

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 403 089

51 Int. Cl.:

C08F 220/18 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 17.07.2010 E 10737278 (1)
(97) Fecha y número de publicación de la concesión europea: 06.03.2013 EP 2467410

(54) Título: Copolímeros ramificados estadísticamente, su obtención y empleo como agente de nivelado en substancias de revestimiento

(30) Prioridad:

20.08.2009 EP 09010729

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 14.05.2013

(73) Titular/es:

BYK-CHEMIE GMBH (100.0%) Abelstrasse 45 46483 Wesel, DE

(72) Inventor/es:

FRANK, ALBERT; NAGELSDIEK, RENÉ; OMEIS, JÜRGEN; GÖBELT, BERND y JAUNKY, WOJCIECH

(74) Agente/Representante:

CARVAJAL Y URQUIJO, Isabel

DESCRIPCION

Copolímeros ramificados estadísticamente, su obtención y empleo como agente de nivelado en substancias de revestimiento.

La invención se refiere a copolímeros ramificados estadísticamente, a un procedimiento para su obtención y su empleo como agente de nivelado en substancias de revestimiento. La invención se refiere en especial a agentes eluyentes a base de copolímeros ramificados irregularmente, es decir, de manera estadística, constituidos por monómeros con insaturación etilénica, que son apropiados para conceder una superficie uniforme a substancias de revestimiento, como por ejemplo esmaltes.

Las superficies de esmalte no son completamente lisas en el caso regular, sino que presentan una superficie más o menos estructurada, que se denomina rugosidad, o también estructura de piel de naranja. Estas superficies pueden estar finamente estructuradas con una onda corta, o groseramente estructuradas con una onda larga. En la mayor parte de los casos, ésta rugosidad no es deseable. Existe una dependencia de la estructura respecto al tipo de substancia de revestimiento, por ejemplo respecto al hecho de que estas substancias de revestimiento contengan disolvente, o bien estén exentas de disolvente, como es el caso en los esmaltes pulverulentos. En el caso de esmaltes pulverulentos es absolutamente necesario añadir agentes de nivelado, ya que sin estos agentes de nivelado no se puede conseguir una superficie lisa regularmente.

Es sabido que como agentes de nivelado para revestimientos se pueden emplear poli(met)acrilatos y polisiloxanos. En el caso de polisiloxanos se trata casi siempre de dimetilpolisiloxanos, metilalquilpolisiloxanos, o bien también dimetil- o metilalquilpolisiloxanos modificados con poliéter o poliéster. En el caso de poli(met)acrilatos se emplean preferentemente polímeros o copolímeros de acrilatos de alquilo con una longitud de cadena de resto alquilo de 2 a 8 átomos de carbono, como por ejemplo acrilato de etilo, acrilato de 2-etilhexilo, o también acrilato de n-butilo de diversos pesos moleculares. Los productos empleados poseen parcialmente pesos moleculares de hasta 100 000 g/mol. Estos (co)polímeros de poli(met)acrilato empleados como agentes de nivelado se pueden emplear como tales, o como disoluciones en disolventes orgánicos, pero también como polvo aplicado, por ejemplo, sobre ácido silícico. Esto es habitual especialmente en el caso de empleo en esmaltes pulverulentos. Las cantidades de empleo de tales productos ascienden habitualmente a un 0,1 - 2 %, referido a las formulaciones de revestimiento.

La acción de todos estos productos se basa en una actividad interfacial en la interfase líquida/gaseosa, orientándose estos productos hacia la interfase debido a una cierta incompatibilidad con el verdadero agente aglutinante del sistema de revestimiento. Esta incompatibilidad se puede acrecentar mediante aumento del peso molecular de estos polímeros. No obstante, entonces es desfavorable que, debido a esta incompatibilidad, se pueda presentar una cierta turbidez (neblina) del revestimiento, y la viscosidad del agente eluyente es tan elevada que para el usuario no se da, o se da muy difícilmente un manejo sencillo. Un punto de partida de para la solución de esta problemática es el empleo de copolímeros en peine, que están constituidos predominantemente por (met)acrilatos y macromonómeros copolimerizables. La EP 1 193 299 describe el empleo de estos copolímeros en peine como agente de nivelado. El inconveniente de estos copolímeros en peine es la costosa obtención de varias etapas y la disponibilidad de los macromonómeros necesarios en cantidades técnicas. En algunos casos, esto conduce a que el agente de nivelado no se puede ajustar óptimamente a la substancia de revestimiento en su polaridad, y por lo tanto no se consigue el efecto de nivelado óptimo. Además, la obtención de macromonómeros es muy costosa, de modo que también es necesaria una alternativa bajo el aspecto económico.

40 Problema

5

20

25

30

35

45

50

Por lo tanto, existía el problema de poner a disposición copolímeros que se pudieran obtener en un procedimiento sencillo, y en una gran anchura de banda con una buena accesibilidad de materias primas. Los copolímeros se podrán emplear como agentes de nivelado en substancias de revestimiento, mediante lo cual se posibilita generar revestimientos muy lisos y en lo posible exentos de turbideces (neblina), lo que es de máxima importancia especialmente en esmaltes pulverulentos.

Solución

Sorprendentemente se descubrió que este problema se soluciona mediante un procedimiento para la obtención de un copolímero ramificado estadísticamente, en el que se hacen reaccionar los componentes

- (a) un 10 98,9 % en moles de al menos un acrilato de un monoalcohol alquílico con 1 a 22 átomos de carbono de cadena lineal, ramificado o cíclico,
- (b) un 0,1 10 % en moles de al menos un monómero con insaturación polietilénica, y

(c) en caso dado uno o varios monómeros con insaturación monoetilénica, que son distintos de acrilatos de monoalcoholes de alquilo con 1 a 22 átomos de carbono de cadena lineal, ramificados o cíclicos, y de compuestos de la fórmula (I),

en presencia de

5

10

15

30

35

40

45

(d) un 1 - 10 % en moles de al menos un compuesto de la fórmula (I)

$$H_3C-CR^aR^c-CH_2-CR^b=CH_2$$
 (I)

con R^a , R^b , independientemente entre sí, arilo, CN o COOR¹ con R^1 = H, alquilo, arilo o aralquilo, y R^c = alquilo, arilo o aralquilo,

y en presencia de al menos un iniciador de polimerización a través de radicales en una polimerización radicalaria, sumándose las fracciones molares de componentes (a), (b), (c) y (d) indicadas para dar un 100 % en moles, y no sobrepasando la fracción molar de componente (b) la fracción molar de componente (d).

Los copolímeros ramificados estadísticamente obtenidos según este procedimiento se pueden emplear como agente de nivelado en substancias de revestimiento, en especial también en esmaltes pulverulentos, mediante lo cual se posibilita generar revestimientos muy lisos y en lo posible exentos de turbideces (neblina). El procedimiento de obtención es un procedimiento sencillo de una etapa, que posibilita la obtención no complicada de una anchura de banda relativamente grande de copolímeros constituidos por substancias de partida convenientemente accesibles.

La síntesis de copolímeros ramificados en gran medida por medio de polimerización a través de radicales se describe en diversos artículos especializados, como en el artículo sinóptico Progress in Polymer Science 34 (2009), 317, o en la US 7 423 104.

A modo de ejemplo, una variante de obtención para copolímeros ramificados en gran medida es la "selfcondensing vinyl polymerization" (SCVP) con monómeros AB*, que son monómeros con insaturación etilénica, que portan un grupo, que actúa como un iniciador de reacciones a través de radicales bajo las condiciones de polimerización dadas, y se prolonga en cadenas. Este planteamiento se describe en Chem. Rev. 2001, 101, páginas 3681 y siguientes, para la Nitroxyl Mediated Polymerization (NMP), y en Chem. Rev. 2001, 101, página 2981 y siguientes, para la Atom Transfer Radical Polymerization (ATRP), WO 2008/045299 o en la US 6 639 032. En estos artículos sinópticos se citan también ejemplos de monómeros AB*.

Otra estrategia de síntesis de polímeros ramificados en gran medida se describe en Chem. Rev. 2001, 101; página 3643 y siguientes y J. Polym Sci, parte A, 2000, 38, 1764 y siguientes. Se descubrió que bajo ciertas circunstancias se sintetizan polímeros ramificados en gran medida en la Catalytic Chain Transfer (CCT) - y en la Reversible Addition Fragmentation Chain Transfer-Polymerization. La generación de ramificaciones se puede considerar como la introducción por polimerización de macromonómeros generados in situ. En este caso no se producen copolímeros en peine con una cadena principal y cadenas laterales, sino que, pudiéndose introducir por polimerización un macromonómero generado in situ en cualquier momento de la polimerización, las cadenas laterales pueden ser ramificadas por su parte. La US 5 767 211 describe la obtención de polímeros fuertemente ramificados a partir de monómeros di- o trifuncionales con monómeros monofuncionales en presencia de un catalizador de cobalto por medio de CCT.

La EP 1 694 790 describe el empleo de copolímeros a partir de monómeros con insaturación mono- y polietilénica, que se obtienen con NMP, como agente eluyente.

En la patente JP 2000/239334 se describe la síntesis de un copolímero en estrella en un proceso de dos etapas por medio de dímero de α-metilestireno y monómeros polifuncionales.

La WO 99/46301 describe la obtención de polímeros ramificados a partir de monómeros mono- y multifuncionales con insaturación etilénica, con ayuda de compuestos de transferencia de cadenas, que reducen el peso molecular.

La JP 2008/247978 muestra una vía de síntesis de polímeros ramificados, que portan aún grupos con insaturación etilénica para el reticulado en la matriz de agente aglutinante endurecible. La presencia de grupos con insaturación etilénica en el agente eluyente no es deseable, ya que mediante el reticulado en el agente aglutinante endurecible éstos ya no pueden flotar en la interfase con el aire.

Descripción detallada

5

10

15

35

En el procedimiento según la invención se hacen reaccionar los componentes

- (a) un 10 98,9 % en moles de al menos un acrilato de un monoalcohol alquílico con 1 a 22 átomos de carbono de cadena lineal, ramificado o cíclico,
- (b) un 0,1 10 % en moles de al menos un monómero con insaturación polietilénica, y
- (c) en caso dado uno o varios monómeros con insaturación monoetilénica, que son distintos de acrilatos de monoalcoholes de alquilo con 1 a 22 átomos de carbono de cadena lineal, ramificados o cíclicos, y de compuestos de la fórmula (I),

en presencia de

(d) un 1 - 10 % en moles de al menos un compuesto de la fórmula (I)

$$H_3C-CR^aR^c-CH_2-CR^b=CH_2$$
 (I)

con R^a , R^b , independientemente entre sí, arilo, CN o COOR¹ con R^1 = H, alquilo, arilo o aralquilo, y R^c = alquilo, arilo o aralquilo,

y en presencia de al menos un iniciador de polimerización a través de radicales en una polimerización radicalaria, sumándose las fracciones molares de componentes (a), (b), (c) y (d) indicadas para dar un 100 % en moles, y no sobrepasando la fracción molar de componente (b) la fracción molar de componente (d).

La fracción molar de componente (a) asciende preferentemente a un 25-98,8 % en moles, de modo especialmente preferente un 40-98,8 % en moles, referido respectivamente a la suma de componentes (a), (b), (c) y (d) empleados.

La fracción molar de componente (b) asciende preferentemente a un 0,1-5 % en moles, referido a la suma de componentes (a), (b), (c) y (d) empleados.

20 El componente (c) está contenido sólo de manera opcional, es decir, la fracción molar de componente (c) puede ascender a un 0 % en moles. La fracción molar de componente (c) asciende preferentemente a un 0,1-50 % en moles, referido a la suma de componentes (a), (b), (c) y (d) empleados.

La fracción molar de componente (d) asciende preferentemente a un 1-5 % en moles, referido a la suma de componentes (a), (b), (c) y (d) empleados.

Como componente (a) se emplea al menos un acrilato de un monoalcohol de alquilo con 1 a 22 átomos de carbono, de cadena lineal, ramificado o cíclico. Se excluyen expresamente ésteres de ácido metacrílico. Los monoalcoholes de alquilo con 1 a 22 átomos de carbono de cadena lineal, ramificados o cíclicos, empleados para la esterificación de ácido acrílico, son alifáticos, saturados y monohidroxifuncionales, y además del grupo hidroxilo no portan más grupos funcionales. Son ejemplos de acrilatos de monoalcoholes de alquilo con 1 a 22 átomos de carbono, de cadena lineal, ramificados o cíclicos, del componente (a) acrilato de metilo, acrilato de etilo, acrilato de n-propilo, acrilato de n-butilo, acrilato de i-butilo, acrilato de hexilo, acrilato de ciclohexilo, acrilato de 2-etilhexilo, acrilato de laurilo, acrilato de estarilo y acrilato de behenilo.

Como componente (b) se emplea al menos un monómero con insaturación polietilénica. Monómeros con insaturación polietilénica del componente (b) portan dos o más grupos con insaturación etilénica, preferentemente dos o tres grupos con insaturación etilénica, de modo especialmente preferente dos grupos con insaturación etilénica. Son ejemplos de monómeros poliinsaturados divinilbenceno, N,N'-bisacriloil-1,2-diaminoetano, dimetacrilato de etilenglicol, diacrilato de 1,6-hexanodiol, trimetacrilato de trimetilopropano, diacrilato de polietilenglicol, dimetacrilato de polietilenglicol, dimetacrilato de polietilenglicol, dimetacrilato de polipropilenglicol, dimetacrilato de polipropilenglicol o polidimetilsiloxanos funcionalizados con grupos acrilato o metacrilato.

Como componente (c) se emplean en caso dado uno o varios monómeros con insaturación monoetilénica, que son distintos de acrilatos de monoalcoholes de alquilo con 1 a 22 átomos de carbono de cadena lineal, ramificados o cíclicos, y de compuestos de la fórmula (I). Son ejemplos de monómeros del componente (c) (en este caso, la notación (met)acrilato incluye acrilatos y metacrilatos): metacrilatos de alcoholes de cadena lineal y ramificados con 1 a 22 átomos de carbono, como metacrilato de metilo, metacrilato de etilo, metacrilato de n- e i-butilo, metacrilato de laurilo, metacrilato de 2-etilhexilo, metacrilato de estearilo, metacrilato de behenilo; metacrilatos cicloalifáticos,

como por ejemplo metacrilato de ciclohexilo y metacrilato de isobornilo; (met)acrilatos de aralquilo, como por ejemplo (met)acrilato de bencilo; itaconatos y maleinatos con los grupos alquilo, cicloalquilo o aralquilo citados anteriormente.

Como monómeros funcionales del componente (c) se pueden emplear, a modo de ejemplo, monómeros hidroxifuncionales o carboxifuncionales, por ejemplo poliésteres con insaturación etilénica de ácido (met)acrílico y caprolactona. Para posibilitar un reticulado del agente de nivelado hidroxifuncional resultante, por ejemplo con resinas acrílicas de melamina-formaldehído, también es posible hacer reaccionar estos grupos funcionales parcial o completamente con isocianatos para dar grupos carbamato secundarios, de modo que en el caso de reticulado del sistema total, el agente de nivelado dispone de tiempo suficiente para orientarse en la interfase, para desarrollar su acción en la misma, y para reaccionar con la resina de melamina-formaldehído tras un cierto retraso temporal.

10 Como otros ejemplos de monómeros funcionales del componente (c) cítense: ácido acrílico, ácido metacrílico, ácido maleico, anhídrido de ácido maleico, ácido fumárico y ácido itacónico;

(met)acrilatos de hidroxialquilo de dioles de cadena lineal, ramificados o cicloalifáticos con 2 a 36 átomos de carbono, como por ejemplo metacrilato de 3-hidroxipropilo, metacrilato de 3,4-dihidroxibutilo, (met)acrilato de 2-hidroxietilo, (met)acrilato de 4-hidroxibutilo, metacrilato de 2-hidroxipropilo, monometacrilato de 2,5-dimetil-1,6-hexanodiol;

(met)acrilatos de éteres, polietilenglicoles, polipropilenglicoles o polietilen/propilenglicoles mixtos con 5 a 80 átomos de carbono, como por ejemplo metacrilato de tetrahidrofurfurilo, metacrilato de metoxietoxietilo, metacrilato de 1-butoxipropilo, metacrilato de 1-metil-(2-viniloxi)etilo, metacrilato de ciclohexiloximetilo, metacrilato de metoximetoxietilo, metacrilato de benciloximetilo, metacrilato de 1-etoxibutilo, metacrilato de 2-butoxietilo, metacrilato de 2-etoxietoximetilo, metacrilato de 1-etoxibutilo, metacrilato de metoximetilo, metacrilato de 1-etoxibutilo, metacrilato de poli(etilenglicol)metiléter, (met)acrilato de poli(propilenglicol)metiléter:

metacrilato de glicidoxipropilo;

25

30

35

(met)acrilatos de hidroxialquilo modificados con caprolactona y/o valerolactona con un peso molecular medio de 220 a 1200 g/mol, derivándose los hidroxi(met)acrilatos preferentemente de dioles de cadena lineal, ramificados o cicloalifáticos con 2 a 8 átomos de carbono:

así como otros monómeros con insaturación monoetilénica, que son apropiados para la copolimerización, por ejemplo estireno, α-metilestireno, acrilonitrilo y viniléter, como etilviniléter, butilviniléter y ciclohexilviniléter.

Para reducir drásticamente la tensión superficial de los copolímeros es ventajoso incorporar por polimerización concomitantemente fracciones reducidas de un polidimetilsiloxano funcionalizado con un grupo acrilato o metacrilato, (met)acrilato de perfluoralquilo, o de un producto de reacción de alcoholes alquílicos perfluorados con ácido maleico, anhídrido de ácido maleico o ácido fumárico.

Los monómeros con insaturación etilénica citados anteriormente se pueden polimerizar por separado o en combinación, en dependencia de la compatibilidad con el agente aglutinante deseada.

Los polímeros copolimerizados con monómeros polialcoxilados o copolimerizados con ácido (met)acrílico se pueden emplear en sistemas de agentes aglutinantes acuosos como agente de nivelado. En el caso de productos modificados por vía ácida se recomienda especialmente salinizar éstos antes de empleo con aminas apropiadas, como por ejemplo trietilamina, dimetiletanolamina o aminometilpropanol.

Como componente (d) se emplea al menos un compuesto de la fórmula (I)

$$H_3C-CR^aR^c-CH_2-CR^b=CH_2$$
 (I)

40 con Rª, Rb, independientemente entre sí, arilo, CN o COOR¹ con R¹ = H, alquilo, arilo o aralquilo, y Rc = alquilo, arilo o aralquilo. Son ejemplos de compuestos de la fórmula (I) 2,4-dicianopent-1-eno, 2,4-diciano-4-metilpent-1-eno, 2,4-difenil-4-metilpent-1-eno, 2-ciano-4-metil-4-fenilpent-1-eno, dimetiléster de 1,5-diácido 2,2-dimetil-4-metilenpentanoico y dibutiléster de 2,2-dimetil-4-metilenpentan-1,5-diácido. En el componente (d) se emplea 2,4-difenil-4-metilpent-1-eno.

La obtención de polímeros ramificados estadísticamente mediante polimerización a través de radicales se efectúa en presencia de al menos un iniciador de polimerización a través de radicales, como por ejemplo peróxidos o compuestos azoicos, del modo conocido por el especialista. Como disolvente entran en consideración en especial ésteres, como por ejemplo acetato de etilo, acetato de n-butilo o acetato de 1-metoxi-2-propilo, así como disolventes aromáticos, como por ejemplo tolueno o xileno, y cetonas, como por ejemplo metilisobutilcetona o metiletilcetona. La selección del disolvente o de la mezcla de disolventes se ajusta también al fin de empleo posterior del polímero

según la invención. Preferentemente se emplean disolventes de bajo punto de ebullición para facilitar la separación por destilación de estos disolventes en aplicaciones en las que los polímeros según la invención se deben emplear como producto al 100 %, como por ejemplo en sistemas de esmalte endurecibles en UV o en polímeros.

La polimerización a través de radicales se lleva a cabo a temperaturas de aproximadamente 40°C a 200°C, preferentemente a 60°C hasta 180°C, de modo especialmente preferente a 80 hasta 160°C.

La polimerización a través de radicales se puede llevar a cabo, a modo de ejemplo, como polimerización en masa, como polimerización en disolución, como polimerización por precipitación, como polimerización en emulsión, o como polimerización en suspensión.

La obtención de los polímeros se efectúa en un procedimiento de varias etapas, en el que se añaden con dosificación los monómeros de los componentes (a), (b), y en caso dado (c), al menos un iniciador y el(los) compuesto(s) del componente (d) conjuntamente, o se dispone(n) el(los) compuesto(s) del componente (d), y se añade con dosificación una mezcla de monómeros de los componentes (a), (b), y en caso dado (c), y al menos un iniciador. En este caso se producen copolímeros con una estructura estadística. Se entiende por una estructura estadística una estructura de polímero con una secuencia irregular, aleatoria, de unidades de monómero, que se diferencia de una estructura tipo bloque, injertada o alternante. En especial, los puntos de ramificación están distribuidos estadísticamente en el copolímero. Por lo tanto, se produce un copolímero ramificado estadísticamente en un procedimiento de una etapa.

Otro objeto de la invención son copolímeros ramificados estadísticamente, que son accesibles según el procedimiento descrito.

20 El peso molecular promedio en número de los copolímeros según la invención se sitúa en el intervalo de 1500 a 200000 g/mol, preferentemente 5000 a 75000 g/mol, de modo especialmente preferente en el intervalo de 7500 a 50 000 g/mol. El peso molecular promedio en número de los copolímeros se determina por medio de cromatografía de permeación en gel con tetrahidrofurano (1 ml/min) como agente eluyente, y bajo empleo de patrón de poliestireno.

Los copolímeros se pueden modificar aún posteriormente mediante reacciones análogas a polimerización. A modo de ejemplo, mediante la reacción subsiguiente con anhídrido de ácido maleico se puede incorporar concomitantemente un doble enlace reactivo y una función ácida. Esta función ácida se puede salinizar para la mayor solubilidad en agua, por ejemplo también con trietanolamina. También se puede esterificar grupos OH libres, por ejemplo mediante reacción subsiguiente con anhídrido de ácido acético, para poder evitar mejor problemas de adherencia de capas intermedias potenciales en el caso de aplicación de los polímeros según la invención como agente de nivelado auxiliar en esmaltes.

Otro objeto de la invención es el empleo de un copolímero descrito anteriormente como agente de nivelado en una substancia de revestimiento. Otro objeto de la invención es una substancia de revestimiento que contiene un copolímero según la invención. Otro objeto de la invención es un agente de nivelado que contiene un copolímero según la invención, y está previsto para el empleo en una substancia de revestimiento. En este caso, además de la acción de nivelado, el agente de nivelado puede influir también en otras propiedades superficiales del agente de revestimiento, como por ejemplo puede dotar la superficie de substancia de revestimiento de acabado hidrófobo, hidrófilo, resistente a la rayadura, antiadhesivo o repelente de suciedad, o aumentar el deslizamiento (lisura superficial).

35

Se entiende por substancias de revestimiento productos líquidos, pastosos o pulverulentos, que aplicados sobre un substrato proporcionan un revestimiento con propiedades protectoras, decorativas, y otras propiedades específicas; en especial pinturas y esmaltes. Son ejemplos de substancias de revestimiento en especial esmaltes pigmentados y no pigmentados, que pueden contener disolventes orgánicos y/o agua, o pueden estar exentos de los mismos (esmaltes pulverulentos). En el caso de las substancias de revestimiento se trata de modo especialmente preferente de esmaltes pulverulentos, es decir, substancias de revestimiento pulverulentas.

45 Se entiende por agentes de nivelado disoluciones, emulsiones, formulaciones al 100 % u otras formulaciones de aquellas substancias que mejoran el comportamiento de fluidez de una substancia de revestimiento sobre un substrato. Además del copolímero o los copolímeros según la invención, los agentes de nivelado según la invención pueden contener en especial uno o varios aditivos, seleccionados a partir del grupo constituido por disolventes orgánicos, agua, substancias soporte inorgánicas, agentes conservantes y emulsionantes.

Para el empleo de los copolímeros descritos para la mejora del nivelado en una substancia de revestimiento, los copolímeros se añaden a la substancia de revestimiento en cantidades relativamente reducidas, de un 0,01 a un 5 % en peso, preferentemente un 0,05 a un 2 % en peso, de modo muy especialmente preferente un 0,1 a un 1 % en peso, referido respectivamente a la substancia de revestimiento total. Los copolímeros se pueden emplear en forma de agente de nivelado como disoluciones, emulsiones, otras formulaciones, o también como substancias al 100 %,

dependiendo del tipo y modo de aplicación de la substancia de revestimiento. En esmaltes que contienen disolvente se emplean preferentemente agentes de nivelado que están disueltos en disolventes similares que el propio esmalte. En sistemas endurecibles por radiación, los agentes de nivelado se disuelven preferentemente en monómeros correspondientes. En esmaltes pulverulentos es preferente una versión al 100 % de agente de nivelado, o bien una forma de este agente de nivelado aplicada sobre material soporte pulverulento. También se pueden incorporar estos agentes de nivelado en fusiones ceráceas según la solicitud de patente alemana 19 522 475, y transformar de este modo en formas granuladas sólidas, si los agentes de nivelado según la invención constituyen resinas viscosas, adhesivas. En suspensiones pulverulentas acuosas, una variante de esmaltado en polvo, se pueden añadir los agentes de nivelado como emulsión acuosa. Estas emulsiones se obtienen con ayuda de emulsionantes según el estado de la técnica.

Ejemplos

10

15

20

Obtención de polímeros según la invención

Ejemplo 1

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 100 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 150 minutos, una mezcla constituida por 7,6 g de 2,2'-azodi(2-metilbutironitrilo), 9,3 g de 2,4-difenil-4-metilpent-1-eno, 151,6 g de acrilato de n-butilo, 28,5 g de ácido acrílico y 4,7 g de diacrilato de tripropilenglicol. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,5 g de 2,2'-azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C.

A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

Ejemplo 2

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 100 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 150 minutos, una mezcla constituida por 7,6 g de 2,2'-azodi(2-metilbutironitrilo), 18,6 g de 2,4-difenil-4-metilpent-1-eno, 151,6 g de acrilato de n-butilo, 28,5 g de ácido acrílico y 4,7 g de diacrilato de tripropilenglicol. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,5 g de 2,2'-azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C.

A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

35 Ejemplo 3

40

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 5 g de 2,4-difenil-4-metilpent-1-eno y 41,6 g de acetato de 1-metoxi-2-propilo. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 120°C se añade con dosificación uniformemente, en un intervalo de tiempo de 120 minutos, una mezcla constituida por 4 g de 2,2'-azodi(2-metilbutironitrilo), 51,6 g de acrilato de n-butilo y 1,6 g de diacrilato de 1,6-hexanodiol. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 120°C.

El cuerpo sólido asciende a un 60 %.

Ejemplo 4

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 5 g de 2,4-difenil-4-metilpent-1-eno y 41,6 g de acetato de 1-metoxi-2-propilo. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 120°C se añade con dosificación uniformemente, en un intervalo de tiempo de 120 minutos, una mezcla constituida por 4 g de 2,2'-azodi(2-metilbutironitrilo), 25,8 g de acrilato de n-butilo, 25,8 g de acrilato de i-butilo y 1,6 g de diacrilato de 1,6-hexanodiol. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 120°C.

50 El cuerpo sólido asciende a un 60 %.

Ejemplo 5

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 100 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 180 minutos, una mezcla constituida por 1,2 g de 2,2'-azodi(2-metilbutironitrilo), 3 g de 2,4-difenil-4-metilpent-1-eno, 74,8 g de acrilato de 2-etilhexilo, 103 g de BISOMER® MPEG550MA (metacrilato de monometilpolietilenglicol de la firma Cognis con un peso molecular promedio en número de 628 g/mol), 2,25 g de ácido acrílico y 0,6 de diacrilato de tripropilenglicol. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,5 g de 2,2'-azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C.

A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

Ejemplo 6

10

35

40

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 5 g de 2,4-difenil-4-metilpent-1-eno y 41,6 g de acetato de 1-metoxi-2-propilo. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 120°C se añade con dosificación uniformemente, en un intervalo de tiempo de 120 minutos, una mezcla constituida por 4 g de 2,2'-azodi(2-metilbutironitrilo), 51,6 g de acrilato de n-butilo y 10 g de polidimetilsiloxano funcionalizado con diacrilato AB 172305 (fabricante: ABCR, Mn = aproximadamente 1400 g/mol). Una vez concluida la adición se mantiene la temperatura de reacción aún 120 minutos en 120°C.

El cuerpo sólido asciende a un 60 %.

Polímeros comparativos

Comparativo 1 (sin componentes (b) y (d))

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 100 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 150 minutos, una mezcla constituida por 7,6 g de 2,2'-azodi(2-metilbutironitrilo), 151,6 g de acrilato de n-butilo y 28,5 g de ácido acrílico. Una vez concluida la adición se mantiene la temperatura de reacción 270 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,5 g de 2,2'-azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

Comparativo 2 (con componente (d), sin componente (b))

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 100 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 150 minutos, una mezcla constituida por 7,6 g de 2,2'-azodi(2-metilbutironitrilo), 9,3 g de 2,4-difenil-4-metilpent-1-eno, 151,6 g de acrilato de n-butilo y 28,5 g de ácido acrílico. Una vez concluida la adición se mantiene la temperatura de reacción 270 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,5 g de 2,2'-azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C.

A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

Comparativo 3 (sin componentes (b) y (d))

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 119 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 180 minutos, una mezcla constituida por 1,2 g de 2,2'-azodi(2-metilbutironitrilo), 74,8 g de acrilato de 2-etilhexilo, 103 g de BISOMER® MPEG550MA y 2,25 g de ácido acrílico. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,1 g de 2,2'-

azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C.

A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

5 **Comparativo 4** (con componente (d), sin componente (b))

En un matraz de vidrio provisto de agitador, termómetro, refrigerante de reflujo, embudo de goteo y tubo de introducción de nitrógeno se disponen 118 g de isobutanol. Durante la reacción total se hace pasar nitrógeno. Tras aumento de la temperatura de reacción a 110°C se añade con dosificación uniformemente, en un intervalo de tiempo de 180 minutos, una mezcla constituida por 1,2 g de 2,2'-azodi(2-metilbutironitrilo), 1,5 g de 2,4-difenil-4-metilpent-1-eno, 74,8 g de acrilato de 2-etilhexilo, 103 g de BISOMER® MPEG550MA y 2,25 g de ácido acrílico. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. Después se añaden 3 veces respectivamente 0,5 g de 2,2'-azodi(2-metilbutironitrilo) a intervalos de 30 minutos. Una vez concluida la adición se mantiene la temperatura de reacción 120 minutos más a 110°C. A continuación se separa por destilación el disolvente empleado en el evaporador rotatorio bajo vacío. El cuerpo sólido asciende a > 98 %.

15 **Comparativo 5** (polímero lineal): Acronal 4F = acrilato de poli-n-butilo, BASF, Ludwigshafen.

Comparativo 6 (polímero en peine): ejemplo 10 de la EP 1 193 299 A2.

Empleo como agente de nivelado en substancias de revestimiento

1. Esmalte en dispersión de poliuretano acuoso

	Liopur 2004-119	34,70 g	dispersión de poliuretano, fabricante Synthopol
20	BYK 425 (10 % en agua)	0,30 g	agente de control reológico, fabricante Byk
	Agua	6,65 g	
	Butilglicol	5,95 g	
	BYK-093	0,40 g	antiespumante, fabricante Byk
	Liocryl AS-680	52,00 g	dispersión de estireno-acrilato de Synthopol
25			
		100,00 g	

Se obtuvieron los esmaltes y se incorporaron los agentes de nivelado (véase tabla a continuación) 3 minutos con un Dissolver (1865 rpm). Tras almacenaje de los esmaltes durante 24 h se llevaron a cabo los siguientes ensayos: aplicación con pincel sobre mapas de contraste sellados (Chart2813) y valoración visual de espuma y nivelado.

Agente de nivelado	Cantidad [g]	Control	Control	
		Espuma*	Nivelado**	
Sin agente de nivelado	-	2	5	
Comparativo 1	0,1	2	4	
Comparativo 2	0,1	2	4	
Ejemplo 1	0,1	1-2	4	
Ejemplo 2	0,1	1-2	1	

30

10

*1 = sin espuma; 5 = mucha espuma; **1 = buen nivelado; 5 = mal nivelado

2. Esmalte en dispersión de poliacrilato acuoso

		Joncryl 8226	89,70 g	emulsión de poliacrilato acuosa (BASF)
		BYK 425 (10 % en agua)	0,50 g	
	5	Dowanol PnB	1,80 g	butoxipropanol, fabricante Dow
		Texanol	3,50 g	agente de coalescencia, fabricante Eastman
		Agua	4,10 g	
		BYK-028	0,40 g	antiespumante, fabricante Byk Chemie
]	10		100,00 g	

Se obtuvieron los esmaltes y se incorporaron los agentes de nivelado (véase tabla a continuación) 3 minutos con un Dissolver (1865 rpm). Tras almacenaje de los esmaltes durante 24 h se llevaron a cabo los siguientes ensayos: aplicación con pincel sobre mapas de contraste sellados (Chart2813) y valoración visual de espuma y nivelado.

Agente de nivelado	Cantidad [g]	Control		
		Espuma*	Nivelado**	
Sin agente de nivelado	-	2	4	
Comparativo 1	0,1	2	5	
Ejemplo 2	0,1	1	2	
*1 = sin espuma; 5 = mucha espuma; **1 = buen nivelado; 5 = mal nivelado				

15 3. Esmalte de cochura blanco de poliéster/melamina que contiene disolvente

Material de molturado

	Uralac SN 831	16,7 de agente aglutinante de poliéster, fabricante DSM
	acetato de metoxipropilo	5 g
20	Disperbyk 174	0,9 g de agente humectante y dispersante, fabricante Byk
	Byk-057	0,5 g de antiespumante, fabricante Byk
	Aerosil R972	0,3 g de ácido silícico pirógeno, fabricante Degussa
	Ti-pure R 960	30 g de dióxido de titanio, fabricante DuPont

Dispersión: Dispermat CV; 20 min; 8000 rpm; 40°C; material de molturado: perlas de vidrio 1:1

Material de esmaltado

Uralac SN 831 33,3 g

Cymel 303 7,5 g de derivado de melamina, fabricante Cytec

Dynapol Catalyst 1203 1,9 g de derivado de ácido sulfónico en bloques (Evonik)

Solvesso 150 2,1 g de disolvente, fabricante ExxonMobil

5 acetato de butildiglicol 1,8 g

Copolímero/agente de nivelado 0,3 respectivamente 0,7 g según la siguiente tabla, calculado en cada caso respecto al cuerpo sólido del agente de nivelado (es decir, la cantidad empleada de agente de nivelado se seleccionó de modo que en la misma estaban contenidos 0,3, o bien 0,7 g de copolímero).

El material de molturado y el material de esmaltado se mezclan y se homogeneizan 5 minutos.

10 La viscosidad se ajustó con Solvesso 150 a 100-120 s con un vaso DIN 4.

Después de 24 horas se aplica el esmalte con una rasqueta espiral sobre chapa de aluminio imprimada en un grosor de capa de 80 µm en húmedo, y se cochuró 30 minutos con una PMT (Peak Metal Temperature) de 232°C.

Valoración visual del nivelado

Agente de nivelado	Cantidad [g]	Nivelado*	Cráter*	Brillo/neblina
				60°/20°/neblina
Comparativo 3 sin agente de nivelado	-	5	4	94/49/455
	0,3	3-4	3	98/85/111
	0,7	3-4	2	98/81/152
Comparativo 4	0,3	2-3	2	98/87/91
	0,7	2-3	2	98/87/89
Ejemplo 5	0,3	2	2	98/89/74
	0,7	3	2	98/89/77
Ejemplo 6	0,3	2-3	3	98/87/88
	0,7	2-3	3	98/88/83
*1 = buen nivelado; 5 = mal nivelado; **1 = sin cráteres; 5 = muchos cráteres				

15 El brillo y la neblina se midieron con el aparato de medida "haze-gloss" de la firma Byk Gardner.

Con los copolímeros ramificados estadísticamente según la invención se pudo mejorar no sólo el nivelado en comparación con la estructura de agente de nivelado lineal (ejemplo comparativo 3), sino también la compatibilidad con el esmalte, que se expresa relativamente a los ejemplos comparativos en valores de neblina más reducidos.

4. Obtención de un esmalte pulverulento blanco

Composición:

	Uralac P5127	28,5 g	de resina de poliéster, DSM
	DER 663 UE	28,5 g	de resina epoxi, Dow
	Kronos 2160	28,5 g	de dióxido de titanio, Kronos
5	Blancfixe	14,2 g	de sulfato de bario, Sachtleben
	Benzoína	0,3 g	de DSM
	Agente de nivelado	0,15 g	según la anterior tabla, calculado respecto al cuerpo sólido del
		respecti	vo agente de nivelado

Los agentes de nivelado según los ejemplos se incorporaron como mezcla madre al 10 % en Uralac P5127. Esto se tiene en consideración en la pesada de Uralac P5127. Todos los componentes se pesaron conjuntamente y se mezclaron previamente 2,5 min a 2000 rpm en un mezclador de alta velocidad. Después se extrusionaron las mezclas en una extrusora de doble husillo a 120°C. Las piezas producidas se enfriaron, se desmenuzaron y se

molturaron en un molino de clavijas. El polvo obtenido se hizo pasar a través de un tamiz de 100 µm.

La mezcla de esmalte pulverulento producida de este modo se aplicó entonces por vía electrostática sobre chapa de aluminio (tamaño: 152 mm x 76 mm, grosor 0,5 mm), y las chapas revestidas de este modo se endurecieron 11 minutos a 190°C.

Resultado

10

	Grosor de capa:	80-90 μm	60-70 μm
	Agente de nivelado:		
20	comparativo 3	3	3
	ejemplo 3	1	2
	ejemplo 4	1	1

Valoración de las superficies producidas:

1 = superficie exenta de cráteres

25 2 = superficie con ligeros cráteres

3 = superficie con claros cráteres, en parte hasta el fondo.

5. Obtención de un esmalte transparente pulverulento

Composición:

	Uralac P865	94,1 g	de resina de poliéster, DSM
30	Primid XL-552	4,9 g	de reticulante de hidroxialquilamida, EMS-Chemie
	Benzoína	0,5 g	de DSM
	Agente de nivelado	0,5 g	

Los agentes de nivelado según los ejemplos se incorporaron como mezcla madre al 10 % en la goma laca pulverulenta. Esto se tiene en consideración en la pesada de la resina. La mezcla madre se obtiene mediante fusión de la correspondiente goma laca pulverulenta, y mezclado con el agente de nivelado. Tras el enfriamiento se desmenuza la mezcla madre.

- Todos los componentes se pesaron conjuntamente y se mezclaron previamente 2,5 min a 1500 rpm en un mezclador de alta velocidad Mixaco Mischer Lab CM3. Después se extrusionaron las mezclas en una extrusora de doble husillo Prism TSE a 120°C. La fusión de resina producida se enfrió, se desmenuzó, y se molturó en un molino de clavijas Retsch ZM 100. El polvo obtenido se hizo pasar a través de un tamiz de 100 μm.
- La mezcla de esmalte pulverulento producida de este modo se aplicó entonces por vía electrostática sobre chapas de aluminio A-36 en paneles en Q, y las chapas revestidas de este modo se endurecieron 14 minutos a 180°C en el horno de aire circulante.

Valoración de las superficies de esmaltes pulverulentos producidas:

se determinó el desarrollo con el wave-scan DOI de la firma BYK-Gardner, determinándose la onda larga y la onda corta.

15 Resultados

Agente de nivelado	Grosor de capa µm	Wave scan	
		Onda larga	Onda corta
Comparativo 3	40-50	33	29
Comparativo 4	50-60	30	23
Ejemplo 5	50-60	22	21

Los resultados muestran que, en el caso de empleo del polímero según la invención (ejemplo 5) como agente de nivelado, se consiguieron mejores resultados.

REIVINDICACIONES

- 1.- Procedimiento para la obtención de un copolímero ramificado estadísticamente, caracterizado porque se hacen reaccionar los componentes
 - (a) un 10 98,9 % en moles de al menos un acrilato de un monoalcohol alquílico con 1 a 22 átomos de carbono de cadena lineal, ramificado o cíclico,
 - (b) un 0,1 10 % en moles de al menos un monómero con insaturación polietilénica, y
 - (c) en caso dado uno o varios monómeros con insaturación monoetilénica, que son distintos de acrilatos de monoalcoholes de alquilo con 1 a 22 átomos de carbono de cadena lineal, ramificados o cíclicos, y de compuestos de la fórmula (I),
- 10 en presencia de

5

(d) un 1 - 10 % en moles de al menos un compuesto de la fórmula (I)

$$H_3C-CR^aR^c-CH_2-CR^b=CH_2$$
 (I)

con R^a , R^b , independientemente entre sí, arilo, CN o COOR¹ con R^1 = H, alquilo, arilo o aralquilo, y R^c = alquilo, arilo o aralquilo,

- y en presencia de al menos un iniciador de polimerización a través de radicales en una polimerización radicalaria, sumándose las fracciones molares de componentes (a), (b), (c) y (d) indicadas para dar un 100 % en moles, y no sobrepasando la fracción molar de componente (b) la fracción molar de componente (d).
 - 2.- Procedimiento según la reivindicación 1, caracterizado porque la fracción molar de componente (a) asciende a un 40 98.8 % en moles.
- 3.- Procedimiento según una de las reivindicaciones 1 o 2, caracterizado porque la fracción molar de componente (b) asciende a un 0,1 5 % en moles.
 - 4.- Procedimiento según una de las reivindicaciones 1 a 3, caracterizado porque la fracción molar de componente (c) asciende a un 0,1 50 % en moles.
- 5.- Procedimiento según una de las reivindicaciones 1 a 4, caracterizado porque la fracción molar de componente (d) asciende a un 1 5 % en moles.
 - 6.- Procedimiento según una de las reivindicaciones 1 a 5, caracterizado porque en el componente (d) se emplea 2,4-difenil-4-metilpent-1-eno.
 - 7.- Copolímero ramificado estadísticamente, obtenible conforme al procedimiento según una de las reivindicaciones 1 a 6.
- 30 8.- Copolímero según la reivindicación 7, caracterizado porque el peso molecular promedio en número del copolímero asciende a 1500 200000 g/mol, preferentemente 5000 75000, y de modo especialmente preferente 7500-50000 g/mol.
 - 9.- Empleo de un copolímero según una de las reivindicaciones 7 a 8 como agente de nivelado en una substancia de revestimiento.
- 35 10.- Empleo según la reivindicación 9, caracterizado porque el copolímero se emplea en la substancia de revestimiento en una fracción de un 0,01 5 % en peso, preferentemente un 0,05 2 % en peso, de modo especialmente preferente un 0,1 1 % en peso, referido respectivamente a la substancia de revestimiento total.
 - 11.- Empleo según una de las reivindicaciones 9 o 10, caracterizado porque la substancia de revestimiento es un esmalte pulverulento.
- 40 12.- Substancia de revestimiento que contiene al menos un copolímero según una de las reivindicaciones 7 a 8.

- 13.- Substancia de revestimiento según la reivindicación 12, caracterizada porque la substancia de revestimiento es un esmalte pulverulento.
- 14.- Agente de nivelado para una substancia de revestimiento, que contiene al menos un copolímero según una de las reivindicaciones 7 a 8.