S S S S S S S S S S S S S S S S S S	541

CI NO H H S42	CI H S S S S S S S S S S S S S S S S S S	G - C - C - C - C - C - C - C - C - C -
CI H H H H H H H H H H H H H H H H H H H	546	CI N N N N N N N N N N N N N N N N N N N
CI H N S S S S S S S S S S S S S S S S S S	CI NO NH	CI N-0
CI N S S S S S S S S S S S S S S S S S S	CI N H N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N
CI N S S S S S S S S S S S S S S S S S S	CI N N N N N N N N N N N N N N N N N N N	CI H N H N N N N N N N N N N N N N N N N

557	558	Ci Br NO 1
Br N N N N N N N N N N N N N N N N N N N	561	562
CI	CI NH NH OS NO OS	CI N-H H 565
CI N-H 566	CI N O O O O O O O O O O O O O O O O O O	CI N-H H S- 568
CI N O N=N N S69	Br, CI H 570	CI N N N OH 571

		· · · · · · · · · · · · · · · · · · ·
572	CI N-H H 573	CI N N N N N N N N N N N N N N N N N N N
CI O-F H 575	CI N N N N N N N N N N N N N N N N N N N	CI NO-H 577
578	CI ————————————————————————————————————	CI CI CI S80
CI THE	CI H F F S S S S S S S S S S S S S S S S S	583
CI C	CI H H H H H H H H H H H H H H H H H H H	Br N-H 586
CI NO CI		CI NH

CI C	Br ————————————————————————————————————	Br O-F H 392
Br CI	CI NH FF 594	S95
CI N S N S N S N S N S N S N S N S N S N	CI - S - S - S - S - S - S - S - S - S -	598
CI S S S S S S S S S S S S S S S S S S S	600 600	CI V S H 601
CI N S S S S S S S S S S S S S S S S S S	CI N S CI 603	CI NH ₂ S NH ₂ 604

CI S S S S S S S S S S S S S S S S S S S	CI NH H 606	CI S S S S S S S S S S S S S S S S S S S
CI N S S S S S S S S S S S S S S S S S S	OH S S S S S S S S S S S S S S S S S S S	CI S S S S S S S S S S S S S S S S S S S
CI S F	612	CI S S CI
614	615	616
CI, N, N, O, CI 617		

си — — — — — — — — — — — — — — — — — — —	621	622
		
СI N H 623	GZ4	СI Н О-Н 625
СI Н 626	CI N O H O H O H	T T T T T T T T T T T T T T T T T T T
		628
СI Н 629	СI Н О-Н 630	СI Н О-Н 631
632	633	CI N-634
635	CI NO-H 636	CI F OH NO 637

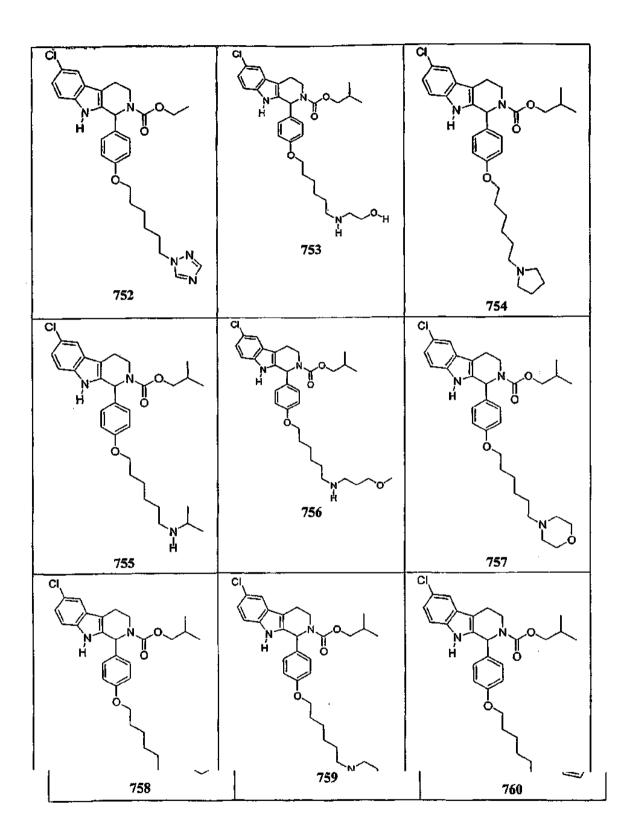
Ci	CI N N N N N N N N N N N N N N N N N N N	CH
641	CI N N O O O O O O O O O O O O O O O O O	CI N N O O O O O O O O O O O O O O O O O O
CI N H 644	Br N S N S N S N S N S N S N S N S N S N	Br N S F F 646
Br N S H 647	CI N S 648	CI N S O O O O O O O O O O O O O O O O O O
CI N S F	CI ZH S	CI N S 652

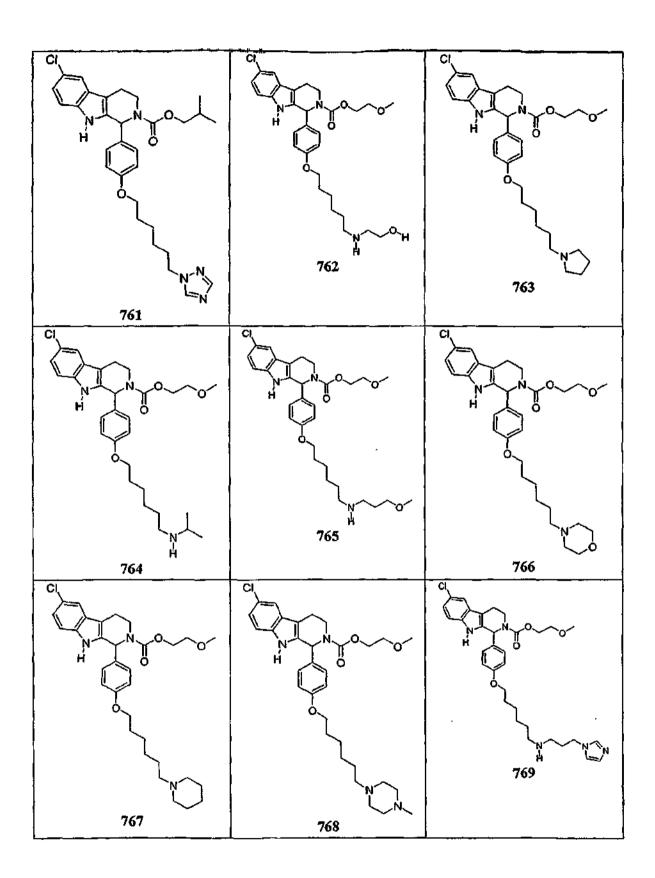
CI	CI N S S 654	CI N S CI 655
CI N S N S N S N S N S N S N S N S N S N	CI N S S S S S S S S S S S S S S S S S S	CI
CI N N O CI 659	CI	CI N H O O O O O O O O O O O O O O O O O O
CI N H	CI N H O F	CI C

CI	CI	CI N H N N N N N N N N N N N N N N N N N
CI N H O O O O O O O O O O O O O O O O O O	CI N H CO	CI 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CI N O O O O O O O O O O O O O O O O O O	CI N N O O O O O O O O O O O O O O O O O	673

CI N H OCI 674	CI N CI CI 675	CI N N N O O O O O O O O O O O O O O O O
677	CI N N O O O O O O O O O O O O O O O O O	CI N N N N N N N N N N N N N N N N N N N
CI N N N N Br	CI	CI

##F # # 2' 11 A # # A A A A A A A A		
CI N N N N N N N N N N N N N N N N N N N	CI 20	685
CI NH NO	C	CI
CI N N N N N N N N N N N N N N N N N N N	CI N N O N N O N O N O N O N O N O N O N	G
CI N N O N H 692	CI N N O O O O O O O O O O O O O O O O O O	CI NH NO NO 694


695	CI N N O N M 696	CI N N N N N N N N N N N N N N N N N N N
698	Cl	CI
701	C	CI N CI N 703
CI N O CI O N N N 704	CI N H N N N 705	CI N N O CI O N N N N N N N N N N N N N N N N N N N


707	708	709
CI N N O CI 710	CI N N O CI 711	CI N N N N O CI 712
CI N N N N N O CI 713	CI N N N N N O CI 714	CI N N O CI 715
CI N N O CI 716	CI N N N N N N O O 717	CI N H N N N N O CI 718

CI N N O F H O CI 719	CI H N N O CI 720	CI N N O O O O O O O O O O O O O O O O O O
CI N N O O O H O CI 722	CI N O F F O CI 723	CI N N N N N N N N N N N N N N N N N N N
CI N O N N N N N N N N N N N N N N N N N	726	
728	CI N N O O O O O O O O O O O O O O O O O	CI N N O O O O O O O O O O O O O O O O O O

Ci N N N O O O O O O O O O O O O O O O O	732	CI N N O N N N 733
CI N N O O O O O O O O O O O O O O O O O O	735	736
737	CI	CI N H O F 739
CI	741	CI N H N N N N N 742

CI	744	CI N N N N N N N N N N N N N N N N N N N
746	747	CI
CI N N N N N N N N N N N N N N N N N N N	750	Ci

770	771	CI NH NH OH H 772
CI N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N	775
CI N N O F N O O F N O O O O O O O O O O O O O O O O O O O	CI N N N N N N N N N N N N N N N N N N N	278 278

779	780	CI N N O F N N N N N N N N N N N N N N N N N N N
CI N N N N O CI N N N O O H	CI N CI N CI N N N N N N N N N N N N N N	CI N N O CI N N O CI N N O CI N N O CI
785	786	CI C

788	789	CI C
791	CI N O N O N T92	CI
CI N N N N O N 794	CI N O O O O O O O O O O O O O O O O O O	CI N N N N N N N N N N N N N N N N N N N

CI N N N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N
CI Z Z Z Z 800	C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	CI
CI OH OH 803	CI NO OH NO 804	CI NH

Od	G H S07	C
G O O O O O O O O O O O O O O O O O O O	G Z Z 2 81 0	O
CI N N N N N N N N N N N N N N N N N N N	813	CI H S14
CI () () () () () () () () () (CI - N - N - N - N - N - N - N - N - N -	817
CI C	CI	

		
CI () () () () () () () () () (CI NO	CI NO NO NO S
S24	2 C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	CI NAN 826
827	CG 20 20 20 20 20 20 20 20 20 20 20 20 20	CI N N N N N N N N N N N N N N N N N N N
CI N N N N N N N N N N N N N N N N N N N	831	CI NO
833	CI	CI
CI N-0-F H N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	837	CI
CI N.	CI CI N. S4U N.	CI CI CI NOS

CI C	CI N O CI N O N O N O N O	CI N N N N N N N N N N N N N N N N N N N
845	CI N N O CI OH NH ₂ 846	Ci
CI C	G T T T T T T T T T T T T T T T T T T T	C + 2 O H Z 850
851	852	Br
Br O F 854	CI N S F 855	CI N N N N N N N N N N N N N N N N N N N

CI O-F N S F F 857	858	CI S S S S S S S S S S S S S S S S S S S
CI S S S S S S S S S S S S S S S S S S S	861	CI N S CI 862
CI N S Br 863	CI NH S NH	CI N S N = 0 865
CI N N O CI 8666	CI OH N N 867	868
CI N N O N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N	CI N N O N N N N N N N N N N N N N N N N N

CI N N O N N N N N N N N N N N N N N N N N	873	CI N N N N N N N N N
CI N N N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N	CI N N O CI 877
CI N N O N N N N N N N N N N N N N N N N N	G → C → C → C → C → C → C → C → C → C →	CI N N N N N N N N N N N N N N N N N N N
CI N O CI 881	CI N N N N N N N N N N N N N N N N N N N	CI N N N N N N N N N N N N N N N N N N N

CI	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	CI N N N N N N N N N N N N N N N N N N N
CI N N N N N N N N N N N N N N N N N N N	5 2 2 2 888 2 2 3 4 5 5 888	CI N TO F N N N N N N N N N N N N N N N N N N N
CI N N N N N N N N N N N N N N N N N N N	C	CI N H O N-N 892
CI N N O CI 893	894	CI N N N N N N N N N N N N N N N N N N N

896	897	CI N N N N O CI 898
CI N N O CI N O CI 899	CI N N N N N N N N N N N N N N N N N N N	
CI N N 0 H 0 902	903	CI N N N OH OH N 904
905	CI N N N N N N N N N N N N N N N N N N N	CI N N N O CI N N N N
908	CI N N O S S S S S S S S S S S S S S S S S	CI N N 910

	OH NS 912	913
	2 S S S S S S S S S S S S S S S S S S S	916
917	0 −	G C C C C C C C C C C C C C C C C C C C
CI N N N O O O O O O O O O O O O O O O O O	CI N N O CI 921	CI N N O F OH SN N 922

OH S 923	CI N N N N O N 924	CI N N O OH OS 925
CI N N O CI N N N N N N N N N N N N N N N N N N N	CI N N O O H O O O 927	CI N N N O N 928
CI N N O N 929	CI N O F O N 930	CI N N O CI H O CI 931
CI H 0 F 932	933	CI CI N O O O O O O O O O O O O O O O O O O
OH N=N 935	CI N N OH OH 936	CI N N OH OH N 937

938	939	CI N H Y 940
OH N=N OH N=N OH N=N OH N=N	CI C	943
CI N N O CI 944	CI N N N O CI 945	946
947	CI N H O N N N N N N N N N N N N N N N N N	C N H O N N 949
CI N N O H O 950	CI N N O H O 951	952

953	CI N N N N N N N N N N N N N N N N N N N	955
956	CI N N OH N 957	CI N N N N O CI HN S O 958
CI N H 959	он м он 960	CI N N O CI N N N 961
OH 1 962	CI N N O O O N N 963	CI N N CI OH N O 964
CI N N O O O O O O O O O O O O O O O O O O	CI N O CI O O O O O O O O O O O O O O O O O	CI N N O F 967

968	CI 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CI N N O OH N 970
CI N H O 971	CI	CI
CI N N O CI HN S 974	975	CI N N O CI N N 976
CI N O CI OH H O OH N 977	CI N N N O CI 978	979

GI N OH N OH N OH N	981	CI N O O O O O O O O O O O O O O O O O O
CI N H H O CI 983	984	D N H N N N N N N N N N N N N N N N N N
986	CI N S Br 987	2
CI N N O F F 989	C	C

En ciertas realizaciones, los compuestos preferentes incluyen los que tienen un valor de CE₅₀ en el ensayo ELISA de VEGF descrito en el Ejemplo 2 de menos de aproximadamente 2 uM, más preferentemente entre aproximadamente 2 uM y aproximadamente 0,04 uM (200 nM a 40 nM); más preferentemente de aproximadamente 0,04 uM a aproximadamente 0,008 uM (40 nM a 8 nM); y más preferentemente menos de aproximadamente 0,008 uM (< 8 nM). Los compuestos particularmente preferentes son los Compuestos de número: 2, 4, 5, 7, 8, 10, 11, 12, 17, 23, 25, 81, 102, 112, 140, 328, 329, 330, 331, 332, 355, 816, 817, 818, 823, 824, 825, 830, 831, 832, 837, 838, 841, 842, 843, y los regioisómeros de los mismos. En una realización, los compuestos preferentes de la presente invención forman una mezcla racémica, y en otra realización los compuestos de la presente invención son el isómero (R), (S), (R,R), (S,S), (R,S), (S,R), en una composición enantioméricamente pura. Más preferentemente, los compuestos de la presente invención son los isómeros (S), en una composición enantioméricamente pura.

Los compuestos anteriores se enumeran solamente para proporcionar ejemplos que se pueden usar en los métodos de la presente divulgación.

B. Preparación de los Compuestos de la Invención

5

10

Los compuestos de la presente invención se pueden producir de cualquier manera conocida en la técnica. A modo de ejemplo, los compuestos de la presente invención se pueden preparar de acuerdo con los siguientes esquemas generales. De forma más específica, se puede usar el **Esquema I** para preparar los compuestos de Fórmula I. El **Esquema la** se puede usar junto con el **Esquema I** cuando R₂ es un grupo -CH₂-furanilo. De forma alternativa, se puede usar el **Esquema Ib** para síntesis asimétrica cuando R₂ es hidrógeno o hidroxilo.

Esquema I

Esquema la

Esquema lb

El **Esquema II** se puede usar para preparar los compuestos de Fórmula I-h.

Esquema II

Los Esquemas IIIa o IIIb se pueden usar para preparar los compuestos de Fórmula I-i.

Esquema IIIa

Ref: Chem. Pharm. Bull. 1987,4700.

5

10

Esquema IIIb

Ref: Magid Abou-Gharbia y col, J. Med. Chem. 1987, 30, 1818.

En una realización preferente, los compuestos de la presente invención se pueden resolver en composiciones enantioméricamente puras usando cualquier método conocido en la técnica. A modo de ejemplo, los compuestos de la presente invención se pueden resolver por cristalización directa de mezclas enantioméricas, mediante la formación de una sal diastereómera de enantiómeros, mediante la formación de diastereómeros y separación, o mediante resolución enzimática.

En una realización preferente, los compuestos de la presente invención se pueden resolver a través de cristalización usando, por ejemplo, N-acetil-L-fenilalanina para obtener el isómero (S), o N-acetil-D-fenilalanina para obtener el isómero (R), de una forma similar a la que se ilustra en el **Esquema IV.**

Esquema IV

En ciertas realizaciones, los métodos ejemplares del **Esquema I** para la preparación de compuestos preferentes de Fórmula I involucran la formación de productos/intermedios de amina libre por reacción de Pictet-Spengler, como se describe a continuación en el Procedimiento I.

Procedimiento I

- 5 En una realización, el Procedimiento I puede involucrar la adición de un Aldehído deseado (II) a una suspensión de triptamina 5-sustituida.HCI (I) en ácido sulfúrico 0,1 N. A continuación la solución se puede agitar a aproximadamente 110 °C - 120 °C en un recipiente de reacción cerrado hasta que la reacción hava progresado lo suficiente para completarse, por ejemplo, durante de aproximadamente 15 minutos a aproximadamente 20 horas. Después de que se haya completado la reacción, la mezcla de reacción se puede enfriar a temperatura ambiente y se puede filtrar la sal precipitada. A continuación, el residuo filtrado se puede lavar con éter, EtOAc o una mezcla de 10 DCM y DMF y secar para obtener el producto (III) en forma de sal de ácido. De forma alternativa, se puede añadir un Aldehído deseado (II) a una suspensión de triptamina 5-sustituida.HCI (I) en ácido acético y calentar a reflujo hasta que la reacción haya progresado lo suficiente para completarse, por ejemplo, durante de aproximadamente 15 minutos a aproximadamente 20 horas. Después de que se haya completado la reacción, la mezcla de reacción se 15 puede enfriar a temperatura ambiente y se puede filtrar la sal de ácido. A continuación, el residuo filtrado se puede lavar con ácido acético seguido de DCM y secar para obtener el producto (III) en forma de sal de ácido. La amina libre (III) se puede obtener por extracción con EtOAc y lavado con hidróxido de amonio acuoso o hidróxido sódico ac.
- La amina libre, o su sal, se puede usar a continuación para formar otros compuestos preferentes de Fórmula I, tales como análogos de carbamato (Fórmula I-c, Procedimiento II), análogos de amida, incluyendo análogos de N-acetilo (Fórmula I-c, Procedimiento IIIa y Procedimiento IIIb), análogos de urea y tiourea (Fórmula I-e y I-f, Procedimiento IV y Procedimiento V, respectivamente), análogos de sulfóxido (Fórmula I-g, Procedimiento VI), y análogos de pirimidina (Procedimiento VII).
 - Más particularmente, se puede usar el Procedimiento II para sintetizar análogos de carbamato de las aminas libres (III), o de sus sales.

Procedimiento II

25

30

De acuerdo con el Procedimiento II, se puede añadir diisopropiletilamina (DIEA) a la amina libre (III), o a su sal de ácido en diclorometano (DCM), seguido de la adición lenta de cloroformiato sustituido. La mezcla de reacción se puede agitar a temperatura ambiente durante aproximadamente 1 a 20 horas. A continuación el disolvente se puede evaporar y el producto en bruto se puede purificar por HPLC o bien por cromatografía en columna sobre gel de sílice.

El Procedimiento IIIa se puede usar para sintetizar análogos de amida de la amina libre (III), o de sus sales.

De acuerdo con el Procedimiento IIIa, se puede añadir una mezcla agitada previamente durante 15 min de un R₂-ácido y diisopropil carbodiimida (DIC) a la amina libre (III), o a su sal de ácido en DCM y DIEA. La mezcla de reacción se puede agitar durante aproximadamente 1 h. A continuación los disolventes se pueden evaporar y purificar el producto en bruto por HPLC.

5

De forma alternativa, se puede usar el Procedimiento IIIb para sintetizar análogos de N-acetilo de las aminas libres (III), o de sus sales.

Procedimiento IIIb X NH DCM/Py T Ro V

De acuerdo con el Procedimiento IIIb, se puede añadir piridina a la amina libre (III), o a su sal de ácido en DCM, seguido de anhídrido acético. La mezcla de reacción se puede agitar a temperatura ambiente durante aproximadamente 8 a 20 horas. A continuación se pueden evaporar los disolventes y purificar el producto en bruto por HPLC.

El Procedimiento IV se puede usar para sintetizar análogos de urea de las aminas libres (III), o de sus sales.

De acuerdo con el Procedimiento IV, se pueden añadir DIEA y R_d-isocianato a la amina libre (III), o a su sal de ácido en DCM. La mezcla de reacción se puede calentar a reflujo durante aproximadamente 1,5 h. A continuación se pueden evaporar los disolventes y purificar el producto en bruto por HPLC.

El Procedimiento V se puede usar para sintetizar análogos de tiourea de las aminas libres (III), o de sus sales.

De acuerdo con el Procedimiento V, se pueden añadir DIEA y R_d -isotiocianato a la amina libre (IE), o a su sal de ácido en DCM. La mezcla de reacción se puede calentar a reflujo durante aproximadamente 12 h. A continuación se pueden evaporar los disolventes y purificar el producto en bruto por HPLC.

5 El Procedimiento VI se puede usar para sintetizar análogos de sulfonilo de las aminas libres (III), o de sus sales.

De acuerdo con el Procedimiento VI, se pueden añadir DIEA y cloruro de R_d-sulfonilo a la amina libre (III), o a su sal de ácido en DCM. La mezcla de reacción se puede agitar a temperatura ambiente durante aproximadamente 12 h. A continuación se pueden evaporar los disolventes y purificar el producto en bruto por HPLC.

10 El Procedimiento VII se puede usar para sintetizar análogos de pirimidina de las aminas libres (III), o de sus sales.

Procedimiento VII X DMF/NEt₃/120°C VII VII

De acuerdo con el Procedimiento VII, se pueden añadir trietilamina y 2-bromopirimidina en N,N-dimetilformamida (DMF) a la amina libre (IE), o a su sal de ácido en DCM. La mezcla de reacción se puede calentar a aproximadamente 120 °C durante aproximadamente 12 h. A continuación se pueden evaporar los disolventes y purificar el producto en bruto por HPLC.

Estas y otras metodologías de reacción pueden ser útiles en la preparación de los compuestos de la presente invención, como podrá reconocer un experto en la materia. Diversas modificaciones de los esquemas y procedimientos anteriores serán evidentes para un experto en la materia, y la presente invención no está limitada específicamente por el método de preparación de los compuestos de la presente invención.

20 C. Métodos de la Presente Divulgación

15

En otro aspecto de la presente divulgación, se proporcionan métodos para la inhibición de la producción de VEGF, para inhibición de la angiogénesis, y/o para el tratamiento de cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, inflamación crónica, otras enfermedades y trastornos crónicos relacionados con la inflamación, obesidad, o degeneración macular exudativa usando los compuestos descritos en la presente memoria.

25 En una realización, la presente divulgación se refiere a métodos para inhibición de la producción de VEGF que comprenden la administración de una cantidad inhibitoria de la expresión de VEGF de al menos un compuesto de la presente invención a un sujeto con necesidad del mismo.

ES 2 401 335 T3

En otra realización, se proporcionan métodos para la inhibición de la angiogénesis que comprenden la administración de una cantidad antiangiogénica de al menos un compuesto de la presente invención a un sujeto con necesidad del mismo.

En otra realización más, se proporcionan métodos para el tratamiento de cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, inflamación crónica, otras enfermedades y trastornos crónicos relacionados con la inflamación, obesidad, o degeneración macular exudativa que comprenden la administración de una cantidad terapéuticamente eficaz de al menos un compuesto de la presente invención a un sujeto con necesidad del mismo.

5

10

15

20

25

30

35

40

45

50

55

Sin la intención de quedar limitado por teoría alguna, se cree que los métodos de la presente divulgación actúan a través de una combinación de mecanismos que modulan la actividad de VEGF. En realizaciones preferentes, los métodos de la presente divulgación comprenden la administración de una cantidad terapéuticamente eficaz de al menos un compuesto de la presente invención, en los que el compuesto es un isómero (S).

De acuerdo con los métodos de la presente divulgación, el compuesto o compuestos se pueden administrar al sujeto a través cualquier vía de suministro de fármacos conocida en la técnica. Las vías de administración ejemplares específicas incluyen oral, ocular, rectal, bucal, tópica, nasal, oftálmica, subcutánea, intramuscular, intravenosa (bolo e infusión), intracerebral, transdérmica, y pulmonar.

Los términos "cantidad inhibitoria de VEGF", "cantidad antiangiogénica", y "cantidad terapéuticamente eficaz", como se usan en la presente memoria, se refieren a una cantidad de un agente farmacéutico para tratar, mejorar o prevenir la enfermedad o afección identificada, o para exhibir un efecto terapéutico o inhibitorio detectable. El efecto se puede detectar, por ejemplo, mediante los ensayos desvelados en los siguientes ejemplos. La cantidad eficaz precisa para un sujeto dependerá del peso corporal, talla y estado de salud del sujeto; la naturaleza y alcance de la afección; y el agente terapéutico o la combinación de agentes terapéuticos seleccionada para la administración. Se puede determinar la cantidad terapéuticamente eficaz para una situación determinada mediante la experimentación de rutina que está dentro de la destreza y el criterio del clínico.

Para cualquier compuesto, la cantidad terapéuticamente eficaz se puede estimar inicialmente en ensayos de cultivo celular, por ejemplo, de células neoplásicas, o bien en modelos animales, normalmente ratas, ratones, conejos, perros, o cerdos. El modelo animal también se puede usar para determinar el intervalo de concentración apropiada y la vía de administración. A continuación se puede usar tal información para determinar la dosis y las vías de administración útiles en seres humanos. La eficacia terapéutica/profiláctica y la toxicidad se pueden determinar mediante procedimientos farmacéuticos estándar en cultivos celulares o animales experimentales, por ejemplo, DE₅₀ (dosis terapéuticamente eficaz para el 50% de la población) y DL₅₀ (dosis letal para el 50% de la población). La relación de dosis entre los efectos terapéutico y tóxico es el índice terapéutico, y se puede expresar como la relación DE₅₀/DL₅₀. Son preferentes las composiciones farmacéuticas que exhiben altos índices terapéuticos. Los datos obtenidos a partir de ensayos de cultivos celulares y de estudios animales se pueden usar para la formulación de un intervalo de dosificación para uso humano. La dosificación contenida en tales composiciones está preferentemente dentro de un intervalo de concentraciones en circulación que incluye un valor de DE₅₀ con poca o ninguna toxicidad. La dosificación puede variar dentro de este intervalo dependiendo de la forma de dosificación empleada, de la sensibilidad del paciente y de la vía de administración.

Más específicamente, las relaciones concentración-efecto biológico observadas con respecto al compuesto o compuestos de la presente invención indican una concentración objetivo inicial en plasma que varía de aproximadamente 0,1 μg/ml a aproximadamente 100 μg/ml, preferentemente de aproximadamente 5 μg/ml a aproximadamente 50 μg/ml, más preferentemente de aproximadamente 5 μg/ml a aproximadamente 10 μg/ml. Para conseguir tales concentraciones en plasma, los compuestos de la presente invención se pueden administrar en dosis que varían de 0,1 μg a 100.000 mg, dependiendo de la vía de administración. La orientación hacia dosificaciones particulares y métodos de suministro se proporciona en la bibliografía y está generalmente disponible para los practicantes en la técnica. En general la dosis estará dentro del intervalo de aproximadamente 1 mg/día a aproximadamente 10 g/día, o de aproximadamente 0,1 g a aproximadamente 3 g/día, o de aproximadamente 0,3 g a aproximadamente 2 g/día, en dosis individuales, divididas, o continuas para un peso de paciente entre aproximadamente 40 y aproximadamente 100 kg (cuya dosis se puede ajustar para pacientes por encima o por debajo de este intervalo de peso, particularmente para niños por debajo de 40 kg).

La dosis exacta se determinará por el practicante, a la luz de factores relacionados con el sujeto que requiere el tratamiento. La dosificación y la administración se ajustan para proporcionar niveles suficientes del agente o agentes activos o para mantener el efecto deseado. Los factores que se toman en consideración incluyen la gravedad de la patología, el estado general de salud del sujeto, edad, peso, y género del sujeto, dieta, período y frecuencia de la administración, combinación o combinaciones de fármacos, sensibilidad de reacción, y tolerancia/respuesta a la terapia. Las composiciones farmacéuticas de acción prolongada se pueden administrar cada 3 a 4 días, cada semana, o una vez cada dos semanas dependiendo de la vida media y de la velocidad de aclaramiento de la formulación particular.

D. Metabolitos de los Compuestos de la Intención

10

15

45

50

55

La presente memoria descriptiva también desvela productos metabólicos in vivo de los compuestos descritos en la presente memoria. Tales productos pueden resultar por ejemplo de la oxidación, reducción, hidrólisis, amidación, esterificación y similares del compuesto administrado, principalmente debido a procesos enzimáticos. Por lo tanto, la presente memoria descriptiva también desvela compuestos producidos mediante un proceso que comprende poner en contacto un compuesto de la presente invención con un tejido o un mamífero durante un período de tiempo suficiente para proporcionar un producto metabólico del mismo. Tales productos se identifican típicamente mediante la preparación de un compuesto radiomarcado (por ejemplo ¹⁴C o ³H) de la presente invención, su administración en una dosis detectable (por ejemplo, mayor de aproximadamente 0,5 mg/kg) a un mamífero tal como una rata, ratón, cobaya, mono, o a un hombre, dejar tiempo suficiente para que actúe el metabolismo (típicamente de aproximadamente 30 segundos a 30 horas), y aislar sus productos de conversión a partir de orina, sangre u otras muestras biológicas. Estos productos se aíslan fácilmente dado que están marcados (otros se aíslan mediante el uso de anticuerpos capaces de unirse a epítopos que sobreviven en los metabolitos). Las estructuras de los metabolitos se determinan de modo convencional, por ejemplo, mediante análisis por MS o RMN. En general, el análisis de metabolitos se puede hacer de la misma manera que los estudios de metabolismo de fármacos convencionales bien conocidos por los expertos en la materia. Los productos de conversión, que de otra manera no se encontrarían in vivo, son útiles en ensayos de diagnóstico para la dosificación terapéutica de los compuestos de la presente invención incluso aunque no poseyeran ninguna actividad biológica por sí mismos.

E. Composiciones Farmacéuticas de la Invención

- Mientras que es posible que los compuestos de la presente invención se administren en forma pura, puede ser preferible formular los compuestos en forma de composiciones farmacéuticas. Como tal, en otro aspecto más de la presente invención, se proporcionan composiciones farmacéuticas útiles en los métodos de la presente invención. Las composiciones farmacéuticas de la presente invención se pueden formular con excipientes farmacéuticamente aceptables tales como vehículos, disolventes, estabilizantes, ayudantes, diluyentes, etc., dependiendo de la vía de administración y de la forma de dosificación particulares. Las composiciones farmacéuticas se deberían formular generalmente para conseguir un pH fisiológicamente compatible, y pueden variar de un pH de aproximadamente 3 a un pH de aproximadamente 11, preferentemente de aproximadamente pH 3 a aproximadamente pH 7, dependiendo de la formulación y de la vía de administración. En realizaciones alternativas, puede ser preferente que el pH se ajuste a un intervalo de aproximadamente pH 5,0 a aproximadamente pH 8,0.
- Más particularmente, las composiciones farmacéuticas de la presente invención comprenden una cantidad terapéuticamente o profilácticamente eficaz de al menos un compuesto de la presente invención, junto con uno o más excipientes farmacéuticamente aceptables. Opcionalmente, las composiciones farmacéuticas de la presente invención pueden comprender una combinación de compuestos de la presente invención, o pueden incluir un segundo ingrediente activo útil en el tratamiento de cáncer, retinopatía diabética, o degeneración macular exudativa.
- Las formulaciones de la presente invención, por ejemplo, para administración parenteral u oral, son lo más típicamente sólidos, soluciones líquidas, emulsiones o suspensiones, mientras que las formulaciones inhalables para administración pulmonar son generalmente líquidos o polvos, siendo las formulaciones en polvo generalmente preferentes. Una composición farmacéutica preferente de la presente invención también se puede formular en forma de un sólido liofilizado que se reconstituye con un disolvente fisiológicamente compatible antes de su administración.

 Se pueden formular composiciones farmacéuticas alternativas de la presente invención en forma de jarabes, cremas, pomadas, comprimidos, y similares.
 - El término "excipiente farmacéuticamente aceptable" se refiere a un excipiente para la administración de un agente farmacéutico, tal como los compuestos de la presente invención. El término se refiere a cualquier excipiente farmacéutico que se puede administrar sin toxicidad excesiva. Los excipientes farmacéuticamente aceptables se determinan en parte mediante la composición particular que se va a administrar, así como mediante el método particular usado para administrar la composición. Por consiguiente, existe una gran diversidad de formulaciones adecuadas de las composiciones farmacéuticas de la presente invención (véase, por ejemplo, Remington's Pharmaceutical Sciences).
 - Los excipientes adecuados pueden ser moléculas de vehículo que incluyen grandes macromoléculas que se metabolizan lentamente tales como proteínas, polisacáridos, ácidos polilácticos, ácidos poliglicólicos, aminoácidos poliméricos, copolímeros de aminoácido, y partículas de virus inactivas. Otros excipientes ejemplares incluyen antioxidantes tales como ácido ascórbico; agentes quelantes tales como EDTA; hidratos de carbono tales como dextrina, hidroxialquilcelulosa, hidroxialquilmetilcelulosa, ácido esteárico; líquidos tales como aceites, agua, solución salina, glicerol y etanol; agentes humectantes o emulsionantes; sustancias tamponadoras de pH; y similares. Los liposomas también se incluyen dentro de la definición de excipiente farmacéuticamente aceptable.

Las composiciones farmacéuticas de la presente invención se pueden formular de cualquier forma adecuada para el método destinado de administración. Cuando se destinan a uso oral se pueden preparar, por ejemplo, comprimidos, trociscos, pastillas para chupar, suspensiones acuosas o de aceite, soluciones no acuosas, polvos o gránulos dispersables (incluyendo partículas micronizadas o nanopartículas), emulsiones, cápsulas duras o blandas, jarabes o

ES 2 401 335 T3

elixires. Las composiciones destinadas a uso oral se pueden preparar de acuerdo con cualquier método conocido en la técnica de la manufactura de composiciones farmacéuticas, y tales composiciones pueden contener uno o más agentes que incluyen agentes edulcorantes, agentes aromatizantes, agentes colorantes y agentes conservantes, para proporcionar una preparación sabrosa.

Los excipientes farmacéuticamente aceptables particularmente adecuados para su uso junto con comprimidos incluyen, por ejemplo, diluyentes inertes, tales como celulosas, carbonato sódico o de calcio, lactosa, fosfato sódico o de calcio; agentes disgregantes, tales como croscarmelosa sódica, povidona reticulada, almidón de maíz, o ácido algínico; agentes aglutinantes, tales como povidona, almidón, gelatina o goma arábiga; y agentes lubricantes, tales como estearato de magnesio, ácido esteárico o talco. Los comprimidos pueden estar sin revestir o pueden estar revestidos mediante técnicas conocidas que incluyen la microencapsulación para retrasar la desintegración y la absorción en el tracto gastrointestinal y proporcionar de esta manera una acción sostenida durante un período más prolongado. Por ejemplo, se puede emplear un material de retraso temporal tal como monoestearato de glicerilo o diestearato de glicerilo solo o con una cera.

Las formulaciones para uso oral también se pueden presentar en forma de cápsulas de gelatina dura en las que el ingrediente activo se mezcla con un diluyente sólido inerte, por ejemplo celulosas, lactosa, fosfato de calcio o caolín, o en forma de cápsulas de gelatina blanda en las que el ingrediente activo se mezcla con un medio no acuoso o de aceite, tal como glicerina, propilenglicol, polietilenglicol, aceite de cacahuete, parafina líquida o aceite de oliva.

En otra realización, las composiciones farmacéuticas de la presente invención se pueden formular en forma de suspensiones que comprenden un compuesto de la presente invención en una mezcla con al menos un excipiente farmacéuticamente aceptable adecuado para la manufactura de una suspensión. En otra realización más, las composiciones farmacéuticas de la presente invención se pueden formular en forma de polvos y gránulos dispersables adecuados para la preparación de una suspensión mediante la adición de los excipientes adecuados.

20

25

30

35

40

45

50

Los excipientes adecuados para uso junto con suspensiones incluyen agentes de suspensión, tales como carboximetilcelulosa sódica, metilcelulosa, hidroxipropil metilcelulosa, alginato sódico, polivinilpirrolidona, goma de tragacanto, goma arábiga, agentes dispersantes o humectantes tales como una fosfatida de origen natural (por ejemplo, lecitina), un producto de condensación de un óxido de alquileno con un ácido graso (por ejemplo, estearato de polioxietileno), un producto de condensación de óxido de etileno con un alcohol alifático de cadena larga (por ejemplo, heptadecaetilenoxicetanol), un producto de condensación de óxido de etileno con un éster parcial derivado de un ácido graso y un anhídrido de hexitol (por ejemplo, monooleato de polioxietileno sorbitán); y agentes espesantes, tales como carbómero, cera de abeja, parafina dura o alcohol cetílico. Las suspensiones también pueden contener uno o más conservantes tales como ácido acético, p-hidroxi-benzoato de metilo y/o de n-propilo; uno o más agentes colorantes; uno o más agentes aromatizantes; y uno o más agentes edulcorantes tales como sacarosa o sacarina.

Las composiciones farmacéuticas de la presente invención también pueden estar en forma de emulsiones de aceite en agua. La fase aceitosa puede ser un aceite vegetal, tal como aceite de oliva o aceite de cacahuete, un aceite mineral, tal como parafina líquida, o una mezcla de estos. Los agentes emulsionantes adecuados incluyen gomas de origen natural, tales como goma arábiga o goma de tragacanto; fosfatidas de origen natural, tales como lecitina de soja, ésteres o ésteres parciales derivados de ácidos grasos; anhídridos de hexitol, tales como monooleato de sorbitán; y productos de condensación de estos ésteres parciales con óxido de etileno, tales como monooleato de polioxietileno sorbitán. La emulsión también puede contener agentes edulcorantes y aromatizantes. Los jarabes y elixires se pueden formular con agentes edulcorantes, tales como glicerol, sorbitol o sacarosa. Tales formulaciones también pueden contener un agente demulcente, un agente conservante, un agente aromatizante o un agente colorante.

Además, las composiciones farmacéuticas de la presente invención pueden estar en forma de una preparación inyectable estéril, tal como una emulsión acuosa o una suspensión oleaginosa inyectable estéril. Esta emulsión o suspensión se puede formular de acuerdo con la técnica conocida que usa los agentes dispersantes o humectantes y los agentes de suspensión que se han mencionado anteriormente. La preparación inyectable estéril también puede ser una solución o suspensión inyectable estéril en un diluyente o disolvente no tóxico parenteralmente aceptable, tal como una solución en 1,2-propano-diol. La preparación inyectable estéril también se puede preparar en forma de un polvo liofilizado. Entre los vehículos y disolventes aceptables que se pueden emplear se encuentran agua, solución de Ringer, y solución isotónica de cloruro sódico. Además, se pueden emplear aceites no volátiles estériles como disolvente o medio de suspensión. Para este fin se puede emplear cualquier aceite no volátil insípido incluyendo mono o diglicéridos sintéticos. Además, asimismo se pueden usar ácidos grasos tales como ácido oleico en la preparación de inyectables.

Generalmente, los compuestos de la presente invención útiles en los métodos de la presente invención son básicamente insolubles en agua y son solubles con moderación en la mayoría de los disolventes próticos farmacéuticamente aceptables y en aceites vegetales. Sin embargo, los compuestos son generalmente solubles en ácidos grasos de cadena media (por ejemplo, los ácidos caprílico y cáprico) o en triglicéridos y tienen una elevada solubilidad en ésteres de propilenglicol de ácidos grasos de cadena media. También se contemplan en la presente invención compuestos que se han modificado mediante sustituciones o adiciones de restos químicos o bioquímicos

que los hacen más adecuados para el suministro (por ejemplo, aumento de solubilidad, bioactividad, palatabilidad, disminución de las reacciones adversas, etc.), por ejemplo mediante esterificación, glicosilación, PEGilación, etc.

En una realización preferente, los compuestos de la presente invención se pueden formular para la administración oral en una formulación basada en lípidos adecuada para la baja solubilidad de los compuestos. Las formulaciones basadas en lípidos pueden mejorar generalmente la biodisponibilidad oral de tales compuestos. Como tal, una composición farmacéutica preferente de la presente invención comprende una cantidad terapéuticamente o profilácticamente eficaz de un compuesto de la presente invención, junto con al menos un excipiente farmacéuticamente aceptable seleccionado entre el grupo que consiste en: ácidos grasos de cadena media o ésteres de propilenglicol de los mismos (por ejemplo, ésteres de propilenglicol de ácidos grasos comestibles tales como los ácidos grasos caprílico y cáprico) y tensioactivos farmacéuticamente aceptables tales como aceite de ricino hidrogenado polioxil 40.

En una realización preferente alternativa, se pueden añadir ciclodextrinas como potenciadores de la solubilidad acuosa. Las ciclodextrinas preferentes incluyen derivados de hidroxipropilo, hidroxietilo, glucosilo, maltosilo y maltotriosilo de α -, β - y γ -ciclodextrina. Un potenciador de la solubilidad de ciclodextrina particularmente preferente es hidroxipropil- β -ciclodextrina (HPBC), que se puede añadir a cualquiera de las composiciones descritas anteriormente para mejorar de forma adicional las características de solubilidad acuosa de los compuestos de la presente invención. En una realización, la composición comprende de 0,1% a 20% de hidroxipropil- β -ciclodextrina, más preferentemente de 1% a 15% de hidroxipropil- β -ciclodextrina, e incluso más preferentemente de 2,5% a 10% de hidroxipropil- β -ciclodextrina. La cantidad de potenciador de la solubilidad empleado dependerá de la cantidad de compuesto de la presente invención en la composición.

I. Terapia de Combinación

5

10

15

20

25

30

35

40

45

50

55

También es posible combinar cualquier compuesto de la presente invención con uno o más de otros ingredientes activos útiles en el tratamiento del cáncer, incluyendo compuestos, en una forma de dosificación unitaria, o en formas de dosificación separadas destinadas a la administración simultánea o secuencial a un paciente con necesidad del tratamiento. Cuando se administra de forma secuencial, la combinación se puede administrar en dos o más administraciones. En una realización alternativa, es posible administrar uno o más compuestos de la presente invención y uno o más ingredientes activos adicionales por vías diferentes.

Los expertos en la materia reconocerán que se pueden administrar una diversidad de ingredientes activos en combinación con los compuestos de la presente invención que pueden actuar para aumentar o potenciar sinérgicamente la inhibición de VEGF y/o la actividad de antiangiogénesis de los compuestos de la presente invención.

De acuerdo con los métodos de la presente invención, la combinación de ingredientes activos puede ser: (1) coformulada y administrada o suministrada de forma simultánea en una formulación combinada; (2) suministrada mediante alternación o en paralelo en forma de formulaciones separadas; o (3) mediante cualquier otro régimen de terapia de combinación conocido la técnica. Cuando se suministra en una terapia de alternación, los métodos de la presente invención pueden comprender la administración o el suministro de ingredientes activos de forma secuencial, por ejemplo, en solución, emulsión, suspensión, comprimidos, píldoras o cápsulas separadas, o mediante inyecciones diferentes en jeringas separadas. En general, durante la terapia de alternación, se administra una dosificación eficaz de cada ingrediente activo de forma secuencial, es decir, de forma seriada, mientras que en la terapia simultánea, se administran juntas las dosificaciones eficaces de dos o más ingredientes activos. También se pueden usar diversas secuencias de terapia de combinación intermitente.

Para ayudar a la comprensión de la presente invención, se incluyen los siguientes Ejemplos. Los experimentos con respecto a la presente invención no deberían, por supuesto, interpretarse como específicamente limitantes de la presente invención y se considera que las variaciones de la presente invención, conocidas ahora o desarrolladas posteriormente, tales que estarían dentro del ámbito de un experto en la materia, están dentro del ámbito de la presente invención como se describe en la presente memoria y se reivindica posteriormente en la presente memoria.

Ejemplos

La presente invención se describe con mayor detalle con referencia a los siguientes ejemplos no limitantes, que se ofrecen para ilustrar de manera más completa la presente invención, pero no se pretende que limiten el ámbito de la misma. Los ejemplos ilustran la preparación de ciertos compuestos de la presente invención, y el ensayo de estos compuestos *in vitro* y/o *in vivo*. Los expertos en la materia comprenderán que las técnicas descritas en estos ejemplos representan técnicas descritas por los inventores para funcionar bien en la práctica de la presente invención, y como tal constituyen modos preferentes de la práctica de la misma. Los ejemplos que no están comprendidos en las reivindicaciones anexas se entiende que son ejemplos de referencia.

Ejemplo 1: Preparación de Compuestos de la Invención

Usando los esquemas y los procedimientos descritos anteriormente en la Sección B, se pueden preparar ciertos compuestos de la presente invención como se muestra a continuación. Otros compuestos preferentes de la

presente invención, tales como los que se muestran posteriormente en la Tabla 5, se pueden preparar de forma similar.

Ejemplo 1A - Compuestos de Fórmula I. Esquema I

Ciertos compuestos de Fórmula I se pueden preparar de acuerdo con el Esquema I usando los productos/intermedios de amina libre, o sus sales, preparados de acuerdo con el Procedimiento I. A modo de ejemplo, ciertas aminas libres (III), o sus sales, se preparan usando el Procedimiento I. La Tabla 4 ilustra ciertas aminas libres (III) o sus sales, Intermedios 1-11.

Tabla 4

Intermedio	R - de la Amina Libre (III)	R ₁ - de la Amina Libre (III)	
1	CI	4-OMe	
2	CI	2,3-difluoro	
3	CI	4-Cl	
4	CI	4-CN	
5	CI	4-F	
6	CI	4-iPr	
7	Br	4-CI	
8	Br	4-Me	
9	Br	4-iPr	
10	Br	3-CI	
11	Br	4-OMe	
12	CI	4-(2-morfolina-4-il-etoxi)	

10 Intermedio 1:

15

5

Este intermedio se prepara usando el Procedimiento I con 5-clorotriptamina.HCI (5,8 g, 25 mmol), p-anisaldehído (6,13 ml, 50 mmol) y ácido sulfúrico 0,1 N (60 ml) para obtener el compuesto del título en forma de una sal de ácido (6,1 g, 59%). ES-MS: 313 (M+H)⁺. De forma alternativa, este intermedio se prepara usando el Procedimiento IB con 5-clorotriptamina.HCI (20 g, 86,5 mmol), p-anisaldehído (15,9 ml, 130 mmol) y ácido acético (250 ml) para obtener el compuesto del título en forma de una sal de ácido (25,8 g, 79%). ES-MS: 313 (M+H)⁺.

Intermedio 2:

Este intermedio se prepara usando el Procedimiento I con 5-clorotriptamina.HCl (116 mg, 0,5 mmol), 2,3-difluoro benzaldehído (109 μ l, 1 mmol) y ácido sulfúrico 0,1 N (2 ml) para obtener el compuesto del título en forma de una sal de ácido (158 mg, 75%). ES-MS: 319 (M+H) $^{+}$

20 Intermedio 3:

Este intermedio se prepara usando el Procedimiento I con 5-clorotriptamina.HCl (462 mg, 2 mmol), 4-cloro benzaldehído (562 mg, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de ácido (825 mg, 99%). ES-MS: 317 (M+H)⁺

Intermedio 4:

Este intermedio se prepara usando el Procedimiento I con 5-clorotriptamina.HCl (462 mg, 2 mmol), 4-ciano benzaldehído (525 mg, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de ácido (810 mg, 100%). ES-MS: 308 (M+H)⁺

5 Intermedio 5:

Este intermedio se prepara usando el Procedimiento I con 5-clorotriptamina.HCI (374 mg, 1,5 mmol), 4-fluoro benzaldehído (322 μ I, 3 mmol) y ácido sulfúrico 0,1 N (4 ml) para obtener el compuesto del título en forma de una sal de ácido (250 mg, 42%). ES-MS: 301 (M+H) $^{+}$

Intermedio 6:

Este intermedio se prepara usando el Procedimiento I con 5-clorotriptamina.HCI (1,15 g, 5 mmol), 4-isopropil benzaldehído (1,516 ml, 10 mmol) y ácido sulfúrico 0,1 N (12 ml) para obtener el compuesto del título en forma de una sal de ácido (628 mg, 30%). ES-MS: 325 (M+H)⁺

Intermedio 7:

Este intermedio se prepara usando el Procedimiento I con 5-bromotriptamina.HCI (551 mg, 2 mmol), 4-cloro benzaldehído (562 mg, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de ácido (330 mg, 36%). ES-MS: 363 (M+H)⁺

Intermedio 8:

20

Este intermedio se prepara usando el Procedimiento I con 5-bromotriptamina.HCl (551 mg, 2 mmol), p-tolualdehído (471 μl, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de hidrógeno sulfato (257 mg, 29%). ES-MS: 341 (M+H)⁺. De forma alternativa, este intermedio se prepara usando el Procedimiento IB con 5-bromotriptamina.HCl (10 g , 36,3 mmol), p-tolualdehído (6,41 ml, 54,5 mmol) y ácido acético (120 ml) para obtener el compuesto del título en forma de una sal de acetato (14,5 g, 100%). ES-MS: 341 (M+H)⁺

Intermedio 9 (Compuesto 112):

Este producto/intermedio se prepara usando el Procedimiento I con 5-bromotriptamina.HCl (551 mg, 2 mmol), 4-isopropil benzaldehído (606 μl, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de hidrógeno sulfato (329 mg, 35%). ES-MS: 369 (M+H)⁺. De forma alternativa, este intermedio se prepara usando el Procedimiento IB con 5-bromotriptamina.HCl (10 g , 36,3 mmol), 4-isopropil benzaldehído (8,24 ml, 54,5 mmol) y ácido acético (120 ml) para obtener el compuesto del título en forma de una sal de acetato (13 g, 77%). ES-MS: 369 (M+H)⁺

30 Intermedio 10:

Este intermedio se prepara usando el Procedimiento I con 5-bromotriptamina.HCl (551 mg, 2 mmol), 3-cloro benzaldehído (453 μ l, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de ácido (662 mg, 72%). ES-MS: 361 (M+H)⁺

Intermedio 11:

35 Este intermedio se prepara usando el Procedimiento I con 5-bromotriptamina.HCl (551 mg, 2 mmol), p-anisaldehído (491 μl, 4 mmol) y ácido sulfúrico 0,1 N (8 ml) para obtener el compuesto del título en forma de una sal de ácido (611 mg, 67%). ES-MS: 357 (M+H)⁺

Intermedio 12:

- El intermedio de reacción 4-(2-morfolin-4-il-etoxi)-benzaldehído se prepara por combinación de 4-40 hidroxibenzaldehído (1,2 g, 10,0 mmol), hidrocloruro de 4-(2-cloroetil)-morfolina (2,0 g, 11,0 mmol), carbonato potásico (4,1 g, 30,0 mmol) y yoduro potásico (170 mg, 1 mmol) en 100 ml de acetona y calentamiento a reflujo con agitación. Después de que se haya consumido todo el 4-hidroxibenzaldehído (48 horas por LC/MS), los sólidos se filtran y el disolvente se retira al yacío. El rendimiento es 4.1 g.
- A continuación se prepara el Intermedio 12 de acuerdo con el Procedimiento IB. De esta manera, se combina hidrocloruro de 5-clorotriptamina (231 mg, 1,0 mmol) con 4-(2-morfolin-4-il-etoxi)-benzaldehído (565 mg, ~1,2 mmol) en 3 ml de ácido acético glacial. La suspensión se calienta a aproximadamente 120 °C durante 10 minutos con refrigeración constante y una potencia máxima de 300 W usando un sistema de microondas CEM Explorer. Se añade acetonitrilo (2 ml) a la mezcla refrigerada reacción, y el sólido se filtra y se lava con 1 ml de acetonitrilo para producir la sal de ácido acético del Intermedio 12 (6-cloro-1-[4-(2-morfolin-4-il-etoxi)-fenil]-2,3,4,9-tetrahidro-1H-β-carbolina) (179 mg, 34%).

ES 2 401 335 T3

A continuación se pueden usar los Intermedios 1-12 para preparar los compuestos de la presente invención de acuerdo con los Procedimientos II a VII como se muestra a continuación.

Compuesto 2:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 1 (3 g, 9,6 mmol), cloroformiato de etilo (1,37 ml, 14,4 mmol) y DIEA (2,5 ml, 14,4 mmol) en diclorometano (70 ml) para obtener el compuesto del título en forma de un polvo de color blanco (1,56 g, 42%). ES-MS: 385 (M+H)⁺.

Compuesto 4:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 7 (72 mg, 0,2 mmol), cloroformiato de etilo (29 μ l, 0,3 mmol) y DIEA (52 μ l, 0,3 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (37 mg, 43%). ES-MS: 435 (M+H)⁺.

Compuesto 5:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 2 (50 mg, 0,16 mmol), cloroformiato de etilo (23 μl, 0,24 mmol) y DIEA (42 μl, 0,24 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (25 mg, 41%). ES-MS: 391 (M+H)⁺.

15 Compuesto 7:

10

Este producto se prepara mediante el Procedimiento II usando el Intermedio 9 (74 mg, 0,2 mmol), cloroformiato de etilo (29 μ l, 0,3 mmol) y DIEA (52 μ l, 0,3 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (34 mg, 38%). ES-MS: 441 (M+H)⁺.

Compuesto 8:

20 Este producto se prepara mediante el Procedimiento II usando el Intermedio 8 (72 mg, 0,2 mmol), cloroformiato de etilo (29 μl, 0,3 mmol) y DIEA (52 μl, 0,3 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (39 mg, 47%). ES-MS: 413 (M+H)⁺.

Compuesto 10:

Este producto se prepara mediante el Procedimiento II usando el acetato del Intermedio 1 (10,5 g, 28,2 mmol), cloroformiato de 4-clorofenilo (4,74 ml, 33,8 mmol) y DIEA (9,8 ml, 56,4 mmol) en diclorometano (300 ml) para obtener el compuesto del título en forma de un polvo de color blanco (10,2 g, 78%). ES-MS: 467 (M+H)[†].

Compuesto 11:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 3 (63 mg, 0,2 mmol), cloroformiato de etilo (29 μ l, 0,3 mmol) y DIEA (52 μ l, 0,3 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (31 mg, 40%). ES-MS: 389 (M+H) $^{+}$.

Compuesto 12:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 4 (31 mg, 0,1 mmol), cloroformiato de 2-cloroetilo (16 μ l, 0,15 mmol) y DIEA (26 μ l, 0,15 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (22 mg, 53%). ES-MS: 414 (M+H) $^{+}$.

35 Compuesto 17:

30

Este producto se prepara mediante el Procedimiento II usando el Intermedio 1 (47 mg, 0,15 mmol), cloroformiato de 4-metilfenilo (33 μ l, 0,23 mmol) y DIEA (39 μ l, 0,23 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (34 mg, 51%). ES-MS: 447 (M+H) $^+$.

Compuesto 23:

40 Este producto se prepara mediante el Procedimiento II usando el Intermedio 5 (30 mg, 0,1 mmol), cloroformiato de etilo (14 μl, 0,15 mmol) y DIEA (26 μl, 0,15 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (21 mg, 56%). ES-MS: 373 (M+H)⁺.

Compuesto 25:

Este producto se prepara mediante el Procedimiento VII usando el Intermedio 9 (74 mg, 0,2 mmol), 2-bromopirimidina (48 mg, 0,3 mmol) y trietilamina (42 μl, 0,3 mmol) en DMF (2 ml) para obtener el compuesto del título (42 mg, 47%). ES-MS: 447 (M+H)⁺.

Compuesto 102:

Este producto se prepara mediante el Procedimiento IIIb usando el Intermedio 9 (74 mg, 0,2 mmol), anhídrido acético (47 μl, 0,5 mmol) y piridina (41 μl, 0,5 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (31 mg, 38%). ES-MS: 411 (M+H)⁺.

5 Compuesto 140:

Este producto se prepara mediante el Procedimiento IV usando el Intermedio 10 (72 mg, 0,2 mmol), isocianato de ciclohexilo (26 μl, 0,2 mmol) y DIEA (37 μl, 0,21 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (51 mg, 53%). ES-MS: 486 (M+H)⁺.

Compuesto 166:

10 Este producto se prepara mediante el Procedimiento IIIa usando su intermedio de amina libre (141 mg, 0,5 mmol), Boc-L-Alanina (105 mg, 0,6 mmol), DIC (94 μl, 0,6 mmol), DIEA (105 μl, 0,6 mmol) y diclorometano (4 ml) para obtener el compuesto del título (105 mg, 46%). ES-MS: 420 (M+H)⁺.

Compuesto 225:

Este producto se prepara mediante el Procedimiento VI usando su intermedio de amina libre (78 mg, 0,2 mmol), cloruro de metil sulfonilo (16 μ l, 0,2 mmol) y DIEA (37 μ l, 0,21 mmol) y diclorometano (2 ml) para obtener el compuesto del título (32 mg, 34%). ES-MS: 461 (M+H) $^{+}$.

Compuesto 242:

Este producto se prepara mediante el Procedimiento V usando su intermedio de amina libre (59 mg, 0,2 mmol), isotiocianato de ciclohexilo (29 μl, 0,2 mmol), DIEA (35 μl, 0,2 mmol) y diclorometano (4 ml) para obtener el compuesto del título (52 mg, 60%). ES-MS: 438 (M+H)⁺.

Compuesto 279:

20

25

30

35

40

Este producto se prepara por generación del Intermedio 12 (6-cloro-1-[4-(2-morfolin-4-il-etoxi)-fenil]-2,3,4,9-tetrahidro-1H-β-carbolina) usando el Procedimiento I. A continuación se usa el Intermedio 12 para generar el Compuesto 279 (éster de etilo del ácido 6-cloro-1-[4-(2-morfolin-4-il-etoxi)-fenil)-1,3,4,9-tetrahidro-β-carbolina-2-carboxílico) usando el Procedimiento II.

De acuerdo con el Procedimiento II, se disuelven el Intermedio 12 (82 mg, 0,20 mmol), cloroformiato de etilo (24 mg, 21 µl, 0,22 mmol), y diisopropiletilamina (175 µl, 1,00 mmol) en cloruro de metileno (2 ml) y se agitan a temperatura ambiente durante 15 minutos para formar el Compuesto 279. El disolvente se retira en una corriente de nitrógeno. La mezcla en bruto se purifica por HPLC preparativa de fase inversa en una columna C-18 usando un gradiente de acetonitrilo en agua tamponada con ácido trifluoroacético al 0,2% (TFA). La sal de TFA del Compuesto 279 (3,7 mg, 3%) se aísla en forma de un sólido de color amarillo. Se puede aplicar el mismo procedimiento para otras reacciones de formación de carbamato de acuerdo con el Procedimiento II.

Compuesto 320:

Este producto/intermedio se prepara usando el Procedimiento I con 5-benciloxi triptamina.HCl (100 mg, 0,33 mmol), piridina-3-carboxaldehído (62 μl, 0,66 mmol) y ácido sulfúrico 0,1 N (2 ml) para obtener el compuesto del título en forma de una sal de dihidrógeno sulfato (64 mg, 55%). ES-MS: 356 (M+H)⁺

Compuesto 329:

Este producto se prepara mediante el Procedimiento VII usando el Intermedio 11 (71 mg, 0,2 mmol), 2-bromopirimidina (48 mg, 0,3 mmol) y trietilamina (42 μ I, 0,3 mmol) en DMF (2 mI) para obtener el compuesto del título (41 mg, 49%). ES-MS: 434 (M+H) $^{+}$.

Compuesto 330:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 6 (65 mg, 0,2 mmol), cloroformiato de 2-fluoroetilo (38 μl, 0,3 mmol) y DIEA (70 μl, 0,4 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (34 mg, 41%). ES-MS: 415 (M+H)⁺.

45 Compuesto 332:

Este producto se prepara mediante el Procedimiento II usando el Intermedio 7 (36 mg, 0,1 mmol), cloroformiato de 4-metoxifenilo (22 μ l, 0,15 mmol) y DIEA (26 μ l, 0,15 mmol) en diclorometano (2 ml) para obtener el compuesto del título en forma de un polvo de color blanco (41 mg, 81%). ES-MS: 511(M+H)⁺.

Ejemplo 1B - Ciertos Materiales de Partida, Esquema la

El **Esquema la** se puede usar junto con el **Esquema I** (véase anteriormente) para generar materiales de partida cuando R₂ es un grupo -CH₂-furanilo, como se muestra a continuación.

Se añade 2-furaldehído (0,05 ml, 1,1 eq.) a una solución de 5-clorotriptamina (114 mg, 0,586 mmol) en 2 ml de MeOH. La mezcla de reacción se agita a temperatura ambiente durante aproximadamente 1 hora. Se añade lentamente NaBH₄ (110 mg, 5 eq.). La mezcla de reacción se agita a temperatura ambiente durante aproximadamente 30 min. Se evapora el MeOH y el residuo se reparte entre agua y cloruro de metileno. La fase orgánica se separa y se seca sobre K₂CO₃. La fase orgánica recogida se concentra para obtener 134,9 mg de un aceite viscoso (84%).

Ejemplo 1C - Compuestos de Fórmula I, Esquema Ib

20

25

30

35

De forma alternativa, ciertos compuestos de Fórmula I se pueden preparar de acuerdo con el **Esquema Ib** como se muestra a continuación.

Una suspensión del material de reacción **A** (8,05 g, 35,9 mmol) y CH₃COONH₄ (4,15 g, 1,5 eq.) en 60 ml de CH₃NO₂ se calienta a reflujo en un baño de aceite a aproximadamente 110 °C. Después de aproximadamente 30 minutos, la mezcla de reacción se enfría con un baño de hielo. El sólido precipitado se filtra y se lava con agua (3 x 100 ml), seguido de hexano (2 x 50 ml) para obtener el producto de indol **B** en bruto. El sólido recogido se seca al vacío a aproximadamente 40 °C durante aproximadamente 30 min para obtener 6,97 g de un sólido de color marrón (73%).

Una solución del producto de indol **B** (12,32 g, 46,1 mmol) en THF (130 ml) se trata a continuación con una solución de borohidruro de tetrabutilamonio (11,9 g, 1 eq.) en 75 ml de THF lentamente durante aproximadamente 60 minutos a aproximadamente -5 °C. La reacción se agita a temperatura ambiente durante aproximadamente 1 hora y se diluye con diclorometano (200 ml). La fase orgánica se lava con agua dos veces y con salmuera. Las fases orgánicas combinadas se secan y se evaporan al vacío. El residuo se purifica sobre gel de sílice para obtener 10,28 g de **C** sólido (83%).

A continuación se añaden cloruro de amonio (9,9 ml de solución acuosa (100 mg/ml), 2 eq.) y Zn (725 mg, 1,2 eq.) a una solución del producto de indol **C** (2,49 g, 9,24 mmol) en 161 ml de THF. La mezcla de reacción se agita a temperatura ambiente durante aproximadamente 10 min y a continuación se añade Zn (725 mg, 1,2 eq.). Después de aproximadamente 30 min, se añade una cantidad adicional de Zn (967 mg, 1,6 eq.) y se agita durante aproximadamente 2 horas, seguido de la adición de más Zn (845 mg, 1,4 eq.). Después de agitar a temperatura ambiente durante aproximadamente 15 min, se retira el Zn por filtración y el residuo se concentra y se disuelve en THF. La solución resultante se trata a continuación con p-clorobenzaldehído (0,7 eq.) y se agita a temperatura ambiente durante aproximadamente 15 horas. La mezcla de reacción se concentra al vacío y se purifica sobre gel de sílice para obtener 953,5 mg del producto de nitrona **D** deseado.

A continuación se añade (+)-DIP-CI (6,93 ml, 2 eq., 85,8 mg/ml en CH₂Cl₂) a una solución del producto de nitrona **D** (350 mg, 0,93 mmol) en 60 ml de diclorometano. La mezcla de reacción se agita a aproximadamente -78 °C durante aproximadamente 10 días y se inactiva con una mezcla de NaHCO₃ al 10% (7 ml) y 10 ml de agua. La fase acuosa se extrae con diclorometano tres veces. Las fases orgánicas combinadas se concentran y se purifican sobre gel de sílice para obtener el producto de hidroxilamina **E** deseado (ee > 98%).

A continuación se añaden agua (11,5 ml), NH₄Cl (2,5 ml, 5 eq.) y Zn (908 mg, 15 eq.) a una solución del producto de hidroxilamina **E** (0,927 mmol) en THF (28 ml). La mezcla de reacción se agita a temperatura ambiente durante aproximadamente 1 día. A continuación se añaden cantidades adicionales de THF (10 ml), NH₄Cl (5 ml, 10 eq.) y Zn (1,8 g, 30 eq.) y se agita durante aproximadamente otras 21 horas. De nuevo, se añaden THF (10 ml), NH₄Cl (5 ml, 10 eq.) y Zn (1,8 g, 30 eq.) y se agita durante aproximadamente otras 20 horas. A continuación la mezcla de reacción se filtra a través de celita y se lava con MC. La fase de diclorometano recogida se lava con agua y salmuera. La fase orgánica se seca y se concentra para obtener un complejo de boro de beta-carbolina. Este producto se disuelve en 20 ml de THF. Esta solución se carga en resina de intercambio catiónico preenvasada (preacondicionada con MeOH y THF) y se lava con THF. La solución de THF combinada se concentra para obtener 390 mg de amina libre. A continuación se lava el sólido con éter y hexano consecutivamente para proporcionar 130 mg del Compuesto **F** enantioméricamente puro.

Ejemplo 1D - Compuestos de Fórmula I, Esquema II

5

10

15

25

30

35

20 Los Compuestos de Fórmula I-h se pueden preparar de acuerdo con el **Esquema II** como se muestra a continuación.

Se añade *p*-anisaldehído (2,16 g, 15,9 mmol, 1,93 ml) a una suspensión del 5-bromotriptófano **A** (3 g, 10,6 mmol) en 100 ml de ácido acético a temperatura ambiente. A continuación la mezcla de reacción se calienta a reflujo a aproximadamente 125 °C en un baño de aceite de silicona y se mantiene a esa temperatura durante aproximadamente 3 horas y 20 minutos. La solución resultante se concentra al vacío. El residuo se tritura con diclorometano, éter dietílico y hexano para proporcionar un sólido pulverulento de color marrón. Se recogen las sales de acético del producto intermedio **B** y se lavan con hexano tres veces.

El producto intermedio **B** (70 mg, 0,174 mmol) se suspende en 2 ml de diclorometano, y se añaden a la suspensión trietilamina (52,8 mg, 0,522 mmol), 5-metil-2-aminotiazol (37,6 mg, 0,26 mmol) y PyBOP (135,8 mg, 0,26 mmol). La mezcla de reacción se agita a temperatura ambiente durante aproximadamente 6 horas y se inactiva con una solución saturada de NaHCO₃. La fase acuosa se extrae con diclorometano. Las fases orgánicas combinadas se secan sobre K_2CO_3 y se concentran. La purificación sobre gel de sílice con 40% de acetato de etilo en hexano proporciona 8,1 mg de la amida $\bf C$ deseada. LCMS [MH $^+$] 498, Rt = 2,54.

Ejemplo 1E - Compuestos de Fórmula I, Esquema III

Los Compuestos de Fórmula I-i se pueden preparar de acuerdo con el Esquema III como se muestra a continuación.

Se suspenden/disuelven el triptófano **A** (1,0 g, 5,0 mmol) y 3-metoxibenzaldehído (670 μ l, 5,5 mmol) en acetonitrilo (100 ml) y se añade ácido sulfúrico concentrado (100 μ l). La reacción se calienta a reflujo hasta que se consume todo el aldehído (durante una noche). El disolvente se retiró al vacío y el residuo se disolvió en 5 ml de etanol. El producto se precipitó con éter, se filtró, y se lavó con 10 ml de éter. El producto/intermedio de β -carbolina **B** deseado (ácido 1-(3-metoxi-fenil)-2,3,4,9-tetrahidro-1H- β -carbolina-3-carboxílico) se aísla en forma de un sólido de color beige (1,2 g, 76%). LC/MS RT = 2,33 min. M/Z+ 323, 100%.

A continuación se disuelve el producto/intermedio de β-carbolina **B** (200 mg, 0,62 mmol) en 5 ml de THF seco y se enfría a aproximadamente 0 °C. Se añade una solución de hidruro de litio y aluminio (LAH) (1,2 ml, 1,0 M en éter, 1,2 mmol) a la mezcla refrigerada de reacción en atmósfera de nitrógeno. Después de completarse la adición (aproximadamente 10 minutos), la reacción se deja calentar a temperatura ambiente durante aproximadamente 4 horas. La mezcla de reacción se enfría de nuevo a 0 °C, y se añade una solución saturada de sulfato sódico (750 μl) y la mezcla se agita durante aproximadamente 5 minutos a 0 °C. A continuación la mezcla de reacción se filtra y se lava con THF (100 ml). El disolvente se retira al vacío, y el producto en bruto se purifica por HPLC preparativa. El producto **C** ([1-(3-metoxi-fenil)-2,3,4,9-tetrahidro-1H-β-carbolin-3-il]-metanol) se aísla en forma de un sólido de color blanco (106 mg, 55%). LC/MS RT = 2,25 min. M/Z+ 309, 100%.

Ejemplo 1F - Resolución Química de los Compuestos de la Invención

5

10

15

20

25

Opcionalmente, los compuestos de la presente invención se pueden resolver químicamente en las composiciones enantioméricamente puras, preferentemente en las composiciones del isómero (S) enantioméricamente puro como se muestra a continuación.

La amina racémica **A** (18,21 g, 58,2 mmol) se mezcla con N-acetil-L-fenilalanina (12,05 g, 58,2 mmol) en EtOH (1,28 l) y se calienta a reflujo para conseguir una solución transparente. A continuación se deja enfriar la solución a temperatura ambiente. Después de reposo durante una noche, el sólido precipitado se filtra y se lava con EtOH (200 ml) para obtener la sal **B** (16,4 g). La sal **B** se recoge en EtOAc (500 ml) y se lava con NaOH 1 N acuoso (300 ml x 2) o NH₄OH (200 ml x 2), se seca y se evapora para obtener el isómero S de la amina libre **C** (7,4 g). El isómero R se prepara mediante un procedimiento similar usando N-acetil-D-fenilalanina.

Ejemplo 1G - Compuestos Ejemplares Adicionales de la Invención

A modo de ejemplo adicional no limitante, los siguientes Compuestos (Tabla 5) se pueden preparar mediante una metodología similar a la que se ha descrito anteriormente, como podrá reconocer un experto en la materia.

Tabla 5

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N CI N O CI N O O O O O O O O O O O O O O O O O O	$ \begin{array}{c} (\text{CDCI}_3, 400\text{MHz}), \delta8,16(\text{s}, 1\text{H}),\\ 7,48(\text{s}, 1\text{H}), 7,22(\text{d}, \text{J}=8,8\text{Hz}, 1\text{H}),\\ 7,19(\text{d}, \text{J}=8,8\text{Hz}, 2\text{H}), 7,13(\text{d}, \text{J}=8,8\text{Hz}, 1\text{H}), 6,94(\text{s}, 1\text{H}), 6,80(\text{d}, \text{J}=8,8\text{Hz}, 2\text{H}), 3,92\text{-}3,91(\text{m}, 1\text{H}), 3,86(\text{t}, \text{J}=7,2\text{Hz}, 2\text{H}), 3,77(\text{s}, 3\text{H}), 3,46\text{-}3,39(\text{m}, 1\text{H}), 3,11\text{-}3,09(\text{m}, 1\text{H}), 2,91\text{-}2,83(\text{m}, 3\text{H}) \end{array} $	402,8	4,37
CI NO O O O O O O O O O O O O O O O O O O	$\begin{array}{c} (\text{CDCI}_3,400\;\text{MHz}),\delta\;8,29\;(\text{s},1\text{H}),\\ 7,47\text{-}7,09\;(\text{m},10\text{H}),6,98\;(\text{s},1\text{H}),6,77\;\\ (\text{d},\text{J}=8,8\;\text{Hz},2\text{H}),3,93\;(\text{dd},\text{J}=13,6\;\text{Hz}\text{y}4,8\;\text{Hz},1\text{H}),3,82\text{-}3,80\;(\text{m},2\text{H}),\\ 3,77\;(\text{s},3\text{H}),3,38\text{-}3,30\;(\text{m},1\text{H}),2,69\text{-}2,65\;(\text{m},1\text{H}),2,53\text{-}2,45\;(\text{m},1\text{H}) \end{array}$	430,9	4,79
CI NO	$ \begin{array}{c} (\text{CDCI}_3,400\;\text{MHz}),\delta\;8,21\;(\text{s},1\text{H}),\\ 7,46\;(\text{s},1\text{H}),7,22\;(\text{d},J=8,4\;\text{Hz},1\text{H}),\\ 7,17\;(\text{d},J=8,4\;\text{Hz},2\text{H}),7,12\;(\text{dd},J=8,4\;\text{Hz},2\text{H}),6,92\;(\text{s},1\text{H}),6,77(\text{d},J=8,4\;\text{Hz},2\text{H}),3,94\;(\text{dd},J=13,2\;\text{Hz}\text{y}4,4\;\text{Hz},1\text{H}),3,76\;(\text{s},3\text{H}),3,65\;(\text{s},3\text{H}),3,43\text{-}3,35\;(\text{m},1\text{H}),\\ 2,87\text{-}2,62\;(\text{m},6\text{H}) \end{array} $	427,0	4,06
CI NO O O O O O O O O O O O O O O O O O O	(CDCI ₃ , 400 MHz), δ 8,23, 8,12 (s, 1H), 7,48, 7,42 (d, J = 1,6 Hz, 1,2 Hz, 1H), 7,22-7,10 (m, 4H), 6,94, 6,88 (s, 1H), 6,79 (d, J = 8,8 Hz, 2H), 5,48-5,45 (m, 1H), 3,96-3,80 (m, 1H), 3,77 (s, 3H), 3,47-3,36 (m, 1H), 3,08-2,77 (m, 2H), 2,14, 2,09 (s, 3H), 1,48, 1,41 (d, J = 6,8 Hz, 6,4 Hz, 3H)	427,0	3,99
CI NO H	(CDCl ₃ , 400 MHz), δ 7,87 (s, 1H), 7,51 (s, 1H), 7,47 (dd, J = 6,8 Hz y 1,6 Hz, 1H), 7,30-7,15 (m, 6H), 6,98 (a, 1H), 6,76 (d, J = 8,8 Hz, 2H), 3,80 (s, 3H), 3,77-3,74 (m, 1H), 3,49-3,39 (m, 1H), 2,93-2,82 (m, 2H)	469,0	5,27

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
O=\$=O H-N CI 372	$ \begin{array}{c} (\text{CDCI}_3,400\;\text{MHz}),\delta8,07\;(\text{dd},\text{J}=7,6\\ \text{Hz}y1,2\text{Hz},1\text{H}),7,74\;(\text{s},1\text{H}),7,45\\ 7,32\;(\text{m},4\text{H}),7,18\;(\text{d},\text{J}=8,4\text{Hz},\\ 1\text{H}),7,12\;(\text{dd},\text{J}=8,8\text{Hz}y2,0\text{Hz},\\ 1\text{H}),7,07\;(\text{d},\text{J}=8,4\text{Hz},2\text{H}),6,76\;(\text{d},\text{J}=8,8\text{Hz},2\text{H}),6,35\;(\text{s},1\text{H}),3,97\;(\text{dd},\text{J}=14,8\text{Hz}y5,2\text{Hz},1\text{H}),3,77\;(\text{s},3\text{H}),3,49-3,41\;(\text{m},1\text{H}),2,67\;(\text{dd},\text{J}=15,6\text{Hz}y3,2\text{Hz},1\text{H}),2,57-2,53\;\\ &(\text{m},1\text{H}) \end{array} $	486,9	4,96
CI F F O F O S 373	$ \begin{array}{c} (CDCI_3,400\;MHz),\delta7,95\;(s,1H),\\ 7,48\;(s,1H),7,30\;(d,J=8,4\;Hz,2H),\\ 7,23\;(d,J=8,8\;Hz,1H),7,16\;(dd,J=8,8\;Hz\;y\;1,6\;Hz,1H),7,05\;(a,3H),\\ 6,86\;(d,J=8,4\;Hz,2H),3,80\;(s,3H),\\ 3,61\;(dd,J=13,6\;Hz\;y\;5,2\;Hz,1H),\\ 3,52-3,44\;(m,1H),2,91-2,88\;(m,1H),\\ 2,78\;(dd,J=15,2\;Hz\;y\;3,2\;Hz,1H) \end{array} $	470,8	5,01
CI NO S	(CDCl ₃ , 400 MHz), δ 8,09 (s, 1H), 7,45 (s, 1H), 7,21-7,17 (m, 4H), 7,12 (d, J = 8,8 Hz, 1H), 6,98 (s, 1H), 6,91 (d, J = 4 Hz, 1H), 6,80 (s, 1H), 6,79 (d, J = 8,4 Hz, 2H), 3,99 (s, 2H), 3,96 (d, J = 4,4 Hz, 1H), 3,77 (s, 3H), 3,43-3,38 (m, 1H), 2,77-2,63 (m, 2H)	436,9	4,66
CI NO 375	(CDCl ₃ , 400 MHz), δ 8,19, 8,16 (s, 1H), 7,48, 8,42 (s, 1H), 7,24-7,09 (m, 6H), 6,94 (t, J = 7,8 Hz, 2H), 6,85 (t, J = 8,2 Hz, 2H), 6,77 (d, J = 8,4 Hz, 1H), 6,72 (d, J = 8,4 Hz, 1H), 5,09-4,98 (m, 1H), 4,39-4,17 (m, 1H), 3,77, 3,75 (s, 3H). 3,41-3,28 (m, 1H), 3,02-2,65 (m, 2H), 1,61-1,59 (m, 3H)	461	4,92

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N O O O O O O O O O O O O O O O O O O	$ \begin{array}{c} (\text{CDCI}_3,400\;\text{MHz}),\delta\;8,39\;(\text{s},1\text{H}),\\ 7,48\;(\text{s},1\text{H}),7,23\;(\text{d},\text{J}=8,4\;\text{Hz},1\text{H}),\\ 7,19\;(\text{d},\text{J}=8,4\;\text{Hz},2\text{H}),7,13\;(\text{dd},\text{J}=8,8\;\text{Hz}\;\text{y}\;1,6\;\text{Hz},1\text{H}),6,89\;(\text{s},1\text{H}),\\ 6,77\;(\text{d},\text{J}=8,4\;\text{Hz},2\text{H}),4,17\;(\text{c},\text{J}=12,8\;\text{Hz},2\text{H}),3,88\;(\text{d},\text{J}=10\;\text{Hz},1\text{H}),\\ 3,75\;(\text{s},3\text{H}),3,41\;(\text{s},3\text{H}),3,38\text{-}3,34\;(\text{m},1\text{H}),2,95\text{-}2,81\;(\text{m},2\text{H}) \end{array} $	385	3,79
CI NO	(CD ₃ OD, 400 MHz), δ 7,48-7,46 (m, 4H), 7,35 (a, 1H), 7,23 (d, J = 8,8 Hz, 1H), 7,07 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 6,46 (a, 1H), 4,35-4,14 (m, 5H), 3,52-3,47 (m, 2H), 3,22-3,19 (m, 7H), 2,98-2,93 (m, 3H), 2,89 (s, 6H), 2,67- 2,63 (m, 5H), 2,06-1,96 (m, 2H), 1,31 (t, J = 7,2 Hz, 3H)	538,3	4,29
Br N 0 N N N N N N N N N N N N N N N N N	(DMSO, 400 MHz), δ 11,00 (s, 1H), 8,47 (s, 2H), 7,67 (s, 1H), 7,26 (d, J = 8,4 Hz, 1H), 7,19 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 6,26 (a, 1H), 4,25 (a, 1H) 4,11 (t, J = 6,8 Hz, 2H), 3,22-3,17 (m, 1H), 2,86-2,81 (m, 1H), 2,77-2,66 (m, 1H), 2,50 (a, 3H), 1,21 (t, J = 6,8 Hz, 3H)	447,1	6,55
Br N= N-	(CD ₃ OD, 400 MHz), δ 8,43-8,41 (m, 4H), 7,63 (d, J = 1,2 Hz, 1H), 7,22 (d, J = 8,8 Hz, 1H), 7,19 (dd, J = 8,4 Hz y 1,6 Hz, 1H), 7,04 (s, 1H), 6,67 (t, J = 4,8 Hz, 1H), 5,01 (dd, J = 14,0 Hz y 3,6 Hz, 1H), 3,29-3,26 (m, 1H), 3,21 (s, 6H), 2,91-2,86 (m, 2H)	450,1	5,48
CI PF 410	(DMSO, 400 MHz), δ 11,15, 11,05 (a, 1H), 7,53 (d, J = 1,6 Hz, 1H), 7,29 (d, J = 8,8 Hz, 1H), 7,20-7,18 (m, 6H), 7,06 (dd, J = 8,8 Hz y 2 Hz, 1H), 6,93 (d, J = 7,2 Hz, 2H), 6,45-6,37 (m, 1H), 4,30 (a, 1H), 3,72 (s, 3H), 3,18 (a, 1H), 2,82 (a, 2H)	451,3	3,99

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N-H N-H Sal de HCI 416	$ \begin{array}{c} (\text{CD}_3\text{OD, 400 MHz}), \delta 10,98 (a, 1\text{H}), \\ 7,49 (d, J=2,0 \text{Hz, 1H}), 7,34\text{-}7,30 \\ (m, 5\text{H}), 7,25\text{-}7,21 (m, 1\text{H}), 7,13 (dd, \\ J=8,8 \text{Hz} y 2,0 \text{Hz, 1H}), 4,81\text{-}4,79 \\ (m, 1\text{H}), 3,82\text{-}3,76 (m, 1\text{H}), 3,54\text{-}3,49 \\ (m, 1\text{H}), 3,11\text{-}3,07 (m, 2\text{H}), 2,91\text{-}2,87 \\ (m, 2\text{H}), 2,59\text{-}2,55 (m, 1\text{H}), 2,24\text{-}2,20 \\ (m, 1\text{H}) \end{array} $	311,1	4,39
Br N 0 N 0 N N N N N N N N N N N N N N N	$ \begin{array}{c} (\text{CD}_3\text{OD, 400 MHz}), \delta 7,61 (\text{s, 1H}), \\ 7,46 (\text{d, J} = 8,0 \text{Hz, 2H}), 7,38 (\text{d, J} = 8,0 \text{Hz, 2H}), 7,19 (\text{s, 2H}), 6,47 (\text{s, 1H}), 4,32-4,19 (\text{m, 5H}), 3,62 (\text{t, J} = 3,9 \text{Hz, 2H}), 3,42 (\text{s, 1H}), 3,19-3,10 (\text{m, 3H}), 2,29-2,76 (\text{m, 2H}), 1,30 (\text{s, 3H}) \end{array} $	486,6	3,45
Br N O N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (\text{CD}_3\text{OD, 400 MHz}), \delta 7,63 (\text{s, 1H}), \\ 7,49 (\text{d, J} = 8,4 \text{Hz, 2H}), 7,42 (\text{d, J} = 8,4 \text{Hz, 2H}), 7,19 (\text{s, 2H}), 6,49 (\text{a, 1H}), 4,34-4,19 (\text{m, 4H}), 3,60 (\text{a, 4H}), \\ 3,29-3,17 (\text{m, 6H}), 2,89-2,75 (\text{m, 2H}), \\ 1,36 (\text{t, J} = 7,2 \text{Hz, 3H}), 1,30 (\text{a, 3H}) \end{array} $	539,2	3,11
Br 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(CDCl ₃ , 400 MHz), δ 8,56 (a, 1H), 8,40 (a, 2H), 7,68 (s, 1H), 7,28 (d, J = 2,0 Hz, 1H), 7,14 (d, J = 8,4 Hz, 1H), 7,00 (d, J = 9,2 Hz, 2H), 6,80 (d, J = 8,4 Hz, 2H), 6,48-6,38 (m, 1H), 4,55-4,52 (m, 1H), 3,81-3,74 (m, 4H), 3,24 (s, 6H), 3,00-2,91 (m, 1H), 2,88-2,84 (m, 1H)	522,2	5,05
Br N O N N N N N N N N N N N N N N N N N	(DMSO, 400 MHz), δ 11,00 (s, 1H), 8,14 (s, 2H), 7,64 (s, 1H), 7,23 (d, J = 8,4 Hz, 1H), 7,18 (d, J = 8,8 Hz, 1H), 6,14 (s, 1H), 4,23 (a, 1H), 4,11-4,08 (m, 2H), 3,14-3,10 (m, 1H), 3,08 (s, 6H), 2,81-2,77 (m, 1H), 2,70-2,66 (m, 1H), 1,21 (t, J = 6,8 Hz, 3H)	444,3	3,95

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
Br	(CD ₃ OD, 400 MHz), δ 7,79 (d, J = 8,4 Hz, 2H), 7,63 (s, 1H), 7,37 (d, J = 8,4 Hz, 2H), 7,20 (s, 2H), 6,51 (a, 1H), 4,32-4,22 (m, 3H), 3,54 (s, 3H), 3,36 (s, 2H), 3,30 (s, 2H), 3,21-3,11 (m, 1H), 2,90-2,77 (m, 2H), 1,32 (s, 3H)	500,1	4,35
CI N O A39	(CDCl ₃ , 400 MHz), δ 7,98, 7,81 (s, 1H), 7,42 (s, 1H), 7,21 (d, J = 8,4 Hz, 1H), 7,11 (d, J = 8,4 Hz, 1H), 5,40-5,23 (m, 3H), 4,55-4,35 (m, 1H), 4,20-4,11 (m, 2H), 3,24-3,13 (m, 1H), 2,79-2,63 (m, 2H), 2,22 (d, J = 6,8 Hz, 2H), 2,08 (a, 2H), 1,89-1,81 (m, 2H), 1,30 (a, 3H), 0,97 (a, 3H)	361,2	5,95
CI NO O NO	(CD ₃ OD, 400 MHz), δ 7,47 (d, J = 1,6 Hz, 1H), 7,43 (d, J = 7,6 Hz, 2H), 7,37 (d, J = 8,0 Hz, 2H), 7,24 (d, J = 8,8 Hz, 1H), 7,06 (dd, J = 8,4 Hz y 1,6 Hz, 1H), 6,49 (a, 1H), 4,35-4,21 (m, 3H), 3,83 (s, 4H), 3,19-3,10 (m, 1H), 2,90-2,79 (m, 2H), 1,57 (a, 6H), 1,32 (s, 3H)	482,1	5,11
CI N O A42	(CDCl ₃ , 400 MHz), δ 8,48-8,09 (m, 1H), 7,44-7,42 (m, 1H), 7,24 (t, J = 9 Hz, 1H), 7,11-7,09 (m, 1H), 5,59-5,40 (m, 1H), 4,54-4,34 (m, 1H), 4,21-4,18 (m, 2H), 3,23-3,13 (m, 1H), 2,87-2,81 (m, 2H), 2,76-2,63 (m, 1H), 2,17 (s, 3H), 2,12-1,90 (m, 2H), 1,42-1,24 (m, 6H)	367,1	2,92
Br N N N N N N N N N N N N N N N N N N N	(CD ₃ OD, 400 MHz), δ 8,62 (d, J = 4,4 Hz, 2H), 8,59 (s, 2H), 7,84 (s, 1H), 7,43-7,39 (m, 2H), 7,24 (s, 1H), 6,88 (t, J = 8,0 Hz, 1H), 5,24-5,20 (m, 1H), 3,47-3,44 (m, 1H), 3,16 (s, 3H), 3,11-3,05 (m, 2H)	436,2	5,25

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI NOCI A447	$ \begin{array}{c} (\text{CDCI}_3,400\;\text{MHz}),\delta\;8,12\;(\text{s},1\text{H}),\\ 7,45\;(\text{s},1\text{H}),7,26\;(\text{d},\text{J}=8\;\text{Hz},2\text{H}),\\ 7,18\;(\text{d},\text{J}=8,8\;\text{Hz},2\text{H}),7,14\text{-}7,12\\ (\text{m},4\text{H}),6,97\;(\text{s},1\text{H}),6,78\;(\text{d},\text{J}=8,8\\ \text{Hz},2\text{H}),3,89\;(\text{dd},\text{J}=14\;\text{Hz}\;\text{y}\;1,2\;\text{Hz},\\ 1\text{H}),3,80\text{-}3,78\;(\text{m},5\text{H}),3,41\text{-}3,33\;(\text{m},1\text{H}),2,73\;(\text{dd},\text{J}=15,2\;\text{Hz}\;\text{y}\;3,2\;\text{Hz},\\ 1\text{H}),2,64\text{-}2,60\;(\text{m},1\text{H}) \end{array} $	464,9	5,11
CI NO H NO	$ \begin{array}{c} (CD_3OD,400\text{MHz}),\delta7,78(d,J=8,0\\ \text{Hz},2H),7,47(d,J=1,6\text{Hz},1H),\\ 7,37(d,J=8,0\text{Hz},2H),7,24(d,J=8,4\text{Hz},1H),7,06(dd,J=8,8\text{Hz}\text{y}\\ 1,6\text{Hz},1H),6,49(a,1H),4,31-4,05\\ (m,8H),3,20-3,11(m,1H),3,00-2,77\\ (m,4H),1,94-1,90(m,2H),1,54-1,45\\ (m,2H),1,31(a,3H),1,25(t,J=7,2\text{Hz},3H) \end{array} $	553,1	6,13
CI N N N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (CD_3OD,400\text{MHz}),\delta7,80(\text{d},\text{J}=8,0\text{Hz},2\text{H}),7,48(\text{d},\text{J}=1,6\text{Hz},1\text{H}),\\ 7,38(\text{d},\text{J}=8,4\text{Hz},2\text{H}),7,25(\text{d},\text{J}=8,8\text{Hz},1\text{H}),7,07(\text{dd},\text{J}=8,4\text{Hz}\text{y}\\ 1,6\text{Hz},1\text{H}),6,49(\text{a},1\text{H}),4,31\text{-}4,21(\text{m},4\text{H}),4,06(\text{t},\text{J}=8,4\text{Hz},1\text{H}),3,74(\text{t},\text{J}=8,0\text{Hz},1\text{H}),3,51(\text{d},\text{J}=5,2\text{Hz},2\text{H}),3,21\text{-}3,11(\text{m},1\text{H}),2,90\text{-}2,79(\text{m},2\text{H}),2,26(\text{s},1\text{H}),1,39(\text{s},3\text{H}),1,32(\text{s},6\text{H}) \end{array} $	454,3	5,98
CI NO A64	(CDCl ₃ , 400 MHz), δ 8,29 (a, 1H), 7,64 (d, J = 8,0 Hz, 2H), 7,61 (d, J = 7,2 Hz, 2H), 7,50-7,45 (m, 5H), 7,39 (d, J = 7,6 Hz, 1H), 7,33 (d, J = 7,6 Hz, 2H), 7,19 (d, J = 8,8 Hz, 1H), 7,14 (dd, J = 8,4 Hz y 1,6 Hz, 1H), 7,08 (s, 1H), 6,84 (d, J = 8 Hz, 2H), 3,87 (d, J = 9,2 Hz, 1H), 3,79 (s, 3H), 3,45-3,40 (m, 1H), 2,96-2,94 (m, 1H), 2,80-2,76 (m, 1H)	493,0	5,71
Br N N N N H	$ \begin{array}{c} (\text{CD}_3\text{OD},400\text{MHz}),\delta7,63(\text{s},1\text{H}),\\ 7,48(\text{d},\text{J}=8,4\text{Hz},2\text{H}),7,42(\text{d},\text{J}=8,0\text{Hz},2\text{H}),7,20(\text{s},2\text{H}),6,49(\text{a},1\text{H}),4,33\text{-}4,22(\text{a},3\text{H}),3,89(\text{t},\text{J}=5,2\text{Hz},2\text{H}),3,50(\text{a},4\text{H}),3,21\text{-}3,11(\text{m},2\text{H}),2,91\text{-}2,78(\text{m},2\text{H}),1,31(\text{s},3\text{H}) \end{array} $	555,2	3,14

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,47\;(\text{d},\text{J}=2,0\;\text{Hz},1\text{H}),7,39\;(\text{s},4\text{H}),7,23\;(\text{d},\text{J}=8,8\;\text{Hz},1\text{H}),7,06\;(\text{dd},\text{J}=8,4\;\text{Hz}\text{y}2,0\;\text{Hz},1\text{H}),6,49\;(\text{a},1\text{H}),4,35\text{-}4,21\;(\text{m},3\text{H}),3,75\;(\text{a},2\text{H}),3,53\;(\text{t},\text{J}=5,4\;\text{Hz},2\text{H}),3,44\;(\text{a},2\text{H}),3,26\text{-}3,30\;(\text{m},4\text{H}),3,22\text{-}3,13\;(\text{m},1\text{H}),2,89\text{-}2,78\;(\text{m},2\text{H}),2,60\;(\text{t},\text{J}=5,4\;\text{Hz},4\text{H}),2,46\;(\text{a},2\text{H}),1,32\;(\text{s},3\text{H}) \end{array} $	525,2	5,07
CI N O O O O O O O O O O O O O O O O O O	(CDCl ₃ , 400 MHz), δ 7,80, 7,75 (s 1H), 7,43, 7,41 (s, 1H), 7,21 (d, J = 8,4 Hz, 1H), 7,10 (d, J = 8,0 Hz, 1H), 5,43, 5,27 (d, J = 7,2 Hz, 1H), 4,51-4,30 (m, 1H), 4,21-4,10 (m, 2H), 3,18 (c, J = 12,8 Hz, 1H), 2,82-2,76 (m, 1H), 2,64-2,61 (m, 1H), 1,82-1,76 (m, 2H), 1,55-1,53 (m, 1H), 1,29-1,24 (m, 3H), 1,08 (a, 3H), 0,98 (d, J = 6,8 Hz, 3H)	335,3	5,52
CI N-0	$ \begin{array}{l} (\text{CD}_3\text{OD, 400 MHz}), \delta 7,47 (\text{d, J} = 2,0 \\ \text{Hz, 1H), 7,39 (s, 4H), 7,23 (d, J = 8,8 \\ \text{Hz, 1H), 7,05 (dd, J = 8,4 \text{Hz y 2,0} \\ \text{Hz, 1H), 6,49 (a, 1H), 4,32-4,20 (m, 3H), 3,76 (a, 2H), 3,46 (a, 2H), 3,21-3,13 (m, 1H), 2,90-2,78 (m, 2H), 2,54 (a, 2H), 2,49-2,43 (m, 4H), 1,32 (a, 3H), 1,10 (t, J = 7,2 \text{Hz, 3H}) \end{array} $	495,3	4,68
Br N O N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,61\;(\text{s},1\text{H}),\\ 7,44\;(\text{d},\text{J}=8,0\;\text{Hz},2\text{H}),7,35\;(\text{d},\text{J}=8,0\;\text{Hz},2\text{H}),7,20\text{-}7,16\;(\text{m},2\text{H}),6,45\;\\ (\text{a},1\text{H}),4,28\text{-}4,14\;(\text{m},3\text{H}),4,11\;(\text{s},2\text{H}),3,47\;(\text{s},4\text{H}),3,26\;(\text{s},4\text{H}),3,19\text{-}3,12\;(\text{m},1\text{H}),2,91\;(\text{s},3\text{H}),2,88\text{-}2,79\;\\ (\text{m},2\text{H}),1,30\;(\text{s},3\text{H}) \end{array} $	511,2	4,99
CI N-H Sal de HCI	$ \begin{array}{l} (CD_3OD,400\;\text{MHz})\;\delta\;7,48\;(d,J=1,6\;\\ \text{Hz},1\text{H}),7,34\;(d,J=8,4\;\text{Hz},1\text{H}),\\ 7,12\;(dd,J=8,8\;\text{Hz}y\;2,0\;\text{Hz},1\text{H}),\\ 4,68\;(s,1\text{H}),3,77\text{-}3,72\;(m,1\text{H}),3,47\text{-}\\ 3,44\;(m,1\text{H}),3,10\text{-}3,03\;(m,2\text{H}),\\ 2,65\text{-}2,61\;(m,1\text{H}),1,25\;(d,J=7,2\;\text{Hz},3\text{H}),0,96\;(d,J=7,2\;\text{Hz},3\text{H}) \end{array} $	249,1	3,67

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
Br N O N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (CD_3OD,400\text{MHz}),\delta7,63(s,1H),\\ 7,48(d,J=8,0\text{Hz},2H),7,42(d,J=8,0\text{Hz},2H),7,20(s,2H),6,49(a,1H),4,32-4,21(m,3H),3,50(a,4H),3,21-3,15(m,3H),2,92(s,3H),2,90-2,73(m,2H),1,32(s,3H) \end{array} $	525,1	3,25
Br N O N H 480	$ \begin{array}{c} (\text{CD}_3\text{OD, 400 MHz}), \ \delta \ 7,78 \ (\text{d, J} = 8,0 \\ \text{Hz, 2H), 7,63 \ (s, 1H), 7,37 \ (d, J = 8,4 \\ \text{Hz, 2H), 7,20 \ (s, 2H), 6,49 \ (a, 1H), } \\ 4,31\text{-}4,22 \ (\text{m, 3H), 3,19-3,11 \ (m, 1H), } \\ 2,90 \ (\text{s, 3H), 2,86-2,77 \ (m, 2H), 1,32} \\ \text{(s, 3H)} \end{array} $	456,1	4,26
CI N-0 H N-0 H N-0 481	$ \begin{array}{l} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,48\;(\text{d},\text{J}=2\\ \text{Hz},1\text{H}),7,41\text{-}7,36\;(\text{m},4\text{H}),7,23\;(\text{d},\text{J}=8,4\;\text{Hz},1\text{H}),7,06\;(\text{dd},\text{J}=8,8\;\text{Hz}\text{y}\\ 2,0\;\text{Hz},1\text{H}),6,49\;(\text{a},1\text{H}),4,35\text{-}4,21\;(\text{m},3\text{H}),3,64\;(\text{a},2\text{H}),3,45\;(\text{a},2\text{H}),3,20\text{-}3,11\;(\text{m},1\text{H}),2,92\text{-}2,78\;(\text{m},2\text{H}),2,68\;(\text{a},2\text{H}),2,55\;(\text{a},2\text{H}),1,92\text{-}1,80\;(\text{m},4\text{H}),1,66\text{-}1,62\;(\text{m},1\text{H}),1,32\text{-}1,22\;(\text{m},8\text{H}) \end{array} $	549,3	5,29
Br NON A83	$ \begin{array}{c} (CD_3OD,400\text{MHz}),\delta7,63(s,1H),\\ 7,41(d,J=8,4\text{Hz},2H),7,37(d,J=8,0\text{Hz},2H),7,19(s,2H),6,49(a,1H),4,35-4,22(m,3H),3,22-3,13(m,1H),3,08(s,3H),2,98(s,3H),2,89-2,77(m,2H),1,32(s,3H) \end{array} $	470,1	4,46
Br N N N A84	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,63\;(\text{s},1\text{H}),\\ 7,48\;(\text{d},\text{J}=7,2\;\text{Hz},2\text{H}),7,40\;(\text{d},\text{J}=8,0\;\text{Hz},2\text{H}),7,20\;(\text{s},2\text{H}),6,49\;(\text{a},1\text{H}),4,35\text{-}4,22\;(\text{m},4\text{H}),3,82\text{-}3,50\;(\text{m},6\text{H}),3,45\;(\text{a},1\text{H}),3,21\text{-}3,11\;(\text{m},1\text{H}),3,00\text{-}2,78\;(\text{m},5\text{H}),2,25\text{-}2,15\;(\text{m},2\text{H}),1,32\;(\text{s},3\text{H}) \end{array} $	539,2	3,02

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N-O 485	(CDCl ₃ , 400 MHz), δ 8,06, 7,98 (s, 1H), 7,50, 7,49 (s,1H), 7,22 (d, J = 6,0 Hz, 1H), 7,21 (d, J = 6,4 Hz, 2H), 7,15 (dd, J = 8,8 Hz y 1,6 Hz, 1H), 6,81 (d, J = 8,4 Hz, 2H), 6,77 (s, 1H), 3,91 (s, 3H), 3,77 (s, 3H), 3,72 (d, J = 5,2 Hz, 1H), 3,51-3,43 (m, 1H), 3,02-2,96 (m, 1H), 2,86-2,81 (m, 1H)	398,9	4,18
CI N O A86	$ \begin{array}{c} (\text{CDCI}_3,400\text{MHz}),\delta7,77,7,70(\text{s},\\ 1\text{H}),7,42,7,39(\text{s},1\text{H}),7,20(\text{dd},\text{J}=\\ 8,4\text{Hz}\text{y}1,6\text{Hz},1\text{H}),7,09(\text{d},\text{J}=8,0\\ \text{Hz},1\text{H}),5,52\cdot5,36(\text{m},1\text{H}),4,44\cdot4,17\\ (\text{m},3\text{H}),3,28\cdot3,20(\text{m},1\text{H}),2,88\cdot2,77\\ (\text{m},1\text{H}),2,60(\text{d},\text{J}=15,2\text{Hz},1\text{H}),\\ 2,05\cdot1,88(\text{m},1\text{H}),1,58\cdot1,54(\text{m},1\text{H}),\\ 1,30\cdot1,26(\text{m},3\text{H}),1,04(\text{d},\text{J}=2\text{Hz},9\text{H}) \end{array} $	349,1	6,03
Br N N N N N N N N N N N N N N N N N N N	(CD ₃ OD, 400 MHz), 8 7,85 (d, J = 8,0 Hz, 2H), 7,64 (s,1H), 7,41 (d, J = 8,4 Hz, 2H), 7,20 (s, 2H), 6,52 (a, 1H), 4,33-4,22 (a, 3H), 4,07 (a, 2H), 3,77 (t, J = 5,6 Hz, 4H), 3,65 (a, 2H), 3,39 (t, J = 5,6 Hz, 2H), 3,21-3,11 (m, 3H), 2,91-2,78 (m, 2H), 1,32 (s, 3H)	555,2	3,34
Br	(CD ₃ OD, 400 MHz), δ 7,81 (d, J = 8,4 Hz, 2H), 7,63 (s, 1H), 7,37 (d, J = 8,0 Hz, 2H), 7,20 (s, 2H), 6,51 (a, 1H), 4,32-4,22 (m, 3H), 3,69 (t, J = 5,8 Hz, 2H), 3,48 (t, J = 5,6 Hz, 2H), 3,21-3,11 (m, 1H), 2,90-2,77 (m, 2H), 1,32 (s, 3H)	486,1	3,80
CI N O N O N O N O N O N O N O N O N O N	$ \begin{array}{c} (\text{CD}_3\text{OD},400\text{MHz}),\delta7,47(\text{s},1\text{H}),\\ 7,41\text{-}7,38(\text{m},4\text{H}),7,23(\text{d},\text{J}=8,8\text{Hz},1\text{H}),7,06(\text{dd},\text{J}=8,8\text{Hz}\text{y}1,6\text{Hz},1\text{H}),6,49(\text{a},1\text{H}),4,35\text{-}4,21(\text{m},3\text{H}),3,73\text{-}3,62(\text{m},6\text{H}),3,44(\text{a},2\text{H}),3,19\text{-}3,10(\text{m},1\text{H}),2,91\text{-}2,78(\text{m},2\text{H}),1,32(\text{a},3\text{H}) \end{array} $	468	5,52

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI H H H H H H H H H H H H H H H H H H H	(DMSO, 400 MHz), δ 11,19 (a, 1H), 8,49 (a, 1H), 7,81 (d, J = 8,0 Hz, 2H), 7,51 (d, J = 1,6 Hz, 1H), 7,30 (d, J = 8,4 Hz, 2H), 7,29 (d, J = 14,0 Hz, 1H), 7,07 (dd, J = 8,4 Hz y 1,6 Hz, 1H), 6,39 (a, 1H), 4,21-4,16 (m, 3H), 3,93 (t, J = 6,4 Hz, 1H), 3,74 (c, J = 6,8 Hz, 1H), 3,59 (c, J = 6,8 Hz, 1H), 3,28 (s, 2H), 3,08-3,01 (m, 1H), 2,81-2,70 (m, 2H), 1,91-1,79 (m, 3H), 1,59-1,52 (m, 1H), 1,21 (s, 3H)	482,2	5,74
Br N O N N N N N N N N N N N N N N N N N	(CD ₃ OD, 400 MHz), δ 11,05 (s, 1H), 8,09 (s, 2H), 7,64 (s, 1H), 7,32 (a, 1H), 7,24 (d, J = 8,4 Hz, 1H), 7,17 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 6,24 (s, 1H), 4,22 (a, 1H), 4,12-4,09 (m, 2H), 3,15-3,09 (m, 1H), 2,83-2,65 (m, 5H), 1,21 (t, J = 6,8 Hz, 3H)	430,2	3,65
CI N-H S- Sal de HCI	$ \begin{array}{l} \text{(CD}_3\text{OD, 400 MHz), } \delta \ 7,49 \ (\text{d, J} = 1,6 \\ \text{Hz, 1H), } 7,34 \ (\text{d, J} = 8,8 \ \text{Hz, 1H),} \\ 7,13 \ (\text{dd, J} = 8,8 \ \text{Hz y 2,0 Hz, 1H),} \\ 3,77\text{-}3,72 \ (\text{m, 1H), } 3,52\text{-}3,45 \ (\text{m, 1H),} \\ 3,15\text{-}3,01 \ (\text{m, 2H), 2,80\text{-}2,74 } \ (\text{m, 2H), 2,60\text{-}2,52 } \ (\text{m, 1H), 2,27\text{-}2,20 } \ (\text{m, 4H)} \\ \end{array} $	281,0	3,84
CI N O N N N N N N N N N N N N N N N N N	(CDCl ₃ , 400 MHz), δ 8,35 (a, 1H), 7,51 (s, 1H), 7,32-7,26 (m, 4H), 7,20 (d, J = 8,4 Hz, 1H), 7,13 (dd, J = 8,8 Hz y 2,4 Hz, 1H), 6,39 (a, 1H), 4,25-4,21 (m, 2H), 3,80 (a, 2H), 3,47 (a, 2H), 3,16-3,10 (m, 1H), 2,96-2,88 (m, 3H), 2,79-2,75 (m, 1H), 2,54-2,36 (m, 6H), 1,32 (s, 3H)	481,4	4,81
CI NO	(DMSO, 400 MHz), δ 10,86 (s, 1H), 8,17 (s, 1H), 8,03 (d, J = 7,6 Hz, 1H), 7,81 (t, J = 8,0 Hz, 1H), 7,65 (d, J = 8,4 Hz, 1H), 7,50 (a, 2H), 7,26 (d, J = 8,4 Hz, 1H), 7,02 (d, J = 8,8 Hz, 1H), 6,24 (s, 1H), 4,35 (a, 1H), 4,09-4,05 (m, 2H), 3,61- 3,49 (m, 1H), 2,78- 2,65 (m, 2H), 1,45(t, J = 6,8 Hz, 3H)	423,3	5,15

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
Br O O O O O O O O O O O O O O O O O O O	$\begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta\;8,33\;(\text{s},2\text{H}),\\ 7,67\;(\text{s},1\text{H}),7,23\;(\text{s},2\text{H}),7,05\;(\text{d},\text{J}=8,4\;\text{Hz},2\text{H}),6,91\;(\text{d},\text{J}=8,8\;\text{Hz},2\text{H}),\\ 6,54-6,38\;(\text{m},1\text{H}),4,52\;(\text{a},1\text{H}),3,78\;(\text{s},3\text{H}),3,36\text{-}3,34\;(\text{m},1\text{H}),2,99\;(\text{s},3\text{H}),2,92\text{-}2,88\;(\text{m},2\text{H}) \end{array}$	508,2	5,72
CI NO	(CDCl ₃ , 400 MHz), δ 7,88-7,77 (m, 1H), 7,43 (d, J = 8,0 Hz, 1H), 7,23 (d, J = 8,8 Hz, 1H), 7,11 (d, J = 8,8 Hz, 1H), 5,70-7,68 (m, 2H), 5,19-4,97 (m, 1H), 4,60-4,38 (m, 1H), 4,19-4,07 (m, 2H), 2,82-2,80 (m, 1H), 2,68-2,64 (m, 1H), 2,29-1,84 (m, 6H), 1,55-1,46 (m, 1H), 1,36-1,24 (m, 3H)	359,1	5,65
Br N O H	(CD ₃ OD, 400 MHz), δ 7,84 (d, J = 8,0 Hz, 2H), 7,63 (s, 1H), 7,38 (d, J = 8,0 Hz, 2H), 7,20 (s, 2H), 6,49 (a, 1H), 4,31-4,22 (m, 3H), 3,19-3,11 (m, 1H), 2,89-2,77 (m, 2H), 1,32 (s, 3H)	442,0	4,06
CI N-O N-H N-H 506	$ \begin{array}{c} (\text{CD}_3\text{OD},400\text{MHz}),\delta8,44(\text{s},2\text{H}),\\ 7,67(\text{d},\text{J}=2,0\text{Hz},1\text{H}),7,44(\text{d},\text{J}=8,8\text{Hz},1\text{H}),7,28(\text{dd},\text{J}=8,8\text{Hz}\text{y}\\ 2,0\text{Hz},1\text{H}),6,52(\text{s},1\text{H}),4,58\text{-}4,55(\text{m},1\text{H}),4,43\text{-}4,40(\text{m},2\text{H}),3,41\text{-}3,31(\text{m},1\text{H}),3,15(\text{s},3\text{H}),3,03\text{-}3,01(\text{m},2\text{H}),1,32(\text{a},3\text{H}) \end{array} $	386,3	5,32
CI NO	(CDCl ₃ , 400 MHz), δ 7,66 (d, J = 24,8 Hz, 1H), 7,39-6,89 (m, 8H), 5,44-5,02 (m, 1H), 4,49-4,10 (m, 3H), 3,23-2,94 (m, 2H), 2,83-2,74 (m, 1H), 2,64-2,58 (m, 1H), 2,26-1,98 (m, 2H), 1,47-1,26 (m, 6H)	397,1	5,97

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI NO H NO H NO	(CD ₃ OD, 400 MHz), δ 7,80 (d, J = 8,4 Hz, 2H), 7,47 (d, J = 1,6 Hz, 1H), 7,38 (d, J = 8,0 Hz, 2H), 7,24 (d, J = 8,8 Hz, 1H), 7,07 (dd, J = 8,0 Hz y 1,6 Hz, 1H), 6,49 (a, 1H), 4,35-4,21 (m, 3H), 3,69 (t, J = 4,6 Hz, 4H), 3,53 (t, J = 6,8 Hz, 2H), 3,19-3,10 (m, 1H), 2,90-2,78 (m, 2H), 2,59 (t, J = 6,6 Hz, 4H), 2,53 (s, 2H), 1,32 (s, 3H)	511,4	5,05
CI NO	(CDCl ₃ , 400 MHz), δ 8,09, 7,83 (s, 1H), 7,42 (s, 1H), 7,21 (d, J = 8,4 Hz, 1H), 7,09 (dd, J = 8,4 Hz y 1,2 Hz, 1H), 5,33-5,21 (m, 1H), 4,50-4,34 (m, 1H), 4,21-4,10 (m, 2H), 3,19-3,17 (m, 1H), 2,77-2,74 (m, 1H), 2,67-2,61 (m, 1H), 1,81 (s, 2H), 1,52 (s, 2H), 1,29-1,23 (m, 3H), 0,96 (s, 3H)	321,4	5,19
CI NO	(CDCl ₃ , 400 MHz), δ 7,73-7,52 (m, 1H), 7,47 (s, 1H), 7,42-7,18 (m, 6H), 7,09 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 5,41-5,26 (m, 1H), 4,56-4,32 (m, 1H), 4,23-4,10 (m, 2H), 3,21 (a, 1H), 2,85-2,72 (m, 3H), 2,65 (d, J = 14,2 Hz, 1H), 2,23-2,10 (m, 2H), 1,38 (a, 3H)	383,1	5,75
CI NO	(CD ₃ OD, 400 MHz), δ 7,80 (d, J = 8,4 Hz, 2H), 7,47 (d, J = 1,6 Hz, 1H), 7,37 (d, J = 8,0 Hz, 2H), 7,24 (d, J = 8,8 Hz, 1H), 7,06 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 6,50 (a, 1H), 4,32-4,21 (m, 3H), 3,47 (t, J = 7,2 Hz, 2H), 3,38-3,34 (m, 4H), 3,19-3,10 (m, 1H), 2,89-2,78 (m, 2H), 2,39 (t, J = 8,4 Hz, 2H), 2,09-2,00 (m, 2H), 1,86-1,80 (m, 2H), 1,32 (a, 3H)	523,1	5,69
CI N O N O N O N O N O N O N O N O N O N	$ \begin{array}{c} (\text{CDCI}_3,400\;\text{MHz}),\delta7,81\;(\text{s},1\text{H}),\\ 7,51\;(\text{d},\text{J}=6,8\;\text{Hz},1\text{H}),7,29\;(\text{dd},\text{J}=12,0\;\text{Hz}\text{y}2,8\;\text{Hz},1\text{H}),7,21\;(\text{d},\text{J}=8,4\;\text{Hz},1\text{H}),7,13\;(\text{dd},\text{J}=8,4\;\text{Hz}\text{y}2,0\;\text{Hz},1\text{H}),7,12\text{-}7,08\;(\text{m},1\text{H}),7,07\;(\text{s},1\text{H}),6,50\;(\text{a},1\text{H}),4,49\text{-}4,21\;(\text{m},3\text{H}),3,17\text{-}3,09\;(\text{m},1\text{H}),2,91\text{-}2,85\;(\text{m},1\text{H}),2,77\text{-}2,73\;(\text{m},1\text{H}),1,39\;(\text{s},3\text{H}) \end{array} $	361,1	5,12

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI NO N N S14	(CD ₃ OD, 400 MHz), δ 7,47 (d, J = 2,0 Hz, 1H), 7,46-7,37 (m, 4H), 7,23 (d, J = 8,4 Hz, 1H), 7,06 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 6,49 (a, 1H), 4,35-4,21 (m, 3H), 3,77-3,69 (m, 2H), 3,55-3,45 (m, 2H), 3,20-3,11 (m, 1H), 2,90-2,78 (m, 3H), 2,67-2,55 (m, 3H), 2,39-2,31 (m, 3H), 2,01-1,95 (m, 1H), 1,82-1,79 (m, 1H), 1,32 (s, 3H)	495,3	4,57
CI NO	(CDCl ₃ , 400 MHz), δ 7,92, 7,82 (s, 1H), 7,42 (s, 1H), 7,22 (dd, J = 8,4 Hz y 1,2 Hz, 1H), 7,10 (d, J = 8,8 Hz, 1H), 5,31, 5,19 (s, 1H), 4,52, 4,32 (d, J = 10,8 Hz, 1H), 4,20-4,12 (m, 2H), 3,19-3,12 (m, 1H), 2,81-2,62 (m, 2H), 1,81 (d, J = 6,8 Hz, 2H), 1,48-22 (m, 12H), 0,88 (s, 3H)	363,5	6,34
Br N N N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (CD_3OD, 400 MHz), \delta 7,63 (s, 1H),\\ 7,50 (d, J=8,0 Hz, 2H), 7,40 (d, J=8,0 Hz, 2H), 7,20 (s, 2H), 6,49 (a, 1H), 4,30\text{-}4,20 (m, 3H), 3,89 (s, 2H), 3,45 (a, 2H), 3,20\text{-}3,10 (m, 1H), 3,03\text{-}3,01 (m, 9H), 2,91\text{-}2,80 (m, 2H), 1,32 (s, 3H) \end{array} $	527,1	3,16
CI N O O O O O O O O O O O O O O O O O O	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta\;8,27\;(\text{s},2\text{H}),\\ 7,52\;(\text{d},J=2\;\text{Hz},1\text{H}),7,27\;(\text{d},J=8,8\;\text{Hz},1\text{H}),\\ 7,10\;(\text{dd},J=8,8\;\text{Hz}9,2\text{Hz},1\text{H}),\\ 7,05\;(\text{d},J=8,8\;\text{Hz}2\text{H}),6,95\;(\text{d},J=9,2\;\text{Hz},2\text{H}),6,92\;(\text{s},1\text{H}),6,58\text{-}6,38\;(\text{m},1\text{H}),4,52\;(\text{a},1\text{H}),3,80\;(\text{s},1\text{H}),\\ 3,79\;(\text{s},3\text{H}),3,31\text{-}3,30\;(\text{m},1\text{H}),2,95\;(\text{s},3\text{H}),2,92\text{-}2,88\;(\text{m},1\text{H}) \end{array} $	464,2	5,86
CI N O N O N O N O N O N O N O N O N O N	(CD ₃ OD, 400 MHz), δ 8,49, 8,29 (d, J = 4,4 Hz, 2,8 Hz, 1H), 7,82, 7,70 (t, J = 2,0 Hz, 1H), 7,46 (s, 1H), 7,38-7,23 (m, 5H), 7,15 (d, J = 7,6 Hz, 1H), 7,07 (d, J = 8,4 Hz, 1H), 6,98 (d, J = 6,8 Hz, 1H), 6,46 (a, 1H), 4,35-4,21 (m, 3H), 3,88 (t, J = 7,0 Hz, 1H), 3,71-3,67 (m, 1H), 3,20-3,11 (m, 3H), 3,01-2,80 (m, 4H), 1,32 (s, 3H)	517,6	5,03

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N-ON- N-ON- 520	$\begin{array}{c} (\text{DMSO, } 400 \text{ MHz}), \delta 11,15 (\text{s, } 1\text{H}), \\ 7,51 (\text{d, } J=2,0 \text{Hz, } 1\text{H}), 7,42 (\text{t, } J=7,6 \text{Hz, } 1\text{H}), 7,35 (\text{d, } J=7,6 \text{Hz, } 1\text{H}), \\ 7,30 (\text{d, } J=8,8 \text{Hz, } 2\text{H}), 7,16 (\text{s, } 1\text{H}), \\ 7,06 (\text{dd, } J=8,4 \text{Hz} \text{y} 2,0\text{HZ, } 1\text{H}), \\ 6,36 (\text{a, } 1\text{H}), 4,18\text{-}4,10 (\text{m, } 3\text{H}), 3,09\text{-}3,00 (\text{m, } 1\text{H}), 2,91\text{-}2,64 (\text{m, } 8\text{H}), 1,21 (\text{t, } J=6,6 \text{Hz, } 3\text{H}) \end{array}$	426,2	4,29
CI NO	$ \begin{array}{l} (CD_3OD,400\text{MHz}),\delta7,81(\text{d},\text{J}=8,4\text{Hz},2\text{H}),7,47(\text{d},\text{J}=1,6\text{Hz},1\text{H}),\\ 7,39(\text{d},\text{J}=8,4\text{Hz},2\text{H}),7,24(\text{d},\text{J}=8,4\text{Hz},1\text{H}),7,07(\text{dd},\text{J}=8,4\text{Hz}\text{y}\\ 2,0\text{Hz},1\text{H}),6,50(\text{a},1\text{H}),4,35\text{-}4,29(\text{m},3\text{H}),3,70\text{-}3,60(\text{m},1\text{H}),3,51\text{-}3,47(\text{m},2\text{H}),3,37\text{-}3,29(\text{m},1\text{H}),3,19\text{-}3,11(\text{m},2\text{H}),2,92(\text{s},3\text{H}),2,88\text{-}2,78(\text{m},2\text{H}),2,51\text{-}2,41(\text{m},1\text{H}),2,29\text{-}2,20(\text{m},1\text{H}),2,17\text{-}2,00(\text{m},2\text{H}),1,89\text{-}1,78(\text{m},2\text{H}),1,32(\text{s},3\text{H}) \end{array} $	509,4	4,99
CI N H	$ \begin{array}{c} (\text{CDCI}_3,\!400\;\text{MHz}),\delta7,\!91,7,\!72\;(\text{s},\\ 1\text{H}),7,\!50\text{-}7,\!43\;(\text{s},1\text{H}),7,\!22\text{-}7,\!06\;(\text{m},\\ 6\text{H}),5,\!28\text{-}5,\!19\;(\text{m},1\text{H}),4,\!64\text{-}4,\!45\;(\text{m},\\ 1\text{H}),4,\!20\;(\text{a},2\text{H}),3,\!27\text{-}3,\!10\;(\text{m},2\text{H}),\\ 2,\!91\text{-}2,\!72\;(\text{m},2\text{H}),2,\!70\text{-}2,\!66\;(\text{m},1\text{H}),\\ 2,\!49\text{-}2,\!28\;(\text{m},2\text{H}),1,\!38\text{-}1,\!24\;(\text{m},9\text{H}),\\ 1,\!01,0,\!96\;(\text{d},J=6,\!8\;\text{Hz},3\text{H}) \end{array} $	439,0	6,11
CI N-O N-H	$\begin{array}{c} (\text{DMSO, } 400 \text{ MHz}), \delta 11,10 (\text{s, } 1\text{H}), \\ 8,42 (\text{s, } 1\text{H}), 7,75 (\text{d, } J=7,2 \text{Hz, } 1\text{H}), \\ 7,67 (\text{s, } 1\text{H}), 7,51 (\text{d, } J=1,6 \text{Hz, } 1\text{H}), \\ 7,43 (\text{t, } J=7,2 \text{Hz, } 1\text{H}), 7,35 (\text{d, } J=8,0 \text{Hz, } 1\text{H}), \\ 7,06 (\text{dd, } J=8,8 \text{Hz y 2,4 Hz, } 1\text{H}), \\ 6,39 (\text{a, } 1\text{H}), 4,13\text{-}4,09 (\text{m, } 3\text{H}), 3,10\text{-}3,04 (\text{m, } 1\text{H}), 2,81\text{-}2,72 (\text{m, } 5\text{H}), 1,21 \\ & (\text{s, } 3\text{H}) \end{array}$	412,1	4,13
CI NO	(CD ₃ OD, 400 MHz), δ 7,53-7,46 (m, 4H), 7,29 (a, 1H), 7,25 (d, J = 8,8 Hz, 1H), 7,08 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 6,49 (a, 1H), 4,34- 4,23 (m, 3H), 3,53-3,42 (m, 2H), 3,18-3,12 (m, 5H), 2,91-2,74 (m, 3H), 1,32 (t, J = 7,2 Hz, 6H)	495,3	3,46

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
Br N O N N N N N N N N N N N N N N N N N	(CD ₃ OD, 400 MHz), δ 7,63 (s, 1H), 7,51 (d, J = 8,0 Hz, 2H), 7,41 (d, J = 8,4 Hz, 2H), 7,19 (d, J = 1,2 Hz, 2H), 6,46 (a, 1H), 4,31 (s, 2H), 4,23-4,20 (m, 3H), 3,62-3,50 (m, 4H), 3,19-3,11 (m, 1H), 2,92 (s, 6H), 2,87-2,81 (m, 2H), 2,76 (s, 3H), 1,31 (s, 3H)	513,2	4,43
CI N O N O N O N O N O N O N O N O N O N	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,\!47\;(\text{d},\text{J}=2\\ \text{Hz},1\text{H}),7,\!46\text{-}7,\!37\;(\text{m},4\text{H}),7,\!24\;(\text{d},\text{J}=8,8\;\text{Hz},1\text{H}),7,\!07\;(\text{d},\text{J}=8,8\;\text{Hz}\text{y}\\ 2,0\;\text{Hz},1\text{H}),6,\!49\;(\text{a},1\text{H}),4,\!75\;(\text{a},1\text{H}),4,\!35\text{-}4,\!21\;(\text{m},3\text{H}),3,\!85\;(\text{a},1\text{H}),3,\!64\;(\text{a},2\text{H}),3,\!45\text{-}3,\!37\;(\text{m},1\text{H}),3,\!19\text{-}3,\!12\;(\text{m},4\text{H}),2,\!91\text{-}2,\!80\;(\text{m},3\text{H}),2,\!28\text{-}2,\!00\;(\text{m},6\text{H}),2,\!12\text{-}2,\!05\;(\text{m},2\text{H}),1,\!61\;(\text{a},2\text{H}),1,\!32\;(\text{s},3\text{H}) \end{array} $	535,3	4,94
CI N O N O T O T O T O T O T O T O T O T O	(CDCl ₃ , 400 MHz), δ 7,89-7,69 (m, 1H), 7,43 (a, 1H), 7,33-7,30 (m, 2H), 7,20-7,06 (m, 4H), 5,29-5,19 (m, 1H), 4,64-4,45 (m, 1H), 4,20 (a, 2H), 3,27-3,10 (m, 2H), 2,91-2,72 (m, 2H), 2,70-2,66 (m, 1H), 2,50 (a, 2H), 2,29 (a, 1H), 1,32-1,31 (m, 12H), 1,02, 0,90 (d, J = 6,8 Hz, 3H)	453,0	6,30
CI NO	(CD ₃ OD, 400 MHz), δ 7,52-7,45 (m, 4H), 7,31 (a, 1H), 7,25 (d, J = 8,4 Hz, 1H), 7,08 (dd, J = 8,4 Hz y 2,0 Hz, 1H), 6,48 (a, 1H), 4,34-4,23 (m, 3H), 3,45 (a, 3H), 3,23-3,13 (m, 4H), 2,92-2,80 (m, 5H), 1,32 (s, 3H)	481,3	3,43
CI	(CD ₃ OD, 400 MHz) δ 7,48 (d, J = 1,6 Hz, 1H), 7,43 (d, J = 8,4 Hz, 2H), 7,40 (d, J = 8,4 Hz, 2H), 7,24 (d, J = 8,4 Hz, 1H), 7,07 (dd, J = 8,4 Hz y 2,0 Hz, 1H), 6,50 (a, 1H), 4,35-4,29 (m, 3H), 3,90 (a, 1H), 3,52-3,47 (m, 3H), 3,20-3,16 (m, 2H), 3,01 (t, J = 12,0 Hz, 2H), 2,91-2,79 (m, 3H), 2,20 (a, 1H), 2,00-1,97 (m, 3H), 1,82-1,71 (m, 6H), 1,56-1,48 (m, 1H), 1,32 (a, 3H)	549,6	5,21

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N-H Sal de HCI 532	(DMSO, 400 MHz), δ 11,39 (s, 1H), 9,80 (a, 1H), 9,40 (a, 1H), 7,52 (d, J = 1,6 Hz, 1H), 7,25-7,19 (m, 1H), 7,00 (dd, J = 8,8 Hz y 2 Hz, 1H), 4,76 (d, J = 5,6 Hz, 1H), 3,61-3,53 (m, 1H), 3,25-3,20 (m, 1H), 2,94-2,92 (m, 2H), 2,13-1,97 (m, 1H), 1,35,1,24 (d, J = 6,8 Hz, 3H)	325,3	4,75
CI N-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta8,99\;(\text{s},1\text{H}),\\ 7,80\;(\text{d},J=8,0\;\text{Hz},2\text{H}),7,71\;(\text{d},J=1,2\;\text{Hz},1\text{H}),7,57\;(\text{s},1\text{H}),7,47\;(\text{d},J=1,6\;\text{Hz},1\text{H}),7,39\;(\text{d},J=8,0\;\text{Hz},2\text{H}),\\ 7,24\;(\text{d},J=8,4\;\text{Hz},1\text{H}),7,07\;(\text{d},J=8,0\;\text{Hz},1\text{H}),6,51\;(\text{a},1\text{H}),4,32\;(\text{t},J=4,8\;\text{Hz},3\text{H}),4,23\text{-4},21\;(\text{m},2\text{H}),3,43\;(\text{t},J=6,4\;\text{Hz},2\text{H}),3,20\text{-3},11\;(\text{m},1\text{H}),\\ 2,91\text{-2},78\;(\text{m},2\text{H}),2,23\text{-2},17\;(\text{m},2\text{H}),\\ 1,32\;(\text{a},3\text{H}) \end{array} $	506,2	4,96
CI NO H NO H NO 534	$ \begin{array}{l} (CD_3OD,400\text{ MHz}),\delta7,79\;(d,J=8,4\\ Hz,2H),7,48\;(s,1H),7,38\;(d,J=8,0\\ Hz,2H),7,25\;(d,J=8,8Hz,1H),\\ 7,07\;(dd,J=8,4Hzy2,0Hz,1H),\\ 6,51\;(a,1H),4,35-4,21\;(m,3H),3,67\\ (t,J=4,6Hz,4H),3,41\;(c,J=4,8\\ Hz,2H),3,20-3,11\;(m,1H),2,91-2,79\\ (m,2H),2,62\;(s,1H),2,46-2,42\;(m,5H),1,83-1,79\;(m,2H),1,32\;(s,3H) \end{array} $	525,2	4,76
Br N O N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (CD_3OD,400\text{MHz}),\delta7,62(s,1H),\\ 7,49(d,J=8,0\text{Hz},2H),7,39(d,J=8,4\text{Hz},2H),7,19(s,2H),6,48(s,1H),4,27-4,18(m,5H),3,87(t,J=4,6\text{Hz},4H),3,47(t,J=6,8\text{Hz},2H),\\ 3,34-3,30(m,2H),3,16-3,12(m,5H),\\ 2,89-2,75(m,2H),1,30(s,3H) \end{array} $	541,2	3,51
Br O N N N S41	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,\!60\;(\text{s},1\text{H}),\\ 7,\!51\;(\text{d},\text{J}=8,\!0\;\text{Hz},2\text{H}),7,\!40\;(\text{d},\text{J}=8,\!0\;\text{Hz},2\text{H}),7,\!21\text{-}7,\!16\;(\text{m},2\text{H}),6,\!46\\ (\text{a},1\text{H}),4,\!41\;(\text{s},2\text{H}),4,\!28\text{-}4,\!19\;(\text{m},3\text{H}),3,\!79\text{-}3,\!74\;(\text{m},4\text{H}),3,\!51\text{-}3,\!49\;(\text{m},4\text{H}),3,\!19\text{-}3,\!11\;(\text{m},1\text{H}),2,\!95\;(\text{s},3\text{H}),2,\!88\text{-}2,\!75\;(\text{m},2\text{H}),2,\!30\;(\text{s},2\text{H}),1,\!30\\ (\text{s},3\text{H}) \end{array} $	525,2	4,42

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI NO H N N N H 542	$ \begin{array}{c} (\text{CD}_3\text{OD, 400 MHz}), \ \delta \ 7.84 \ (\text{d, J} = 8.0 \\ \text{Hz, 2H), 7.47 \ (\text{d, J} = 2.0 \text{ Hz, 1H}),} \\ 7.37 \ (\text{d, J} = 8.4 \text{ Hz, 2H}), 7.24 \ (\text{d, J} = 8.4 \text{ Hz, 1H}), 7.06 \ (\text{dd, J} = 8.4 \text{ Hz y}) \\ 2.0 \ \text{Hz, 1H}), 6.49 \ (\text{a, 1H}), 4.35-4.16 \\ (\text{m, 3H}), 3.21-3.10 \ (\text{m, 1H}), 2.90-2.71 \\ (\text{m, 2H}), 1.32 \ (\text{a, 3H}) \end{array} $	398,1	3,95
CI N O O O O O O O O O O O O O O O O O O	(CDCl ₃ , 400 MHz), δ 7,92-7,77 (m, 1H), 7,42-7,39 (m, 8H), 7,26-7,21 (m, 1H), 7,10 (d, J = 8,4 Hz, 1H), 5,16-4,97 (m, 1H), 4,56-4,36 (m, 1H), 4,19-4,11 (m, 2H), 3,27-3,19 (m, 1H), 2,78-2,63 (m, 2H), 1,90 (d, J = 5,6 Hz, 1H), 1,74 (a, 1H), 1,49-1,26 (m, 4H), 1,10-0,91 (m, 6H)	335,2	5,45
CI NO H N O H 5552	(CD ₃ OD, 400 MHz), δ 7,82 (s, 1H), 7,80 (s, 1H), 7,55-7,48 (m, 3H), 7,23 (d, J = 8,4 Hz, 1H), 7,07 (dd, J = 8,4 Hz y 2,0 Hz, 1H), 6,49 (a, 1H), 4,33-4,21 (m, 3H), 4,05 (a, 2H), 3,5-3,73 (m, 4H), 3,61 (a, 2H), 3,37 (t, J = 5,8 Hz, 2H), 3,25-3,17 (m, 3H), 2,92-2,80 (m, 2H), 1,32 (s, 3H)	511,3	3,56
CI N O O O O O O O O O O O O O O O O O O	(CDCl ₃ , 400 MHz), δ 8,01, 7,91 (s, 1H), 7,43 (s, 1H), 7,23 (d, J = 8,4 Hz, 1H), 7,11 (d, J = 7,2 Hz, 1H), 6,71 (d, J = 7,6 Hz, 1H), 6,63 (s, 1H), 6,57 (d, J = 7,6 Hz, 1H), 5,92 (s, 2H), 5,18-5,07 (m, 1H), 4,63-4,41 (m, 1H), 4,30-4,11 (m, 2H), 3,36-3,31 (m, 1H), 2,91-2,83 (m, 2H), 2,70-2,61 (m, 1H), 2,38-2,15 (m, 2H), 1,38-1,30 (m, 3H), 1,09-1,01 (m, 3H)	440,9	5,75
CI NO H NO H NO O O O O O O O O O O O O O	$\begin{array}{c} (\text{CD}_3\text{OD},400\text{MHz}),\delta7,76(\text{s},1\text{H}),\\ 7,75(\text{s},1\text{H}),7,52\text{-}7,43(\text{m},2\text{H}),7,23\\ (\text{d},\text{J}=8,4\text{Hz},1\text{H}),7,06(\text{d},\text{J}=7,6\text{Hz},1\text{H}),6,47(\text{a},1\text{H}),4,30\text{-}4,21(\text{m},3\text{H}),3,52(\text{s},4\text{H}),3,33(\text{s},3\text{H}),3,26\text{-}3,18(\text{m},1\text{H}),2,91\text{-}2,80(\text{m},2\text{H}),1,32(\text{s},3\text{H})} \end{array}$	456,1	4,21

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI N N N N N N N N N N N N N N N N N N N	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,\!48\;(\text{s},1\text{H}),\\ 7,\!46\;(\text{d},\text{J}=8,\!8\;\text{Hz},2\text{H}),7,\!40\;(\text{d},\text{J}=7,\!6\;\text{Hz},2\text{H}),7,\!24\;(\text{d},\text{J}=8,\!4\;\text{Hz},1\text{H}),\\ 7,\!07\;(\text{d},\text{J}=8,\!0\;\text{Hz},1\text{H}),6,\!49\;(\text{a},1\text{H}),\\ 4,\!35\text{-}4,\!21\;(\text{m},3\text{H}),3,\!64\text{-}3,\!61\;(\text{m},2\text{H}),\\ 3,\!20\text{-}3,\!11\;(\text{m},3\text{H}),3,\!01\;(\text{s},3\text{H}),2,\!93\\ (\text{s},5\text{H}),2,\!89\text{-}2,\!78\;(\text{m},3\text{H}),2,\!12\text{-}2,\!05\\ (\text{m},2\text{H}),1,\!32\;(\text{s},3\text{H}) \end{array} $	497,2	4,69
CI NOO H	(CDCl ₃ , 400 MHz), δ 8,17, 8,00 (s, 1H), 7,50 (s, 1H), 7,23-7,13 (m, 4H), 6,97, 6,92 (s, 1H), 6,80 (d, J = 8,4 Hz, 2H), 4,43, 4,34 (t, J = 7,0 Hz, 1H), 4,04-3,98 (m, 1H), 3,77 (s, 3H), 3,47-3,41 (m, 1H), 3,25-2,81 (m, 2H), 2,23-2,06 (m, 2H), 1,02 (t, J = 6,2 Hz, 3H)	460,8	4,96
Br N N N N N N N N N N N N N N N N N N N	(DMSO, 300 MHz), δ 7,63 (s, 1H), 7,49 (d, J = 6,3 Hz, 2H), 7,42 (d, J = 6,0 Hz, 2H), 7,20 (s, 2H), 6,49 (s, 1H), 4,32-4,21 (m, 3H), 3,85 (a, 4H), 3,39-3,30 (m, 3H), 3,26-3,15 (m, 5H), 2,92-2,73 (m, 9H), 2,26-2,20 (m, 2H), 1,31 (s, 3H)	596,3	4,45
CI	$ \begin{array}{c} (\text{CD}_3\text{OD},400\;\text{MHz}),\delta7,52\;(\text{d},\text{J}=8,4\\ \text{Hz},2\text{H}),7,47\;(\text{s},1\text{H}),7,39\text{-}7,36\;(\text{m},2\text{H}),7,24\;(\text{d},\text{J}=8,8\;\text{Hz},1\text{H}),7,06\\ (\text{dd},\text{J}=8,4\;\text{Hz}\text{y}1,6\;\text{Hz},1\text{H}),6,49\;(\text{a},1\text{H}),4,45\text{-}4,23\;(\text{m},4\text{H}),3,84\text{-}3,45\;(\text{m},4\text{H}),3,20\text{-}3,12\;(\text{m},1\text{H}),2,91\text{-}2,78\;(\text{m},2\text{H}),2,25\text{-}2,10\;(\text{m},1\text{H}),1,98\text{-}1,89\;(\text{m},4\text{H}),1,32\;(\text{s},3\text{H}) \end{array} $	509,2	5,18
CI N O N O O O O O O O O O O O O O O O O	(CD ₃ OD, 400 MHz), δ 7,52-7,45 (m, 4H), 7,32 (a, 1H), 7,25 (d, J = 8,4 Hz, 1H), 7,08 (dd, J = 8,4 Hz y 1,6 Hz, 1H), 6,49 (a, 1H), 4,34-4,23 (m, 4H), 3,69 (s, 3H), 3,31-3,30 (m, 8H), 3,21-3,12 (m, 3H), 2,91-2,74 (m, 2H), 1,32 (s, 3H)	525,3	3,52

Compuesto	RMN	Espectro de Masas (LCMS)	Tiempo de Retención (min)
CI NO	$ \begin{array}{c} (CD_3OD,400\;MHz),\delta7,517,48\;(m,\\ 3H),7,40\;(d,J=8,0\;Hz,2H),7,24\;(d,\\ J=8,8\;Hz,1H),7,07\;(dd,J=8,4\;Hz\\ y1,2\;Hz,1H),6,49\;(a,1H),4,354,21\\ (m,3H),3,89\;(a,2H),3,45\;(a,2H),\\ 3,193,10\;(m,1H),3,053,01\;(m,9H),\\ 2,912,78\;(m,2H),1,32\;(a,3H) \end{array} $	483,1	4,96
CI N-H 565	(CD ₃ OD, 400 MHz), δ 7,47 (d, J = 1,6 Hz, 1H), 7,35 (d, J = 8,4 Hz, 1H), 7,12 (dd, J = 8,4 Hz y J = 2,0 Hz, 1H), 4,87 (s, 1H), 3,75-3,72 (m, 1H), 3,50-3,47 (m, 1H), 3,09-3,03 (m, 2H), 2,22 (dd, J = 15,6 Hz y J = 2,4 Hz, 1H), 1,84 (dd, J = 15,6 Hz y 8,4 Hz, 1H), 1,17 (s, 9H)	276,9	4,00
CI NO	$ \begin{array}{l} (\text{CD}_3\text{OD, 400 MHz}), \ \delta \ 7,48 \ (\text{d, J} = 1,6 \\ \text{Hz, 1H), 7,41-7,32} \ (\text{m, 3H), 7,23} \ (\text{d, J} = 8,4 \ \text{Hz, 2H}), 7,07 \ (\text{dd, J} = 8,4 \ \text{Hz y} \\ 2,0 \ \text{Hz, 1H}), 6,46 \ (\text{a, 1H}), 4,32-4,17 \\ (\text{m, 3H}), 3,80 \ (\text{s, 2H}), 3,67 \ (\text{t, J} = 5,0 \\ \text{Hz, 2H}), 3,39 \ (\text{s, 3H}), 3,30-15 \ (\text{m, 6H}), 2,88-2,83 \ (\text{m, 6H}), 1,32 \ (\text{s, 3H}) \\ \end{array} $	511,4	4,71
CI N-H N-H S- Sal de HCI 568	(DMSO, 400 MHz), 611,39 (d, J = 2,8 Hz, 1H), 9,75 (s, 1H), 9,34 (s, 1H), 7,53 (s, 1H), 7,36 (dd, J = 8,4 Hz y 4,0 Hz, 1H), 7,10 (dd, J = 8,8 Hz y 2,0 Hz, 1H), 4,82-4,71 (m, 1H), 3,62-3,56 (m, 1H), 3,14 (a, 1H), 3,00-2,83 (m, 2H), 2,35-2,23 (m, 1H), 2,18-1,82 (m, 4H), 1,34(c, J = 6,4 Hz, 3H)	295,0	4,14

Ejemplo 2: Ensayo para evaluar el efecto sobre la expresión de VEGF endógeno inducido por hipoxia.

10

15

La capacidad de los compuestos de la presente invención para modular la expresión de VEGF endógeno inducido por hipoxia se puede analizar como se muestra a continuación. Los niveles de proteína VEGF se pueden monitorizar mediante un ensayo ELISA (R&D Systems). En resumen, se pueden cultivar células HeLa durante 24-48 horas en condiciones de hipoxia (1% de O₂, 5% de CO₂, equilibrado con nitrógeno) en presencia o ausencia de un compuesto de la presente invención. El medio acondicionado se puede ensayar a continuación por ELISA, y calcular la concentración de VEGF a partir de la curva estándar ELISA de cada ensayo.

Se puede llevar a cabo un análisis de respuesta a dosis usando el ensayo ELISA y las condiciones descritas anteriormente. Las condiciones para el ELISA de respuesta a dosis son análogas a las descritas anteriormente. Se puede analizar, por ejemplo, una serie de siete concentraciones diferentes. En paralelo, se puede llevar a cabo un ensayo de citotoxicidad de respuesta a dosis usando Cell Titer Glo (Promega) en las mismas condiciones que el ELISA para asegurar que la inhibición de la expresión de VEGF no se debe a la citotoxicidad. Se pueden representar las curvas de respuesta a dosis usando el porcentaje de inhibición frente a la concentración del Compuesto, y se pueden generar para cada Compuesto los valores de CE₅₀ y CC₅₀ con la inhibición máxima ajustada como 100% y la inhibición mínima como 0%. Los compuestos preferentes de la presente invención tendrán un valor de CE₅₀ inferior a

50, preferentemente inferior a 10, más preferentemente inferior a 2, incluso más preferentemente inferior a la 0,5, e incluso más preferentemente inferior a 0,01.

La Figura 1 muestra la capacidad de un Compuesto típico de la presente invención, el Compuesto Nº 7, para inhibir la producción de VEGF endógeno en células tumorales en condiciones de hipoxia. El valor de CE_{50} de ELISA es de 0,0025 μ M, mientras que su CC_{50} (50% de citotoxicidad) es superior a 0,2 μ M. En la **Tabla 5** se proporcionan los valores de CE_{50} para una serie de compuestos preferentes de la presente invención.

5

Tabla 5

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
1	391,20	3,67	***
2	385,28	4,01	****
3	479,18	4,35	****
4	435,23	4,28	****
5	391,28	4,05	****
6	425,28	4,07	****
7	443,28	4,61	****
# 8	415,26	4,25	****
9	431,25	4,07	****
# 10	467,15	4,51	****
11	389,24	4,24	****
12	414,31	3,94	****
13	411,24	4,89	****
14	397,22	4,57	****
15	457,3	4,24	****
16	435,19	4,47	****
17	447,14	4,44	****
18	431,14	4,55	****
19	437,26	4,54	****
20	389,24	4,22	****
21	391,28	4,04	****
22	425,28	4,11	****
23	373,23	4,04	****
24	411,24	4,8	****
25	449,23	4,03	****
26	437,15	4,52	****
27	399,25	4,11	****
28	399,19	4,2	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
29	435,09	4,14	****
30	413,22	4,42	****
31	423,17	4,32	****
32	467,25	4,26	****
33	457,15	4,29	****
34	383,19	4,42	****
35	425,28	4,14	****
36	383,2	4,37	****
37	423,3	4,24	****
38	355,24	4,07	****
39	391,28	4,12	****
40	403,15	4,45	****
41	449,11	4,59	****
42	383,19	4,44	****
43	371,31	3,89	****
44	479,18	4,35	****
45	394,16	4,09	****
46	421,19	4,22	****
47	449,07	4,54	****
48	403,32	4,2	****
49	403,15	4,51	****
50	405,18	3,81	****
51	373,23	4,11	****
52	355,3	4,07	***
53	375,26	3,92	****
54	435,23	4,3	****
55	425,27	4,26	****
56	414,14	4,19	****
57	399,19	4,2	****
58	469,22	4,32	****
59	444,12	4,12	****
60	433,17	4,27	****
61	419,28	4,04	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
62	409,14	4,22	****
63	435,09	4,16	****
64	435,12	4,27	****
65	387,2	3,95	****
66	414,17	4,24	****
67	429,3	4,47	****
68	359,19	3,89	****
69	449,08	4,55	****
70	375,25	4,19	****
71	394,16	4,12	****
72	403,15	4,49	****
73	381,09	3,59	****
# 74	400,15	4,05	****
75	387,22	4,29	****
76	449,26	4,3	***
77	391,28	4,19	****
78	435,12	4,24	****
79	437,19	4,49	***
80	437,2	3,84	****
81	375,03	3,57	****
82	391,28	4,05	****
83	425,28	4,16	****
84	359,22	3,95	****
85	437,15	4,44	****
86	399,19	4,22	****
87	403,15	4,44	****
88	399,19	4,17	****
89	434,07	4,04	****
90	387,23	4,26	****
91	369,27	4,17	****
92	377,29	4,04	****
93	435,23	4,29	****
94	369,17	4,24	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
95	449,06	4,51	****
96	341,27	3,89	****
97	387,19	4,2	****
98	405,18	3,79	****
99	469,22	4,29	****
100	461,32	4,61	****
101	369,17	4,26	****
102	413,28	4,02	***
103	407,1	4,05	***
104	375,27	4,11	****
105	387,21	4,19	****
106	373,18	4,04	***
107	385,28	4,02	****
108	359,16	3,92	***
109	369,34	4,16	***
110	374,24	3,07	****
111	386,19	3,89	****
112	369,27	2,63	***
113	399,13	4,01	***
114	389,3	4,05	***
115	435,13	4,14	***
116	407,16	4,09	***
117	419,28	4,05	***
118	366,29	3,79	***
119	521,19	4,16	***
120	380,31	3,92	****
121	403,32	4,27	****
122	383,31	4,37	***
123	319,2	2,19	***
124	351,14	2,53	***
125	409,3	4,14	***
126	423,3	3,95	***
127	371,31	3,9	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
128	371,31	3,62	***
129	449,13	3,81	***
130	401,23	3,56	***
131	385,22	3,74	***
132	363,06	2,31	***
133	385,15	3,86	***
134	377,3	4,04	***
135	397,15	2,42	***
136	443,33	4,11	***
137	361,07	2,53	***
138	345,07	3,15	***
139	400,27	4,01	***
140	488,23	4,36	***
141	425,21	4,37	***
142	462,15	4,11	***
143	369,23	3,74	***
144	415,33	3,84	***
145	361,3	4,39	***
146	400,21	3,81	***
147	438,21	3,97	***
148	469,01	4,42	***
149	425,25	4,24	***
150	504,2	4,68	***
151	397,01	2,44	***
152	369,21	3,59	***
153	372,21	2,36	***
154	377,29	3,97	***
155	363,11	2,32	***
156	341,21	2,46	***
157	407,14	1,78	***
158	428,11	3,85	***
159	351,13	2,47	***
160	450,15	3,95	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
161	363,05	2,32	***
162	325,26	2,66	***
163	319,2	2,24	***
164	462,19	3,87	***
165	371,31	3,65	***
166	354,28 (-Boc)	3,95	***
167	432,16	3,87	***
168	351,08	2,4	***
169	385,35	4,09	***
170	351,07	2,51	***
171	363,09	2,68	**
172	384,21	3,52	**
173	319,2	2,24	**
174	N/A	2,38	**
175	443,33	4,09	**
176	417,30	2,77	**
177	398,17	3,67	**
178	363,11	2,31	**
179	450,14	3,89	**
180	421,19	2,65	**
181	363,15	2,46	**
182	419,14	4,14	**
183	389,29	4,14	**
184	431,27	4,1	**
185	328,02	2,41	**
186	462,19	3,81	**
187	443,28	3,99	**
188	446,19	3,81	**
189	405,19	3,8	**
190	317,16	2,7	**
191	369,23	3,89	**
192	495,28	4,89	**
193	297,2	2,53	**

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
194	319,21	2,19	**
195	494,25	2,79	**
196	419,22	4,09	**
197	317,16	2,41	**
198	317,08	2,53	**
199	448,24	3,95	**
200	363,09	2,45	**
201	365,09	2,36	**
202	464,2	4,32	**
203	301,18	2,27	**
204	429,23	3,57	**
205	301,15	2,27	**
206	476,3	4,33	**
207	395,17	2,55	**
208	367,36	2,72	**
209	353,33	3,97	**
210	313,21	2,33	**
211	415,26	4,07	**
212	389,2	2,88	**
213	407,1	2,46	**
214	357,07	2,48	**
215	319,23	2,24	**
216	283,1	2,41	**
217	418,17	3,62	**
218	435,23	3,77	**
220	308,23	2,37	**
221	460,29	4,05	**
222	365,11	2,52	**
223	441,02	2,6	**
224	341,27	2,6	**
225	467,25	4,18	**
226	369,34	4,01	**
227	327,16	2,26	**

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
228	369,34	2,64	**
229	373,29	4,04	*
230	401,23	3,2	*
231	313,12	2,43	*
232	433,25	2,73	*
233	430,38 (-Boc)	4,34	*
234	351,17	2,4	*
235	351,25	3,79	*
236	379,35	2,74	*
237	439,11	4,41	*
238	479,24	3,77	*
239	328,16	2,35	*
240	307,27	3,87	*
241	523,19	3,7	*
242	438,27	4,14	*
243	323,20	3,49	*
244	512	2,27	*
245	485	2,62	*
246	498	2,54	*
247	471	2,36	*
248	283,23	2,24	*
249	339,17	3,07	*
250	355,30	3,57	*
251	297,26	2,26	*
252	341,21	2,44	*
253	301,27	2,29	*
254	301,25	2,27	*
255	281,31	2,2	*
256	345,2	2,26	*
257	335,21	2,34	*
258	459,27	3,72	*
259	479,24	3,52	*
260	287,26	2,36	*

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
261	287,26	2,56	*
262	380,24	3,92	*
263	503,50	3,20	*
264	369,36	2,52	*
265	355,26	2,54	*
266	355,26	2,42	*
267	370,22	3,61	*
268	355,26	2,42	*
269	355,27	2,37	*
270	370,23	3,19	*
271	369,34	2,62	*
272	374,31	2,90	*
273	492,25	2,76	*
274	451,30	3,17	*
275	374,31	2,61	*
276	374,31	2,72	*
277	349,28	1,5	*
278	457,28	4,11	*
279			****
280	407,10	3,92	*
281	508,15	4,74	*
282	507,08	4,42	*
283	422,32	3,86	*
284	373,29	4,01	*
285	385,24	2,25	•
286	297,2	2,52	*
287	289,22	2,48	*
288	461,26	2,57	*
289	380,29	3,82	*
290	396,27	3,60	*
291	299,17	2,43	*
292	385,18	2,6	*
293	413,22	3,8	*

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
294	340,25	2,27	*
295	404,34	3,84	*
296	299,17	2,23	*
297	326,24	2,4	*
298	235,13	2,18	*
299	351,16	2,62	*
300	401	2,57	*
301	313,21	2,35	*
302	398,28	3,74	*
303	355,22	2,58	*
304	440,32	4,09	*
305	341,08	2,48	*
306	364,3	3,65	*
307	350,32	3,35	*
308	432,27	3,92	*
309	474,26	3,02	***
310	289,03	2,35	*
311	345,19	2,58	*
312	420,28	4,12	*
313	279,28	2,18	*
314	293,24	2,20	*
315	297,26	2,17	*
316	472,26	3,85	*
317	428,25	3,95	*
318	309	2,25	*
319	284,09	2,1	*
320	356,21	2,37	*
321	279,2	2,1	*
322	279,2	1,76	*
323	309,23	1,82	*
324	280,19	1,76	*
325	279,2	1,76	*
326	263,17	1,93	*

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
327	343,18	2,33	*
328	~ 0,005	4,16	*
329	0,0036	4,26	*
330	0,0047	4,24	*
331	~ 0,010	2,94	*
# 332	~ 0,010	4	*
333	410,27	3,64	**
334	426,24	3,39	*
335	466,23	4,64	***
336	438,31	4,31	**
337	454,24	4,63	***
338	474,32	4,33	**
339	412,3	3,83	*
340	446,33	4,49	*
341	447,26	4,25	***
342	371,31	3,88	***
343	371,31	3,61	*
344	459,31	4,91	****
345	383,35	4,44	****
346	587	4,04	****
347	451,16	3,93	****
348	479,28	4,13	****
349	481,21	3,74	***
350	462,17	3,66	****
351	471,17	3,93	****
352	403,29	3,98	***
353	497,16	3,94	****
354	525,2	4,19	****
355	511,21	3,81	****
356	490,3	3,93	**
357	534,23	3,93	***
358	433,2	3,45	***
359	511,25	3,64	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
360	516	3,82	***
361	474,26	3,02	***
362	427	4,2	****
363	412,4	1,80	*
364	484,3	2,49	****
365	457,3	4,06	***
366	553,3	4,42	*
367	402,8	4,37	***
368	430,9	4,79	**
369	427,0	4,06	**
370	427,0	3,99	****
371	469,0	5,27	***
372	486,9	4,96	*
373	470,8	5,01	***
374	436,9	4,66	***
375	461	4,92	**
376	385	3,79	**
377			*
378			*
379			*
380			*
381			*
382			*
383	417,2	4,93	****
384	403,22	4,65	****
385	509,51	2,57	***
386	465,26	2,52	****
387	465,26	2,52	****
388	495,4	3,94	****
389	538,3	4,29	****
390	480,5	3,23	****
391	562,55	3,63	****
392	443,4	3,88	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
393	447,1	6,55	****
394	450,1	5,48	****
395	481,32	3,51	****
396	411,3	3,99	****
397	535,3	4,29	****
398	481,3	4,23	****
399	429,3	3,81	****
400	493,3	4,43	****
401	451,3	3,99	****
402	494,4	3,71	****
403	479,3	4,23	****
404	473,6	3,78	****
405	551,17	4,58	****
406	425,4	4,13	****
407	457,4	4,04	****
408	425,4	4,09	****
409	477,4	4,18	****
410	451,3	3,99	****
411	443,4	3,86	****
412	473,4	4,23	****
413	459,3	4,16	****
414	439,4	4,31	****
415	637,64	2,82	****
416	311,1	4,39	****
417	562,47	4,15	****
418	511,3	4,13	****
419	491,4	3,98	****
420	486,6	3,45	****
421	553,30	4,05	****
422	359,29	4,17	****
423	447,4	3,56	****
424	594,2 [M-H]	4,58	****
425	539,2	3,11	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
426	535,27	4,29	****
427	554,3	4,45	****
428	563,55	4,64	****
429	564,42	2,77	****
430	431,3	3,41	****
431	522,2	5,05	****
432	489,4	4,14	****
433	578,44	2,82	****
434	467,18	4,11	****
435	444,3	3,95	****
436	477,4	3,93	****
437	543,4	3,92	****
438	500,1	4,35	****
439	361,2	5,95	****
440	536,43	3,95	****
441	482,1	5,11	***
442	367,1	2,92	***
443	436,2	5,25	***
444	455,28	3,73	***
445	478	3,67	***
446	383,3	4,10	***
447	464,9	5,11	***
448	501,27	3,65	***
449	482,24	2,62	***
450	587	4,04	***
451	644,3 [M-H]	4,80	***
452	439,3	3,56	***
453	553,1	6,13	***
454	579,3	2,75	***
455	583	3,84	***
456	474,3	2,44	***
457	455	3,4	***
458	456,3	2,51	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA $CE_{50} \mu M$
459	470,3	2,61	***
460	509,30	4,16	***
461	454,3	5,98	***
462	580,56	2,85	***
463	495,44	4,13	***
464	493,0	5,71	***
465	507,4	3,98	***
466	555,2	3,14	***
467	524,2	4,02	***
468	582,2	2,81	***
469	525,2	5,07	***
470	554,3	3,90	***
471	620,18	3,85	***
472	335,3	5,52	***
473	495,3	4,68	***
474	511,2	4,99	***
475	483	3,87	***
476	400	3,45	***
477	249,1	3,67	***
478	525,1	3,25	***
479	538,3	2,76	***
480	456,1	4,26	***
481	549,3	5,29	***
482	522,3	3,95	***
483	470,1	4,46	***
484	539,2	3,02	***
485	398,9	4,18	***
486	349,1	6,03	***
487	505	3,66	***
488	555,2	3,34	***
489	538,3	4,15	***
490	486,1	3,80	***
491	537,31	2,64	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
492	468	5,52	***
493	504,3	2,68	***
494	482,2	5,74	***
495	403,3	4,16	***
496	430,2	3,65	***
497	281,0	3,84	***
498	481,4	4,81	***
499	423,3	5,15	***
500	506,29	3,85	***
501	534,3	2,68	***
502	518,3	2,76	***
503	508,2	5,72	***
504	359,1	5,65	***
505	442,0	4,06	***
506	386,3	5,32	***
507	450	3,19	***
508	397,1	5,97	***
509	511,4	5,05	***
510	321,4	5,19	***
511	383,1	5,75	***
512	523,1	5,69	***
513	361,1	5,12	***
514	495,3	4,67	***
515	363,5	6,34	**
516	527,1	3,16	**
517	464,2	5,86	**
518	517,6	5,03	**
519	527,2	3,88	**
520	426,2	4,29	**
521	509,4	4,99	**
522	383,3	4,10	**
523	439,0	6,11	**
524	412,1	4,13	**

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
525	4,95,3	3,46	**
526	513,2	4,43	**
527	535,3	4,94	**
528	453,0	6,30	**
529	481,3	3,43	**
530	466,28	3,21	**
531	549,6	5,21	**
532	325,3	4,75	**
533	506,2	4,96	**
534	525,2	4,76	**
535	541,2	3,51	**
536	482,29	3,29	**
537	476,3	2,51	**
538	516,37	3,49	**
539	337,3 [M-H]	2,14	**
540	428,28	3,43	**
541	525,2	4,42	**
542	398,1	3,95	**
543	466,34	3,29	**
544	723,58	3,92	****
545	466,31	3,28	**
546	426,3	2,26	**
547	335,2	5,45	**
548	516,37	3,46	**
549	414	2,89	**
550	496	4,58	**
551	544,5	2,78	**
552	511,3	3,56	**
553	440,9	5,75	**
554	482,32	3,41	**
555	372	2,89	**
556	456,1	4,21	**
557	538,4	3,71	**

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
558	497,2	4,69	**
559	460,8	4,96	**
560	596,3	4,45	*
561	509,2	5,18	*
562	525,3	3,52	*
563	483,1	4,96	*
564	432	2,18	*
565	276,9	4,00	*
566	384,4	1,73	*
567	511,4	4,71	*
568	295,0	4,14	*
569	480,21	3,50	****
570	549,22	4,59	****
571	497,13	3,50	**
572	525,29	4,14	****
573	341,34	2,14	****
574	427,37	2,23	*
575	437,33	3,16	**
576	575,43	3,71	***
577	453,28	3,34	***
578	610,45	3,94	***
579	481,32	3,51	****
580	495,29	3,64	****
581	465,43	3,64	*
582	516,34	3,31	*
583	512,26	3,39	***
584	466,37	3,34	***
585	516,33	3,46	***
586	387,27	2,13	****
587	467,29	3,66	***
588	455,26	3,69	***
589	471,3	3,83	***
590	495,31	3,64	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
591	541,35	3,73	****
592	523,42	3,58	****
593	541,38	3,69	***
594	505,38	3,83	***
595	431,21	4,01	***
596	431,24	3,99	****
597	445,24	4,19	****
598	459,24	4,36	****
599	513,17	4,19	***
600	479,23	3,99	****
601	504,21	3,79	***
602	493,2	4,18	***
603	513,16	4,19	***
604	446,18	2,86	*
605	503,23	3,84	****
606	461,19	3,46	***
607	442,25	3,46	***
608	489,2	3,72	***
609	433,27	3,98	**
610			***
611			**
612	491,23	3,56	***
613	513,14	4,18	***
614	463	3,88	**
615	381	3,48	***
616	540	4,17	**
617	621,57	4,13	***
618	493,6	2,63	****
619	521,6	2,80	****
620	445,5	3,23	***
621	459,5	3,40	****
622	459,5	3,38	****
623	473,5	3,57	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
624	479,5	3,28	****
625	507,6	3,53	****
626	493,6	3,48	****
627	511,6	3,53	****
628	527,4	3,62	***
629	527,5	3,72	****
630	573,5	3,75	****
631	507,6	3,65	****
632	538,6	3,53	****
633	443,5	3,32	****
634	457,6	3,30	****
635	523,6	3,47	***
636	463,6	3,12	****
637	621,62	2,77	****
638	580,56	2,80	****
639	496,54	3,28	****
640	552,64	2,48	****
641	445,55	4,13	****
642	381,49	3,97	****
643	397,47	3,95	****
644	395,45	3,78	****
645	521,15	4,17	****
646	531,11	4,58	***
647	505,18	4,7	****
648	437,19	4,15	***
649	477,21	4,1	****
650	487,18	4,3	***
651	548,3	2,53	***
652	419,23	4,15	***
653	449,24	4,12	***
654	433,26	4,3	****
655	453,19	4,33	****
656	444,17	4,02	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
657	464,22	4,08	****
658	461,6	4,30	****
659	489,7	4,78	****
660	543,7	4,92	****
661	459,5	3,63	****
662	471,5	3,87	****
663	491,6	3,63	****
664	507,6	3,80	****
665	485,6	3,85	***
666	485,6	3,83	****
667	486,6	3,95	****
668	503,6	3,58	****
669	521,6	3,88	****
670	521,6	4,02	****
671	501,6	4,13	****
672	501,6	4,10	****
673	539,6	4,02	
674	555,6	4,13	***
675	555,6	4,22	***
676	535,6	4,05	***
677	535,6	4,15	***
678	551,6	3,98	***
679	487,6	3,93	***
680	599,5	4,27	****
681	566,6	4,02	***
682	496,5	2,13	**
683	486,5	2,03	***
684	484,6	2,67	***
685	514,6	2,15	***
686	512,6	2,12	***
687	510,6	2,13	***
688	525,6	1,85	***
689	494,5	3,12	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
690	524,6	2,32	***
691	514,6	2,23	***
692	512,6	2,35	***
693	542,6	2,35	****
694	540,6	2,27	****
695	538,6	2,35	****
696	553,6	2,07	***
697	522,6	3,95	****
698	578,5	2,43	****
699	568,5	2,35	****
700	566,6	2,45	****
701	596,6	2,47	****
702	594,6	2,43	****
703	592,6	2,48	****
704	607,6	2,20	***
705	575,5	2,47	****
706	576,5	3,58	****
707	477,51	2,77	****
708	491,53	2,73	****
709	503,55	2,68	****
710	495,45	4,42	****
711	475,51	4,62	****
712	513,50	4,42	****
713	529,46	4,62	***
714	509,51	4,43	****
715	482,46	4,28	****
716	457,47	4,05	****
717	459,59	4,33	****
718	491,5	4,10	****
719	527,5	4,47	****
720	489,5	4,75	****
721	517,5	4,26	****
722	519,5	3,84	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
723	555,4	4,09 (no polar)	****
724	541,54	2,90	****
725	478,47	3,58	****
726	516,5	2,67	**
727	526,5	2,78	****
728	544,5	2,80	***
729	542,5	2,72	****
730	540,5	2,83	****
731	555,6	2,43	***
732	580,6	2,40	***
733	523,5	2,78	****
734	524,5	3,40	****
735	552,5	2,98	****
736	562,5	3,15	****
737	580,6	3,17	****
738	578,5	3,02	****
739	576,6	3,17	****
740	591,6	2,75	***
741	616,5	2,62	***
742	559,5	3,13	****
743	560,5	3,83	****
744	514,6	2,80	****
745	524,6	2,92	****
746	512,5	2,93	****
747	542,6	2,93	****
748	540,5	2,85	****
749	538,6	2,93	****
750	553,6	2,55	****
751	521,5	2,92	****
752	522,5	3,87	****
753	542,6	2,98	****
754	552,6		****
755	540,6	3,17	***

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
756	570,6	3,17	****
757	568,6	3,07	****
758	566,6	3,17	***
759	581,6	2,76	***
760	549,6	3,13	****
761	550,5	4,17	****
762	544,5	2,68	****
763	554,5	2,77	****
764	542,6	2,78	****
765	572,5	2,75	****
766	570,6	2,70	****
767	568,6	2,82	****
768	583,6	2,47	****
769	608,6	2,38	***
770	551,5	2,73	****
771	552,5	3,65	****
772	580,5	3,03	****
773	590,6	3,12	****
774	578,5	3,12	****
775	608,6	3,05	****
776	606,5	3,05	****
777	604,6	3,12	****
778	619,6	2,77	****
779	644,5	2,63	***
780	587,5	3,10	****
781	588,5	4,05	****
782	596,5	3,10	****
783	606,5	3,18	****
784	594,5	3,27	****
785	624,5	3,22	****
786	622,5	3,12	****
787	620,5	3,20	****
788	635,6	2,85	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
789	660,5	2,68	***
790	603,5	3,22	****
791	604,5	4,25	****
792	480,50	2,98	****
793	494,50	2,97	****
794	494,50	2,97	***
795	496,48	2,97	****
796	563,50	2,41	****
797	522,48	2,50	****
798	538,48	2,92	****
799	535,49	2,35	***
800	503,40	2,52	****
801	504,43	3,42	****
802	504,42	3,37	****
803	579,48	2,42	****
804	538,48	2,43	****
805	584,50	2,52	****
806	554,40	2,47	****
807	540,47	2,50	****
808	551,48	2,33	****
809	516,45	2,47	****
810	520,40	3,21	****
811	520,40	3,12	****
812	466,4	3,27	****
813	466,4	3,18	****
814	465,4	2,38	****
815	465,4	3,45	****
# 816	497,4	2,70	****
# 817	511,4	2,62	****
# 818	491,4	2,43	****
819	494,4	3,53	****
820	494,4	3,47	****
821	493,4	2,55	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
822	493,4	3,73	****
# 823	525,4	2,95	****
# 824	539,4	2,83	****
# 825	519,4	2,58	*
826	496,4	3,07	***
827	496,4	2,98	****
828	495,4	2,32	***
829	495,4	3,28	***
# 830	527,4	2,53	****
# 831	541,4	2,50	****
# 832	521,4	2,35	
833	532,4	3,50	***
834	532,4	3,42	****
835	531,4	2,57	***
836	531,4	3,67	****
# 837	563,4	2,93	****
# 838	577,4	2,82	****
839	548,3	3,63	****
840	548,3	3,58	****
# 841	579,3	3,08	****
# 842	593,3	2,95	****
# 843	573,4	2,75	****
844	451,91	3,58	***
845	648,48	4,45	***
846	526,45	2,57	***
847	568,37	3,40	****
848	585,30	3,57	****
849	604,37	3,52	****
850	540,39	2,60	***
851	495,06	4,37	****
852	539,08	4,17	****
853	549,09	4,38	****
854	523,17	4,73	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
855	455,19	4,15	****
856	495,18	4,10	****
857	505,16	4,30	****
858	566,3	2,57	****
859	437,22	4,15	****
860	467,2	4,13	****
861	451,12	4,10	***
862	471,17	4,32	****
863	514,55	4,38	****
864	462,28	4,00	***
865	482,13	4,08	***
866	447,37	4,04	****
867	577,43	2,85	***
868	477,14	4,37	****
869	504,53	3,62	****
870	493,55	2,80	****
871	489,54	2,72	****
872	493,55	2,80	****
873	503,54	2,73	****
874	479,2	2,74	****
875	425,52	4,27	****
876	492,52	3,57	****
877	489,54	2,72	****
878	508,55	3,82	****
879	507,55	2,90	****
880	459,49	4,24	****
881	471,45	4,22	****
882	542,51	3,87	****
883	494,50	3,67	****
884	544,27	2,79	****
885	490,54	3,54	****
886	494,57	3,68	****
887	521,62	2,93	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
888	558,54	3,70	****
889	545,55	2,93	****
890	490,49	3,48	****
891	528,49	3,69	****
892	546,50	3,75	****
893	461,49	4,36	****
894	580,47	2,72	****
895	491,51	2,77	****
896	576,49	4,00	****
897	504,51	3,52	****
898	457,53	4,25	****
899	481,37	4,17	****
900	541,55	3,00	****
901	575,54	2,98	****
902	471,49	4,12	****
903	621,39	2,72	****
904	596,54	2,85	****
905	542,54	3,78	****
906	489,53	4,82	****
907	514,47	3,54	****
908	582,43	2,79	****
909	514,21	2,75	****
910	539,45	3,97	****
911	527,54	2,88	****
912	530,53	2,67	****
913	626,6	2,88	****
914	514,55	2,60	****
915	509,56	4,63	****
916	626,40	2,82	****
917	561,46	2,95	****
918	642,56	2,85	****
919	543,45	4,82	****
920	557,57	2,87	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
921	527,39	4,52	****
922	561,53	2,85	****
923	612,51	2,92	****
924	498,20	2,71	****
925	596,54	2,88	****
926	5,62	3,85	****
927	540,65	4,25	****
928	510,52	3,10	****
929	506,46	2,95	****
930	500,48	2,83	****
931	467,39	4,17	****
932	548,49	3,17	****
933	596,37	2,79	****
934	561,53	2,95	****
935	496,54	3,37	****
936	582,6	2,83	****
937	555,61	2,55	****
938	582,53	2,85	****
939	560,63	2,68	****
940	541,43	2,45	****
941	562,55	3,63	****
942	623,35	2,73	****
943	499	2,72	****
944	525,56	4,36	****
945	509,43	4,73	****
946	566,53	2,77	****
947	510	2,44	****
948	482,47	2,88	****
949	524,55	3,22	****
950	506,46	2,87	****
951	544,53	3,27	****
952	530,53	3,12	****
953	552,46	2,90	****

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
954	403	4,11	****
955	397	3,9	****
956	484,55	2,42	****
957	495,52	2,62	****
958	542,36	3,84	****
959	496,24	2,81	****
960	639,57	2,70	****
961	593,52	2,64	****
962	516,59	2,65	****
963	593,61	2,72	****
964	598,55	2,83	****
965	544,53	3,15	****
966	564,45	3,32	****
967	491,57	4,00	****
968	512,51	2,73	****
969	492,46	2,90	****
970	609,54	2,72	****
971	468,46	2,78	****
972	496,47	3,02	****
973	578,47	3,80	****
974	528,34	3,79	***
975	431,5	3,10	***
976	564,46	3,23	***
977	568,53	2,85	***
978	578,45	3,30	***
979	470,55	2,45	***
980	527,61	2,50	***
981	560,51	3,12	***
982	425,60	3,78	***
983	375,37	2,27	***
984	5,06,19	3,97	**
985	407,31	1,82	*
986	531,56	2,17	*

Compuesto	LCMS [M+H]	Tiempo de Retención LCMS (min)	ELISA CE ₅₀ μM
987	497,1	4,4	****
988	605,62	2,52	****
989	564,61	2,55	****
990	610,62	2,67	****
991	580,58	2,60	***
992	566,61	2,60	***
993	577,61	2,45	****
994	545,54	2,57	****
995	546,57	3,53	****
996	578,46	3,71	****
# Isómero (S)	preparado y ensay	rado.	

En la que:

20

25

30

1 estrella, > 1 uM (1000 nM)

2 estrellas, 0,2 a 1 uM (200 nM a 1000 nM)

3 estrellas, 0,04 uM a 0,2 uM (40 nM a 200 nM)

5 4 estrellas, 0,008 uM a 0,04 uM (8 nM a 40 nM)

5 estrellas, < 0,008 uM (< 8 nM)

Ejemplo 3: Los Compuestos de la invención inhiben la expresión de VEGF y el crecimiento tumoral en un modelo PD de crecimiento tumoral *in vivo*.

Los compuestos de la presente invención también muestran actividad en el siguiente modelo farmacodinámico que evalúa los niveles intratumorales de VEGF. En resumen, se pueden implantar subcutáneamente células HT1080 (una línea celular de fibrosarcoma humano) en ratones desnudos. Después de siete días, se pueden administrar los Compuestos a los ratones oralmente con un rango de dosificación de, por ejemplo, 200 mg/kg/día, durante siete días. A continuación se extirpan los tumores de los ratones y se homogeneizan en tampón Tris-HCl que contiene inhibidores de proteinasa. Moulder y col, Cancer Res. 61(24):8887-95 (2001). Los niveles intratumorales de VEGF se miden posteriormente usando un kit ELISA de VEGF humano (R&D System). Las concentraciones de proteínas de los homogenatos se miden con un kit de ensayo de Proteínas de Bio-Rad y los niveles intratumorales de VEGF se normalizan a las concentraciones de proteína.

Los compuestos preferentes de la presente invención, cuando se usan durante una semana en un tumor de 100 mm³, generalmente podrán inhibir el crecimiento tumoral en al menos 50%, en comparación con los grupos de control tratados con vehículo (datos no mostrados).

Ejemplo 4: Los Compuestos de la invención no tienen efecto sobre la actividad de PDE5.

Los compuestos de la presente invención se ensayan para evaluar su efecto en la actividad de la fosfodiesterasa 5 (PDE5). El efecto en la actividad de PDE5 se determina usando el kit de Ensayo de Polarización de Florescencia de Alta Eficacia (HEFP) de Molecular Devices. El ensayo HEFP mide la actividad de PDE-5 mediante el uso de derivados de cGMP marcados con fluoresceína como sustrato. Cuando se hidrolizan por la PDE-5, los derivados de cGMP marcados con fluoresceína se pueden unir al reactivo de unión. El complejo sustrato de cGMP:reactivo de unión da como resultado un estado fluorescente altamente polarizado.

La Figura 2 muestra los resultados de los compuestos de la presente invención en la actividad de PDE-5. Después de combinar PDE5 recombinante (CalBioChem) y el sustrato de cGMP, la mezcla se incuba a temperatura ambiente durante 45 minutos en presencia o ausencia de los Compuestos o de un control positivo (Tadalafilo). La reacción se para tras la adición del reactivo de unión. La polarización de fluorescencia se determina en un Viewlux usando un ajuste recomendado por el fabricante. Como es evidente a partir de la Figura 2, los compuestos de la presente invención no inhiben la actividad de PDE-5 en comparación con el control positivo.

ES 2 401 335 T3

Todas las publicaciones y las solicitudes de patentes citadas en la presente memoria se incorporan como referencia en el mismo grado que si se indicara específicamente e individualmente que cada publicación o solicitud de patente individual se incorpora como referencia.

Aunque se han descrito ciertas realizaciones en detalle anteriormente, los expertos habituales en la materia comprenderán claramente que son posibles numerosas modificaciones en las realizaciones sin desviarse de las enseñanzas de las mismas. Se pretende que todas tales modificaciones queden incluidas dentro de las reivindicaciones de la presente invención.

5

REIVINDICACIONES

1. Un compuesto de Formula (IV),

o una sal farmacéuticamente aceptable, racemato o estereoisómero del mismo;

5 en la que,

10

15

20

25

30

35

X es hidrógeno; un alquilo C_1 a C_6 , opcionalmente sustituido con uno o más halógenos; un grupo hidroxilo; un halógeno; o un alcoxi C_1 a C_5 , opcionalmente sustituido con un grupo arilo C_6 a C_{10} ;

 R_o es un halógeno; un ciano; un nitro; un sulfonilo, en el que el sulfonilo está opcionalmente sustituido con un alquilo C_1 a C_6 o un heterociclo de 3 a 10 miembros; un grupo amino, en el que el grupo amino está opcionalmente sustituido con un alquilo C_1 a C_6 , $-C(O)-R_b$, $-C(O)O-R_b$, un sulfonilo, un alquilsulfonilo, un grupo heterociclo de 3 a 10 miembros opcionalmente sustituido con un $-C(O)O-R_b$, $-C(O)-NH-R_b$; un heterociclo de 5 a 6 miembros; un heteroarilo de 5 a 6 miembros; un grupo alquilo C_1 a C_6 , en el que el grupo alquilo está opcionalmente sustituido con al menos un grupo hidroxilo, halógeno, amino, o heterociclo de 3 a 12 miembros seleccionado independientemente, en el que el grupo amino y el grupo heterociclo están opcionalmente sustituidos con al menos un grupo alquilo C_1 a C_4 seleccionado independientemente, cuyo grupo alquilo C_1 a C_4 está opcionalmente sustituido con al menos un grupo alcoxi C_1 a C_4 , grupo amino, grupo alquilamino, o grupo heterociclo de 5 a 10 miembros seleccionado independientemente; un grupo $-C(O)-R_n$; o un grupo $-OR_a$;

 R_a es hidrógeno; alquileno C_2 a C_8 ; un grupo -C(O)O-R_b; un -C(O)-NH-R_b; un alquilo C_1 a C_8 , en el que el grupo alquilo está opcionalmente sustituido con al menos un grupo hidroxilo, halógeno, alcoxi C_1 a C_4 , amino, alquilamino, acetamida, -C(O)-R_b, -C(O)O-R_b, arilo C_6 a C_{10} , heterociclo de 3 a 12 miembros, o heteroarilo de 5 a 12 miembros seleccionado independientemente, en el que además el alquilamino está opcionalmente sustituido con un hidroxilo, un alcoxi C_1 a C_4 , o un heteroarilo de 5 a 12 miembros opcionalmente sustituido con un alquilo C_1 a C_4 , en el que además la acetamida está opcionalmente sustituida con un alcoxi C_1 a C_4 , sulfonilo, o alquilsulfonilo, en el que además el grupo heterociclo está opcionalmente sustituido con un alquilo C_1 a C_4 opcionalmente sustituido con un grupo hidroxilo, -C(O)-R_n, -C(O)O-R_n, o un grupo oxo;

 R_b es hidroxilo; un amino; un alquilamino, en el que el alquilamino está opcionalmente sustituido con un hidroxilo, un amino, un alquilamino, un alcoxi C_1 a C_4 , un heterociclo de 3 a 12 miembros opcionalmente sustituido con un alquilo C_1 a C_6 , oxo, $-C(O)O-R_n$, o un heteroarilo de 5 a 12 miembros opcionalmente sustituido con un alquilo C_1 a C_6 , seleccionado independientemente; un alcoxi C_1 a C_4 ; un alquenilo C_2 a C_8 ; un alquinilo C_2 a C_8 ; un arilo C_6 a C_{10} , en el que el arilo está opcionalmente sustituido con al menos un halógeno o alcoxi C_1 a C_4 seleccionado independientemente; un heteroarilo de 5 a 12 miembros; grupo heterociclo de 3 a 12 miembros, en el que el heterociclo está opcionalmente sustituido con al menos un grupo acetamida, $-C(O)O-R_n$, heterociclo de 5 a 6 miembros, o alquilo C_1 a C_6 opcionalmente sustituido con a hidroxilo, alcoxi C_1 a C_4 , grupo amino, o alquilamino, seleccionado independientemente; o un alquilo C_1 a C_8 , en el que el alquilo está opcionalmente sustituido con al menos un grupo alcoxi C_1 a C_4 , arilo C_6 a C_{10} , amino, o heterociclo de 3 a 12 miembros seleccionado independientemente, en el que los grupos amino y heterociclo están opcionalmente sustituidos con al menos un grupo alquilo C_1 a C_6 , oxo, o $-C(O)O-R_n$ seleccionado independientemente;

 R_d es fenilo sustituido con uno o más sustituyentes seleccionados independientemente entre halógeno, nitro, alquilo C_1 a C_6 , $-C(O)O-R_e$, y $-OR_e$;

40 R_e es un hidrógeno; un grupo alquilo C₁ a C₆, en el que el grupo alquilo está opcionalmente sustituido con al menos un grupo halógeno o alcoxi seleccionado independientemente; o un grupo arilo C₆ a C₁₀, en el que el grupo arilo está opcionalmente sustituido con al menos un grupo halógeno o alcoxi seleccionado independientemente; y

R_n es un grupo hidroxilo, alcoxi C₁ a C₄, amino, o alquilo C₁ a C₆.

- 2. El compuesto de la reivindicación 1, en el que
- X es hidrógeno; un grupo hidroxi; un halógeno; un alquilo C_1 - C_4 ; un alcoxi C_1 a C_5 , opcionalmente sustituido con un grupo arilo C_6 a C_8 ;

 R_o es un halógeno; un alquilo C_1 a C_6 , opcionalmente sustituido con uno o más grupos halógeno; un grupo ciano; un grupo nitro; un grupo amino; un grupo aminoalquilo; un grupo acetamida; un grupo imidazol; u OR_a ;

 R_a es hidrógeno; un alquilo C_1 a C_6 , opcionalmente sustituido con un grupo heterociclo o un grupo arilo C_6 a C_8 ; o un $-C(O)O-R_b$;

5 R_b es un grupo alquilo C₁ a C₄;

 R_d es fenilo sustituido con uno o más sustituyentes seleccionados independientemente entre halógeno, alquilo C_1 a C_5 , $-C(O)OR_e$, y OR_e ;

Re es un hidrógeno; un grupo alquilo C_1 a C_6 , opcionalmente sustituido con al menos un grupo halógeno o alcoxi; o un grupo arilo C_6 a C_8 .

- 3. El compuesto de cualquiera de las reivindicaciones 1 o 2, en el que dicho compuesto tiene un carbono quiral en el punto de unión del fenilo sustituido con R_o y dicho compuesto es un isómero (S) en dicho carbono quiral.
 - 4. El compuesto de la reivindicación 1, en el que dicho compuesto se selecciona entre el grupo que consiste en

CI CI CI DI	a	CI C
332 Br CI	341	344
CI C	347	CI C

a, a, a		
	H 🔷	h 🔷
350	351	353
Br CI	355	359
CI NO -CI	388	CI H N O CI N N N 391
CI PF 395	Br F F F S 397	398
CI CI CI 400	401	403
Br CI	Ch Ch Ch F	CI H H H H H H H H H H H H H H H H H H H

CI C	CI N=N N=N A17	CI CI CI 418
CI N CI CI 421	CI	Br
CI N N O CI O M O 427	CI H N CI 428	CI N N O CI 429
CI (N)	CI	CI N N O CI HN O CI

Ct	CI C	CI NH2 446
CI N HN O 448	450	CI
CI N N CI HN C 454	455	C C C C C C C C C C C C C C C C C C C
CI N N O CI OH N N 462	465	CI N HN O 467

CI () Br 468	CI	CI
479	CI N N N O CI HN O 482	CI N N N N N N N N N N N N N N N N N N N
CI HN CO HN CO A91	CI 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	501
CI N- N-	519	570

	<u> </u>	
CI N N CI OH 571	572	CH CH S75
576	577	Ch Cl Cl Cl S78
579	580	581
CI C	CI C	CI CI NH CI 589
CI CI N N N N N N N N N N N N N N N N N	Br C-Ci	592
Br Ct	CI CI	a The Col

616	CI N N N CI H O CI 617	CI F H 3 OH 627
CI H OHI 628	629 CI H OH 629	630 Br
С Н Н 631	632	635
C	CI H OH OF 638	
CI N CO N N 698	CI C	

	CI	
701		CI, N, N, CI, N,
CI N N N CI	CI N N N O O O	C N N N C C N
704	705	706
H N N N N N N N N N N N N N N N N N N N	N N N O O O O O O O O O O O O O O O O O	N N N O O F H O O O O O O O O O O O O O O O O O O O
CI N N O F O CI 723	735	CI

737	Ct N N O F O F O N O N O N O N O N O N O N	CI N N N N N N 739
CI N N O F H O N N 740	741	CI N N N P F H O N N N 742
CI N N O F F N N N N N N N N N N N N N N N	CI N O F F N O H H 772	773

CI N N O O F	CI	CI N H H O F
CI, NYON, P	778	779
CI N N N N N 780	781	CI C

CI N N O CI N N O CI N N O CI N N O CI	784	785
786	787	788
CI CI CI CI TABO	CI N CI N N N N N N N N N N N N N N N N	791
CI N-0-F N-0-N-N H 833	CI	CI N N N N N N N N N N N N N N N N N N N

CI O F N N N N N N N N N N N N N N N N N N N	CI C	CI CI CI NO
CI C	CI NH OH NH2 846	CI N N O OH H O OH N N O OH N N O O N O O O O
	CI C	C H N N N N N N N N N N N N N N N N N N
888	CI + + + + + + + + + + + + + + + + + + +	CI N 1 0 0 F N N N N N N N N N N N N N N N N N N N
CI CI CI CI 894	900	CI C

CI N N N CI OH N 904	CI CI CI O O O O O O O O O O O O O O O O	913
CI N N N O CI 915	916	Plant of the state
CI C	CI N N N N N N N N N N N N N N N N N N N	CI N N N O Ci 921
CI, N N O F OH J=N O22	O O O O O O O O O O O O O O O O O O O	CI N N O O H O S 925
	G	933

CI N N O O O O O O O O O O O O O O O O O	CI	938
CI N O OH NEW 941	CI C	CI N N O CI 944
CI N N O CI 946	CI N N N N H 951	953
CI N N CI HN. 9 958	CI N OH OH N 960	Q N N N N N N N N N N
CI N N N O F OH N N 963	CI N O CI OH N O 964	CC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

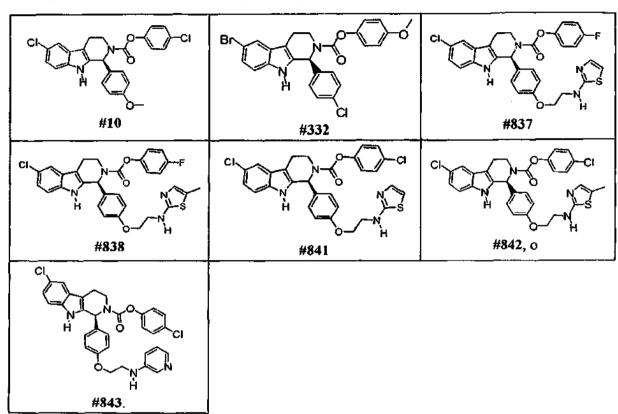
CI N N N O F 967	CI N N O CI OH N N 970	CI N O CI OH N=N 973
CI HN CI 974	CI CI CI N 976	977
CI N O O O O O O O O O O O O O O O O O O	©	G
CI N N O F P P P P P P P P P P P P P P P P P P	CI Z Z O P P P P P P P P P P P P P P P P P	CI N H N S 991

CI N N O F P P P P P P P P P P P P P P P P P P	CI N H N 993	CI N N N N N N N N N N N N N N N N N N N
CI Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	G → G → G → G → G → G → G → G → G → G →	CI C
	673	C 2 0 C C C C C C C C C C C C C C C C C

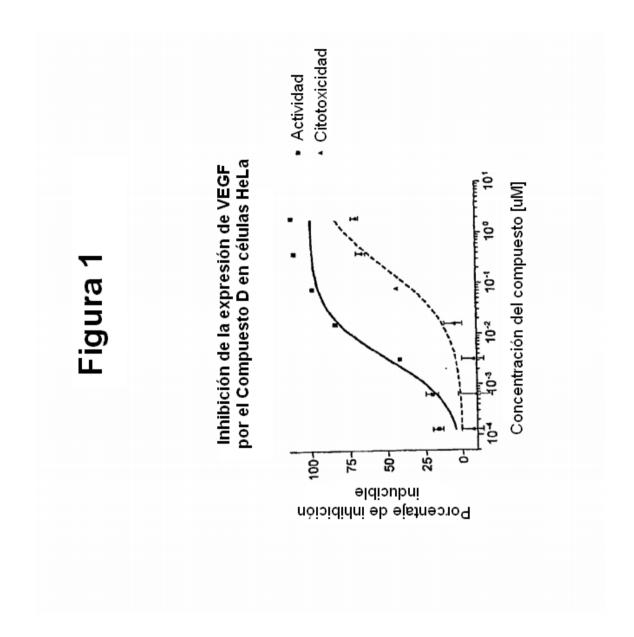
CI C	CI N N N O O O O O O O O O O O O O O O O O	678
CI N N N Br	681	CI N S N S N S N S N S N S N S N S N S N
CI N-0-F N-0-F N-0-F N-3-N-1 838		CI CI SHE SHE
CI N N C CI N N C CI N N N N N N N N N N N N N N N N N N N	C	CI OH II S

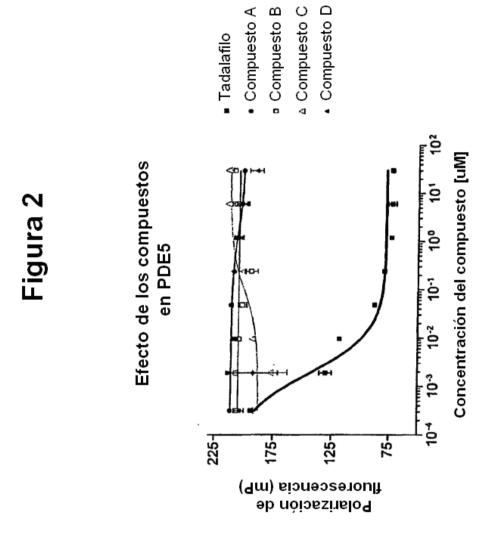
5. Un compuesto, en el que dicho compuesto se selecciona entre el grupo que consiste en

Br + + + + + + + + + + + + + + + + + + +	CL Y H	CI
60 60	366	CI NO 1
CI N O O O O O O O O O O O O O O O O O O	493	СЬ ДЬ
CI	CI N N O N N N N N N N N N N N N N N N N	
CI N H O 952		


o una sal farmacéuticamente aceptable, racemato o estereoisómero del mismo.

5


6. El compuesto de la reivindicación 4 o 5, en el que el compuesto tiene un átomo de carbono quiral en el punto de unión del anillo de fenilo directamente unido al núcleo tricíclico y el compuesto es un enantiómero (S) en el carbono quiral.


7. El compuesto de la reivindicación 6, en el que el compuesto es

5

- 8. Una composición farmacéutica que comprende un compuesto de una cualquiera de las reivindicaciones 1 a 7 o una sal farmacéuticamente aceptable, racemato o estereoisómero del mismo y un excipiente farmacéuticamente aceptable.
- 9. El compuesto de una cualquiera de las reivindicaciones 1 a 7 para su uso en el tratamiento de cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, obesidad, inflamación crónica, o degeneración macular exudativa.
- 10. El uso de un compuesto de una cualquiera de las reivindicaciones 1 a 7 en la preparación de un medicamento
 para el tratamiento de cáncer, retinopatía diabética, artritis reumatoide, psoriasis, aterosclerosis, obesidad, inflamación crónica, o degeneración macular exudativa.

