

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 401 610

51 Int. Cl.:

A61N 1/05 (2006.01)
A61N 1/375 (2006.01)
A61N 1/39 (2006.01)
A61N 1/36 (2006.01)
A61B 5/024 (2006.01)
A61N 1/372 (2006.01)
A61B 7/00 (2006.01)
A61H 39/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 18.06.2009 E 09766877 (6)
 (97) Fecha y número de publicación de la concesión europea: 19.12.2012 EP 2303398
- (54) Título: Cardioversor/desfibrilador
- (30) Prioridad:

18.06.2008 NL 2001698

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.04.2013

(73) Titular/es:

LISIAK 1 B.V. (100.0%) Lagedijk 60 1544 BH Zaandijk, NL

(72) Inventor/es:

DE VOS, GERRIT JOHANNIS

(74) Agente/Representante:

TOMAS GIL, Tesifonte Enrique

DESCRIPCIÓN

Cardioversor/desfibrilador

5 Campo de la invención

[0001] La invención se refiere a un cardioversor/desfibrilador (CD).

Antecedentes de la invención

10

[0002] El tronco cerebral contiene una serie de mecanismos centrales que regulan una serie de funciones fisiológicas vitales. Los trastornos de regulación del sistema cardiopulmonar pueden causar una serie de condiciones patológicas, algunas de las cuales pueden ser potencialmente mortales.

15 [0003] Los CDs actuales comprenden una o varias sondas que, durante el uso, se colocan en un corazón humano. La retirada de dichas sondas del CD produce un serio daño en el cuerpo, es decir, el corazón, los vasos sanguíneos y el tejido circundante. Existe la necesidad de CDs que no presenten esta desventaja.

[0004] La investigación en gatos ha demostrado que se puede parar la respiración por inhalación de mezclas anóxicas durante más de 1 minuto, con una posterior caída severa de la presión sanguínea y del ritmo cardíaco. La estimulación eléctrica o mecánica de la nasofaringe puede inducir un "reflejo de aspiración" tipo respiración agónica (Tomori y Widdicombe, 1969, Beňačka & Tomori, 1995, Tomori et al. 1995, 1998, 2000). Como respuesta a la reanimación, la presión sanguínea, el ritmo cardíaco, la respiración y las funciones neuroconductuales se normalizan. El gato anestesiado parece estar en buenas condiciones, incluso después de hasta tres minutos sin la presión sanguínea, el ritmo cardíaco y la respiración adecuados. Este experimento se puede repetir más de 10 veces en el mismo gato, sin que haya consecuencias negativas notables.

[0005] La provocación de tal reflejo de aspiración se ha indicado como un posible medio para interrumpir la apnea en gatos (Tomori *et al.*, 1991, 1995, Beňačka & Tomori, 1995, Jakus *et al.*, 2004). Alternativamente, se puede inducir una reanimación similar por (electro)-acupuntura, (electro)-acupresión o estimulación mecánica del filtro nasal en gatos, induciendo inspiración espasmódica (Beňačka & Tomori, 1997).

[0006] No obstante, la posición actual del estado de la técnica publicado es que las inspiraciones espasmódicas típicas del reflejo de aspiración provocado a partir de la nasofaringe y la orofaringe en gatos no son destacables en los seres humanos y que en esta última especies están superadas por un fuerte reflejo del vómito (Beňačka, 2004).

[0007] Otras investigaciones descubrieron reacciones diferentes a partir del reflejo de aspiración en seres humanos como respuesta a la estimulación de las vías respiratorias superiores con presión de aire oscilante de alta frecuencia (Henke & Sullivan, 1992).

40

45

50

30

35

[0008] La WO 2008/072948, que no se ha publicado antes de la fecha de prioridad de la solicitud de la presente invención, describe el sorprendente descubrimiento de que una estimulación de reanimación del tronco cerebral con un reflejo de aspiración inducido para obtener efectos fisiológicos de reanimación también funciona en los seres humanos. Este documento también describe algunos dispositivos diseñados para tratar la apnea y los síndromes cardiorrespiratorios relacionados en seres humanos mediante la activación del centro respiratorio del tronco cerebral, seguida de un reflejo de aspiración inducido. No obstante, este documento no habla de la posible aplicación como cardioversor/desfibrilador.

[0009] La WO2006/115877 divulga un aparato para estimular el nervio vagal de un ser humano para el tratamiento de fibrilación atrial.

Resumen de la invención

[0010] El objetivo de la presente invención es proporcionar un CD basado en una estimulación del tronco cerebral con un reflejo de aspiración inducido mediante un estímulo en la región de la faringe. Aquí, "CD" debe entenderse como un dispositivo que es capaz de operar como al menos un cardioversor o un desfibrilador. Para ello, la invención proporciona un CD según la reivindicación 1. Tal CD se puede usar ventajosamente en hospitales en los que los pacientes que requieren desfibrilación pueden necesitar ayuda en pocos minutos.

60 Breve descripción de los dibujos

[0011] La invención se explicará en detalle con respecto a algunos dibujos que sólo pretenden mostrar las formas de realización de la invención y no limitar su alcance. El ámbito de la invención se define en las reivindicaciones anexas y por sus equivalentes técnicos.

65

La figura 1 es una sección transversal esquemática de una parte de la cabeza y el cuello humanos;

La figura 2 es un detalle de figura 1;

La figura 3 muestra un diagrama de bloques esquemático de un sistema electrónico según la invención.

La figura 4 muestra un ejemplo del sistema electrónico que se puede usar en la presente invención.

La figura 5 muestra un soporte flexible con algunos componentes electrónicos sobre el mismo.

La figura 6 muestra una forma de realización diferente de la invención.

La figura 7 muestra un soporte con una disposición matricial de las unidades de estimulación.

Las figuras 8a, 8b, y 8c muestran formas de realización de un aparato según la invención.

15 Descripción de las formas de realización.

5

10

20

25

30

35

40

55

60

65

[0012] La presente invención se refiere, entre otros, a dispositivos adecuados para inducir la auto-reanimación en un sujeto que la precise. El término auto-reanimación debería entenderse como la reanimación por activación de mecanismos compensatorios naturales del organismo humano mediante la inducción de un reflejo de aspiración tipo respiración agónica, o sus formas alternativas en varias especies, similares a las que se proporcionan por medio de la auto-reanimación espontánea por respiración agónica observada en bebés de animales no humanos y humanos (Sridhar et al., 2003 Xie et al., 2004). Cuando se haga referencia a la inducción de auto-reanimación en este documento, se puede utilizar el término reanimación. En el contexto de la presente invención, los sujetos que se pueden beneficiar de la inducción de auto-reanimación son los sujetos que sufren fallos cardíacos que sólo se puede resolver con un CD.

[0013] Se cree que el "reflejo de aspiración", mediante la fuerte activación del centro inspiratorio, hace que las funciones que controlan el tronco cerebral se restablezcan, de forma similar a la activación de los centros del tronco cerebral durante la auto-reanimación inducida por respiración agónica. En los fuertes y rápidos esfuerzos inspiratorios que se producen durante una respiración agónica o un reflejo de aspiración provocado, la activación del centro inspiratorio del tronco cerebral restablece los centros que están fallando de otras funciones vitales, incluidos los centros que controlan el funcionamiento del corazón. Esto hace que los centros del cerebro que controlan el funcionamiento del corazón envíen una señal de restablecimiento al corazón. Esta señal puede desfibrilar el corazón. Esto es bastante sorprendente dado que, antes de que se depositara la PCT/NL2006/000599, se creía que una estimulación de reanimación del tronco cerebral con un reflejo de aspiración inducido para obtener efectos fisiológicos de reanimación no funcionaba en seres humanos.

[0014] El inventor de la presente invención ha descubierto que un cerdo que necesita desfibrilación puede ser desfibrilado mediante una estimulación reanimante en la región de la faringe. El reflejo de aspiración, debido a dicha estimulación reanimante, provocó la activación del centro respiratorio del tronco cerebral. Este centro respiratorio está en contacto con el centro de control cardiovascular, que se activó por la activación del centro respiratorio. Esto provocó la desfibrilación del corazón del cerdo, lo cual es extremadamente sorprendente ya que se cree que un corazón de cerdo es muy resistente a cualquier forma de desfibrilación. En general, los cerdos morirán después de la fibrilación del corazón.

45 [0015] Una estimulación reanimante en la región de la faringe puede inducir la desfibrilación de un corazón en fibrilación en otros mamíferos, tales como seres humanos, también.

[0016] Como se muestra en la figura 1 la faringe del cuerpo humano se sitúa en la parte inferior del cráneo, a la altura de la vértebra cervical C6. La faringe se puede dividir en tres compartimentos, la nasofaringe (aproximadamente situada detrás de la cavidad nasal, entre las flechas 1 y 2), la orofaringe (aproximadamente situada detrás de la cavidad bucal, entre las flechas 2 y 3) y la laringofaringe (aproximadamente situada detrás de la laringe, entre las flechas 3 y 4).

[0017] La figura 2 muestra la ubicación preferida de la estimulación reanimante de la faringe. La estimulación reanimante se administra preferiblemente en la región de la nasofaringe, recogida por las marcas de referencia A, B, C, D que rodean la tuba auditiva 5. Más preferiblemente, la estimulación reanimante se administra en la proximidad directa de la tuba auditiva 5, señalada por las líneas discontinuas de la figura 2.

[0018] La figura 3 muestra un dispositivo 10 con una carcasa 11. Dentro de la carcasa 11 se encuentra una batería 13 que está conectada por un sistema electrónico 12. La batería 13 puede estar compuesta de litio yodo con componentes de cátodo nanocristalino, como se usa generalmente en marcapasos cardíacos. El sistema electrónico 12 se conectan a un dispositivo de detección 16 mediante los cables adecuados 14, al igual que a un dispositivo de estimulación 17 mediante los cables adecuados 15.

[0019] El sistema electrónico 12 se puede implementar mediante un circuito analógico, un circuito digital o una disposición informática con un procesador instruido por un programa de ordenador adecuado, o cualquier combinación de los mismos. La figura 2 muestra una forma de realización basada en una disposición informática.

[0020] Como se muestra en la figura 4, el sistema electrónico 12 comprende un controlador, por ejemplo, en forma de un microprocesador 20 que se conecta a una memoria 21. Por otra parte, el microprocesador 20 se conecta a un generador de funciones de onda 23 a través de los cables adecuados 22, que tiene una salida conectada a los cables 15 que se pueden conectar al dispositivo de estimulación 17.

5

10

[0021] La memoria 21 se puede implementar como diferentes unidades de memoria de diferentes tipos (RAM, ROM, etc.). La memoria 21 almacena instrucciones de un programa para permitir que el microprocesador 20 ejecute una o más funciones. Opcionalmente, la memoria 21 almacena varios valores de parámetro detectados obtenidos del dispositivo de detección 16. La memoria 21 puede ser cualquier memoria adecuada para almacenar una función predeterminada, tal como una memoria legible por ordenador. La función predeterminada puede ser una función o correlación matemática. Las funciones adecuadas pueden ser funciones adecuadas para determinar si un valor de parámetro determinado es igual, mayor o menor que un valor de umbral predeterminado. Basándose en su conocimiento, el experto en la materia será capaz de determinar las funciones adecuadas sobre la base de que se necesita una respuesta como función de los valores de parámetro determinados. Por ejemplo, la función puede referirse a la ausencia de determinados valores de parámetro por debajo de un determinado valor de umbral para un determinado período de tiempo. Tal función se puede determinar para detectar la presencia de un corazón en fibrilación.

20

15

[0022] Basándose en el programa almacenado en la memoria 21, el microprocesador 20 es capaz de procesar el número de valores de parámetro detectados obtenidos del dispositivo de detección 16 en dicha función. Para ello, los valores de parámetro detectados se cargan en el microprocesador 20 bien directamente desde el dispositivo de detección 16 o alternativamente desde la memoria 21 en la que se cargaron previamente los valores de parámetro detectados. La función se carga en el microprocesador 20 desde la memoria 21 o, en una forma de realización alternativa, la función predeterminada se puede introducir en dicho microprocesador 20. En esta última forma de realización, al menos una memoria se integra (parcialmente) en el microprocesador 20.

25

[0023] El dispositivo de detección 16 puede ser cualquier dispositivo adecuado para detectar un número de valores de parámetro. En la presente especificación, un "número" se referirá a uno o más, a menos que explícitamente se especifique lo contrario. En el uso, el dispositivo de detección 16 proporciona una señal de salida en el cable 14, representando valores de parámetro determinados como respuesta a valores de parámetro determinados. Los valores de parámetro determinados son valores de un parámetro según los mide / determina el dispositivo de detección 16 dentro de un determinado espacio de tiempo. El parámetro puede ser cualquier parámetro sobre cuya base se puede determinar si un sujeto necesita desfibrilación.

30

[0024] Los parámetros adecuados para determinar si un sujeto tiene un corazón en fibrilación y, por tanto, precisa desfibrilación incluyen parámetros relacionados con el pulso cardíaco o el patrón de frecuencia cardíaca. En principio, el dispositivo de detección 16 puede utilizar cualquier parte del cuerpo para detectar un corazón en fibrilación, por ejemplo, detectando el pulso y/o el ritmo cardíaco. No obstante, una implementación adecuada es que el dispositivo de detección 16 está preparado para detectar el flujo sanguíneo de una arteria, por ejemplo, en la proximidad de la funciona de la dispositiva de detecnión de la proximidad de la funciona de la proximid

40

35

el dispositivo de detección 16 transmite una señal de flujo sanguíneo al sistema electrónico 12. El microprocesador 20 está dispuesto para procesar la señal de flujo sanguíneo y generar un electrocardiograma a partir de ésta de forma conocida por los expertos en la técnica.

15

[0025] Como saben los expertos en la técnica, la medición de un electrocardiograma puede hacerse en diferentes ubicación del cuerpo de un mamífero. Por lo tanto, cualquier ubicación tal puede utilizarse en el contexto de la invención para establecer si el mamífero tiene un corazón en fibrilación que necesita a ser desfibrilado.

45

50

[0026] El dispositivo de estimulación 17 está dispuesto para proporcionar una respuesta como función del número de valores de parámetro procesados. El dispositivo de estimulación 17 puede comprender varias unidades de estimulación diseñadas para proporcionar estimulación con el fin de estimular y/o reactivar el centro inspiratorio del tronco cerebral. Como se ha indicado anteriormente, la estimulación y/o reactivación del centro inspiratorio tal y como la proporciona el dispositivo de estimulación 17 es en la faringe. En el tronco cerebral hay otros centros de control, tales como el centro vasomotor y las neuronas que controlan la actividad cardíaca, que a su vez también se verán influidos secundariamente por la estimulación del centro inspiratorio.

55

[0027] La estimulación de ciertos lugares distantes del tronco cerebral, como la faringe, produce la inducción de la reanimación porque en lugares determinados del cuerpo mamífero hay nervios aferentes conectados al centro inspiratorio del tronco cerebral. La estimulación de tales nervios aferentes o de sus zonas receptivas produce la activación del centro inspiratorio del tronco cerebral y a través de ésta se influye en los demás centros del tronco cerebral y en otras partes del cerebro, de manera que se puede inducir desfibrilación.

60

[0028] Se ha descubierto que la estimulación de la nasofaringe, más preferiblemente la parte de la nasofaringe cercana a la *tubae auditivae*, genera el efecto de reanimación más fuerte, con inducción del reflejo de aspiración.

65

[0029] El dispositivo de estimulación 17 puede ser un dispositivo de estimulación mecánico, químico o eléctrico. El dispositivo de estimulación eléctrico puede incluir una fuente de energía separada. Una fuente de energía adecuada puede ser un conjunto de condensadores cargados que permitan la selección del voltaje para la estimulación, en el caso

de que se utilicen impulsos. Esta fuente de energía separada puede, alternativamente, no existir, en cuyo caso el dispositivo de estimulación 17 se conectará a la batería 13 situada dentro de carcasa 11 mediante cableado 15. El generador de onda 23, como se muestra en la figura 4, puede ser parte del dispositivo de estimulación 17. En combinación con tal fuente de energía, el generador de onda 23 está preparado para producir una señal de control deseada para el dispositivo de estimulación 17, por ejemplo en forma de ondas cuadradas, ondas sinusoidales o impulsos de diferentes longitudes, frecuencias y amplitudes, o combinaciones de los mismos.

[0030] En una forma de realización, las unidades de estimulación 43(i) son unidades de estimulación mecánica dispuestas para proporcionar un estímulo mecánico al cuerpo humano. Tales unidades de estimulación mecánica 43(i) pueden estar formadas por componentes de electrostricción que producen un movimiento mecánico cuando reciben estimulación de una corriente eléctrica. Tales unidades de estimulación mecánica 43(i) puede tener forma de agujas.

10

15

20

25

30

35

40

45

50

60

65

[0031] El dispositivo de estimulación 17 puede además incluir o estar conectado a uno o más electrodos de estimulación para proporcionar una estimulación eléctrica a la faringe. Tales electrodos reciben señales de estimulación adecuadas basadas en la señal de control recibida de el sistema electrónico 12. Los electrodos puede ser monopolares o multipolares, incluyendo electrodos bipolares, y pueden colocarse en la superficie de la faringe o anclados a la misma. En este caso, puede ser adecuado anclar el cable de electroestimulación en la zona dorsolateral de la nasofaringe. Alternativamente, los electrodos pueden tener forma de agujas dispuestas para penetrar, al menos parcialmente, en la superficie de la faringe.

[0032] En una forma de realización, el dispositivo de estimulación 17 comprende una pluralidad de electrodos de estimulación. Usando una pluralidad de electrodos de estimulación se puede proporcionar al cuerpo corrientes de estimulación más complejas. Esto también ofrece la posibilidad de definir de forma precisa el área que se va a estimular. Si se usa una pluralidad de electrodos de estimulación es preferible que haya alguna distancia entre dichos electrodos. Debido a esta distancia, la corriente eléctrica recorrerá esa distancia a través del cuerpo del sujeto. Esto aumentará el efecto estimulador.

[0033] Si se usan impulsos para la señal de control, se pueden hacer variaciones en la amplitud y la duración de los impulsos, es decir, la cantidad de energía, además de trenes de impulsos durante un periodo de tiempo extendido (segundos)(Beňačka y Tomori, 1995). Se pueden usar ondas sinusoidales de varias frecuencias y duración, ondas cuadradas, impulsos, trenes de impulsos y cualquier combinación de los mismos. Se prefiere no sólo transferir energía, sino estimular los centros de respuesta objetivo de forma más compleja para suscitar la respuesta fisiológica deseada.

[0034] En una forma de realización del método de la invención, el CD según la invención está, al menos parcialmente, implantado en el área faríngea de un cuerpo humano, es decir, al menos la carcasa 11 con sus componentes dentro. Preferiblemente, en esta forma de realización, el CD se implanta completamente en el área faríngea del cuerpo humano. La implantación es especialmente adecua cuando se usan medios de estimulación eléctrica y/o mecánica. La implantación completa del dispositivo facilitará al sujeto su uso ya que no habrá partes en la superficie del cuerpo del sujeto. En una forma de realización, el CD implantable se dimensiona de manera que su implantación en el área faríngea se pueda realizar mediante un orificio nasal o vía la garganta humana.

[0035] Por los marcapasos cardíacos se sabe que la vida de la batería puede ser de hasta 10 años. Con los dispositivos para la estimulación reanimante de las neuronas inspiratorias del tronco cerebral la vida de la batería se prevé que sea mucho más larga, o el dispositivo se puede hacer mucho más pequeño, ya que éste no tiene que estimular tan a menudo como un marcapasos cardíaco. En los marcapasos cardíacos, aproximadamente el 70% del volumen del marcapasos corresponde a la batería y a los conectores.

[0036] En una forma de realización, el dispositivo implantable usado en una forma de realización del método de la invención se dispone como se muestra en la figura 3, donde la carcasa 11 que contiene el sistema electrónico 12 y la batería 13 está hecha de un material flexible biocompatible. Un material adecuado es la silicona, dado que se sabe que el cuerpo humano la tolera bien. No obstante, se pueden utilizar en su lugar otros materiales flexibles tolerados por el cuerpo humano.

[0037] La ventaja del uso de una carcasa flexible es que ésta se adapta a la forma del cuerpo en el que se implanta la carcasa. De este modo, ejerce poca o ninguna presión mecánica en el cuerpo humano después de la implantación, lo cual causaría incomodidad o incluso estimulación indeseada por presión.

[0038] En una forma de realización, la carcasa flexible 11 se diseña para ser implantable en la nasofaringe o detrás de ésta. La implantación de tal carcasa se puede hacer vía la nariz o la boca.

[0039] En tal forma de realización, la batería se puede hacer flexible también. Alternativamente, la batería puede consistir en dos o más baterías pequeñas que formen un paquete de batería flexible. El sistema electrónico 12 puede estar hecho de componentes flexibles también o al menos componentes electrónicos que se puedan insertar en un soporte flexible, por ejemplo, una placa de circuito impreso flexible. La figura 5 muestra tal soporte flexible 30 con componentes electrónicos 31 localizados en al menos una superficie. El dispositivo de estimulación 17 se puede localizar dentro de la carcasa 11 también y estar hecho de componentes electrónicos sobre un soporte flexible también.

Luego, el dispositivo de estimulación 17 puede estar dispuesto como se muestra en la figura 5 también. Los componentes electrónicos del sistema electrónico 12 pueden estar dispuestos sobre un primer soporte flexible y el dispositivo de estimulación 17 puede estar dispuesto sobre un segundo soporte flexible. No obstante, estos primeros y segundos soportes pueden ser un único soporte. La batería 13 se puede proporcionar sobre ese soporte también. El dispositivo de detección 16 puede estar localizado dentro de la carcasa 11 también y estar hecho de componentes electrónicos sobre un tercer soporte flexible también. Luego, el dispositivo de detección 16 se puede disponer como se muestra en la figura 5 también. Los soportes con los componentes electrónicos del sistema electrónico 12, el dispositivo de detección 16 y el dispositivo de estimulación 17 pueden ser soportes separados. Alternativamente, no obstante, pueden ser un único soporte.

10

15

20

[0040] Un dispositivo implantable 10 usado en la invención se puede diseñar de manera que éste no esté provisto de sondas de detección o de estimulación externas. Como se muestra en la figura 6, la carcasa 11 de tal dispositivo 10, entonces, contiene todos componentes, incluyendo el dispositivo de detección 16, el sistema electrónico 12, la batería 13 y el dispositivo de estimulación 17. La batería 13 se muestra para su conexión a los dispositivos electrónicos 12 pero igualmente se puede conectar al dispositivo de detección 16 y al dispositivo de estimulación 17. Luego, la carcasa 11 puede ser parcialmente conductora. Por ejemplo, la carcasa 11 puede estar provista de almohadillas conductoras 33 conectadas al dispositivo de detección 16 y que operen como una matriz sensible al voltaje para la detección de un electrocardiograma. Luego, las almohadillas sensibles al voltaje se conectan a filtros y amplificadores adecuados para hacer tal electrocardiograma, como entenderán los expertos en la técnica. La carcasa conductora 11 puede, de forma similar, estar provista de almohadillas eléctricas 43(i), i = 1, 2, 3,..., I conectadas al dispositivo de estimulación 17 que se usan para guiar una corriente de estimulación eléctrica a la faringe del cuerpo en su proximidad directa. Las almohadillas eléctricas 33, 43(i) pueden hacerse fabricando la carcasa 11 de silicona y dopando partes de la misma con un metal adecuado como titanio o platino. Tales partes dopadas, luego, forman las almohadillas eléctricas 33, 43(i). Las almohadillas eléctricas pueden estar hechas de cualquier metal adecuado, tal como titanio o platino, posiblemente introducido o dispuesto en la carcasa 11 (silicona).

25

30

[0041] Las almohadillas 43(i) pueden estar formadas como una matriz de estimulación bidimensional 40. La figura 7 muestra tal matriz de estimulación 40 que se puede usar en el dispositivo de la invención. Como se muestra en la figura 7, la matriz de estimulación 40 tiene un soporte 42 provisto de una pluralidad de unidades de estimulación 43(i) dispuestas en un modelo bidimensional. El soporte 42 puede ser parte de la carcasa 11 proporcionarse como una carcasa 11 exterior de la unidad separada. Las unidades de estimulación 43(i) está dispuestas de forma matricial. La disposición mostrada comprende unidades de estimulación 43(i) en un modelo de matriz regular. No obstante, la invención no se limita a esta disposición. Se pueden utilizar otros modelos regulares o modelos irregulares en su lugar.

35

[0042] En otra forma de realización alternativa, sólo el dispositivo de estimulación 17 está localizado dentro de la carcasa 11 y las unidades de estimulación 43(i) se localizan sobre la carcasa 11 mientras que el circuito de detección 16 se localiza fuera de la carcasa 11, como en la disposición mostrada en la figura 3.

40

[0043] La carcasa 11 puede estar hecha de un material tal como titanio o platino. En tal caso, cuando las unidades de estimulación 43(i) son demasiado conductivas éstas deberían estar eléctricamente aisladas de la carcasa conductora 11. Esto se puede hacer de cualquier manera conocida por un experto en la técnica.

45

[0044] Tal dispositivo implantable puede hacerse por auto optimización. El sistema electrónico 12 puede estar dispuesto para ejecutar una medición de la impedancia en lugares predeterminados de la piel para localizar uno o más puntos de estimulación óptimos, es decir, puntos dónde se pueda inducir mejor un reflejo de aspiración. Tal medición de impedancia se puede realizar usando la matriz de estimulación y midiendo los niveles de impedancia de la piel entre varias unidades de estimulación 43(i). Esto proporciona un modelo en 2D de niveles de impedancia del área medida en la piel. Las áreas con una impedancia inferior pueden ser mejores puntos para suministrar el estímulo.

50

[0045] El sistema electrónico 12 puede estar dispuesto para enviar diferentes tipos de señales de estimulación a las unidades de estimulación 43(i), bien en forma o en amplitud o ambas. El efecto de las diferentes señales de estimulación por unidad de estimulación 43(i) se puede medir mediante el dispositivo de detección 16 y evaluarse mediante el sistema electrónico 12. El sistema electrónico 12 se puede programar para enmendar estas señales de estimulación enmendando su señal de control como salida al dispositivo de estimulación 17.

55

[0046] Por otra parte, el sistema electrónico 12 se puede programar para que varíe de forma aleatoria su señal de control generada de manera que las señales de estimulación produzcan estímulos aleatorios sobre el área del cuerpo estimulada por las unidades de estimulación 43(i). Esto podría reducir la adaptación del cuerpo a los estímulos generados y, así, mejorar la eficiencia del dispositivo 10.

60

[0047] Las figuras 8a, 8b y 8c muestran formas de realización ventajosas de un aparato según la invención. El método de la invención también se puede aplicar con las formas de realización de estas figuras.

65

[0048] El aparato, tal y como se muestra en la figura 8a, comprende la carcasa 11 que está diseñada como un obturador nasal conformado para permitir su inserción en un orificio de la nariz humana. Preferiblemente, la carcasa 11 es flexible para encajar fácilmente. La carcasa 11 comprende un orificio pasante 50 diseñado de manera que permita respirar al

usuario a través del orificio pasante 50. La carcasa puede comprender el dispositivo de detección 16 en su interior, de manera que dicho dispositivo pueda medir cualquier actividad respiratoria midiendo la corriente de aire que pasa a través del orificio pasante 50. Tal detección del dispositivo de detección 16 puede basarse en cualquier principio físico como la medición del flujo, la medición de la temperatura, la medición de la presión, etc.

5

[0049] Además del dispositivo de detección interno 16, el sistema puede comprender uno o más sensores 38 localizados en el exterior de la carcasa 11 y dispuestos para detectar una señal de pulso cardíaco de una arteria de la nariz. Tal sensor se puede basar en la medición del sonido o de una presión. La carcasa 11 está conectada a la unidad de sujeción en forma de grapa o abrazadera 52 que puede portarse en una cabeza humana y dispuesta para mantener la carcasa con forma de obturador nasal 11 en el orificio nasal cuando se está usando.

10

15

[0050] En la forma de realización de la figura 8a, la carcasa 11 comprende también un dispositivo de estimulación 17 que está dispuesto para proporcionar una pulverización 54 de una composición química en el orificio nasal. La estimulación química se puede inducir al poner en contacto las vías respiratorias superiores con una composición química que induce la reanimación. La composición química, cuando entra en contacto con la faringe, está preferible en forma de gas o de aerosol 10. Muchos aromas son el resultado de una mezcla de compuestos químicos. La inducción química de reanimación se puede realizar por estimulantes trigémino-olfativos que comprenden, por ejemplo, uno o varios de los siguientes: vainilina, amilacetato, ácido propiónico o 15 feniletilalcohol. No obstante, se declara explícitamente que la presente invención no está restringida a la estimulación química con estos aromas/compuestos.

20

[0051] Para distribuir la composición química, el dispositivo de estimulación 17 puede comprender una unidad de pulverización. La unidad de pulverización puede ser adecuada para pulverizar un gas (presurizado) y/o pulverizar (incluso nebulizar) un líquido. Las unidades de pulverización adecuadas son conocidas por el experto en la materia.

25

30

[0052] La figura 8b muestra una forma de realización alternativa de un aparato según la invención. Los componentes que tienen los mismos números de referencia se refieren a los mismos componentes de la figura 6a. No obstante, el aparato de la figura 6b está creado para proporcionar al menos un estímulo eléctrico y un estímulo mecánico en la región faríngea. Con este propósito, la carcasa 11 dispone de un tubo 56 a través del cual se extiende al menos un hilo, un cable o una fibra 58. La longitud del hilo, cable o fibra 58 es tal que toca el área faríngea una vez que la carcasa 11 se inserta en un orificio nasal. El hilo, cable o fibra se puede conectar a un motor adecuado (no mostrado) y dispuesto para estimular el área nasofaríngea por un movimiento mecánico adecuado indicado por el sistema electrónico 12. Alternativamente, el cable 58 se puede conectar al sistema electrónico 44 dentro del dispositivo de estimulación 17 dispuesto para proporcionar señales de estimulación eléctrica al cable 58 según las instrucciones del sistema electrónico 12.

35

[0053] La figura 8c muestra una forma de realización en la que la carcasa 11 está conectada a una capucha nasal 60 que se puede desplazar sobre una nariz humana. La capucha nasal 60 está conectada a la grapa o abrazadera 52.

40

[0054] Aunque la presente invención se ha explicado con referencia a un método y un aparato para neutralizar un corazón en fibrilación, se debe entender que el mismo aparato se puede utilizar para neutralizar otros trastornos corporales tales como un infarto de corazón o un infarto de cerebro. Un infarto de corazón se puede detectar usando un dispositivo de detección 16 que está dispuesto para medir una señal de electrocardiograma. Un infarto de corazón puede detectarse, por ejemplo, a partir de la medición del complejo QRS, como bien conocen los expertos en la técnica. Si se detecta un infarto de corazón, el aparato puede utilizarse para estimular un área faríngea para generar una estimulación con el fin de activar el centro respiratorio del tronco cerebral y, sucesivamente, activar el centro de control cardiovascular.

45

50

[0055] Un infarto cerebral, un TIA o un ataque epiléptico se pueden contrarrestar de manera similar. Por otra parte, los daños se pueden controlar mejor. Si se sospecha que un sujeto sufre un infarto cerebral se puede utilizar una forma de realización del aparato y del método de la invención en la que el dispositivo de detección 16 esté dispuesto para realizar un TAC o MRI que permita que los sistemas electrónicos 12 determinen si el sujeto tiene un infarto cerebral. Es necesario estar seguro de que el sujeto en cuestión no está sufriendo, por ejemplo, una hemorragia cerebral que puede dar como resultado disfunciones similares del cuerpo pero para la cual el tratamiento propuesto probablemente no funcionaría.

55

[0056] Se debe entender que las formas de realización presentadas en los ejemplos anteriores tienen únicamente la intención de ilustrar la presente invención y no de limitar el ámbito de la invención, que sólo se limita por las reivindicaciones anexas y sus equivalentes técnicos.

Referencias

[0057]

- 5 Arita H., Oshima T., Kita I., Sakamoto M.: Generation of hiccup by electrical stimulation in medulla of cats. Neurosci. Lett. 175: 67-70, 1994.
 - Batsel H.L., Lines A.J.: Bulbar respiratory neurons participating in the sniff reflex in the cat, J. Exper. Neurol 39:469-481, 1973 '
- 10 R. Beňačka, Disorders of central regulation of breathing and their influencing by upper airway reflexes (in Slovak). Orbis Medince S: No.: 53 63, 2004,
- R. Beňačka and Z. Tomori, The sniff-like aspiration reflex evoked by electrical stimulation of the nasopharynx, Respir. Physiol.102: 163-174, 1995.
 - J. Jaku, Z. Tomori and A. Stransky, Neural determinants of breathing, coughing and related motor behaviours, Monograph, Wist, Martin, 2004.
- Sridhar R., Thach B.T. *et al.*: Characterization of successful and failed autoresuscitation in human infants including those dying of SIDS. Pediatr. Pulmon. 36:113-122, 2003.
 - St John W.M., Bledsoe T.A., Sokol H.W: Identification of medullary loci critical for neurogenesis of gasping J. Appl. Physiol. 56: 1008-1019, 1984.
- Z. Tomori, M. Kurpas, V. Doni. and R. BeÁa.ka, Reflex reversal of apnoeic episodes by electrical stimulation of upper airway in cats, Respir. Physiol. 102: 175-185, 1995.
- Z. Tomori, R. Beňačka, V. Doni. and J. Jaku, Contribution of upper airway reflexes to apnoea reversal, arousal, and resuscitation, Monaldi Arch. Chest Dis. 55: 398-403, 2000.
 - Z. Tomori, R. Beňačka and V. Doni., Mechanisms and clinicophysiological implications of the sniff- and gasp- like aspiration reflex, Respir. Physiol. 114: 83-98, 1998.
- 35 Z. Tomori and J.G. Widdicombe, Muscular, bronchomotor and cardiovascular reflexes elicited by mechanical stimulation of the respiratory tract, J. Physiol 200: 25-49, 1969.
 - Xie J., Weil M.H., Sun S., Yu T., Yang W.: Spontaneous gasping generates cardiac output during cardiac arrest, Crit. Care Med. 32: 238- 240, 2004.

REIVINDICACIONES

- 1. Cardioversor/desfibrilador que comprende:
 - una carcasa (11),

5

10

15

20

25

35

50

55

- un sistema electrónico (12) dispuesto dentro de dicha carcasa (11),
- un dispositivo de detección (16) conectado a dicho sistema electrónico (12),
- un dispositivo de estimulación (17) conectado a dicho sistema electrónico (12),

el sistema electrónico (12) está dispuesto para recibir una señal de detección desde dicho dispositivo de detección (16) que indica un trastorno de un cuerpo incluyendo al menos uno de los siguientes: un corazón en fibrilación y un infarto cardíaco, para procesar dicha señal de detección y generar una señal de control para dicho dispositivo de estimulación (17), sobre la base de dicha señal de detección, a fin de permitir que dicho dispositivo de estimulación (17) genere un estímulo de reanimación para activar el centro respiratorio del tronco cerebral y, por lo tanto, contrarrestar dicho trastorno, la carcasa (11) está concebida en forma de obturador nasal dispuesto para ser insertado en un orificio nasal, y el dispositivo de estimulación (17) está dispuesto para estimular una región nasofaríngea de dicho mamífero, el cardioversor/desfibrilador:

- está diseñado de tal manera que el dispositivo de estimulación (17) comprende una unidad de pulverización para distribuir una composición química en el orificio nasal, o
- está diseñado de tal manera que incluye un hilo, cable o fibra (58) con una longitud que permite el contacto con la región faríngea una vez que la carcasa (11) se inserta en el orificio nasal, dicho hilo, cable o fibra (58) está conectado a un motor y está dispuesto para estimular la región nasofaríngea mediante un movimiento mecánico adecuado según las instrucciones de dicho sistema electrónico (12), o
- está diseñado de tal manera que incluye un cable (58) que tiene una longitud tal que entra en contacto con la región faríngea una vez que la carcasa (11) está insertada en el orificio nasal, dicho cable (58) está dispuesto de manera que proporciona señales de estimulación eléctrica a dicho cable (58) según las instrucciones de dicho sistema electrónico (12).
- Cardioversor/desfibrilador según la reivindicación 1, donde dicho cardioversor/desfibrilador comprende una pluralidad
 de electrodos que entran en contacto con dicha nasofaringe y que están a cierta distancia entre sí, de manera que una corriente eléctrica recorre dicha distancia a través de dicha nasofaringe.
 - 3. Cardioversor/desfibrilador según la reivindicación 1, dicha composición química incluye estimulantes trigéminoolfativos que comprenden uno o más de los siguientes: vainillina, amilacetato, ácido propiónico y 15 feniletilalcohol.
 - 4. Cardioversor/desfibrilador según cualquiera de las reivindicaciones precedentes, donde dicho cardioversor/desfibrilador comprende una capucha nasal (60) conectada a dicha carcasa (11).
- 5. Cardioversor/desfibrilador según cualquiera de las de las reivindicaciones precedentes, donde dicha carcasa (11) está hecha de un material flexible biocompatible.
 - 6. Cardioversor/desfibrilador según la reivindicación 5, donde dicho material flexible es silicona.
- 7. Cardioversor/desfibrilador según la reivindicación 6, donde dicho sistema electrónico (12) comprende componentes electrónicos (31) sobre un soporte flexible (30).
 - 8. Cardioversor/desfibrilador según cualquiera de las de las reivindicaciones precedentes, donde dicho sistema electrónico (12) comprende un microprocesador (20) conectado a un generador de funciones de onda (23), el generador de funciones de onda (23) está preparado para producir dicha señal de control en forma de onda seleccionada de al menos una de las siguientes: onda sinusoidal, onda cuadrada, tren de impulsos o cualquier combinación de los mismos con una frecuencia, duración y amplitud predeterminada.
 - 9. Cardioversor/desfibrilador según cualquiera de las de las reivindicaciones precedentes, donde dicho dispositivo de detección (16) comprende un sensor (38) en dicha carcasa (11) para detectar una señal de pulso cardíaco.
 - 10. Cardioversor/desfibrilador según cualquiera de las de las reivindicaciones precedentes, donde dicha carcasa comprende un orificio pasante (50) para permitir que dicho mamífero respire a través de dicho orificio nasal.
- 11. Cardioversor/desfibrilador según la reivindicación 10, donde dicho dispositivo de detección (16) está dispuesto para detectar la actividad respiratoria a partir del flujo de aire que pasa a través de dicho orificio pasante (50).

Fig 1

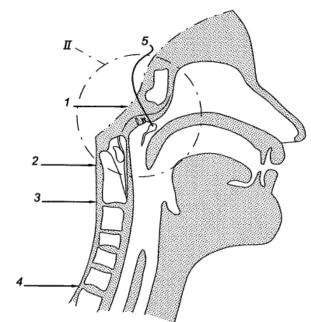
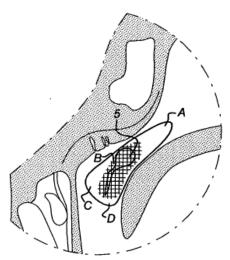
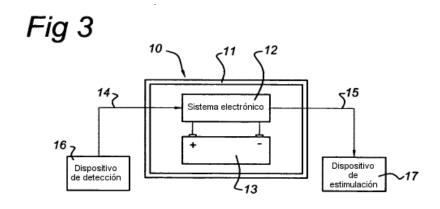
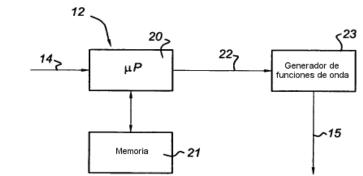
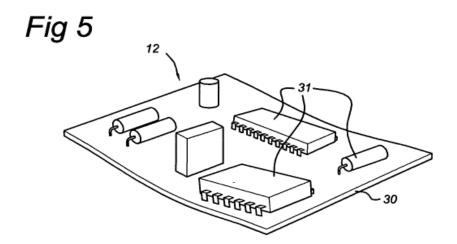
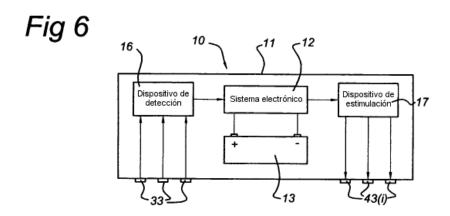
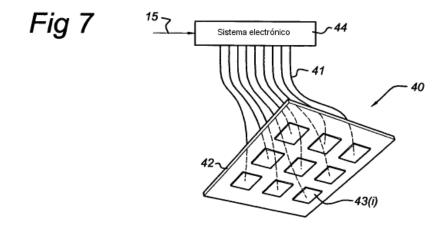
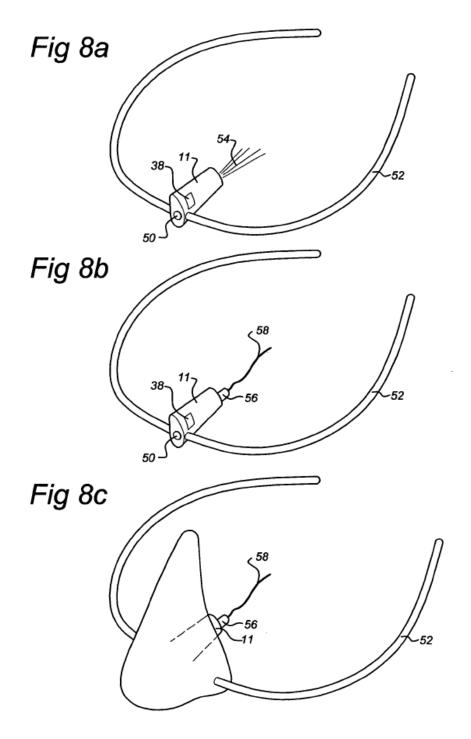



Fig 2


Fig 4

