

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 402 200

51 Int. Cl.:

A61K 31/426 (2006.01) C07D 417/12 (2006.01)

A61K 31/427 (2006.01)
A61K 31/454 (2006.01)
A61K 31/5377 (2006.01)
A61K 31/541 (2006.01)
A61K 31/55 (2006.01)
C07D 277/34 (2006.01)
C07D 277/42 (2006.01)

C07D 277/54 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 17.05.2006 E 06753682 (1) (97) Fecha y número de publicación de la concesión europea: 20.02.2013 EP 1890695
- (54) Título: Utilización de derivados de tiazol-4-ona 2,5-disustituidos en medicamentos
- (30) Prioridad:

20.05.2005 DE 102005024012

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.04.2013 (73) Titular/es:

GRÜNENTHAL GMBH (100.0%) Zieglerstrasse 6 52078 Aachen , DE

(72) Inventor/es:

FRANK, ROBERT; KLESS, ACHIM y JOSTOCK, RUTH

(74) Agente/Representante:

AZNÁREZ URBIETA, Pablo

DESCRIPCIÓN

Utilización de derivados de tiazol-4-ona 2,5-disustituidos en medicamentos

15

35

La presente invención se refiere a derivados de tiazol-4-ona 2,5-disustituidos y a su utilización para la producción de medicamentos, a procedimientos para su preparación y a medicamentos que contienen estos compuestos.

5 El tratamiento del dolor, en particular del dolor neuropático, tiene gran importancia en medicina. Existe una necesidad mundial de terapias contra el dolor eficaces. La necesidad de acción urgente para lograr un tratamiento satisfactorio para el paciente y selectivo de estados de dolor crónicos y no crónicos, debiendo entenderse con ello un tratamiento del dolor eficaz y satisfactorio para el paciente, se pone de manifiesto también en la gran cantidad de trabajos científicos que ha aparecido últimamente en el campo de la analgesia aplicada o de la investigación fundamental sobre la nocicepción.

El receptor vainilloide subtipo 1 (VR1/TRPV1), que frecuentemente también se denomina receptor de la capsaicina, constituye un punto de partida adecuado para el tratamiento del dolor, en particular del dolor neuropático. Este receptor se estimula mediante los vainilloides, por ejemplo la capsaicina, calor y protones, entre otras cosas, y desempeña un papel principal en el origen del dolor (P. Holzer, European Journal of Pharmacology (2004), 500, 231-241). Además es importante para otros numerosos procesos fisiológicos y fisiopatológicos, por ejemplo en migrañas; depresiones; enfermedades neurodegenerativas; trastornos cognitivos; estados de ansiedad; epilepsia, tos; diarrea; prurito; trastornos del sistema cardiovascular; trastornos alimentarios; dependencia de medicamentos; abuso de medicamentos y en particular incontinencia urinaria.

Ya se conocen derivados de tiazolona 2,5-disustituidos que tienen un efecto antiinflamatorio (Y. Song y col., J. Med. Chem. (1999), 42(7), 1151-1160; B.S. Zimenkovsky, Fiziologichno Aktivni Rechovini (2002), (2), 58-64). También existen ya informes sobre derivados de tiazolona 2,5-disustituidos con efectos antibacterianos y/o antimicóticos (E.B. Akerblom, J. Med. Chem. (1974), 17, 609-615; DE 17 70 583 A1). Otros derivados de tiazolonas 2,5-disustituidas se pueden adquirir comercialmente (proveedores por ejemplo Otava, Interchim, Ambinter y ChemDiv; Database Registry STN, RN: 314076-45-4, 302549-02-6, 300660-11-6, 311799-87-8. 463316-89-4, 377054-48-3, 500107-22-2. 300560-36-5, 300560-35-4, 300560-19-4, 300560-18-3). La síntesis de derivados 2-piperidin-2-tiazolin-4-ona 5-sustituidos se da a conocer en B.S. Zimenkovsky, Fiziologichno Aktivni Rechovini (2002), (2), 58-64.

Recientemente se ha informado sobre compuestos con una afinidad por el receptor VR1 (VRPV1) que tienen efectos analgésicos (A. Szallasi y col., J. Med. Chem. (2004), 47(11), 2717-2723; G. Appendino y col., Expert Opin. Ther. Patents (2003), 13(12), 1825-1837). Sin embargo, estos compuestos no presentan ninguna estructura tiazol.

Así, un objeto de la presente invención es proponer nuevos compuestos particularmente adecuados como principios activos farmacológicos en medicamentos, preferentemente en medicamentos para el tratamiento de trastornos o enfermedades donde intervienen, al menos en parte, los receptores vainilloides 1 (receptores VR1/TRPV1).

Sorprendentemente se ha comprobado que algunos derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I mostrada más abajo son adecuados para luchar contra el dolor y presentan una excelente afinidad por el receptor vainilloide subtipo 1 (receptor VR1/TRPV1) y, en consecuencia, son particularmente adecuados para la profilaxis y/o el tratamiento de trastornos o enfermedades donde intervienen, al menos en parte, los receptores vainilloides 1 (receptores VR1/TRPV1).

Por consiguiente, un objeto de la presente invención es la utilización de al menos un derivado de tiazol-4-ona 2,5-disustituido de fórmula general I,

donde

 R^3

20

25

30

35

5

representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; un grupo arilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; un grupo -NR³R⁴; un grupo -NR⁵-C(=O)-R⁶; o un grupo -NR⁷-C(=O)-NR⁸R⁹;

representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; CH-U-X; CH-CH₂-V-Y, CH-CH(CH₃)-V-Y, CH-CHCI-V-Y, CH-CHBr-V-Y, CH-CHF-V-Y o CH-CH (OH)-V-Y; o CH-CH=C(CH₃)-W-Z, CH-CH=CH-W-Z, CH-C(CH₃)=CH-W-Z, CH-C(fenilo)=CH-W-Z, CH-CBr=CH-W-Z, CH-CCI=CH-W-Z, CH-CF=CH-W-Z, CH-C(OH)=CH-W-Z, CH-CH₂-CH₂-W-Z, CH-CH₂-CH₂-W-Z, CH-CH₂-CH₂-W-Z;

pudiendo U, V y W en cada caso no estar presentes o representar, en cada caso independientemente entre sí, un grupo seleccionado de entre el grupo consistente en O, S, N(H), N(CH₃), N(C₂H₅) y N[CH(CH₃)₂];

representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂-O-CH₃, -CH₂-CH₂-CH₂-N(CH₃)-CH₃, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, npentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂; un grupo seleccionado de entre ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclopentenilo, ciclohexenilo, ciclohexenilo, imidazolidinilo, tetrahidrofuranilo, tetrahidrotiofenilo, pirrolidinilo, piperidinilo, morfolinilo, tiomorfolinilo y azepanilo, pudiendo este grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, - $N(C_2H_5)$ -fenilo, $-N(CH(CH_3)_2]$ -fenilo, $-N(CH_3)$ -piridinilo, $-N(C_2H_5)$ -piridinilo, $-N(CH(CH_3)_2]$ -piridinilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos -NH-fenilo, -NH-piridinilo, -N(CH3)-fenilo, - $N(C_2H_5)$ -fenilo, $-N[CH(CH_3)_2]$ -fenilo, $-N(CH_3)$ -piridinilo, $-N(C_2H_5)$ -piridinilo y $-N[CH(CH_3)_2]$ -piridinilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; o representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, 1,3-benzodioxolilo y 1,4-benzodioxanilo, pudiendo el grupo estar unido a través de un grupo -(CH₂)-, -(CH₂)-(CH₂) o -(CH₂)-(CH₂) y/o estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -CF₃, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(=O)-O-CH₃, -

- $C(=O)-O-C_2H_5, -C(=O)-O-C(CH_3)_3, -O-C(=O)-CH_3, -O-C(=O)-C_2H_5, -O-C(=O)-C(CH_3)_3, -N(CH_3)_2, -N(C_2H_5)_2, -NH-CH_3, -NH-CH_4, -NH-CH_5, -NH-CH_6, -NH-CH_6,$
- R⁴ representa un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido, que en caso dado presenta al menos un heteroátomo como miembro de la cadena;

5

10

20

- R⁵, R⁷ y R⁹ representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;
- R⁶ y R⁸ representan en cada caso, independientemente entre sí, un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido;
- X representa un grupo arilo o heteroarilo que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que puede estar sustituido con sustituyentes R¹⁰ iguales o diferentes;
- Y representa un grupo arilo o heteroarilo que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que puede estar sustituido con sustituyentes R¹¹ iguales o diferentes;
 - Z representa un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido; o un grupo arilo o heteroarilo que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que puede estar sustituido con sustituyentes R¹² iguales o diferentes;
- R¹⁰, R¹¹ y R¹² representan en cada caso, independientemente entre sí, un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, SF₅, -OH, -O-alquilo(C₁₋₁₀), -O-alquenilo(C₂₋₁₀), -NH₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C₁₋₅), -alquilo(C₁₋₁₀), -C(=O)-OH, -C(=O)O-alquilo(C₁₋₅), -O-C(=O)-alquilo(C₁₋₅), -NH-alquilo(C₁₋₅), -NH-C(=O)-O-alquilo(C₁₋₅), -C(=O)-H, -C(=O)-alquilo(C₁₋₅), -C(=O)-NH₂, -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-N-(alquilo(C₁₋₅))₂, -S(=O)₂-alquilo(C₁₋₅), -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C₁₋₅), -S(=O)₂-NH-alquilo(C₁₋₅), ciclohexilo, ciclopentilo, piridinilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, ciclopentilo, ciclohexilo, piridezinilo, -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, (CH₂)-benzo[b]furanilo y bencilo; un grupo -C(=O)-NR¹³-(CH₂)_m-NR¹⁴-R¹⁵, siendo m igual a 0, 1, 2, 3, 4 o 5; o un grupo -C(=O)-R¹⁶;
 - R¹³ y R¹⁴ representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;
 - R¹⁵ representa un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; y
 - R¹⁶ representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido;
- 40 en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes;

para producir un medicamento para la profilaxis y/o el tratamiento del dolor.

En el sentido de esta invención, los grupos alifáticos incluyen grupos hidrocarburo acíclicos saturados o insaturados, que pueden ser ramificados o de cadena lineal y pueden no estar sustituidos o estar sustituidos de forma simple o múltiple, igual o diferente, preferentemente con 1 a 20 (es decir, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 o 20), de forma especialmente preferente 1 a 12, (es decir, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 o 12), de forma totalmente preferente 1 a 6 (es decir, 1, 2, 3, 4, 5 o 6) átomos de carbono, es decir alquilo(C₁₋₂₀), alquilo(C₁₋₁₂), alquilo(C₁₋₁₂), alquilo(C₁₋₁₂), alquilo(C₂₋₁₂), alquinilo(C₂₋₁₂), alquinilo(C₂₋

Los grupos alifáticos arriba mencionados pueden presentar preferentemente 1, 2 o 3 heteroátomos seleccionados de entre el grupo que incluye oxígeno, azufre y nitrógeno, así como -N(H)- y -N(alquilo(C₁₋₆)).

Como ejemplos de grupos alifáticos que presentan 1, 2 o 3 heteroátomos se mencionan: -(CH₂)-(CH₂)-O-CH₃, -(CH₂)-(CH₂

En el sentido de esta invención, por el concepto "sustituido" en relación con los grupos alifáticos se entiende (siempre que la expresión no esté definida en otro lugar de la descripción o en las reivindicaciones) la sustitución simple o múltiple, preferentemente la sustitución simple, doble, triple, cuádruple, quíntuple, séxtuple, séptuple, óctuple o nónuple, de uno o más átomos de hidrógeno por ejemplo por F, Cl, Br, I, -CN, -NO₂, -OH, -SH y NH₂, teniendo lugar la sustitución múltiple en átomos iguales o diferentes de forma múltiple, por ejemplo doble o triple, por ejemplo de forma triple en el mismo átomo de C, como en el caso del -CF₃ o el -CH₂CF₃, o en lugares diferentes, como en el caso del -CH(OH)-CH=CCl-CH₂Cl. La sustitución múltiple puede tener lugar con sustituyentes iguales o diferentes. Algunos grupos alifáticos sustituidos especialmente preferentes son -CF₃, -C₂F₅, -CH₂F, -CHF₂, -CF₂-CF₂-CF₃, -CH₂-Cl, -CH₂-CH₂-Cl, -CH₂-CH₂-Cl, -CH₂-CH₂-Cl, -CH₂-CH₂-Cl, -CH₂-CH₂-Cl, -CH₂-CH₂-Cl.

En el sentido de esta invención, los grupos cicloalifáticos son hidrocarburos cíclicos saturados o insaturados, preferentemente de 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 o 16, de forma especialmente preferente 3, 4, 5, 6, 7 u 8 átomos de carbono, pudiendo cada grupo no estar sustituido o estar sustituido de forma simple o múltiple, igual o diferente. Los grupos cicloalifáticos presentan preferentemente 1, 2, 3, 4 o 5 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno (NH) y azufre.

30

35

40

Como ejemplos de grupos cicloalifáticos que pueden estar condensados con un sistema de anillo monocíclico o policíclico se mencionan: ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclooctilo, cicloonolio, ciclodecilo, cicloheptilo, cicloheptilo, cicloheptilo, cicloheptilo, cicloheptenilo, cicloheptenilo, cicloheptenilo, cicloheptenilo, cicloheptenilo, cicloheptenilo, cicloheptenilo, piperidinilo, morfolinilo, piperazinilo, tiomorfolinilo, tetrahidropiranilo, diazepanilo, ditiolanilo, indanilo, indenilo, 1,4-benzodioxanilo, 1,2,3,4-tetrahidronaftilo, 1,2,3,4-tetrahidroquinolinilo, 1,2,3,4-tetrahidropiranilo, 1,2,3,4-tetrahidropiranilo, 1,2,3,4-tetrahidropiranilo, 1,3,4,5-tetrahidropirido[4,3-b]indolilo, 3,4-dihidro-1H-isoquinolinilo, 1,3,4,9-tetrahidro-[b]-carbolinilo, imidazolidinilo, 3,4-dihidro-2H-1,4-benzoxazinilo, 2,3-dihidro-1H-isoquinolilo, 2,3-dihidroindolilo y 1,3-tiazolidinilo.

En el sentido de la presente invención, por un sistema de anillo monocíclico o policíclico se entienden grupos hidrocarburo monocíclicos o policíclicos que pueden estar saturados o insaturados y en caso dado presentar 1, 2, 3, 4 o 5 heteroátomos como miembros del anillo, seleccionados, independientemente entre sí, de entre el grupo

consistente en oxígeno, nitrógeno y azufre. Un sistema de anillo monocíclico o policíclico de este tipo puede estar condensado (hibridado) por ejemplo con un grupo arilo o heteroarilo.

Siempre que esté presente un sistema de anillo policíclico, por ejemplo un sistema de anillo bicíclico, los diferentes anillos pueden presentar, en cada caso independientemente entre sí, un grado de saturación diferente, es decir pueden estar saturados o insaturados. Preferentemente, un sistema de anillo policíclico consiste en un sistema de anillo bicíclico.

5

Como ejemplos de grupos arilo que están condensados con un sistema de anillo monocíclico o policíclico se mencionan: [1,3]-benzodioxolilo, [1,4]-benzodioxanilo, [1,2,3,4]-tetrahidronaftilo, [1,2,3,4]-tetrahidroquinazolinilo y [3,4]-dihidro-2H-1,4-benzoxazinilo.

- 10 En el sentido de esta invención, por el concepto "sustituido" en relación con los grupos cicloalifáticos y los sistemas de anillo monocíclicos o policíclicos se entiende (siempre que la expresión no esté definida en otro lugar de la descripción o en las reivindicaciones) la sustitución simple o múltiple, preferente la sustitución simple, doble, triple, cuádruple, quíntuple, séxtuple, séptuple, óctuple o nónuple, de uno o más átomos de hidrógeno por ejemplo por oxo (=O), tioxo (=S), F, Cl, Br, I, -CN, $-CF_3$, $-SF_5$, -OH, -O-alquilo(C_{1-5}), $-NH_2$, $-NO_2$, $-O-CF_3$, $-S-CF_3$, -SH, -S-alquilo(C_{1-5}), 15 $-\text{alquilo}(C_{1-5}), -C(=O) - \text{OH}, -C(=O) - \text{O-alquilo}(C_{1-5}), -O - C(=O) - \text{alquilo}(C_{1-5}), -N + \text{alquilo}($ fenilo, -NH-piridinilo, -N(alquil(C_{1-5}))fenilo, -N(alquil(C_{1-5}))piridinilo, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O) $alquilo(C_{1-5}), -C(=O)-NH_2, -C(=O)-NH-alquilo(C_{1-5}), C(=O)-N-(alquilo(C_{1-5}))_2, -S(=O)_2-alquilo(C_{1-5}), -S(=O)_2-fenilo, -NH-alquilo(C_{1-5}), -S(=O)_2-fenilo, -NH-alquilo, -NH-alquilo,$ $S(=O)_2$ -alquilo(C_{1-5}), $-S(=O)_2$ -NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridinilo, [1,2,5]-tiadiazolilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica 20 de los grupos -NH-fenilo, -NH-piridinilo, -N(alquil(C₁₋₅))fenilo, -N(alquil(C₁₋₅))piridinilo, piridinilo, ciclopentilo, [1,2,5]tiadiazolilo, ciclohexilo, piridazinilo, -S(=O)2-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH2)-benzo[b]furanilo y bencilo preferentemente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C₁₋₅), -O-alquilo(C₁₋₅), -O-CF₃, -S-CF₃, fenilo y -Obencilo.
- Para los fines de la presente invención, por la expresión "grupo arilo" se ha de entender un grupo seleccionado preferentemente de entre el grupo que incluye fenilo, naftilo, fenantrenilo y antracenilo, no sustituido o sustituido de forma simple o múltiple, igual o diferente. De forma especialmente preferente, el arilo es un fenilo, 1-naftilo o 2-naftilo no sustituido o sustituido de forma simple o múltiple, por ejemplo doble, triple, cuádruple o quíntuple, igual o diferente.
- En el sentido de la presente invención, los grupos heteroarilo son heterociclos heteroaromáticos. Los grupos heteroarilo tienen preferentemente de 5 a 14 miembros, es decir 5, 6, 7, 8, 9, 10, 11, 12, 13 o 14 miembros, y presentan preferentemente 1, 2, 3, 4 o 5 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno y azufre. Cada grupo heteroarilo puede no estar sustituido de forma simple o múltiple, por ejemplo doble, trile, cuádruple o quíntuple, igual o diferente.
- Como ejemplos de grupos heteroarilo en el sentido de la presente invención se mencionan: tiofenilo, furanilo, pirrolilo, pirazolilo, pirazolilo, pirazolilo, imidazolilo, indolilo, isoindolilo, benzo[b]furanilo, benzo[b]tiofenilo, tiazolilo, oxazolilo, isoxazolilo, piridazinilo, pirazinilo, pirimidinilo, indazolilo, quinazolinilo, quinolinilo, isoquinolinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, pirazolilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, pirazolilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, benzoinilo, pirazolilo, benzoinilo, benzo
- En el sentido de esta invención, por el concepto "sustituido" en relación con los grupos arilo y heteroarilo se entiende la sustitución simple o múltiple, por ejemplo simple, doble, triple, cuádruple o quíntuple, de uno o más átomos de hidrógeno del sistema de anillo con sustituyentes adecuados. Siempre que el significado de estos sustituyentes adecuados en relación con los grupos arilo o heteroarilo no esté definido en algún otro lugar de la descripción o en las reivindicaciones, sustituyentes adecuados son F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C₁₋₁₀), -O-alquilo(C₂₋₁₀), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C₁₋₅), -alquilo(C₁₋₁₀), -C(=O)-O-alquilo(C₁₋₅), -C(=O)-H, -C(=O)alquilo(C₁₋₅), -N(alquilo(C₁₋₅))₂, -NH-C(=O)-O-alquilo(C₁₋₅), -C(=O)-H, -C(=O)alquilo(C₁₋₅),

-C(=O)-NH₂, -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-N-(alquilo(C_{1-5}))₂, -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -O-S(=O)₂-fenilo,

Los grupos alquileno, alquenileno o alquinileno lineales o ramificados arriba mencionados preferentemente tienen de 1 a 5 átomos de carbono, es decir, se trata de grupos alquileno(C₁₋₅), alquenileno(C₂₋₅) o alquinileno(C₂₋₅), que en cada caso pueden no estar sustituidos o estar sustituidos preferentemente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -SH, -NH₂, -CN, -NO₂ y fenilo, pudiendo el fenilo estar sustituido preferentemente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo, terc-butilo, n-pentilo, isopentilo y neopentilo.

De forma especialmente preferente, los grupos alquileno se pueden seleccionar de entre el grupo consistente en - (CH_2) -, - (CH_2) 2-, - (CH_2) 3-, - (CH_2) 3-, - (CH_2) 5-, - (CH_2) 6-, - (CH_2) 6

De forma especialmente preferente, los grupos alquenileno se pueden seleccionar de entre el grupo consistente en - CH=CH-, -C(CH₃)=CH-, -C(C₂H₅)=CH-, -CH=C(CH₃)-, -CH=C(C₂H₅)-, -CH=C(fenilo)-, -CH=C(p-tolilo), -C(fenilo)=CH-y-C(p-tolilo)=CH-.

De forma especialmente preferente, el grupo alquinileno es un grupo -C=C.

De forma especialmente preferente se utiliza al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada, donde

25 R¹ representa uno de los siguientes grupos

pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, -O-CH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -N(CH₃)-fenilo, -N(CH₃)-fenilo, -N(CH₃)-fenilo, -N(CH₃)-piridinilo, -N(CH₃)-piridinilo, -N(CH₃)-piridinilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica del fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br y -CF₃;

30

o representa uno de los siguientes grupos

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃;

o representa un grupo seleccionado de entre fenilo y naftilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre - OH, -O-CH₃ y -O-C₂H₅;

- o representa un grupo NR³R⁴;
- o representa un grupo NR⁷-C(=O)-NR⁸R⁹;
- R² representa un grupo 1,3-dihidroindol-2-onilo o un 1,3-dihidroindol-2-tionilo;
- 15 o representa CH-X;

5

10

- o representa CH-CH₂-Y, CH-CH(CH₃)-Y, CH-CHCI-Y, CH-CHBr-Y, CH-CHF-Y o CH-CH(OH)-Y;
- o representa CH-CH=C(CH₃)-Z, CH-CH=CH-Z, CH-CH=CH-S-Z, CH-CH=CH-O-Z, CH-CH=CH-N(CH₃)-Z, CH-C(CH₃)=CH-Z, CH-C(fenilo)=CH-Z, CH-CBr=CH-Z, CH-CCI=CH-Z, CH-CF=CH-Z, CH-C(OH)=CH-Z, CH-CH₂-CH₂-Z, CH-CH₂-CH(CH₃)-Z o CH-CH(CH₃)-CH₂-Z;
- representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂
 - o representa un grupo seleccionado de entre ciclopentilo, ciclohexilo, cicloheptilo, ciclopentenilo, ciclohexenilo y cicloheptenilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo, -N(CH₃)-piridinilo;
- o representa un grupo seleccionado de entre fenilo, naftilo, 1,3-benzodioxolilo y 1,4-benzodioxanilo; pudiendo el grupo estar unido a través de un grupo -(CH₂)-, -(CH₂)-(CH₂) o -(CH₂)-(CH₂) y/o estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, -O-CF₃, -O-CH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo y terc-butilo;
- 35 R⁴ representa un grupo hidrógeno;
 - o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;
 - R⁷ y R⁸ representan en cada caso, independientemente entre sí, un átomo de hidrógeno;

o un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

- representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre F, Cl, Br, I, -CN, -CF₃, -SF₅, -O-CH₃, -O-CC₂H₅, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo;
- X representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridinilo, quinolinilo e isoquinolinilo, que en caso dado puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹⁰ iguales o diferentes;
- Y representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridinilo, piridinilo, piridinilo, quinolinilo e isoquinolinilo, que en caso dado puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹¹ iguales o diferentes;
- Tepresenta un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-tridecilo, n-tetradecilo, n-pentadecilo, n-hexadecilo, n-heptadecilo, n-octadecilo, n-nonadecilo y n-eicosanilo;
- o representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridazinilo, pirimidinilo, quinolinilo e
 isoquinolinilo; que en caso dado puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹² iguales o
 diferentes;
- representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃, -S-C₂H₆, -S-CH₂-CH₂-CH₃, -S-CH₂-CH₂-CH₃, -S-CH₂-CH₃, -S-CH₂-CH₃, -S-C(CH₃)₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo, n-octilo, C(=O)OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -O-C(=O)-C(CH₃)₃, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C(=O)-CH₃, -NH-C(O)-C₂H₅, -NH-C(=O)-C(CH₃)₃, -O-S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo y bencilo;
- 30 o representa un grupo -C(=O)-NR 13 -(CH $_2$)_m-NR 14 -R 15 , siendo m igual a 0, 1, 2 o 3; o representa un grupo -C(=O)-R 16 ;
 - R¹¹ representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, -SF₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo y n-octilo;
- representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, -SF₅, -CF₃, -O-CH₃, -O-C₂H₅, -OCH₂-CH₂-CH₂-CH₃, -O-CH₂
 - R¹³ y R¹⁴ representan en cada caso un grupo hidrógeno;

5

10

representa un grupo seleccionado de entre fenilo y piridinilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo; y

representa un grupo seleccionado de entre el grupo consistente en tiomorfolinilo, azepanilo, morfolinilo, 2,3-dihidro-1H-isoindolilo, 2,3-dihidro-indolilo, piperidinilo y pirrolidinilo; pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de bencilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre F, Cl, Br y -CF₃;

o representa uno de los siguientes grupos

5

25

$$-N$$
 NH , $-N$ NH O $-N$ NH ; CH_3

pudiendo el átomo de hidrógeno del grupo -NH sustituirse por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

De forma totalmente preferente se utiliza al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general 20 I arriba mostrada donde

R¹ representa uno de los siguientes grupos

pudiendo el átomo de hidrógeno del grupo -NH sustituirse por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃;

- o representa un grupo seleccionado de entre fenilo y naftilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, -O-CH₃ y -O-C₂H₅;
- o representa un grupo NR³R⁴; o representa un grupo NR⁷-C(=O)-NR⁸R⁹;
- 5 R² representa un grupo 1,3-dihidroindol-2-onilo o un 1,3-dihidroindol-2-tionilo;
 - o representa CH-X; CH-CH₂-Y, CH-CH(CH₃)-Y o CH-CH(OH)-Y; CH-CH=C(CH₃)-Z, CH-CH=CH-Z, CH-CH=CH-S-Z, CH-C(CH₃)=CH-Z, CH-C(fenilo)=CH-Z, CH-CBr=CH-Z, CH-CCI=CH-Z, CH-CF=CH-Z, CH-CH₂-CH(CH₃)-Z o CH-CH(CH₃)-CH₂-Z;
- R³ representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, 10 CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂-CH
 - o representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, bencilo, 1,3-benzodioxolilo y 1,4-benzodioxanilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, -CF₃, -O-CF₃, -OCH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo y terc-butilo;
 - R⁴ representa un grupo hidrógeno; o un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;
- 20 R⁷ y R⁸ representan en cada caso un grupo hidrógeno;

- R⁹ representa un grupo fenilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br y -CF₃;
- X representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, piridinilo, piridazinilo, pirazinilo, pirimidinilo, quinolinilo e isoquinolinilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹⁰ iguales o diferentes;
 - Y representa un grupo fenilo o naftilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹¹ iguales o diferentes;
 - Z representa un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-hexilo, n-hexilo, recepitation, n-hexilo, n-hexi
- o un grupo fenilo o naftilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹² iguales o diferentes;
- representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂
 - o representa un grupo -C(=O)-NR 13 -(CH $_2$) $_m$ -NR 14 -R 15 , siendo m igual a 0, 1, 2 o 3; o representa un grupo -C(=O)-R 16 ;

- R¹¹ representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₂-CH₂-CH₃, -O-CH₂
- R¹² representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -S-CH₂-CH₂-CH₂-CH₂-CH₃, -S-CH₂-CH₂-CH₂-CH₃, -S-C(CH₃)₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo y n-octilo;

R¹³ y R¹⁴ representan en cada caso un grupo hidrógeno;

5

10

15

20

25

30

- representa un grupo seleccionado de entre fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo; y
- R¹⁶ representa uno de los siguientes grupos

o representa uno de los siguientes grupos

$$-N$$
 NH . $-N$ NH O $-N$ NH ; CH_3

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

De forma particularmente preferente, se utiliza al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada seleccionado de entre el grupo consistente en

- 1. 5-[3-(4-metoxifenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
- 2. clorhidrato de 2-morfolin-4-il-5-fenetiliden-tiazol-4-ona

etamida -ona -ona zol-4-ona nina
-ona -ona -ona zol-4-ona
-ona -ona -ona zol-4-ona
-ona -ona -ona zol-4-ona
-ona -ona -ona zol-4-ona
-ona -ona zol-4-ona
-ona zol-4-ona
-ona zol-4-ona
zol-4-ona
zol-4-ona
nina
a
ona
-ona
na
n)tiazol-4-ona
zol-4-ona
-4-ona
na
a
-4-ona
n-1-il]tiazol-4-ona
I-ona
zol-4-ona
201 1 0114
azol-4-ona
izol-4-ona
1201 1 0114
enciliden)tiazol-4-ona
I-il]tiazol-4-ona
injiiazoi-4-ona on
en-tiazol-4-ona
511 (IGZOI- 4- OHA
n)tiazol 4-ona
i 1 1 1

	54.	5-naftalen-2-ilmetilen-2-tiomorfolin-4-il-tiazol-4-ona
	55.	2-[4-(4-metoxifenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
	56.	2-[4-(2-clorofenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
	57.	5-(3-fenilaliliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
5	58.	5-deciliden-2-morfolin-4-il-tiazol-4-ona
	59.	5-[3-(4-terc-butilfenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
	60.	2-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoato de trietilamonio
	61.	5-(2-bromo-3-fenilaliliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	62.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
10	63.	2-(4-bencilpiperazin-1-il)-5-(4-metilbenciliden)tiazol-4-ona
	64.	2-(4-fenilpiperazin-1-il)-5-quinolin-3-ilmetilen-tiazol-4-ona
	65.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(2-metil-3-fenilaliliden)tiazol-4-ona
	66.	2-[4-(3-cloropiridin-2-il) piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
	67.	5-(2-cloro-3-fenilaliliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
15	68.	5-(4-hidroxi-3-metoxibenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	69.	5-fenantren-9-ilmetilen-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	70.	5-(6-metoxinaftalen-2-ilmetilen)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	71.	5-naftalen-1-ilmetilen-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	72.	5-(4-bromobenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
20	73.	5-(4-metilbenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	74.	2-(4-fenilpiperazin-1-il)-5-(2-trifluorometil-benciliden)tiazol-4-ona
	75.	3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-iliden)-1,3-dihidroindol-2-ona
	76.	3-(2-morfolin-4-il-4-oxo-4H-tiazol-5-iliden)-1,3-dihidroindol-2-ona
	77.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
25	78.	5-(4-terc-butilbenciliden)-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
	79.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
	80.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
	81.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
	82.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
30	83.	5-(2-cloro-3-fenilaliliden)-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
	84.	2-[4-(2-fluorofenil)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
	85.	5-(2-cloro-3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
	86.	ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
	87.	ácido 4-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
35	88.	5-{3-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
33	89.	5-{4-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
	90.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-quinolin-3-ilmetilen-tiazol-4-ona
	91.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
	92.	2-(2,3-dihidroindol-1-il)-5-(4-metilbenciliden)tiazol-4-ona
40	93.	2-(2,3-dihidroindol-1-il)-5-(4-trifluorometil-benciliden)tiazol-4-ona
-1 0	94.	5-[4-(morfolin-4-carbonil)benciliden]-2-tiomorfolin-4-il-tiazol-4-ona
	95.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-ona
	96.	1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(2-trifluorometilfenil)urea
	97.	2-(4-bencilpiperazin-1-il)-5-quinolin-3-ilmetilen-tiazol-4-ona
45	98.	2-(4-bencilpiperazin-1-il)-5-naftalen-2-ilmetilen-tiazol-4-ona
	99.	2-(4-bencilpiperazin-1-il)-5-(3-fenoxibenciliden)tiazol-4-ona
	99. 100.	2-(4-bencilpiperazin-1-il)-5-(4-trifluorometil-benciliden)tiazol-4-ona
	100.	1-[5-(4-metilbenciliden)-4-oxo-4,5-dihidrotiazol-2-il]-3-(2-trifluorometil-fenil)urea
	101.	2-(4-bencilpiperazin-1-il)-5-naftalen-1-ilmetilen-tiazol-4-ona
50	102.	2-(4-bencilpiperazin-1-il)-5-(6-metoxinaftalen-2-ilmetilen)tiazol-4-ona
50	103.	2-(4-bencilpiperazin-1-il)-5-(4-terc-butilbenciliden)tiazol-4-ona
	. 54.	2 (1 55.15) protection 1 ii) 5 (1 toto butilbottomiden) tide201-4-011d

	40=	
	105.	1-[4-oxo-5-(3-fenilaliliden)-4,5-dihidrotiazol-2-il]-3-(2-trifluorometilfenil)urea
	106.	1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(4-trifluorometilfenil)urea
	107.	1-[5-(4-metilbenciliden)-4-oxo-4,5-dihidrotiazol-2-il]-3-(4-trifluorometil-fenil)urea
_	108.	5-{3-[4-(6-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
5	109.	2-(4-bencilpiperazin-1-il)-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
	110.	5-{3-[4-(3-cloropiridin-2-il)-3-metilpiperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
	111.	N-[3-(3-cloro-5-trifluorometilpiridin-2-ilamino)propil]-3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-
		ilidenmetil)benzamida
	112.	N'-(2-cloro-4-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
10	113.	5-{3-[4-(3-cloro-5-trifluorometilpiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-iltiazol-4-ona
	114.	N'-(3-cloro-5-trifluorometilpiridin-2-il)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
	115.	5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
	116.	N'-(2-cloro-5-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
15	117.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
	118.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)-tiazol-4-ona
	119.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
	120.	5-(4-terc-butilbenciliden)-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
	121.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
20	122.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-tiazol-4-ona
	123.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
	124.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(3-fenoxibenciliden)tiazol-4-ona
	125.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-fenoxibenciliden)tiazol-4-ona
	126.	5-(3-benciloxi-benciliden)-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-tiazol-4-ona
25	127.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-hidroxi-3-metoxi-benciliden)tiazol-4-ona
	128.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-furan-2-ilmetilen-tiazol-4-ona
	129.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
	130.	ácido 3-[2-(4-bencilpiperazin-1-il)-4-oxo-4H-tiazol-5-ilidenmetil]benzoico
	131.	5-naftalen-1-ilmetilen-2-piperazin-1-il-tiazol-4-ona
30	132.	2-piperazin-1-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
	133.	5-(4-metilbenciliden)-2-piperazin-1-il-tiazol-4-ona
	134.	5-(4-hidroxi-3-metoxibenciliden)-2-piperazin-1-il-tiazol-4-ona
	135.	5-(4-isopropilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	136.	5-(4-isopropilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
35	137.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
	138.	5-(4-pentafluorosulfanil)benciliden)-2-tiomorfolin-4-il-tiazol-4-ona
	139.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
	140.	clorhidrato de 2-(4-bencilpiperazin-1-il)-5-(4-butilbenciliden)tiazol-4-ona
	141.	clorhidrato de 2-(4-bencilpiperazin-1-il)-5-(4-pentilbenciliden)tiazol-4-ona
40	142.	2-(4-bencilpiperazin-1-il)-5-(4-octilbenciliden)tiazol-4-ona
	143.	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
	144.	5-(4-terc-butilbenciliden)-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	145.	2-[4-(6-cloropiridin-2-il)-piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
	146.	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
45	147.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	148.	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-ona
	149.	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
	150.	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
	151.	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
50	152.	5-(4-metilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
	153.	5-(4-isopropilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona

	154.	5-(4-terc-butilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
	155.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
	156.	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)-tiazol-4-ona
	157.	5-(4-hidroxi-3-metoxibenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
5	158.	2-(4-bencilpiperazin-1-il)-5-(4-pentafluorosulfanil-benciliden)tiazol-4-ona
	159.	2-(4-bencilpiperazin-1-il)-5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}tiazol-4-ona
	160.	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
	161.	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
	162.	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
10	163.	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
	164.	2-(4-bencilpiperazin-1-il)-5-(4-isopropilbenciliden)tiazol-4-ona
	165.	ácido 3-{2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-4-oxo-4H-tiazol-5-ilidenmetil}benzoico
	166.	$5-\{3-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-carbonil] benciliden-2-tiomorfolin-4-il-tiazol-4-ona$
	167.	5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}-2-[4-(4-cloro-[1,2,5]tiadiazol-3-
15		il)piperazin-1-il]tiazol-4-ona
	168.	5-{3-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-
		il]tiazol-4-ona
	169.	5-[3-(4-bencilpiperazin-1-carbonil)benciliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
	170.	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-{3-[4-(6-metoxipiridin-2-il)-piperazin-1-
20		carbonil]benciliden}tiazol-4-ona
	171.	2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
	172.	2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-ona
	173.	2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
	174.	clorhidrato de 2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(3-metoxibenciliden)tiazol-4-ona
25	175.	bromhidrato de 5-benciliden-2-morfolin-4-il-tiazol-4-ona
	176.	bromhidrato de 5-(4-metilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	177.	bromhidrato de 2-dietilamino-5-(4-metilbenciliden)tiazol-4-ona
	178.	bromhidrato de 5-(4-clorobenciliden)-2-dietilaminotiazol-4-ona
	179.	bromhidrato de 5-(4-isopropilbenciliden)-2-morfolin-4-il-tiazol-4-ona
30	180.	bromhidrato de 5-benciliden-2-dietilaminotiazol-4-ona
	181.	bromhidrato de 5-(4-clorobenciliden)-2-morfolin-4-il-tiazol-4-ona
	182.	bromhidrato de 5-(4-clorobenciliden)-2-piperidin-1-il-tiazol-4-ona
	183.	bromhidrato de 5-(4-clorobenciliden)-2-pirrolidin-1-il-tiazol-4-ona
	184.	bromhidrato de 5-benciliden-2-pirrolidin-1-il-tiazol-4-ona
35	185.	5-benciliden-2-pirrolidin-1-il-tiazol-4-ona
	186.	bromhidrato de 5-bifenil-4-ilmetilen-2-piperidin-1-il-tiazol-4-ona
	187.	bromhidrato de 2-azepan-1-il-5-bifenil-4-ilmetilen-tiazol-4-ona
	188.	bromhidrato de 5-bifenil-4-ilmetilen-2-pirrolidin-1-il-tiazol-4-ona
	189.	bromhidrato de 2-morfolin-4-il-5-(3-fenilaliliden)tiazol-4-ona
40	190.	bromhidrato de 5-(3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
	191.	bromhidrato de 5-(3-fenilaliliden)-2-piperidin-1-il-tiazol-4-ona
	192.	bromhidrato de 2-azepan-1-il-5-(3-fenilaliliden)tiazol-4-ona
	193.	bromhidrato de 5-(3-fenilaliliden)-2-pirrolidin-1-il-tiazol-4-ona
	194.	bromhidrato de 5-bifenil-4-ilmetilen-2-morfolin-4-il-tiazol-4-ona
45	195.	bromhidrato de 2-tiomorfolin-4-il-5-(3-trifluorometil-benciliden)tiazol-4-ona
	196.	5-(4-clorobenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
	197.	5-(4-terc-butilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	198.	bromhidrato de 5-(4-terc-butilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
	199.	bromhidrato de 5-(4-terc-butilbenciliden)-2-pirrolidin-1-il-tiazol-4-ona
50	200.	bromhidrato de 2-azepan-1-il-5-(4-terc-butilbenciliden)tiazol-4-ona
	201.	bromhidrato de 5-(4-terc-butilbenciliden)-2-piperidin-1-il-tiazol-4-ona

	202	2 tiomarfalin 4 il 5 (4 trifluoromatilhangilidan)tiozal 4 and
	202.	2-tiomorfolin-4-il-5-(4-trifluorometilbenciliden) tiazol-4-ona
	203.	bromhidrato de 5-(4-terc-butilbenciliden)-2-dietilaminotiazol-4-ona
	204.	2-morfolin-4-il-5-(4-trifluorometilbenciliden)tiazol-4-ona
_	205.	bromhidrato de 2-morfolin-4-il-5-(3-trifluorometilbenciliden)tiazol-4-ona
5	206.	2-morfolin-4-il-5-(3-trifluorometilbenciliden)tiazol-4-ona
	207.	5-bifenil-4-ilmetilen-2-dietilaminotiazol-4-ona
	208.	2-morfolin-4-il-5-tiofen-2-ilmetilen-tiazol-4-ona
	209.	2-morfolin-4-il-5-naftalen-1-ilmetilen-tiazol-4-ona
10	210.	2-morfolin-4-il-5-piridin-2-ilmetilen-tiazol-4-ona
10	211.	2-morfolin-4-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
	212.	2-morfolin-4-il-5-piridin-3-ilmetilen-tiazol-4-ona
	213.	2-morfolin-4-il-5-piridin-4-ilmetilen-tiazol-4-ona
	214.	2-dietilamino-5-(3-trifluorometilbenciliden)tiazol-4-ona
4-	215.	5-(4-metilbenciliden)-2-pirrolidin-1-il-tiazol-4-ona
15	216.	5-(4-terc-butilbenciliden)-2-(2-metoxi-etilamino)tiazol-4-ona
	217.	bromhidrato de 2-morfolin-4-il-5-(4-octilbenciliden)tiazol-4-ona
	218.	5-(4-metilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	219.	5-(3,4-dimetoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	220.	5-(2-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
20	221.	5-(2-hidroxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	222.	5-(4-terc-butilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	223.	5-(4-dietilamino-benciliden)-2-morfolin-4-il-tiazol-4-ona
	224.	5-(4-hidroxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	225.	ácido 4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoico
25	226.	2-morfolin-4-il-5-(2,3,4-trimetoxibenciliden)tiazol-4-ona
	227.	2-morfolin-4-il-5-(3,4,5-trimetoxibenciliden)tiazol-4-ona
	228.	5-(4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	229.	5-(4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
20	230.	5-(3-etoxi-4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
30	231.	5-(3-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	232.	5-(4-bromobenciliden)-2-morfolin-4-il-tiazol-4-ona
	233.	2-morfolin-4-il-5-(4-viniloxibenciliden)tiazol-4-ona
	234.	4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil éster de ácido bencenosulfónico
25	235.	5-(4-dimetilamino-benciliden)-2-morfolin-4-il-tiazol-4-ona
35	236.	4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoato de metilo
	237.	5-(3-hidroxi-4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	238.	5-[4-(3,3-dimetilbutoxi)-3-metoxibenciliden]-2-morfolin-4-il-tiazol-4-ona
	239.	5-(2-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
40	240.	5-(4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
40	241.	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-[3-(4-terc-butilfenil)aliliden]tiazol-4-ona
	242.	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometil-benciliden)tiazol-4-ona
	243.	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
	244.	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-naftalen-1-ilmetilen-tiazol-4-ona
45	245.	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(2-cloro-3-fenilaliliden)tiazol-4-ona
	246.	2-(4-metil-bencilamino)-5-naftalen-1-ilmetilen-tiazol-4-ona
	247.	2-(4-metil-bencilamino)-5-(3-fenoxibenciliden)tiazol-4-ona
	248.	2-(4-metil-bencilamino)-5-(4-fenoxibenciliden)tiazol-4-ona
	249.	5-(2-cloro-3-fenilaliliden)-2-(4-metil-bencilamino)tiazol-4-ona
F.0	250.	2-(4-metil-bencilamino)-5-naftalen-2-ilmetilen-tiazol-4-ona
50	251.	2-(3-metoxi-bencilamino)-5-(4-metil-benciliden)tiazol-4-ona
	252.	5-(4-terc-butilbenciliden)-2-(3-metoxi-bencilamino)tiazol-4-ona

253. 2-(3-metoxi-bencilamino)-5-(4-trifluorometil-benciliden)tiazol-4-ona 254. 2-(3-metoxi-bencilamino)-5-(4-trifluorometoxi-benciliden)tiazol-4-ona 255. 2-(3-metoxi-bencilamino)-5-(3-fenilaliliden)tiazol-4-ona 256. 5-naftalen-1-ilmetilen-2-(4-trifluorometil-bencilamino)tiazol-4-ona 257. 5-(3-fenoxibenciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 258. 5-(4-fenoxibenciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 259. 5-(2-cloro-3-fenilaliliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 260. 5-(3-benciloxi-benciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 261. 5-naftalen-2-ilmetilen-2-(4-trifluorometil-bencilamino)tiazol-4-ona 262. 2-(4-hidroxi-3-metoxifenil)-5-(4-metilbenciliden)tiazol-4-ona y

2-(4-terc-butil-fenil-amino)-5-(4-metilbenciliden)tiazol-4-ona

5

10

15

20

30

45

263.

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, preferentemente seleccionadas en caso dado entre el grupo consistente en bromhidratos, clorhidratos y sales de trietilamonio, o en cada caso en forma de solvatos correspondientes.

También puede ser preferente la utilización de aquellos compuestos según la invención que en el ensayo FLIPR, a una concentración de 10 μ M, tienen una inhibición de la afluencia de iones Ca²⁺ en los ganglios de raíz dorsal de la rata de al menos un 10%, preferentemente al menos un 30%, de forma especialmente preferente al menos un 50%, de forma totalmente preferente al menos un 70% y de forma particularmente preferente al menos un 90%, en comparación con la inhibición máxima de la afluencia de iones Ca²⁺ alcanzable con la capsaicina a una concentración de 10 μ M.

En el ensayo FLIPR se cuantifica la afluencia de Ca²⁺ con ayuda de un colorante sensible al Ca²⁺ (tipo Fluo-4, Molecular Probes Europe BV, Leiden, Holanda) en un Fluorescent Imaging Plate Reader (FLIPR, Molecular Devices, Sunnyvale, EE.UU.), tal como se describe más abajo.

Otro objeto de la presente invención consiste en la utilización de al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada según la invención, en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, y en caso dado uno o más coadyuvantes farmacéuticamente compatibles para producir un medicamento para regular el receptor vainilloide 1 (VR1/TRPV1), preferentemente para inhibir el receptor vainilloide 1 (VR1/TRPV1).

Es preferente la utilización de al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada, en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, y en caso dado uno o más coadyuvantes farmacéuticamente compatibles para producir un medicamento para la profilaxis y/o el tratamiento de trastornos o enfermedades en los que intervienen, al menos en parte, los receptores vainilloides 1.

Es especialmente preferente la utilización de al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada, en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, y en caso dado uno o más

coadyuvantes farmacéuticamente compatibles para producir un medicamento para el tratamiento y/o la profilaxis del dolor, preferentemente dolor seleccionado de entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral y dolor neuropático; para la profilaxis y/o el tratamiento de una o más afecciones seleccionadas de entre el grupo consistente en migrañas; depresiones; incontinencia urinaria; tos; enfermedades neurodegenerativas, seleccionadas preferentemente entre el grupo consistente en la enfermedad de Parkinson, la enfermedad de Huntington, la enfermedad de Alzheimer y la esclerosis múltiple; trastornos alimentarios, seleccionados preferentemente entre bulimia, anorexia, obesidad y caquexia; estados de ansiedad; disfunciones cognitivas, preferentemente trastornos de la memoria; estados de déficit cognitivo (attention deficit syndrom, ADS); epilepsia; diarrea y prurito; para la profilaxis y/o el tratamiento del abuso de alcohol y/o drogas y/o medicamentos y de la dependencia del alcohol y/o drogas y/o medicamentos, preferentemente para la profilaxis y/o la disminución de síndromes de abstinencia en caso de dependencia del alcohol y/o drogas y/o medicamentos; para la profilaxis y/o la disminución del desarrollo de tolerancia frente a medicamentos, en particular medicamentos basados en opioides; para la regulación de la alimentación; para la modulación de la actividad motora; para la regulación del sistema cardiovascular; para la anestesia local; para aumentar la vigilancia; para aumentar la libido; para la diuresis y/o para la antinatriuresis.

Es totalmente preferente la utilización de al menos un derivado de 2,5-tiazol-4-ona sustituido de la fórmula general I arriba mostrada, en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, y en caso dado uno o más coadyuvantes farmacéuticamente compatibles para producir un medicamento para el tratamiento y/o la profilaxis del dolor, preferentemente dolor seleccionado entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral y dolor neuropático; para la profilaxis y/o el tratamiento de una o más afecciones seleccionadas de entre el grupo consistente en migrañas; depresiones; enfermedades neurodegenerativas, seleccionadas preferentemente de entre la enfermedad de Parkinson, la enfermedad de Huntington, la enfermedad de Alzheimer y la esclerosis múltiple; estados de ansiedad; disfunciones cognitivas, preferentemente trastornos de la memoria; estados de déficit cognitivo (attention deficit syndrom, ADS); epilepsia; para la profilaxis y/o el tratamiento del abuso de alcohol y/o drogas y/o medicamentos y de la dependencia del alcohol y/o drogas y/o medicamentos, preferentemente para la profilaxis y/o la disminución de síndromes de abstinencia en caso de dependencia del alcohol y/o drogas y/o medicamentos; para la profilaxis y/o la disminución del desarrollo de tolerancia frente a medicamentos, en particular medicamentos basados en opioides.

Es incluso más preferente la utilización de al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada, en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, y en caso dado uno o más coadyuvantes farmacéuticamente compatibles para producir un medicamento para el tratamiento y/o la profilaxis del dolor, preferentemente dolor seleccionado entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral y dolor neuropático.

Otro objeto de la presente invención consiste en derivados de tiazol-4-ona 2,5-disustituidos de fórmula general la

40

5

10

15

20

25

30

35

donde

- representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico, sustituido al menos de forma simple o no sustituido; un grupo -NR^{3a}R^{4a}; un grupo -NR^{5a}-C(=O)-R^{6a}; o un grupo -NR^{7a}-C(=O)-NR^{8a}R^{9a};
- representa CH-CH=C(CH₃)-W^a-Z^a, CH-CH=CH-W^a-Z^a, CH-C(CH₃)=CH-W^a-Z^a, CH-C(fenilo)=CH-W^a-Z^a, CH-CB=CH-W^a-Z^a, CH-CCI=CH-W^a-Z^a, CH-CF=CH-W^a-Z^a, CH-C(OH)=CH-W^a-Z^a, CH-CH₂-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH
- 10 R³a representa un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido, que en caso dado presenta al menos un heteroátomo como miembro de la cadena; un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; o un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido y/o que puede estar unido a través de un grupo alquileno, alquenileno o alquinileno lineal o ramificado, sustituido al menos de forma simple o no sustituido al menos de forma
- R^{4a} representa un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido, que en caso dado presenta al menos un heteroátomo como miembro de la cadena;
 - R^{5a}, R^{7a} y R^{9a} representan en cada caso, independientemente entre sí, un grupo hidrógeno, o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;
- R^{6a} y R^{8a} representan en cada caso, independientemente entre sí, un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido;
 - Z^a representa un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido; un grupo arilo que está condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que está sustituido con sustituyentes R^{12a} iguales o diferentes; un grupo heteroarilo que está condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que está sustituido con sustituyentes R^{12a} iguales o diferentes;

- representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, SF₆, -OH, -O-alquilo(C₁₋₁₀), -O-alquenilo(C₂₋₁₀), -NH₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C₁₋₅), -alquilo(C₁₋₁₀), -C(=O)-OH, -C(=O)O-alquilo(C₁₋₅), -O-C(=O)-alquilo(C₁₋₅), -NH-alquilo(C₁₋₅), -N(alquilo(C₁₋₅))₂, -NH-C(=O)-O-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -S(=O)₂-alquilo(C₁₋₅), -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C₁₋₅), -S(=O)₂-NH-alquilo(C₁₋₅), ciclohexilo, ciclopentilo, piridinilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupo piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo; un grupo -C(=O)-NR^{13a}-(CH₂)_m -NR^{14a}-R^{15a}, siendo m^a igual a 0, 1, 2, 3, 4 o 5; o un grupo -C(=O)-R^{16a};
 - R^{13a} y R^{14a} representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;

R^{15a} representa un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; y

R^{16a} representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico, sustituido al menos de forma simple o no sustituido:

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

Son especialmente preferentes los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general la arriba mostrada donde

R^{1a} representa uno de los siguientes grupos

$$-N$$
 o . $-N$ s . $-N$

pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, -O-CH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo, -N[CH(CH₃)₂]-piridinilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica del grupo fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br y -CF₃; o

representa uno de los siguientes grupos

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridazinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo,

20

25

5

10

isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃; o representa un grupo $NR^{3a}R^{4a}$: o representa un grupo NR^{7a} -C(=O)- $NR^{8a}R^{9a}$:

representa CH-CH=C(CH₃)-Z^a, CH-CH=CH-Z^a, CH-CH=CH-S-Z^a, CH-CH=CH-O-Z^a, CH-CH=CH-N(CH₃)-Z^a, CH-C(CH₃)=CH-Z^a, CH-C(fenilo)=CH-Z^a, CH-CBr=CH-Z^a, CH-CCI=CH-Z^a, CH-CF=CH-Z^a, CH-C(OH)=CH-Z^a, CH-CH₂-CH₂-Z^a, CH-CH₂-CH(CH₃)-Z^a o CH-CH(CH₃)-CH₂-Z^a;

5

25

- R^{3a} representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂-O-CH₃, -CH₂-CH₂-CH₂-N(CH₃)-CH₃, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, npentilo, sec-pentilo, n-hexilo y n-heptilo; o representa un grupo seleccionado de entre ciclopentilo, 10 ciclohexilo, cicloheptilo, ciclopentenilo, ciclohexenilo y cicloheptenilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃) $fenilo, -N(C_2H_5)-fenilo, -N[CH(CH_3)_2]-fenilo, -N(CH_3)-piridinilo, -N(C_2H_5)-piridinilo, -N[CH(CH_3)_2]-piridinilo; or a superiori control of the superiori control$ 15 representa un grupo seleccionado de entre fenilo, naftilo, 1,3-benzodioxolilo y 1,4-benzodioxanilo, pudiendo el grupo estar unido a través de un grupo -(CH₂)-, -(CH₂)-(CH₂) o -(CH₂)-(CH₂)-(CH₂) y/o estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, -O-CF₃, -O-CH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, nbutilo y terc-butilo;
- 20 R^{4a} representa un grupo hidrógeno; o un grupo seleccionado de entre el grupo consistente en metilo, etilo, npropilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo
 y n-heptilo;
 - R^{7a} y R^{8a} representan en cada caso, independientemente entre sí, un átomo de hidrógeno; o un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;
 - representa un grupo seleccionado de entre fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -O-CH₃, -O-CgH₅, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo;
- 30 Zª representa un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-dodecilo, n-tetradecilo, n-pentadecilo, n-hexadecilo, n-heptadecilo, n-octadecilo, n-nonadecilo y n-eicosanilo; o representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo; en caso dado sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes; o un grupo seleccionado de entre tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridazinilo, quinolinilo e isoquinolinilo, sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes;
- representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, -SF₅, -CF₃, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃), metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-heptilo y n-octilo;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

Son totalmente preferentes los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general la arriba mostrada donde

R^{1a} representa uno de los siguientes grupos

5 o representa el siguiente grupo

10

pudiendo el átomo de hidrógeno del grupo -NH sustituirse por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃; o representa un grupo $NR^{3a}R^{4a}$; o representa un grupo NR^{7a} -C(=O)- $NR^{8a}R^{9a}$;

- $R^{2a} \qquad \text{CH-CH=C(CH}_3)-Z^a, \quad \text{CH-CH=CH-Z}^a, \quad \text{CH-CH=CH-S-Z}^a, \quad \text{CH-C(CH}_3)=\text{CH-Z}^a, \quad \text{CH-C(fenilo)}=\text{CH-Z}^a, \quad \text{CH-CH}_2-Z^a, \quad \text{CH-CH}_2-Z^a, \quad \text{CH-CH}_2-Z^a, \quad \text{CH-CH}_2-Z^a, \quad \text{CH-CH}_2-Z^a, \quad \text{CH-CH}_2-Z^a, \quad \text{CH-CH}_3-Z^a, \quad \text{CH-CH$
- representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂-
 - R^{4a} representa un grupo hidrógeno; o un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;
- 25 R^{7a} y R^{8a} representan en cada caso un grupo hidrógeno;
 - R^{9a} representa un grupo fenilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br y -CF₃;
- za representa un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo y n-octilo;
 o un grupo fenilo o naftilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes;
 - R^{12a} representa un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃, -O-CH₃, -S-C₃, -S-C₄, -S-C₄-CH₂-CH₃, -O-CH₃

-S-CH₂-CH₂-CH₃, -S-C(CH₃)₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo y n-octilo;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

Son especialmente preferentes los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general la arriba mostrada seleccionados de entre el grupo consistente en

- 1. 5-[3-(4-metoxifenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
- 10 2. 5-[3-(4-fluorofenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
 - 3. 2-morfolin-4-il-5-(3-m-tolilaliliden)tiazol-4-ona
 - 4. 2-morfolin-4-il-5-(3-p-tolilaliliden)tiazol-4-ona
 - 5. 2-morfolin-4-il-5-octiliden-tiazol-4-ona
 - 6. 5-butiliden-2-morfolin-4-il-tiazol-4-ona
- 15 7. 5-hexiliden-2-morfolin-4-il-tiazol-4-ona
 - 8. 2-morfolin-4-il-5-(3-p-tolilbut-2-eniliden)tiazol-4-ona
 - 9. 5-[3-(4-terc-butilfenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
 - 10. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-metoxifenil)piperazin-1-il]tiazol-4-ona
 - 11. 5-[3-(4-hidroxi-3-metoxifenil)aliliden]-2-tiomorfolin-4-il-tiazol-4-ona
- 20 12. 2-morfolin-4-il-5-[3-(4-trifluorometil-fenil)but-2-eniliden]tiazol-4-ona
 - 13. 2-morfolin-4-il-5-[3-(3-trifluorometil-fenil)but-2-eniliden]tiazol-4-ona
 - 14. 5-deciliden-2-morfolin-4-il-tiazol-4-ona

- 15. 5-[3-(4-terc-butilfenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
- 16. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
- 25 17. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
 - 18. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
 - 19. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
 - 20. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
 - 21. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-6-[3-(4-terc-butilfenil)aliliden]tiazol-4-ona
- 30 en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, preferentemente sus clorhidratos o bromhidratos, o en cada caso en forma de solvatos correspondientes.
- También pueden ser preferentes los compuestos según la invención que en el ensayo FLIPR, a una concentración de 10 μM, presentan una inhibición de la afluencia de iones Ca²⁺ en los ganglios de raíz dorsal de la rata de al menos un 10%, preferentemente al menos un 30%, de forma especialmente preferente al menos un 50%, de forma totalmente preferente al menos un 70% y de forma particularmente preferente al menos un 90%, en comparación con la inhibición máxima de la afluencia de iones Ca²⁺ alcanzable con la capsaicina a una concentración de 10 μM.
- 40 En el ensayo FLIPR se cuantifica la afluencia de Ca²⁺ con ayuda de un colorante sensible al Ca²⁺ (tipo Fluo-4, Molecular Probes Europe BV, Leiden, Holanda) en el Fluorescent Imaging Plate Reader (FLIPR, Molecular Devices, Sunnyvale, EE.UU.), tal como se describe más abajo.
 - Otro objeto de la presente invención es un procedimiento para preparar los compuestos de fórmula general I según la invención. De acuerdo con este procedimiento, se somete a reacción una 2-aminotiazol-4-ona en ácido acético, en presencia de al menos una sal seleccionada de entre el grupo consistente en acetato de sodio y acetato de potasio,

o en un medio de reacción seleccionado de entre el grupo consistente en metanol, etanol, isopropanol y n-butanol, en presencia de al menos una base orgánica, seleccionada de entre el grupo consistente en trietilamina, piridina, diisopropilamina y N-metilmorfolina, con al menos un compuesto de fórmula general R-C(=O)-H, siendo R - CH=C(CH₃)-W^a-Z^a, -CH=CH-W^a-Z^a, -C(CH₃)=CH-W^a-Z^a, -C(fenilo)=CH-W^a-Z^a, -CBr=CH-W^a-Z^a, -CCI=CH-W^a-Z^a, -CH₂-CH₂-W^a-Z^a, -CH₂-CH(CH₃)-W^a-Z^a o -CH(CH₃)-CH₂-W^a-Z^a, donde W^a y Z^a tienen el significado arriba mencionado, para obtener al menos un compuesto de fórmula general IIa,

donde R^{2a} tiene el significado mencionado,

5

30

35

y en caso dado este compuesto se purifica y/o se aísla;

y al menos un compuesto de fórmula general IIa se somete a reacción, en un medio de reacción, en presencia de al menos una base, preferentemente en presencia de al menos una sal de hidruro metálico o de alcoholato metálico, de forma especialmente preferente en presencia de una sal de hidruro metálico o una sal alcoholato metálico seleccionada de entre hidruro de sodio, hidruro de potasio, terc-butanolato de potasio, terc-butanolato de sodio, metanolato de potasio, metanolato de sodio, etanolato de sodio y etanolato de potasio, con al menos un compuesto de fórmula general LG-R^{3a} o de fórmula general LG-R^{5a}, siendo LG un grupo saliente, preferentemente un átomo de halógeno, de forma especialmente preferente un átomo de cloro, y donde R^{3a}, R^{5a} y R^{7a} en cada caso tienen el significado arriba mencionado, para obtener al menos un compuesto de fórmula general la donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NHR^{3a}, NHR^{5a} o NHR^{7a}, y en caso dado este compuesto se purifica y/o se aísla;

y en caso dado al menos un compuesto de fórmula general IIa donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NHR^{7a}, se somete a reacción, en un medio de reacción, con al menos un isocianato de fórmula general R^{8a}-N=C=O, donde R^{8a} tiene el significado arriba mencionado, en caso dado en presencia de al menos una base, preferentemente en presencia de al menos una base seleccionada de entre trietilamina, 4,4-dimetilaminopiridina y diisopropiletilamina, para obtener al menos un compuesto de fórmula general la donde R^{2a} tiene el significado mencionado y R¹ representa un grupo NR^{7a}-C(=O)-NHR^{8a}, y en caso dado este compuesto se purifica y/o se aísla;

y en caso dado al menos un compuesto de fórmula general la donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NR^{7a}-C(=O)-NHR^{8a}, se somete a reacción, en un medio de reacción, en presencia de al menos una base, preferentemente en presencia de al menos una sal de hidruro metálico o de alcoholato metálico, de forma especialmente preferente en presencia de una sal de hidruro metálico o una sal de alcoholato metálico seleccionada de entre hidruro de sodio, hidruro de potasio, terc-butanolato de potasio, terc-butanolato de sodio, metanolato de potasio, metanolato de sodio, etanolato de sodio y etanolato de potasio, con al menos un compuesto de fórmula general LG-R^{9a}, donde LG es un grupo saliente, preferentemente un átomo de halógeno, de forma especialmente preferente un átomo de cloro, y donde R^{9a} tiene el significado mencionado, para obtener al menos un compuesto de fórmula general la donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a}, y en caso dado este compuesto se purifica y/o se aísla; o

en caso dado al menos un compuesto de fórmula general IIa donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NHR^{5a}, se somete a reacción, en un medio de reacción, en caso dado en presencia de al menos una base, con al menos un compuesto de fórmula general R^{6a}-C(=O)-LG donde R^{6a} tiene el significado

mencionado y LG es un grupo saliente, preferentemente un átomo de halógeno, o en un medio de reacción en presencia de al menos un reactivo de acoplamiento, en caso dado en presencia de al menos una base, con un compuesto de fórmula general R^{6a} -C(=0)-OH donde R^{5a} tiene el significado arriba mencionado, para obtener al menos un compuesto de fórmula general la donde R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NR^{5a} -C(=0)- R^{6a} , y en caso dado este compuesto se purifica y/o se aísla; o

en caso dado al menos un compuesto de fórmula general la donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NHR^{3a}, se somete a reacción, en un medio de reacción en presencia de al menos una base, preferentemente en presencia de al menos una sal de hidruro metálico o de alcoholato metálico, de forma especialmente preferente en presencia de una sal de hidruro metálico o una sal de alcoholato metálico seleccionada de entre hidruro de sodio, hidruro de potasio, terc-butanolato de potasio, terc-butanolato de sodio, metanolato de potasio, metanolato de sodio, etanolato de sodio y etanolato de potasio, con al menos un compuesto de fórmula general LG-R^{4a} donde LG es un grupo saliente, preferentemente un átomo de halógeno, de forma especialmente preferente un átomo de cloro, y donde R^{4a} tiene el significado arriba mencionado, para obtener al menos un compuesto de fórmula general la donde R^{2a} tiene el significado mencionado y R^{1a} representa un grupo NR^{3a}R^{4a}, y en caso dado este compuesto se purifica y/o se aísla.

La reacción de los compuestos de fórmula general IIa donde R^{1a} representa un grupo NHR^{5a} con los compuestos de fórmula general R^{6a}-C(=O)-OH tiene lugar preferentemente en un medio de reacción seleccionado de entre el grupo consistente en dietil éter, tetrahidrofurano, acetonitrilo, metanol, etanol, dimetilformamida, diclorometano y mezclas correspondientes, en caso dado en presencia de una base seleccionada de entre el grupo consistente en trietilamina, 4,4-dimetilaminopiridina, piridina y diisopropiletilamina, o de una base inorgánica, preferentemente a temperaturas entre -70°C y 100°C.

La reacción de los compuestos de fórmula general IIa donde R¹a representa un grupo -NHR⁵a tiene lugar preferentemente en un medio de reacción seleccionado de entre el grupo consistente en dietil éter, tetrahidrofurano, acetonitrilo, metanol, etanol, dimetilformamida, diclorometano y mezclas correspondientes, en caso dado en presencia de un reactivo de acoplamiento, preferentemente seleccionado de entre el grupo consistente en hexafluorofosfato de 1-benzotriazoliloxi-tris(dimetilamino)-fosfonio (BOP), diciclohexilcarbodiimida (DCC), N¹-(3-dimetilaminopropil)-N-etilcarbodiimida (EDCI), N-óxido de hexafluorofosfato de N-[(dimetilamino)-1H-1,2,3-triazolo[4,5-b]piridin-1-ilmetilen]-N-metilmetanoaminio (HATU), hexafluorofosfato de O-(benzotriazol-1-il)-N,N-N¹.N¹-tetrametiluronio (HOBt) y 1-hidroxi-7-azabenzotriazol (HOAt), en caso dado en presencia de al menos una base inorgánica, seleccionada preferentemente de entre el grupo consistente en carbonato de potasio y carbonato de cesio, o de una base orgánica, seleccionada preferentemente de entre trietilamina, 4-metilmorfolina, piridina, N,N-dimetilaminopiridina y diisopropiletilamina, preferentemente a temperaturas entre -70°C y 100°C.

Otro objeto de la presente invención es un procedimiento para la preparación de derivados de tiazol-4-ona 2,5-disustituidos de fórmula general la, de acuerdo con el cual al menos un compuesto de fórmula general R¹a-CN donde R¹a tiene el significado mencionado, a excepción de un grupo NR³aR⁴a, un grupo NR⁵a-C(=O)-R⁶a y un grupo NR³a-C(=O)-NR®aR⁰a, se somete a reacción, en un medio de reacción seleccionado de entre metanol, etanol, isopropanol y n-butanol, en presencia de al menos una base orgánica, seleccionada de entre trietilamina, piridina, diisopropilamina y N-metilmorfolina, o en piridina como medio de reacción, con ácido tioglicólico, para obtener al menos un compuesto de fórmula general IIIa,

5

10

15

20

25

30

donde R^{1a} tiene el significado arriba mencionado a excepción de un grupo NR^{3a}R^{4a}, un grupo NR^{5a}-C(=O)-R^{6a} y un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a}, y en caso dado este compuesto se purifica y/o se aísla;

o al menos un compuesto de fórmula general $H_2N-C(=S)-NHR^{1a}$ donde R^{1a} tiene el significado mencionado a excepción de un grupo $NR^{3a}R^{4a}$, un grupo $NR^{5a}-C(=O)-R^{6a}$ y un grupo $NR^{7a}-C(=O)-NR^{8a}R^{9a}$, se somete a reacción en un medio de reacción seleccionado de entre metanol, etanol, isopropanol y n-butanol, en caso dado en presencia de al menos una base orgánica, seleccionada de entre trietilamina, piridina, diisopropilamina y N-metilmorfolina, con ácido cloroacético, para obtener al menos un compuesto de fórmula general IIIa donde R^{1a} tiene el significado arriba mencionado a excepción de $NR^{3a}R^{4a}$, un grupo $NR^{5a}-C(=O)-R^{6a}$ y un grupo $NR^{7a}-C(=O)-NR^{8a}R^{9a}$, y en caso dado este compuesto se purifica y/o se aísla;

5

y al menos un compuesto de fórmula general Illa se somete a reacción, en ácido acético, en presencia de al menos una sal seleccionada de entre el grupo consistente en acetato de sodio y acetato de potasio, o en un medio de reacción seleccionado de entre el grupo consistente en metanol, etanol, isopropanol y n-butanol, en presencia de al menos una base orgánica, seleccionada de entre el grupo consistente en trietilamina, piridina, diisopropilamina y N-metilmorfolina, con al menos un compuesto de fórmula general R-C(=O)-H donde R representa -CH=C(CH₃)-W^a-Z^a, -CH=CH-W^a-Z^a, -C(CH₃)=CH-W^a-Z^a, -C(fenilo)=CH-W^a-Z^a, -CBr=CH-W^a-Z^a, -CCI=CH-W^a-Z^a, -CF=CH-W^a-Z^a, -C(OH)=CH-W^a-Z^a, -CH₂-CH

20 Cada uno de los compuestos de las fórmulas generales R^{1a}-CN, R-C(=O)-H, R^{3a}-LG, R^{4a}-LG, R^{5a}-LG, R^{7a}-LG, R^{9a}-LG, H₂N-C(=S)-NHR^{1a}, R^{6a}-C(=O)-LG, R^{6a}-C(=O)-OH y R^{8a}-N=C=O indicadas se puede adquirir en el mercado y también se puede preparar mediante procedimientos usuales conocidos por los especialistas.

Preferentemente, los compuestos de la fórmula general $H_2N-C(=S)-NHR^{1a}$ citada se pueden obtener por reacción de 1,1'-tiocarbonildiimidazol con compuestos de fórmula general $R^{1a}NH_2$ en tetrahidrofurano.

Las reacciones arriba descritas se pueden llevar a cabo en cada caso bajo las condiciones usuales conocidas por los especialistas, por ejemplo en lo que respecta a la presión o al orden de adición de los componentes. Dado el caso, los especialistas pueden determinar mediante sencillos ensayos preliminares el modo de proceder óptimo bajo las condiciones correspondientes. Si así se desea y/o requiere, los productos intermedios y finales obtenidos por las reacciones arriba descritas se pueden purificar y/o aislar, en cada caso mediante métodos usuales conocidos por los especialistas. Procedimientos de purificación adecuados son por ejemplo procedimientos de extracción y procedimientos cromatográficos, como cromatografía en columna o cromatografía preparatoria. Todos los pasos de procedimiento arriba descritos, y también en cada caso la purificación y/o el aislamiento de los productos intermedios o finales, se pueden llevar a cabo parcial o totalmente bajo atmósfera de gas inerte, preferentemente bajo atmósfera de nitrógeno.

Los derivados de tiazol-4-ona 2,5-disustituidos de las fórmulas generales I y la arriba mostradas según la invención, en adelante denominados únicamente como derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I, y también los estereoisómeros correspondientes, se pueden aislar tanto en forma de sus bases libres como en forma de sus ácidos libres y también en forma de sales correspondientes, en particular de sales fisiológicamente compatibles. Las bases libres de cada uno de los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada según la invención, y también los estereoisómeros correspondientes, se pueden transformar en las sales correspondientes, preferentemente sales fisiológicamente compatibles, por ejemplo por reacción con un ácido inorgánico u orgánico, preferentemente con los ácidos clorhídrico, bromhídrico, sulfúrico, fosfórico, metanosulfónico, p-toluensulfónico, carbónico, fórmico, acético, oxálico, succínico, tartárico, mandélico, fumárico, láctico, cítrico, glutámico o aspártico. Las bases libres de cada uno de los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada, y los estereoisómeros correspondientes, también se pueden transformar en las sales

fisiológicamente compatibles correspondientes con el ácido libre o con una sal de un sucedáneo de azúcar, por ejemplo sacarina, ciclamato o acesulfamo.

Correspondientemente, los ácidos libres de los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada y los estereoisómeros correspondientes se pueden transformar en sales fisiológicamente compatibles correspondientes por reacción con una base adecuada. Como ejemplos se mencionan las sales de metales alcalinos, de metales alcalinotérreos o de amonio $[NH_xR_{4-x}]^+$, con x = 0, 1, 2, 3 o 4 y R = alquilo(C_{1-4}) lineal o ramificado.

Los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada según la invención y los estereoisómeros correspondientes, al igual que los ácidos correspondientes, las bases o sales correspondientes de estos compuestos, también se pueden obtener en forma de sus solvatos, preferentemente en forma de sus hidratos, mediante métodos usuales conocidos por los especialistas.

10

15

20

40

45

Si, después de su preparación, los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada según la invención se obtienen en forma de una mezcla de sus estereoisómeros, preferentemente en forma de racematos u otras mezclas de sus diferentes enantiómeros y/o diastereoisómeros, éstos se pueden separar y en caso dado aislar mediante procedimientos usuales conocidos por los especialistas. Como ejemplos se mencionan procedimientos de separación cromatográficos, en particular procedimientos de cromatografía líquida bajo presión normal o presión elevada, preferentemente procedimientos MPLC y HPLC, y también procedimientos de cristalización fraccionada. En este contexto se pueden separar entre sí principalmente enantiómeros individuales, por ejemplo de sales diastereoisoméricas formadas, mediante HPLC en fase estacionaria quiral o mediante cristalización con ácidos quirales, por ejemplo ácido (+)-tartárico, ácido (-)-tartárico o ácido (+)-10-canforsulfónico.

Los derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada según la invención y los estereoisómeros correspondientes, y también en cada caso los ácidos, bases, sales y solvatos correspondientes, son toxicológicamente inocuos y, por consiguiente, son adecuados como principios activos farmacéuticos en medicamentos.

Así, otro objeto de la presente invención es un medicamento que contiene al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada según la invención, en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, y en caso dado también uno o más coadyuvantes farmacéuticamente compatibles.

Estos medicamentos según la invención son particularmente adecuados para la regulación del receptor vainilloide 1 (VR1/TRPV1), en especial para la inhibición del receptor vainilloide 1 (VR1/TRPV1) o para la estimulación del receptor vainilloide 1.

Los medicamentos según la invención también son adecuados preferentemente para la profilaxis y/o el tratamiento de trastornos o enfermedades en los que intervienen, al menos en parte, los receptores vainilloides 1.

Preferentemente, el medicamento según la invención es adecuado para el tratamiento y/o la profilaxis del dolor, preferentemente dolor seleccionado de entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral y dolor neuropático; para la profilaxis y/o el tratamiento de una o más afecciones seleccionadas entre el grupo consistente en migrañas; depresiones; incontinencia urinaria; tos; enfermedades neurodegenerativas, seleccionadas preferentemente de entre la enfermedad de Parkinson, la enfermedad de Huntington, la enfermedad de Alzheimer y la esclerosis múltiple; trastornos alimentarios, seleccionados preferentemente de entre bulimia, anorexia, obesidad y caquexia; estados de ansiedad; disfunciones cognitivas, preferentemente trastornos de la memoria; estados de déficit cognitivo (attention deficit syndrom, ADS); epilepsia; diarrea y prurito; para la profilaxis y/o el tratamiento del abuso de alcohol y/o drogas y/o medicamentos y de la dependencia del alcohol y/o drogas y/o medicamentos, preferentemente para la profilaxis y/o la disminución de síndromes de abstinencia en caso de dependencia del

alcohol y/o drogas y/o medicamentos; para la profilaxis y/o la disminución del desarrollo de tolerancia frente a medicamentos, en particular medicamentos basados en opioides; para la regulación de la alimentación; para la modulación de la actividad motora; para la regulación del sistema cardiovascular; para la anestesia local; para aumentar la vigilancia; para aumentar la libido; para la diuresis y/o para la antinatriuresis.

De forma especialmente preferente, el medicamento según la invención es adecuado para el tratamiento y/o la profilaxis del dolor, preferentemente dolor seleccionado de entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral y dolor neuropático; para la profilaxis y/o el tratamiento de una o más afecciones seleccionadas de entre el grupo consistente en migrañas; depresiones; enfermedades neurodegenerativas, seleccionadas preferentemente de entre la enfermedad de Parkinson, la enfermedad de Huntington, la enfermedad de Alzheimer y la esclerosis múltiple; estados de ansiedad; disfunciones cognitivas, preferentemente trastornos de la memoria; estados de déficit cognitivo (attention deficit syndrom, ADS); epilepsia; para la profilaxis y/o el tratamiento del abuso de alcohol y/o drogas y/o medicamentos y de la dependencia del alcohol y/o drogas y/o medicamentos, preferentemente para la profilaxis y/o la disminución de síndromes de abstinencia en caso de dependencia del alcohol y/o drogas y/o medicamentos; para la profilaxis y/o la disminución del desarrollo de tolerancia frente a medicamentos, en particular medicamentos basados en opioides.

De forma totalmente preferente el medicamento según la invención es adecuado para el tratamiento y/o la profilaxis del dolor, preferentemente seleccionado de entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral y dolor neuropático.

El medicamento según la invención es adecuado para ser administrado a adultos y niños, incluyendo niños pequeños y lactantes. El medicamento según la invención se puede presentar y administrar en forma de medicamento líquido, semisólido o sólido, por ejemplo en forma de soluciones para inyección, gotas, jugos, jarabes, espráis, suspensiones, pastillas, parches, cápsulas, apósitos, supositorios, pomadas, cremas, lociones, geles, emulsiones, aerosoles, o en forma multiparticulada, por ejemplo en forma de pellas o granulados, en caso dado comprimidos en pastillas, rellenados en cápsulas o suspendidos en un líquido.

Además de al menos un derivado de tiazol-4-ona 2,5-disustituido de la fórmula general I arriba mostrada según la invención, en caso dado en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezclas de estereoisómeros, en particular de enantiómeros o diastereoisómeros, en cualquier proporción de mezcla, o en caso dado en forma de una sal correspondiente, o en cada caso en forma de un solvato correspondiente, el medicamento según la invención contiene normalmente otros coadyuvantes farmacéuticos fisiológicamente compatibles, que por ejemplo se pueden seleccionar de entre materiales vehículo, sustancias de carga, disolventes, diluyentes, agentes tensioactivos, colorantes, conservantes, disgregantes, agentes de deslizamiento, lubricantes, aromas y aglutinantes.

La selección de los coadyuvantes fisiológicamente compatibles y de la cantidad a utilizar de los mismos depende de la forma de administración del medicamento, es decir, vía oral, subcutánea, parenteral, intravenosa, intraperitoneal, intradérmica, intramuscular, intranasal, bucal, rectal o local, por ejemplo sobre infecciones en la piel, las mucosas y los ojos. Para la administración oral son adecuados preferentemente los preparados en forma de pastillas, grageas, cápsulas, granulados, pellas, gotas, jugos y jarabes; para la administración parenteral, tópica y por inhalación las soluciones, suspensiones, preparados secos de fácil reconstitución y espráis.

35

Los derivados de tiazol-4-ona 2,5-disustituidos según la invención utilizados en el medicamento según la invención en un depósito en forma disuelta o en un parche, en caso dado añadiendo agentes promotores de la penetración en la piel, son preparados adecuados para la administración percutánea. Los preparados a administrar vía oral o percutánea también pueden liberar el correspondiente derivado de tiazol-4-ona 2,5-disustituido según la invención de forma retardada.

La preparación de los medicamentos según la invención se lleva a cabo con ayuda de los medios, dispositivos, 45 métodos y procedimientos usuales y conocidos en el estado actual de la técnica, tal como se describen, por ejemplo, en "Remington's Pharmaceutical Sciences", Editores A.R. Gennaro, 17 Edición, Mack Publishing Company, Easton, Pa., 1985, en particular volumen 8, capítulos 76 a 93. La descripción correspondiente se incorpora aquí como referencia y sirve como parte de esta exposición.

La cantidad de derivados de tiazol-4-ona 2,5-disustituidos de la fórmula general I arriba mostrada según la invención correspondientes que se debe administrar al paciente es variable y depende por ejemplo de su peso o edad y también del tipo de administración, la indicación y la gravedad de la enfermedad. Normalmente se administran entre 0,001 y 100 mg/kg, preferentemente entre 0,05 y 75 mg/kg, de forma especialmente preferente entre 0,05 y 50 mg/kg de peso corporal del paciente, de al menos uno de estos compuestos según la invención.

Métodos farmacológicos

I. Análisis funcional sobre el receptor vainilloide 1 (receptor VR1/TRPV1)

El efecto agonista o antagonista de las sustancias a analizar sobre el receptor vainilloide 1 (VR1/TRPV1) de la especie rata se puede determinar con el ensayo descrito más abajo. De acuerdo con este ensayo, la afluencia de Ca²⁺ a través del canal del receptor se cuantifica con ayuda de un colorante sensible al Ca²⁺ (tipo Fluo-4, Molecular Probes Europe BV, Leiden, Holanda) en un Fluorescent Imaging Plate Reader (FLIPR, Molecular Devices, Sunnyvale, EE.UU.).

15 Método

Medio completo: 50 ml de HAMS F12 Nutrient Mixture (Gibco Invitrogen GmbH, Karlsruhe, Alemania) con un 10% en volumen de FCS (fetal calf serum - suero bovino fetal, Gibco Invitrogen, GmbH, Karlsruhe, Alemania, activado por calor); 2 mM L-glutamina (Sigma, Munich, Alemania); 1% en peso de solución AA (solución antibiótica/antimicótica, PAA, Pasching, Austria) y 25 ng/ml de medio NGF (2.5 S, Gibco Invitrogen GmbH, Karlsruhe, Alemania).

Placa de cultivo celular: placas negras de 96 pocillos de fondo claro revestidas de poli-D-lisina (96 well black/clear plate, BD Biosciences, Heidelberg, Alemania) se revisten adicionalmente con laminina (Gibco Invitrogen GmbH, Karlsruhe, Alemania) diluyendo la laminina a una concentración de 100 μg/ml con PBS (Ca-Mg-free PBS, Gibco Invitrogen GmbH, Karlsruhe, Alemania). Se toman partes alícuotas con una concentración de 100 μg/ml en laminina y se guardan a -20°C. Las partes alícuotas se diluyen con PBS en una proporción 1:10 a 10 μg/ml de laminina y en cada pocillo de la placa de cultivo celular se depositan con la pipeta 50 μl de esta solución. Las placas de cultivo celular se incuban durante al menos dos horas a 37°C, la solución sobrenadante se aspira y cada pocillo se lava dos veces con PBS. Las placas de cultivo celular revestidas se guardan con PBS sobrenadante y éste sólo se retira directamente antes de la carga de las células.

Preparación de las células

30 A unas ratas decapitadas se les extirpa la columna vertebral y ésta se introduce directamente en un tampón HBSS (solución salina de Hank, Gibco Invitrogen GmbH, Karlsruhe, Alemania) frío, es decir, en baño de hielo, mezclado con un 1% en volumen (por ciento en volumen) de una solución AA (solución antibiótica/antimicótica, PAA, Pasching, Austria). La columna vertebral se divide longitudinalmente y se retira el conducto vertebral junto con las fascias. A continuación se retiran los ganglios de raíz dorsal (DRG; dorsal root ganglia) y de nuevo se guardan en 35 tampón HBSS frío mezclado con un 1% en volumen de una solución AA. Los DRG completamente libres de restos de sangre y nervios espinales se trasladan en cada caso a 500 µl de colagenasa fría de tipo 2 (PAA, Pasching, Austria) y se incuban durante 35 minutos a 37°C. Después de añadir un 2,5% en volumen de tripsina (PAA, Pasching, Austria), la mezcla se incuba durante otros 10 minutos a 37°C. Una vez completa la incubación, la solución enzimática se retira cuidadosamente con la pipeta y los DRG restantes se mezclan en cada caso con 500 µl 40 de medio completo. Los DRG se suspenden en cada caso varias veces, se extraen con una jeringa a través de cánulas nº 1, nº 12 y nº 16 y se trasladan a tubos Falcon de 50 ml. Éstos se rellenan hasta 15 ml con medio completo. El contenido de cada tubo Falcon se filtra a través de un elemento de filtro Falcon de 70 µm y se centrifuga durante 10 minutos a 1.200 revoluciones y a temperatura ambiente. La pella resultante se recoge en cada caso en 250 µl de medio completo y se calcula la cantidad de células.

La cantidad de células en suspensión se ajusta a $3\cdot10^5$ por ml y en cada uno de los pocillos de las placas de cultivo celular revestidas tal como se describe más arriba se depositan 150 μ l de esta suspensión. Las placas se dejan reposar de dos a tres días en la estufa incubadora a 37°C, con un 5% en volumen de CO₂ y una humedad relativa del aire del 95%.

A continuación, las células se cargan con Fluo-4 2 μM y un 0,01% en volumen de Pluronic F127 (Molecular Probes Europe BV, Leiden, Holanda) en tampón HBSS (solución salina de Hank, Gibco Invitrogen GmbH, Karlsruhe, Alemania) durante 30 minutos a 37°C, se lavan 3 veces con tampón HBSS y, después de otros 15 minutos de incubación a temperatura ambiente, se someten al ensayo FLIPR para medir el Ca²⁺. En este proceso se mide la fluorescencia dependiente del Ca²⁺ antes y después de la adición de sustancias (λex = 488 nm, λem = 540 nm). La cuantificación se produce midiendo la intensidad de fluorescencia máxima (FC, Fluorescence Counts) con el tiempo.

Ensayo FLIPR

15

20

25

30

35

El protocolo FLIPR consiste en 2 adiciones de sustancias. En primer lugar, los compuestos a ensayar (10 μ M) se depositan con pipeta sobre las células y la afluencia de Ca²⁺ se compara con el control (capsaicina 10 μ M). De ello resulta la indicación en % de la activación con respecto a la señal de Ca²⁺ después de la adición de capsaicina 10 μ M (CP). Después de 5 minutos de incubación se aplican 100 nM de capsaicina y también se calcula la afluencia de Ca²⁺.

Los agonistas y antagonistas desensibilizadores conducen a una inhibición de la afluencia de Ca²⁺. Se calcula el % de inhibición en comparación con la inhibición máxima alcanzable con capsaicina 10 µM.

Se llevan a cabo determinaciones triples (n = 3) y éstas se repiten al menos en 3 experimentos independientes (N = 4).

II. Análisis funcionales sobre el receptor vainilloide (VR1)

El efecto agonista o antagonista de las sustancias a analizar con respecto al receptor vainilloide (VR1) también se puede determinar con el ensayo descrito a continuación. De acuerdo con este ensayo, la afluencia de Ca²⁺ a través del canal se cuantifica con ayuda de un colorante sensible al Ca²⁺ (tipo Fluo-4, Molecular Probes, Europe BV, Leiden, Holanda) en el Fluorescent Imaging Plate Reader (FLIPR, Molecular Devices, Sunnyvale, EE. UU.).

Método

Se someten a transfección estable con el gen VR1 células de ovario de hámster chino (células CHO K1, European Collection of Cell Cultures (ECACC) Gran Bretaña). Para realizar los análisis funcionales, estas células se disponen en placas negras de 96 pocillos de fondo claro revestidas de poli-D-lisina (BD Biosciences, Heidelberg, Alemania) a una densidad de 25.000 células/pocillo. Las células se incuban durante una noche a 37°C y con un 5% de CO_2 en un medio de cultivo (Nutrient Mixture Ham's F12, 10% en volumen FCS (fetal calf serum), 18 µg/ml de L-prolina). El día siguiente, las células se incuban con Fluo-4 (Fluo-4 2 µM, Pluronic F127 0,01% en volumen, Molecular Probes en HBSS (solución salina de Hank), Gibco Invitrogen GmbH, Karlsruhe, Alemania) durante 30 minutos a 37°C. A continuación, las placas se lavan 3 veces con tampón HBSS y, después de otros 15 minutos de incubación a temperatura ambiente, se someten al ensayo FLIPR para medir el Ca^{2+} . En este proceso se mide la fluorescencia dependiente del Ca^{2+} antes y después de la adición de las sustancias a ensayar (longitud de onda λ_{ex} = 488 nm, λ_{em} = 540 nm). La cuantificación se produce midiendo la intensidad de fluorescencia máxima (FC, Fluorescence Counts) con el tiempo.

Ensayo FLIPR

40 El protocolo FLIPR consiste en 2 adiciones de sustancias. En primer lugar, las sustancias a ensayar (10 μM) se depositan con pipeta sobre las células y la afluencia de Ca²⁺ se compara con el control (capsaicina 10 μM) (% de

activación con respecto a la señal de Ca²⁺ después de la adición de capsaicina 10 µM). Después de 5 minutos de incubación se aplica capsaicina 100 nM y también se calcula la afluencia de Ca²⁺.

III. Ensayo de formalina en ratones

5

10

La investigación para determinar el efecto antinociceptivo de los derivados de tiazol-4-ona según la invención se lleva a cabo con el ensayo de formalina en ratones macho (NMRI, peso corporal 20 a 30 g; Iffa, Credo, Bélgica).

De acuerdo con D. Dubuisson y col., Pain 1977, 4, 161 - 174, en el ensayo de formalina se distingue entre la primera fase (temprana) (0 a 15 minutos después de la inyección de formalina) y la segunda fase (tardía) (15 a 60 minutos después de la inyección de formalina). La fase temprana constituye un modelo de dolor agudo como reacción directa a la inyección de formalina, mientras que la fase tardía se considera un modelo de dolor persistente (crónico) (T.J. Coderre y col., Pain 1993, 52, 259 - 285). Las descripciones correspondientes se incorporan aquí como referencia y sirven como parte de esta exposición.

Los derivados de tiazol-4-ona 2,5-disustituidos según la invención se estudian en la segunda fase del ensayo de formalina para obtener información sobre el efecto de las sustancias en el dolor crónico/inflamatorio.

El momento de la administración de los derivados de tiazol-4-ona 2,5-disustituidos según la invención antes de la inyección de formalina se elige en función del tipo de administración. La administración intravenosa de 10 mg/kg de peso corporal de las sustancias de ensayo se lleva a cabo 5 minutos antes de la inyección de formalina. Ésta se realiza mediante una sola inyección subcutánea de formalina (20 µl, solución acuosa al 1%) en la parte dorsal de la pata trasera derecha, con lo que se induce una reacción nociceptiva en los animales de experimentación con libertad de movimiento, que éstos manifiestan claramente lamiéndose y mordiéndose la pata en cuestión.

A continuación se registra de modo continuo el comportamiento nociceptivo mediante la observación de los animales durante un período de estudio de tres minutos en la segunda fase (tardía) del ensayo de formalina (21 a 24 minutos después de la inyección de formalina). La cuantificación del comportamiento del dolor se lleva a cabo sumando los segundos en los que los animales se lamen y muerden la pata en cuestión durante el período de estudio.

La comparación se lleva a cabo en cada caso con animales de control a los que, antes de la administración de formalina, se les administra un vehículo (solución acuosa de cloruro sódico al 0,9%) en lugar de los compuestos según la invención. El efecto de las sustancias en el ensayo de formalina se calcula como la variación en porcentaje con respecto al control correspondiente en base a la cuantificación del comportamiento de dolor.

Después de la inyección de sustancias con efecto antinociceptivo en el ensayo de formalina, los comportamientos descritos de los animales, es decir, lamerse y morderse, se reducen o se eliminan.

30 IV. Análisis del efecto analgésico en el ensayo Writhing

El análisis del efecto analgésico de los compuestos de la fórmula general I según la invención se llevó a cabo en ratones mediante el ensayo Writhing inducido por fenilquinona, modificado según I.C. Hendershot y J. Forsaith (1959) J. Pharmacol. Exp. Ther. 125, 237 - 240. La descripción correspondiente se incorpora aquí como referencia y sirve como parte de esta exposición.

Para ello se utilizaron ratones NMRI macho con un peso de 25 a 30 g. Se formaron grupos de 10 animales por dosis de sustancia que, 10 minutos después de la administración intravenosa de los compuestos a analizar, recibieron una administración vía intraperitoneal de 0,3 ml/ratón de una solución acuosa de fenilquinona al 0,02% (Phenylbenzochinon, firma Sigma, Deisenhofen, Alemania; preparación de la solución mediante adición de un 5% en peso de etanol y conservación en baño de agua a 45°C). Los animales se introdujeron individualmente en jaulas de observación. Mediante un contador de pulsador se contó la cantidad de movimientos de extensión inducidos por dolor (denominados reacciones Writhing = presión del cuerpo con extensión de las extremidades traseras) de 5 a 20 minutos después de la administración de fenilquinona. Como control se utilizaron animales a los que sólo se les

administró una solución fisiológica de sal común. Todos los compuestos se analizaron en la dosis estándar de 10 mg/kg.

La invención se explica a continuación con ayuda de algunos ejemplos. Estos ejemplos son meramente ilustrativos y no limitan la idea general de la invención.

5 Ejemplos

15

30

35

Los rendimientos de los compuestos producidos no han sido optimizados.

Todas las temperaturas están sin corregir.

Abreviaturas

ac. Acuoso

10 DCM Diclorometano
DMF Dimetilformamida
EtOAc Acetato de etilo
EtOH Etanol

EtOH Etanol sat. Saturado h Horas

HOBT 1-hidroxibenzotriazol

MeOH Metanol

TA Temperatura ambiente

TBTU Tetrafluoroborato de O-(benzotriazol-1-il)-N,N,N',N'-tetrametiluronio

20 Los productos químicos y disolventes utilizados han sido adquiridos comercialmente de los proveedores habituales (Acros, Avocado, Aldrich, Bachem, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, etc.) o han sido sintetizados mediante métodos conocidos por los especialistas.

Como fase estacionaria para la cromatografía en columna se utiliza Kieselgel 60 (0,040 - 0,063 mm) de la firma E. Merck, Darmstadt.

Los análisis por cromatografía de capa fina se han llevado a cabo en placas preparadas para HPTLC, Kieselgel 60 F 254, de la firma E. Merck, Darmstadt. Las proporciones de mezcla de disolventes o eluyentes para los análisis cromatográficos se indican siempre en volumen/volumen.

La analítica se realiza mediante espectroscopia de masas y NMR.

1. Síntesis de derivados de tiazol-4-ona 2-fenil-sustituidos

1a. Síntesis de 2-(4-hidroxi-3-metoxifenil)tiazol-4-ona

Se disolvió 4-hidroxi-3-metoxibenzonitrilo (25 g, 167,7 mmol) en EtOH (355 ml) y se mezcló con ácido tioglicólico (18,8 g, 167,7 mmol) y trietilamina (12,2 g, 120,4 mmol). El disolvente se redujo en vacío hasta 150 ml y el precipitado formado se aspiró, se lavó con un poco de EtOH y diisopropil éter y se secó. La lejía madre se redujo adicionalmente hasta 75 ml y se enfrió. El nuevo precipitado formado se aspiró, se lavó con un poco de EtOH y

diisopropil éter y se secó. Los precipitados combinados se calentaron de nuevo a reflujo en EtOH (50 ml). El precipitado formado se aspiró, se lavó con un poco de EtOH y diisopropil éter y se secó. El producto deseado se obtuvo con un rendimiento de un 37% del valor teórico (13,9 g).

1b. Síntesis del ejemplo de compuesto 262:

5

15

30

2-(4-hidroxi-3-metoxifenil)-5-(4-metilbenciliden)tiazol-4-ona

Se disolvió 2-(4-hidroxi-3-metoxifenil)tiazol-4-ona (1,34 mmol, 300 mg) y 4-metilbenzaldehído (194 mg, 1,61 mmol) en ácido acético (7 g, 117,5 mmol) y se mezcló con acetato de sodio (408 mg, 4,972 mmol). La mezcla de reacción se calentó a reflujo durante una noche. Después se combinó con agua y el precipitado formado se lavó con butanol y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (323 mg, 74% del valor teórico).

10 2. Síntesis de derivados de tiazol-4-ona 2-morfolinil-sustituidos

2a. Síntesis de 2-morfolin-4-il-tiazol-4-ona

En un recipiente de reacción se introdujeron cianomorfolina (15,3 g, 136,3 mmol) y ácido tioglicólico (12,5 g, 136,3 mmol) con piridina (12,2 ml). El recipiente de reacción se calentó a 100°C en un tubo de pírex. La reacción finalizó una hora después y la mezcla se enfrió. El precipitado formado se aspiró, se lavó con un poco de EtOH y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido blanco (21,5 g, 85% del valor teórico).

2b. Síntesis del ejemplo de compuesto 58: 5-deciliden-2-morfolin-4-il-tiazol-4-ona

- Se disolvió 2-morfolin-4-il-tiazol-4-ona (500 mg, 2,7 mmol) y n-decanal (503 mg, 3,22 mol) en EtOH (10 ml) y se mezcló con trietilamina (815 mg). La mezcla de reacción se calentó a reflujo durante 48 horas. El precipitado formado se aspiró y se secó. Para una mayor purificación, el precipitado se calentó en un poco de butanol (3 ml). El precipitado formado de nuevo se aspiró y se secó. Se obtuvo el producto deseado en forma de un sólido (82 mg, 10% del valor teórico).
- 25 2c. Síntesis del ejemplo de compuesto 17:2-morfolin-4-il-5-(4-fenoxibenciliden)tiazol-4-ona

Se disolvió 2-morfolin-4-il-tiazol-4-ona (1 g, 5,4 mmol) y 3-fenoxibenzaldehído (1,27 g, 6,43 mmol) en ácido acético (28 g) y se mezclaron con acetato de sodio (1,63 g, 19,9 mmol). La mezcla de reacción se calentó a reflujo durante una noche, se agitó durante 24 h a TA y el precipitado formado se lavó con butanol y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (1,37 g, 70% del valor teórico).

2d. Síntesis del ejemplo de compuesto 19: 2-morfolin-4-il-5-(3-p-tolilaliliden)tiazol-4-ona

Se disolvió 2-morfolin-4-il-tiazol-4-ona (530 mg, 2,85 mmol) y 3-p-tolilpropenal (500 mg, 3,42 mmol) en ácido acético (15 g) y se mezclaron con acetato de sodio (865 mg, 10,5 mmol). La mezcla de reacción se calentó a reflujo durante 5 h y se agitó durante 48 h a TA. El disolvente se retiró en vacío y el residuo se recogió en agua y EtOAc. La fase orgánica se secó sobre sulfato de magnesio, el disolvente se retiró en vacío y el residuo se secó. El residuo se calentó en butanol (20 ml) y el precipitado formado se lavó con un poco de diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (224 mg, 21% del valor teórico).

2e. Síntesis del ejemplo de compuesto 50: 5-(2,3-difenilaliliden)-2-morfolin-4-il-tiazol-4-ona

5

30

Se disolvió 2-morfolin-4-il-tiazol-4-ona (500 mg, 2,7 mmol) y difenilacroleína (670 mg, 3,22 mol) en EtOH (10 ml) y se mezclaron con trietilamina (815 mg). La mezcla de reacción se calentó a reflujo durante 48 h. El precipitado formado se aspiró y se secó. Se obtuvo el producto deseado en forma de un sólido (862 mg, 85% del valor teórico).

3. Síntesis de derivados de tiazol-4-ona 2-tiomorfolinil-sustituidos

3a. Síntesis de amida de ácido tiomorfolin-4-tiocarboxílico

Se suspendió 1,1'-tiocarbonildiimidazol (45,4 g, 254 mmol) en THF (605 g). Se disolvió tiomorfolina (25 g, 242,6 mmol) en un poco de THF y se añadió a la suspensión. La mezcla de reacción se agitó durante 1 h a TA. Después se añadió una disolución de amoníaco 7N en MeOH (346 g) y la mezcla de reacción se agitó durante una noche a 40°C. El disolvente se retiró en vacío, el residuo se lavó con un poco de butanol frío y éter y se secó. Se obtuvo el producto deseado en una cantidad de 31,5 g.

3b. Síntesis de 2-tiomorfolin-4-il-tiazol-4-ona

La amida de ácido tiomorfolin-4-tiocarboxílico (38 g, 234 mmol) se suspendió con ácido cloroacético (23 g, 243 mmol) en piridina (87 g). La suspensión se calentó durante 45 minutos en un recipiente apto para microondas y se dejó reposar durante una noche. El precipitado formado se aspiró, se lavó con un poco de butanol y éter y se secó. Se obtuvo el producto deseado en forma de un sólido (21,7 g, 46% del valor teórico).

25 3c. Síntesis del ejemplo de compuesto 85: 5-(2-cloro-3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona

Se disolvió 2-tiomorfolin-4-il-tiazol-4-ona (800 mg, 3,96 mmol) y alfa-clorocinamal (789 mg, 4,752 mmol) en ácido acético (21 g) y se mezclaron con acetato de sodio (1,2 g, 14,6 mmol). La mezcla de reacción se calentó a reflujo durante 4 h y se vertió en agua (100 ml). La fase acuosa se extrajo con DCM y el disolvente se retiró en vacío. La fase acuosa se dejó reposar durante una noche. Se formó una segunda fase, que se concentró en vacío. El residuo se calentó en butanol (1 ml) y el precipitado formado se lavó con un poco de diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (138 mg, 10% del valor teórico).

3d. Síntesis del ejemplo de compuesto 86: Ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico

35 Se disolvió 2-tiomorfolin-4-il-tiazol-4-ona (5 g, 25 mmol) y 3-carboxibenzaldehído (4,45 g, 29,7 mmol) en ácido acético (130 g) y se mezclaron con acetato de sodio (7,5 g, 91,5 mmol). La mezcla de reacción se calentó a reflujo

durante una noche. Después de enfriar la mezcla se formó un precipitado, que se aspiró, se lavó con agua, butanol y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (4,91 g, 60% del valor teórico).

3e. Síntesis de 1-(6-cloropiridin-2-il)piperazina

Se disolvió piperazina (22,4 g, 260,2 mmol) en DMSO (462 g) y se mezcló con 2,6-dicloropiridina (35 g, 236 mmol). La mezcla de reacción se agitó a 110°C durante une noche. La mezcla de reacción se combinó poco a poco con una disolución ac. sat. de bicarbonato de sodio (en total 250 ml) y el precipitado formado se aspiró. El filtrado se extrajo varias veces con EtOAc, las fases orgánicas reunidas se secaron y el disolvente se retiró en vacío. El residuo se destiló a 2,5⁻¹ mbar. Se obtuvo el producto con una temperatura de cabeza de 120°C y una temperatura de fondo de 165°C. Rendimiento: 17,7 g (38% del valor teórico).

3f. Síntesis del ejemplo de compuesto 108:

5-{3-[4-(6-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona

Se disolvió ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico (500 mg, 1,5 mmol), 1-(6-cloropiridin-2-il)piperazina (2.956 mg, 1,5 mmol), TBTU (480 mg, 1,5 mmol), HOBT (201 mg, 1,5 mmol) y diisopropiletilamina (643 mg, 4,5 mmol) en THF (10 ml) y se agitaron a TA durante una noche. El precipitado formado se aspiró, se lavó con EtOAc y éter y se secó. Rendimiento: 579 mg (75% del valor teórico).

3g. Síntesis del ejemplo de compuesto 112:

15

20

N'-(2-cloro-4-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico

Se disolvió ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico (500 mg, 1,5 mmol), 1-(2-cloro-4-(trifluorometil)fenil)hidrazina (315 mg, 1,5 mmol), TBTU (480 mg, 1,5 mmol), HOBT (201 mg, 1,5 mmol) y diisopropiletilamina (643 mg, 4,5 mmol) en THF (10 ml) y se agitó a TA durante 48 h. El precipitado formado se aspiró, se lavó con EtOAc y éter y se secó. Rendimiento: 305 mg (39% del valor teórico).

4. Síntesis de derivados de tiazol-4-ona 2-piperazinil-sustituidos

25 4a. Síntesis de 1-(3-cloropiridin-2-il)piperazina

Se disolvió piperazina (15 g, 174 mmol) en DMSO (309 g) y se mezcló con 2,3-dicloropiridina (23,4 g, 158 mmol). La mezcla de reacción se agitó durante 60 h a 110°C. La mezcla de reacción se combinó poco a poco con una disolución ac. sat. de bicarbonato de sodio (en total 250 ml) y el precipitado formado se aspiró. El filtrado se extrajo varias veces con EtOAc (150 ml en cada caso), las fases orgánicas reunidas se secaron y el disolvente se retiró en

vacío. El residuo se destiló a 2,1⁻¹ mbar. Se obtuvo el producto con una temperatura de cabeza de 95°C y una temperatura de fondo de 155°C. Rendimiento: 9,6 g (28% del valor teórico).

4b. Síntesis de amida de ácido 4-(3-cloropiridin-2-il)piperazin-1-tiocarboxílico

Se disolvió 1,1'-tiocarbonildiimidazol (3,8 g, 21,2 mmol) en THF (23,4 g). Se disolvió 1-(3-cloropiridin-2-il)piperazina (4 g, 20,2 mmol) en un poco de THF y se añadió a la suspensión. La mezcla de reacción se agitó durante 1 h a TA. Después se añadió una disolución de amoníaco 7N en MeOH (28,9 g) y la mezcla de reacción se agitó durante una noche a 40°C. El disolvente se retiró en vacío, el residuo se lavó con un poco de butanol frío y éter y se secó. Se obtuvo el producto deseado en una cantidad de 4,1 g (78% del valor teórico).

4c. Síntesis de 2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona

5

20

- Se suspendió amida de ácido 4-(3-cloropiridin-2-il)piperazin-1-tiocarboxílico (8,1 g, 31,9 mmol) con ácido cloroacético (3,1 g, 33,1 mmol) en EtOH (7 g). La suspensión se calentó a 85°C durante 60 minutos en un recipiente de microondas y se dejó reposar durante una noche. El precipitado formado se aspiró, se lavó con un poco de butanol y éter y se secó. El precipitado se calentó en un poco de butanol (10 ml) y el sólido restante se aspiró. Se obtuvo el producto deseado en forma de un sólido (2,34 g, 25% del valor teórico).
- 4d. Síntesis del ejemplo de compuesto 95:
 2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)triazol-4-ona

Se disolvió 2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona (500 mg, 1,7 mmol) y vainillina (308 mg, 2,02 mmol) en ácido acético (9 g) y se mezclaron con acetato de sodio (514 mg, 6,3 mmol). La mezcla de reacción se calentó a reflujo durante una noche. Después de enfriar la mezcla se formó un precipitado, que se aspiró, se lavó con diisopropil éter y se secó. El precipitado se calentó en un poco de butanol y se filtró en caliente. El precipitado se desechó y el filtrado se dejó reposar. El precipitado formado se aspiró y se secó. Se obtuvo el producto deseado en forma de un sólido (157 mg, 22% del valor teórico).

4e. Síntesis del ejemplo de compuesto 49: 2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona

- Se disolvió 2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona (500 mg, 1,7 mmol) y naftalen-2-carbaldehído (263 mg, 1,7 mmol) en EtOH (10 ml) y se mezclaron con trietilamina (512 mg, 5,1 mmol). La mezcla de reacción se calentó a reflujo durante 72 h. Después de enfriar la mezcla se formó un precipitado, que se aspiró, se lavó con butanol y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (295 mg, 40% del valor teórico).
 - 4f. Síntesis del ejemplo de compuesto 90:
- 30 2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-quinolin-3-ilmetilen-tiazol-4-ona

Se disolvió 2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona (500 mg, 1,7 mmol) y 3-quinolincarboxaldehído (318 mg, 2,02 mmol) en ácido acético (9 g) y se mezcló con acetato de sodio (514 mg, 6,3 mmol). La mezcla de reacción se calentó a reflujo durante una noche. Después de enfriar la mezcla, ésta se combinó con agua (100 ml). El precipitado formado se aspiró y se calentó en un poco de butanol (4 ml). El precipitado formado se aspiró, se lavó con un poco de butanol y éter y se secó. Se obtuvo el producto deseado en forma de un sólido (367 mg, 50% del valor teórico).

5. Síntesis de derivados de tiazol-4-ona 2-(4-bencilpiperazinil) sustituidos

5a. Síntesis de amida de ácido 4-bencilpiperazin-1-tiocarboxílico

Se suspendió 1,1'-tiocarbonildiimidazol (18 g, 101,2 mmol) en THF (112 g). Se disolvió 1-bencilpiperazina (17 g, 96,5 mmol) en un poco de THF y se añadió a la suspensión. La mezcla de reacción se agitó durante 1 h a TA. Después se añadió una disolución de amoníaco 7N en MeOH (137 g) y la mezcla de reacción se agitó durante una noche a 40°C. El disolvente se retiró en vacío y el residuo se calentó en un poco de butanol (25 ml). Después de enfriar la mezcla se obtuvo un precipitado, que se lavó con un poco de butanol frío y éter y a continuación se secó. Se obtuvo el producto deseado en una cantidad de 14,1 g.

10 5b. Síntesis de 2-(4-bencilpiperazin-1-il)tiazol-4-ona

Se suspendió amida de ácido 4-bencilpiperazin-1-tiocarboxílico (14 g, 59,5 mmol) con ácido cloroacético (5,8 g, 61,9 mmol) en piridina (55 g). La suspensión se calentó a 120°C durante 45 minutos en un recipiente de microondas. La mezcla de reacción se concentró por completo en vacío y el residuo se calentó en MeOH (150 ml). El precipitado formado se aspiró, se lavó con éter y se secó. Se obtuvo el producto deseado en forma de un sólido (8,9 g, 55% del valor teórico).

5c. Síntesis del ejemplo de compuesto 104:

2-(4-bencilpiperazin-1-il)-5-(4-terc-butilbenciliden)tiazol-4-ona

Se disolvió 2-(4-bencilpiperazin-1-il)tiazol-4-ona (500 mg, 1,8 mmol) y 4-terc-butilbenzaldehído (353 mg, 2,18 mmol) en ácido acético (9,5 g) y se mezcló con acetato de sodio (552 mg, 6,7 mmol). La mezcla de reacción se calentó a reflujo durante una noche. Después de enfriar la mezcla, ésta se combinó con agua (50 ml). El precipitado formado se aspiró y se calentó en un poco de butanol (1 ml). El precipitado formado se aspiró, se lavó con un poco de butanol y éter y se secó. Se obtuvo el producto deseado en forma de un sólido (245 mg, 32% del valor teórico).

5d. Síntesis del ejemplo de compuesto 158:

2-(4-bencilpiperazin-1-il)-5-(4-pentafluorosulfanil-benciliden)tiazol-4-ona

Se disolvió 2-(4-bencilpiperazin-1-il)tiazol-4-ona (350 mg, 1,3 mmol) y 4-(pentafluorosulfanil)benzaldehído (353 mg, 1,52 mmol) en ácido acético (6,7 g) y se mezcló con acetato de sodio (387 mg, 4,7 mmol). La mezcla de reacción se calentó a reflujo durante una noche. El precipitado formado se aspiró, se lavó con un poco de butanol y éter y se secó. Se obtuvo el producto deseado en forma de un sólido (108 mg).

6. Síntesis de derivados de tiazol-4-ona 2-aminofenil-sustituidos

30

5

15

20

6a. Síntesis de (4-terc-butilfenil)tiourea

Se suspendió 1,1'-tiocarbonildiimidazol (12,5 g, 70,4 mmol) en THF (167 g). Se disolvió 4-terc-butilanilina (10 g, 67 mmol) en un poco de THF y se añadió a la suspensión. La mezcla de reacción se agitó durante 1 h a TA. Después se añadió una disolución de amoníaco 7N en MeOH (95 g) y la mezcla de reacción se agitó durante 48 horas a 40°C. El disolvente se retiró en vacío y el residuo se calentó en un poco de butanol (25 ml). Después de enfriar la mezcla se obtuvo un precipitado, que se lavó con un poco de butanol frío y éter y a continuación se secó. Se obtuvo el producto deseado en una cantidad de 14 g.

6b. Síntesis de 2-(4-terc-butil-fenilamino)tiazol-4-ona

Se suspendió (4-terc-butilfenil)tiourea (14 g, 68,7 mmol) con ácido cloroacético (6,7 g, 71,49 mmol) en EtOH (15 g).

La suspensión se calentó a 85°C durante 60 minutos en un recipiente de microondas. El precipitado formado se aspiró, se lavó con un poco de butanol y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (4,9 g).

6c. Síntesis del ejemplo de compuesto 263: 2-(4-terc-butil-fenilamino)-5-(4-metilbenciliden)tiazol-4-ona

Se disolvió 2-(4-terc-butil-fenilamino)tiazol-4-ona (550 mg, 2,2 mmol) y 4-metilbenzaldehído (319 mg, 1,02 mmol) en ácido acético (11,6 g) y se mezcló con acetato de sodio (673 mg, 8,2 mmol). La mezcla de reacción se calentó a reflujo durante 5 h y se agitó durante 72 h a TA. El precipitado formado se aspiró, se lavó con un poco de agua y hexano y se secó. Se obtuvo el producto deseado en forma de un sólido (525 mg, 67% del valor teórico).

7. Síntesis de derivados de tiazol-4-ona 2-aminobencil-sustituidos

20 7a. Síntesis de benzo[1.3]dioxol-5-ilmetil-tiourea

25

30

Se suspendió 1,1'-tiocarbonildiimidazol (12,3 g, 69,5 mmol) en THF (167 g). Se disolvió 3,4-metilendioxibencilamina (10 g, 66,2 mmol) en un poco de THF y se añadió a la suspensión. La mezcla de reacción se agitó durante 1 h a TA. Después se añadió una disolución de amoníaco 7N en MeOH (94,5 g) y la mezcla de reacción se agitó durante 24 h a 40°C. El disolvente se retiró en vacío y el residuo se calentó en un poco de butanol (15 ml). Después de enfriar la mezcla se obtuvo un precipitado, que se lavó con un poco de butanol frío y éter y a continuación se secó. Se obtuvo el producto deseado en una cantidad de 11,1 g (80% del valor teórico).

7b. Síntesis de 2-[(benzo[1,3]dioxol-5-ilmetil)amino]tiazol-4-ona

Se suspendió benzo[1.3]dioxol-5-ilmetil-tiourea (11 g, 52,4 mmol) con ácido cloroacético (5,1 g, 54,4 mol) en piridina (20 g). La suspensión se calentó a 110°C durante 60 minutos en un recipiente de microondas. La mezcla de reacción se concentró en vacío y el residuo se disolvió con un poco de butanol (15 ml) en caliente. Después de enfriar la mezcla se formó un precipitado, que se aspiró, se lavó con butanol y diisopropil éter y se secó. Se obtuvo el producto deseado en forma de un sólido (4,0 g, 30% del valor teórico).

7c. Síntesis del ejemplo de compuesto 243:

2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona

Se disolvió 2-[(benzo[1,3]dioxol-5-ilmetil)amino]tiazol-4-ona (350 mg, 1,4 mmol) y 4-(trifluorometoxi)benzaldehído (319 mg, 1,68 mmol) en ácido acético (7,3 g) y se mezcló con acetato de sodio (425 mg, 5,2 mmol). La mezcla de reacción se calentó a reflujo durante 14 h. La mezcla de reacción se combinó con agua (30 ml), el precipitado formado se aspiró, se lavó con un poco de agua y hexano y se secó. Se obtuvo el producto deseado en forma de un sólido (460 mg, 78% del valor teórico).

40 8. Síntesis de derivados de tiazol-4-ona 2-urea-sustituidos

8a. Síntesis de 2-aminotiazol-4-ona

5

10

15

20

Se suspendió tiourea (30 g, 395 mmol) con ácido cloroacético (38,7 g, 410 mol) en piridina (146 g). La suspensión se calentó durante 45 minutos en un recipiente de microondas. La mezcla de reacción se concentró en vacío y el residuo se disolvió en EtOH (250 ml) en caliente. Después de enfriar la mezcla se formó un precipitado, que se aspiró, se lavó con éter y se secó. Se obtuvo el producto deseado en forma de un sólido (26,9 g).

8b. Síntesis de 2-amino-5-(4-trifluorometil-benciliden)-4-tiazol-4-ona

Se disolvió 2-aminotiazol-4-ona (6 g, 51,7 mmol) y 4-(trifluorometil)benzaldehído (10,8 g, 62 mmol) en ácido acético (271 g) y se mezcló con acetato de sodio (15,7 g, 191 mmol). La mezcla de reacción se calentó a reflujo durante 5 h. La mezcla de reacción se combinó con agua (30 ml). El precipitado formado se aspiró, se lavó con EtOH y éter y se secó. Se obtuvo el producto deseado en forma de un sólido (8,8 g, 63% del valor teórico).

8c. Síntesis del ejemplo de compuesto 106:

1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(4-trifluorometil-fenil)urea

Se disolvió 2-amino-5-(4-trifluorometil-benciliden)-4-tiazol-4-ona (436 mg, 1,6 mmol) en DMSO (28 g) y se mezcló con trietilamina (179 mg, 1,76 mmol) y 1-isocianato-4-trifluorometil-benceno (436 mg, 1,6 mmol). La mezcla de reacción se agitó a TA durante una noche y se añadió a agua helada (50 ml). El precipitado formado se aspiró y se calentó hasta reflujo en un poco de acetona. Luego se añadió un poco de agua y la mezcla de reacción se dejó reposar. El precipitado formado se aspiró, se lavó con agua y se secó. Se obtuvo el producto deseado en forma de un sólido blanco (553 mg, 75% del valor teórico).

Los siguientes derivados de tiazol-4-ona 2,5-disustituidos según la invención se prepararon tal como se describe en los puntos 1 a 8.

1	5-[3-(4-metoxifenil)-but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
2	clorhidrato de 2-morfolin-4-il-5-fenetiliden-tiazol-4-ona
3	clorhidrato de 2-morfolin-4-il-5-(2-o-tolil-etiliden)tiazol-4-ona
4	2-morfolin-4-il-5-(3-fenilaliliden)tiazol-4-ona
5	2-morfolin-4-il-5-(3-fenilbutiliden)tiazol-4-ona
6	2-morfolin-4-il-5-(3-fenilpropiliden)tiazol-4-ona
7	5-[3-(4-fluorofenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
8	N-[4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil]acetamida
9	5-benzo[1,3]dioxol-5-ilmetilen-2-morfolin-4-il-tiazol-4-ona
10	2-morfolin-4-il-5-(3-m-tolilaliliden)tiazol-4-ona
11	5-(3-yodo-4,5-dimetoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
12	2-morfolin-4-il-5-(3-fenilsulfanil-aliliden)tiazol-4-ona
13	5-(3-benciloxi-4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
14	bromhidrato de 5-(4-metilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
15	N-[4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil]amina
16	5-(4-butoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
17	2-morfolin-4-il-5-(4-fenoxibenciliden)tiazol-4-ona
18	2-morfolin-4-il-5-(3-fenoxibenciliden)tiazol-4-ona
19	2-morfolin-4-il-5-(3-p-tolilaliliden)tiazol-4-ona
20	5-(3-benciloxibenciliden)-2-morfolin-4-il-tiazol-4-ona
21	5-(4-benciloxibenciliden)-2-morfolin-4-il-tiazol-4-ona
22	2-tiomorfolin-4-il-5-(2-trifluorometil-benciliden)tiazol-4-ona
23	5-(4-bromobenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
24	2-tiomorfolin-4-il-5-(4-trifluorometoxi-benciliden)tiazol-4-ona

25	5-(3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
26	2-morfolin-4-il-5-octilidentiazol-4-ona
27	5-(4-benciloxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
28	5-(3,4-bis-benciloxi-benciliden)-2-morfolin-4-il-tiazol-4-ona
29	5-butiliden-2-morfolin-4-il-tiazol-4-ona
30	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
31	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
32	5-hexiliden-2-morfolin-4-il-tiazol-4-ona
33	2-morfolin-4-il-5-(3-p-tolilbut-2-eniliden)tiazol-4-ona
34	5-[3-(4-terc-butilfenil)-but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
35	5-(4-metoxinaftalen-1-ilmetilen)-2-morfolin-4-il-tiazol-4-ona
36	2-morfolin-4-il-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
37	2-[4-(3-metoxifenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
38	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-metoxifenil)piperazin-1-il]tiazol-4-ona
39	5-(4-hidroxi-3-metoxibenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
40	5-[3-(4-hidroxi-3-metoxifenil)aliliden]-2-tiomorfolin-4-il-tiazol-4-ona
41	5-naftalen-1-ilmetilen-2-tiomorfolin-4-il-tiazol-4-ona
42	5-benciliden-2-tiomorfolin-4-il-tiazol-4-ona
43	2-morfolin-4-il-5-[3-(4-trifluorometilfenil)but-2-eniliden]tiazol-4-ona
44	2-morfolin-4-il-5-[3-(3-trifluorometilfenil)but-2-eniliden]tiazol-4-ona
45	5-(3-metilbutiliden)-2-morfolin-4-il-tiazol-4-ona
46	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(2-trifluorometil-benciliden)tiazol-4-ona
47	5-(4-bromobenciliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
48	5-benciliden-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
49	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
50	5-(2,3-difenilaliliden)-2-morfolin-4-il-tiazol-4-ona
51	2-morfolin-4-il-5-fenantren-9-ilmetilen-tiazol-4-ona
52	2-morfolin-4-il-5-quinolin-3-ilmetilen-tiazol-4-ona
53	bromhidrato de 2-(4-etilpiperazin-1-il)-5-(4-metilbenciliden)tiazol-4-ona
54	5-naftalen-2-ilmetilen-2-tiomorfolin-4-il-tiazol-4-ona
55	2-[4-(4-metoxifenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
56	2-[4-(2-clorofenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
57	5-(3-fenilaliliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
58	5-deciliden-2-morfolin-4-il-tiazol-4-ona
59	5-[3-(4-terc-butilfenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
60	2-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoato de trietilamonio
61 62	5-(2-bromo-3-fenilaliliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	2-(4-bencilpiperazin-1-il)-5-(4-metilbenciliden)tiazol-4-ona
63 64	2-(4-fenilpiperazin-1-ii)-5-quinolin-3-ilmetilen-tiazol-4-ona
65	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(2-metil-3-fenilaliliden)tiazol-4-ona
66	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
67	5-(2-cloro-3-fenilaliliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
68	5-(4-hidroxi-3-metoxibenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
69	5-fenantren-9-ilmetilen-2-(4-fenilpiperazin-1-il)tiazol-4-ona
70	5-(6-metoxinaftalen-2-ilmetilen)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
71	5-naftalen-1-ilmetilen-2-(4-fenilpiperazin-1-il)tiazol-4-ona
72	5-(4-bromobenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
73	5-(4-metilbenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	- (· · · · · · · · · · · · · · · · · ·

74	2-(4-fenilpiperazin-1-il)-5-(2-trifluorometil-benciliden-tiazol-4-ona
75	3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-iliden)-1,3-dihidroindol-2-ona
76	3-(2-morfolin-4-il-4-oxo-4H-tiazol-5-iliden)-1,3-dihidroindol-2-ona
77	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
78	5-(4-terc-butilbenciliden)-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
79	2-[4-(2-fluorofenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
80	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
81	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-trifluorometil-benciliden) tiazol-4-ona
82	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
83	5-(2-cloro-3-fenilaliliden)-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
84	2-[4-(2-fluorofenil)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
85	5-(2-cloro-3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
86	ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
87	ácido 4-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
88	5-{3-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
89	5-{4-[4-(3-cloro-piridin-2-il)-piperazin-1-carbonil]-benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
90	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-quinolin-3-ilmetilen-tiazol-4-ona
91	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
92	2-(2,3-dihidroindol-1-il)-5-(4-metilbenciliden-tiazol-4-ona
93	2-(2,3-dihidroindol-1-il)-5-(4-trifluorometil-benciliden)tiazol-4-ona
94	5-[4-(morfolin-4-carbonil)benciliden]-2-tiomorfolin-4-il-tiazol-4-ona
95	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)-tiazol-4-ona
96	1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(2-trifluorometilfenil)urea
97	2-(4-bencilpiperazin-1-il)-5-quinolin-3-ilmetilen-tiazol-4-ona
98	2-(4-bencilpiperazin-1-il)-5-naftalen-2-ilmetilen-tiazol-4-ona
99	2-(4-bencilpiperazin-1-il)-5-(3-fenoxibenciliden)tiazol-4-ona
100	2-(4-bencilpiperazin-1-il)-5-(4-trifluorometil-benciliden)tiazol-4-ona
101	1-[5-(4-metilbenciliden)-4-oxo-4,5-dihidrotiazol-2-il]-3-(2-trifluorometil-fenil)urea
102	2-(4-bencilpiperazin-1-il)-5-naftalen-1-ilmetilen-tiazol-4-ona
103	2-(4-bencilpiperazin-1-il)-5-(6-metoxinaftalen-2-ilmetilen)tiazol-4-ona
104	2-(4-bencilpiperazin-1-il)-5-(4-terc-butilbenciliden)tiazol-4-ona
105	1-[4-oxo-5-(3-fenilaliliden)-4,5-dihidrotiazol-2-il]-3-(2-trifluorometilfenil)-urea
106	1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(4-trifluorometilfenilurea
107	1-[5-(4-metilbenciliden)-4-oxo-4,5-dihidrotiazol-2-il]-3-(4-trifluorometil-fenil)urea
107	5-{3-[4-(6-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
108	2-(4-bencilpiperazin-1-il)-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
110	5-{3-[4-(3-cloropiridin-2-il)-3-metilpiperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
111	N-[3-(3-cloro-5-trifluorometilpiridin-2-ilamino)propil]-3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-
'''	ilidenmetil)benzamida
112	N'-(2-cloro-4-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-
112	ilidenmetil)benzoico
112	,
113	5-{3-[4-(3-cloro-5-trifluorometilpiridin-2-il)-piperazin-1-carbonil]-benciliden}-2-tiomorfolin-4-iltiazol-4-ona
111	
114	N'-(3-cloro-5-trifluorometilpiridin-2-il)-hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-
445	ilidenmetil)benzoico
115	5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
116	N'-(2-cloro-5-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-
447	ilidenmetil)benzoico
117	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-metilbenciliden)-tiazol-4-ona

118	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
119	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
120	5-(4-terc-butilbenciliden)-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-tiazol-4-ona
121	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
122	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
123	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
124	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(3-fenoxibenciliden)-tiazol-4-ona
125	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-fenoxibenciliden)-tiazol-4-ona
126	5-(3-benciloxi-benciliden)-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-tiazol-4-ona
127	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-hidroxi-3-metoxi-benciliden)tiazol-4-ona
128	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-furan-2-ilmetilen-tiazol-4-ona
129	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
130	ácido 3-[2-(4-bencilpiperazin-1-il)-4-oxo-4H-tiazol-5-ilidenmetil]benzoico
131	5-naftalen-1-ilmetilen-2-piperazin-1-il-tiazol-4-ona
132	2-piperazin-1-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
133	5-(4-metilbenciliden)-2-piperazin-1-il-tiazol-4-ona
134	5-(4-hidroxi-3-metoxibenciliden)-2-piperazin-1-il-tiazol-4-ona
135	5-(4-isopropilbenciliden)-2-morfolin-4-il-tiazol-4-ona
136	5-(4-isopropilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
137	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
138	5-(4-pentafluorosulfanil)benciliden)-2-tiomorfolin-4-il-tiazol-4-ona
139	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
140	clorhidrato de 2-(4-bencilpiperazin-1-il)-5-(4-butilbenciliden)tiazol-4-ona
141	clorhidrato de 2-(4-bencilpiperazin-1-il)-5-(4-pentilbenciliden)tiazol-4-ona
142	2-(4-bencilpiperazin-1-il)-5-(4-octilbenciliden)tiazol-4-ona
143	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
144	5-(4-terc-butilbenciliden)-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
145	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
146	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
147	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
148	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)-tiazol-4-ona
149	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
150	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)-tiazol-4-ona
151	2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
152	5-(4-metilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
153	5-(4-isopropilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
154	5-(4-terc-butilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
155	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
156	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)-tiazol-4-ona
157	5-(4-hidroxi-3-metoxibenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-tiazol-4-ona
158	2-(4-bencilpiperazin-1-il)-5-(4-pentafluorosulfanil-benciliden)tiazol-4-ona
159	2-(4-bencilpiperazin-1-il)-5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}tiazol-
	4-ona
160	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)-tiazol-4-ona
161	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
162	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
163	2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
164	2-(4-bencilpiperazin-1-il)-5-(4-isopropilbenciliden)tiazol-4-ona
165	ácido 3-{2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-4-oxo-4H-tiazol-5-ilidenmetil}benzoico

166	5-{3-[4-(4-cloro-3-trifluorometil-fenil)-4-hidroxipiperidin-1-carbonil]-benciliden-2-tiomorfolin-4-il-tiazol-4-ona
167	5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}-2-[4-(4-cloro-[1,2,5]tiadiazol-3-
107	il)piperazin-1-il]tiazol-4-ona
168	5-{3-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-[4-(4-cloro-[1,2,5]tiadiazol-3-
	il)piperazin-1-il]tiazol-4-ona
169	5-[3-(4-bencilpiperazin-1-carbonil)benciliden]-2-[4-(4-cloro-1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-
	4-ona
170	2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-{3-[4-(6-metoxipiridin-2-il)piperazin-1-carbonil]benciliden}tiazol-4-ona
171	2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(4-metil-benciliden)tiazol-4-ona
172	2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-
	ona
173	2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
174	clorhidrato de 2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(3-metoxibenciliden)tiazol-
	4-ona
175	bromhidrato de 5-benciliden-2-morfolin-4-il-tiazol-4-ona
176	bromhidrato de 5-(4-metilbenciliden)-2-morfolin-4-il-tiazol-4-ona
177	bromhidrato de 2-dietilamino-5-(4-metilbenciliden)tiazol-4-ona
178	bromhidrato de 5-(4-clorobenciliden)-2-dietilamino-tiazol-4-ona
179	bromhidrato de 5-(4-isopropilbenciliden)-2-morfolin-4-il-tiazol-4-ona
180	bromhidrato de 5-benciliden-2-dietilamino-tiazol-4-ona
181	bromhidrato de 5-(4-clorobenciliden)-2-morfolin-4-il-tiazol-4-ona
182	bromhidrato de 5-(4-clorobenciliden)-2-piperidin-1-il-tiazol-4-ona
183	bromhidrato de 5-(4-clorobenciliden)-2-pirrolidin-1-il-tiazol-4-ona
184	bromhidrato de 5-benciliden-2-pirrolidin-1-il-tiazol-4-ona
185	5-benciliden-2-pirrolidin-1-il-tiazol-4-ona
186	bromhidrato de 5-bifenil-4-ilmetilen-2-piperidin-1-il-tiazol-4-ona
187	bromhidrato de 2-azepan-1-il-5-bifenil-4-ilmetilen-tiazol-4-ona
188	bromhidrato de 5-bifenil-4-ilmetilen-2-pirrolidin-1-il-tiazol-4-ona
189	bromhidrato de 2-morfolin-4-il-5-(3-fenilaliliden)tiazol-4-ona
190	bromhidrato de 5-(3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
191	bromhidrato de 5-(3-fenilaliliden)-2-piperidin-1-il-tiazol-4-ona
192	bromhidrato de 2-azepan-1-il-5-(3-fenilaliliden)tiazol-4-ona
193	bromhidrato de 5-(3-fenilaliliden)-2-pirrolidin-1-il-tiazol-4-ona
194	bromhidrato de 5-bifenil-4-ilmetilen-2-morfolin-4-il-tiazol-4-ona
195	bromhidrato de 2-tiomorfolin-4-il-5-(3-trifluorometil-benciliden)tiazol-4-ona
196	5-(4-clorobenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
197	5-(4-terc-butilbenciliden)-2-morfolin-4-il-tiazol-4-ona
198	bromhidrato de 5-(4-terc-butilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
199	bromhidrato de 5-(4-terc-butilbenciliden)-2-pirrolidin-1-il-tiazol-4-ona
200	bromhidrato de 2-azepan-1-il-5-(4-terc-butilbenciliden)tiazol-4-ona
201	bromhidrato de 5-(4-terc-butilbenciliden)-2-piperidin-1-il-tiazol-4-ona
202	2-tiomorfolin-4-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
203	bromhidrato de 5-(4-terc-butilbenciliden)-2-dietilamino-tiazol-4-ona
204	2-morfolin-4-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
205	bromhidrato de 2-morfolin-4-il-5-(3-trifluorometil-benciliden)tiazol-4-ona
206	2-morfolin-4-il-5-(3-trifluorometil-benciliden)tiazol-4-ona
207	5-bifenil-4-ilmetilen-2-dietilamino-tiazol-4-ona
L	1

208	2-morfolin-4-il-5-tiofen-2-ilmetilen-tiazol-4-ona
209	2-morfolin-4-il-5-naftalen-1-ilmetilen-tiazol-4-ona
210	2-morfolin-4-il-5-piridin-2-ilmetilen-tiazol-4-ona
211	2-morfolin-4-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
212	2-morfolin-4-il-5-piridin-3-ilmetilen-tiazol-4-ona
213	2-morfolin-4-il-5-piridin-4-ilmetilen-tiazol-4-ona
214	2-dietilamino-5-(3-trifluorometil-benciliden)tiazol-4-ona
215	5-(4-metilbenciliden)-2-pirrolidin-1-il-tiazol-4-ona
216	5-(4-terc-butilbenciliden)-2-(2-metoxietilamino)tiazol-4-ona
217	bromhidrato de 2-morfolin-4-il-5-(4-octilbenciliden)tiazol-4-ona
218	5-(4-metilbenciliden)-2-morfolin-4-il-tiazol-4-ona
219	5-(3,4-dimetoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
220	5-(2-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
221	5-(2-hidroxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
222	5-(4-terc-butilbenciliden)-2-morfolin-4-il-tiazol-4-ona
223	5-(4-dietilamino-benciliden)-2-morfolin-4-il-tiazol-4-ona
224	5-(4-hidroxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
225	ácido 4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoico
226	2-morfolin-4-il-5-(2,3,4-trimetoxibenciliden)tiazol-4-ona
227	2-morfolin-4-il-5-(3,4,5-trimetoxibenciliden)tiazol-4-ona
228	5-(4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
229	5-(4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
230	5-(3-etoxi-4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
231	5-(3-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
232	5-(4-bromobenciliden)-2-morfolin-4-il-tiazol-4-ona
233	2-morfolin-4-il-5-(4-viniloxibenciliden)tiazol-4-ona
234	4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil éster de ác. benceno-sulfónico
235	5-(4-dimetilamino-benciliden)-2-morfolin-4-il-tiazol-4-ona
236	4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoato de metilo
237	5-(3-hidroxi-4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
238	5-[4-(3,3-dimetilbutoxi)-3-metoxibenciliden]-2-morfolin-4-il-tiazol-4-ona
239	5-(2-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
240	5-(4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
241	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-[3-(4-terc-butilfenil)aliliden]tiazol-4-ona
242	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometil-benciliden)tiazol-4-ona
243	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometoxi-benciliden)-tiazol-4-ona
244	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-naftalen-1-ilmetilen-tiazol-4-ona
245	2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(2-cloro-3-fenilaliliden)tiazol-4-ona
246	2-(4-metilbencilamino)-5-naftalen-1-ilmetilen-tiazol-4-ona
247	2-(4-metilbencilamino)-5-(3-fenoxibenciliden)tiazol-4-ona
248	2-(4-metilbencilamino)-5-(4-fenoxibenciliden)tiazol-4-ona
249	5-(2-cloro-3-fenilaliliden)-2-(4-metilbencilamino)tiazol-4-ona
250	2-(4-metilbencilamino)-5-naftalen-2-ilmetilen-tiazol-4-ona
251	2-(3-metoxibencilamino)-5-(4-metilbenciliden)tiazol-4-ona
252	5-(4-terc-butilbenciliden)-2-(3-metoxibencilamino)tiazol-4-ona
253	2-(3-metoxibencilamino)-5-(4-trifluorometil-benciliden)tiazol-4-ona
254	2-(3-metoxibencilamino)-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
255	2-(3-metoxibencilamino)-5-(3-fenilaliliden)tiazol-4-ona
256	5-naftalen-1-ilmetilen-2-(4-trifluorometil-bencilamino)tiazol-4-ona

257	5-(3-fenoxibenciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona
258	5-(4-fenoxibenciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona
259	5-(2-cloro-3-fenilaliliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona
260	5-(3-benciloxi-benciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona
261	5-naftalen-2-ilmetilen-2-(4-trifluorometil-bencilamino)tiazol-4-ona

Datos farmacológicos

La afinidad de los derivados de tiazol-4-ona 2,5-disustituidos según la invención por el receptor vainilloide 1 (receptor VR1/TRPV1) se determinó tal como se describe más arriba.

5

IC ₅₀ VR1	(rata) (humano)														> 50 > 100	20	20	20	20	20	20	200	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20	05 40			
(humano)		_				5,17	17,78	3,645	13,02	8,51	90'6	> 25							10,56					> 25					
EC50 VR1	(rata)					0,95	6,36	1,295	7,755	6,595	8,485	11,875							5,82					2,5					
VR1 (humano)	(% inhibición en	comp. con CP 10	hМ)	54,33	11,13	89,44	19,65	79,17	10,83	28,51	80,79	61,63	37,65	73,26	14,65	89,29	68,80	23,67	22,60	50,18	34,31	34,15	51,62	81,73	52,80	39,34	97.47	71,14	54,65
VR1 (humano)	(% estimulación en	comp. con CP 10 µM)		55,40	6,15	106,96	45,99	139,33	8,82	36,52	63,95	61,33	29,07	90'0	25,74	110,57	47,43	18,89	0,47	49,72	10,95	00'0	00'0	79,60	00'0	54,28	82.46	61,42	5,03
VR1 (rata)	(% inhibición en	comp. con CP 10	(Mu	68'39	46,23	82,14	91,14	88,01	31,38	50,12	88,08	91,35	87,21	97,01	64,80	96'28	100,59	50,97	66'06	93,08	64,34	78,48	21,27	84,78	70,90	11,64	77.11	80'06	26,98
VR1 (rata)	(% estim. en comp.	con CP 10 µM)		53,99	42,13	107,63	119,55	144,22	11,71	55,77	116,13	110,20	80,77	0,92	49,60	100,54	67,65	31,17	86,95	98,33	39,61	0,40	7,19	80,96	0,34	73,37	54.91	72,85	28,48
Comp.	ejemplo			12	13	41	17	18	19	21	22	24	25	30	33	34	36	39	41	42	44	49	20	54	63	89	85	88	96

IC ₅₀ VR1	(humano)																												
IC ₅₀ VR1	(rata)																												
EC ₅₀ VR1	(humano)												> 50	> 25	> 50	> 50	5,9		1,02		> 25			28,4				5,4	
EC ₅₀ VR1	(rata)												> 25	14,27	> 25	> 50	2,2		1,12		> 25			14,83				1,5	
VR1 (humano)	(% inhibición en	comp. con CP 10	µM)	28,75	97,83	66,21	84,29	86,67	34,23	47,22	35,32	30,72	8,14	32,35	8,04	10,31	90,32	72,42	76,67	4,43	2,12	102,91	92,06	5,47	3,03	56,74	49,80	51,07	12,88
VR1 (humano)	(% estimulación en	comp. con CP 10 µM)		1,02	90,31	68,25	85,02	114,42	95'9	2,43	14,52	5,04	11,15	34,09	15,81	16,72	80,31	48,05	54,31	9,64	17,52	68,23	77,26	9,44	1,83	6,08	3,64	2,08	17,91
VR1 (rata)	(% inhibición en	comp. con CP 10	nM)	50,28	97,39	95,77	87,60	96,93	54,11	17,01	97,55	38,36	5,61	83,13	17,65	2,18	60,96	94,35	97,57	69,55	46,20	96,40	102,30	34,68	23,01	60,03	4,47	22,13	78,83
VR1 (rata)	(% estim. en comp.	con CP 10 µM)		49,33	135,99	128,30	79,68	83,98	3,99	2,50	44,68	41,89	6,64	51,35	-0,17	1,34	94,27	63,86	60,71	42,91	31,45	79,60	76,51	39,99	2,22	13,70	2,14	1,24	55,76
Comp.	ejemplo			110	113	115	135	136	154	161	176	179	189	190	191	192	195	197	198	199	200	205	206	209	210	214	215	216	218

IC_{50} VR1	(humano)								
IC ₅₀ VR1	(rata)								
$EC_{50}VR1$	(humano)					26,5			
$EC_{50}VR1$	(rata)					14,3			
VR1 (humano)	(% inhibición en	comp. con CP 10	µM)	79,67	57,72	0,61	43,80	27,80	44,50
VR1 (humano)	(% estimulación en	comp. con CP 10 µM)		41,92	70,53	12,18	29,19	46,10	73,87
VR1 (rata)	(% inhibición en	comp. con CP 10	µM)	98,64	9,30	4,84	96,18	80'86	13,66
VR1 (rata)	(% estim. en comp.	con CP 10 µM)		102,46	101,77	16,03	80,44	67,90	123,39
Comp.	ejemplo			222	223	228	232	234	235

REIVINDICACIONES

1. Utilización de al menos un derivado de tiazol-4-ona 2,5-disustituido de fórmula general I,

donde

5

10

15

40

R¹ representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; un grupo arilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; un grupo - NR³R⁴; un grupo -NR⁵-C(=O)-R⁶; o un grupo -NR⁷-C(=O)-NR⁸R⁹;

representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; CH-U-X; CH-CH₂-V-Y, CH-CH(CH₃)-V-Y, CH-CHCI-V-Y, CH-CHBr-V-Y, CH-CHF-V-Y o CH-CH (OH)-V-Y; o CH-CH=C(CH₃)-W-Z, CH-CH=CH-W-Z, CH-C(CH₃)=CH-W-Z, CH-C(fenilo)=CH-W-Z, CH-CBr=CH-W-Z, CH-CCI=CH-W-Z, CH-CF=CH-W-Z, CH-C(OH)=CH-W-Z, CH-CH₂-CH₂-W-Z, CH-CH₂-CH(CH₃)-W-Z o CH-CH(CH₃)-CH₂-W-Z;

pudiendo U, V y W en cada caso no estar presentes o representar, en cada caso independientemente entre sí, un grupo seleccionado de entre el grupo consistente en O, S, N(H), N(CH₃), N(C₂H₅) y N[CH(CH₃)₂];

 R^3 20 representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂-CH₂-CH₂-S-CH₃, -CH₂-O-CH₃, -CH₂-CH₂-CH₂-N(CH₃)-CH₃, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, 25 Br, I, -CN, -NO₂, -OH, -SH y -NH₂; un grupo seleccionado de entre ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclopentenilo, ciclohexenilo, cicloheptenilo, imidazolidinilo, tetrahidrofuranilo, tetrahidrotiofenilo, pirrolidinilo, piperidinilo, morfolinilo, tiomorfolinilo y azepanilo, pudiendo este grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -30 NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N(C₂H $N[CH(CH_3)_2]$ -fenilo, $-N(CH_3)$ -piridinilo, $-N(C_2H_5)$ -piridinilo, $-N[CH(CH_3)_2]$ -piridinilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo y -N[CH(CH₃)₂]-piridinilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -35 NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; o representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, 1,3benzodioxolilo y 1,4-benzodioxanilo, pudiendo el grupo estar unido a través de un grupo -(CH₂)-, -(CH₂)-(CH₂) o -(CH₂)-(CH₂)-(CH₂) y/o estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes

seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -

 $O-C_2H_5,\ -NH_2,\ -NO_2,\ -CF_3,\ -O-CF_3,\ -S-CF_3,\ -S+CH_3,\ -S-CH_5,\ metilo,\ etilo,\ n-propilo,\ isopropilo,\ n-butilo,$

sec-butilo, isobutilo, terc-butilo, $-C(=O)-O-CH_3$, $-C(=O)-O-C_2H_5$, $-C(=O)-O-C(CH_3)_3$, $-O-C(=O)-CH_3$, -O-C(=O)-C(=O

R⁴ representa un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido, que en caso dado presenta al menos un heteroátomo como miembro de la cadena;

5

10

15

20

25

30

35

40

- R⁵, R⁷ y R⁹ representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;
- R⁶ y R⁸ representan en cada caso, independientemente entre sí, un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido;
- X representa un grupo arilo o heteroarilo que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que puede estar sustituido con sustituyentes R¹⁰ iguales o diferentes;
- Y representa un grupo arilo o heteroarilo que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que puede estar sustituido con sustituyentes R¹¹ iguales o diferentes;
- Z representa un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido; o un grupo arilo o heteroarilo que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que puede estar sustituido con sustituyentes R¹² iguales o diferentes;
- R^{10} , R^{11} y R^{12} representan en cada caso, independientemente entre sí, un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, SF₅, -OH, -O-alquilo(C_{1-10}), -O-alquenilo(C_{2-10}), -NH₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C_{1-5}), -alquilo(C_{1-5}), -alquilo(C_{1-5}), -alquilo(C_{1-5}), -C(=O)-OH, -C(=O)O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -C(=O)-N-(alquilo(C_{1-5}))₂, -S(=O)₂-alquilo(C_{1-5}), -C(=O)-Alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-fenilo, ciclopentilo, ciclohexilo, piridezinilo, -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo; un grupo -C(=O)-NR¹³-(CH₂)_m-NR¹⁴-R¹⁵, siendo m igual a 0, 1, 2, 3, 4 o 5; o un grupo -C(=O)-R¹⁶;
- R¹³ y R¹⁴ representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;
- R¹⁵ representa un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; y
- R¹⁶ representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido;
- en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes;

para producir un medicamento para la profilaxis y/o el tratamiento del dolor.

2. Utilización de un compuesto según la reivindicación 1, caracterizada porque

5

10

15

20

25

30

35

40

R¹ representa un grupo cicloalifático de 3, 4, 5, 6, 7, 8 o 9 miembros saturado o insaturado, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; un grupo arilo de 6 o 10 miembros, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; un grupo -NR³R⁴; un grupo -NR⁵-C(=O)-R⁶; o un grupo -NR³-C(=O)-NR⁶Rී;

 R^2 representa un grupo cicloalifático de 3, 4, 5, 6, 7, 8 o 9 miembros saturado o insaturado, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; CH-U-X; CH-CH₂-V-Y, CH-CH(CH₃)-V-Y, CH-CHCI-V-Y, CH-CHBr-V-Y, CH-CHF-V-Y o CH-CH (OH)-V-Y; o CH-CH=C(CH₃)-W-Z, CH-CH=CH-W-Z, CH-C(CH₃)=CH-W-Z, CH-C(GH)=CH-W-Z, CH-CH₂-

R³ representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-CH₂-N(CH₃)-CH₃, n-propilo, -CH₂-CH₃, -CH₂-CH₂-CH₂-N(CH₃)-CH₃, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, npentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂; un grupo seleccionado de entre el grupo consistente en ciclopentilo, ciclohexilo, cicloheptilo, ciclopentenilo, ciclohexenilo, cicloheptenilo, imidazolidinilo, tetrahidrofuranilo, tetrahidrotiofenilo, pirrolidinilo, piperidinilo, morfolinilo, tiomorfolinilo y azepanilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, - $N(CH_3)_2$, - $N(C_2H_5)_2$, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo, -N[CH(CH₃)₂]-piridinilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo y -N[CH(CH₃)₂]-piridinilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; o representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, 1,3benzodioxolilo y 1,4-benzodioxanilo, pudiendo el grupo estar unido a través de un grupo -(CH₂)-, -(CH₂)-(CH₂) o -(CH₂)-(CH₂)-(CH₂) y/o estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -CF₃, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, isobutilo, terc-butilo, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -O-C(=O)-CH₃, -O-C(=O)-C₂H₅, - $O-C(=O)-C(CH_3)_3, -N(CH_3)_2, -N(C_2H_5)_2, -NH-CH_3, -NH-C_2H_5, -NH-CH(CH_3)_2 \ y \ -NH-C(CH_3)_3; -NH-CH_3, -$

 R^4 representa un grupo hidrógeno; o un grupo alifático(C_{1-10}) lineal o ramificado, saturado o insaturado, en caso dado sustituido, que en caso dado presenta 1, 2 o 3 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno (NH) y azufre;

R⁵, R⁷ y R⁸ representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático(C₁₋₁₀) lineal o ramificado, saturado o insaturado, en caso dado sustituido;

R⁶ y R⁹ representan en cada caso, independientemente entre sí, un grupo arilo o heteroarilo de 5 a 14 miembros, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido;

X representa un grupo arilo o heteroarilo de 5 a 14 miembros, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido, y/o que puede estar sustituido en caso dado con 1, 2, 3, 4 o 5 sustituyentes R¹⁰ iguales o diferentes;

5

10

15

20

25

30

35

40

Y representa un grupo arilo o heteroarilo de 5 a 14 miembros, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido, y/o que puede estar sustituido en caso dado con 1, 2, 3, 4 o 5 sustituyentes R¹¹ iguales o diferentes;

Z representa un grupo alifático($C_{1\cdot 20}$) lineal o ramificado, saturado o insaturado, en caso dado sustituido; o un grupo arilo o heteroarilo de 5 a 14 miembros, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido, y/o que puede estar sustituido en caso dado con 1, 2, 3, 4 o 5 sustituyentes R^{12} iguales o diferentes;

 R^{10} , R^{11} y R^{12} representan en cada caso, independientemente entre sí, un grupo seleccionado de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, SF₅, -OH, -O-alquilo(C₁₋₁₀), -O-alquenilo(C₂₋₁₀), -NH₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C₁₋₅), -alquilo(C₁₋₁₀), -C(=O)-OH, -C(=O)O-alquilo(C₁₋₅), -O-C(=O)-alquilo(C₁₋₅), -NH-alquilo(C₁₋₅), -NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -C(=O)-NH-alquilo(C₁₋₅), -S(=O)₂-alquilo(C₁₋₅), -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C₁₋₅), -S(=O)₂-alquilo(C₁₋₅), ciclohexilo, ciclopentilo, piridinilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-fenilo, ciclopentilo, piridezinilo, -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C₁₋₅), -O-alquilo(C₁₋₅), -O-CF₃, -S-CF₃, fenilo y -O-bencilo; un grupo -C(=O)-NR¹³-(CH₂)_m-NR¹⁴-R¹⁵, siendo m igual a 0, 1, 2, 3, 4 o 5; o un grupo -C(=O)-R¹⁶;

 R^{13} y R^{14} representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático(C_{1-10}) lineal o ramificado, saturado o insaturado, en caso dado sustituido;

R¹⁵ representa un grupo arilo o heteroarilo de 5 a 14 miembros, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; y

 R^{16} representa un grupo cicloalifático de 3, 4, 5, 6, 7, 8 o 9 miembros saturado o insaturado, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; pudiendo estar sustituidos los grupos cicloalifáticos mencionados en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en oxo (=O), tioxo (=S), F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C_{1-5}), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C_{1-5}), -alquilo(C_{1-5}), -C(=O)-OH, -C(=O)-O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-fenilo, -NH-piridinilo, -N(alquil(C_{1-5}))/piridinilo, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridinilo, [1,2,5]-tiadiazolilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -NH-piridinilo, -N(alquil(C_{1-5})))fenilo, -N(alquil(C_{1-5}))piridinilo, piridinilo, ciclopentilo, [1,2,5]-tiadiazolilo, ciclohexilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF₃, -S-CF₃, fenilo y -O-bencilo; pudiendo estar sustituidos los anillos de

5

10

15

20

25

30

35

40

los sistemas de anillo monocíclicos o policíclicos arriba mencionados en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en oxo (=O), tioxo (=S), F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C_{1-5}), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C_{1-5}), -alquilo(C_{1-5}), -C(=O)-O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -N(alquilo(C_{1-5}), -N(alquilo(C_{1-5}), -NH-fenilo, -NH-piridinilo, -N(alquil(C_{1-5}))fenilo, -N(alquil(C_{1-5}))piridinilo, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-N-(alquilo(C_{1-5}))₂, -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridinilo, [1,2,5]-tiadiazolilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF₃, -S-CF₃, fenilo y -O-bencilo; y donde los anillos de los sistemas de anillo monocíclicos o policíclicos arriba mencionados tienen en cada caso 5, 6 o 7 miembros y pueden presentar en cada caso 1, 2, 3, 4 o 5 heteroátomos como miembros del anillo, seleccionados de entre el grupo consistente en oxígeno, nitrógeno y azufre;

los grupos alifáticos (C_{1-10}) o (C_{1-20}) arriba mencionados pueden estar sustituidos en cada caso opcionalmente con 1, 2, 3, 4, 5, 6, 7, 8 o 9 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂;

los grupos arilo o heteroarilo arriba mencionados pueden estar sustituidos en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C_{1-5}), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C_{1-5}), -alquilo(C_{1-10}), -C(=O)-OH, -C(=O)-O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -N(alquilo(C_{1-5}))₂, -NH-fenilo, -NH-piridinilo, -N(alquil(C_{1-5}))fenilo, -N(alquilo(C_{1-5}))piridinilo, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), C(=O)-N-(alquilo(C_{1-5}))₂, -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridinilo, [1,2,5]-tiadiazolilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₆, -CN, -NO₂, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF₃, -S-CF₃, fenilo y -O-bencilo,

y los grupos heteroarilo arriba mencionados pueden presentar en cada caso opcionalmente 1, 2, 3, 4 o 5 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno y azufre como miembro(s) del anillo;

y los grupos alquileno(C_{1-5}) arriba mencionados pueden estar sustituidos en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, -OH, -SH, -NH₂, -CN y NO₂;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

3. Utilización de un compuesto según la reivindicación 1 o 2, caracterizada porque

R¹ representa un grupo seleccionado de entre el grupo consistente en ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclohexenilo, ciclohexenilo, ciclohexenilo, imidazolidinilo, tetrahidrofuranilo, tetrahidrotiofenilo, pirrolidinilo, piperidinilo, morfolinilo, tiomorfolinilo, azepanilo, 2,3-dihidro-1H-isoindolilo, 2,3-dihidroindolilo, 2,3,4,9-tetrahidro-

5

10

15

20

25

30

35

40

45

1H-β-carbolinilo, 2,3,4,9-tetrahidro-1H-pirido[2,3-b]indolilo, [1,2,3,4]-tetrahidronaftilo, [1,2,3,4]tetrahidroquinolinilo, [1,2,3,4]-tetrahidroisoquinolinilo, [1,2,3,4]-tetrahidroquinazolinilo y [3,4]-dihidro-2H-1,4benzoxazinilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en oxo (-O), tioxo (=S), F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -O- $C(=O)-CH_3$, $-O-C(=O)-C_2H_5$, $-O-C(-O)-C(CH_3)_3$, $-N(CH_3)_2$, $-N(C_2H_5)_2$, $-NH-CH_3$, $-NH-C_2H_5$, $-NH-CH(CH_3)_2$, $-NH-CH_3$, $-NH-CH_$ $C(CH_3)_3$, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, - $N(C_2H_5)$ -piridinilo, $-N[CH(CH_3)_2]$ -piridinilo, $-NH-C(=O)-O-CH_3$, $-NH-C(=O)-O-C_2H_5$, $-NH-C(=O)-O-C(CH_3)_3$, $-NH-C(=O)-O-C(CH_3)_3$ $C(=O)-CH_3, \quad -C(=O)-C_2H_5, \quad -C(=O)-NH-CH_3, \quad -C(=O)-NH-C_2H_5, \quad -C(=O)-N-(CH_3)_2, \quad -C(=O)-N-(C_2H_5)_2, \quad piridinilo, \quad -C(=O)-N-(CH_3)_2, \quad -C(=O)$ piridazinilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos -NH-fenilo, -NHpiridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo, -N(C₂H₅)-piridinilo N[CH(CH₃)₂]-piridinilo, piridinilo, piridazinilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -Obencilo; o representa un grupo piperazinilo que puede estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec $butilo, isobutilo, terc-butilo, -C(=O)-OCH_3, -C(=O)-O-C_2H_5, -C(=O)-O-C(CH_3)_3, -C(=O)C_{1-5}-alquilo, -C(=O)-NH_2, C(=O)-CH_3$, $-C(=O)-C_2H_5$, $-C(=O)-NH-CH_3$, $-C(=O)-NH-C_2H_5$, $-C(=O)-N-(CH_3)_2$, $-C(=O)-N-(C_2H_5)_2$, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-CF₃, -O-CF₃, -S-CF₃, fenilo y -Obencilo; o representa un grupo seleccionado de entre el grupo consistente en fenilo y naftilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc $butilo, -C(=O)-O-CH_3, -C(=O)-O-C_2H_5, -C(=O)-O-C(CH_3)_3, -O-C(=O)-CH_3, -O-C(=O)-C_2H_5, -O-C(=O)-C(CH_3)_3, -O-C(EO)-C(CH_3)_3, -O-C(EO)-C(CH_3)_4, -O-C(EO)-C(CH_3)_5, -O-C(EO)-C(CH_3)_5, -O-C(EO)-C(CH_3)_5, -O-C(EO)-C(CH_3)_5, -O-C(EO)-C(C$ N(CH₃)₂, -N(C₂H₆)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂ y -NH-C(CH₃)₃; o representa un grupo NR³R⁴, un grupo NR⁵-C(=O)-R⁶; o representa un grupo NR⁷-C(=O)-NR⁸R⁹.

4. Utilización de un compuesto según una o más de las reivindicaciones 1 a 3, caracterizada porque

 R^2 representa un grupo 1,3-dihidroindol-2-onilo o un 1,3-dihidroindol-2-tionilo; CH-X; CH-CH₂-Y, CH-CH(CH₃)-Y, CH-CHCI-Y, CH-CHBr-Y, CH-CHF-Y o CH-CH(OH)-Y; o representa CH-CH=C(CH₃)-Z, CH-CH=CH-Z, CH-CH=CH-S-Z, CH-CH=CH-O-Z, CH-CH=CH-N(CH₃)-Z, CH-C(CH₃)=CH-Z, CH-C(fenilo)=CH-Z, CH-CBr=CH-Z, CH-CCI=CH-Z, CH-CF=CH-Z, CH-C(OH)=CH-Z, CHCH₂-CH₂-Z, CH-CH₂-CH(CH₃)-Z o CH-CH(CH₃)-CH₂-Z.

5. Utilización de un compuesto según una o más de las reivindicaciones 1 a 4, caracterizada porque

 R^4 representa un grupo hidrógeno o un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, - CN, -NO₂, -OH, -SH y -NH₂.

6. Utilización de un compuesto según una o más de las reivindicaciones 1 a 5, caracterizada porque

R⁵, R⁷ y R⁸ representan en cada caso, independientemente entre sí, un grupo hidrógeno o un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en

cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂.

7. Utilización de un compuesto según una o más de las reivindicaciones 1 a 6, caracterizado porque

5

10

15

25

 R^6 y R^9 , representan en cada caso, independientemente entre sí, un grupo seleccionado de entre fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(=O)-OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(-O)-O-C(CH₃)₃, -N(CH₃)₂, -NH-CH₃, -NH-C₄-C₅-NH-C(=O)-O-CH₃, -NH-C(=O)-O-C₂H₅, -C(=O)-C(CH₃)₃, -C(=O)-CH₃, -C(=O)-C₂H₅, -C(=O)-C(CH₃)₃.

8. Utilización de un compuesto según una o más de las reivindicaciones 1 a 7, caracterizada porque

X representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridazinilo, pirimidinilo, quinolinilo e isoquinolinilo, que puede estar sustituido en caso dado con 1, 2, 3, 4 o 5 sustituyentes R¹⁰ iguales o diferentes.

9. Utilización de un compuesto según una o más de las reivindicaciones 1 a 8, caracterizada porque

Y representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridazinilo, piridinilo, quinolinilo e isoquinolinilo, que puede estar sustituido en caso dado con 1, 2, 3, 4 o 5 sustituyentes R¹¹ iguales o diferentes.

20 10. Utilización de un compuesto según una o más de las reivindicaciones 1 a 9, caracterizada porque

Z representa un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-decilo, n-tetradecilo, n-pentadecilo, n-hexadecilo, n-heptadecilo, n-octadecilo, n-nonadecilo y n-eicosanilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂; o un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, pirrolilo, pirazolilo, pirazolilo, piridazinilo, piridazinilo, pirimidinilo, quinolinilo e isoquinolinilo, que puede estar sustituido en caso dado con 1, 2, 3, 4 o 5 sustituyentes R¹² iguales o diferentes.

11. Utilización de un compuesto según una o más de las reivindicaciones 1 a 10, caracterizada porque

R¹⁰, R¹¹ y R¹² representan en cada caso, independientemente entre sí, un grupo seleccionado de entre F, CI, 30 Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₃-CH CH2-CH2-CH3, -O-CH2-CH2-C(CH3)3, -OCH=CH2, -O-CH2-CH=CH2, -NH2, -O-CF3, -S-CF3, -SH, -S-CH3, -C₂H₅, -S-CH₂-CH₂-CH₃, -S-CH₂-CH₂-CH₃, -S-C(CH₃)₃, metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo, n-octilo, -C(=O)-OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, 35 $C(CH_3)_3$, $-O-C(=O)-CH_5$, $-O-C(=O)-C_2H_5$, $-O-C(=O)-C(CH_3)_3$, $-N(CH_3)_2$, $-N(C_2H_5)_2$, $-NH-CH_3$, $-NH-C_2H_5$, $-NH-CH_5$ $C(=O)-O-CH_3, \quad -NH-C(=O)-O-C_2H_6, \quad -NH-C(=O)-O-C(CH_3)_3, \quad -NH-C(=O)-CH_3, \quad -NH-C(=O)-C_2H_5, \quad -NH-C(=O)-CH_3$ $C(CH_3)_3, -C(=O)-H, -C(=O)-CH_3, -C(=O)-C_2H_5, -C(=O)-C(CH_3)_3, -C(=O)-NH_2, -C(=O)-NH-CH_3, -C(=O)-NH-C_2H_5, -C(=O)-NH_2, -C(=O)$ $-C(=O)-N-(CH_3)_2, -C(=O)-N-(C_2H_5)_2, -S(=O)_2-CH_3, -S(=O)_2-CH_5, -NH-S(=O)_2-CH_3, -NH-S(=O)_2-C_2H_5, -S(=O)_2-CH_3, -NH-S(=O)_2-CH_3, -NH-S(=O)_2-C$ NH-CH₃, -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, ciclohexilo, ciclopentilo, piridazinilo, -(CH₂)-benzo[b]furanilo, 40 -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)2-fenilo, -O-S(=O)2-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo,

sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; o representan un grupo - $C(=O)-NR^{13}-(CH_2)_m-NR^{14}-R^{15}$, siendo m igual a 0, 1, 2 o 3; o representan un grupo - $C(=O)-R^{16}$;

R¹³ y R¹⁴ representan en cada caso, independientemente entre sí, un grupo hidrógeno o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

 R^{15} representa un grupo seleccionado entre el grupo consistente en fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo oxazolilo, pudiendo el radical estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, - CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(=O)-OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -O-C(=O)-CH₃, -O-C(=O)-C₂H₅, -OC(=O)-C(CH₃)₃, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-C(=O)-O-C₂H₆, -C(=O)-C-CH₃, -NH-C(=O)-O-C₂H₅, -NH-C(=O)-O-C(CH₃)₃, y

 R^{16} representa un grupo seleccionado de entre piperazinilo, tiomorfolinilo, azepanilo, morfolinilo, 2,3-dihidro-1H-isoindolilo, 2,3-dihidroindolilo, piperidinilo y pirrolidinilo, pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(-O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -C(=O)-alquilo(C₁₋₅), -C(=O)-NH₂, -C(=O)-CH₃, -C(=O)-C₂H₅, -C(=O)-NH-CH₃, -C(=O)-NH-C₂H₅, -C(=O)-N-(CH₃)₂, -C(=O)-N-(C₂H₅)₂, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₃, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo.

12. Utilización de un compuesto según una o más de las reivindicaciones 1 a 11, caracterizada porque

R¹ representa uno de los siguientes grupos

5

10

15

20

25

30

pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, -O-CH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₆)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo, -N[CH(CH₃)₂]-piridinilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica del grupo fenilo con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, entre el grupo consistente en F, Cl, Br y -CF₃; o representa uno de los siguientes grupos

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piri

5

10

15

20

25

30

35

40

R² representa un grupo 1,3-dihidroindol-2-onilo o un 1,3-dihidroindol-2-tionilo; CH-X; CH-CH₂-Y, CH-CH(CH₃)-Y, CH-CHCl-Y, CH-CHBr-Y, CH-CHF-Y o CH-CH(OH)-Y; o representa CH-CH=C(CH₃)-Z, CH-CH=CH-Z, CH-CH=CH-S-Z, CH-CH=CH-O-Z, CH-CH=CH-N(CH₃)-Z, CH-C(CH₃)=CH-Z, CH-C(fenilo)=CH-Z, CH-CBr=CH-Z, CH-CCI=CH-Z, CH-CF=CH-Z, CH-C(OH)=CH-Z, CH-CH₂-CH₂-Z, CH-CH₂-CH(CH₃)-Z o CH-CH(CH₃)-CH₂-Z;

R⁴ representa un grupo hidrógeno; o un grupo seleccionado entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

R⁷ y R⁸ representan en cada caso, independientemente entre sí, un átomo de hidrógeno; o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

R⁹ representa un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, - CF₃, -SF₅, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo;

X representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridazinilo, pirimidinilo, quinolinilo e isoquinolinilo, que en caso dado puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹⁰ iguales o diferentes;

Y representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridazinilo, pirimidinilo, quinolinilo e isoquinolinilo, que en caso dado puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹¹ iguales o diferentes;

Z representa un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-decilo, n-tetradecilo, n-pentadecilo, n-hexadecilo, n-heptadecilo, n-octadecilo, n-nonadecilo y n-eicosanilo; o representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridinilo, quinolinilo e isoquinolinilo, que en caso dado puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹² iguales o diferentes;

R¹⁰ representa un grupo seleccionado de entre F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-C

R¹¹ representa un grupo seleccionado de entre F, Cl, Br, -SF₅, metilo, etilo, n-propilo, isopropilo, butilo, secbutilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo y n-octilo;

 R^{12} representa un grupo seleccionado de entre F, CI, Br, -SF₆, -CF₃, -O-CH₃, -O-C₂H₅, -OCH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₂-CH₂-CH₃, -O-C(CH₃)₃, -O-CH₂-CH₂-CH₂-CH₂-CH₂-C(CH₃)₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo y n-octilo;

R¹³ y R¹⁴ representan en cada caso un grupo hidrógeno;

5

10

15

20

25

30

35

40

 R^{15} representa un grupo seleccionado de entre fenilo y piridinilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo; y

 R^{16} representa un grupo seleccionado de entre tiomorfolinilo, azepanilo, morfolinilo, 2,3-dihidro-1H-isoindolilo, 2,3-dihidroindolilo, piperidinilo y pirrolidinilo, pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, bencilo y fenilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos bencilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br y -CF3; o representa uno de los siguientes grupos

$$-N$$
 NH , $-N$ NH O $-N$ NH CH_3

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, donde en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo puede estar sustituida con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-CF₃ y -S-CF₃;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

5 13. Utilización de un compuesto según una o más de las reivindicaciones 1 a 12, caracterizada porque

R¹ representa uno de los siguientes grupos

10

15

20

25

30

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, donde en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo puede estar sustituida con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃; o representa un grupo seleccionado de entre fenilo y naftilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, -O-CH₃ y -O-C₂H₅; o representa un grupo NR³R⁴; o representa un grupo NR⁷-C(=O)-NR⁸R⁹;

 R^2 representa un grupo 1,3-dihidroindol-2-onilo o 1,3-dihidroindol-2-tionilo; o representa CH-X, CH-CH₂-Y, CH-CH(CH₃)-Y o CH-CH(OH)-Y; o representa CH-CH=C(CH₃)-Z, CH-CH=CH-Z, CH-CH=CH-S-Z, CH-C(CH₃)=CH-Z, CH-C(fenilo)=CH-Z, CH-CBr=CH-Z, CH-CCI=CH-Z, CH-CF=CH-Z, CH-CH₂-CH₂-Z, CH-CH₂-CH(CH₃)-Z o CH-CH(CH₃)-CH₂-Z;

R³ representa un grupo seleccionado de entre el grupo consistente en metilo, -CH₂-O-CH₃, -CH₂-S-CH₃, etilo, -CH₂-CH₂-S-CH₃, -CH₂-CH₂-O-CH₃, -CH₂-C

R⁴ representa un grupo hidrógeno; o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

R⁷ v R⁸ representan en cada caso un grupo hidrógeno:

 R^9 representa un grupo fenilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br y -CF₃;

X representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, tiofenilo, furanilo, piridinilo, piridazinilo, pirazinilo, pirimidinilo, quinolinilo e isoquinolinilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹⁰ iguales o diferentes;

Y representa un grupo fenilo o naftilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹¹ iguales o diferentes;

Z representa un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo y n-octilo; o un grupo fenilo o naftilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R¹² iguales o diferentes;

 R^{10} representa un grupo seleccionado de entre F, Cl, Br, I, $-CF_3$, $-SF_5$, -OH, $-O-CH_3$, $-O-C_2H_5$, $-O-CH_2-CH_2-CH_3$, $-O-CH_2-CH_3$, $-O-CH_3$

 R^{11} representa un grupo seleccionado de entre F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₃, -S-C₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃, -S-C₂-CH₃, -S-C₂-CH₃, -S-C₃, -S-C₃, -S-C₃-S-C

 R^{12} representa un grupo seleccionado de entre F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂

R¹³ v R¹⁴ representan en cada caso un grupo hidrógeno;

R¹⁵ representa un grupo seleccionado de entre fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo; y

R¹⁶ representa uno de los siguientes grupos

30 o representa uno de los siguientes grupos

5

10

15

20

25

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, donde en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo puede estar sustituida con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

- 10 14. Utilización de un compuesto según una o más de las reivindicaciones 1 a 13 seleccionado de entre el grupo consistente en
 - 1. 5-[3-(4-metoxifenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
 - 2. clorhidrato de 2-morfolin-4-il-5-fenetiliden-tiazol-4-ona
 - 3. clorhidrato de 2-morfolin-4-il-5-(2-o-toliletiliden)tiazol-4-ona
- 15 4. 2-morfolin-4-il-5-(3-fenilaliliden)tiazol-4-ona

5

- 5. 2-morfolin-4-il-5-(3-fenilbutiliden)tiazol-4-ona
- 6. 2-morfolin-4-il-5-(3-fenilpropiliden)tiazol-4-ona
- 7. 5-[3-(4-fluorofenil)aliliden]-2-morfolin-4-il-tiazol-4-on
- 8. N-[4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil]acetamida
- 20 9. 5-benzo[1,3]dioxol-5-ilmetilen-2-morfolin-4-il-tiazol-4-ona
 - 10. 2-morfolin-4-il-5-(3-m-tolilaliliden)tiazol-4-ona
 - 11. 5-(3-yodo-4,5-dimetoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
 - 12. 2-morfolin-4-il-5-(3-fenilsulfanil-aliliden)tiazol-4-ona
 - 13. 5-(3-benciloxi-4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
- 25 14. bromhidrato de 5-(4-metilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
 - 15. N-[4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil]amina
 - 16. 5-(4-butoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
 - 17. 2-morfolin-4-il-5-(4-fenoxibenciliden)tiazol-4-ona
 - 18. 2-morfolin-4-il-5-(3-fenoxibenciliden)tiazol-4-ona
- 30 19. 2-morfolin-4-il-5-(3-p-tolilaliliden)tiazol-4-ona
 - 20. 5-(3-benciloxi-benciliden)-2-morfolin-4-il-tiazol-4-ona
 - 21. 5-(4-benciloxi-benciliden)-2-morfolin-4-il-tiazol-4-ona
 - 22. 2-tiomorfolin-4-il-5-(2-trifluorometil-benciliden)tiazol-4-ona
 - 23. 5-(4-bromobenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
- 35 24. 2-tiomorfolin-4-il-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
 - 25. 5-(3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
 - 26. 2-morfolin-4-il-5-octiliden-tiazol-4-ona
 - 27. 5-(4-benciloxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
 - 28. 5-(3,4-bis-benciloxi-benciliden)-2-morfolin-4-il-tiazol-4-ona
- 40 29. 5-butiliden-2-morfolin-4-il-tiazol-4-ona
 - 30. 2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
 - 31. 2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
 - 32. 5-hexiliden-2-morfolin-4-il-tiazol-4-ona
 - 33. 2-morfolin-4-il-5-(3-p-tolilbut-2-eniliden)tiazol-4-ona
- 45 34. 5-[3-(4-terc-butilfenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
 - 35. 5-(4-metoxinaftalen-1-ilmetilen)-2-morfolin-4-il-tiazol-4-ona
 - 36. 2-morfolin-4-il-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
 - 37. 2-[4-(3-metoxifenil)piperazin-1-il]-5-(3-fenil-aliliden)tiazol-4-ona

	38.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-metoxifenil)piperazin-1-il]tiazol-4-ona
	39.	5-(4-hidroxi-3-metoxibenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
	40.	5-[3-(4-hidroxi-3-metoxifenil)aliliden]-2-tiomorfolin-4-il-tiazol-4-ona
	41.	5-naftalen-1-ilmetilen-2-tiomorfolin-4-il-tiazol-4-ona
5	42.	5-benciliden-2-tiomorfolin-4-il-tiazol-4-ona
	43.	2-morfolin-4-il-5-[3-(4-trifluorometil-fenil)but-2-eniliden]tiazol-4-ona
	44.	2-morfolin-4-il-5-[3-(3-trifluorometil-fenil)but-2-eniliden]tiazol-4-ona
	45.	5-(3-metilbutiliden)-2-morfolin-4-il-tiazol-4-ona
	46.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(2-trifluorometil-benciliden)tiazol-4-ona
10	47.	5-(4-bromobenciliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	48.	5-benciliden-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-on
	49.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
	50.	5-(2,3-difenilaliliden)-2-morfolin-4-il-tiazol-4-ona
	51.	2-morfolin-4-il-5-fenantren-9-ilmetilen-tiazol-4-ona
15	52.	2-morfolin-4-il-5-quinolin-3-ilmetilen-tiazol-4-ona
	53.	bromhidrato de 2-(4-etilpiperazin-1-il)-5-(4-metilbenciliden)tiazol-4-ona
	54.	5-naftalen-2-ilmetilen-2-tiomorfolin-4-il-tiazol-4-ona
	55.	2-[4-(4-metoxifenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
	56.	2-[4-(2-clorofenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
20	57.	5-(3-fenilaliliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	58.	5-deciliden-2-morfolin-4-il-tiazol-4-ona
	59.	5-[3-(4-terc-butilfenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
	60.	2-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoato de trietilamonio
	61.	5-(2-bromo-3-fenilaliliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
25	62.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	63.	2-(4-bencilpiperazin-1-il)-5-(4-metilbenciliden)tiazol-4-ona
	64.	2-(4-fenilpiperazin-1-il)-5-quinolin-3-ilmetilen-tiazol-4-ona
	65.	2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(2-metil-3-fenilaliliden)tiazol-4-ona
	66.	2-[4-(3-cloropiridin-2-il) piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
30	67.	5-(2-cloro-3-fenilaliliden)-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
	68.	5-(4-hidroxi-3-metoxibenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	69.	5-fenantren-9-ilmetilen-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	70.	5-(6-metoxinaftalen-2-ilmetilen)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	71.	5-naftalen-1-ilmetilen-2-(4-fenilpiperazin-1-il)tiazol-4-ona
35	72.	5-(4-bromobenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	73.	5-(4-metilbenciliden)-2-(4-fenilpiperazin-1-il)tiazol-4-ona
	74.	2-(4-fenilpiperazin-1-il)-5-(2-trifluorometil-benciliden)tiazol-4-ona
	75.	3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-iliden)-1,3-dihidroindol-2-ona
	76.	3-(2-morfolin-4-il-4-oxo-4H-tiazol-5-iliden)-1,3-dihidroindol-2-ona
40	77.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
	78.	5-(4-terc-butilbenciliden)-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
	79.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
	80.	5-[3-(4-terc-butilfenil)aliliden]-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
	81.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
45	82.	2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
	83.	5-(2-cloro-3-fenilaliliden)-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
	84.	2-[4-(2-fluorofenil)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
	85.	5-(2-cloro-3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
	86.	ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
50	87.	ácido 4-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
	88.	5-{3-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona

```
89.
                5-{4-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
      90.
                2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-quinolin-3-ilmetilen-tiazol-4-ona
      91.
                2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
      92.
                2-(2,3-dihidroindol-1-il)-5-(4-metilbenciliden)tiazol-4-ona
 5
                2-(2,3-dihidroindol-1-il)-5-(4-trifluorometil-benciliden)tiazol-4-ona
      93.
      94.
                5-[4-(morfolin-4-carbonil)benciliden]-2-tiomorfolin-4-il-tiazol-4-ona
      95.
                2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-ona
      96.
                1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(2-trifluorometilfenil)urea
      97.
                2-(4-bencilpiperazin-1-il)-5-quinolin-3-ilmetilen-tiazol-4-ona
10
      98.
                2-(4-bencilpiperazin-1-il)-5-naftalen-2-ilmetilen-tiazol-4-ona
      99.
                2-(4-bencilpiperazin-1-il)-5-(3-fenoxibenciliden)tiazol-4-ona
      100.
                2-(4-bencilpiperazin-1-il)-5-(4-trifluorometil-benciliden)tiazol-4-ona
      101.
                1-[5-(4-metilbenciliden)-4-oxo-4,5-dihidrotiazol-2-il]-3-(2-trifluorometil-fenil)urea
      102.
                2-(4-bencilpiperazin-1-il)-5-naftalen-1-ilmetilen-tiazol-4-ona
15
      103.
                2-(4-bencilpiperazin-1-il)-5-(6-metoxinaftalen-2-ilmetilen)tiazol-4-ona
      104.
                2-(4-bencilpiperazin-1-il)-5-(4-terc-butilbenciliden)tiazol-4-ona
      105.
                1-[4-oxo-5-(3-fenilaliliden)-4,5-dihidrotiazol-2-il]-3-(2-trifluorometilfenil)urea
      106.
                1-[4-oxo-5-(4-trifluorometil-benciliden)-4,5-dihidrotiazol-2-il]-3-(4-trifluorometilfenil)urea
      107.
                1-[5-(4-metilbenciliden)-4-oxo-4,5-dihidrotiazol-2-il]-3-(4-trifluorometil-fenil)urea
20
      108.
                5-{3-[4-(6-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
      109.
                2-(4-bencilpiperazin-1-il)-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
      110.
                5-{3-[4-(3-cloropiridin-2-il)-3-metilpiperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
      111.
                N-[3-(3-cloro-5-trifluorometilpiridin-2-ilamino)propil]-3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzamida
      112.
                N'-(2-cloro-4-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
25
      113.
                5-{3-[4-(3-cloro-5-trifluorometilpiridin-2-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-iltiazol-4-ona
      114.
                N'-(3-cloro-5-trifluorometilpiridin-2-il)hidrazida
                                                                       de
                                                                                  ácido
                                                                                               3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-
                ilidenmetil)benzoico
                5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}-2-tiomorfolin-4-il-tiazol-4-ona
      115.
      116.
                N'-(2-cloro-5-trifluorometilfenil)hidrazida de ácido 3-(4-oxo-2-tiomorfolin-4-il-4H-tiazol-5-ilidenmetil)benzoico
30
      117.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
      118.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)-tiazol-4-ona
      119.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
      120.
                5-(4-terc-butilbenciliden)-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
      121.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
35
      122.
                5-[3-(4-terc-butilfenil)aliliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-tiazol-4-ona
      123.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
      124.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(3-fenoxibenciliden)tiazol-4-ona
      125.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-fenoxibenciliden)tiazol-4-ona
                5-(3-benciloxi-benciliden)-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-tiazol-4-ona
      126.
40
      127.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-(4-hidroxi-3-metoxi-benciliden)tiazol-4-ona
      128.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-furan-2-ilmetilen-tiazol-4-ona
      129.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
      130.
                ácido 3-[2-(4-bencilpiperazin-1-il)-4-oxo-4H-tiazol-5-ilidenmetil]benzoico
      131.
                5-naftalen-1-ilmetilen-2-piperazin-1-il-tiazol-4-ona
45
      132.
                2-piperazin-1-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
      133.
                5-(4-metilbenciliden)-2-piperazin-1-il-tiazol-4-ona
      134.
                5-(4-hidroxi-3-metoxibenciliden)-2-piperazin-1-il-tiazol-4-ona
      135.
                5-(4-isopropilbenciliden)-2-morfolin-4-il-tiazol-4-ona
      136.
                5-(4-isopropilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
50
      137.
                2-[4-(2-fluorofenil)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
      138.
                5-(4-pentafluorosulfanil)benciliden)-2-tiomorfolin-4-il-tiazol-4-ona
```

```
139.
                2-[4-(3-cloropiridin-2-il)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
      140.
                clorhidrato de 2-(4-bencilpiperazin-1-il)-5-(4-butilbenciliden)tiazol-4-ona
      141.
                clorhidrato de 2-(4-bencilpiperazin-1-il)-5-(4-pentilbenciliden)tiazol-4-ona
      142.
                2-(4-bencilpiperazin-1-il)-5-(4-octilbenciliden)tiazol-4-ona
 5
      143.
                2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
      144.
                5-(4-terc-butilbenciliden)-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
      145.
                2-[4-(6-cloropiridin-2-il)-piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
      146.
                2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
      147.
                5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
10
      148.
                2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-ona
      149.
                2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-isopropilbenciliden)tiazol-4-ona
      150.
                2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona
      151.
                2-[4-(6-cloropiridin-2-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
      152.
                5-(4-metilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
15
      153.
                5-(4-isopropilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
      154.
                5-(4-terc-butilbenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
      155.
                5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
      156.
                2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(4-trifluorometoxi-benciliden)-tiazol-4-ona
      157.
                5-(4-hidroxi-3-metoxibenciliden)-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
20
      158.
                2-(4-bencilpiperazin-1-il)-5-(4-pentafluorosulfanil-benciliden)tiazol-4-ona
      159.
                2-(4-bencilpiperazin-1-il)-5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}tiazol-4-ona
      160.
                2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(4-trifluorometil-benciliden)tiazol-4-ona
      161.
                2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-(3-fenilaliliden)tiazol-4-ona
      162.
                2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-naftalen-2-ilmetilen-tiazol-4-ona
25
      163.
                2-[4-(6-metilpiridazin-3-il)piperazin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
      164.
                2-(4-bencilpiperazin-1-il)-5-(4-isopropilbenciliden)tiazol-4-ona
      165.
                ácido 3-{2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-4-oxo-4H-tiazol-5-ilidenmetil}benzoico
      166.
                5-{3-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-carbonil]benciliden-2-tiomorfolin-4-il-tiazol-4-ona
      167.
                5-{3-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-carbonil]benciliden}-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-
30
                il]tiazol-4-ona
      168.
                5-{3-[4-(3-cloropiridin-2-il)piperazin-1-carbonil]benciliden}-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-
                ona
      169.
                5-[3-(4-bencilpiperazin-1-carbonil)benciliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
      170.
                2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]-5-{3-[4-(6-metoxipiridin-2-il)-piperazin-1-carbonil]benciliden}tiazol-
35
                4-ona
      171.
                2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(4-metilbenciliden)tiazol-4-ona
      172.
                2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(4-hidroxi-3-metoxibenciliden)tiazol-4-ona
      173.
                2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-naftalen-1-ilmetilen-tiazol-4-ona
      174.
                clorhidrato de 2-[4-(4-cloro-3-trifluorometilfenil)-4-hidroxipiperidin-1-il]-5-(3-metoxibenciliden)tiazol-4-ona
40
      175.
                bromhidrato de 5-benciliden-2-morfolin-4-il-tiazol-4-ona
      176.
                bromhidrato de 5-(4-metilbenciliden)-2-morfolin-4-il-tiazol-4-ona
      177.
                bromhidrato de 2-dietilamino-5-(4-metilbenciliden)tiazol-4-ona
      178.
                bromhidrato de 5-(4-clorobenciliden)-2-dietilaminotiazol-4-ona
      179.
                bromhidrato de 5-(4-isopropilbenciliden)-2-morfolin-4-il-tiazol-4-ona
45
      180.
                bromhidrato de 5-benciliden-2-dietilaminotiazol-4-ona
      181.
                bromhidrato de 5-(4-clorobenciliden)-2-morfolin-4-il-tiazol-4-ona
      182.
                bromhidrato de 5-(4-clorobenciliden)-2-piperidin-1-il-tiazol-4-ona
      183.
                bromhidrato de 5-(4-clorobenciliden)-2-pirrolidin-1-il-tiazol-4-ona
      184.
                bromhidrato de 5-benciliden-2-pirrolidin-1-il-tiazol-4-ona
50
      185.
                5-benciliden-2-pirrolidin-1-il-tiazol-4-ona
      186.
                bromhidrato de 5-bifenil-4-ilmetilen-2-piperidin-1-il-tiazol-4-ona
```

	187.	bromhidrato de 2-azepan-1-il-5-bifenil-4-ilmetilen-tiazol-4-ona
	188.	bromhidrato de 5-bifenil-4-ilmetilen-2-pirrolidin-1-il-tiazol-4-ona
	189.	bromhidrato de 2-morfolin-4-il-5-(3-fenilaliliden)tiazol-4-ona
	190.	bromhidrato de 5-(3-fenilaliliden)-2-tiomorfolin-4-il-tiazol-4-ona
5	191.	bromhidrato de 5-(3-fenilaliliden)-2-piperidin-1-il-tiazol-4-ona
	192.	bromhidrato de 2-azepan-1-il-5-(3-fenilaliliden)tiazol-4-ona
	193.	bromhidrato de 5-(3-fenilaliliden)-2-pirrolidin-1-il-tiazol-4-ona
	194.	bromhidrato de 5-bifenil-4-ilmetilen-2-morfolin-4-il-tiazol-4-ona
	195.	bromhidrato de 2-tiomorfolin-4-il-5-(3-trifluorometil-benciliden)tiazol-4-ona
10	196.	5-(4-clorobenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
	197.	5-(4-terc-butilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	198.	bromhidrato de 5-(4-terc-butilbenciliden)-2-tiomorfolin-4-il-tiazol-4-ona
	199.	bromhidrato de 5-(4-terc-butilbenciliden)-2-pirrolidin-1-il-tiazol-4-ona
	200.	bromhidrato de 2-azepan-1-il-5-(4-terc-butilbenciliden)tiazol-4-ona
15	201.	bromhidrato de 5-(4-terc-butilbenciliden)-2-piperidin-1-il-tiazol-4-ona
	202.	2-tiomorfolin-4-il-5-(4-trifluorometilbenciliden)tiazol-4-ona
	203.	bromhidrato de 5-(4-terc-butilbenciliden)-2-dietilaminotiazol-4-ona
	204.	2-morfolin-4-il-5-(4-trifluorometilbenciliden)tiazol-4-ona
	205.	bromhidrato de 2-morfolin-4-il-5-(3-trifluorometilbenciliden)tiazol-4-ona
20	206.	2-morfolin-4-il-5-(3-trifluorometilbenciliden)tiazol-4-ona
	207.	5-bifenil-4-ilmetilen-2-dietilaminotiazol-4-ona
	208.	2-morfolin-4-il-5-tiofen-2-ilmetilen-tiazol-4-ona
	209.	2-morfolin-4-il-5-naftalen-1-ilmetilen-tiazol-4-ona
	210.	2-morfolin-4-il-5-piridin-2-ilmetilen-tiazol-4-ona
25	211.	2-morfolin-4-il-5-(4-trifluorometil-benciliden)tiazol-4-ona
	212.	2-morfolin-4-il-5-piridin-3-ilmetilen-tiazol-4-ona
	213.	2-morfolin-4-il-5-piridin-4-ilmetilen-tiazol-4-ona
	214.	2-dietilamino-5-(3-trifluorometilbenciliden)tiazol-4-ona
	215.	5-(4-metilbenciliden)-2-pirrolidin-1-il-tiazol-4-ona
30	216.	5-(4-terc-butilbenciliden)-2-(2-metoxi-etilamino)tiazol-4-ona
30	217.	bromhidrato de 2-morfolin-4-il-5-(4-octilbenciliden)tiazol-4-ona
	218.	5-(4-metilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	219.	5-(3,4-dimetoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	220.	5-(2-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
35	221.	5-(2-hidroxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
33	222.	5-(4-terc-butilbenciliden)-2-morfolin-4-il-tiazol-4-ona
	223.	5-(4-dietilamino-benciliden)-2-morfolin-4-il-tiazol-4-ona
	224.	5-(4-hidroxi-3-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	225.	ácido 4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoico
40	226.	2-morfolin-4-il-5-(2,3,4-trimetoxibenciliden)tiazol-4-ona
40	227.	2-morfolin-4-il-5-(3,4,5-trimetoxibenciliden)tiazol-4-ona
	228.	5-(4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	229.	5-(4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
	230.	5-(3-etoxi-4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
45	231.	
45	231.	5-(3-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona
		5-(4-bromobenciliden)-2-morfolin-4-il-tiazol-4-ona
	233.	2-morfolin-4-il-5-(4-viniloxibenciliden)tiazol-4-ona
	234.	4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)fenil éster de ácido bencenosulfónico
EΩ	235.	5-(4-dimetilamino-benciliden)-2-morfolin-4-il-tiazol-4-ona
50	236.	4-(2-morfolin-4-il-4-oxo-4H-tiazol-5-ilidenmetil)benzoato de metilo
	237.	5-(3-hidroxi-4-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona

238. 5-[4-(3,3-dimetilbutoxi)-3-metoxibenciliden]-2-morfolin-4-il-tiazol-4-ona 239. 5-(2-metoxibenciliden)-2-morfolin-4-il-tiazol-4-ona 240. 5-(4-hidroxibenciliden)-2-morfolin-4-il-tiazol-4-ona 241. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-[3-(4-terc-butilfenil)aliliden]tiazol-4-ona 5 242. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometil-benciliden)tiazol-4-ona 243. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(4-trifluorometoxi-benciliden)tiazol-4-ona 244. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-naftalen-1-ilmetilen-tiazol-4-ona 245. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-5-(2-cloro-3-fenilaliliden)tiazol-4-ona 246. 2-(4-metil-bencilamino)-5-naftalen-1-ilmetilen-tiazol-4-ona 10 247. 2-(4-metil-bencilamino)-5-(3-fenoxibenciliden)tiazol-4-ona 248. 2-(4-metil-bencilamino)-5-(4-fenoxibenciliden)tiazol-4-ona 249. 5-(2-cloro-3-fenilaliliden)-2-(4-metil-bencilamino)tiazol-4-ona 250. 2-(4-metil-bencilamino)-5-naftalen-2-ilmetilen-tiazol-4-ona 251. 2-(3-metoxi-bencilamino)-5-(4-metil-benciliden)tiazol-4-ona 15 252. 5-(4-terc-butilbenciliden)-2-(3-metoxi-bencilamino)tiazol-4-ona 253. 2-(3-metoxi-bencilamino)-5-(4-trifluorometil-benciliden)tiazol-4-ona 254. 2-(3-metoxi-bencilamino)-5-(4-trifluorometoxi-benciliden)tiazol-4-ona 255. 2-(3-metoxi-bencilamino)-5-(3-fenilaliliden)tiazol-4-ona 256. 5-naftalen-1-ilmetilen-2-(4-trifluorometil-bencilamino)tiazol-4-ona 20 257. 5-(3-fenoxibenciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 258. 5-(4-fenoxibenciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 259. 5-(2-cloro-3-fenilaliliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 260. 5-(3-benciloxi-benciliden)-2-(4-trifluorometil-bencilamino)tiazol-4-ona 261. 5-naftalen-2-ilmetilen-2-(4-trifluorometil-bencilamino)tiazol-4-ona 25 262. 2-(4-hidroxi-3-metoxifenil)-5-(4-metilbenciliden)tiazol-4-ona y 263. 2-(4-terc-butil-fenil-amino)-5-(4-metilbenciliden)tiazol-4-ona en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o

30

diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

- **15.** Utilización de al menos un compuesto según una o más de las reivindicaciones 1 a 14 para producir un medicamento para la profilaxis y/o el tratamiento del dolor seleccionado de entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral, dolor articular y dolor neuropático.
- 16. Utilización de al menos un compuesto tal como se define en una o más de las reivindicaciones 1 a 14 para 35 producir un medicamento para la profilaxis y/o el tratamiento de una o más afecciones seleccionadas de entre el grupo consistente en migrañas; depresiones; trastornos nerviosos; lesiones nerviosas; enfermedades neurodegenerativas, preferentemente seleccionadas de entre el grupo consistente en esclerosis múltiple, enfermedad de Alzheimer, enfermedad de Parkinson y enfermedad de Huntington; disfunciones cognitivas, preferentemente estados cognitivos carenciales, de forma especialmente preferente trastornos de la memoria; 40 epilepsia; enfermedades de las vías respiratorias, preferentemente seleccionadas entre el grupo consistente en asma y neumonía; tos; incontinencia urinaria; vejiga hiperactiva (overactive bladder, OAB); úlceras gástricas; síndrome de intestino irritable; ataques de apoplejía; irritaciones oculares; irritaciones de la piel; dermatosis neuróticas; enfermedades inflamatorias, preferentemente inflamaciones intestinales; diarrea; prurito; trastornos alimentarios, preferentemente seleccionados entre el grupo consistente en bulimia, caquexia, anorexia y obesidad; 45 dependencia de medicamentos; abuso de medicamentos; síndromes de abstinencia en caso de dependencia de medicamentos; desarrollo de tolerancia frente a medicamentos, preferentemente frente a opioides naturales o sintéticos; drogodependencia; abuso de drogas; síndromes de abstinencia en caso de drogodependencia; alcoholismo; abuso de alcohol y síndromes de abstinencia en caso de alcoholismo; para la diuresis; para la

antinatriuresis; para influir en el sistema cardiovascular; para aumentar la vigilancia; para aumentar la libido; para modular la actividad motora; como ansiolítico; como anestesia local y/o para inhibir efectos secundarios no deseados, preferentemente seleccionados entre el grupo consistente en hipertermia, hipertensión arterial y constricción bronquial, provocados por la administración de agonistas del receptor vainilloide 1 (receptores VR1/TRPV1), preferentemente seleccionados de entre el grupo consistente en capsaicina, resiniferatoxina, olvanil, arvanil, SDZ-249665, SDZ-249482, nuvanil y capsavanil (DA-5018).

17. Derivados de tiazol-4-ona 2,5-disustituidos de fórmula general la,

donde

5

15

20

25

30

35

10 R^{1a} representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido; un grupo -NR^{3a}R^{4a}; un grupo -NR^{5a}-C(=O)-R^{6a}; o un grupo -NR^{7a}-C(=O)-NR^{8a}R^{9a};

 R^{2a} representa CH-CH=C(CH₃)-W^a-Z^a, CH-CH=CH-W^a-Z^a, CH-C(CH₃)=CH-W^a-Z^a, CH-C(fenilo)=CH-W^a-Z^a, CH-CG=CH-W^a-Z^a, CH-CCI=CH-W^a-Z^a, CH-CF=CH-W^a-Z^a, CH-C(OH)=CH-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-W^a-Z^a, CH-CH₃-CH₂-W^a-Z^a, CH-CH₃-CH₂-W^a-Z^a, CH-CH₃-CH₂-W^a-Z^a, CH-CH₃-CH₂-W^a-Z^a, CH-CH₃-CH₃-CH₂-W^a-Z^a, CH-CH₃-CH

R^{3a} representa un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido, que en caso dado presenta al menos un heteroátomo como miembro de la cadena; un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico, sustituido al menos de forma simple o no sustituido; o un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico, sustituido al menos de forma simple o no sustituido, y/o que puede estar unido a través de un grupo alquileno, alquenileno o alquinileno lineal o ramificado, sustituido al menos de forma simple o no sustituido;

R^{4a} representa un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido, que en caso dado presenta al menos un heteroátomo como miembro de la cadena;

R^{5a}, R^{7a} y R^{9a} representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;

R^{6a} y R^{8a} representan en cada caso, independientemente entre sí, un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido;

Z^a representa un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido; un grupo arilo condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que está sustituido con sustituyentes R^{12a} iguales o diferentes; un grupo heteroarilo condensado con un sistema de anillo monocíclico o policíclico sustituido al menos de forma simple o no sustituido, y/o que está sustituido con sustituyentes R^{12a} iguales o diferentes;

 $R^{12a} \text{ representa un grupo seleccionado de entre } F, Cl, Br, I, -CN, -CF_3, SF_5, -OH, -O-alquilo(C_{1-10}), -O-alquilo(C_{2-10}), -NH_2, -O-CF_3, -S-CF_3, -SH, -S-alquilo(C_{1-6}), -alquilo(C_{1-10}), -C(=O)-OH, -C(=O)O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -N(alquilo(C_{1-5}))_2, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-N-(alquilo(C_{1-5}))_2, -S(=O)_2-alquilo(C_{1-5}), -S(=O)_2-fenilo, -O-S(=O)_2-fenilo, -NH-S(=O)_2-alquilo(C_{1-5}), -S(=O)_2-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridazinilo, -CH_2-benzo[b]furanilo, -O-bencilo, fenilo y bencilo, piridazinilo, -O-S(=O)_2-fenilo, -O-S(=O)_2-fenilo, -O-fenilo, -O-bencilo, fenilo, -CH_2-benzo[b]furanilo y bencilo; un grupo -C(=O)-NR^{13a}-(CH_2)_m^a-NR^{14a}-R^{15a}, con m^a 0, 1, 2, 3, 4 o 5; o un grupo -C(=O)-R^{16a};$

R^{13a} y R^{14a} representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático lineal o ramificado, saturado o insaturado, sustituido al menos de forma simple o no sustituido;

R^{15a} representa un grupo arilo o heteroarilo sustituido al menos de forma simple o no sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico, sustituido al menos de forma simple o no sustituido; y

R^{16a} representa un grupo cicloalifático sustituido al menos de forma simple o no sustituido, saturado o insaturado, que en caso dado presenta al menos un heteroátomo como miembro del anillo y que puede estar condensado con un sistema de anillo monocíclico o policíclico, sustituido al menos de forma simple o no sustituido;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

18. Compuesto según la reivindicación 17, caracterizado porque

5

10

15

20

25

30

35

40

R^{1a} representa un grupo cicloalifático de 3, 4, 5, 6, 7, 8 o 9 miembros saturado o insaturado, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; un grupo -NR^{3a}R^{4a}; un grupo -NR^{5a}-C(=O)-R^{6a}; o un grupo -NR^{7a}-C(=O)-NR^{8a}R^{9a}:

 R^{2a} representa CH-CH=C(CH₃)-W^a-Z^a, CH-CH=CH-W^a-Z^a, CH-C(CH₃)=CH-W^a-Z^a, CH-C(fenilo)=CH-W^a-Z^a, CH-CBr=CH-W^a-Z^a, CH-CCI=CH-W^a-Z^a, CH-CF=CH-W^a-Z^a, CH-C(OH)=CH-W^a-Z^a, CH-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-W^a-Z^a, CH-CH₂-CH₂-W^a-Z^a, CH-CH₂-

 R^{3a} representa un grupo alifático(C_{1-10}) lineal o ramificado, saturado o insaturado, en caso dado sustituido, que en caso dado presenta 1, 2 o 3 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno (NH) y azufre; un grupo cicloalifático de 3, 4, 5, 6, 7, 8 o 9 miembros saturado o insaturado, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; o un grupo arilo o heteroarilo de 5 a 14 miembros, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido, y/o que puede estar unido a través de un grupo alquileno($C_{1.5}$);

R^{4a} representa un grupo hidrógeno; o un grupo alifático(C₁₋₁₀) lineal o ramificado, saturado o insaturado, en caso dado sustituido, que en caso dado presenta 1, 2 o 3 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno (NH) y azufre;

R^{5a}, R^{7a} y R^{8a} representan en cada caso, independientemente entre sí, un grupo hidrógeno, o un grupo alifático(C₁₋₁₀) lineal o ramificado, saturado o insaturado, en caso dado sustituido:

R^{6a} y R^{9a} representan en cada caso, independientemente entre sí, un grupo arilo o heteroarilo de 5 a 14 miembros, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido;

5

10

15

20

25

30

35

40

45

 Z^a representa un grupo alifático(C_{1-20}) lineal o ramificado, saturado o insaturado, en caso dado sustituido; un grupo arilo de 6 o 10 miembros sustituido, que está condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido, y/o que está sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes; o un grupo heteroarilo de 5 a 14 miembros en caso dado sustituido, que está condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido, y/o que está sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes;

 $R^{12a} \text{ representa un grupo seleccionado de entre F, Cl, Br, I, -CN, -CF_3, SF_5, -OH, -O-alquilo(C_{1-10}), -O-alquilo(C_{2-10}), -NH_2, -O-CF_3, -S-CF_3, -SH, -S-alquilo(C_{1-6}), -alquilo(C_{1-10}), -C(=O)-OH, -C(=O)O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -N(alquilo(C_{1-5}))_2, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-N-(alquilo(C_{1-5}))_2, -S(=O)_2-alquilo(C_{1-5}), -S(=O)_2-fenilo, -O-S(=O)_2-fenilo, -NH-S(=O)_2-alquilo(C_{1-5}), -S(=O)_2-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridazinilo, piridazinilo, -CH_2-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)_2-fenilo, -O-S(=O)_2-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH_2)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre F, Cl, Br, -OH, -CF_3, -SF_5, -CN, -NO_2, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF_3, -S-CF_3, fenilo y -O-bencilo; un grupo -C(=O)-NR^{13a}-(CH_2)_m^a-NR^{14a}-R^{15a}, con m^a 0, 1, 2, 3, 4 o 5; o un grupo -C(=O)-R^{16a};$

 R^{13a} y R^{14a} representan en cada caso, independientemente entre sí, un grupo hidrógeno; o un grupo alifático(C_{1-10}) lineal o ramificado, saturado o insaturado, en caso dado sustituido;

R^{15a} representa un grupo arilo o heteroarilo de 5 a 14 miembros que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido; y

R^{16a} representa un grupo cicloalifático de 3, 4, 5, 6, 7, 8 o 9 saturado o insaturado, en caso dado sustituido, que puede estar condensado con un sistema de anillo monocíclico o policíclico saturado o insaturado, en caso dado sustituido,

pudiendo estar sustituidos los grupo cicloalifáticos arriba mencionados en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en oxo (=O), tioxo (=S), F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C_{1-5}), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C_{1-5}), -alquilo(C_{1-5}), -C(=O)-OH, -C(=O)-O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -N(alquilo(C_{1-5}), -NH-fenilo, -NH-piridinilo, -N(alquil(C_{1-5}))-fenilo, -N(alquil(C_{1-5}))-piridinilo, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-N-(alquilo(C_{1-5}))₂, -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridinilo, 1,2,5-tiadiazolilo, piridazinilo, -CH₂-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupo -NH-fenilo, -NH-piridinilo, -N(alquil(C_{1-5}))-fenilo, -N(alquil(C_{1-5}))-piridinilo, piridinilo, ciclopentilo, 1,2,5-tiadiazolilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF₃, -S-CF₃, fenilo y -O-bencilo;

y pudiendo presentar los grupo cicloalifáticos arriba mencionados en cada caso opcionalmente 1, 2, 3, 4 o 5 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno y azufre como miembros del anillo;

pudiendo estar sustituidos los anillos de los sistemas de anillo monocíclicos o policíclicos arriba mencionados en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en oxo (=O), tioxo (=S), F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C_{1-5}), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, S-alquilo(C_{1-5}), -alquilo(C_{1-5}), -C(=O)-OH, -C(=O)-O-alquilo(C_{1-5}), -O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -N(alquilo(C_{1-5}))₂, -NH-C(=O)-O-alquilo(C_{1-5}), -C(=O)-H, -C(=O)-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), C(=O)-N-(alquilo(C_{1-5}))₂, -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridazinilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los radicales piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF₃, -S-CF₃, fenilo y -O-bencilo;

y los anillos de los sistemas de anillo monocíclicos o policíclicos arriba mencionados tienen en cada caso 5, 6 o 7 miembros y pueden presentar en cada caso 1, 2, 3, 4 o 5 heteroátomos como miembros del anillo, seleccionados en cada caso de entre el grupo consistente en oxígeno, nitrógeno y azufre;

los grupo alifáticos(C_{1-10}) o (C_{1-20}) arriba mencionados pueden estar sustituidos en cada caso opcionalmente con 1, 2, 3, 4, 5, 6, 7, 8 o 9 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂;

los grupos arilo o heteroarilo arriba mencionados pueden estar sustituidos en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-alquilo(C_{1-5}), -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-alquilo(C_{1-5}), -alquilo(C_{1-10}), -C(=O)-OH, -C(=O)-O-alquilo(C_{1-5}), O-C(=O)-alquilo(C_{1-5}), -NH-alquilo(C_{1-5}), -N(alquilo(C_{1-5})), -NH-C(=O)-Alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -C(=O)-NH-alquilo(C_{1-5}), -S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-fenilo, -NH-S(=O)₂-alquilo(C_{1-5}), -S(=O)₂-NH-alquilo(C_{1-5}), ciclohexilo, ciclopentilo, piridinilo, piridazinilo, -(CH₂)-benzo[b]furanilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=O)₂-fenilo, -O-bencilo, fenilo, -(CH₂)-benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, -alquilo(C_{1-5}), -O-alquilo(C_{1-5}), -O-CF₃, -S-CF₃, fenilo y -O-bencilo,

y los grupos heteroarilo arriba mencionados pueden presentar en cada caso opcionalmente 1, 2, 3, 4 o 5 heteroátomos seleccionados, independientemente entre sí, de entre el grupo consistente en oxígeno, nitrógeno y azufre como miembro(s) del anillo;

y los grupos alquileno(C_{1-5}) arriba mencionados pueden estar sustituidos en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, - OH, -SH, -NH₂, -CN y NO₂;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

40 19. Compuesto según la reivindicación 17 o 18, caracterizado porque

5

10

15

20

25

30

35

45

 R^{1a} representa un grupo seleccionado de entre el grupo consistente en ciclopentilo, ciclohexilo, ciclohextelo, ciclohextel

5

10

15

20

benzoxazinilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en oxo (-O), tioxo (=S), F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, $-C(=O)-O-CH_3$, $-C(=O)-O-C_2H_5$, $-C(=O)-O-C(CH_3)_3$, $-O-C(=O)-O-C_2H_5$, $-C(=O)-O-C(CH_3)_3$, $-O-C(=O)-O-C_2H_5$, $-C(=O)-O-C_2H_5$, $-C(=O)-C_2H_5$, -C(=O)- $C(=O)-CH_3, -O-C(=O)-C_2H_5, -O-C(=O)-C(CH_3)_3, -N(CH_3)_2, -N(C_2H_5)_2, -NH-CH_3, -NH-C_2H_5, -NH-CH(CH_3)_2, -NH-CH_3, -$ C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, - $N(C_2H_5)$ -piridinilo, $-N[CH(CH_3)_2]$ -piridinilo, $-NH-C(=O)-O-CH_3$, $-NH-C(=O)-O-C_2H_5$, $-NH-C(=O)-O-C(CH_3)_3$, $-NH-C(=O)-O-C(CH_3)_3$ $C(=O)-CH_3$, $-C(=O)-C_2H_5$, $-C(=O)-NH-CH_3$, $-C(=O)-NH-C_2H_5$, $-C(=O)-N-(CH_3)_2$, $-C(=O)-N-(C_2H_5)_2$, piridinilo, piridazinilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos -NH-fenilo, -NHpiridinilo, $-N(CH_3)$ -fenilo, $-N(C_2H_6)$ -fenilo, $-N(CH_3)$ -jenilo, $-N(CH_3)$ -piridinilo, $-N(C_2H_6)$ -piridinilo, N[CH(CH₃)₂]-piridinilo, piridinilo, piridazinilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; representa un grupo piperazinilo que puede estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, $-C(=0)-O-CH_3$, $-C(=0)-O-C_2H_5$, $-C(=0)-O-C(CH_3)_3$, $-C(=0)-alquilo(C_{1.5})$, $-C(=O)-NH_2$, $-C(=O)-CH_3$, $-C(=O)-C_2H_5$, $-C(=O)-NH-CH_3$, $-C(=O)-NH-C_2H_5$, $-C(=O)-N-(CH_3)_2$, $-C(=O)-N-(C_2H_5)_2$, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo; pudiendo estar sustituida en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; representa un grupo NR^{3a}R^{4a}; representa un grupo NR^{5a}-C(=O)-R^{6a}; o representa un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a}.

- 20. Compuesto según una o más de las reivindicaciones 17 a 19, caracterizado porque R^{2a} representa CH-CH=C(CH₃)-Z^a, CH-CH=CH-Z^a, CH-CH=CH-S-Z^a, CH-CH=CH-O-Z^a, CH-CH=CH-N(CH₃)-Z^a, CH-C(CH₃)=CH-Z^a, CH-C(fenilo)=CH-Z^a, CH-CBr=CH-Z^a, CH-CCI=CH-Z^a, CH-CF=CH-Z^a, CH-C(OH)=CH-Z^a, CHCH₂-CH₂-Z^a, CH-CH₂-CH(CH₃)-Z^a o CH-CH(CH₃)-CH₂-Z^a.
- Compuesto según una o más de las reivindicaciones 17 a 20, caracterizado porque R3a representa un grupo 21. seleccionado de entre el grupo consistente en metilo, -CH2-O-CH3, -CH2-S-CH3, etilo, -CH2-CH2-S-CH3, -CH2-30 N(CH₃)-CH₃, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, nhexilo y n-heptilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂; un grupo seleccionado de entre ciclopentilo, ciclohexilo, cicloheptilo, ciclopentenilo, ciclohexenilo, ciclohexenilo, 35 imidazolidinilo, tetrahidrofuranilo, tetrahidrotiofenilo, pirrolidinilo, piperidinilo, morfolinilo, tiomorfolinilo y azepanilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-40 piridinilo, -N[CH(CH₃)₂]-piridinilo, donde en cada caso la parte cíclica de los grupos -NH-fenilo, -NH-piridinilo, - $N(CH_3)$ -fenilo, $-N(C_2H_5)$ -fenilo, $-N(CH_3)$ -jenilo, $-N(CH_3)$ -piridinilo, $-N(C_2H_5)$ -piridinilo y $-N[CH(CH_3)_2]$ piridinilo puede estar sustituida con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; o un grupo seleccionado 45 de entre el grupo consistente en fenilo, naftilo, 1,3-benzodioxolilo y 1,4-benzodioxanilo, pudiendo el grupo estar unido a través de un grupo -(CH₂)-, -(CH₂)-(CH₂) o -(CH₂)-(CH₂) y/o estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -CF₃, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅,

- $-C(=O)-O-C(CH_3)_3, -O-C(=O)-CH_3, -O-C(=O)-C_2H_5, -O-C(=O)-C(CH_3)_3, -N(CH_3)_2, -N(C_2H_5)_2, -NH-CH_3, -NH-CH$
- 22. Compuesto según una o más de las reivindicaciones 17 a 21, caracterizado porque R^{4a} representa un grupo hidrógeno, o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂.

5

10

25

30

- 23. Compuesto según una o más de las reivindicaciones 17 a 22, caracterizado porque R^{5a}, R^{7a} y R^{8a} representan en cada caso, independientemente entre sí, un grupo hidrógeno, o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo; pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂.
- Compuesto según una o más de las reivindicaciones 17 a 23, caracterizado porque R^{6a} y R^{9a} representan en cada caso, independientemente entre sí, un grupo seleccionado de entre el grupo consistente en fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -C(=O)-OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -O-C(=O)-C(CH₃)₃, -N(CH₃)₂, -N(C₂H₅)₂, -NH-CH₃, -NH-C₂H₅, -NH-C(=O)-O-C(CH₃)₃.
 NH-C(=O)-O-C₂H₅, -NH-C(=O)-O-C(CH₃)₃, -C(=O)-H, -O(=O)-CH₃, -C(=O)-C₂H₅, -C(=O)-C(CH₃)₃.
 - 25. Compuesto según una o más de las reivindicaciones 17 a 24, caracterizado porque Zª representa un grupo seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, tercbutilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-dodecilo, n-tridecilo, n-tetradecilo, n-pentadecilo, n-hexadecilo, n-heptadecilo, n-octadecilo, n-nonadecilo y n-eicosanilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -NO₂, -OH, -SH y -NH₂; un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo y 1,4-benzodioxanilo, que está sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes; o un grupo seleccionado de entre tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridizinilo, pirimidinilo, quinolinilo e isoquinolinilo, que está sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes.
- Compuesto según una o más de las reivindicaciones 17 a 25, caracterizado porque R12a representa un grupo 26. seleccionado de entre F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-CH₂-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₃, -O-CH₃-CH₃, -O-CH₃-C O-C(CH₃)₃, -O-CH₂-CH₂-CH₂-CH₂-CH₃, -O-CH₂-CH₂-C(CH₃)₃, -O-CH=CH₂, -O-CH₂-CH=CH₂, -NH₂, -O-CF₃, -S-CF₃, 35 -SH, -S-CH₃, -S-C₂H₅, -S-CH₂-CH₂-CH₃, -SCH₂-CH₂-CH₃, -S-C(CH₃)₃, metilo, etilo, n-propilo, isopropilo, nbutilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo, n-octilo, -C(=O)-OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, - $C(=O)-O-C(CH_3)_3, -O-C(=O)-CH_3, -OC(=O)-C_2H_5, -O-C(=O)-C(CH_3)_3, -N(CH_3)_2, -N(C_2H_5)_2, -NH-CH_3, -NH-CH_3$ $-NH-C(=O)-O-CH_3, \quad -NH-C(=O)-OC_2H_5, \quad -NH-C(=O)-C(CH_3)_3, \quad -NH-C(=O)-CH_3, \quad$ $C(CH_3)_3, -C(=O)-H, -C(=O)-CH_3, -C(=O)-C_2H_5, -C(=O)-C(CH_3)_3, -C(=O)-NH_2, -C(=O)-NH-CH_3, -C(=O)-NH-C_2H_5, -C(=O)-NH-CH_3, -C(=O)-NH-$ 40 $C(=O)-N-(CH_3)_2, -C(=O)-N-(C_2H_5)_2, -S(=O)_2-CH_3, -S(=O)_2-CH_5, -NH-S(=O)_2-CH_3, -NH-S(=O)_2-CH_5, -NH-S(=O)_2-C$ CH₃, -S(=O)₂-fenilo, -O-S(=O)₂-fenilo, ciclohexilo, ciclopentilo, piridinilo, piridazinilo, -CH₂-benzo[b]furanilo, -O-fenilo, -O-bencilo, fenilo y bencilo, pudiendo estar sustituida en cada caso la parte cíclica de los grupo piridinilo, ciclopentilo, ciclohexilo, piridazinilo, -S(=0)2-fenilo, -O-S(=0)2-fenilo, -O-fenilo, -O-bencilo, fenilo, -(CH2)benzo[b]furanilo y bencilo con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre 45 el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo; o representa un grupo -C(=O)-NR^{13a}-(CH₂)_m^a-NR^{14a}-R^{15a}, siendo m^a igual a 0, 1, 2 o 3; o representa un grupo -C(=O)-R^{16a}, donde R^{13a} y R^{14a} representan

en cada caso, independientemente entre sí, un grupo hidrógeno o un grupo seleccionado de entre metilo, etilo, npropilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y nheptilo; R^{15a} representa un grupo seleccionado de entre fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -OH, -O-CH₃, -O-C₂H₅, -NH₂, -NO₂, -O-CF₃, -S-CF₃, -SH, -S-CH₃, -S-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, isobutilo, terc-butilo, -C(=O)-OH, -C(=O)-O-CH₃, -C(=O)-O-C₂H₅, -C(=O)-O-C(CH₃)₃, -O-C(=O)-CH₃, -O-C(=O)-C $C(=O) - C_2H_5, -OC(=O) - C(CH_3)_3, -N(CH_3)_2, -N(C_2H_5)_2, -NH - CH_3, -NH - C_2H_5, -NH - C(=O) - O - CH_3, -NH - C(=O)$ NH-C(=O)-O-C(CH₃)₃, -C(=O)-H, -C(=O)-CH₃, -C(=O)-C₂H₅, -C(=O)-C(CH₃)₃; y R^{16a} representa un grupo seleccionado de entre piperazinilo, tiomorfolinilo, azepanilo, morfolinilo, 2,3-dihidro-1H-isoindolilo, 2,3-dihidroindolilo, piperidinilo y pirrolidinilo, pudiendo el grupo estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente -OH, metilo, etilo, n-propilo, isopropilo, n-butilo, secbutilo, isobutilo, terc-butilo, $-C(=0)-O-CH_3$, $-C(=0)-O-C_2H_5$, $-C(=0)-O-C(CH_3)_3$, $-C(=0)-C_{1.5}$ -alquilo, $-C(=0)-NH_2$, $-C(=0)-NH_2$, -C(=0)-N $C(=O)-CH_3, \quad -C(=O)-C_2H_5, \quad -C(=O)-NH-CH_3, \quad -C(=O)-NH-C_2H_5, \quad -C(=O)-N-(CH_3)_2, \quad -C(=O)-N-(C_2H_5)_2, \quad piridinilo, \quad -C(=O)-N-(CH_3)_2, \quad -C(=O)$ piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, donde en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo puede estar sustituida con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -OH, -CF₃, -SF₅, -CN, -NO₂, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, fenilo y -O-bencilo.

27. Compuesto según una o más de las reivindicaciones 17 a 26, caracterizado porque R^{1a} representa uno de los siguientes grupos

5

10

15

20

25

30

35

donde el grupo puede estar sustituido con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en -OH, -O-CH₃, -O-C₂H₅, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -N(CH₃)₂, -NH-CH₃, -NH-CH₃, -NH-CH₄, -NH-CH(CH₃)₂, -NH-C(CH₃)₃, -NH-fenilo, -NH-piridinilo, -N(CH₃)-fenilo, -N(C₂H₅)-fenilo, -N[CH(CH₃)₂]-fenilo, -N(CH₃)-piridinilo, -N(C₂H₅)-piridinilo, -N[CH(CH₃)₂]-piridinilo y fenilo, donde en cada caso la parte cíclica del grupo fenilo puede estar sustituida con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre F, Cl, Br y -CF₃; o representa uno de los siguientes grupos

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, donde en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo puede estar sustituida con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃; o representa un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a}; o representa un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a};

 R^{2a} representa CH-CH=C(CH₃)- Z^a , CH-CH=CH- Z^a , CH-CH=CH-S- Z^a , CH-CH=CH-O- Z^a , CH-CH=CH-N(CH₃)- Z^a , CH-C(CH₃)=CH- Z^a , CH-C(fenilo)=CH- Z^a , CH-CBr=CH- Z^a , CH-CCI=CH- Z^a , CH-CF=CH- Z^a , CH-CH₂-CH₂- Z^a , CH-CH₂-CH(CH₃)- Z^a o CH-CH(CH₃)- Z^a ;

 R^{3a} representa un grupo seleccionado de entre metilo, $-CH_2$ -O-CH₃, $-CH_2$ -S-CH₃, etilo, $-CH_2$ -CH₂-S-CH₃, $-CH_2$ -CH₂-CH₂-CH₂-N(CH₃)-CH₃, n-propilo, $-CH_2$ -CH₂-C

R^{4a} representa un grupo hidrógeno; o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

R^{7a} y R^{8a} representan en cada caso, independientemente entre sí, un átomo de hidrógeno; o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

R^{9a} representa un grupo seleccionado de entre fenilo, naftilo, tiofenilo, furanilo, piridinilo, tiazolilo y oxazolilo, pudiendo el grupo estar sustituido en cada caso opcionalmente con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, I, -CN, -CF₃, -SF₅, -O-CH₃, -O-C₂H₅, -O-CF₃, -S-CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo y terc-butilo;

Z^a representa un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo, n-octilo, n-nonilo, n-decilo, n-undecilo, n-decilo, n-tetradecilo, n-pentadecilo, n-hexadecilo, n-heptadecilo, n-octadecilo, n-nonadecilo y n-eicosanilo; o representa un grupo seleccionado de entre fenilo, naftilo, fenantrenilo, 1,3-benzodioxolilo, 1,4-benzodioxanilo, que en caso dado está sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes; o representa un grupo seleccionado de entre tiofenilo, furanilo, pirrolilo, pirazolilo, pirazinilo, piridinilo, piridinilo, sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes;

 R^{12a} representa un grupo seleccionado de entre F, Cl, Br, -SF₅, -CF₃, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₂-CH₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, terc-butilo, n-pentilo, n-hexilo, n-heptilo y n-octilo;

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

40 **28.** Compuesto según una o más de las reivindicaciones 17 a 27, caracterizado porque

R^{1a} representa uno de los siguientes grupos

5

10

15

20

25

30

35

o representa el siguiente grupo

5

10

15

20

25

30

pudiendo sustituirse el átomo de hidrógeno del grupo -NH por un sustituyente seleccionado de entre el grupo consistente en metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo, donde en cada caso la parte cíclica de los grupos piridinilo, piridazinilo, [1,2,5]-tiadiazolilo, bencilo y fenilo puede estar sustituida con 1, 2 o 3 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br, -CF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, -O-CH₃, -O-C₂H₅, -O-CF₃ y -S-CF₃; o representa un grupo NR^{3a}R^{4a}; o representa un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a};

 R^{2a} es CH-CH=C(CH₃)- Z^a , CH-CH=CH- Z^a , CH-CH=CH-S- Z^a , CH-C(CH₃)=CH- Z^a , CH-C(fenilo)=CH- Z^a , CH-CBr=CH- Z^a , CH-CCI=CH- Z^a , CH-CF=CH- Z^a , CH-CH₂-CH₂-CH₂-CH₂-CH(CH₃)- Z^a o CH-CH(CH₃)-CH₂- Z^a ;

 R^{3a} representa un grupo seleccionado de entre metilo, $-CH_2$ -O- CH_3 , $-CH_2$ -S- CH_3 , etilo, $-CH_2$ -CH₂-S- CH_3 , $-CH_2$ -CH₂-CH₂-CH₂-CH₃, $-CH_2$ -CH₂-

R^{4a} representa un grupo hidrógeno, o un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo y n-heptilo;

R^{7a} v R^{8a} representan en cada caso un grupo hidrógeno;

 R^{9a} representa un grupo fenilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes seleccionados, independientemente entre sí, de entre el grupo consistente en F, Cl, Br y -CF₃;

 Z^a representa un grupo seleccionado de entre metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, 1,1-dimetilpropilo, n-pentilo, sec-pentilo, n-hexilo, n-heptilo y n-octilo; o un grupo fenilo o naftilo, que puede estar sustituido con 1, 2, 3, 4 o 5 sustituyentes R^{12a} iguales o diferentes;

 R^{12a} representa un grupo seleccionado de entre F, Cl, Br, I, -CN, -CF₃, -SF₆, -OH, -O-CH₃, -O-C₂H₅, -O-CH₂-CH₂-CH₃, -O-CH₂-CH₃, -S-C₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃, -S-C₂-CH₃, -S-C₂-CH₃, -S-C₃, -S-C₃, -S-C₃-S-C

en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de

enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, o en cada caso en forma de solvatos correspondientes.

- 29. Compuesto según una o más de las reivindicaciones 17 a 28 seleccionado de entre el grupo consistente en
- 1. 5-[3-(4-metoxifenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
- 5 2. 5-[3-(4-fluorofenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
 - 3. 2-morfolin-4-il-5-(3-m-tolilaliliden)tiazol-4-ona
 - 4. 2-morfolin-4-il-5-(3-p-tolilaliliden)tiazol-4-ona
 - 5. 2-morfolin-4-il-5-octiliden-tiazol-4-ona
 - 6. 5-butiliden-2-morfolin-4-il-tiazol-4-ona
- 10 7. 5-hexiliden-2-morfolin-4-il-tiazol-4-ona
 - 8. 2-morfolin-4-il-5-(3-p-tolilbut-2-eniliden)tiazol-4-ona
 - 9. 5-[3-(4-terc-butilfenil)but-2-eniliden]-2-morfolin-4-il-tiazol-4-ona
 - 10. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-metoxifenil)piperazin-1-il]tiazol-4-ona
 - 11. 5-[3-(4-hidroxi-3-metoxifenil)aliliden]-2-tiomorfolin-4-il-tiazol-4-ona
- 15 12. 2-morfolin-4-il-5-[3-(4-trifluorometil-fenil)but-2-eniliden]tiazol-4-ona
 - 13. 2-morfolin-4-il-5-[3-(3-trifluorometil-fenil)but-2-eniliden]tiazol-4-ona
 - 14. 5-deciliden-2-morfolin-4-il-tiazol-4-ona
 - 15. 5-[3-(4-terc-butilfenil)aliliden]-2-morfolin-4-il-tiazol-4-ona
 - 16. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(3-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
- 20 17. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(2-fluorofenil)piperazin-1-il]tiazol-4-ona
 - 18. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(4-cloro-[1,2,5]tiadiazol-3-il)piperazin-1-il]tiazol-4-ona
 - 19. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-cloropiridin-2-il)piperazin-1-il]tiazol-4-ona
 - 20. 5-[3-(4-terc-butilfenil)aliliden]-2-[4-(6-metilpiridazin-3-il)piperazin-1-il]tiazol-4-ona
 - 21. 2-[(benzo[1,3]dioxol-5-ilmetil)amino]-6-[3-(4-terc-butilfenil)aliliden]tiazol-4-ona
- en cada caso opcionalmente en forma de uno de sus estereoisómeros puros, en particular de enantiómeros o diastereoisómeros, en forma de sus racematos o en forma de mezcla de estereoisómeros, en particular de enantiómeros y/o diastereoisómeros, en cualquier proporción de mezcla, o en cada caso en forma de sales correspondientes, preferentemente sus clorhidratos o bromhidratos, o en cada caso en forma de solvatos correspondientes.
- 30. Procedimiento para preparar derivados de tiazol-4-ona 2,5 disustituidos de la fórmula general la según una o más de las reivindicaciones 17 a 29, caracterizado porque se somete a reacción una 2-aminotiazol-4-ona en ácido acético, en presencia de al menos una sal seleccionada de entre el grupo consistente en acetato de sodio y acetato de potasio, o en un medio de reacción seleccionado de entre el grupo consistente en metanol, etanol, isopropanol y n-butanol, en presencia de al menos una base orgánica seleccionada de entre el grupo consistente en trietilamina, piridina, diisopropilamina y N-metilmorfolina, con al menos un compuesto de fórmula general R-C(=O)-H, con R igual a -CH=C(CH₃)-W^a-Z^a, -CH=CH-W^a-Z^a, -C(CH₃)=CH-W^a-Z^a, -C(fenilo)=CH-W^a-Z^a, -CBr=CH-W^a-Z^a, -CCl=CH-W^a-Z^a, -CF=CH-W^a-Z^a, -C(OH)=CH-W^a-Z^a, -CH₂-CH₂-W^a-Z^a, -CH₂-CH(CH₃)-W^a-Z^a o -CH(CH₃)-CH₂-W^a-Z^a, teniendo W^a y Z^a el significado según una o más de las reivindicaciones 17 a 29, para obtener al menos un compuesto de fórmula general IIa,

40

en la que R^{2a} tiene el significado según una o más de las reivindicaciones 17 a 29, y en caso dado este compuesto se purifica y/o se aísla;

y al menos un compuesto de fórmula general IIa se somete a reacción en un medio de reacción, en presencia de al menos una base, preferentemente en presencia de al menos una sal de hidruro metálico o de alcoholato metálico, de forma especialmente preferente en presencia de una sal de hidruro metálico o una sal de alcoholato metálico seleccionada de entre el grupo consistente en hidruro de sodio, hidruro de potasio, terc-butanolato de potasio, terc-butanolato de sodio, metanolato de potasio, metanolato de sodio, etanolato de sodio y etanolato de potasio, con al menos un compuesto de fórmula general LG-R³a o LG-R⁵a, siendo LG un grupo saliente, preferentemente un átomo de halógeno, de forma especialmente preferente un átomo de cloro, y teniendo R³a, R⁵a y R³a en cada caso el significado según una o más de las reivindicaciones 17 a 29, para obtener al menos un compuesto de fórmula general la, donde R²a tiene el significado arriba mencionado y R¹a representa un grupo NHR³a, NHR⁵a o NHR³a, y en caso dado este compuesto se purifica y/o se aísla;

y en caso dado al menos un compuesto de fórmula general IIa, donde R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NHR^{7a}, se somete a reacción en un medio de reacción con al menos un isocianato de fórmula general R^{8a}-N=C=O, donde R^{8a} tiene el significado según una o más de las reivindicaciones 17 a 29, en caso dado en presencia de al menos una base, preferentemente en presencia de al menos una base seleccionada de entre el grupo consistente en trietilamina, 4,4-dimetilaminopiridina y diisopropiletilamina, para obtener al menos un compuesto de fórmula general Ia, en la que R^{2a} tiene el significado arriba mencionado y R¹ representa un grupo NR^{7a}-C(=O)-NHR^{8a}, y en caso dado este compuesto se purifica y/o se aísla;

y en caso dado al menos un compuesto de fórmula general la, en la que R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NR^{7a}-C(=O)-NHR^{8a}, se somete a reacción en un medio de reacción en presencia de al menos una base, preferentemente en presencia de al menos una sal de hidruro metálico o de alcoholato metálico, de forma especialmente preferente en presencia de una sal de hidruro metálico o una sal de alcoholato metálico seleccionada de entre el grupo consistente en hidruro de sodio, hidruro de potasio, tercbutanolato de potasio, terc-butanolato de sodio, metanolato de potasio, metanolato de sodio, etanolato de sodio y etanolato de potasio, con al menos un compuesto de fórmula general LG-R^{9a}, donde LG es un grupo saliente, preferentemente un átomo de halógeno, de forma especialmente preferente un átomo de cloro, y teniendo R^{9a} el significado según una o más de las reivindicaciones 17 a 29, para obtener al menos un compuesto de fórmula general la, en la que R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a}, y en caso dado este compuesto se purifica y/o se aísla;

en caso dado al menos un compuesto de fórmula general IIa, en la que R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NHR^{5a}, se somete a reacción en un medio de reacción, en caso dado en presencia de al menos una base, con al menos un compuesto de fórmula general R^{6a} -C(=O)-LG, en la que R^{6a} tiene el significado según una o más de las reivindicaciones 17 a 29 y LG es un grupo saliente, preferentemente un átomo de halógeno, o en un medio de reacción en presencia de al menos un reactivo de acoplamiento, en caso dado en presencia de al menos una base, con un compuesto de fórmula general R^{6a} -C(=O)-OH, en la que R^{6a} tiene el significado según una o más de las reivindicaciones 17 a 29, para obtener al menos un compuesto de fórmula general la, en la que R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo R^{5a} -C(=O)- R^{6a} , y en caso dado este compuesto se purifica y/o se aísla;

en caso dado al menos un compuesto de fórmula general la, en la que R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NHR^{3a}, se somete a reacción en un medio de reacción en presencia de al menos una base, preferentemente en presencia de al menos una sal de hidruro metálico o de alcoholato metálico, de forma especialmente preferente en presencia de una sal de hidruro metálico o una sal de

alcoholato metálico seleccionada de entre el grupo consistente en hidruro de sodio, hidruro de potasio, terc-butanolato de potasio, terc-butanolato de sodio, metanolato de potasio, metanolato de sodio, etanolato de sodio y etanolato de potasio, con al menos un compuesto de fórmula general LG-R^{4a}, donde LG es un grupo saliente, preferentemente un átomo de halógeno, de forma especialmente preferente un átomo de cloro, y teniendo R^{4a} el significado según una o más de las reivindicaciones 17 a 29, para obtener al menos un compuesto de fórmula general la, en la que R^{2a} tiene el significado arriba mencionado y R^{1a} representa un grupo NR^{3a}R^{4a}, y en caso dado este compuesto se purifica y/o se aísla.

31. Procedimiento para preparar derivados de tiazol-4-ona 2,5 disustituidos de fórmula general la según una o más de las reivindicaciones 17 a 29, caracterizado porque al menos un compuesto de fórmula general R¹a-CN, en la que R¹a tiene el significado según una o más de las reivindicaciones 17 a 29 a excepción de un grupo NR³a-R⁴a, un grupo NR⁵a-C(=O)-R⁶a y un grupo NR⁻a-C(=O)-NR®a-R⁰a, se somete a reacción en un medio de reacción seleccionado de entre metanol, etanol, isopropanol y n-butanol, en presencia de al menos una base orgánica, seleccionada de entre trietilamina, piridina, diisopropilamina y N-metilmorfolina, o en piridina como medio de reacción, con ácido tioglicólico, para obtener al menos un compuesto de fórmula general IIIa,

15

5

en la que R^{1a} tiene el significado según una o más de las reivindicaciones 17 a 29 a excepción de un grupo $NR^{3a}R^{4a}$, un grupo $NR^{5a}-C(=O)-R^{6a}$ y un grupo $NR^{7a}-C(=O)-NR^{8a}R^{9a}$, y en caso dado este compuesto se purifica y/o se aísla;

20

o al menos un compuesto de fórmula general H_2N -C(=S)- NHR^{1a} , en la que R^{1a} tiene el significado según una o más de las reivindicaciones 17 a 29 a excepción de un grupo $NR^{3a}R^{4a}$, un grupo NR^{5a} -C(=O)- R^{6a} y un grupo NR^{7a} -C(=O)- $NR^{8a}R^{9a}$, se somete a reacción en un medio de reacción seleccionado de entre metanol, etanol, isopropanol y n-butanol, en caso dado en presencia de al menos una base orgánica, seleccionada de entre trietilamina, piridina, diisopropilamina y N-metilmorfolina, con ácido cloroacético, para obtener al menos un compuesto de fórmula general IIIa, en la que R^{1a} tiene el significado según una o más de las reivindicaciones 17 a 29 a excepción de $NR^{3a}R^{4a}$, un grupo NR^{5a} -C(=O)- R^{6a} y un grupo NR^{7a} -C(=O)- $NR^{8a}R^{9a}$, y en caso dado este compuesto se purifica y/o se aísla:

30

25

y al menos un compuesto de fórmula general Illa se somete a reacción en ácido acético, en presencia de al menos una sal seleccionada de entre acetato de sodio y acetato de potasio, o en un medio de reacción seleccionado de entre metanol, etanol, isopropanol y n-butanol, en presencia de al menos una base orgánica, seleccionada de entre trietilamina, piridina, diisopropilamina y N-metilmorfolina, con al menos un compuesto de fórmula general R-C(=O)-H, en la que R representa -CH=C(CH₃)-W^a-Z^a, -CH=CH-W^a-Z^a, -C(CH₃)=CH-W^a-Z^a, -C(fenilo)=CH-W^a-Z^a, -CBr=CH-W^a-Z^a, -CCl=CH-W^a-Z^a, -CF=CH-W^a-Z^a, -C(OH)=CH-W^a-Z^a, -CH₂-CH₂-W^a-Z^a, -CH₂-CH₂-W^a-Z^a, -CH₂-CH₂-W^a-Z^a, teniendo W^a y Z^a el significado según una o más de las reivindicaciones 17 a 29, para obtener al menos un compuesto de fórmula general la, en la que R^{1a} tiene el significado según una o más de las reivindicaciones 17 a 29 a excepción de un grupo NR^{3a}R^{4a}, un grupo NR^{5a}-C(=O)-R^{6a} y un grupo NR^{7a}-C(=O)-NR^{8a}R^{9a} y R^{2a} tiene el significado según una o más de las reivindicaciones 17 a 29.

35

32. Medicamento que contiene al menos un compuesto según una o más de las reivindicaciones 17 a 19 y en caso dado uno o más coadyuvantes fisiológicamente compatibles.

33. Medicamento según la reivindicación 32 para la profilaxis y/o el tratamiento del dolor, preferentemente dolor seleccionado de entre el grupo consistente en dolor agudo, dolor crónico, dolor visceral, dolor neuropático y dolor articular.

5

10

15

20

Medicamento según la reivindicación 32 para la profilaxis y/o el tratamiento de una o más afecciones 34. seleccionadas de entre el grupo consistente en artralgia; migrañas; depresiones; trastornos nerviosos; lesiones nerviosas; enfermedades neurodegenerativas, preferentemente seleccionadas entre el grupo consistente en esclerosis múltiple, enfermedad de Alzheimer, enfermedad de Parkinson y enfermedad de Huntington; disfunciones cognitivas, preferentemente estados cognitivos carenciales, de forma especialmente preferente trastornos de la memoria; epilepsia; enfermedades de las vías respiratorias, preferentemente seleccionadas entre el grupo consistente en asma y neumonía; tos; incontinencia urinaria; vejiga hiperactiva (overactive bladder, OAB); úlceras gástricas; síndrome de intestino irritable; ataques de apoplejía; irritaciones oculares; irritaciones de la piel; dermatosis neuróticas; enfermedades inflamatorias, preferentemente inflamaciones intestinales; diarrea; prurito; trastornos alimentarios, preferentemente seleccionados entre el grupo consistente en bulimia, caquexia, anorexia y obesidad; dependencia de medicamentos; abuso de medicamentos; síndromes de abstinencia en caso de dependencia de medicamentos; desarrollo de tolerancia frente a medicamentos, preferentemente frente a opioides naturales o sintéticos; drogodependencia; abuso de drogas; síndromes de abstinencia en caso de drogodependencia; alcoholismo; abuso de alcohol y síndromes de abstinencia en caso de alcoholismo; para la diuresis; para la antinatriuresis; para influir en el sistema cardiovascular; para aumentar la vigilancia; para aumentar la libido; para modular la actividad motora; como ansiolítico; como anestesia local y/o para inhibir efectos secundarios no deseados, preferentemente seleccionados entre el grupo consistente en hipertermia, hipertensión arterial y constricción bronquial, provocados por la administración de agonistas del receptor vainilloide 1 (receptores VR1/TRPV1), preferentemente seleccionados entre el grupo consistente en capsaicina, resiniferatoxina, olvanil,

arvanil, SDZ-249665, SDZ-249482, nuvanil y capsavanil (DA-5018).