

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 401 532

51 Int. Cl.:

B23B 27/14 (2006.01) **B23B 41/02** (2006.01) **B23B 51/04** (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 12.12.2008 E 08874049 (3)

(97) Fecha y número de publicación de la concesión europea: 09.01.2013 EP 2272611

(54) Título: Cabezal de taladro para taladrado profundo

(30) Prioridad:

25.04.2008 JP 2008115158

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 22.04.2013

(73) Titular/es:

UNITAC, INCORPORATED (100.0%) 23-21, Minamimukonoso 3-chome Amagasaki-shi, Hyogo 661- 0033, JP

(72) Inventor/es:

NOMURA, TAKUJI

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Cabezal de taladro para taladrado profundo.

5 [Campo técnico]

La presente invención se refiere a una punta desechable para taladrado profundo que tiene una simetría triple y a un cabezal de taladro para taladrado profundo que utiliza la misma.

[Técnica antecedente]

El documento JP 2006-82 180 A se refiere a un cabezal de taladro que se puede utilizar tres veces. El documento US 4 297 058 A se refiere a un inserto de corte con punta divisible.

EP 0 589 333 A1 se refiere a una barrena con un cuerpo de broca sustancialmente cilíndrico.

15 JP 2007-204561 A y JP 2007-216384 A se refieren ambas a métodos de corte de taladro profundo.

Convencionalmente ha habido un cabezal de taladro para taladrado profundo que tiene una punta desechable para un cuerpo de cuchilla, como se muestra en la FIGURA 8(A) y en la FIGURA 8(B), por ejemplo. Este cabezal 50 de taladro tiene un cuerpo 51 principal de cabezal sustancialmente cilíndrico con una porción 52 hueca abierta en un 20 lado del extremo proximal y una superficie 51a del extremo distal de cabezal con una forma cónica sustancialmente obtusa dotada de un elemento 53A, 53B grande y otro pequeño de descarga de virutas de corte que conforman una forma sustancialmente de abanico cuyo ángulo central es 90 grados y que se comunica con la porción 52 hueca. Un cuerpo 54A de cuchilla de lado central y un cuerpo 54B de cuchilla de lado circunferencial están formados en un borde lateral del elemento 53A grande de descarga de virutas de corte a lo largo de una dirección D radial del 25 cabezal, y un cuerpo 54C de cuchilla de porción intermedia está formado en un borde lateral del elemento 53B pequeño de descarga de virutas de corte a lo largo de la misma dirección D radial del cabezal acoplando a rosca las puntas 60 desechables en las bases rehundidas de montaje del lado del cuerpo 51 principal del cabezal, respectivamente. Además, en una superficie 51b circunferencial exterior del cuerpo 51 principal del cabezal hay unos bloques 55A a 55D de quía que están roscados en el lado del extremo distal y se dispone una rosca 56 macho 30 en el lado del extremo proximal.

En el trabajo del taladrado profundo, un lado de porción proximal del cabezal 50 del taladro se rosca y se monta a una porción de extremo distal de una barra (no mostrada) de taladrado hueca por medio de la rosca 56 macho, y la barra de taladrado se acopla a un eje de accionamiento, como un eje de una máquina, para que sea accionada rotativamente o hacer rotar un material de trabajo, practicando un orificio en el material de trabajo mediante los cuerpos 54A a 54C de corte para formar un orificio profundo. Además, se debe hacer notar que la dirección de rotación relativa del cabezal 50 de taladro es la dirección opuesta a la dirección de las agujas del reloj en la FIGURA 8(A). Durante el trabajo de taladrado profundo, se suministra un refrigerante en la región de corte a través de un hueco entre un orificio de corte y la barra de taladrado a alta presión, de modo que fluya desde los elementos 53A, 53B de descarga de virutas de corte hacia el interior de la porción 52 hueca junto con las virutas de corte generadas en la región de corte, descargándose fuera a través del interior de la barra de taladrado hueca.

La punta 60 desechable en esta ocasión tiene una forma de placa hexagonal gruesa, con una simetría triple en la que la forma de la sección cuando se divide en tres secciones en el ángulo central de 120 grados es igual, y tiene una cuchilla 62 de corte interior cuya longitud es más corta y una cuchilla 61 de corte exterior cuya longitud es mayor una junto a la otra, constituyendo una unidad de una porción de cuchilla con forma angular. Esto es, cada punta 60 desechable está montada por medio de un perno 63 que pasa a través de un orificio de inserción para pernos dispuesto en el centro de la misma de tal modo que una porción de cuchilla con forma angular queda enfrentada al extremo frontal del cuerpo principal del cabezal como una cuchilla de corte. Cuando la porción de cuchilla con forma angular alcanza su límite de desgaste o se deteriora, la postura de montaje se gira 120 grados para hacer que una nueva porción de cuchilla con forma angular quede enfrentada al extremo frontal. Como resultado, la punta desechable tiene la ventaja de ser utilizable tres veces en total al sustituir la punta de la cuchilla y por tanto tiene una vida útil más larga (documento de patente 1).

Por otro lado, este tipo de cabezal 50 de taladro lleva a cabo un corte completo de modo que se forma un orificio completo por taladrado. Por tanto, es necesario que el cuerpo 54A de cuchilla del lado central para llevar a cabo el corte de la porción central de un orificio de corte esté posicionado y montado con precisión de tal modo que una punta de la cuchilla concuerde con una línea D diametral alrededor de un centro O de eje de cabezal y un extremo 62a interior de la cuchilla 62 de corte interna está dispuesto ligeramente más allá del centro O del eje del cabezal.

Por tanto, la velocidad de corte se hace cero teóricamente en el centro O del eje del cabezal durante el trabajo de taladrado profundo, y por tanto una porción de punta de cuchilla situada en el centro O del eje no ejerce una fuerza de corte según lo que se denomina como el borde del buril, lo que da como resultado el aplastamiento del material del trabajo, y por tanto un aumento de la resistencia al empuje. Como resultado, esto ha sido un factor por el cual no se puede mejorar la eficiencia de corte.

65

35

En consecuencia, al igual que para una herramienta de taladrado profundo que utiliza una punta desechable con una simetría doble como cuerpo de cuchilla, más específicamente una punta desechable de una forma de placa gruesa como un paralelogramo, que tiene cuchillas de corte en dos lados opuestos y que es utilizable dos veces en total mediante la sustitución de la punta de la cuchilla mediante un giro de 180 grados, el presente inventor ha propuesto ya una configuración tal que se proporciona una porción rehundida en una superficie lateral de la punta como un lado de extremo interno de la cuchilla de corte, y el extremo interior de la cuchilla de corte está dispuesto espaciado del centro del eje del cabezal, formando así una zona no-cortante cerca del centro del eje y rompiendo un núcleo nocortante de material de trabajo generado en la zona no-cortante por medio de un contacto a presión con un reborde inclinado de la porción rehundida (Documentos de Patente 2 y 3).

10

5

Documento de patente 1: Solicitud de patente japonesa sin examinar publicada Nº H07-068408 Documento de patente 2: Solicitud de patente japonesa sin examinar publicada Nº 2003-25129 Documento de patente 3: Solicitud de patente japonesa sin examinar publicada Nº 2003-236713

15 [Descripción de la Invención]

[Problemas a ser resueltos por la Invención]

Sin embargo, cuando el extremo interior de la cuchilla de corte se dispone de modo que esté separado del centro del eje del cabezal en la punta 60 desechable con simetría triple utilizada en el cabezal de taladro que se muestra en la FIGURA 8, existe la preocupación de que el núcleo sin corte del material de trabajo generado en la zona sin corte no se pueda partir del modo descrito anteriormente con relación a la punta desechable simétrica con simetría doble y que el núcleo sin corte se alargue, degradando así la capacidad de descarga de las virutas de corte y provocando atascos debido a las virutas, hasta que se impide el corte. Como resultado, la punta desechable con simetría triple sólo se ha aplicado al tipo de corte completo normal.

25

La presente invención se ha llevado a cabo en vista de las circunstancias anteriores, y por tanto es un objeto de la presente invención proporcionar una punta desechable con simetría triple para taladrado profundo aplicable tanto al tipo de corte completo como a un tipo de rotura de núcleo sin corte como cuerpo de cuchilla de lado central para un cabezal de taladro y un cabezal de taladro para taladrado profundo que utiliza esta punta desechable.

30

35

40

[Medios para resolver los problemas]

El ámbito de la presente invención está definido por el cabezal de taladrado de la reivindicación independiente. Realizaciones preferidas se describen en las reivindicaciones dependientes. Se describirán medios para llevar a cabo este objeto haciendo referencia a unos números de referencia de las figuras adjuntas. Una punta desechable para taladrado profundo se describe en conjunto con la presente invención. Dicha punta desechable tiene forma de placa gruesa con una simetría triple con una forma de sección igual cuando se divide en tres secciones P1 a P3 en el ángulo central de 120 grados, donde una punta 1 de cuchilla está enfrentada hacia una dirección de taladrado cuando está montada a un cabezal D1 de taladrado (ver FIGURAS 2 a 4), D2 (ver FIGURA 5) tiene una cuchilla 11 de corte interior de longitud más corta y una cuchilla 12 de corte exterior de longitud más larga que presentan una forma angular que corresponde a una de las secciones (la primera sección P1) y la cuchilla 12 de corte exterior está compuesta por dos porciones consecutivas de cuchillas de corte que tienen una porción 12a de pico de cuchilla de corte exterior que tiene un ángulo β1 de cuchilla de corte exterior más pequeño y una porción 12b de base de cuchilla de corte exterior que tiene un ángulo β2 de cuchilla de corte exterior más grande en la forma angular.

Preferiblemente, la punta desechable está configurada de modo que la cara 13 del flanco a lo largo de la porción 12b de base de cuchilla de corte exterior tiene un ángulo θ de flanco que está dentro del rango de 5 a 15 grados en la punta desechable para taladrado profundo.

Preferiblemente, la punta desechable está configurada de modo que se forma un margen 14 a lo largo de la cuchilla 11 de corte interior en la punta desechable para taladrado profundo.

Preferiblemente, la punta desechable está configurada de modo que una porción 12b de base de cuchilla de corte exterior en una punta 1 de cuchilla en una de las secciones (segunda sección P2) que está enfrentada a un lado central O del eje del cabezal en estado montado en el cabezal D1, D2 de taladrado y una cuchilla 11 de corte interior en una punta 1 de cuchilla de una de las secciones (tercera sección P3) que está enfrentada a un lado circunferencial externo del cabezal en el mismo estado de montaje están dispuestas de modo que son paralelas una a la otra (ver las FIGURAS 2 a 5) para que las líneas L1, L2 se extiendan hacia delante en la dirección de taladrado de los respectivos bordes de las cuchillas para que se corten una con otra (ver FIGURA 6 y FIGURA 7) en la punta para taladrado profundo.

60

65

55

Un cabezal de taladro para taladrado profundo se describe junto con la presente invención. Dicho cabezal de taladro está configurado de modo que los cuerpos 3A a 3C de cuchilla que cooperan para taladrar un material W de trabajo estén fijados por atornillamiento a una pluralidad de lugares, incluyendo al menos el lado central y el lado circunferencial de una superficie 2a de extremo distal de un cuerpo 2 principal de cabezal cilíndrico, respectivamente, y al menos el cuerpo 3A de la cuchilla del lado central está compuesto por la primera punta

desechable para taladrado profundo T1, T2, como se ha descrito anteriormente.

Un aspecto que se describe en conjunto con la presente invención está configurado de modo que la punta desechable T1, T2 del lado central (cuerpo 3A de cuchilla del lado central) tiene una punta de cuchilla completa dispuesta en paralelo a una línea R radial alrededor de un centro O del eje del cabezal y en una posición central elevada más adelantada según una dirección de rotación de corte que la línea R radial, y un extremo 11a interior de una cuchilla 11 de corte en una punta 1 de cuchilla en una de las secciones (primera sección P1) enfrentado a una dirección de taladrado separado del centro O del eje del cabezal y que forma una zona Z sin corte cerca del centro O del eje en el cabezal de taladro para taladrado profundo según se ha descrito anteriormente.

10

15

Otro aspecto que se describe en conjunto con la presente invención está configurado de modo que la punta desechable T1, T2 del lado central (cuerpo 3A de cuchilla del lado central) tiene toda una cuchilla de corte dispuesta en una posición central elevada 0,2 a 1,5 mm más adelantada en la dirección de rotación del corte que una línea R radial alrededor del centro O del eje del cabezal, y un extremo 11a interior de una cuchilla 11 de corte interior en una punta 1 de cuchilla en una de las secciones (primera sección P1) que está enfrentada según una dirección de taladrado separada 0,05 a 0,5 mm del centro O del eje del cabezal en el cabezal de taladro para taladrado profundo según se ha descrito anteriormente.

20

Otro aspecto más que se describe en conjunto con la presente invención está configurado de modo que la punta desechable T1, T2 del lado central (cuerpo 3A de cuchilla del lado central) tiene toda una cuchilla de corte dispuesta a lo largo de una línea R radial alrededor del centro O del eje del cabezal, y un extremo 11a interior de una cuchilla 11 de corte interior en una punta 1 de duchilla en una de las secciones (primera sección P1) que está enfrentado a una dirección de taladrado dispuesto en una posición más allá del centro O del eje del cabezal en el cabezal de taladro para taladrado profundo según se ha descrito anteriormente.

25

Otro aspecto más que se describe en conjunto con la presente invención está configurado de modo que el cuerpo 3B de cuchilla del lado circunferencial está compuesto por la punta desechable T1, T2 del tercer aspecto descrito anteriormente, y la punta desechable T1, T2 tiene una cuchilla 11 de corte interior en una punta 1 de cuchilla en una de las secciones (tercera sección P3) que está enfrentada a un lado circunferencial exterior del cabezal dispuesta en paralelo al centro O del eje del cabezal en el cabezal de taladro para taladrado profundo según se ha descrito anteriormente.

35

30

Otro aspecto más que se describe en conjunto con la presente invención está configurado de modo que se proporcionan al menos tres cuerpos 3A a 3C de cuchilla de un lado central, un lado circunferencial y una porción intermedia y los cuerpos 3A a 3C de cuchilla están todos compuestos por cualquiera de las puntas desechables para taladrado profundo T1, T2 del primer al cuarto aspecto de cualquiera de los cabezales de taladro para taladrado profundo según se ha descrito anteriormente.

[Efectos de la Invención]

Se describirán los efectos de la presente invención haciendo referencia a los números de las figuras. En primer lugar, en la punta desechable para taladrado profundo T1, T2, cada sección de una cuchilla de corte que tiene una simetría triple y está dividido en tres secciones P1 a P3 tiene una cuchilla 11 de corte interior y una cuchilla 12 de corte exterior que configuran una forma angular, y la cuchilla 12 de corte exterior está conformada también con una

simetría triple y está dividido en tres secciones P1 a P3 tiene una cuchilla 11 de corte interior y una cuchilla 12 de corte exterior que configuran una forma angular, y la cuchilla 12 de corte exterior está conformada también con una forma angular por una porción 12a de pico de cuchilla de corte exterior y una porción 12b de base de cuchilla de corte interior. Una cara 13 de flanco a lo largo de la porción 12b de base de cuchilla de corte interior tiene un ángulo de flanco con un rango específico. En consecuencia, cuando se utiliza como cuerpo 3A de cuchilla de lado central para un cabezal D1, D2 de taladro, la punta desechable está preparada para un núcleo sin corte de tipo de desprendimiento, de modo que toda la cuchilla de corte se dispone en una posición central elevada y un extremo 11a interior de una cuchilla 11 de corte interior en una cuchilla de corte de una de las secciones (primera sección P1) que está enfrentado a una dirección de taladrado está separado de un centro O del eje del cabezal para formar una zona Z sin corte, de modo que una cara 13 de flanco a lo largo de una porción 12b de base de cuchilla de corte

50

55

45

exterior en una sección (segunda sección P2) que está enfrentada al lado del centro O del eje del cabezal entra dentro de la zona Z sin corte. Por tanto, un núcleo C sin corte que se genera en la zona Z sin corte es presionado contra la cara 13 de flanco desde un lado, empujado lateralmente, retorcido debido a los cambios en la dirección de empuje en línea con la rotación del cabezal D1, D2 de taladro, y comprimido a medida que la cara 13de flanco entra en la zona Z sin corte. Como resultado, el núcleo C sin corte es fragmentado poco a poco sin crecer a lo largo, de modo que se asegura una excelente capacidad de descarga de virutas durante el trabajo de taladrado profundo y se consigue una elevada eficiencia de corte en conjunto con una eliminación del borde del buril en la posición central

60

65

del eje.

Por otro lado, esta punta desechable para taladrado profundo T1, T2 también se puede utilizar como un cuerpo 3A de cuchilla de lado central para el cabezal D2 de taladro en un trabajo de taladrado profundo por el tipo de corte completo normal. Esto es, una punta desechable generalmente está fijada por atornillamiento a una porción rehundida de un lado del cuerpo principal del cabezal a través de una placa de montaje de punta. Por tanto, una placa que pueda acomodar la punta desechable T1, T2 de modo que toda la cuchilla de corte de la misma esté a lo

largo de una línea R radial alrededor de un centro O del eje del cabezal y un extremo 11a interior de una cuchilla 11 de corte interior en una sección (primera sección P1) enfrentada a una dirección de taladrado está posicionado ligeramente más allá del centro O del eje del cabezal se utiliza como placa 5 de montaje de la punta, siendo así aplicable al tipo de corte completo sin ningún problema. Además, una placa diferente en los que respecta a la posición de sujeción de la punta desechable T1, T2 se prepara como la placa 5 de montaje de la punta, permitiendo así que incluso el cabezal D2 del taladro de una especificación de tipo de corte completo se utiliza tanto en el tipo de corte completo original como en el tipo de núcleo sin corte con desprendimiento.

Preferiblemente, cuando un ángulo de flanco de la cara 13 de flanco de la porción 12 de base de cuchilla de corte exterior es menor de 5 grados, se provoca un problema en la función de corte de la cuchilla 12b de base de corte exterior en la primera sección P1 que está enfrentada hacia la dirección de taladrado. Mientras que cuando el ángulo de flanco sobrepasa los 15 grados, la entrada por un borde 13a de la cara 13 de flanco en la zona Z sin corte se vuelve deficiente y da como resultado se reduce el rendimiento de fragmentación del núcleo C sin corte.

5

60

- Preferiblemente, la punta desechable para taladrado profundo T1, T2 está formada con un margen 14 a lo largo de la cuchilla 11 de corte interior y en consecuencia puede utilizarse ventajosamente como cuerpo 3B de cuchilla de lado circunferencial así como cuerpo 3A de cuchilla de lado central para el cabezal D1, D2 de taladro. En este caso, al cuerpo 3B de cuchilla de lado circunferencial está configurado de modo que una cuchilla 11 de corte interior en una sección (tercera sección P3) que está enfrentado a un lado circunferencial exterior del cabezal se disponga para que sea paralelo a un eje de rotación del cabezal y la cuchilla 11 de corte interior contacta linealmente con una circunferencia interior de un orificio de corte. Sin embargo, en este caso, además de que la cuchilla 11 de corte interior tiene un ángulo de punta de cuchilla grande debido al margen 14 y por tanto se refuerza la punta de cuchilla de la misma la porción 14 de margen también entra en contacto deslizante con la circunferencia interior del orificio. Como resultado, se reduce la abrasión de la cuchilla 11 interior de corte y también la cuchilla 11 de corte interior resiste los daños, de modo que se puede conseguir una durabilidad excelente ya que el cuerpo 3B de cuchilla de lado circunferencial presenta una gran velocidad lineal.
- Preferiblemente, cuando la punta desechable para taladrado profundo T1, T2 se dispone como un cuerpo 3A de cuchilla de lado central para el cabezal D1 de taladro de un núcleo sin corte de tipo de desprendimiento de modo que la cuchilla 11 de corte interior en una sección (tercera sección P3) que está enfrentado al lado circunferencial del cabezal es paralelo al eje de rotación del cabezal, una porción 12b de base de cuchilla de corte exterior en una sección (segunda sección P2) enfrentada al centro del eje del cabezal se dispone en paralelo con el centro O del eje del cabezal o en un estado inclinado donde un lado de extremo posterior se acerca al centro O del eje del cabezal. Como resultado, el contacto a presión por la cara 13 de flanco de la porción 12b de base de cuchilla de corte exterior con relación al núcleo C sin corte generado en la zona Z sin corte se hace más fiable o fuerte, de modo que el núcleo C sin corte se fragmenta eficientemente poco a poco.
- Preferiblemente, la punta desechable para taladrado profundo T1, T2 de acuerdo con el primer aspecto se utiliza como al menos cuerpo de cuchilla de corte de lado central (cuerpo 3A de cuchilla de lado central) para el cabezal D1, D2 de taladro para taladrado profundo donde los cuerpos de cuchilla de corte (un cuerpo 3A de cuchilla de lado central, un cuerpo 3B de cuchilla de lado circunferencial y un cuerpo 3C de cuchilla de porción intermedia) se fijan por atornillamiento a una pluralidad de lugares que incluyen al menos el lado central y el lado circunferencial de una superficie 2a de extremo distal de un cuerpo 2 principal de cabezal cilíndrico. Por tanto, el cabezal D1, D2 de taladro puede utilizarse ventajosamente en el trabajo de taladrado profundo tanto de tipo de núcleo sin corte con desprendimiento como de tipo de corte completo dependiendo de la disposición de la punta desechable T1, T2 del lado central.
- Preferiblemente, de acuerdo con el cabezal D1 de taladro para taladrado profundo, la punta desechable T1, T2 del lado central está dispuesta en una posición central elevada y el extremo 11a interior de la cuchilla de corte está dispuesto separado del centro O del eje del cabezal, como el tipo de núcleo sin corte con desprendimiento, de modo que el núcleo C sin corte generado en la zona Z sin corte se puede fragmentar eficientemente poco a poco, de modo que se asegura una excelente capacidad de descarga de virutas durante el trabajo de taladrado profundo y se consigue una elevada eficiencia de corte en cooperación con la eliminación del borde del buril en la posición del centro O del eje del cabezal.
 - De acuerdo con el cabezal D1 de taladro para taladrado profundo, una parte central elevada de la punta desechable T1, T2 del lado central y una distancia excéntrica del extremo 11a interior de la cuchilla de corte se disponen preferiblemente dentro de un rango específico en el tipo de núcleo sin corte con desprendimiento. Como resultado, el desprendimiento poco a poco del núcleo C sin corte generado en la zona Z sin corte se puede llevar a cabo con mayor fiabilidad.
 - De acuerdo con el cabezal D2 de taladro para taladrado profundo, la punta desechable T1, T2 del lado central está preferiblemente dispuesta de modo que una cuchilla de corte completa está a lo largo de la línea R radial alrededor del centro O del eje del cabezal y el extremo 11a interior de la cuchilla 11 de corte interior en una sección (primera sección P1) que mira hacia la dirección de taladrado está ubicado más allá del centro O del eje del cabezal. Como

resultado, se puede llevar a cabo el trabajo de taladrado profundo por medio del tipo de corte completo.

De acuerdo con el cabezal D1, D2 de taladro para taladrado profundo, la punta desechable para taladrado profundo T1, T2 utilizada para el cuerpo 3B de cuchilla del lado circunferencial está preferiblemente dispuesta de modo que la cuchilla 11 de corte interior en una de las secciones (tercera sección P3) que está enfrentada al lado circunferencial exterior del cabezal es paralela a la dirección O del eje del cabezal. Sin embargo, la cuchilla 11 de corte interior está reforzada por el margen 14, de modo que se reduce la abrasión de la cuchilla 11 de corte interior y la cuchilla 11 de corte interior resiste los daños, consiguiéndose así una excelente durabilidad a la vez que el cuerpo 3B de cuchilla del lado circunferencial presenta una gran velocidad lineal.

10

15

30

35

45

5

Preferiblemente, en el cabezal D1, D2 de taladro para taladrado profundo dotado de al menos tres cuerpos de cuchilla de corte respectivamente de un lado central, un lado circunferencial y una porción intermedia, todos los cuerpos de cuchilla de corte están formados por la punta desechable para taladrado profundo T1, T2 de acuerdo con uno de entre el primer y el cuarto aspecto, y la punta desechable T1, T2 puede disponerse en la misma postura. Como resultado, se pueden reducir los costes de fabricación considerablemente debido a que los componentes son comunes y a la uniformidad del procedimiento de montaje.

[Breve descripción de los dibujos]

La FIGURA con la prese

La FIGURA 1 muestra una primera punta desechable para taladrado profundo que se describe en conjunto con la presente invención, y la FIGURA 1(A) es una vista frontal, la FIGURA 1(B) es una vista en planta, y la FIGURA 1(C) es una vista lateral derecha;

La FIGURA 2 muestra un cabezal de taladro de núcleo sin corte de tipo de desprendimiento para taladrado profundo utilizando la punta desechable anterior, y la FIGURA 2(A) es una vista en planta y la FIGURA 2(B) es una vista frontal;

La FIGURA 3 presenta una parte principal del lado del extremo distal del cabezal de taladro anterior de un modo ampliado, y la FIGURA 3(A) es una vista en planta y la FIGURA 3(B) es una vista frontal de una sección longitudinal;

La FIGURA 4 muestra el comportamiento de una porción central de corte en un trabajo de taladrado profundo mediante el cabezal de taladro anterior, y la FIGURA 4(A) es una vista en planta y la FIGURA 4(B) es una vista frontal de una sección longitudinal:

La FIGURA 5 muestra una parte principal de un lado del extremo distal de un cabezal de taladro de tipo de corte completo para taladrado profundo utilizando la punta desechable anterior de un modo ampliado, y la FIGURA 5(A) es una vista en planta y la FIGURA 5(B) es una vista frontal de una sección longitudinal;

La FIGURA 6 muestra una segunda punta desechable para taladrado profundo descrita en conjunto con la presente invención, y la FIGURA 6(A) es una vista frontal y la FIGURA 6(B) es una vista en planta;

La FIGURA 7 muestra el comportamiento de una porción central de corte en un trabajo de taladrado profundo por un cabezal de taladro de núcleo sin corte de tipo de desprendimiento para taladrado profundo utilizando la segunda punta desechable para taladrado profundo, y la FIGURA 7(A) es una vista en planta y la FIGURA 7(B) es una vista frontal de una sección longitudinal; y

La FIGURA 8 muestra un ejemplo de configuración de un cabezal de taladro convencional para taladrado profundo, y la FIGURA 8(A) es una vista en planta y la FIGURA 8(B) es una vista frontal

[Descripción de los números de referencia]

1:Punta de la cuchilla

11:Cuchilla de corte interior

11a:Superficie del extremo interior

12:Cuchilla de corte exterior

12a:Porción de punta de cuchilla de corte exterior

12b:Porción de base de cuchilla de corte exterior

50 13:Cara de flanco a lo largo de porción de base de cuchilla de corte exterior

14:Margen

15:Orificio de inserción de perno

2:Cuerpo principal de cabezal

2a:Superficie de extremo distal

55 20:Porción hueca

21, 22:Orificio de descarga de virutas de corte

2A:Punta de la porción central de la cuchilla de corte (punta de cuchilla de corte encargándose de cortar el lado central)

20a:Extremo interior

60 3A:Cuerpo de cuchilla del lado central

3B:Cuerpo de cuchilla del lado circunferencial

3C:Cuerpo de cuchilla de la porción intermedia

5:Placa de montaje

7:Placa de guía

65 C:Núcleo sin corte

D1:Cabezal de taladro de núcleo sin corte de tipo de desprendimiento para taladrado profundo

D2:Cabezal de taladro de tipo de corte completo para taladrado profundo

O:Centro de eje de cabezal

P1:Primera sección enfrentada a la dirección de taladrado

P2:Segunda sección enfrentada a lado central del eje del cabezal

P3:Tercera sección enfrentada a lado circunferencial del cabezal

R:Línea radial

T1, T2:Punta desechable para taladrado profundo

W:Material de trabajo

10 Z:Zona sin corte

5

40

f:Distancia (magnitud central elevada) s:Distancia (distancia excéntrica) α:Ángulo de cuchilla de corte interior

β1, β2:Ángulo de cuchilla de corte exterior

γ:Ángulo de cruce θ:Ángulo de flanco

[Mejores modos de llevar a cabo la Invención]

- En adelante, las realizaciones de la presente invención se describirán con detalle haciendo referencia a las figuras.

 La FIGURA 1 muestra una primera punta desechable para taladrado profundo T1 descrita en conjunto con la presente invención, la FIGURA 2 muestra un cabezal D1 de taladro de núcleo sin corte de tipo de desprendimiento que utiliza la punta desechable T1, la FIGURA 3 muestra un lado de extremo distal del cabezal D1 de taladro, la FIGURA 4 muestra el comportamiento de una porción central de corte del cabezal de taladro D1, la FIGURA 5 muestra un lado de extremo distal de un tipo de un cabezal D2 de taladro de tipo de corte completo que utiliza la primera punta desechable T1, la FIGURA 6 muestra una segunda punta desechable para taladrado T2 profundo descrita en conjunto con la presente invención y la FIGURA 7 muestra un comportamiento de una porción de corte central en un cabezal D1 de taladro de núcleo sin corte de tipo de desprendimiento que utiliza la punta desechable T2, respectivamente.
- Como se muestra en las FIGURAS 1(A) a 1(C), la primera punta desechable para taladrado profundo T1 tiene una simetría triple con una forma seccional igual cuando se divide en tres secciones con un ángulo central de 120 grados, y que presenta a grandes rasgos una forma de placa gruesa triangular sustancialmente equilátera. Sin embargo, cada lado del triángulo equilátero está ligeramente doblado en dos lugares, y específicamente la punta desechable forma un eneágono. Con relación a toda la periferia que forma los bordes del eneágono como una punta 1 de cuchilla situada en un plano, una superficie principal que mira hacia la punta 1 de cuchilla, esto es, una superficie frontal de la FIGURA 1(A) constituye la cara 10 de corte, una superficie lateral periférica constituye la cara 13 de flanco, un orificio 15 de inserción de perno que penetra en dirección del grosor está dotado en el centro de la superficie frontal, y un medio 16 escalonado de rotura de virutas está formado sobre la cara 10 de corte a lo largo de la punta 1 de cuchilla de toda la periferia.

Es necesario hacer notar que la punta T1 desechable de la FIGURA 1(A) se muestra en una postura montada sobre el cabezal de taladro cuando un lado superior de la hoja está en la dirección de taladrado, y una línea e horizontal que pasa a través del vértice t de la punta muestra un plano vertical a la dirección de taladrado. Aquí, la configuración seccional de la simetría triple es tal que el lado superior tal como se muestra es una primera sección P1 que mira hacia la dirección de taladrado, el lado derecho según se muestra es una segunda sección P2 que mira hacia un lado central del eje del cabezal y un lado izquierdo según se muestra es una tercera sección P3 que mira hacia un lado circunferencial del cabezal con referencia a las secciones marcadas por las líneas P de demarcación que se muestran como tres líneas virtuales y que unen el centro Q y las respectivas puntas c del triángulo sustancialmente equilátero. Y una punta 1 de cuchilla en la primera sección P1 se encarga del trabajo de taladrado profundo en un estado montado del cabezal de taladro. Cuando la punta 1 de cuchilla en la primera sección P1 se daña o llega a su límite de desgaste, se gira su postura de montaje 120 grados, desplazando así la punta 1 de la cuchilla en la segunda sección o tercera sección que está sin usar hasta una posición de la primera sección, y en consecuencia la punta 1 de la cuchilla es reemplazada y se utiliza tres veces en total.

Cada punta 1 de cuchilla en las secciones P1 a P3 primera a tercera tiene una cuchilla 11 de corte interior cuya longitud de cuchilla es más corta y una cuchilla 12 de corte exterior cuya longitud de cuchilla es más larga que conforman una forma angular. La cuchilla 11 de corte interior está dispuesta en el lado central del eje del cabezal y tiene un ángulo α de cuchilla de corte interior inclinado hacia dentro en la primera sección P1 que se encarga del trabajo de taladrado profundo. La cuchilla 12 de corte exterior está dispuesta en el lado circunferencial del cabezal y tiene un ángulo de cuchilla de corte exterior inclinado hacia fuera en la primera sección P1 que se encarga del trabajo de taladrado profundo. Además, la cuchilla 12 de corte exterior está formada por dos porciones de cuchilla de corte consecutivas de una porción 12a de punta de la cuchilla de corte exterior situadas en un lado de punta (un vértice t de la punta) de la forma angular y que tienen un ángulo β1 de cuchilla de corte exterior más pequeño y una porción 12b de base de cuchilla de corte exterior que tiene un ángulo β2 de cuchilla de corte exterior más grande. La longitud de la porción 12b de base de cuchilla de corte exterior está configurada de modo que es más corta que la

de la porción 12a de pico de la cuchilla de corte exterior. Las cuchillas 11 de corte interiores, las porciones 12a de pico de cuchilla de corte exterior y las porciones 12b de base de cuchilla de corte exterior en las secciones P1 a P3 primera a tercera forman lados equivalentes según una simetría rotacional a lo largo del centro Q, respectivamente, y están completamente superpuestas por medio de un giro de 120 grados alrededor del centro Q. Además, los ángulos de cruce de las líneas de extensión de estos lados equivalentes son todos de 60 grados.

Además, como se muestra en la FIGURA 1(B) y la FIGURA 1(C), se forma un margen 14 que tiene alrededor de 0,1 a 2 mm de anchura y un ángulo de inclinación de alrededor de 1 hasta 6 grados con relación a la dirección del grosor de la punta en una porción a lo largo de cada cuchilla 11 de corte interior de las superficies laterales periféricas de la punta. Un ángulo de flanco (ángulo de inclinación con relación a la dirección del grosor de la punta) θ de una cara 13 de flanco a lo largo de una porción 12b de base de cuchilla de corte exterior se ajusta a entre 5 y 15 grados, y los ángulos de flanco de las superficies laterales periféricas de la punta están dentro del rango de alrededor de 10 a 30 grados. Es necesario remarcar que, preferiblemente, un ángulo de vértice del vértice t de la punta no es menor de 130 grados y un ángulo α de cuchilla de corte interior es mayor que un ángulo α 1 de cuchilla de corte exterior (α 3). Un ejemplo preferido de dicha configuración de ángulos incluye un ángulo de flanco α 4 de la cara 13 de flanco = 11 grados, un ángulo de vértice del vértice t de la punta = 138 grados, un ángulo de cuchilla de corte interior α 30 grados, un ángulo de cuchilla de corte exterior α 4) grados, un ángulo de cuchilla de corte exterior α 5) grados, un ángulo de cuchilla de corte exterior α 5) grados, un ángulo de cuchilla de corte exterior α 6) grados.

10

15

40

45

50

55

60

65

Por tanto, la primera punta desechable T1 está configurada de modo que la cuchilla 11 de corte interior en la primera sección P1 y la porción 12b de base de cuchilla de corte exterior en la tercera sección P3, la cuchilla 11 de corte interior en la segunda sección P2 y la porción 12b de base de cuchilla de corte exterior en la primera sección P1, y la cuchilla 11 de corte interior en la tercera sección P3 y la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 están dispuestas en paralelo, respectivamente, y la cuchilla 11 de corte interior en la tercera sección P3 y la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 en la postura de montaje sobre el cabezal de taladro mostrado en la FIGURA 1(A) están a lo largo de la dirección de taladrado.

Un cabezal D1 de taladro según se muestra en la FIGURA 2(A) y la FIGURA 2(B) tiene un cuerpo 2 principal de cabezal sustancialmente cilíndrico con una porción 20 hueca abierta en un lado de extremo proximal y una superficie 2a de extremo distal de forma cónica sustancialmente obtusa formada con unos orificios 21, 22 grande y pequeño de descarga de virutas sustancialmente con forma de abanico dispuestos en posiciones radialmente opuestas uno con relación al otro y que se comunican con la porción 20 hueca. La primera punta desechable T1 según se ha descrito anteriormente se utiliza para un cuerpo 3A de cuchilla de lado central y un cuerpo 3B de cuchilla de lado circunferencial en un borde lateral de la abertura del orificio 21 grande de descarga de virutas de corte a lo largo de una línea R radial que pasa a través de un centro O de eje de cabezal y un cuerpo 3C de cuchilla de porción intermedia en un borde lateral de la abertura del orificio 22 pequeño de descarga de virutas de corte a lo largo de una línea radial R' en el lado radialmente opuesto, respectivamente. La punta T1 desechable del cuerpo 3A de cuchilla del lado central está dispuesta según un tipo de núcleo sin corte de tipo de desprendimiento.

Cada punta T1 desechable está fijada por atornillamiento por medio de un perno 4 de fijación que pasa a través de un orificio 15 de inserción de pernos por el centro del mismo en un estado donde una parte del mismo sobresale hacia un lado en una dirección longitudinal de una superficie lateral de una placa 5 de montaje de punta con forma sustancialmente de eje cuadrado. La placa 5 de montaje está acoplada en una porción 23 rehundida dispuesta en el lado del cuerpo 2 principal del cabezal, y un perno 6 de montaje que se ha insertado desde una superficie 2b circunferencial exterior del cuerpo 2 principal del cabezal está acoplado a rosca en un orificio 5a roscado de la placa 5 de montaje para atraer la punta desechable T1, de modo que la punta desechable T1 se fija al cuerpo 2 principal del cabezal. Además, en la superficie 2b circunferencial exterior del cabezal en el lado del extremo distal del cuerpo 2 principal del cabezal, hay unas placas 7 de guía de carburo cementado atornilladas al lado de montaje del cuerpo 3C de cuchilla de la porción intermedia y el lado posterior del cuerpo 3A de cuchilla del lado central, y unas placas 8 de quía auxiliares están atornilladas en posiciones radialmente opuestas a las placas 7 de guía. Además, se forma una rosca 24 macho en una superficie 2c circunferencial exterior del cabezal en el lado del extremo proximal del cuerpo 2 principal del cabezal cuyo diámetro exterior se hace más pequeño que el lado del extremo distal, y el lado del extremo proximal se atornilla en una porción de extremo distal que tiene una rosca hembra de una barra de perforación hueca (no mostrada), acoplando así el cabezal de taladro D1 a un extremo distal de la barra de perforación.

Las tres piezas de las puntas desechables T1 están todas en un estado de montaje tal que a cuchilla 12 de corte exterior de mayor longitud de cuchilla en la primera sección P1 que mira hacia la dirección de taladrado está inclinada hacia arriba hacia el centro O del eje del cabezal y la cuchilla 11 de corte interior en la tercera sección que mira hacia el lado circunferencial exterior del cabezal está a lo largo de la dirección de taladrado. Como se muestra con detalle en la FIGURA 3(A), el cuerpo 3B de cuchilla del lado circunferencial y el cuerpo 3C de cuchilla de la porción intermedia están dispuestos de tal modo que las puntas 1 de cuchilla están hechas en correspondencia con las líneas radiales R, R' que pasan a través del centro O del eje del cabezal, mientras que el cuerpo 3A de cuchilla del lado central está dispuesto de modo que el extremo 11a interior de la cuchilla 11 de corte interior en la primera sección P1 está separado por una distancia s del centro O del eje del cabezal en una posición donde la punta 1 de la

cuchilla es paralela a la línea radial R y un centro de la misma está elevado una distancia f más hacia delante en la dirección de rotación del corte que la línea radial R, debido al núcleo sin corte de tipo de desprendimiento. Es más, con esta configuración, la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 que mira hacia el lado central del cabezal en la punta desechable T1 del cuerpo 3A de cuchilla del lado central (ver FIGURA 3(B)) es paralela al centro O del eje del cabezal.

En el trabajo de taladrado profundo utilizando el cabezal D1 de taladro para taladrado profundo descrito anteriormente, se envía un refrigerante suministrado a través de un hueco entre una circunferencia interna de un orificio de corte y una circunferencia externa de la barra de perforación hueca y el cabezal D1 de taladrado continuamente hacia una región de corte a la vez que el cabezal D1 de taladro acoplado a la barra de perforación como se ha descrito anteriormente o un material W de trabajo gira, las virutas de corte generadas en la región de corte quedan atrapadas en el refrigerante, pasan a través de la porción 20 hueca y la parte interior hueca de la barra de perforación desde los orificios 21, 22 de descarga de virutas de corte del cabezal D1 de taladro y se descargan en el exterior.

El extremo interior 11a de la cuchilla 11 de corte interior en la primera sección P1 que mira hacia la dirección de taladrado de la punta T1 desechable utilizada para el cuerpo 3A de cuchilla del lado central está separado del centro O del eje del cabezal durante este trabajo de taladrado profundo, y en consecuencia se forma una zona circular sin corte cuyo radio es una distancia excéntrica s formada junto al centro O del eje según se muestra en la FIGURA 4(A) y la FIGURA 4(B), y se genera un núcleo C sin corte de un material W de trabajo en esta zona Z sin corte.

Como la punta T1 desechable está en una posición central elevada y la cara 13 de flanco de la porción 12b de base de cuchilla exterior en la segunda sección P2 en la punta T1 desechable anterior tiene un ángulo θ de flanco de 5 a 15 grados, la distancia d más corta de un borde 13a en la dirección de taladrado de la cara 13 de flanco con relación al centro O del eje del cabezal se hace más corta que la distancia excéntrica s del extremo 11a interior de la cuchilla 11 de corte interior, de modo que el borde 13a entra en la zona Z sin corte tanto como muestra la porción sombreada U.

Por tanto, el núcleo sin corte C generado en la zona Z sin corte es contactado a presión desde el lado por la cara 13 de flanco justo después de la generación y es empujado lateralmente como se muestra en la FIGURA 4(B), y también retorcido por cambios consecutivos en la dirección de empuje en línea con la rotación del cabezal D1 de taladro, es empujado y cortado desde el lateral cuando la cara 13 de flanco entra en la zona Z sin corte, y constreñido a un círculo N que tiene un radio d menor que la zona Z sin corte. Como resultado, el núcleo C sin corte es fragmentado poco a poco sin alargarse, de modo que se consigue una excelente capacidad de descarga de virutas de corte durante el trabajo de taladrado profundo, y se consigue una elevada eficiencia de corte en conjunto con una eliminación del borde del buril en la posición central del eje. En el caso de este cabezal D1 de taladro, la cara 13 de flanco a lo largo de la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 que mira hacia el lado central del eje del cabezal es paralela al centro O del eje del cabezal, y en consecuencia el contacto a presión por parte de la cara 13 de flanco con relación al núcleo C sin corte es más fiable, y la fragmentación poco a poco del núcleo C sin corte se lleva a cabo eficientemente.

Además, la punta T1 desechable utilizada para el cuerpo 3A de cuchilla del lado central en este cabezal D1 de taladro sólo tiene que estar en una posición central elevada adecuada y tener el extremo 11a interior de la cuchilla 11 de corte interior en la primera sección P1 adecuadamente separado del centro O del eje del cabezal. Por tanto, no se requiere una disposición precisa en el cuerpo 2 principal del cabezal, y la fabricación y procesado de la placa 5 de montaje y el procedimiento de montaje de la punta T1 desechable son consecuentemente facilitadas.

Es necesario remarcar que cuando el ángulo de flanco de la cara 13 de flanco de la porción 12b de base de cuchilla de corte exterior es menor que 5 grados, se produce un problema en la función de corte de la porción 12b de base de cuchilla de corte exterior en la primera sección P1 que mira hacia la dirección de taladrado. Por el contrario, cuando el ángulo de flanco supera los 15 grados, la entrada por parte del borde 13a de la cara 13 de flanco en la zona Z sin corte se hace deficiente, y como resultado se reduce el rendimiento de la fragmentación del núcleo C sin corte

Un cabezal D2 de taladro según se muestra en la FIGURA 5(A) y FIGURA 5(B) tiene una especificación de tipo de corte completo. La misma punta T1 desechable está montada igual que todos los cuerpos 3A a 3C de cuchilla de un lado central, un lado circunferencial y una porción intermedia sobre el mismo cuerpo 2 principal de cabezal que el cabezal D1 de taladro del tipo de núcleo sin corte con desprendimiento, como se ha descrito anteriormente. Sin embargo, el cuerpo 3A de cuchilla del lado central está dispuesto del mismo modo que el cuerpo 3B, 3C de cuchilla del lado circunferencial y de la porción intermedia que la punta 1 de cuchilla está hecha de acuerdo con la línea R radial que pasa a través del centro O del eje del cabezal y el extremo 11a interior de la cuchilla 11 de corte interior en la primera sección P1 que mira hacia la dirección de taladrado está dispuesto en una posición ligeramente más allá que el centro O del eje del cabezal. Por tanto, de acuerdo con este cabezal D2 de taladro, el trabajo de taladrado profundo mediante el tipo de corte completo se puede llevar a cabo sin problemas.

65

10

15

20

25

45

En los cabezales D1, D2 de taladro según se ha descrito anteriormente, la punta T1 desechable utilizada para el cuerpo 3B de cuchilla del lado circunferencial es tal que la cuchilla 11 de corte interior en la tercera sección P3 que mira hacia el lado circunferencial del cabezal está dispuesta a lo largo de la dirección de taladrado y entra en contacto lineal deslizante con una circunferencia interior de un orificio de corte. Además de que la cuchilla 11 de corte interior tiene un gran ángulo de punta de cuchilla debido al margen 14 y por tanto está muy reforzada, la porción de margen 14 también entra en contacto deslizante con la circunferencia interior del orificio de corte, de modo que se reduce la abrasión de la cuchilla 11 de corte interior y la cuchilla 11 de corte interior resiste los daños. En consecuencia, la punta T1 desechable ejerce una durabilidad excelente también cuando el cuerpo 3B de cuchilla de lado circunferencial presenta una gran velocidad angular. Además, como se utiliza la misma punta T1 desechable para todos los cuerpos 3A a 3C de cuchilla del lado central, el lado circunferencial y la porción intermedia y están en la misma postura de montaje, se pueden reducir considerablemente los costes de fabricación debido a que los componentes son comunes y a que la operación de montaje es uniforme. Además, la cuchilla 12 de corte exterior con una longitud de cuchilla más larga en la primera sección P1 que mira hacia la dirección de taladrado para cada punta T1 desechable está inclinada hacia arriba hacia el lado del centro O del eje del cabezal, y por tanto la fuerza radial de la fuerza de reacción al corte está dirigida hacia el lado central del eje del cabezal, la punta T1 desechable resiste el descentramiento del eje, y también se mejora la precisión del taladrado de un orificio de corte.

Una segunda punta desechable para taladrado profundo T2 según se muestra en la FIGURA 6(A) y la FIGURA 6(B) tiene de nuevo una forma esencialmente de triángulo equilátero, y específicamente de placa gruesa con forma de eneágono y tiene una simetría triple. Como la punta T2 desechable tiene sustancialmente las mismas configuraciones que la punta T1 desechable de la primera realización excepto por una parte, las partes comunes con la primera realización se denotan con los mismos números de referencia y se omite su descripción.

- En la segunda punta T2 desechable, una diferencia entre los ángulos β1, β2 de cuchilla de corte exterior de la 25 porción 12a de vértice de cuchilla de corte exterior y la porción 12b de base de cuchilla de corte exterior de cada cuchilla 12 de corte (una curvatura entre ambas porciones 12a, 12b de cuchilla de corte exterior) se hace más grande que la de la primera punta desechable, de modo que la cuchilla 11 de corte interior en la primera sección P1 y la porción 12b de base de cuchilla de corte exterior en la tercera sección, la cuchilla 11 de corte interior en la segunda sección P2 y la porción 12b de base de cuchilla de corte exterior en la primera sección P1, y la cuchilla 11 30 de corte interior en la tercera sección P3 y la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 dejan de ser paralelas, respectivamente. Además, en una postura de montaje sobre el cabezal de taladro de acuerdo con la FIGURA 6(A), la cuchilla 11 de corte interior en la tercera sección P3 se dispone a lo largo de la dirección de taladrado mientras que la porción 12b de base de la cuchilla de corte exterior en la segunda sección P2 se dispone inclinada con relación a la dirección de taladrado, de modo que una línea L2 de extensión hacia delante 35 en la dirección de taladrado de un borde de cuchilla de la misma se corta con una línea L1 de extensión de la cuchilla 11 de corte interior. Un ángulo y de corte de dichas líneas L1, L2 de extensión es de alrededor de 5 a 30 grados.
- Cuando esta punta T2 desechable se utiliza para el cabezal D1 de taladro de tipo de núcleo sin corte con desprendimiento, como se muestra en la FIGURA 7(A) y la FIGURA 7(B), el cuerpo 3A de cuchilla del lado central de nuevo es tal que la punta 1 de la cuchilla se dispone en paralelo a la línea radial R y en una posición central elevada una distancia f más adelante según la dirección de rotación de corte que la línea R radial, y el extremo 11a interior de la cuchilla 11 de corte interior en la primera sección P1 que mira hacia la dirección de taladrado está separado una distancia s del centro O del eje del cabezal, formando así la zona Z sin corte. Así, si la cuchilla 11 de corte interior en la tercera sección que mira hacia el lado circunferencial del cabezal se hace para que adopte una postura de montaje a lo largo de la dirección de taladrado en esta punta T2 desechable, la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 que mira hacia el lado central del eje del cabezal está inclinada con relación al centro O del eje del cabezal, como se muestra en la FIGURA 7(B), y la cara 13 de flanco a lo largo de esta porción 12b de base de cuchilla de corte exterior como resultado está inclinada también con relación al centro O del eje del cabezal, como se muestra en la FIGURA 7(A).

Por tanto, el núcleo C sin corte generado en la zona Z sin corte es contactado a presión desde un lateral por la cara 13 de flanco justo después de la generación, es empujado lateralmente hacia fuera, retorcido debido a cambios consecutivos en la dirección de empuje, empujado y cortado desde el lateral tanto como la cara 13 de flanco entra en la zona Z sin corte, y constreñido a un círculo N cuyo radio d es menor que la zona Z sin corte del mismo modo que en la primera punta T1 desechable. Adicionalmente, una inclinación de la cara 13 de flanco gradualmente aumenta la entrada en la zona Z sin corte. Como el grado de desplazamiento lateral desde el centro O del eje del cabezal aumenta a medida que el núcleo C sin corte se hace más largo, el núcleo C sin corte no puede crecer a lo largo y es fragmentado eficientemente poco a poco de manera más fiable.

Se debe remarcar que cuando un ángulo de inclinación de la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 con relación al centro O del eje del cabezal, es decir, un ángulo γ de cruce de las líneas L1, L2 de extensión en la FIGURA 6(A) descrita anteriormente, supera los 30 grados, el desprendimiento del núcleo C sin corte se vuelve difícil, y la resistencia al corte aumenta significativamente.

65

10

Por otro lado, en el cabezal D1 de taladro según el ejemplo de las FIGURAS 2 a 4, tres de las puntas T1 desechables de la primera realización están todas en una postura de montaje tal que la cuchilla 11 de corte interior en la tercera sección P3 que mira hacia el lado circunferencial del cabezal está situada a lo largo de la dirección de taladrado, y en consecuencia el cuerpo 3A de cuchilla del lado central tiene la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 mirando hacia el lado central del cabezal siendo paralelo al centro O del eje del cabezal. Sin embargo, no es necesario que el cuerpo 3A de cuchilla del lado central y el cuerpo 3C de cuchilla de la porción intermedia que no entran en contacto con la superficie circunferencial interior de un orificio de corte se encuentren a lo largo de la dirección de taladrado como en la cuchilla 11 de corte interior en la tercera sección P3 que mira hacia el lado circunferencial del cabezal. Por tanto, incluso cuando se utiliza la primera punta T1 desechable, como para el cuerpo 3A de cuchilla del lado central, cambiar su postura de montaje desde la mostrada en las FIGURAS 2 a 4 a la otra ligeramente girada en el sentido opuesto a las agujas del reloj, inclina la porción 12b de base de cuchilla de corte exterior en la segunda sección P2 que mira hacia el lado central del cabezal con relación al centro O del eje del cabezal como en el caso de utilizar la segunda punta T2 desechable de la segunda realización descrita anteriormente, y una inclinación de la cara 13 de flanco de la misma permite mejorar la eficiencia de la fragmentación del núcleo C sin corte.

La distancia excéntrica de la punta desechable T1, T2 utilizada para el cuerpo 3A de cuchilla del lado central, más específicamente, la distancia s excéntrica del extremo 11a interior de la cuchilla 11 de corte interior en la primera sección P1 que mira hacia la dirección de taladrado desde el centro O del eje del cabezal está preferiblemente dentro del rango de 0,05 a 0,5 mm en el cabezal de taladro para taladrado profundo de la presente invención. Si es demasiado corto, el posicionamiento de la punta desechable se hace difícil, mientras que si es demasiado largo, el núcleo sin corte C se hace grueso, lo que requiere una gran fuerza para su desprendimiento y conduce a una reducción de la eficiencia del corte. Además, una parte central elevada del cuerpo 3A de cuchilla del lado central, en otras palabras, una distancia f de la cuchilla de corte con relación a la línea R radial alrededor del centro O del eje del cabezal está preferiblemente dentro del rango de 0,2 a 1,5 mm con el objeto de asegurar aún más el desprendimiento poco a poco del núcleo C sin corte.

Es necesario remarcar que los cabezales D1, D2 de taladro del ejemplo para taladrado profundo incluyen tres cuerpos 3A a 3C de cuchilla del lado central, el lado circunferencial y la porción intermedia, pero la presente invención se puede aplicar a un cabezal de taladro dotado de cuatro o más cuerpos de cuchilla. Además, configuraciones detalladas como la forma de los orificios 21, 22 de descarga de virutas de corte, la forma de la placa 5 de montaje, la posición de montaje y el número de placas de guía, etc., pueden modificarse de varios modos excepto por los ejemplos del cabezal de taladro de la presente invención.

REIVINDICACIONES

- 1. Un cabezal de taladro para taladrado profundo que comprende:
- 5 un cuerpo (2) principal de cabezal cilíndrico con una superficie de extremo distal;

cuerpos (3A, 3B, 3C) de cuchilla que cooperan para taladrar un material de trabajo y atornillados y fijados a una pluralidad de lugares, incluyendo un lado central, un lado circunferencial y una porción intermedia de la superficie de extremo distal, respectivamente;

- los cuerpos (3A, 3B, 3C) de cuchilla, respectivamente, están compuestos por una punta desechable para taladrado profundo que comprende una forma de placa gruesa que tiene una simetría triple con igual forma seccional cuando se divide en tres secciones con un ángulo central de 120 grados,
 - las puntas (T1, T2) desechables de las que el cuerpo (3A) de cuchilla del lado central y el cuerpo (3B) de cuchilla del lado circunferencial, respectivamente, están compuestos, comprenden una punta (1) de cuchilla que mira en una dirección de taladrado y que tiene una cuchilla (11) de corte interior con una longitud de cuchilla más corta y una cuchilla (12) de corte exterior con una longitud de cuchilla más larga que conforman una forma angular que corresponde a una de las secciones, y

la cuchilla (12) de corte exterior está constituida por dos porciones de cuchilla de corte consecutivas de una porción (12a) de vértice de cuchilla de corte exterior con un ángulo (β 1) de cuchilla de corte exterior pequeño y una porción (12b) de base de cuchilla de corte exterior con un ángulo (β 2) de cuchilla de corte exterior más grande en la forma angular,

donde la punta (T1, T2) desechable de la que está compuesto el cuerpo (3B) de cuchilla del lado circunferencial tiene la cuchilla (11) de corte interior en la punta (1) de cuchilla en una de las secciones que mira hacia un lado circunferencial exterior del cabezal dispuesto en paralelo con el centro (O) del eje del cabezal, y

25 caracterizado porque

10

15

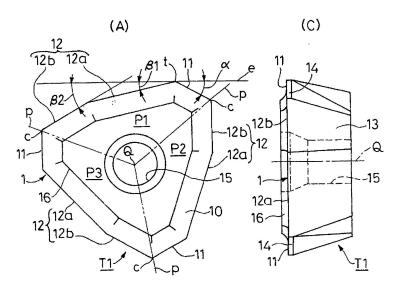
20

30

35

una porción (12b) de base de cuchilla de corte exterior en una punta (1) de cuchilla de una de las secciones (P2) que mira hacia un centro (O) del eje del cabezal en un estado montado en el cabezal de taladro y una cuchilla (11) de corte interior en una punta (1) de cuchilla en una de las secciones (P3) que mira hacia un lado circunferencial exterior del cabezal en el mismo estado de montaje están dispuestas de modo que sean paralelas una a la otra al igual que las líneas (L1) de extensión hacia delante en la dirección de taladrado de bordes de cuchilla respectivos para cortarse una con otra.

la punta (T1, T2) desechable de la que está compuesto el cuerpo (3A) de cuchilla del lado central tiene una punta de cuchilla completa dispuesta en paralelo a una línea (R) radial alrededor de un centro (O) del eje del cabezal y en una posición central elevada más adelantada en una dirección de rotación de corte que la línea (R) radial, y


un extremo (11a) interior de una cuchilla (11) de corte interior en una punta (1) de cuchilla en una de las secciones (P1) que mira hacia una dirección de taladrado está separado del centro (O) del eje del cabezal y forma una zona (Z) sin corte cerca del centro (O) del eje.

- 40 2. El cabezal de taladro para taladrado profundo de acuerdo con la reivindicación 1, donde una cara (13) de flanco a lo largo de la porción (12b) de base de cuchilla de corte exterior de al menos la punta (T1, T2) desechable de la que está compuesto el cuerpo (3A) de cuchilla del lado central tiene un ángulo (θ) de flanco en el rango de 5 a 15 grados.
- 45 3. El cabezal de taladro para taladrado profundo de acuerdo con la reivindicación 1 o 2, donde se forma un margen (14) a lo largo de la cuchilla (11) de corte interior de al menos la punta (T1, T2) desechable de la que está compuesto el cuerpo (3B) de cuchilla del lado circunferencial.
- 4. El cabezal de taladro para taladrado profundo de acuerdo con cualquiera de las reivindicaciones anteriores,
 donde la punta (T1, T2) desechable de la que está compuesto el cuerpo (3A) de cuchilla del lado central tiene toda la
 cuchilla de corte dispuesta en una posición central elevada 0,2 a 1,5 mm más adelante según la dirección de
 rotación del corte que la línea (R) radial alrededor del centro (O) del eje del cabezal; y
 el extremo (11a) interior de la cuchilla (11) de corte interior en la punta (1) de cuchilla en una de las secciones (P1)

que mira hacia la dirección de taladrado está separado 0,05 hasta 0,5 mm del centro (O) del eje del cabezal.

55
 5. El cabezal de taladro para taladrado profundo de acuerdo con cualquiera de las reivindicaciones anteriores, donde se proporcionan al menos tres cuerpos de cuchilla de corte de un lado central, un lado circunferencial y una porción intermedia, y todos los cuerpos de cuchilla están compuestos por la punta desechable para taladrado profundo (T1, T2).

FIG. 1

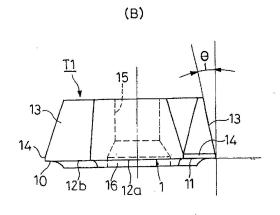


FIG. 2 (A) 3B(T1) 3C(T1) 3A(T1) (B) 50-2b <u>D1</u>--24 2C -20

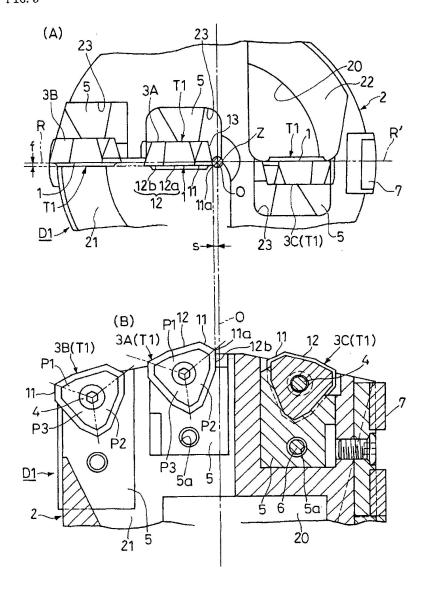
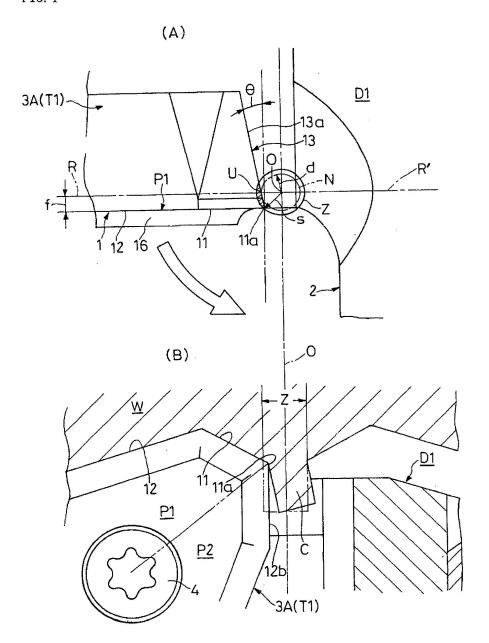



FIG. 4

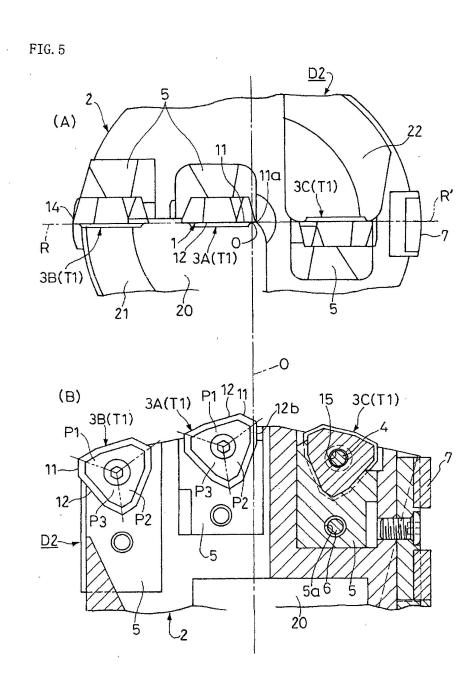


FIG. 6

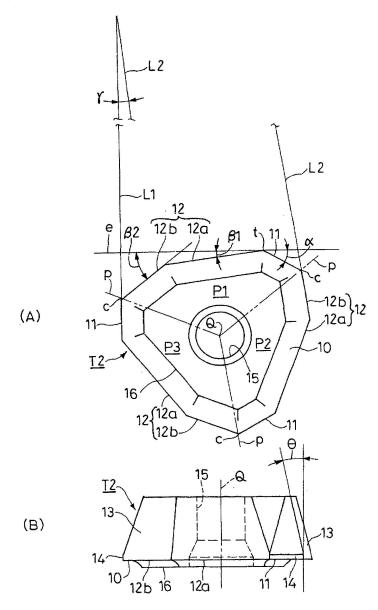


FIG. 7

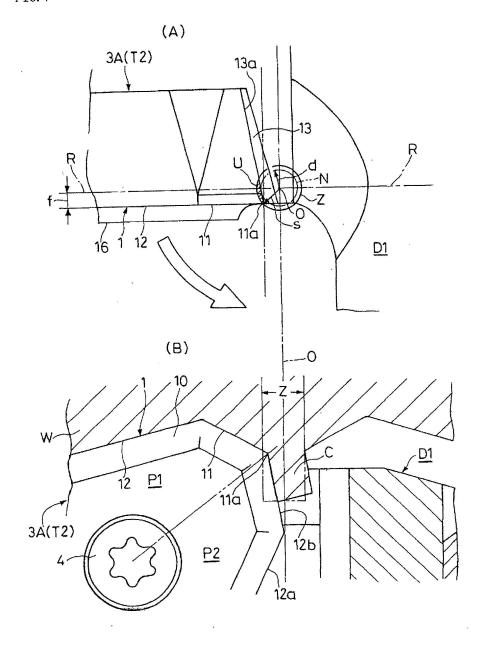
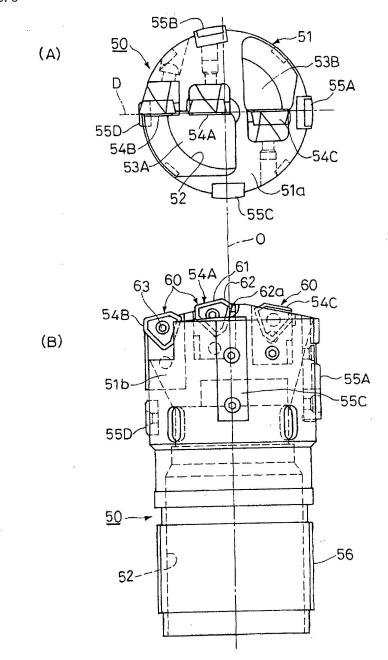



FIG. 8

