

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 404 854

51 Int. Cl.:

B66B 7/12 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 15.07.2009 E 09797506 (4)

(97) Fecha y número de publicación de la concesión europea: 13.02.2013 EP 2303749

(54) Título: Pocedimiento y dispositivo para la determinación de la necesidad de reemplazo por desgaste de un medio de tracción de un ascensor

(30) Prioridad:

18.07.2008 EP 08160740

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.05.2013

(73) Titular/es:

INVENTIO AG (100.0%) Seestrasse 55 6052 Hergiswil, CH

(72) Inventor/es:

BACHMANN, HERBERT y NOSEDA, TOBIAS

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Procedimiento y dispositivo para la determinación de la necesidad de reemplazo por desgaste de un medio de tracción de un ascensor

Campo técnico

10

5 La invención se refiere a un procedimiento y a un dispositivo para la determinación de la necesidad de reemplazo por desgaste de un medio de tracción de un ascensor.

En un ascensor, la cabina es sujetada y movida por un medio de tracción, en que el medio de tracción se desgasta con el tiempo durante el funcionamiento y es reemplazado de tiempo en tiempo. Si el medio de tracción es reemplazado sin embargo antes de que sea realmente necesario su reemplazo por desgaste, se producen costes innecesarios y el periodo de servicio se acorta innecesariamente. Si no se reconoce sin embargo a tiempo que es necesario reemplazar por desgaste el medio de tracción, pueden producirse riesgos de seguridad considerables. Es por ello importante poder determinar de la forma más precisa posible cuándo un medio de tracción está desgastado de tal modo que tiene que ser reemplazado.

Estado de la técnica

- Si como medios de tracción sirven cables de acero o correas de acero, la necesidad de reemplazo por desgaste se determina mediante el recurso de contar el número de roturas de alambres o mediante el recurso de vigilar por inducción magnética el medio de tracción. Estos procedimientos no son apropiados sin embargo o sólo lo son de forma condicionada para cables de aramida como medio de tracción.
- A partir del documento JP 11 035 246 A es conocido un procedimiento para hallar el desgaste del cable de tracción de un ascensor. La parte del cable de ascensor que se desliza sobre la polea motriz está expuesta al mayor desgaste. Además, el resbalamiento del cable de tracción sobre la polea motriz provoca que con ello se alargue el tiempo de desplazamiento. Con ello, entre el grado de desgaste y el tiempo de desplazamiento existe una correlación. Esta correlación se emplea entonces en el procedimiento para la determinación del desgaste, para deducir a partir de los tiempos de desplazamiento determinados el grado del desgaste.
- Primero se captan las señales de llamada de la cabina y se calculan a partir de ellas los tiempos de desplazamiento que necesita la cabina para llegar desde los pisos de llamada a los pisos de destino. A continuación, los tiempos de desplazamiento calculados son comparados con valores de desgaste, para determinar aquella sección del hueco en la que la cabina se mueve con más frecuencia. Con ayuda de este dato se verifica entonces el desgaste del correspondiente segmento de cable.
- 30 Esta forma de realización tiene sin embargo la siguiente desventaja. Debido a que el tiempo de desplazamiento no sólo depende del deslizamiento, sino también adicionalmente de algunos otros parámetros, tales como por ejemplo la carga en la cabina, mediante la captación del tiempo de desplazamiento sólo se pueden realizar deducciones relativamente imprecisas sobre el deslizamiento existente. Cuando el tiempo de desplazamiento se alarga, esto puede tener diferentes motivos. Un deslizamiento más fuerte es sólo uno de varios posibles motivos.

35 Exposición de la invención

Constituye una tarea de la invención proporcionar un procedimiento y un dispositivo para la determinación de la necesidad de reemplazo por desgaste de un medio de tracción de un ascensor, con el que pueda determinarse de forma particularmente precisa la necesidad de reemplazo por desgaste del medio de tracción.

- En el procedimiento conforme a la invención para la determinación de la necesidad de reemplazo por desgaste de un medio de tracción de un ascensor, en el que el medio de tracción es guiado por una polea motriz y/o por una o varias poleas de desvío y une una cabina con un contrapeso, el medio de tracción es dividido en varios segmentos. Para cada uno de los segmentos se determina si el segmento pasa durante un desplazamiento por la polea motriz y/o por una o varias de las poleas de desvío, y si éste es el caso, se aumenta correspondientemente un grado de desgaste, que representa la necesidad de reemplazo por desgaste.
- 45 El dispositivo conforme a la invención para la determinación de la necesidad de reemplazo por desgaste comprende además de las características anteriormente citadas un controlador para el control del ascensor y una unidad de evaluación, que está conectada al controlador. La unidad de evaluación está conformada y opera de tal modo que con ayuda de los datos obtenidos por el controlador acerca de los destinos de desplazamiento determina el grado de desgaste para cada uno de los segmentos.
- 50 Perfeccionamientos ventajosos de la invención resultan de las características indicadas en las reivindicaciones dependientes.

En una forma de realización del procedimiento conforme a la invención se determina el tipo de curvamiento y se tiene en cuenta en la determinación por segmentos del grado de desgaste. Esto es ventajoso en particular para curvamientos de inversión, ya que éstos desgastan de forma particularmente fuerte el medio de tracción.

ES 2 404 854 T3

En otra forma de realización del procedimiento conforme a la invención, para la determinación del tipo de curvamiento se halla qué polea de desvío provoca qué curvamiento.

Ventajosamente, en el procedimiento conforme a la invención se tiene en cuenta con más peso un curvamiento de retroceso en la determinación del grado de desgaste que un curvamiento simple.

Además es ventajoso que en el procedimiento conforme a la invención se tenga en cuenta el ángulo de arrollamiento en la determinación por segmentos del grado de desgaste. A través de ello, la determinación de la necesidad de reemplazo por desgaste puede producirse de forma aún más precisa.

Además es también ventajoso que en el procedimiento conforme a la invención se tenga en cuenta el diámetro de las poleas de desvío en la determinación por segmentos del grado de desgaste. También a través de ello puede producirse de forma aún más precisa la determinación de la necesidad de reemplazo por desgaste.

Para la resolución de la tarea se propone además que en el procedimiento conforme a la invención se genere un aviso de servicio cuando el grado de desgaste para uno de los segmentos ha superado un determinado valor. De este modo puede renunciarse a controles manuales regulares del grado de desgaste determinado con el procedimiento, para la necesidad de reemplazo.

15 Según otra característica de la invención, el medio de tracción es vigilado adicionalmente con una disposición de control óptica. A través de ello, la determinación de la necesidad de reemplazo por desgaste puede producirse de forma aún más precisa y segura.

Breve descripción de los dibujos

10

30

35

50

En lo que sigue se explica adicionalmente la invención con varios ejemplos de realización con ayuda de siete figuras.

La figura 1 muestra una representación simplificada de un ascensor con una polea n
--

- La figura 2 muestra el principio de recuento para un ascensor conforme a la figura 1.
- La figura 3 muestra una representación simplificada de un ascensor con cuatro poleas de desvío.
- La figura 4 muestra una tabla y un diagrama con cuatro desplazamientos del ascensor conforme a la figura 3.
- 25 La figura 5 muestra otra vez el diagrama con los cuatro desplazamientos del ascensor y debajo una tabla de desplazamientos.
 - La figura 6 muestra un diagrama con las posiciones de las poleas de desvío en los distintos segmentos de cable.
 - La figura 7 muestra un diagrama de flujo para el procedimiento para la determinación de la necesidad de
 - reemplazo por desgaste de un medio de tracción de un ascensor.

Vías para la realización de la invención

Para determinar la vida útil de un medio de tracción, por ejemplo de un cable de aramida, se llevan a cabo con carácter previo pruebas correspondientes y se tienen en cuenta valores experimentales. En particular, la disposición de la polea motriz, de las poleas de desvío, la guía de cable, el ángulo de arrollamiento, el diámetro de la polea motriz y de las poleas de desvío tienen una influencia sobre la estabilidad o respectivamente el desgaste. Los datos obtenidos a partir de ello llevan a un número de ciclos de curvamiento, que indica cuántos ciclos de curvamiento son admisibles como máximo, antes de que sea necesario el reemplazo por desgaste del elemento de tracción. El número de ciclos de curvamiento se denomina en lo que sigue también número límite de ciclos de curvamiento. Por lo tanto, cuanto más frecuentemente sea curvado el medio de tracción, tanto mayor será su desgaste.

- Para asegurar que la vida útil y con ello la necesidad de reemplazo por desgaste del medio de tracción pueda determinarse de la forma más precisa posible, juega un papel particular el número admisible de ciclos de curvamiento de aquel segmento del medio de tracción que es sometido en mayor medida a esfuerzos. Mientras que no se supere el número de ciclos de curvamiento del segmento del medio de tracción más sometido a esfuerzos, no hay que reemplazar aún el medio de tracción.
- 45 En las formas de realización aquí descritas de la invención, todos los tipos de poleas, excepto la polea motriz, son denominadas poleas de desvío. Así, por ejemplo también las poleas deflectoras quedan dentro del concepto de poleas de desvío.

Primera forma de realización

En la figura 1 está representada una representación simplificada de un ascensor con una suspensión 1:1. Una cabina 8 está unida a un contrapeso 9 a través de un medio de tracción 5, que en lo que sigue se denomina también

cable de tracción o abreviadamente cable. El medio de tracción 5 puede ser también una correa o una cinta y es guiada por una polea motriz 20. Para mover la cabina 8 de un piso 12 a otro piso 11, el medio de tracción 5 es accionado por la polea motriz 20, que está acoplada a un accionamiento no mostrado. Aquí, al comienzo del desplazamiento, es decir en el instante t0, el segmento de cable Ai, como se muestra en la figura 1, está situado debajo de la polea motriz 20. El segmento de cable Ai lleva en esta posición la referencia Ai(t0). Al final del desplazamiento, es decir en el instante t1, la cabina 8 se encuentra en el piso 11 y el segmento de cable Ai está situado ahora en parte sobre la polea motriz 20. El segmento de cable Ai lleva en esta posición la referencia Ai(t1). El control del ascensor se produce mediante un controlador de ascensor 31. La determinación de la necesidad de reemplazo por desgaste del medio de tracción 5 se produce mediante una unidad de evaluación 32, que está conectada al controlador de ascensor 31.

10

15

20

25

30

35

40

45

50

55

Para la determinación de la necesidad de reemplazo por desgaste del medio de tracción 5, primeramente el medio de tracción es dividido en tantos segmentos Ai como pisos hay. Luego es asignado a cada piso aquel segmento del medio de tracción que está situado sobre la polea motriz 20 cuando la cabina 8 está situada en el piso correspondiente. Así, se asigna por ejemplo el número de segmento A12 a aquel segmento de medio de tracción que está situado sobre la polea motriz 20 cuando la cabina se encuentra en el piso 12.

Además, a cada piso o respectivamente al correspondiente segmento del medio de tracción se le asigna un espacio de memoria, en el que se cuenta cada entrada en el piso, cada salida del piso en dirección opuesta así como cada paso por el correspondiente piso. Esto está representado gráficamente en la figura 2. A la izquierda se muestra el hueco con en total 25 pisos (-2 hasta 22), a la derecha junto a ello una representación simbólica de un primer desplazamiento 1 de la cabina desde el piso 0 hasta el piso 8. Nuevamente, a la derecha junto a ello se muestra la memoria correspondiente, que es denominada en lo que sigue contador de cambios de curvamiento. La memoria comprende tantos espacios de memoria como pisos tiene el edificio menos uno, es decir en el ejemplo de realización precedente por lo tanto en total 24 espacios de memoria SP1 hasta SP24 para en total 24 segmentos de cable A1 hasta A24. El primer segmento de cable A1 se encuentra junto al contrapeso 9 y el 24º segmento de cable junto a la cabina 8.

Si la cabina de ascensor 8 se desplaza desde la parada más baja (piso -2) hacia arriba, el primer segmento de cable A1 pasa por la polea motriz 20. Si la cabina de ascensor 8 se desplaza por el contrario desde la parada superior (pisos 22) hacia abajo, el segmento de cable A24 pasa por la polea motriz 20.

En el ejemplo de la figura 2, la cabina 8 se desplaza durante el desplazamiento 1 desde el piso 0 al piso 8. La unidad de evaluación 32 obtiene desde el controlador de ascensor 31 la información de pisos (información de llamada) y aumenta entonces en función de ello los contenidos de los ocho espacios de memoria SP3 hasta SP10 correspondientes respectivamente en el valor uno. Esto quiere decir que los segmentos de cable A3 hasta A10 pasan por la polea motriz 20 y son sometidos entonces a un curvamiento. En el desplazamiento 2, la cabina 8 se desplaza desde el piso 8 tres pisos más hacia arriba hasta el piso 11. Pasan por lo tanto por la polea motriz 20 los segmentos de cable A11 hasta A13 y son sometidos entonces a un curvamiento. Por ello, los valores en los siguientes tres espacios de memoria SP11, SP12 y SP13 son aumentados igualmente en el valor uno. En el desplazamiento 3, la cabina se desplaza desde el piso 11 hacia abajo hacia el piso -1. Esto lleva a que los valores en los correspondientes espacios de memoria SP13 hasta SP2 son aumentados nuevamente en el valor uno. Finalmente, en el desplazamiento 4 la cabina se desplaza hacia arriba hasta el piso 3, de modo que los valores en los espacios de memoria SP2 hasta SP5 correspondientes son aumentados nuevamente en el valor uno.

A la derecha en la figura 2 están representados los valores acumulados durante los cuatro desplazamientos al final del desplazamiento 4, los cuales se denominan grados de desgaste R(A1) hasta R(AN). El valor máximo en la memoria de cambios de curvamiento corresponde al número máximo de ciclos de curvamiento de la instalación de ascensor. Como puede observarse, en total tres espacios de memoria SP3, SP4 y SP5 están ocupados con el valor 3. Esto significa que durante los cuatro desplazamientos, los tres segmentos de medio de tracción A3, A4 y A5 han sido sometidos respectivamente tres veces a un ciclo de curvamiento. Para el segmento de medio de tracción A1 resulta un grado de desgaste R(A1) = 0, para el segmento de medio de tracción A2 un grado de desgaste R(A2) = 2 y para el segmento de medio de tracción A3 un grado de desgaste R(A3) = 3. Los segmentos de cable A3, A4 y A5 tienen con ello el mayor grado de desgaste R(A3) = R(A4) = R(A5) = 3 y están sometidos con ello al mayor desgaste.

Para hallar los ciclos de curvamiento pueden emplearse y evaluarse las informaciones de llamada procedentes del controlador de ascensor 31. Para ello puede emplearse por ejemplo un código Gray.

La forma de realización descrita puede tanto estar integrada en el controlador de ascensor 31 como estar realizada como aparato separado, que está equipado con una correspondiente interfaz hacia el controlador de ascensor 31. A través de la interfaz pueden ser transmitidas entonces las informaciones de pisos. El controlador de ascensor 31 y la unidad de evaluación 32 pueden estar agrupados en el mismo alojamiento o también en el mismo módulo.

Para cada desplazamiento desde un piso a otro está asociado al piso aquel segmento de cable que es curvado durante el correspondiente desplazamiento en torno a la polea motriz y la polea de desvío. Con el contador de

cambios de curvamiento son contados los cambios de curvamiento de cada segmento de cable. Es determinante para la vida útil del cable aquel segmento de cable con el máximo de cambios de curvamiento.

Segunda forma de realización

10

15

35

40

Para un factor de suspensión = 2, es decir una suspensión 2:1, son válidas igualmente las consideraciones anteriores. Los distintos segmentos de cable pueden ser cargados, además de por los curvamientos en torno a la polea motriz 2, por curvamientos en torno a las poleas de cable 1, 3, 4 junto al contrapeso 9 o sobre la cabina 8. Las poleas de cable 1, 3, 4 son denominadas aquí también poleas o poleas de desvío.

En la segunda forma de realización aquí descrita, estos curvamientos no son contados separadamente. Se parte del hecho de que cada segmento de cable es curvado tanto en torno a la polea motriz 2 como también en torno a las poleas 1, 3, 4 junto al contrapeso 9 o la cabina 8. Por este motivo, se habla de ciclos de curvamiento y no de cambios de curvamiento. Un ciclo de curvamiento incluye tanto el curvamiento en torno a la polea motriz 2 como los curvamientos en torno a las poleas 1, 3, 4 correspondientes. En los ensayos de vida útil se prueban ciclos de curvamiento (curvamiento de la misma parte de cable en torno a la polea motriz 2 y las poleas 1, 3, 4). Por ello, este modo de contar es suficientemente seguro. Existe sin embargo también la posibilidad de contar separadamente los distintos curvamientos en torno a la polea motriz 2 y las poleas 1, 3, 4 (véase la tercera forma de realización).

Ventajosamente, para cada diseño (disposición) de ascensor se determina un número límite de ciclos de curvamiento propio mediante correspondientes pruebas de vida útil con diámetros definidos de polea motriz y otras poleas.

Tercera forma de realización

En la figura 3 está representado un ascensor con una suspensión 2:1. El cable de tracción 5 está fijado a un primer punto de fijación 6 en el hueco y está guiado en torno a una primera polea de desvío 1, que está fijada al contrapeso 9, pasando por una polea motriz 2, que está fijada al hueco, y por otras poleas de desvío 3 y 4, que están dispuestas por el lado inferior de la cabina 8, hasta un segundo punto de fijación 7 en el hueco. El hueco está limitado hacia abajo por un fondo 10 y hacia arriba por una cubierta 13.

En la figura 4 se representan una tabla y un diagrama con cuatro desplazamientos F1 – F4 del ascensor. A la izquierda en la figura 4 está indicada la altura de hueco por ejemplo en metros y a la derecha junto a ello están indicados los pisos como números 0 a 50. A la derecha junto a ello se muestran cuatro desplazamientos F1 hasta F4. En el primer desplazamiento F1, la cabina 8 se desplaza desde el piso 0 al piso 8. En el segundo desplazamiento F2, la cabina 8 se desplaza además hasta el piso 32. En el tercer desplazamiento F3, la cabina 8 se desplaza además hasta el piso 25. En el cuarto desplazamiento F4, la cabina 8 se desplaza finalmente de vuelta al piso 0. En las cuatro columnas a la derecha junto a ello están indicadas las posiciones de las tres poleas 1, 3 y 4 así como de la polea motriz 2 en el cable 5 como valores absolutos en metros relativos al comienzo del cable en el punto de fijación 6.

La figura 5 muestra otra vez el diagrama con los cuatro desplazamientos F1 hasta F4 del ascensor y debajo la tabla de desplazamientos resultante de ello. A partir de esta tabla puede observarse qué posición tienen las cuatro poleas 1 hasta 4 al comienzo del respectivo desplazamiento (inicio) y al final de este desplazamiento en el cable de tracción 5. Así, por ejemplo en el primer desplazamiento F1 el rodillo de desvío 1 se encuentra al comienzo a 0,8 m del inicio del cable (punto de fijación 6). Al final del primer desplazamiento F1 el rodillo de desvío 1 se encuentra entonces a 24,8 m del inicio del cable. Esto quiere decir que hay 24,8 m de cable entre la polea de desvío 1 y el punto de fijación 6. El cable 5 es girado con ello durante el desplazamiento F1 por la polea 1 en el tramo entre 0,8 m y 24,8 m.

A partir de la tabla de desplazamientos mostrada en la figura 5 puede derivarse el diagrama mostrado en la figura 6, en el que están representadas las posiciones de las poleas de desvío 1 hasta 4 en los distintos segmentos de cable A1, A2, A3 hasta AN.

Con ayuda de la siguiente fórmula se indica a modo de ejemplo cómo puede calcularse para la polea 1 su posición actual (Pos. Polea 1) en el cable 5:

Pos. Polea 1 = H3 - H4 +
$$\frac{\text{HQ} \cdot \text{piso actual}}{\text{número de pisos}}$$

donde

H3 = distancia entre polea de desvío 1 y polea motriz 2

H4 = distancia entre comienzo de cable 6 y polea motriz 2

50 HQ = Altura de piso

La figura 7 muestra un diagrama de flujo para el procedimiento para la determinación de la necesidad de reemplazo por desgaste del medio de tracción de un ascensor.

En una fase de inicialización (S1, S2), el cable 5 es dividido en N segmentos A1 hasta AN y a cada piso 0 – 50 se le asocian las posiciones de las poleas 1 hasta 4 en el cable 5. Aquí, el punto de fijación 6 forma el origen o punto de referencia. En vez de ello, el punto de referencia puede estar sin embargo también en cualquier otro sitio, tal como por ejemplo el punto de fijación 7. En función de ello es fijada para cada desplazamiento F1 hasta F4 y cada polea 1 hasta 4 la longitud de cable girada (véase la figura 5).

Para cada segmento de cable A1 hasta AN (éste puede ser arbitrariamente grande o pequeño según los requerimientos) es registrado continuamente el número de giros en torno a las poleas 1 hasta 4 (figura 5 y S3, S4, S7 en la figura 7). Aquí pueden tenerse en cuenta según sea necesario también los diferentes curvamientos y su grado de daño por cada polea 1 hasta 4, por ejemplo el diámetro, el ángulo de arrollamiento, polea motriz, polea de desvío, curvamiento de inversión, curvamiento simple. Con ello, en todo momento puede reconocerse y evaluarse para cada segmento de cable A1 hasta AN el grado de daño o respectivamente el número de cambios de curvamiento (véase la figura 6).

Aquellos segmentos de cable con el máximo de cambios de curvamiento o respectivamente los cambios de curvamiento más dañinos puede ser reconocidos en todo momento. Puede establecerse un límite para el daño admisible, es decir para el número admisible de cambios de curvamiento. Si se alcanza este número (S5), puede emitirse un aviso de servicio (S6), para indicar que el medio de tracción 5 debe ser reemplazado. Sin embargo, puede determinarse también simplemente el segmento en el cable 5 que ha sufrido el mayor daño. En este último caso, este segmento de cable puede ser inspeccionado entonces visualmente o mediante aparatos auxiliares, por ejemplo por inducción magnética.

Los curvamientos de retroceso, que son denominados también curvamientos de inversión, provocan un desgaste más rápido del medio de tracción 5 y son por ello multiplicados en la figura 6, al calcular el grado de desgaste R(Ai), por un factor de peso GF = 4. Para el grado de desgaste R(Ai) del segmento de cable Ai vale en este caso:

$$R(Ai) = SB + 4 * RB$$

donde

5

10

25

30

35

40

45

50

55

SB = número de curvamientos sencillos

RB = número de curvamientos de retroceso.

Un segmento de medio de tracción Ai es sometido a un curvamiento simple cuando este segmento de medio de tracción Ai es curvado hacia una primera dirección en una de las poleas de desvío 1, 3 o 4 o en la polea motriz 2. Si este segmento de medio de tracción Ai es curvado en un instante posterior en la dirección opuesta, este segmento de medio de tracción Ai es sometido entonces también a un curvamiento de retroceso. Así, por ejemplo el segmento de medio de tracción que para la posición de cabina POS1 mostrada en la figura 3 se encuentra en la polea de desvío 3 es sometido a un curvamiento simple. Posteriormente, cuando la cabina 8 se encuentra en la posición POS2, el segmento de medio de tracción se encuentra sobre la polea motriz 2 y es sometido ahora también a un curvamiento de retroceso.

El hecho de si se trata de un curvamiento simple o de un curvamiento de retroceso resulta del diseño del ascensor y de la altura de elevación. La unidad de evaluación 32 (figura 3) puede determinar por lo tanto en función de determinadas geometrías, que resultan del diseño del ascensor, por ejemplo los parámetro H1 – H4, HQ y BK así como la altura de elevación de la cabina 8, si un determinado segmento de cable Ai es sometido durante un desplazamiento a un curvamiento simple y/o a un curvamiento de retroceso.

El diámetro de las poleas de desvío 1 hasta 4 está designado con la referencia D. Como ya se ha citado anteriormente, el diámetro D de las poleas de desvío 1 hasta 4 puede ser tenido en cuenta durante la determinación de la necesidad de reemplazo por desgaste. Junto a ello puede ser tenido en cuenta también el ángulo de arrollamiento en la determinación de la necesidad de reemplazo por desgaste. Así, por ejemplo el factor de peso GF puede depender del diámetro D de la polea de desvío 1 hasta 4. Para una polea de desvío 1 hasta 4 con un diámetro D más pequeño se escoge un factor de peso GF mayor que para una polea de desvío 1 hasta 4 con un diámetro D más grande. Igualmente, el factor de peso GF puede depender del ángulo de arrollamiento de la polea motriz 2. Si el ángulo de arrollamiento del medio de tracción 5 sobre la polea motriz 2 es grande, se escoge un factor de peso GF menor que cuando el ángulo de arrollamiento del medio de tracción 5 sobre la polea motriz 2 es pequeño. Además de ello, el factor de peso puede depender de la carga que cuelga del medio de tracción 5. Cuanto mayor sea esta carga, tanto mayor será también el factor de peso GF escogido.

Para un factor de suspensión > 2 puede procederse análogamente.

Hasta ahora, el número máximo de cambios de curvamiento de la parte del cable sometida a mayor esfuerzo era muy difícil de determinar, ya que los patrones de tráfico de cada ascensor son diferentes y en consecuencia no es

ES 2 404 854 T3

evidente qué parte del medio de tracción es cargada con más cambios de curvamiento. El número de desplazamientos de un ascensor tampoco da ninguna indicación sobre ello. Una ventaja de la invención estriba en que el cable 5 puede ser reemplazado muy individualmente y con ello puede ser aprovechado plenamente. Si la necesidad de reemplazo por desgaste fuera determinada con ayuda del número de desplazamientos o mediante estimación, habría que incorporar repuestos que podrían causar costes elevados de mantenimiento. Con la presente invención puede determinarse la necesidad de reemplazo por desgaste de medios de tracción 5, por ejemplo de cables de acero, cables de aramida, correas o cintas con cordones de tracción hechos de alambres de acero o fibras sintéticas

5

- El medio de tracción 5 puede ser vigilado también con una disposición de control óptica 30 (figura 1). A través de ello, la determinación de la necesidad de reemplazo por desgaste puede producirse de forma aún más precisa y segura. Como disposición de control óptica 30 puede emplearse por ejemplo una videocámara. El medio de tracción 5 puede ser controlado sin embargo también ópticamente por un montador de servicio. En el control óptico se presta atención por ejemplo a roturas de alambres, burbujas en el medio de tracción de aramida y a variaciones en la geometría del medio de tracción 5.
- La descripción precedente de los ejemplos de realización conforme a la presente invención sirve sólo para fines ilustrativos y no para el fin de limitar la invención. En el marco de la invención son posibles diferentes variaciones, combinaciones de las formas de realización y modificaciones, sin abandonar el perímetro de la invención así como sus equivalentes.

REIVINDICACIONES

- Procedimiento para la determinación de la necesidad de reemplazo por desgaste de un medio de tracción de un ascensor,
 - en el que el medio de tracción (5) es guiado por una polea motriz (2; 20) y/o una o varias poleas de desvío (1, 3, 4) y une una cabina (8) a un contrapeso (9),

que comprende los siguientes pasos:

5

20

35

45

el medio de tracción (5) es dividido en varios segmentos (A1 – AN), en que cada uno de la pluralidad de segmentos (A1 – AN) lleva asociado un espacio de memoria como contador de cambios de curvamiento,

para cada uno de los segmentos (A1 – AN) se determina si el segmento (Ai) pasa durante un desplazamiento (F1 – F4) de la cabina (8) por la polea motriz (20) y/o por una o varias de las poleas de desvío (1 – 4), y si éste es el caso, se aumenta correspondientemente un grado de desgaste (R(Ai)), que representa la necesidad de reemplazo por desgaste, y en que con los contadores de cambios de curvamiento son contados los cambios de curvamiento de cada segmento (A1 – AN) y para la vida útil del cable es determinante el segmento de cable con el máximo de cambios de curvamiento.

- Procedimiento según la reivindicación 1, en que, en caso de que el grado de desgaste (R(Ai)) de uno de la pluralidad de segmentos (A1 – AN) alcance un número de ciclos de curvamiento que indica cuántos ciclos de curvamiento son admisibles como máximo, es necesario reemplazar por desgaste el medio de tracción (5).
 - Procedimiento según la reivindicación 2, en que, en tanto que el grado de desgaste (R(Ai)) del segmento (A1 -AN) sometido al mayor esfuerzo no supere el número de ciclos de curvamiento, el medio de tracción no necesita ser reemplazado aún.
 - 4. Procedimiento según la reivindicación 1,

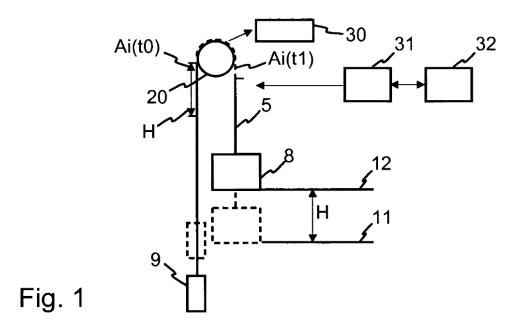
en el que se determina el tipo de curvamiento (SB, RB) y se tiene en cuenta en la determinación por segmentos del grado de desgaste (R(Ai)).

- 5. Procedimiento según la reivindicación 4,
- en el que para determinar el tipo de curvamiento (SB, RB) se determina qué polea de desvío (2, 3) provoca qué curvamiento.
 - 6. Procedimiento según la reivindicación 5,

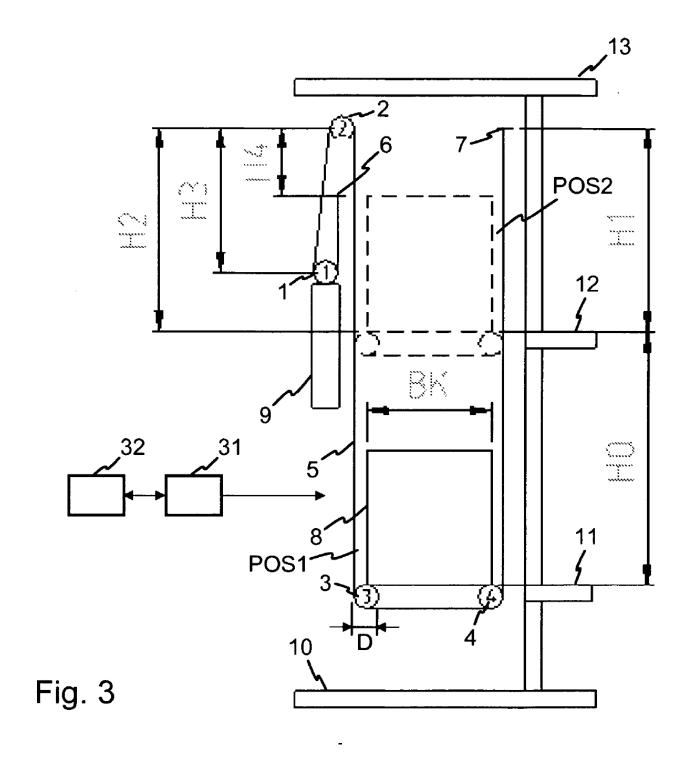
en el que un curvamiento de retroceso (RB) es tenido en cuenta con mayor peso en la determinación del grado de desgaste (R(Ai)) que un curvamiento simple.

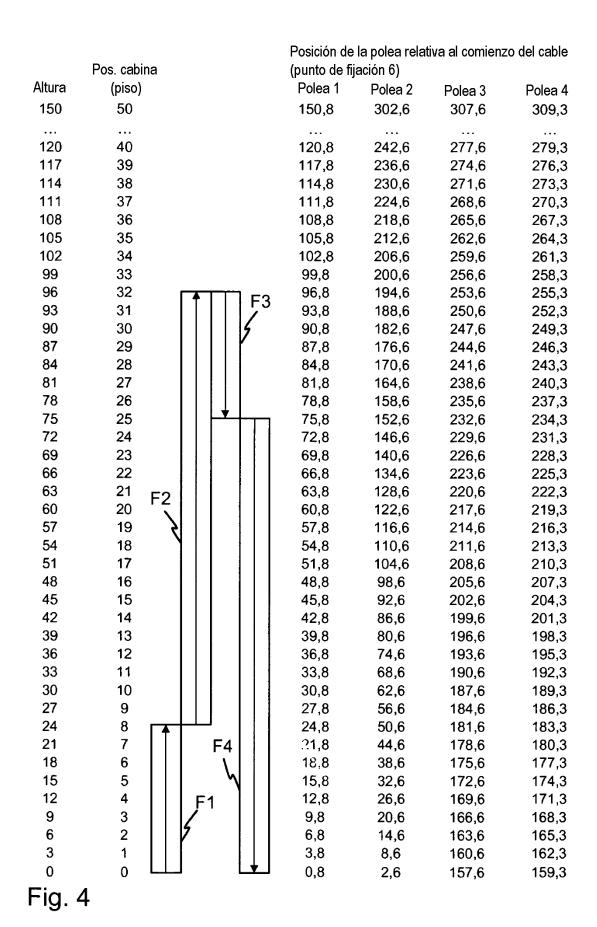
30 7. Procedimiento según la reivindicación 1,

en el que se tiene en cuenta un ángulo de arrollamiento y/o un diámetro de las poleas de desvío (1, 3, 4) en la determinación por segmentos del grado de desgaste (R(Ai)).


- 8. Procedimiento según la reivindicación 1,
- en el que se genera un aviso de servicio cuando el grado de desgaste (R(Ai)) para uno de los segmentos (A1 AN) ha superado un determinado valor.
- 9. Procedimiento según la reivindicación 1,

en el que el ascensor es puesto fuera de servicio cuando el grado de desgaste (R(Ai)) para uno de los segmentos (A1 – AN) ha superado un determinado valor.


- 10. Procedimiento según la reivindicación 1,
- 40 en el que el medio de tracción (5) es vigilado adicionalmente con una disposición de control óptica (30).
 - 11. Dispositivo para la determinación de la necesidad de reemplazo por desgaste según una de las reivindicaciones 1 a 10.
 - con un controlador (31) para controlar el ascensor, y
 - con una unidad de evaluación (32) que está unida al controlador (31) y está conformada y opera de tal modo que con ayuda de los datos obtenidos por el controlador (31) acerca de los destinos de desplazamiento determina el grado de desgaste (R(Ai)) para cada uno de los segmentos (A1 – AN), y en


ES 2 404 854 T3

que cada uno de la pluralidad de segmentos (A1 - AN) lleva asociado un espacio de memoria como contador de cambios de curvamiento.

SP24 SP24 SP24 SP24 SP24 22 21 20 19 18 17 16 15 14 13 **SP13 SP13** 12 11 11 11 2 10 +1 2 9 +1 +1 2 8 8 +1 +1 SP11 2 7 +1 SP10 +1 2 6 +1 2 +1 SP5 2 2 3 3 2 +1 3 +1 3 0 0 SP3 2 -1 SP1 SP1 Desplazamiento 1 Desplazamiento 2 Desplazamiento 3 Desplazamiento 4 Hueco Número de cambios de curvamiento por Contador de cambios de curvamiento para el segmento de cable A3 cada parte de cable Segmento de cable A3: Segmento de cable que al desplazarse la cabina al piso 1 pasa por la polea motriz Fig. 2

12

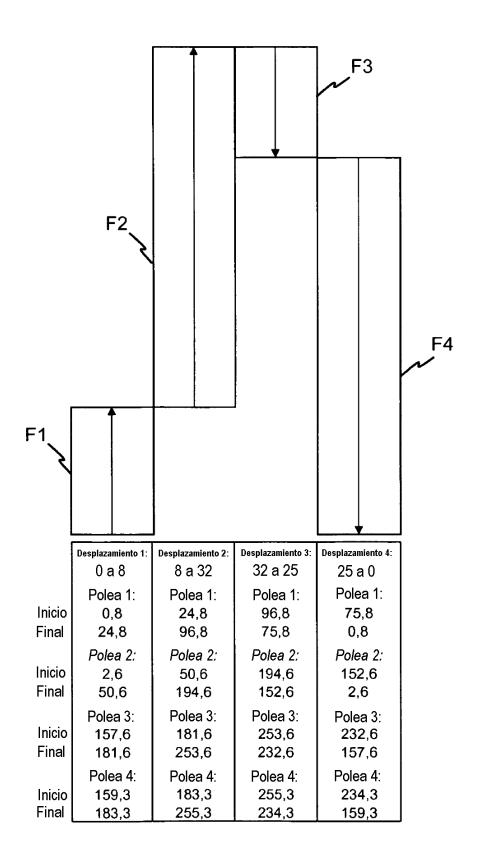
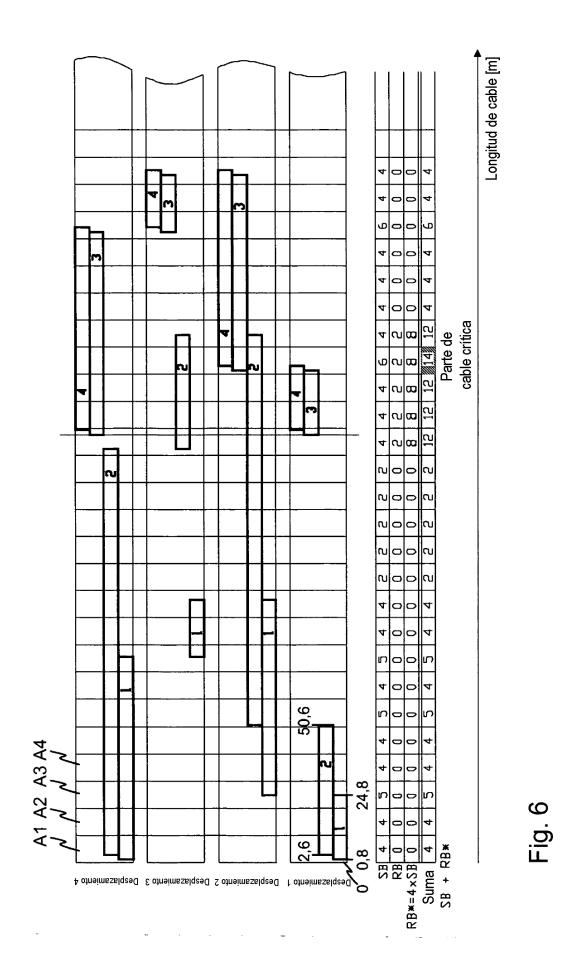



Fig. 5

14

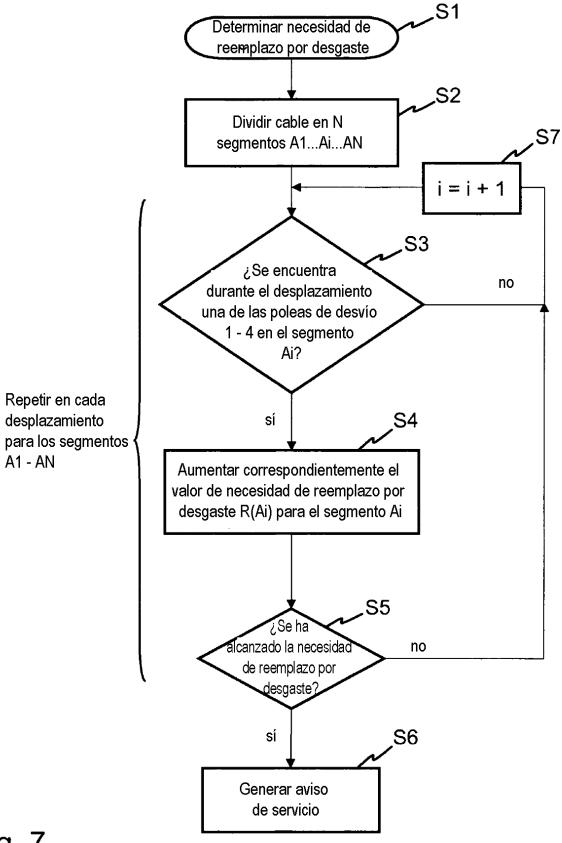


Fig. 7