

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 409 032

61 Int. Cl.:

A61K 9/19 (2006.01) A61K 38/36 (2006.01) A61K 9/08 (2006.01) A61K 47/12 (2006.01) A61K 47/18 (2006.01) A61K 47/26 (2006.01) A61K 48/00 (2006.01) A61K 38/16 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 21.10.2009 E 09740822 (3)
 (97) Fecha y número de publicación de la concesión europea: 27.02.2013 EP 2349314
- (54) Título: Formulaciones liofilizadas de VWF recombinante
- (30) Prioridad:

21.10.2008 US 107273 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.06.2013

(73) Titular/es:

BAXTER INTERNATIONAL INC. (50.0%) One Baxter Parkway Deerfield, IL 60015-4633, US y BAXTER HEALTHCARE S.A. (50.0%)

(72) Inventor/es:

SCHNECKER, KURT; HAIDWEGER, EVA y TURECEK, PETER

(74) Agente/Representante:

AZNÁREZ URBIETA, Pablo

DESCRIPCIÓN

Formulaciones liofilizadas de VWF recombinante

CAMPO DE LA INVENCIÓN

5

10

35

50

En general, la invención se refiere a formulaciones de VWF recombinante liofilizadas y a métodos para obtener una composición liofilizada que comprende VWF recombinante.

ANTECEDENTES DE LA INVENCIÓN

El factor Von Willebrand (VWF) es una glicoproteína circulante del plasma en forma de una serie de multímeros cuyas dimensiones varían entre unos 500 y 20.000 kD. Las formas multiméricas de VWF están compuestas por subunidades de polipeptídicas de 250 kD unidas entre sí por enlaces disulfuro. El VWF media en la adhesión inicial de las plaquetas al subendotelio de la pared del vaso dañado. Tan sólo los multímeros de mayor tamaño presentan actividad hemostática. Se asume que las células endoteliales secretan formas poliméricas de VWF de gran tamaño y que aquellas formas del VWF que tienen un menor peso molecular (VWF de bajo peso molecular) proceden de la escisión proteolítica. Los multímeros de mayor masa molecular se almacenan en los cuerpos de Weibel-Pallade de las células endoteliales, liberándose bajo estimulación.

- El VWF es sintetizado por las células endoteliales y megacariocitos como prepro-VWF, que en gran medida consiste en dominios repetidos. Al producirse la escisión del péptido de señal, el pro-VWF se dimeriza a través de enlaces disulfuro en su terminal-C. Los dímeros sirven como protómeros para la multimerización, que está controlada por los enlaces disulfuro existentes entre los terminales libres de los extremos. La formación de los multímeros va seguida de la eliminación proteolítica de la secuencia del propéptido (Leyte y col., Biochem. J. 274 (1991), 257-261).
- El producto de traducción primario predicho a partir del ADNc (cDNA) clonado de VWF es un polipéptido precursor de 2.813 residuos (prepro-VWF). El prepro-VWF consiste en un péptido señal de 22 aminoácidos y un propéptido de 741 aminoácidos, comprendiendo el VWF maduro 2.050 aminoácidos (Ruggeri Z.A. y Ware J., FASEB J., 308-316 (1993)).
- Los defectos del VWF son la causa de la enfermedad de Von Willebrand (VWD), que se caracteriza por un fenotipo de sangrado más o menos pronunciado. La VWD de tipo 3 es la variedad más grave, en ella el VWF está completamente ausente, y la VWD de tipo 1 se refiere a una pérdida cuantitativa de VWF, pudiendo ser su fenotipo muy leve. La VWD tipo 2 se refiere a defectos cualitativos de la VWF y puede ser tan grave como la VWD tipo 3. La VWD tipo 2 presenta muchas sub-variedades, algunas de las cuales están asociadas a la pérdida o reducción de multímeros de alto peso molecular. El síndrome de Von Willebrand tipo 2a (VWS-2A) se caracteriza por una pérdida de multímeros de tamaño grande e intermedio. El VWS-2B se caracteriza por la pérdida de los multímeros de mayor peso molecular. En la técnica actual se conocen otras enfermedades y trastornos relacionados con el VWF.

Las patentes US Nº 6.531.577, 7.166.709, así como la Patente Europea EP 152 312 describen formulaciones de VWF obtenidas a partir de plasma. No obstante, además de las cuestiones relativas a la cantidad y la pureza del VWF obtenido a partir del plasma, también existe un riesgo de transmisión sanguínea de patógenos (por ejemplo virus, variantes de la Enfermedad de Creutzfeldt-Jakob (vECJ)). También es sabido que el VWF forma agregados en condiciones de estrés.

Así, en la técnica existe la necesidad de desarrollar una formulación farmacéutica estable que comprenda VWF recombinante.

SUMARIO DE LA INVENCIÓN

- 40 La presente invención proporciona formulaciones útiles para la liofilización de VWF recombinante, que resultan en una composición farmacéutica muy estable. La composición farmacéutica estable es útil como agente terapéutico para el tratamiento de pacientes que padecen trastornos o enfermedades que pueden beneficiarse de la administración de VWF recombinante.
- En una realización, se proporciona una formulación farmacéutica estable liofilizada de un factor von Willebrand recombinante (rVWF) según la reivindicación 1.

En otra realización, el rVWF incluye la secuencia de aminoácidos de la SEQ ID Nº 3. En otra realización de la invención, el agente tampón se selecciona de entre el grupo consistente en citrato, glicina, histidina, HEPES, Tris y sus combinaciones. En otra realización, el agente tampón es citrato. En diversas realizaciones, el pH está en el rango de aproximadamente 6,0 a aproximadamente 8,0, aproximadamente 6,5 a aproximadamente 7,3 en otra realización, el pH está en torno a 7,3.

En otra realización, el aminoácido mencionado anteriormente se selecciona de entre el grupo consistente en glicina, histidina, prolina, serina, alanita y arginina. En otra realización, la concentración de aminoácido se sitúa entre aproximadamente 0,5 mM y aproximadamente 300 mM. En otra realización adicional, el aminoácido es glicina a una concentración de aproximadamente 15 mM.

5 En una realización de la invención, el rVWF comprende la secuencia de aminoácidos de SEQ ID Nº 3, el agente tampón es citrato y el pH es de aproximadamente 7,3; siendo el aminoácido glicina a una concentración de aproximadamente 15 mM.

En otra realización adicional de la invención, el o los agentes estabilizantes anteriormente mencionados se seleccionan de entre el grupo consistente en manitol, lactosa, sorbitol, xilitol, sacarosa, trehalosa, manosa, maltosa, lactosa, glucosa, rafinosa, celobiosa, gentiobiosa, isomaltosa, arabinosa, glucosamina, fructosa y combinaciones de estos agentes estabilizantes. En una realización, los agentes estabilizantes son trehalosa a una concentración de aproximadamente 10 g/l y manitol a una concentración de aproximadamente 20 g/l.

En otra realización adicional de la invención, el agente tensioactivo mencionado se selecciona de entre el grupo consistente en digitonina, Triton X-100, Triton X-114, TWEEN-20, TWEEN-80 y combinaciones de los mismos. En otra realización, el agente tensioactivo es TWEEN-80 a aproximadamente 0,01 g/l.

En otra realización de la invención, el rVWF comprende la secuencia de aminoácidos de la SEQ ID Nº 3, siendo el agente tampón citrato a una concentración de aproximadamente 15 mM y a un pH de aproximadamente 7,3; siendo el aminoácido glicina a una concentración de aproximadamente 15 mM; siendo los agentes estabilizadores trehalosa a una concentración de aproximadamente 10 g/l y manitol a una concentración de aproximadamente 20 g/l.; y siendo el agente tensioactivo TWEEN-80 a una concentración de aproximadamente 0,1 g/l.

BREVE DESCRIPCIÓN DE LAS FIGURAS

Figura 1: análisis ANCOVA de la actividad del pool de VWF:RCo en lotes evaluador en cuanto a su

estabilidad (almacenados a 5°C ± 3°C).

Figura 2: muestra el incremento de la humedad residual en el rVWF FDP almacenado a 5° C \pm 3° C. Figura 3: muestra el incremento de la humedad residual en el rVWF FDP almacenado a 40° C \pm 2° C.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

Definición de términos

15

20

25

30

45

50

A menos que se defina de otro modo, todos los términos técnicos y científicos utilizados en este documento tienen el significado normalmente entendido por el experto en el campo técnico al cual pertenece la presente invención. Las siguientes referencias facilitan al experto una definición general de muchos de los términos utilizados en esta invención: Singleton y col., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY (2d ed. 1994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walker ed., 1988); THE GLOSSARY OF GENETICS, 5TH ED., R. Rieger y col. (eds.), Springer Verlag (1991); y Hale y Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY (1991).

Todas las publicaciones, solicitudes de patentes, patentes y otras referencias citadas en este documento quedan incorporadas al mismo en su totalidad por referencia, en la medida en que ello no se oponga a lo aquí descrito.

Debe tenerse en cuenta que, tal y como se utilizan en esta especificación y en las reivindicaciones adjuntas, las formas en singular "un," "una," y "el" incluyen las referencias al plural, a menos que el contexto lo exija claramente en otro sentido.

Tal y como se utilizan en el presente documento, los siguientes términos tendrán los significados que se les atribuyen, a menos que se especifique en otro sentido.

El término "que comprende", en relación con un compuesto péptido, significa que un compuesto puede incluir aminoácidos adicionales tanto en el terminal amino de la secuencia dada como en el carboxilo o en ambos. Por supuesto, estos aminoácidos adicionales no deberían interferir de forma significativa con la actividad del compuesto. En lo que respecta a una composición de la presente invención, el término "que comprende" significa que una composición puede incluir componentes adicionales. Dichos componentes adicionales no deberían interferir significativamente con la actividad de la composición.

El término "farmacológicamente activo" significa que se ha determinado que una sustancia descrita como tal tiene una actividad que afecta a un parámetro médico (por ejemplo, pero sin que ello constituya una limitación, sobre la presión sanguínea, el recuento de glóbulos rojos, los niveles de colesterol) o a una situación de enfermedad (por ejemplo, pero sin que ello constituya una limitación, cáncer, trastornos autoinmunes).

En la forma utilizada en este documento, los términos "expresar," "que expresa" y "expresión" significan permitir o hacer que se manifieste la información que contiene un gen o secuencia de ADN, por ejemplo produciendo una proteína, mediante la activación de las funciones celulares que participan en la transcripción y traducción del correspondiente gen o secuencia de ADN. Una secuencia de ADN se expresa en o mediante una célula para formar un "producto de expresión, como una proteína" También puede decirse que el propio producto de expresión, por ejemplo la proteína resultante, está "expresado". Un producto de expresión puede caracterizarse como intracelular, extracelular o secretado. El término "intracelular" significa en el interior de una célula. El término "extracelular" significa en el exterior de una célula, como una proteína transmembrana. Una sustancia es "secretada" por una célula si aparece en cantidades significativas en el exterior de la célula procedente de algún punto situado sobre o en el interior de la misma.

Tal y como se utiliza en este documento, un "polipéptido" se refiere a un polímero compuesto por residuos aminoácidos, variantes estructurales, variantes estructurales relacionadas ocurrentes en estado natural y análogos sintéticos de los mismos no ocurrentes de forma natural, unidos mediante enlaces peptídicos. Los polipéptidos sintéticos se preparan, por ejemplo, utilizando un sintetizador de polipéptidos automatizado. El témino "proteína" se refiere habitualmente a grandes polipéptidos. El término "péptido" suele referirse a polipéptidos cortos.

Tal y como se utiliza aquí, un "fragmento" de un polipéptido se refiere a cualquier porción de un polipéptido o proteína más pequeño que el producto completo de expresión del polipéptido o la proteína.

Tal y como se utiliza aquí, un "análogo" se refiere a cualesquiera dos o más polipéptidos con una estructura sustancialmente similar y que presentan la misma actividad biológica, pero con diversos grados de actividad, que la molécula completa o que un fragmento de la misma. Los análogos difieren en la composición de sus secuencias de aminoácidos en función de una o más mutaciones que implican la sustitución, deleción, inserción y/o adición de uno o más aminoácidos, con otros aminoácidos. Las sustituciones pueden ser conservadoras o no conservadoras, en función de la afinidad físico-química o funcional del aminoácido que está siendo sustituido y del aminoácido que lo sustituye.

Tal y como se utiliza aquí, "variante" se refiere a un polipéptido, proteína o análogo de los mismos modificado de forma que incluya grupos químicos adicionales que normalmente no forman parte de la molécula. Dichos grupos pueden modular la solubilidad de la molécula, su absorción, vida media, etc. Alternativamente, los grupos pueden reducir la toxicidad de la molécula y eliminar o atenuar cualquier efecto secundario no deseable de la misma, etc. Los grupos capaces de mediar dichos efectos se describen en la obra de Remington Pharmaceutical Sciences (1980). Los procedimientos para el acoplamiento de dichos grupos a una molécula son bien conocidos en la técnica. Por ejemplo, y sin limitación, en uno de los aspectos, la variante es un factor de coagulación sanguínea con una modificación química que confiere una vida media más prolongada *in vivo* a la proteína. En diversos aspectos, los polipéptidos están modificados por glicosilación, pegilación y/o polisialización.

VWF Recombinante

5

10

15

20

50

55

- Las secuencias de polinucleótidos y aminoácidos del prepro-VWF se indican en las SEQ ID Nº 1 y 2 respectivamente, y están disponibles bajo los números de acceso del GenBank NM_000552 y NP_000543 respectivamente. La secuencia de aminoácidos correspondiente a la proteína madura del VWF se indica en la SEq ID Nº 3 (correspondiente a los aminoácidos 764-2.813 de la secuencia de aminoácidos de longitud total del prepro-VWF).
- 40 Una forma de rVWF útil tiene al menos la propiedad de estabilizar in vivo, es decir de enlazar, al menos una molécula de Factor VIII (FVIII) y opcionalmente de presentar un patrón de glicosilación que resulta farmacológicamente aceptable. Ejemplos específicos de ello son el VWF sin el dominio A2, lo que le confiere mayor resistencia a la proteolisis (Lankhof y col., Thromb. Haemost. 77: 1008-1013, 1997) y un fragmento de VWF desde Val 449 a Asn 730 que incluye el dominio de enlace lb de la glicoproteína, así como puntos de enlace de colágeno y heparina (Pietu y col., Biochem. Biophys. Res. Commun. 164: 1339-1347, 1989). En uno de sus aspectos, la determinación de la capacidad de un VWF para estabilizar al menos una molécula de FVIII en mamíferos con deficiencias de VWF se lleva a cabo mediante los métodos conocidos en la técnica.

El rVWF de la presente invención se obtiene por cualquier método conocido en la técnica. Un ejemplo específico se describe en el documento WO86/06096, publicado el 23 de octubre de 1986, así como en la solicitud de patente US Nº 07/559.509, del 23 de julio de 1990, que queda incorporada por referencia al presente documento, en relación con los métodos de obtención de VWF recombinante. Así, se conocen en la técnica métodos para (i) producir ADN recombinante por ingeniería genética, es decir mediante transcripción inversa de ARN y/o amplificación de ADN, (ii) introducir ADN recombinante en células eucarióticas o procarióticas por transfección, por ejemplo electroporación o microinyección, (iii) cultivar las células transformadas, por ejemplo de forma continua o en lotes, (iv) expresar el VWF, por ejemplo de forma constituyente o mediante inducción y (v) aislar el VWF, por ejemplo a partir del medio de cultivo o recolectando las células transformadas, a fin de (vi) obtener rVWF purificado, por ejemplo mediante cromatografía de intercambio aniónico o de afinidad. En uno de los aspectos, se obtiene un VWF recombinante en células huésped transformadas utilizando técnicas de ADN recombinante bien conocidas. Por ejemplo, las

secuencias que codifican el polipéptido pueden ser escindidas del ADN utilizando las enzimas de restricción adecuadas. Alternativamente, la molécula de ADN se sintetiza, en otro de los aspectos, utilizando técnicas de síntesis química, como el método del fosforamidato. Asimismo, en otro aspecto adicional de la invención, se utiliza una combinación de estas técnicas.

La invención también proporciona vectores que codifican los polipéptidos de la invención en un huésped adecuado. El vector comprende un nucleótido que codifica el polipéptido que se encuentra enlazado operativamente a las secuencias adecuadas de control de la expresión. Son bien conocidos diversos métodos para llevar a cabo este enlace operativo, tanto antes como después de la inserción del polinucleótido en el vector. Las secuencias de control de la expresión incluyen promotores, activadores, potenciadores, operadores, sitios de enlace ribosomales, señales de inicio, señales de parada, señales de poliadenilación y otras señales relacionadas con el control de la transcripción de la traducción. El vector resultante que incluye el polinucleótido se utiliza para transformar un huésped adecuado. Esta transformación puede realizarse por métodos bien conocidos en la técnica.

Para la práctica de esta invención puede emplearse cualquiera de las muchas y bien conocidas células huésped. La selección de un huésped particular depende de diversos factores reconocidos por la técnica, entre ellos, por ejemplo, la compatibilidad con el vector de expresión seleccionado, la toxicidad de los péptidos codificados por la molécula de ADN, la tasa de transformación, la facilidad de recuperación de los péptidos, las características de expresión, la bio-seguridad y el coste. Debe conseguirse un equilibrio entre todos estos factores, quedando bien entendido que no todas las células huésped resultan igualmente efectivas para la expresión de una secuencia de ADN específica. Dentro de estas directrices generales, entre las células huésped microbianas útiles se encuentran, sin limitación, bacterias, levaduras y otras células de cultivos de hongos, insectos, plantas, mamíferos (incluyendo seres humanos) u otros organismos huéspedes bien conocidos en la técnica.

Las células huésped transformadas se cultivan en condiciones convencionales de fermentación de forma que se expresen los compuestos deseados. Dichas condiciones de fermentación son bien conocidas en la técnica. Por último, los polipéptidos se purifican del medio de cultivo o de las propias células huésped a por métodos bien conocidos en la técnica.

Dependiendo de la célula huésped utilizada para expresar un compuesto de la invención, opcionalmente se encuentran grupos carbohidrato (oligosacáridos) unidos a puntos conocidos como sitios de glicosilación en proteínas. En general, los oligosacáridos con enlaces tipo O- están unidos a residuos serina (Ser) o treonina (Thr), mientras que los oligosacáridos con enlaces tipo N- se unen a residuos asparagina (Asn) cuando éstos forman parte de la secuencia Asn-X-Ser/Thr, siendo X cualquier aminoácido excepto prolina. Preferentemente X es uno de los 19 aminoácidos naturales sin contar la prolina. Las estructuras de los oligosacáridos con enlaces tipo N- y O- y los residuos de azúcar que se encuentran en cada uno de los tipos son diferentes. Un tipo de azúcar que suele encontrarse habitualmente en los oligosacáridos con enlaces tanto de tipo N- como O- es el ácido N-acetilneuramínico (ácido siálico). El ácido siálico suele ser el residuo terminal de los oligosacáridos con enlaces tipo N- y tipo O- y, debido a su carga negativa, en uno de los aspectos confiere propiedades ácidas al compuesto glicosilado. Dichos sitios pueden estar incorporados en el enlazante de los compuestos de la presente invención, y son preferiblemente glicosilados por una célula durante la producción recombinante de los compuestos polipeptídicos (por ejemplo en células mamíferas como CHO, BHK, COS). En otros aspectos, dichos sitios están glicosilados por procedimientos sintéticos o semi-sintéticos conocidos en la técnica.

Alternativamente, los compuestos se obtienen mediante métodos sintéticos utilizando, por ejemplo, técnicas de síntesis en fase sólida. En la técnica se conocen técnicas adecuadas, entre las que se incluyen las descritas en Merrifield (1973), Chem. Polypeptides, pp. 335-61 (Katsoyannis y Panayotis eds.); Merrifield (1963), J. Am. Chem. Soc. 85: 2149; Davis y col. (1985), Biochem. Intl. 10: 394-414; Stewart y Young (1969), Solid Phase Peptide Synthesis; US Pat. Nº 3.941.763; Finn y col. (1976), The Proteins (3rd ed.) 2: 105-253; y Erickson y col. (1976), The Proteins (3ª ed.) 2: 257-527. La síntesis en fase sólida es la técnica preferida para la obtención de péptidos individuales, ya que resulta el método más rentable de obtención de péptidos individuales de tamaño reducido.

Fragmentos, variantes y análogos de VWF

15

20

25

30

35

En la técnica se conocen diversos métodos para la preparación de fragmentos de polipéptidos, variantes o análogos.

Los fragmentos de un polipéptido se preparan utilizando, sin limitación, técnicas de escisión enzimática (por ejemplo tripsina, quimotripsina) y también con medios recombinantes para generar fragmentos polipeptídicos con una secuencia de aminoácidos específica. Los fragmentos de polipéptido pueden generarse de forma que incluyan una región de la proteína con una actividad específica, tal como un dominio de multimerización o cualquier otro dominio de VWF identificable conocido en la técnica.

Se bien conocidos diversos métodos para la obtención de análogos de polipéptidos. Los análogos de secuencias de aminoácidos de un polipéptido pueden ser análogos de sustitución, de inserción, de adición o de deleción. Los análogos de deleción, incluyendo los fragmentos polipéptidos, carecen de uno o más residuos de la proteína nativa que no resultan esenciales para la función o actividad inmunogénica. Los análogos de inserción implican la adición

de aminoácidos, por ejemplo en un punto no terminal del polipéptido. Por ejemplo, este análogo puede incluir, sin limitación, la inserción de un epítopo inmunorreactivo o de simplemente un único residuo. Los análogos de adición, incluyendo los fragmentos polipéptidos, incluyen la adición de uno o más aminoácidos en cualquiera o en ambos extremos de una proteína, incluyendo por ejemplo proteínas de fusión. También se contemplan combinaciones de los análogos anteriormente mencionados.

5

10

15

30

35

40

45

50

55

En general, los análogos de sustitución intercambian un aminoácido del tipo que salvaje por otro, en uno o más puntos de la proteína, pudiendo diseñarse para que modulen una o más propiedades del polipéptido sin que se pierdan por completo otras funciones o propiedades. En uno de los aspectos, las sustituciones son conservadoras. "Sustitución conservadora de aminoácidos" es la sustitución de un aminoácido por un aminoácido que tenga una cadena lateral o carácter químico similar. Entre los aminoácidos similares para la realización de sustituciones conservadoras se incluyen aquellos que incluyen una cadena lateral ácida (ácido glutámico, ácido aspártico); una cadena lateral básica (arginina, lisina, histidina); una cadena lateral amida polar (glutamina, asparagina); una cadena lateral alifática e hidrófoba (leucina, isoleucina, valina, alanina, glicina); una cadena lateral aromática (fenilalanina, triptófano, tirosina); una cadena lateral pequeña (glicina, alanina, serina, treonina, metionina); o una cadena lateral hidroxilada alifática (serina, treonina).

En uno de los aspectos de la invención, los análogos son esencialmente homólogos o esencialmente idénticos al VWF recombinante del que proceden. Entre los análogos se incluyen aquellos que retienen al menos una parte de la actividad biológica del polipéptido natural, por ejemplo la actividad de coagulación sanguínea.

Entre las variantes de polipéptidos contempladas se incluyen, sin limitación, polipéptidos modificados químicamente por técnicas como ubiquinación, glicosilación, incluyendo polisialación, conjugación con agentes terapéuticos o de diagnóstico, etiquetado, fijación al polímero covalente como pegilación (derivatización con polietilenglicol), introducción de enlaces no hidrolizables e inserción o sustitución por síntesis química de aminoácidos como ornitina que no suelen encontrarse en las proteínas humanas. Las variantes conservan las mismas o esencialmente las mismas propiedades de enlace de las moléculas no modificadas de la invención. Dicha modificación química puede incluir el enlace directo o indirecto (por ejemplo, mediante un enlazante) de un agente al polipéptido de VWF. En caso de una fijación indirecta, se contempla la posibilidad de que el enlazante pueda ser hidrolizable o no hidrolizable.

En uno de los aspectos, la preparación de análogos polipeptídicos pegilados comprende las etapas de (a) hacer reaccionar el polipéptido con polietilenglicol (como éster reactivo o derivado aldehído de PEG) bajo condiciones que permitan que el polipéptido del constructo de enlace se fije a uno o más grupos PEG, y (b) obtener los productos de reacción. En general, las condiciones de reacción óptimas para las reacciones de acilación se determinan en función de parámetros conocidos y del resultado deseado. Por ejemplo, cuanto mayor sea la proporción PEG/proteína, mayor será el porcentaje de producto polipegilado. En algunas realizaciones, el constructo de enlace posee una sola variedad de PEG en el extremo N-. El polietilenglicol (PEG) puede fijarse al factor de coagulación sanguínea para, por ejemplo, facilitar una mayor vida media *in vivo*. El PEG puede tener cualquier peso molecular adecuado, pudiendo ser tipo lineal o ramificado. El peso molecular medio del PEG oscila entre aproximadamente 2 kDa y aproximadamente 100 kDa, entre aprox. 5 kDa a aprox. 50 kDa, o entre unos 5 kDa y unos 10 kDa. En ciertos aspectos, los grupos PEG se unen al factor de coagulación sanguínea vía acilación o alquilación reductora, a través de un grupo reactivo natural o modificado de la fracción PEG (por ejemplo un grupo aldehído, amino, tiol o éster) que se une a un grupo reactivo presente en el factor de coagulación sanguínea (por ejemplo un grupo aldehído, amino o éster) o mediante cualquier otra técnica conocida.

En la Publicación de Patente US 20060160948, Fernandes y Gregoriadis; Biochim. Biophys. Acta 1341: 26-34, 1997 y en Saenko y col., Haemophilia 12:42-51, 2006 se describen métodos de preparación de polipétidos polisialilados. Brevemente, se agita una solución de ácido colomínico (CA) que contiene NalO₄ 0,1M en la oscuridad a temperatura ambiente para oxidar el CA. La solución activada de CA se dializa en oscuridad en una solución tampón de fosfato sódico 0,05M, por ejemplo con un pH de 7,2, y esta solución se añade a una solución de rVWF y se incuba durante 18 h en oscuridad a temperatura ambiente, agitando suavemente. Opcionalmente, los reactivos libres pueden separarse del conjugado de rVWF y ácido polisiálico, por ejemplo mediante ultrafiltrado/diafiltrado. La conjugación del rVWF con el ácido polisiálico se consigue utilizando glutaraldehído como reactivo de reticulación (Migneault y col., Biotechniques 37: 790-796, 2004).

En otro aspecto de la invención también se contempla que un polipéptido según la invención sea una proteína de fusión con un segundo agente que sea un polipéptido. En una realización, el segundo agente, que es un polipéptido, puede ser, sin limitación, una enzima, un factor de crecimiento, un anticuerpo, una citoquina, una quimioquina, un receptor de superficie celular, el dominio extracelular de un receptor de superficie celular, una molécula de adhesión celular o un fragmento o dominio activo de una de las proteínas anteriormente descritas. En una realización relacionada, el segundo agente es un factor de coagulación sanguínea, como Factor VIII, Factor IX. La proteína de fusion que se contempla se obtiene por técnicas químicas o recombinantes bien conocidas en la técnica.

En otro de los aspectos también se contempla que los polipéptidos prepro-VWF y pro-VWF proporcionen beneficios terapéuticos a las formulaciones de la presente invención. Por ejemplo, la patente US Nº 7.005.502 describe una

preparación farmacéutica que comprende cantidades sustanciales de pro-VWF, lo que induce a la generación de trombina *in vitro*. Además de fragmentos recombinantes y biológicamente activos, variantes u otros análogos del VWF maduro natural, la presente invención contempla el uso de fragmentos recombinantes y biológicamente activos, variantes o análogos de prepro-VWF (SEQ ID Nº 2) o de polipéptidos de pro-VWF (residuos aminoácidos 23 a 764 de la SEQ ID Nº 2) en las formulaciones aquí descritas.

El experto en la materia podrá generar con facilidad fragmentos de codificación de polinucleótidos, variantes y análogos de la molécula natural que posean la misma actividad biológica o una actividad biológica similar a la de la molécula natural. En diversos aspectos, estos polinucleótidos se preparan utilizando técnicas PCR, digestión/ligadura de la molécula de codificación del ADN y similares. De este modo, el experto en la técnica será capaz de generar modificaciones básicas únicas de la cadena de ADN para obtener un codón alterado y una mutación sustitutiva, utilizando cualquier método conocido en la técnica, incluyendo sin limitación, mutagénesis específica de sitio. Tal y como se utiliza aquí, la frase "condiciones de hibridación moderadamente rigurosas" significa, por ejemplo, hibridación a 42°C en formamida al 50% y lavado a 60°C en 0,1xSSC, 0,1% SDS. El experto comprenderá que la variación de dichas condiciones se produce en función de la longitud y del contenido base de nucleótido GC de las secuencias a hibridar. Las fórmulas habituales en la técnica son válidas para determinar las condiciones exactas de hibridación. Véase Sambrook y col., 9.47-9.51 en Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Liofilización

5

10

15

25

30

35

40

45

En uno de los aspectos de la invención, las formulaciones que comprenden un polipéptido de VWF conforme a la invención se liofilizan antes de su administración. La liofilización se lleva a cabo mediante las técnicas habituales en la industria y debería optimizarse para la composición a desarrollar [Tang y col., Pharm Res. 21:191-200, (2004), y Chang y col., Pharm Res. 13:243-9 (1996)].

En uno de los aspectos, un ciclo de liofilización consta de tres fases: congelación, secado primario y secado secundario [A.P. Mackenzie, Phil Trans R Soc London, Ser B, Biol 278:167 (1977)]. En la etapa de congelación, la solución se enfría para iniciar la formación de hielo. Igualmente, esta fase induce la cristalización del agente espesante. El hielo se sublima en la etapa de secado primario, que se lleva a cabo reduciendo la presión de la cámara por debajo de la presión de vapor del hielo, utilizando vacío, e introduciendo calor para fomentar la sublimación. Por último, se elimina el agua absorbida o aprisionada en la fase de secado secundario bajo presión reducida en la cámara y elevada temperatura del revestimiento. Con el proceso se obtiene un material conocido como torta liofilizada. Posteriormente, la torta puede reconstituirse con agua esterilizada o con un disolvente adecuado para su inyección.

El ciclo de liofilización no determina sólo la condición física final de los excipientes, sino que también afecta a otros parámetros, como el tiempo de reconstitución, el aspecto, la estabilidad y el contenido en humedad final. La estructura de la composición en el estado de congelación va evolucionando a través de diversas transiciones (por ejemplo, transiciones cristalinas, humectación y cristalizaciones) que se producen a temperaturas específicas, pudiendo utilizarse para comprender y optimizar el proceso de liofilización. La temperatura de transición vítra (Tg y/o Tg') puede aportar información acerca del estado físico de un soluto, pudiendo determinarse mediante calorimetría diferencial de barrido (DSC). Tg y Tg' constituyen un importante parámetro a tener en cuenta a la hora de diseñar el ciclo de liofilización. Por ejemplo, la temperatura Tg' es un factor importante para el secado primario. Asimismo, en el estado seco, la temperatura de transición vítrea facilita información acerca de la temperatura de almacenamiento del producto final.

Formulaciones y excipientes en general

Los excipientes son aditivos que enriquecen o mejoran la estabilidad y la presentación de un producto farmacéutico (por ejemplo, una proteína). Independientemente del motivo de su inclusión, los excipientes constituyen un componente integrante de una formulación y, por tanto, deben ser seguros y bien tolerados por los pacientes. En el caso de los medicamentos proteínicos, la selección de los excipientes reviste especial importancia, ya que pueden afectar tanto a la eficacia como a la inmunogenicidad del medicamento. Por ello, deben desarrollarse formulaciones de proteínas con una selección adecuada de excipientes que aporten una estabilidad, seguridad y comerciabilidad adecuadas.

En uno de los aspectos, una formulación liofilizada comprende al menos una o más soluciones tampón, un agente espesante y un estabilizante. En este aspecto, se evalúa el uso de un tensioactivo, que se selecciona cuando la agregación durante la fase de liofilización o durante la reconstitución adquiere gran importancia. Se incluye un agente tampón adecuado para mantener la formulación dentro de unos rangos de pH estables durante la liofilización. En la Tabla A se muestra una comparación de los componentes excipientes contemplados para las formulaciones de proteína líquidas y liofilizadas.

Tabla A Componentes excipiente para formulaciones de proteína liofilizadas

Excipiente	Función en la formulación liofilizada							
Amortiguador	Mantiene el pH de la formulación durante la liofilización y la reconstitución							
Agente de tonicidad/ estabilizante	 Los estabilizadores incluyen crio- y líoprotectores. Entre los ejemplos se incluyen polioles, azúcares y polímeros. Los crioprotectores protegen las proteínas frente a las tensiones de la congelación. Los líoprotectores estabilizan las proteínas en el estado de secado-congelación 							
Agente espesante	 Se utiliza para mejorar la elegancia del producto e impedir reventones. Aporta resistencia estructural a la torta liofilizada. Entre los ejemplos destacan manitol y glicina. 							
Tensioactivo	 Se utiliza si es importante la agregación durante el proceso de liofilización. Puede servir para reducir los tiempos de reconstitución. Entre los ejemplos se incluyen Polisorbato 20 y 80 No suele utilizarse, ya que las reacciones moleculares de la torta lio se retrasan notablemente. 							
lones metálicos/ quelantes	 Pueden incluirse si se incluye un ión metálico específico únicamente como cofactor, o en caso de que se precise el metal para la actividad de la proteasa. En general no se precisan agentes quelantes en las formulaciones lío. 							
Conservante	 Únicamente para formulaciones multidosis Aporta protección frente al crecimiento microbiano Suele incluirse en el disolvente de reconstitución (por ejemplo, bWFI) 							

El principal problema planteado a la hora de desarrollar formulaciones proteínicas es estabilizar el producto frente a las tensiones producidas durante la fabricación, el transporte y el almacenamiento. La función de los excipientes de la formulación es aportar estabilización frente a dichas tensiones. Los excipientes también pueden utilizarse para reducir la viscosidad de las formulaciones de proteínas a alta concentración, a fin de permitir su administración y aumentar la comodidad del paciente. En general, los excipientes pueden clasificarse según los mecanismos con los que estabilizan las proteínas frente a las diversas tensiones físicas y químicas. Algunos excipientes se utilizan para mitigar los efectos de una tensión específica o para regular una sensibilidad concreta de una proteína específica. Otros presentan efectos más generales sobre la estabilidad física y covalente de las proteínas. Los excipientes que aquí se describen están organizados por su tipo químico o por su papel funcional en las formulaciones. Se facilitan breves descripciones de los modos de estabilización al comentar cada uno de ellos.

5

10

15

Teniendo en cuenta la información y las orientaciones aquí facilitadas, el experto en la materia sabrá qué cantidad o rango de excipiente puede incluirse en cualquier formulación específica para lograr una formulación biofarmacéutica según la invención que promueva la preservación de la estabilidad del producto biofarmacéutico (por ejemplo, una proteína). Por ejemplo, la cantidad y tipo de una sal a incluirse en una formulación biofarmacéutica de la invención se selecciona en función de la osmolalidad deseada (es decir, isotónica, hipotónica o hipertónica) de la solución final, así como de la cantidad y la osmolalidad de otros componentes a ser incluidos en la formulación.

A modo de ejemplo, la isotonicidad puede conseguirse mediante la inclusión de aproximadamente un 5% de sorbitol, mientras que se precisa un 9% de un excipiente a base de sacarosa para conseguirla. La selección de la cantidad o rango de las concentraciones de uno o más excipientes que pueden incluirse en una formulación biofarmacéutica de la invención se ha ilustrado anteriormente al hacer referencia a las sales, polioles y azúcares. No obstante, el experto en la materia entenderá que las consideraciones que aquí se describen y que se ilustran en referencia a excipientes específicos son igualmente aplicables a todos los tipos de combinaciones de excipientes, incluyendo, por ejemplo, sales, aminoácidos, otros agentes de tonicidad, tensioactivos, estabilizantes, espesantes, crioprotectores, lioprotectores, antioxidantes, iones metálicos, quelantes y/o conservantes.

Igualmente, cuando se menciona un excipiente específico expresándolo en concentración molar, el experto en la materia entenderá que también se contempla el porcentaje equivalente (%) p/v (por ejemplo, gramos de sustancia en una muestra de solución/ml de solución) x 100%) de solución.

Por supuesto, el experto en la materia entenderá que las concentraciones de los excipientes que aquí se describen comparten interdependencia dentro de una formulación específica. A modo de ejemplo, la concentración de un espesante puede reducirse, por ejemplo, cuando se da una elevada concentración proteínica o cuando hay una elevada concentración de estabilizante. Además, el experto en la materia entenderá que, para mantener la isotonicidad de una formulación específica que carece de espesantes, la concentración de un estabilizantes se ajustaría en consecuencia (es decir, se utilizaría una cantidad "tonificante" de estabilizante). Los excipientes más habituales son bien conocidos en la técnica y pueden encontrarse en Powell y col., Compendium of Excipients for Parenteral Formulations (1998), PDA J. Pharm. Sci. Technology, 52:238-311.

Soluciones y agentes tampón

5

15

20

25

30

35

40

45

50

55

En general se observa que una formulación de proteína farmacológicamente activa muestra su máxima estabilidad en un estrecho rango de valores de pH. Este rango de pH de estabilidad óptima debe identificarse en una fase temprana, durante los estudios previos a la formulación. Para ello resultan útiles diversos métodos, como los estudios de estabilidad acelerada y los estudios de selección calorimétrica (Remmele R.L. Jr. Y col., Biochemistry, 38(16): 5241-7 (1999)). Una vez finalizada una formulación, la proteína debe fabricarse y mantenerse dutante todo el tiempo restante hasta su caducidad. Por ello, se utilizan casi siempre agentes tampón para controlar el pH de la formulación.

La capacidad de tamponar del agente tampón es máxima cuando el pH es equivalente al pKa y disminuye a medida que el pH aumenta o disminuye alejándose de dicho valor. El noventa por ciento de la capacidad tampón se encuentra a una unidad de pH de su pKa. La capacidad tampón también aumenta proporcionalmente con la concentración de la solución tampón.

Deben tenerse en cuenta diversos factores a la hora de seleccionar una solución tampón. En primer lugar, y lo más importante, debe definir la especie tampón y su concentración en función de su pKa y del pH deseado de la formulación. También reviste igual importancia el asegurarse de que la solución tampón es compatible con la proteína y con los demás excipientes de la formulación y que no cataliza ninguna reacción de degradación. Un tercer e importante aspecto a tener en cuenta es la sensación de picor e irritación que puede provocar la solución tampón tras su administración. Por ejemplo, se sabe que el citrato causa irritación cuando se inyecta (Laursen T. y col., Basic Clin Pharmacol Toxicol., 98(2): 218-21 (2006)). El potencial de irritación es mayor en el caso de los medicamentos administrados vía subcutánea (SC) o intramuscular (IM), donde la solución con el medicamento permanece en el mismo lugar durante un período de tiempo relativamente más largo que si se administra vía iv, en la que la formulación se disuelve rápidamente en la sangre tras su administración. En el caso de las formulaciones administradas directamente por infusión iv, debe controlarse la cantidad total de solución tampón (y de cualquier otro componente de la formulación). Debe prestarse especial cuidado al hecho de que los iones potasio administrados en forma de solución tampón fosfato potásico pueden inducir efectos cardiovasculares en un paciente (Hollander-Rodríguez JC. Y col., Am. Fam. Physician., 73(2): 283-90 (2006)).

Las soluciones tampón correspondientes a formulaciones liofilizadas requieren especia atención. Algunas soluciones tampón, como el fosfato sódico, pueden cristalizar fuera de la fase amorfa proteínica durante la congelación, con los consiguientes cambios de pH. Otras soluciones tampón comunes, como acetato e imidazol, pueden sublimarse o evaporarse durante el proceso de liofilización, alterando así el pH de la formulación durante la liofilización o tras la reconstitución.

El sistema tampón presente en las composiciones se selecciona de forma que sea fisiológicamente compatible y mantenga el pH deseado de la formulación farmacéutica. En una realización, el pH de la solución oscila entre 2,0 y 12,0. Por ejemplo, el pH de la solución puede ser de 2,0, 2,3, 2,5, 2,7, 3,0, 3,3, 3,5, 3,7, 4,0, 4,3, 4,5, 4,7, 5,0, 5,3, 5,5, 5,7, 6,0, 6,3, 6,5, 6,7, 7,0, 7,3, 7,5, 7,7, 8,0, 8,3, 8,5, 8,7, 9,0, 9,3, 9,5, 9,7, 10,0, 10,3, 10,5, 10,7, 11,0, 11,3, 11,5, 11,7 o 12,0.

El compuesto tampón del pH puede estar presente en cualquier cantidad adecuada para mantener el pH de la formulación en un nivel predeterminado. En una realización, la concentración de tampón de pH oscila entre 0,1 mM y 500 mM (1M). Por ejemplo, se prevé que el agente tampón del pH tenga una concentración de al menos 0,1, 0,5, 0,7, 0,8 0,9, 1,0, 1,2, 1,5, 1,7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200 o 500 mM.

Entre los ejemplos de agentes tampón utilizados para tamponar la solución de acuerdo con lo aquí recogido se incluyen, sin limitación, ácidos orgánicos, glicina, histidina, glutamato, succinato, fosfato, fosfato, citrato o Tris, HEPES y aminoácidos o mezclas de aminoácidos, incluyendo sin limitación aspartato, histidina y glicina. En una realización de la presente invención, el agente tampón es citrato.

Estabilizantes y espesantes

En un aspecto de las presentes formulaciones farmacéuticas, se añade un estabilizante (o una combinación de estabilizantes) para impedir o reducir la agregación y la degradación química inducidas por el almacenamiento. Una solución que aparece turbia u opaca tras su reconstitución indica que la proteína ha precipitado o que al menos se ha agregado. El término "estabilizante" se refiere a un excipiente capaz de impedir la agregación o degradación física (por ejemplo autolisis, deamidación, oxidación, etc.) en estado acuoso. Entre los estabilizantes contemplados se encuentran, sin limitación, sacarosa, trehalosa, manosa, maltosa, lactosa, glucosa, rafinosa, celobiosa, gentiobiosa, isomaltosa, arabinosa, glucosamina, fructosa, manitol, sorbitol, glicina, arginina-HCl, compuestos polihidroxi, incluyendo polisacáridos como dextrano, almidón, hidroxietilalmidón, ciclodextrinas, N-metilpirolideno, celulosa y ácido hialurónico, cloruro sódico [Carpenter y col., Develop. Biol. Standard 74:225, (1991)]. En estas formulaciones, el estabilizante se incorpora a una concentración de aproximadamente 0,1, 0,5, 0,7, 0,8 0,9, 1,0, 1,2, 1,5, 1,7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 700,

900 o 1.000 mM. En una realización de la presente invención, como agentes estabilizantes se utilizan manitol y trehalosa.

Si se desea, las formulaciones también incluyen cantidades adecuadas de agentes reguladores del espesor y la osmolaridad. Los agentes espesantes incluyen, por ejemplo y sin limitación, manitol, glicina y sacarosa, polímeros como dextrano, polivinilpirolidona, carboximetilcelulosa, lactosa, sorbitol, trehalosa o xilitol. En una realización, el espesante utilizado es manitol. El agente espesante se incorpora en una concentración de aproximadamente 0,1, 0,5, 0,7, 0,8 0,9, 1,0, 1,2, 1,5, 1,7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 700, 900 o 1.000 mM.

Tensioactivos

5

20

25

30

35

40

45

50

55

Las proteínas tienen una elevada tendencia a interactuar con las superficies, lo que las hace susceptibles a la absorción y desnaturalización por contacto aire-líquido, vial-líquido y líquido-líquido (aceite de silicona). Se ha constatado que esta vía de degradación es inversamente dependiente de la concentración proteínica y tiene como resultado la formación de agregados proteínicos solubles e insolubles o la pérdida de proteína de la solución debido a la adsorción en las superficies. Además de la adsorción a la superficie del envase, la degradación inducida por la superficie se exacerba por la agitación física, como sucedería durante el transporte y la manipulación del producto.

Los agentes tensioactivos suelen utilizarse en las formulaciones de proteínas para impedir la degradación inducida por la superficie. Los agentes tensioactivos son moléculas anfipáticas con la peculiaridad de competir ventajosamente con las proteínas por las posiciones de interacción. Las partes hidrófobas de las moléculas tensioactivas ocupan las posiciones de interacción (por ejemplo aire/líquido), mientras que las partes hidrófilas de las moléculas siguen estando orientadas hacia el disolvente. A una concentración suficiente (en general en torno a la concentración micelar crítica del detergente), la capa superficial de las moléculas tensioactivas impede la adsorción de las moléculas de proteína por interacción. Por tanto, se reduce al mínimo la degradación inducida por la superficie. Los tensioactivos aquí contemplados incluyen, sin limitación, ésteres de ácidos grasos polietoxilatos de sorbitano, es decir polisorbato 20 y polisorbato 80. Ambos sólo difieren en la longitud de la cadena alifática que aporta el carácter hidrófobo a las moléculas, C-12 y C-18 respectivamente. Así, el polisorbato-80 es más superficialmente activo y tiene una concentración micelar crítica inferior a la de los polisorbatos-20.

Los detergentes también pueden afectar a la estabilidad conformacional termodinámica de las proteínas. Una vez más, los efectos de un excipiente detergente dado serán específicos de la proteína. Por ejemplo, se ha demostrado que los polisorbatos reducen la estabilidad de ciertas proteínas y aumentan la estabilidad de otras. La desestabilización de las proteínas por detergente puede racionalizarse en términos de las colas hidrofóbicas de las moléculas de detergente, que pueden asumir un enlace específico con estados proteínicos parcial o totalmente desplegados. Este tipo de interacciones puede provocar un cambio en el equilibrio conformacional hacia estados proteínicos más expandidos (es decir aumentando la exposición de las partes hidrofóbicas de la molécula proteínica como complemento al polisorbato del enlace). Alternativamente, si el estado nativo de la proteína presenta algunas superficies hidrofóbicas, el enlace del detergente con el estado nativo puede estabilizar dicha conformación.

Otro aspecto de los polisorbatos es que son inherentemente susceptibles de degradación oxidativa. A menudo, y como materias primas, contienen suficiente cantidad de peróxidos para provocar la oxidación de las cadenas laterales de los residuos proteínicos, especialmente de la metionina. La posibilidad de daños por oxidación derivados de la adición del estabilizante subraya el hecho de que en las formulaciones debe utilizarse la concentración efectiva más baja de excipiente. En el caso de los tensioactivos, la concentración efectiva para una proteína dada dependerá del mecanismo de estabilización.

También se añaden tensioactivos en cantidad adecuada para impedir fenómenos de agregación relacionados con la superficie durante la congelación y el secado [Chang B., J. Pharm, Sci. 85:1325, (1996)]. Así, entre los ejemplos de tensioactivos se encuentran, sin limitación, tensioactivos aniónicos, catiónicos, no iónicos, zwitteriónicos y anfotéricos obtenidos de aminoácidos naturales. Entre los tensioactivos aniónicos se encuentran, sin limitación, laurilsulfato sódico, sulfosuccinato de dioctilo y sulfonato de dioctil-sodio, ácido quenodesoxicólico, sal sódica de Nlauroilsarcosina, sulfato de dodecil-litio, sal sódica de ácido 1-octanosulfónico, colato sódico hidratado, desoxicolato sódico y sal sódica de ácido glicodesoxicólico. Entre los tensioactivos catiónicos se encuentran, sin limitación, cloruro de benzalconio o cloruro de bencetonio, cloruro de cetilpiridinio monohidrato y bromuro de hexadeciltrimetilamonio. Los tensioactivos zwitteriónicos incluyen, sin limitación, CHAPS, CHAPSO, SB3-10 y SB3-12. Los tensioactivos no iónicos incluyen, sin limitación, digitonina, Triton X-100, Triton X114, TWEEN-20, y TWEEN-80. Los tensioactivos también incluyen, sin limitación, lauromacrogol 400, polioxil 40 estearato, aceite de ricino polietoxilado 10, 40, 50 y 60, glicerol monoestearato, polisorbato 40, 60, 65 y 80, leicitina de soja y otros fosfolípidos, como dioleoil-fosfatidil-colina (DOPC), dimiristoil fosfatidilglicerol (DMPG), dimiristoilfosfatidilcolina (DMPC) y dioleilfosfatidilglicerol (DOPG); ésteres de sacarosa, metilcelulosa y carboximetilcelulosa de ácidos grasos. Por tanto, también se facilitan composiciones que comprenden estos tensioactivos, tanto individualmente como en forma de mezcla en diferentes proporciones. En una realización de la presente invención, el tensioactivo es TWEEN-80. En las presentes formulaciones, el tensioactivo se incorpora en una concentración de entre 0,01 y 0,5 g/l. En las formulaciones facilitadas, la concentración del tensioactivo es de 0,005, 0,01, 0,02, 0,03, 0,05, 0,06, 0,07, 0,08, 0,09, 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9 o 1,0 g/l.

Sales

10

20

25

30

35

55

Con frecuencia se añaden sales para aumentar la fuerza iónica de la formulación, que puede resultar importante para la solubilidad de la proteína, la estabilidad física y la isotonicidad. Las sales pueden afectar a la estabilidad física de las proteínas de muchas formas. Los iones pueden estabilizar el estado nativo de las proteínas uniéndose a los residuos cargados de la superficie de la proteína. Alternativamente, las sales pueden estabilizar el estado desnaturalizado uniéndose a grupos peptídicos a lo largo del esqueleto proteico (-CONH-). Las sales también pueden estabilizar la conformación nativa de la proteína blindando las interacciones electrostáticas repulsivas entre residuos de una molécula de proteína.

Las sales para las formulaciones de proteínas también pueden blindar las interacciones electrostáticas atractivas entre las moléculas de proteínas, que pueden provocar agregación e insolubilidad. En las formulaciones facilitadas, la concentración de sal oscila entre 0,1, 1, 10, 20, 30, 40, 50, 80, 100, 120, 150, 200, 300 y 500 mM.

Otros componentes excipientes comunes

15 Aminoácidos

Los aminoácidos se han utilizado ampliamente en formulaciones de proteínas como tampones, espesantes, estabilizantes y antioxidantes. Así, en un aspecto de la invención se utiliza histidina y ácido glutámico para tamponar las formulaciones proteicas en el rango de pH de 5,5 - 6,5 y 4,0 - 5,5 respectivamente. El grupo imidazol de la histidina tiene un pKa = 6,0 y el grupo carboxilo de la cadena lateral del ácido glutámico tiene un pKa de 4,3 lo que convierte a estos aminoácidos en adecuados para tamponar en sus respectivos rangos de pH. El ácido glutámico resulta en estos casos especialmente útil. La histidina suele encontrarse en las formulaciones proteicas comerciales, siendo este aminoácido una alternativa al citrato, un tampón que resulta irritante cuando se invecta. Es interesante saber que la histidina tiene un efecto estabilizante con respecto a la agregación cuando se utiliza en concentraciones elevadas en presentaciones líquidas y liofilizadas (Chen B. y col., Pharm Res., 20(12): 1952-60 (2003)). También se ha observado que la histidina reduce la viscosidad de una formulación con elevada concentración proteica. No obstante, en el mismo estudio, los autores observaron una mayor agregación y decoloración en las formulaciones que contienen histidina durante los estudios de congelación/descongelación del anticuerpo en contenedores de acero inoxidable. Otra precaución que ha de tenerse en relación con la histidina es que sufre foto-oxidación en presencia de iones metálicos (Tomita M. y col., Biochemistry, 8(12): 5149-60 (1969)). La utilización de metionina como antioxidante en las formulaciones parece prometedora; se ha observado que resulta efectiva contra diversas causas de estrés oxidativo (Lam XM y col., J Pharm Sci., 86(11): 1250-5 (1997)).

En diversos aspectos se proporcionan formulaciones que incluyen uno o más de los aminoácidos glicina, prolina, serina, arginina y alanina, que se ha demostrado estabilizan las proteínas mediante el mecanismo de exclusión preferencial. La glicina también se utiliza normalmente como agente espesante en formulaciones liofilizadas. La arginina ha demostrado ser un agente muy eficaz para inhibir la agregación, utilizándose en formulaciones líquidas y liofilizadas.

En las formulaciones proporcionadas, la concentración de aminoácido está entre 0,1, 1, 10, 20, 30, 40, 50, 80, 100, 120, 150, 200, 300 y 500 mM. En una realización de la presente invención, el aminoácido es glicina.

Antioxidantes

La oxidación de los residuos proteicos tiene diversas causas. Más allá de la adición de antioxidantes específicos, la prevención de daños oxidativos en la proteína implica un cuidadoso control de diversos factores durante el proceso de fabricación y almacenamiento del producto, por ejemplo el oxígeno atmosférico, la temperatura, la exposición a la luz y la contaminación química. Por tanto, la invención contempla el uso de antioxidantes farmacéuticos, incluyendo, sin limitación, agentes reductores, captadores de oxígeno/radicales libres o agentes quelantes. Los antioxidantes de las formulaciones de proteínas terapéuticas son, en uno de los aspectos, solubles en agua y permanecen activos durante toda la vida útil del producto. Los agentes reductores y captadores de oxígeno/radicales libres funcionan eliminando las especies de oxígeno activas de la solución. Los agentes quelantes, como EDTA, son efectivos por su unión a trazas metálicas contaminantes que promueven la formación de radicales libres. Por ejemplo, se utilizó EDTA en la formulación líquida de factor de crecimiento de fibroblasto ácido para inhibir la oxidación de los residuos cisteína catalizada por iones metálicos.

Además de la efectividad de numerosos excipientes a la hora de impedir la oxidación de la proteína, debe tenerse en cuenta el potencial de los propios antioxidantes para inducir otros cambios físicos o covalentes en la proteína. Por ejemplo, los agentes reductores pueden provocar la ruptura de los enlaces disulfuro intramoleculares, lo que puede provocar una mezcla de disulfuros. En presencia de iones metálicos de transición, se ha demostrado que el ácido ascórbico y el EDTA fomentan la oxidación de la metionina en diversas proteínas y péptidos (Akers MJ y Defelippis

MR., Peptides and Proteins as Parenteral Solutions. En: Pharmaceutical Formulation Development of Peptides and Proteins. Sven Frokjaer, Lars Hovgaard, editors. Pharmaceutical Science. Taylor and Francis, UK (1999)); Fransson J.R., J. Pharm. Sci. 86(9): 4046-1050 (1997); Yin J, y col., Pharm Res., 21(12): 2377-83 (2004)). Se ha indicado que el tiosulfato sódico reduce los niveles de oxidación de la metionina inducida por la luz y la temperatura en rhuMab HER2; no obstante, en este estudio también se comunica la formación de un aducto de tiosulfato y proteína (Lam XM, Yang JY y col., J Pharm Sci. 86(11): 1250-5 (1997)). Se selcciona el antioxidante adecuado en función de las tensiones y sensibilidades específicas de la proteína. Los antioxidantes contemplados en ciertos aspectos de la invención incluyen, sin limitación, agentes reductores y captadores de oxígeno/radicales libres, EDTA y tiosulfato sódico.

10 lones metálicos

5

15

20

25

40

45

50

En general, los iones metálicos de transición no resultan deseables en las formulaciones proteicas, ya que pueden catalizar las reacciones de degradación física y química de las proteínas. No obstante, se incluyen iones metálicos específicos en las formulaciones cuando son cofactores de las proteínas y en formulaciones proteicas en suspensión cuando forman complejos de coordinación (por ejemplo, suspensión de insulina en zinc). Recientemente se ha propuesto la uilización de iones magnesio (10 -120 mM) para inhibir la isomerización del ácido aspártico, que se convierte en ácido isoaspártico (WO 2004039337).

Dos ejemplos donde los iones metálicos confieren estabilidad o mayor actividad a las proteínas son desoxirribonucleasa humana (rhDNAsa, Pulmozyme®) y Factor VIII. En el caso de la rhDNAsa, los iones Ca⁺² (hasta 100 mM) aumentaron la estabilidad de la enzima mediante un sitio de enlace específico (Chen B. y col., J Pharm Sci., 88(4): 477-82 (1999)). De hecho, la eliminación de los iones calcio en la solución con EGTA provocó un aumento de la desamidación y la agregación. No obstante, este efecto se observó sólo con los iones Ca⁺²; se observó que otros cationes divalentes, Mg⁺², Mn⁺² y Zn⁺² desestabilizaban la rhDNAsa. Se observaron efectos similares en el caso del Factor VIII. Los iones Ca⁺²y Sr⁺² estabilizaron la proteína, mientras otros, como Mg⁺², Mn⁺² y Zn⁺², Cu+2 y Fe⁺² desestabilizaron la enzima (Fatouros A. y col., Int. J. Pharm., 155, 121-131 (1997)). En un estudio independiente realizado con Factor VIII, se observó un importante incremento de la tasa de agregación en presencia de iones Al⁺³ (Derrick TS y col., J. Pharm. Sci., 93(10): 2549-57 (2004)). Los autores señalan que otros excipientes, como las sales tampón, suelen contaminarse con iones Al⁺³ e ilustran la necesidad de utilizar excipientes de calidad adecuada en los productos formulados.

Conservantes

Los conservantes son necesarios cuando se utilizan formulaciones parenterales multiusos que implican más de una extracción del mismo recipiente. Su principal función es inhibir el crecimiento microbiano y garantizar la esterilidad del producto durante toda la vida útil o período de validez del producto farmacéutico. Entre los conservantes más habitualmente utilizados se encuentran, sin limitación, alcohol bencílico, fenol y m-cresol. Aunque los conservantes se utilizan desde hace mucho tiempo, el desarrollo de formulaciones proteicas que incluyen conservantes puede resultar un problema. Los conservantes presentan casi siempre un efecto desestabilizante (agregación) en las proteínas y esto ha pasado a ser uno de los principales factores que limitan su utilización en formulaciones proteicas multidosis (Roy S. y col., J Pharm Sci., 94(2): 382-96 (2005)).

Hasta ahora, la mayoría de los fármacos a base de proteínas se formulan para su uso tan sólo una vez. No obstante, cuando se da la posibilidad de formulaciones multidosis, éstas tienen la ventaja añadida de que permiten que el paciente se sienta cómodo y aumentan su comerciabilidad. Un buen ejemplo lo constituye la hormona del crecimiento humano (hGH), en la que el desarrollo de formulaciones que incluyen conservantes ha llevado a la comercialización de presentaciones en el formato más cómodo de plumas inyectables multiusos. Al menos cuatro de dichos dispositivos en forma de pluma y que contienen formulaciones de hGH que incluyen conservantes están actualmente disponibles en el mercado. Norditropin® (líquido, Novo Nordisk), Nutropin AQ® (líquido, Genentech) y Genotropin (liofilizado – cartucho bicámara, Pharmacia & Upjohn) contienen fenol, mientras que Somatrope® (Eli Lilly) se formula con m-cresol.

Deben tenerse en cuenta diversos aspectos durante el desarrollo de la formulación en formatos de dosificación con conservantes. Debe optimizarse la concentración efectiva del conservante en el producto farmacéutico. Esto requiere comprobar un conservante determinado en el formato de dosificación a unos rangos de concentración que confieran actividad antimicrobiana sin comprometer la estabilidad de la proteína. Por ejemplo, se comprobaron con éxito tres conservantes durante el desarrollo de una formulación líquida del receptor de interleucina-1 (Tipo I) utilizando la calorimetría de barrido diferencial (DSC). Los conservantes se ordenaron por rangos en función de su impacto sobre la estabilidad a las concentraciones normalmente utilizadas en los productos comerciales (Remmele RL Jr. Y col., Pharm Res., 15(2): 200-8 (1998)).

55 El desarrollo de formulaciones líquidas que incluyen conservantes resulta más problemático que el de las formulaciones liofilizadas. Los productos liofilizados pueden liofilizarse sin conservantes y reconstituirse con un disolvente que contenga el conservante cuando vayan a utilizarse. De este modo se reduce el período durante el cual el conservante está en contacto con la proteína, reduciendo significativamente los riesgos de estabilidad

asociados. En el caso de las formulaciones líquidas, han de mantenerse la estabilidad y la eficacia del conservante duante toda la vida útil del producto (18-24 meses). Un punto importante a destacar es que la eficacia del conservante debe demostrarse en la formulación final que contiene el fármaco activo y todos los componentes excipientes.

Algunos conservantes pueden provocar reacciones en el punto de inyección, lo que constituye otro factor a tener en cuenta a la hora de elegir un conservante. En los ensayos clínicos centrados en la evaluación de los conservantes y los tampones en norditropina, se observó que la percepción del dolor era inferior en el caso de las formulaciones con fenol y alcohol bencílico en comparación con las formulaciones con m-cresol (Kappelgaard A.M., Horm Res. 62 Suppl 3:98-103 (2004)). Lo que resulta interesante es que, entre los conservantes utilizados con mayor frecuencia, el alcohol bencílico posee propiedades anestésicas (Minogue SC. y Sun DA., Anesth Analg., 100(3): 683-6 (2005)). En diversos aspectos, el uso de conservantes aporta ciertos beneficios que compensan cualquier efecto secundario.

Métodos de preparación

La presente invención también contempla métodos de preparación de formulaciones farmacéuticas.

Los métodos actuales comprenden adicionalmente una o más de las etapas siguientes: añadir a la mezcla un agente estabilizante tal como se describe aquí antes de la liofilización y añadir a dicha mezcla al menos un agente seleccionado de entre un agente espesante, un agente regulador de la osmolaridad y un tensioactivo, cada uno de ellos de acuerdo con lo aquí descrito, antes de la liofilización.

La práctica habitual de reconstitución de los materiales liofilizados consiste en añadir nuevamente un volumen de agua pura o de agua esterilizada inyectable (WFI) (que normalmente equivale al volumen eliminado durante la liofilización), aunque a veces se utilizan soluciones disueltas de agentes antibacterianos en la producción de fármacos para su administración parenteral [Chen, Drug Development and Industrial Pharmacy, 18:1311-1354 (1992)]. Así, se proporcionan diversos métodos para preparar composiciones reconstituidas de rVWF, que comprenden la fase de añadir un disolvente a una composición de rVWF liofilizado según la invención.

El material liofilizado puede reconstituirse como una solución acuosa. Pueden utilizarse diversos vehículos acuosos, 25 por ejemplo aqua esterilizada invectable, aqua con conservantes para su utilización multidosis o aqua con la cantidad adecuada de tensioactivos (por ejemplo, una solución acuosa con el compuesto activo en un agregado en polvo, junto con excipientes adecuados para la obtención de suspensiones acuosas). En diversos aspectos, dichos excipientes son agentes de suspensión, por ejemplo, y sin limitación, carboximetilcelulosa sódica, metilcelulosa, hidroxipropilmetilcelulosa, alginato sódico, polivinilpirrolidona, goma tragacanto y goma arábiga; los dispersantes o 30 humectantes son fosfolípidos de origen natural, por ejemplo, y sin limitación, leicitina, o productos de condensación de un óxido de alquileno con ácidos grasos, por ejemplo, y sin limitación, estearato de polioxietileno, o productos de condensación de óxido de etileno con alcoholes alifáticos de cadena larga, por ejemplo, y sin limitación, heptadecaetilenoxicetanol, o productos de condensación de óxido de etileno con ésteres parciales obtenidos a partir de ácidos grasos y un hexitol, como monooleato de polioxietilensorbitol, o productos de condensación de óxido de 35 etileno con ésteres parciales obtenidos de anhídridos de ácidos grasos y anhídridos de hexitol, por ejemplo, y sin limitación, monooleato del polioxietilensorbitano. En diversos aspectos, las suspensiones acuosas también contienen uno o más conservantes, por ejemplo, y sin limitación, p-hidroxibenzoato de etilo o de n-propilo.

Administración

20

50

55

En un aspecto, para la administración de las composiciones a seres humanos o animales de ensayo, las composiciones comprenden uno o más vehículos farmacéuticamente aceptables. Las frases "farmacéuticamente" o "farmacológicamente" aceptables se refieren a entidades y composiciones moleculares que son estables, inhiben la degradación de la proteína, como la agregación y los productos de escisión, y además no provocan reacciones alérgicas o adversas de otro tipo cuando se administran utilizando vías bien conocidas en la técnica, como se describe a continuación. El término "vehículos farmacéuticamente aceptables" incluye todo tipo de disolventes clínicamente útiles, medios de dispersión, revestimientos, agentes antibacterianos y antifúngicos, agentes isotónicos y retardadores de la absorción y similares, incluyendo los agentes anteriormente descritos.

Las formulaciones farmacéuticas se administran vía oral, tópica, transdérmica o parenteral, mediante esprays inhaladores, vía vaginal, rectal o mediante inyección intracraneal. El término parenteral tal como se utiliza aquí incluye técnicas de inyección subcutánea, intravenosa, intramuscular, intracisternal o de infusión. También se contempla la administración por inyección intravenosa, intradérmica, intramuscular, intramamaria, intraperitoneal, intratecal, retrobulbar, intrapulmonar, y/o por implante quirúrgico en un emplazamiento específico. En general, las composiciones están esencialmente libres de pirógenos, así como de otras impurezas que podrían resultar peligrosas para el receptor.

La administración única o múltiple de las composiciones se lleva a cabo con los niveles de dosis y regímenes seleccionados por el facultativo. Para prevenir o tratar la enfermedad, la dosis adecuada depende del tipo de enfermedad a tratar, como se ha definido anteriormente, de la gravedad y del curso de la enfermedad, de si el

medicamento se administra con fines preventivos o terapéuticos, de la terapia anterior, del historial clínico del paciente y su respuesta al medicamento y del criterio del facultativo encargado.

Kits

5

10

15

20

25

30

35

40

50

Como un aspecto adicional, la invención incluye kits que comprenden una o más composiciones liofilizadas empaquetadas de forma que se facilite su utilización para su administración a los pacientes. En una realización, dicho kit incluye la formulación farmacéutica descrita en este documento (por ejemplo, una composición que comprende una proteína o péptido terapéuticos), envasada en un recipiente tal como una botella o en un recipiente precintado, con una etiqueta fijada al recipiente o incluida en el envase que describe el uso de la composición a la hora de implementar el método. En una realización, la formulación farmacéutica está envasada en el recipiente de forma que la cantidad de espacio libre del recipiente (es decir, la cantidad de aire entre la formulación líquida y la parte superior del envase) es muy pequeña. Preferiblemente, la cantidad de espacio libre es desdeñable (es decir, prácticamente inexistente). En una realización, el kit consta de un primer envase que contiene una composición con una proteína o péptido terapéuticos y de un segundo envase que contiene una solución fisiológicamente aceptable para la reconstitución de la composición. En un aspecto, la formulación farmacéutica está envasada en forma de unidad monodosis. El kit puede incluir también un dispositivo adecuado para la administración de la formulación farmacéutica de acuerdo con una vía de administración específica. Preferiblemente, el kit contiene una etiqueta que describe la utilización de las formulaciones farmacéuticas.

Dosis

El régimen de dosificación correspondiente a un método de tratamiento de uno de los trastornos aquí descritos será el determinado por el médico, teniendo en cuenta diversos factores que modifican la acción de los medicamentos, como la edad, condición, peso corporal, sexo y régimen alimenticio del paciente, gravedad de cualquier infección, duración de la administración y otros factores clínicos. A modo de ejemplo, una dosis típica de un VWF recombinante conforme a la presente invención es de aproximadamente 50 U/kg, lo que equivale a 500 µg/kg.

En un aspecto de la invención, las formulaciones de la invención se administran mediante un bolo inicial, seguido de una infusión continua para mantener los niveles terapéuticos circulantes del producto farmacéutico. En otro ejemplo, el compuesto de la invención se administra como dosis única. El experto en la materia optimizará rápidamente las dosificaciones efectivas y los regímenes de administración determinados por la práctica médica recomendada y la situación clínica de cada paciente concreto. La frecuencia de dosificación depende de los parámetros farmacocinéticos de los agentes y la vía de administración. El xperto en la materia determinará la formulación farmacéutica óptima en función de la vía de administración y de la dosis deseada (véase por ejemplo Remington's Pharmaceutical Sciences, 18th Ed., 1990, Mack Publishing Co., Easton, PA 18042, páginas 1435-1712, cuyos postulados quedan incorporados por referencia al presente documento). Dichas formulaciones influyen sobre el estado físico, la estabilidad y la frecuencia de administración in vivo de los agentes administrados. Dependiendo de la vía de administración, se calcula la dosis adecuada en función del peso corporal, de la superficie corporal o de las dimensiones del órgano. Pueden determinarse las dosis adecuadas mediante la utilización de ensayos conocidos para la determinación de las dosis a nivel sanguíneo junto con los datos dosis/respuesta adecuados. El régimen de dosificación definitivo viene determinado por el médico teniendo en cuenta los diversos factores que modifican la acción de los fármacos, por ejemplo la actividad específica del fármaco, la gravedad de la lesión y la respuesta del paciente, la edad, condición, peso corporal, sexo y régimen alimenticio del paciente, la gravedad de cualquier infección, duración de la administración y otros factores clínicos. A medida que se lleven a cabo los estudios, se dispondrá de información adicional relativa a los niveles de dosificación adecuados y la duración del tratamiento para diversas enfermedades y condiciones.

Los siguientes ejemplos no pretenden ser limitativos, sino tan sólo ilustrar realizaciones específicas de la invención.

Ejemplo 1: Experimentos de agitación

Para determinar la cantidad de precipitación de rVWF en diversas formulaciones, se comprobó el alcance de la agregación del rVWF tras una agitación turbulenta bajo diversas condiciones.

Como se muestra en la Tabla 1 siguiente, se evaluaron diferentes formulaciones de rVWF en una solución tampón de citrato 20 mM con un pH 7,3. Los experimentos de agitación habían sido diseñados para simular condiciones de estrés mecánico. Se agitaron de 1 a 2 ml de cada formulación con un agitador de laboratorio durante 10 minutos a 1.200 rpm.

Tabla 1

						i ubiu i				
Lio.25	Lisina	Histidina	Glicina	Serina	Manitol	PEG1500	Tween80	Sacarosa	Trehalosa	Rafinosa
18	30mM.				5 g/l					
19		30mM			5 g/l					

20			30mM		5 g/l					
21				30mM	5 g/l					
22	30mM					5 g/l				
23		30mM				5 g/l				
24			30mM			5 g/l				
25				30mM		5 g/l				
26	30mM						0,1 g/l			
27		30mM					0,1 g/l			
28			30mM				0,1 g/l			
29				30mM			0,1 g/l			
30	30mM				5 g/l	5 g/l				
31		30mM			5 g/l	5 g/l				
32			30mM		5 g/l	5 g/l				
33				30mM	5 g/l	5 g/l				
34	30mM				5 g/l		0,1 g/l			
35		30mM			5 g/l		0,1 g/l			
36			30mM		5 g/l		0,1 g/l			
37				30mM	5 g/l		0,1 g/l			
38	30mM				5 g/l	5 g/l	0,1 g/l			
39		30mM			5 g/l	5 g/l	0,1 g/l			
40			30mM		5 g/l	5 g/l	0,1 g/l			
41				30mM	5 g/l	5 g/l	0,1 g/l			
42					5 g/l					
43								5 g/l		
44									5 g/l	
45										5 g/l
46					5g/L	5 g/l				
47						5 g/l		5 g/l		
48						5 g/l			5 g/l	
49						5 g/l				5 g/l
50					5g/L		0,1 g/l			
51							0,1 g/l	5 g/l		
52							0,1 g/l		5 g/l	
53							0,1 g/l			5 g/l

La evaluación de los agregados visibles de VWF se llevó a cabo de acuerdo con el esquema que se muestra a continuación. Los "agregados visibles" en la mayoría de los casos consisten en fibras gelatinosas cuyas dimensiones oscilan entre 100 nm y 1-2 cm.

5 ESQUEMA

Partículas	
Α	Sin partículas
В	Varias partículas, raramente visibles (puntos)

B1	Muchas partículas, raramente visibles (puntos)
С	Varias partículas, fácilmente visibles (fibras)
D	Muchas partículas, fácilmente visibles (fibras)
Е	Partículas visibles (fibras >1mm)
EI	Esponjoso con precipitado (nadantes en la superficie)
E2	Gelatinoso

Los resultados de la prueba de agitación se muestran en la Tabla 2 siguiente:

Tabla 2

				I a	DIA Z			
Muestras Lio. 25	Lisina	Histidina	Glicina	Serina	Manitol	PEG 1500	Tween 80	Agitado 1-2 ml a 1.200 rpm 30 min
18	30mM				5 g/l			E1
19		30mM			5 g/l			E1
20			30mM		5 g/l			E1
21				30 mM	5 g/l			E1
22	30mM					5 g/l		E1
23		30mM				5 g/l		E1
24			30mM			5 g/l		E1
25				30mM		5 g/l		E1
26	30mM.						0,1 g/l	E2 grande
27		30mM					0,1 g/l	E2 grande
28			30mM				0,1 g/l	E2 -6mm
29				30mM			0,1 g/l	E2 -3mm
30	30mM				5 g/l	5 g/l		El
31		30mM			5 g/l	5 g/l		El
32			30mM		5 g/l	5 g/l		El
33				30mM	5 g/l	5 g/l		El
34	30mM				5 g/l		0,1 g/l	B1
35		30mM			5 g/l		0,1 g/l	В
36			30mM		5 g/l		0,1 g/l	E2 grande
37				30mM	5 g/l		0,1 g/l	E2 grande
38	30mM				5 g/l	5 g/l	0,1 g/l	D
39		30mM			5 g/l	5 g/l	0,1 g/l	D
40			30mM		5 g/l	5 g/l	0,1 g/l	В
41				30mM	5 g/l	5 g/l	0,1 g/l	В
		1	1					

En resumen, los experimentos de agitación que se describen anteriormente indican que los mejores resultados son los aportados por las formulaciones que contienen Tween-80 y manitol (es decir, la menor cantidad de agregación).

Ejemplo 2: Experimentos de congelación y descongelación

Los experimentos de congelación y descongelación se diseñan para evaluar el impacto de las tensiones provocadas por congelaciones y descongelaciones repetidas. Además de las formulaciones descritas anteriormente para los experimentos de agitación (Tabla 1), se evaluaron las siguientes formulaciones (Tabla 3 y Tabla 4):

5

Tabla 3

Muestras de Lio. 25	Manitol	PEG 1500	Tween 80	Sacarosa	Trehalosa	Rafinosa
42	5 g/l					
43				5 g/l		
44					5 g/l	
45						5 g/l
46	5 g/l	5 g/l				
47		5 g/l				
48		5 g/l				
49		5 g/l				
50	5 g/l		0,1 g/l			
51			0,1 g/l	5 g/l		
52			0,1 g/l		5 g/l	
53			0,1 g/l		·	5 g/l

Tabla 4

					l abla 4	•				
Muestras Lio. 25	Lisina	Histidina	Glicina	Serina	Manitol	PEG 1500	Tween- 80	Sacarosa	Trehalosa	Rafinosa
76					20 g/l		0,2 g/l	20 g/l		
77					20 g/l		0,2 g/l		10 g/l	
78					20 g/l		0,2 g/l			10 g/l
79		15mM			20 g/l		0,2 g/l	20 g/l		
80		15mM			20 g/l		0,2 g/l		10 g/l	
81		15mM			20 g/l		0,2 g/l			10 g/l
82		15mM	15mM		20 g/l		0,2 g/l	20 g/l		
83		15mM	15mM		20 g/l		0,2 g/l		10 g/l	
84		15mM	15mM		20 g/l		0,2 g/l			10 g/l
85		15mM	15mM		20 g/l	5 g/l	0,2 g/l			
86		15mM	15mM		20 g/l	5 g/l	0,2 g/l		10 g/l	
87		15mM	15mM		20 g/l	15 g/l	0,2 g/l		10 g/l	
88		15mM	15mM		20 g/l		0,2 g/l			5 g/l
89		15mM	15mM		20 g/l		0,2 g/l			15 g/l
90		15mM			20 g/l		0,2 g/l			15 g/l
92		15mM	15mM		20 g/l		0,2 g/l		10 g/l	
93	30mM				20 g/l		0,2 g/l		10 g/l	
94		30mM			20 g/l		0,2 g/l		10 g/l	
95			30mM		20 g/l		0,2 g/l		10 g/l	

96			30mM	20 g/l	0,2 g/l	10 g/l	
97	15mM			20 g/l	0,2 g/l	10 g/l	
98	15mM	15mM		20 g/l	0,2 g/l	10 g/l	
99	15mM	15mM		20 g/l	0,2 g/l	5 g/l	
100	15mM			20 g/l	0,2 g/l	10 g/l	
	15mM			20 g/l	0,2 g/l	10 g/l	

Todas las formulaciones se congelaron a -20°C en un congelador durante aproximadamente 1 hora, descongelándose después a temperatura ambiente. Los resultados se muestran en la Tabla 5.

Tabla 5

Muestras Lio 25	Lisina	Histidina	Glicina	Serina	Manitol	PEG 1500	Tween-80	Sacarosa	Trehalosa	Rafinosa	Cong./ descong. (4 veces)	Cong/ descong. (10 veces)
18	30mM				5 g/l						E1	15
19		30mM			5 g/l						E1	19
20			30mM		5 g/l						O	20
21				30mM	1/g 3						C	21
22	30mM					1/g 3					O	22
23		30mM				5 g/l					C/B 1	23
24			30mM			1/g 3					C	24
25				30mM		1/g 3					O	25
26	30mM						0,19/1				В	26
27		30mM					0,19/1				B-B 1	27
28			30mM				0,19/1				В	28
29				30mM			0,1g/l				Э	29
30	30mM				5 g/l	1/6 S					Э	30
31		30mM			5 g/l	5 g/l					D	31
32			30mM		5 g/l	1/g 3					B1-C	32
33				30mM	5 g/l	1/g 3					C/D	33
34	30mM				5 g/l		0,1g/l				E2 (rest. B)	34
35		30mM			5 g/l		5 g/l				Е	35
36			30mM		5 g/l		5 g/l				Е	36
37				30mM	5 g/l		5 g/l				В	37
38	30mM				5 g/l	5 g/l	5 g/l				В	38
39		30mM			5 g/l	5 g/l	5 g/l				В	39
40			30mM		5 g/l	5 g/l	5 g/l				В	40
41				30mM	5 g/l	5 g/l	0,19/				А	41
42					5 g/l						D	42
43								5 g/l			۵	43

Cong/ descong. (10 veces)	44	45	46	47	48	49	20	51	52	53
Cong./ descong. (4 veces)	E1	E1	D	D	D-E	Е	B1	C-D	B1	B1
Rafinosa		1/6 S				1/b 3				1/g 3
Trehalosa	5 g/l				5 g/l				5 g/l	
Sacarosa				5 g/l				5 g/l		
Tween-80							0,1g/l	0,1g/l	0,1 g/l	0,1 g/l
PEG 1500			5 g/l	5 g/l	5 g/l	5 g/l				
Manitol			1/g 3				1/g 3			
Serina										
Glicina										
Histidina										
Lisina										
Muestras Lio 25	44	45	46	47	48	49	20	51	52	53

Como puede observarse de loa anterior, los mejores resultados (es decir, la menor cantidad de agregación) se consiguieron con trehalosa.

Ejemplo 3: Experimentos de liofilización

5

- Los experimentos de liofilización se diseñan para evaluar la capacidad de las diferentes formulaciones para permitir la formación de una torta lío que se disuelva en menos de 10 minutos y tenga como resultado una solución transparente. También se llevó a cabo un estudio acelerado de estabilidad para demostrar que no se producían pérdidas significativas de actividad biológica.
- Las formulaciones mostradas en la Tabla 6 siguiente se liofilizaron con un liofilizador de nitrógeno TS20002 siguiendo las instrucciones del fabricante. El tiempo total de liofilización fue de aproximadamente 72 horas. Cada una de las formulaciones que se muestran a continuación contenía igualmente 20 g/l de manitol y 0,1 g/l de Tween-80

	Rafinosa							10 g/l	10 g/l						10 g/l							
	Trehalosa	10 g/l			10 g/l		10 g/l															
	Glicina				15mM	15mM							15mM	15mM	15mM					15mM	15mM	15mM
	Histidina			15mM					15mM			15mM					15mM					
	Lisina		15mM			15mM	30mM				15mM			15mM	15mM				15mM	15mM	15mM	15mM
9	Fosfato																					15mM
Tabla 6	Tris																				15mM	
	Acetato																			15mM		
	Histidina																	15mM	15mM			
	Glicina															15mM	15mM					
	HEPES									15mM	15mM	15mM	15mM	15mM	15mM							
	Citrato	15mM																				
	Lio. 26	1	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21

Los resultados de los experimentos de liofilización se muestran en la Tabla 7 siguiente.

	•	Rafinosa						10 g/l	10 g/l						10 g/l							
•	•	Trehalosa	10 g/l			10 g/l		10 g/l														
	-	Glicina			15mM								15mM	15mM	15mM					15mM	15mM	15mM
	Excipentes	Histidina		15mM					15mM			15mM					15mM					
	1	Lisina	15mM			15mM	30mM				15mM			15mM	15mM				15mM	15mM	15mM	15mM
7		Fosfato				15mM																15mM
Tabla 7		Tris																			15mM	
		Acetato																		15mM		
•		Histidina																15mM	15mM			
•	Tampón	Glicina														15mM	15mM					
		HEPES								15mM	15mM	15mM	15mM	15mM	15mM							
		Citrato	15mM																			
		Lio. 26	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21

Como se ha demostrado anteriormente, la solución más transparente se consigue con una solución tampón citrato o HEPES en combinación con un aminoácido.

Para evaluar la estabilidad del rVWF liofilizado reconstituido, se llevaron a cabo ensayos VWF:Ag y VWF:RCo. VWF:Ag corresponde a la cantidad de VWF que puede detectarse en una prueba ELISA especifica de VWF-utilizando un anticuerpo anti-VWF, mientras que VWF:RCo corresponde a la cantidad de VWF que provoca la aglutinación de plaquetas estabilizadas en presencia de ristocetina. Las muestras se almacenaron a 40°C. Asumiendo la aplicabilidad de la ecuación de Arrhenius, la estabilidad a un mes a 40°C es equivalente a la de aproximadamente un año a 4°C. Los resultados de los experimentos de estabilidad se muestran en las Tablas 8 y 9 siguientes.

10 Tabla 8

20

25

		ubiu 0								
	Semanas a 40°C									
formulación VWF:Ag	0	4	5	8						
1	121,1	89,8	113,0	106,6						
2	121,8	102,0	114,0	112,8						
3	119,9	102,0	105,,0	112,7						
4	117,3	100,0	108,0	114,4						
5	121,2	98,2	117,0	114,9						
6	123,8	96,6	107,0	-						
7	135,2	96,6	112,0	112,4						
8	130,6	82,2	108,0	115,7						
9	112,0	89,5	109,0	107,0						
10	122,4	87,1	106,0	107,7						
11	119,3	97,5	115,0	114,2						
12	124,2	109,0	109,0	103,4						
13	110,2	92,3	106,0	112,4						
14	108,9	107,0	103,0	109,0						

Tabla 9

	Semanas a 40°C									
formulación rVWF:Ag	0	4	5	8						
1	86	102	97,0	93,0						
2	84	97	88,0	89,0						
3	85	100	87,0	93,0						
4		102	81,0	98,0						
5	85	89	88,0	98,0						
6	83	102	88,0							
7		92	97,0	95,0						
8	88	94	90,0	104,0						
9	93	91	97,0	100,0						
10	95	87	87,0	87,0						
11	86	93	89,0	99,0						
12	84	91	89,0	95,0						
13	88	87	96,0	89,0						
14	90	91	86,0	92,0						

La desviación estándar correspondiente al ensayo ELISA oscila entre un 10 y un 20%. Los resultados anteriores indican que todas las formulaciones sometidas al ensayo tienen una adecuada estabilidad durante 8 semanas a 40°C.

Se llevaron a cabo experimentos adicionales de estabilidad en los que se utilizaron diferentes aminoácidos en las formulaciones (por ejemplo, glicina, lisina o histidina a 15 mM o 20 mM) y donde se modificaba la solución tampón citrato (por ejemplo, 15, 20 o 25 mM). Como se ha descrito anteriormente, la estabilidad del rVWF se supervisó utilizando el ensayo de actividad VWF:RCo. Incluso al cabo de 13 meses no se observaron diferencias importantes para los valores de actividad VWF:RCo de las muestras de estabilidad rVWF almacenadas a 40°C. Se evaluó la importancia de las mediciones mediante un Test-t. La precisión intermedia del ensayo se determinó calculando el Coeficiente de Varianza. En todas las series de los datos de estabilidad el CV se mantuvo por debajo del 20% cumpliendo el criterio de validación de CV<20%. En función de cuanto antecede puede deducirse que el rVWF es estable en todos los sistemas con solución tampón citrato sometidos a ensayo, independientemente de la molaridad del tampón y de los aminoácidos añadidos. El rVWF sigue manteniendo la estabilidad al menos durante 13 meses,

incluso aunque se almacene a 40°C. La determinación de la potencia mediante el ensayo de actividad VWF:RCo muestra una adecuada precisión intermedia, con unos valores de CV por debajo de 20%.

Así, teniendo en cuenta los datos que se presentan en este documento, se ha propuesto una formulación de rVWF que incluye 15 mM de citrato (Na₃ Citrato x 2 H₂O), 15 mM de glicina, 10 g/l de trehalosa, 20 g/l de manitol y 0,1 g/l de Tween-80, con un pH de 7,3.

Ejemplo 4: Estabilidad a largo plazo

5

10

Pruebas aceleradas y de estabilidad a largo plazo

Se llevaron a cabo estudios de evaluación de la estabilidad del producto farmacéutico final rVWF (FDP) almacenado de acuerdo con las condiciones de almacenamiento recomendadas y restrictivas. Los datos de las condiciones de almacenamiento restrictivas garantizan que las desviaciones en materia de temperatura no afectarán a la calidad del FDP rVWF y se utilizarán para extrapolar la condición aceptable a la caducidad del material en ausencia de datos de estabilidad en tiempo y condiciones reales.

Las actuales especificaciones dictan una humedad residual ≤ 3,0% (determinada mediante el Método de Karl Fischer). Los lotes rVWFF#4FC, rVWFF#5FC, rVWFF#6FC y rVWFF#7FC se lanzaron con unos niveles de 15 humedad del 1,2%, 1,3%, 1,2%, y 1,5% respectivamente. En función de la experiencia anterior con otros productos con configuraciones de vial y tapón similares, se espera que cualquier lote de rVWF lanzado con una humedad residual de aproximadamente un 1.3% se atenga a los límites de la especificación de ≤ 3,0% al término de la vida útil propuesta (es decir, 24 meses a la temperatura de almacenamiento prevista de 5°C ± 3°C).

Los estudios de estabilidad a largo plazo en las condiciones de almacenamiento recomendadas (es decir, 5°C ± 3°C) 20 y a temperaturas elevadas (es decir, 40°C ± 2°C) se llevaron a cabo con cuatro lotes FDP rVWF fabricados. Estos estudios han aportado datos suficientes para comparar la estabilidad de los lotes clínicos individuales.

El protocolo de estabilidad, incluyendo una descripción de los ensayos indicadores de estabilidad y los criterios de aceptación de estabilidad, pueden encontrarse en la Tabla 10, la cual también contiene información relacionada cono los lotes de FDP rVWF evaluados en los estudios de estabilidad.

25 Tabla 10

Table 10									
Cond.almacenamiento (°C)	Nº de lote	Intervalos de prueba completados (y completos)							
5°C ± 3°C	rVWF#1 FC	0, 1, 2, 3, 6, 9, 12, 18, 24 meses							
30°C	rVWF#1 FC	0, 1, 3, 6 meses							
5°C ± 3°C	rVWF#2FC	0, 1, 2, 3, 6, meses							
5°C ± 3°C	rVWF#3FC	0, 2, 3, 6, 9, 12, 18, 24 meses							
30°C	rVWF#3FC	0, 0.5, 1, 2, 3, 6 meses							
40°C	rVWF#3FC	0, 0.5, 1, 2, 3 meses							
5°C ± 3°C	rVWF#4FC	0, 1, 6, 9, 12, 18, 24, (30) meses							
40°C	rVWF#4FC	0, 1, 2, 3, 6, 9 meses							
5°C ± 3°C	rVWF#5FC	0, 1,2, 3, 6, 9, 12, 18, (24, 30) meses							
40°C	rVWF#5FC	0, 1, 2, 3 6, 9 meses							
5°C ± 3°C	rVWF#6FC	0, 1, 2, 3, 6, 9, 12, (18, 24, 30) meses							
40°C	rVWF#6FC	0, 1, 2, 3, 6, 9 meses							
5°C ± 3°C	rVWF#7FC	0, 1, 2, 3, 6, 9, 12, (18, 24, 30) meses							
40°C	rVWF#7FC	0, 1, 2, 3, 6, 9 meses							

Resumen y comentarios acerca de la estabilidad global (24 meses)

Los datos de estabilidad del FDP rVWF presentados constan de:

- 1. Datos de 24 meses de estudios a largo plazo a 5°C ± 3°C (ensayo completo) y datos intermedios de 6 meses a 30 30°C ± 2°C (ensayo completo) del lote rVWF#1FC;
 - 2. Datos de 6 meses a 5°C ± 3°C (ensayo completo) del lote rVWF#2FC;
 - 3. Datos de 24 meses de estudios a largo plazo a 2°C-8°C (ensayo completo), datos de 6 meses a 30°C ± 2°C y datos de 3 meses a 40°C ± 2°C (ensayo completo) del lote rVWF#3FC;
 - 4. Datos de estabilidad a 24 meses a 5°C ± 3°C y datos de 9 meses a 40°C ± 2°C del lote rVWFF#4FC;
- 35
- 5. Datos de estabilidad a 24 meses a 5°C ± 3°C y datos de 9 meses a 40°C ± 2°C del lote rVWFF#5FC; 6. Datos de estabilidad a 12 meses a 5°C ± 3°C y datos a 9 meses a 40°C ± 2°C del lote rVWFF#6FC; y
 - 7. Datos de estabilidad a 12 meses a 5°C ± 3°C y datos a 9 meses a 40°C ± 2°C del lote rVWFF#7FC.

La variación observada en la humedad residual de los lotes rVWFF#4FC, rVWFF#5FC, rVWFF#6FC y rVWFF#7FC permaneció muy por debajo del criterio de aceptación de ≤ 3%, y no afecta a la actividad funcional (VWF:RCo). No se produjeron cambios reseñables en los resultados de estabilidad para las técnicas analíticas cualitativas (es decir, aspecto, análisis SDS-PAGE, etc.) para que los lotes fabricados fuesen adecuados para su uso en estudios clínicos y no clínicos. Igualmente, no se observó tendencia alguna en la disminución de la estabilidad para el análisis total de proteínas, el análisis VWF:Ag o el número observado de multímeros de VWF durante el almacenamiento.

Las variaciones en la proporción de actividad VWF:RCo frente a la actividad VWF:Ag y los datos VWF:RCo presentados en relación con los lotes rVWF#1FC, rVWF#2FC y rVWF#3FC se debieron probablemente a la variación en el método de ensayo, al hecho de que los resultados de la prueba individual de estabilidad de VWF:RCo eran datos obtenidos a partir de una sola determinación de una muestra de estabilidad, y/o datos obtenidos con la metodología de ensayo no acorde con Ph. Eur. Todos los hitos de tiempo de ensayo correspondientes a los lotes no clínicos con posterioridad al cambio de la metodología del ensayo por una metodología de ensayo conforme a Ph.Eur. se sometieron a la prueba utilizando la nueva metodología de ensayo y la original.

El FDP rVWF fabricado a gran escala presentaba características similares a las de los lotes de FDP rVWF fabricados a escala experimental. Estos lotes FDP rVWF mantuvieron la actividad de VWF:RCo durante un período de hasta 24 meses de almacenamiento a 5°C ± 3°C No se produjeron cambios en el patrón del multímero VWF en las muestras de los lotes a gran escala actualmente estables, incluso al cabo de 6 meses de almacenamiento a 30°C ± 2°C o de 9 meses de almacenamiento a 40°C ± 2°C. La Tabla 11 muestra los resultados de VWF:RCo, VWF:Ag y del patrón del multímero de VWF de los lotes rVWF#4FC, rVWF#5FC, rVWF#6FC y rVWF#7FC almacenados en unas condiciones de estrés de 40°C ± 2°C. Los resultados indican su estabilidad en condiciones de almacenamiento a temperatura elevada durante 9 meses, lo que puede extrapolarse a una vida útil de más de 3 años a temperatura ambiente, o incluso más prolongada en condiciones de refrigeración.

Tabla 11

	i abia i	•							
	Datos de estabilidad de rVV	VF#4FC a 4	·0°C ± 2°C)					
Atributo	Especificación		Resultados al cabo de (meses)						
		0	1	2	3	6	9		
Act. VWF:RCo [U/m)]" 11	70-150	130	117	118	127	132	142		
VWF:Ag ELISA (U/ml)	Resultado informe	86	87	79	81	79	86		
Análisis multímero VWF	Resultado informe	21	20	20	20	21	18		
	Datos de estabilidad de rVV	VF#5FC a 4	·0°C ± 2°C)					
Actividad VWF:RCo [U/ml]'	70-150	107	119	120	116	132	134		
VWF:Ag ELISA (U/ml)	Resultado informe	94	86	84	91	90	79		
Análisis multímero VWF	Resultado informe	20	20	18	19	20	19		
	Datos de estabilidad de rVV	VF#6FC a 4	·0°C ± 2°C)					
Actividad VWF:RCo [U/ml]'	70-150	118	111	126	129	130	119		
VWF:Ag ELISA (U/ml)	Resultado informe	85	95	86,3	73,5	80,8	70,3		
Análisis multímero VWF	Resultado informe	20	19	20	20	20	n.t.		
	Datos de estabilidad de rVV	VF#7FC a 4	·0°C ± 2°C)					
Actividad VWF:RCo [U/ml] ¹	70-150	111	115	122	105	99	112		
VWF:Ag ELISA (U/ml)	Resultado informe	87,3	85,3	77,5	68,8	75	73,8		
Análisis multímero VWF	Resultado informe	21	20	20	19	19	19		

25

30

35

10

Un análisis de covarianza (análisis ANCOVA) demostró que la diferencia en las pendientes de las líneas de regresión (lotes rVWFF#4FC, rVWFF#5FC, rVWFF#6FC y rVWFF#7FC almacenados a 5°C ± 3°C) no era significativa (p = 0,906), lo que permite agrupar los datos de actividad VWF:RCo como se describe en ICH Q1A (R2). La diferencia en la elevación de las líneas de tendencia de los lotes individuales tampoco es significativa. La extrapolación de la pendiente agrupada del caso menos favorable, como se muestra en la Figura 1, muestra que los intervalos de confianza se mantienen dentro de los criterios de aceptación para un mínimo de 24 meses. El intervalo de menor confianza para la curva media disminuye hasta el 80% de la actividad inicial a los 51 meses (80% es también la máxima diferencia entre la potencia estimada y la potencia establecida para el Factor Humano von Willebrand en Ph.Eur). La pendiente agrupada del caso menos favorable muestra una disminución mensual de 0,0344 U VWF:RCo. Esta comparación demuestra que las características de estabilidad de la FDP rVWF y específicamente que la actividad de VWF:RCo no experimentaron alteraciones como resultado de los cambios acaecidos en el proceso de producción. La extrapolación anterior respalda la ampliación de la vida útil provisional de la FDP rVWF a 24 meses cuando se almacena a la temperatura de almacenamiento recomendada.

La transferencia de humedad desde el tapón al producto liofilizado depende del material del tapón y se ve afectada 40 por la humedad residual del tapón tras su esterilización, la humedad a la que se almacena la muestra y la tasa intrínseca de transferencia de la humedad del tapón. La humedad residual de los lotes rVWFF#4FC, rVWFF#5FC, rVWFF#6FC y rVWFF#7FC almacenados a 5°C ± 3°C alcanzó niveles comparables (sin que fuese significativa la diferencia en la comparación de las pendientes, siendo p = 0.734), como se muestra en la Figura 2. Los lotes almacenados en condiciones de temperatura elevada, de 40° C \pm 2° C también mostraron un incremento comparable de la humedad residual a lo largo de 9 meses (Figura 3). El análisis ANCOVA demuestra en este caso que la diferencia en la pendiente de las líneas de regresión es comparable (p = 0,546). La Figura 3 muestra la extrapolación de las pendientes agrupadas del caso menos favorable hasta 24 meses.

Estos datos resultan suficientes para respaldar el uso de los lotes rVWFF#6FC y rVWFF#7FC durante el período correspondiente al período de caducidad descrito de 24 meses cuando se almacenan a 5°C ± 3°C.

Condiciones de almacenamiento propuestas y vida útil

Las condiciones de almacenamiento recomendadas para la FDP rVWF son de 5°C ± 3°C. Por tanto, se propone una vida útil provisional de 24 meses para la FDP rVWF cuando se almacena en las condiciones de almacenamiento recomendadas. Probablemente, la vida útil de los lotes FDP rVWF puede ampliarse aún más, en función de los datos adicionales que han de generarse para períodos de almacenamiento más prolongados.

LISTADO DE SECUENCIAS

<110> Schnecker y col.

<120> FORMULACIONES DE VWF RECOMBINANTE LIOFILIZADO

5 <130> 31315/44042A

<150> US-61/107.273

<151> 2008-10-21

<160>3

<170> Patentln version 3.5

10 <210> 1

<211> 8833 <212> DNA <213> Homo sapiens

<400> 1

agctcacage tattgtggtg ggaaagggag ggtggttggt ggatgtcaca gettgggett 60 120 tatctccccc agcagtgggg actccacagc ccctgggcta cataacagca agacagtccg 180 qaqctqtaqc aqacctgatt qaqcctttgc aqcaqctgaq agcatgqcct agggtgggcg 240 qcaccattqt ccaqcaqctq agtttcccaq qqaccttqqa qataqccqca qccctcattt 300 gcaggggaag atgattcctg ccagatttgc cggggtgctg cttgctctgg ccctcatttt gccagggacc ctttgtgcag aaggaactcg cggcaggtca tccacggccc gatgcagcct 360 420 tttcggaagt gacttcgtca acacctttga tgggagcatg tacagctttg cgggatactg 480 cagttacctc ctggcagggg gctgccagaa acgctccttc tcgattattg gggacttcca 540 gaatggcaag agagtgagcc tctccgtgta tcttggggaa ttttttgaca tccatttgtt tgtcaatggt accgtgacac agggggacca aagagtetee atgccetatg cetecaaagg 600 gctgtatcta gaaactgagg ctgggtacta caagctgtcc ggtgaggcct atggctttgt 660 ggccaggatc gatggcagcg gcaactttca agtcctgctg tcagacagat acttcaacaa 720 780 qacctqcqqq ctqtqtqqca actttaacat ctttqctqaa qatqacttta tgacccaaga 840 agggaccttg accteggacc cttatgactt tgccaactca tgggctctga gcagtggaga acagtggtgt gaacgggcat ctcctcccag cagctcatgc aacatctcct ctggggaaat 900 960 gcagaagggc ctgtgggagc agtgccagct tctgaagagc acctcggtgt ttgcccgctg 1020 ccaccetetg gtggaccecg ageettttgt ggccetgtgt gagaagaett tgtgtgagtg 1080 tgctgggggg ctggagtgcg cctgccctgc cctcctggag tacgcccgga cctgtgccca 1140 ggagggaatg gtgctgtacg gctggaccga ccacagcgcg tgcagcccag tgtgccctgc 1200 tggtatggag tataggcagt gtgtgtcccc ttgcgccagg acctgccaga gcctgcacat

caatgaaatg	tgtcaggagc	gatgcgtgga	tggctgcagc	tgccctgagg	gacageteet	1260
ggatgaaggc	ctctgcgtgg	agagcaccga	gtgtccctgc	gtgcattccg	gaaagcgcta	1320
ccctcccggc	acctccctct	ctcgagactg	caacacctgc	atttgccgaa	acagccagtg	1380
gatctgcagc	aatgaagaat	gtccagggga	gtgccttgtc	acaggtcaat	cacacttcaa	1440
gagctttgac	aacagatact	tcaccttcag	tgggatctgc	cagtacctgc	tggcccggga	1500
ttgccaggac	cactccttct	ccattgtcat	tgagactgtc	cagtgtgctg	atgaccgcga	1560
cgctgtgtgc	acccgctccg	tcaccgtccg	gctgcctggc	ctgcacaaca	gccttgtgaa	1620
actgaagcat	ggggcaggag	ttgccatgga	tggccaggac	gtccagctcc	ccctcctgaa	1680
aggtgacctc	cgcatccagc	atacagtgac	ggcctccgtg	cgcctcagct	acggggagga	1740
cctgcagatg	gactgggatg	gccgcgggag	gctgctggtg	aagctgtccc	ccgtctatgc	1800
cgggaagacc	tgcggcctgt	gtgggaatta	caatggcaac	cagggcgacg	acttccttac	1860
cccctctggg	ctggcggagc	cccgggtgga	ggacttcggg	aacgcctgga	agctgcacgg	1920
ggactgccag	gacctgcaga	agcagcacag	cgatccctgc	gccctcaacc	cgcgcatgac	1980
caggttctcc	gaggaggcgt	gcgcggtcct	gacgtccccc	acattcgagg	cctgccatcg	2040
tgccgtcagc	ccgctgccct	acctgcggaa	ctgccgctac	gacgtgtgct	cctgctcgga	2100
cggccgcgag	tgcctgtgcg	gcgccctggc	cagctatgcc	gcggcctgcg	cggggagagg	2160
cgtgcgcgtc	gcgtggcgcg	agccaggccg	ctgtgagctg	aactgcccga	aaggccaggt	2220
gtacctgcag	tgcgggaccc	cctgcaacct	gacctgccgc	tctctctt	acccggatga	2280
ggaatgcaat	gaggcctgcc	tggagggctg	cttctgcccc	ccagggctct	acatggatga	2340
gagggggac	tgcgtgccca	aggcccagtg	cccctgttac	tatgacggtg	agatcttcca	2400
gccagaagac	atcttctcag	accatcacac	catgtgctac	tgtgaggatg	gcttcatgca	2460
ctgtaccatg	agtggagtcc	ccggaagctt	gctgcctgac	gctgtcctca	gcagtcccct	2520
gtctcatcgc	agcaaaagga	gcctatcctg	teggecece	atggtcaagc	tggtgtgtcc	2580
cgctgacaac	ctgcgggctg	aagggctcga	gtgtaccaaa	acgtgccaga	actatgacct	2640
ggagtgcatg	agcatgggct	gtgtctctgg	ctgcctctgc	ccccgggca	tggtccggca	2700
tgagaacaga	tgtgtggccc	tggaaaggtg	tccctgcttc	catcagggca	aggagtatgc	2760
ccctggagaa	acagtgaaga	ttggctgcaa	cacttgtgtc	tgtcgggacc	ggaagtggaa	2820
ctgcacagac	catgtgtgtg	atgccacgtg	ctccacgatc	ggcatggccc	actacctcac	2880
cttcgacggg	ctcaaatacc	tgttccccgg	ggagtgccag	tacgttctgg	tgcaggatta	2940
ctgcggcagt	aaccctggga	cctttcggat	cctagtgggg	aataagggat	gcagccaccc	3000
ctcagtgaaa	tgcaagaaac	gggtcaccat	cctggtggag	ggaggagaga	ttgagctgtt	3060

cacggtgctg	cagtactcct	acatggtgac	tgtggagtac	cccttcagcg	aggcacagtc	4920
caaaggggac	atcctgcagc	gggtgcgaga	gatccgctac	cagggcggca	acaggaccaa	4980
cactgggctg	gccctgcggt	acctctctga	ccacagcttc	ttggtcagcc	agggtgaccg	5040
ggagcaggcg	cccaacctgg	tctacatggt	caccggaaat	cctgcctctg	atgagatcaa	5100
gaggctgcct	ggagacatcc	aggtggtgcc	cattggagtg	ggccctaatg	ccaacgtgca	5160
ggagctggag	aggattggct	ggcccaatgc	ccctatcctc	atccaggact	ttgagacgct	5220
cccccgagag	gctcctgacc	tggtgctgca	gaggtgctgc	tccggagagg	ggctgcagat	5280
cccaccctc	teceetgeac	ctgactgcag	ccagcccctg	gacgtgatcc	ttctcctgga	5340
tggctcctcc	agtttcccag	cttcttattt	tgatgaaatg	aagagtttcg	ccaaggcttt	5400
catttcaaaa	gccaatatag	ggcctcgtct	cactcaggtg	tcagtgctgc	agtatggaag	5460
catcaccacc	attgacgtgc	catggaacgt	ggtcccggag	aaagcccatt	tgctgagcct	5520
tgtggacgtc	atgcagcggg	agggaggccc	cagccaaatc	ggggatgcct	tgggctttgc	5580
tgtgcgatac	ttgacttcag	aaatgcatgg	tgccaggccg	ggagcctcaa	aggcggtggt	5640
catcctggtc	acggacgtct	ctgtggattc	agtggatgca	gcagctgatg	ccgccaggtc	5700
caacagagtg	acagtgttcc	ctattggaat	tggagatcgc	tacgatgcag	cccagctacg	5760
gatcttggca	ggcccagcag	gcgactccaa	cgtggtgaag	ctccagcgaa	tcgaagacct	5820
ccctaccatg	gtcaccttgg	gcaattcctt	cctccacaaa	ctgtgctctg	gatttgttag	5880
gatttgcatg	gatgaggatg	ggaatgagaa	gaggcccggg	gacgtctgga	ccttgccaga	5940
ccagtgccac	accgtgactt	gccagccaga	tggccagacc	ttgctgaaga	gtcatcgggt	6000
caactgtgac	cgggggctga	ggccttcgtg	ccctaacagc	cagtcccctg	ttaaagtgga	6060
agagacctgt	ggctgccgct	ggacctgccc	ctgcgtgtgc	acaggcagct	ccactcggca	6120
catcgtgacc	tttgatgggc	agaatttcaa	gctgactggc	agctgttctt	atgtcctatt	6180
tcaaaacaag	gagcaggacc	tggaggtgat	tctccataat	ggtgcctgca	gccctggagc	6240
aaggcagggc	tgcatgaaat	ccatcgaggt	gaagcacagt	gccctctccg	tcgagctgca	6300
cagtgacatg	gaggtgacgg	tgaatgggag	actggtctct	gttccttacg	tgggtgggaa	6360
catggaagtc	aacgtttatg	gtgccatcat	gcatgaggtc	agattcaatc	accttggtca	6420
catcttcaca	ttcactccac	aaaacaatga	gttccaactg	cagctcagcc	ccaagacttt	6480
tgcttcaaag	acgtatggtc	tgtgtgggat	ctgtgatgag	aacggagcca	atgacttcat	6540
gctgagggat	ggcacagtca	ccacagactg	gaaaacactt	gttcaggaat	ggactgtgca	6600
gcggccaggg	cagacgtgcc	agcccatcct	ggaggagcag	tgtcttgtcc	ccgacagctc	6660
ccactgccag	gtcctcctct	taccactgtt	tgctgaatgc	cacaaggtcc	tggctccagc	6720

cacattctat gccatctgcc a	agcaggacag	ttgccaccag	gagcaagtgt	gtgaggtgat	6780
cgcctcttat gcccacctct g	gtcggaccaa	cggggtctgc	gttgactgga	ggacacctga	6840
tttctgtgct atgtcatgcc c	caccatctct	ggtctacaac	cactgtgagc	atggctgtcc	6900
ccggcactgt gatggcaacg t	tgagctcctg	tggggaccat	ccctccgaag	gctgtttctg	6960
ccctccagat aaagtcatgt t	ggaaggcag	ctgtgtccct	gaagaggcct	gcactcagtg	7020
cattggtgag gatggagtcc a	agcaccagtt	cctggaagcc	tgggtcccgg	accaccagcc	7080
ctgtcagatc tgcacatgcc t	cagcgggcg	gaaggtcaac	tgcacaacgc	agccctgccc	7140
cacggccaaa gctcccacgt g	gtggcctgtg	tgaagtagcc	cgcctccgcc	agaatgcaga	7200
ccagtgctgc cccgagtatg a	agtgtgtgtg	tgacccagtg	agctgtgacc	tgccccagt	7260
gcctcactgt gaacgtggcc t	tccagcccac	actgaccaac	cctggcgagt	gcagacccaa	7320
cttcacctgc gcctgcagga a	aggaggagtg	caaaagagtg	tccccaccct	cctgccccc	7380
gcaccgtttg cccacccttc g	ggaagaccca	gtgctgtgat	gagtatgagt	gtgcctgcaa	7440
ctgtgtcaac tccacagtga g	gctgtcccct	tgggtacttg	gcctcaactg	ccaccaatga	7500
ctgtggctgt accacaacca c	cctgccttcc	cgacaaggtg	tgtgtccacc	gaagcaccat	7560
ctaccctgtg ggccagttct g	gggaggaggg	ctgcgatgtg	tgcacctgca	ccgacatgga	7620
ggatgccgtg atgggcctcc g	gcgtggccca	gtgctcccag	aagccctgtg	aggacagctg	7680
teggteggge tteacttacg t	ttctgcatga	aggcgagtgc	tgtggaaggt	gcctgccatc	7740
tgcctgtgag gtggtgactg g	gctcaccgcg	gggggactcc	cagtcttcct	ggaagagtgt	7800
cggctcccag tgggcctccc c	cggagaaccc	ctgcctcatc	aatgagtgtg	tccgagtgaa	7860
ggaggaggtc tttatacaac a	aaaggaacgt	ctcctgcccc	cagctggagg	tccctgtctg	7920
cccctcgggc tttcagctga g	gctgtaagac	ctcagcgtgc	tgcccaagct	gtcgctgtga	7980
gcgcatggag gcctgcatgc t	tcaatggcac	tgtcattggg	cccgggaaga	ctgtgatgat	8040
cgatgtgtgc acgaectgcc g	gctgcatggt	gcaggtgggg	gtcatctctg	gattcaagct	8100
ggagtgcagg aagaccacct o	gcaacccctg	cccctgggt	tacaaggaag	aaaataacac	8160
aggtgaatgt tgtgggagat g	gtttgcctac	ggcttgcacc	attcagctaa	gaggaggaca	8220
gatcatgaca ctgaagcgtg a	atgagacgct	ccaggatggc	tgtgatactc	acttctgcaa	8280
ggtcaatgag agaggagagt a	acttctggga	gaagagggtc	acaggctgcc	caccctttga	8340
tgaacacaag tgtctggctg a	agggaggtaa	aattatgaaa	attccaggca	cctgctgtga	8400
cacatgtgag gagcctgagt g	gcaacgacat	cactgccagg	ctgcagtatg	tcaaggtggg	8460
aagctgtaag tctgaagtag a	aggtggatat	ccactactgc	cagggcaaat	gtgccagcaa	8520

tgacggggag	gtgaatgtga	agaggcccat	gaaggatgag	actcactttg	aggtggtgga	3120
gtctggccgg	tacatcattc	tgctgctggg	caaagccctc	tccgtggtct	gggaccgcca	3180
cctgagcatc	tccgtggtcc	tgaagcagac	ataccaggag	aaagtgtgtg	gcctgtgtgg	3240
gaattttgat	ggcatccaga	acaatgacct	caccagcagc	aacctccaag	tggaggaaga	3300
ccctgtggac	tttgggaact	cctggaaagt	gagctcgcag	tgtgctgaca	ccagaaaagt	3360
gcctctggac	tcatcccctg	ccacctgcca	taacaacatc	atgaagcaga	cgatggtgga	3420
ttcctcctgt	agaatcctta	ccagtgacgt	cttccaggac	tgcaacaagc	tggtggaccc	3480
cgagccatat	ctggatgtct	gcatttacga	cacctgctcc	tgtgagtcca	ttggggactg	3540
cgcctgcttc	tgcgacacca	ttgctgccta	tgcccacgtg	tgtgcccagc	atggcaaggt	3600
ggtgacctgg	aggacggcca	cattgtgccc	ccagagctgc	gaggagagga	atctccggga	3660
gaacgggtat	gagtgtgagt	ggcgctataa	cagctgtgca	cctgcctgtc	aagtcacgtg	3720
tcagcaccct	gagccactgg	cctgccctgt	gcagtgtgtg	gagggctgcc	atgcccactg	3780
ccctccaggg	aaaatcctgg	atgagctttt	gcagacctgc	gttgaccctg	aagactgtcc	3840
agtgtgtgag	gtggctggcc	ggcgttttgc	ctcaggaaag	aaagtcacct	tgaatcccag	3900
tgaccctgag	cactgccaga	tttgccactg	tgatgttgtc	aacctcacct	gtgaagcctg	3960
ccaggagccg	ggaggcctgg	tggtgcctcc	cacagatgcc	ccggtgagcc	ccaccactct	4020
gtatgtggag	gacatctcgg	aaccgccgtt	gcacgatttc	tactgcagca	ggctactgga	4080
cctggtcttc	ctgctggatg	gctcctccag	gctgtccgag	gctgagtttg	aagtgctgaa	4140
ggcctttgtg	gtggacatga	tggagcggct	gcgcatctcc	cagaagtggg	tccgcgtggc	4200
cgtggtggag	taccacgacg	gctcccacgc	ctacatcggg	ctcaaggacc	ggaagcgacc	4260
gtcagagctg	cggcgcattg	ccagccaggt	gaagtatgcg	ggcagccagg	tggcctccac	4320
cagcgaggtc	ttgaaataca	cactgttcca	aatcttcagc	aagatcgacc	gccctgaagc	4380
ctcccgcatc	accetgetee	tgatggccag	ccaggagccc	caacggatgt	cccggaactt	4440
tgtccgctac	gtccagggcc	tgaagaagaa	gaaggtcatt	gtgatcccgg	tgggcattgg	4500
gccccatgcc	aacctcaagc	agatccgcct	catcgagaag	caggcccctg	agaacaaggc	4560
cttcgtgctg	agcagtgtgg	atgagctgga	gcagcaaagg	gacgagatcg	ttagctacct	4620
ctgtgacctt	gcccctgaag	ccctcctcc	tactctgccc	cccgacatgg	cacaagtcac	4680
tgtgggcccg	gggctcttgg	gggtttcgac	cctggggccc	aagaggaact	ccatggttct	4740
ggatgtggcg	ttcgtcctgg	aaggatcgga	caaaattggt	gaagccgact	tcaacaggag	4800
caaggagttc	atggaggagg	tgattcagcg	gatggatgtg	ggccaggaca	gcatccacgt	4860

agccatgtac	tccattgaca	tcaacgatgt	gcaggaccag	tgctcctgct	gctctccgac	8580
acggacggag	cccatgcagg	tggccctgca	ctgcaccaat	ggctctgttg	tgtaccatga	8640
ggttctcaat	gccatggagt	gcaaatgctc	ccccaggaag	tgcagcaagt	gaggctgctg	8700
cagctgcatg	ggtgcctgct	gctgcctgcc	ttggcctgat	ggccaggcca	gagtgctgcc	8760
agtcctctgc	atgttctgct	cttgtgccct	tctgagccca	caataaaggc	tgagctctta	8820
tcttgcaaaa	ggc					8833

<210> 2

<211> 2783

<212> PRT

<213> Homo sapiens

<400> 2

Thr Leu Cys Ala Glu Gly Thr Arg Gly Arg Ser Ser Thr Ala Arg Cys 20 25 30

Ser Leu Phe Gly Ser Asp Phe Val Asn Thr Phe Asp Gly Ser Met Tyr 35 40 45

Ser Phe Ala Gly Tyr Cys Ser Tyr Leu Leu Ala Gly Gly Cys Gln Lys 50 60

Arg Ser Phe Ser Ile Ile Gly Asp Phe Gln Asn Gly Lys Arg Val Ser 65 70 75 80

Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu Phe Val Asn 85 90 95

Gly Thr Val Thr Gln Gly Asp Gln Arg Val Ser Met Pro Tyr Ala Ser 100 105 110

Lys Leu Glu Thr Glu Ala Gly Tyr Tyr Lys Leu Ser Gly Glu Ala Tyr 115 120 125

Gly Phe Val Ala Arg Ile Asp Gly Ser Gly Asn Phe Gln Val Leu Leu 130 135 140

Ser Asp Arg Tyr Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn 145 150 155 160

Ile Phe Ala Glu Asp Asp Phe Met Thr Gln Glu Gly Thr Leu Thr Ser

				165					170					175	
Asp	Pro	Tyr	Asp 180	Phe	Ala	Asn	Ser	Trp 185	Ala	Leu	Ser	Ser	Gly 190	Glu	Gln
Trp	Суѕ	Glu 195	Arg	Pro	Ser	Ser	Ser 200	Суѕ	Asn	Ile	Ser	Ser 205	Gly	Glu	Met
Gln	Lys 210	Gly	Leu	Trp	Glu	Gln 215	Cys	Gln	Leu	Leu	Lys 220	Ser	Thr	Ser	Val
Phe 225	Ala	Arg	Cys	His	Pro 230	Leu	Val	Asp	Pro	Glu 235	Pro	Phe	Cys	Glu	Lys 240
Thr	Leu	Суз	Glu	Cys 245	Ala	Gly	Gly	Leu	Glu 250	Cys	Ala	Суз	Pro	Ala 255	Leu
Leu	Glu	Tyr	Ala 260	Arg	Thr	Cys	Ala	Gln 265	Glu	Gly	Met	Val	Leu 270	Tyr	Gly
Trp	Thr	Asp 275	His	Ser	Ala	Cys	Ser 280	Pro	Val	Суз	Pro	Ala 285	Gly	Met	Glu
Tyr	Arg 290	Gln	Суѕ	Val	Ser	Pro 295	Суѕ	Ala	Arg	Thr	Cys 300	Gln	Ser	Leu	His
Ile 305	Asn	Glu	Met	Cys	Gln 310	Glu	Arg	Суѕ	Val	Asp 315	Gly	Cys	Ser	Суѕ	Pro 320
Glu	Gly	Gln	Leu	Leu 325	Asp	Glu	Gly	Leu	Cys 330	Val	Glu	Ser	Thr	Glu 335	Суз
Pro	Суѕ	Val	His 340	Ser	Gly	Lys	Arg	Tyr 345	Pro	Pro	Gly	Thr	Ser 350	Leu	Ser
Arg	Asp	Cys 355	Asn	Thr	Cys	Ile	Cys 360	Arg	Asn	Ser	Gln	Trp 365	Ile	Cys	Ser
Asn	Glu 370	Glu	Cys	Pro	Gly	Glu 375	Cys	Leu	Val	Thr	Gly 380	Gln	Ser	His	Phe
Lys 385	Ser	Phe	Asp	Asn	Arg 390	Tyr	Phe	Thr	Phe	Ser 395	Gly	Ile	Суѕ	Gln	Tyr 400
Leu	Leu	Ala	Arg	Asp	Cys	Gln	Asp	His	Ser	Phe	Ser	Ile	Val	Ile	

Thr	Val	Gln	Cys 420	Ala	Asp	Asp	Arg	Asp 425	Ala	Val	Суѕ	Thr	Arg 430	Ser	Val
Thr	Val	Arg 435	Leu	Pro	Gly	Leu	His 440	Asn	Ser	Leu	Val	Lys 445	Leu	Lys	His
Gly	Ala 450	Gly	Val	Ala	Met	Asp 455	Gly	Gln	Asp	Val	Gln 460	Leu	Pro	Leu	Leu
Lys 465	Gly	Asp	Leu	Arg	Ile 470	Gln	His	Thr	Val	Thr 475	Ala	Ser	Val	Arg	Leu 480
Ser	Tyr	Gly	Glu	Asp 485	Leu	Gln	Met	Asp	Trp 490	Asp	Gly	Arg	Gly	Arg 495	Leu
Leu	Val	Lys	Leu 500	Ser	Pro	Val	Tyr	Ala 505	Gly	Lys	Thr	Суѕ	Gly 510	Leu	Суѕ
Gly	Asn	Tyr 515	Asn	Gly	Asn	Gln	Gly 520	Asp	Asp	Phe	Leu	Thr 525	Pro	Ser	Gly
Leu	Ala 530	Glu	Pro	Arg	Val	Glu 535	Asp	Phe	Gly	Asn	Ala 540	Trp	Lys	Leu	His
Gly 545	Asp	Суѕ	Gln	Asp	Leu 550	Gln	Lys	Gln	His	Ser 555	Asp	Pro	Суѕ	Ala	Leu 560
Asn	Pro	Arg	Met	Thr 565	Arg	Phe	Ser	Glu	Glu 570	Ala	Cys	Ala	Val	Leu 575	Thr
Ser	Pro	Thr	Phe 580	Glu	Ala	Cys	His	Arg 585	Ala	Val	Ser	Pro	Leu 590	Pro	Tyr
Leu	Arg	Asn 595	Суѕ	Arg	Tyr	Asp	Val 600	Cys	Ser	Cys	Ser	Asp 605	Gly	Arg	Glu
Cys	Leu 610	Cys	Gly	Ser	Tyr	Ala 615	Ala	Ala	Cys	Ala	Gly 620	Arg	Gly	Val	Arg
Val 625	Ala	Trp	Arg	Glu	Pro 630	Gly	Arg	Cys	Glu	Leu 635	Asn	Cys	Pro	Lys	Gly 640
Gln	Val	Tyr	Leu	Gln 645	Cys	Gly	Thr	Pro	Cys 650	Asn	Leu	Thr	Cys	Arg 655	Ser

Leu	Ser	Tyr	Pro 660	Asp	Glu	Glu	Cys	Asn 665	Glu	Ala	Cys	Leu	Glu 670	Gly	Суз
Phe	Cys	Pro 675	Pro	Met	Asp	Glu	Arg 680	Gly	Asp	Cys	Val	Pro 685	Lys	Ala	Gln
Cys	Pro 690	Cys	Tyr	Tyr	Asp	Gly 695	Glu	Ile	Phe	Gln	Pro 700	Glu	Asp	Ile	Phe
Ser 705	Asp	His	His	Thr	Met 710	Cys	Tyr	Cys	Glu	Asp 715	Gly	Phe	Met	His	Cys 720
Thr	Met	Ser	Gly	Val 725	Pro	Gly	Ser	Leu	Leu 730	Pro	Asp	Ala	Val	Leu 735	Ser
Ser	Pro	Leu	Ser 740	His	Arg	Ser	Lys	Arg 745	Ser	Leu	Ser	Суѕ	Arg 750	Pro	Pro
Met	Val	Lys 755	Leu	Val	Cys	Pro	Ala 760	Asp	Asn	Leu	Arg	Ala 765	Glu	Gly	Leu
Glu	Cys 770	Thr	Lys	Thr	Суѕ	Gln 775	Asn	Tyr	Asp	Leu	Glu 780	Cys	Met	Ser	Met
Gly 785	Cys	Val	Ser	Gly	Cys 790	Leu	Cys	Pro	Pro	Gly 795	Met	Val	Arg	His	Glu 800
Asn	Arg	Суз	Glu	Arg 805	Суз	Pro	Суѕ	Phe	His 810	Gln	Gly	Lys	Glu	Tyr 815	Ala
Pro	Gly	Glu	Thr 820	Val	Lys	Ile	Gly	Cys 825	Asn	Thr	Cys	Val	Cys 830	Arg	Asp
Arg	Lys	Trp 835	Asn	Cys	Thr	Asp	His 840	Val	Cys	Asp	Ala	Thr 845	Суѕ	Ser	Thr
Ile	Gly 850	Met	Ala	His	Tyr	Leu 855	Thr	Phe	Asp	Gly	Leu 860	Lys	Tyr	Leu	Phe
Pro 865	Gly	Glu	Cys	Gln	Tyr 870	Val	Leu	Val	Gln	Asp 875	Tyr	Cys	Gly	Ser	Asn 880
Pro	Gly	Thr	Phe	Arg 885	Ile	Leu	Val	Gly	Asn 890	Lys	Gly	Cys	Ser	His 895	Pro

- Ser Val Lys Cys Lys Lys Arg Val Thr Ile Leu Val Glu Gly Glu 900 905 910
- Ile Glu Leu Phe Asp Gly Glu Val Asn Val Lys Arg Pro Met Lys Asp 915 920 925
- Glu Thr His Phe Glu Val Val Glu Ser Gly Arg Tyr Ile Ile Leu Leu 930 935 940
- Leu Gly Lys Ala Leu Ser Val Val Trp Asp Arg His Leu Ser Ile Ser 945 950 955 960
- Val Val Leu Lys Gln Thr Tyr Gln Glu Lys Val Cys Gly Leu Cys Gly 965 970 975
- Asn Phe Asp Gly Ile Gln Asn Asn Asp Leu Thr Ser Ser Asn Leu Gln 980 985 990
- Val Glu Glu Asp Pro Val Asp Phe Gly Asn Ser Trp Lys Val Ser Ser 995 1000 1005
- Gln Cys Ala Asp Thr Arg Lys Val Pro Leu Asp Ser Ser Pro Ala 1010 1015 1020
- Thr Cys His Asn Asn Ile Met Lys Gln Thr Met Val Asp Ser Ser 1025 1030 1035
- Cys Arg Ile Leu Thr Ser Asp Val Phe Gln Asp Cys Asn Lys Leu 1040 1045 1050
- Val Asp Pro Glu Pro Tyr Leu Asp Val Cys Ile Tyr Asp Thr Cys 1055 1060 1065
- Ser Cys Glu Ser Ile Gly Asp Cys Ala Cys Phe Cys Asp Thr Ile 1070 1075 1080
- Ala Ala Tyr Ala His Val Cys Ala Gln His Gly Lys Val Val Thr $1085 \hspace{1.5cm} 1090 \hspace{1.5cm} 1095$
- Trp Arg Thr Ala Thr Leu Cys Pro Gln Ser Cys Glu Glu Arg Asn 1100 1105 1110
- Leu Arg Glu Asn Gly Tyr Glu Cys Glu Trp Arg Tyr Asn Ser Cys 1115 1120 1125
- Ala Pro Ala Cys Gln Val Thr Cys Gln His Pro Glu Pro Leu Ala

	1130					1135					1140			
Cys	Pro 1145	Val	Gln	Cys	Val	Glu 1150	Gly	Cys	His	Ala	His 1155	Суѕ	Pro	Pro
Gly	Lys 1160	Ile	Leu	Asp	Glu	Leu 1165	Leu	Gln	Thr	Cys	Val 1170	Asp	Pro	Glu
Asp	Cys 1175	Pro	Val	Суѕ	Glu	Val 1180	Ala	Gly	Arg	Arg	Phe 1185	Ala	Ser	Gly
Lys	Lys 1190	Val	Thr	Leu	Asn	Pro 1195	Ser	Asp	Pro	Glu	His 1200	Cys	Gln	Ile
Cys	His 1205	Суѕ	Asp	Val	Val	Asn 1210	Leu	Thr	Cys	Glu	Ala 1215	Cys	Gln	Glu
Pro	Gly 1220	Gly	Leu	Val	Val	Pro 1225	Pro	Thr	Asp	Ala	Pro 1230	Val	Ser	Pro
Thr	Thr 1235		Tyr	Val	Glu	Asp 1240	Ile	Ser	Glu	Pro	Pro 1245	Leu	His	Asp
Phe	Tyr 1250	The state of the s	Ser	Arg	Leu	Leu 1255	-	Leu	Val	Phe	Leu 1260		Asp	Gly
Ser	Ser 1265	Arg	Leu	Ser	Glu	Ala 1270	Glu	Phe	Glu	Val	Leu 1275	Lys	Ala	Phe
Val	Val 1280		Met	Met	Glu	Arg 1285		Arg	Ile	Ser	Gln 1290	Lys	Trp	Val
Arg	Val 1295	Ala	Val	Val	Glu	Tyr 1300	His	Asp	Gly	Ser	His 1305	Ala	Tyr	Ile
Gly	Leu 1310	_	Asp	Arg	Lys	Arg 1315	Pro	Ser	Glu	Leu	Arg 1320	Arg	Ile	Ala
Ser	Gln 1325		Lys	Tyr	Ala	Gly 1330	Ser	Gln	Val	Ala	Ser 1335	Thr	Ser	Glu
Val	Leu 1340	100	Tyr	Thr	Leu	Phe 1345		Ile	Phe	Ser	Lys 1350	Ile	Asp	Arg
Pro	Glu 1355	Ala	Ser	Arg	Ile	Thr 1360	Leu	Leu	Leu	Met	Ala 1365	Ser	Gln	Glu

Pro	Gln 1370	Arg	Met	Ser	Arg	Asn 1375		Val	Arg	Tyr	Val 1380	Gln	Gly	Leu
Lys	Lys 1385	Lys	Lys	Val	Ile	Val 1390	Ile	Pro	Val	Gly	Ile 1395	Gly	Pro	His
Ala	Asn 1400		Lys	Gln	Ile	Arg 1405		Ile	Glu		Gln 1410	Ala	Pro	Glu
Asn	Lys 1415	Ala	Phe	Val	Leu	Ser 1420	Ser	Val	Asp	Glu	Leu 1425	Glu	Gln	Gln
Arg	Asp 1430		Ile	Val	Ser	Tyr 1435		Cys	Asp		Ala 1440		Glu	Ala
Pro	Pro 1445		Thr	Leu	Pro	Pro 1450	Asp	Met	Ala		Val 1455		Val	Gly
Pro	Gly 1460		Leu	Gly	Val	Ser 1465	Thr	Leu	Gly	Pro	Lys 1470	Arg	Asn	Ser
Met	Val 1475		Asp	Val	Ala	Phe 1480		Leu	Glu	Gly	Ser 1485	Asp	Lys	Ile
Gly	Glu 1490		Asp	Phe	Asn	Arg 1495		Lys	Glu	Phe	Met 1500	Glu	Glu	Val
Ile	Gln 1505		Met	Asp		Gly 1510		Asp	Ser	Ile	His 1515		Thr	Val
Leu	Gln 1520					Val 1525							Ser	Glu
Ala	Gln 1535		Lys	Gly	Asp	Ile 1540	Leu	Gln	Arg	Val	Arg 1545		Ile	Arg
Tyr	Gln 1550		Gly	Asn	Arg	Thr 1555		Thr	Gly	Leu	Ala 1560		Arg	Tyr
Leu	Ser 1565	-	His	Ser	Phe	Leu 1570	Val	Ser	Gln	Gly	Asp 1575	9553	Glu	Gln
Ala	Pro 1580		Leu	Val	Туг	Met 1585		Thr	Gly	Asn	Pro 1590		Ser	Asp

Glu Ile Lys 1595	Arg Leu Pr	o Gly Asp 1600	Ile Gln Va	1 Val 1605	Pro Ile	Gly
Val Gly Pro 1610	Asn Ala As	n Val Gln 1615	Glu Leu Gl	u Arg 1620	Ile Gly	Trp
Pro Asn Ala 1625	Pro Ile Le	u Ile Glm 1630	Asp Phe Gl	u Thr 1635	Leu Pro	Arg
Glu Ala Pro 1640	Asp Leu Va	l Leu Gln 1645	Arg Cys Cy	s Ser 1650	Gly Glu	Gly
Leu Gln Ile 1655	e Pro Thr Le	u Ser Pro 1660	Ala Pro As	p Cys 1665	Ser Gln	Pro
Leu Asp Val	. Ile Leu Le	u Leu Asp 1675	Gly Ser Se	er Ser 1680	Phe Pro	Ala
Ser Tyr Phe	e Asp Glu Me	t Lys Ser 1690	Phe Ala Ly	's Ala 1695	Phe Ile	Ser
Lys Ala Asr 1700	n Ile Gly Pr	o Arg Leu 1705	Thr Gln Va	1 Ser 1710	Val Leu	Gln
Tyr Gly Sen 1715	: Ile Thr Th	r Ile Asp 1720	Val Pro Tr	p Asn 1725	Val Val	Pro
Glu Lys Ala 1730	a His Leu Le	u Ser Leu 1735	ı Val Asp Va	al Met 1740	Gln Arg	Glu
Gly Gly Pro	Ser Gln Il	e Gly Asp 1750	Ala Leu Gl	ly Phe 1755	Ala Val	Arg
Tyr Leu The	r Ser Glu Me	t His Gly 1765	/ Ala Arg Pi	co Gly 1770	Ala Ser	Lys
Ala Val Vai	l Ile Leu Va	l Thr Asp 1780	o Val Ser Va	al Asp 1785	Ser Val	Asp
Ala Ala Ala 1790	a Asp Ala Al	a Arg Sei 1795	: Asn Arg Va	al Thr 1800	Val Phe	Pro
Ile Gly Ile 1805	e Gly Asp Aı	g Tyr Asp 1810	o Ala Ala G	ln Leu 1815	Arg Ile	Leu

Ala	Gly 1820	Pro	Ala	Gly	Asp	Ser 1825	Asn	Val	Val	Lys	Leu 1830	Gln	Arg	Ile
Glu	Asp 1835	Leu	Pro	Thr	Met	Val 1840	Thr	Leu	Gly		Ser 1845		Leu	His
Lys	Leu 1850	Cys	Ser	Gly	Phe	Val 1855	Arg	Ile	Cys	Met	Asp 1860	Glu	Asp	Gly
Asn	Glu 1865	Lys	Arg	Pro	Gly	Asp 1870		Trp	Thr	Leu	Pro 1875	Asp	Gln	Cys
His	Thr 1880		Thr	Cys	Gln	Pro 1885		Gly	Gln	Thr	Leu 1890		Lys	Ser
His	Arg 1895	Val	Asn	Cys	Asp	Arg 1900	Gly	Leu	Arg	Pro	Ser 1905	Cys	Pro	Asn
Ser	Gln 1910	Ser	Pro	Val	Lys	Val 1915		Glu	Thr	100000	Gly 1920	Cys	Arg	Trp
Thr	Cys 1925	Pro	Cys	Val	Cys	Thr 1930		Ser	Ser	Thr	Arg 1935	His	Ile	Val
Thr	Phe 1940	Asp	Gly	Gln	Asn	Phe 1945	-	Leu	Thr	Gly	Ser 1950		Ser	Tyr
Val	Leu 1955		Gln	Asn	Lys	Glu 1960	Gln	Asp	Leu	Glu	Val 1965		Leu	His
Asn	Gly 1970	Ala	Cys	Ser	Pro	Gly 1975	Ala	Arg	Gln	Gly	Cys 1980		Lys	Ser
Ile	Glu 1985	Val	Lys	His	Ser	Ala 1990	Leu	Ser	Val	Glu	Leu 1995		Ser	Asp
Met	Glu 2000	Val	Thr	Val	Asn	Gly 2005	Arg	Leu	Val	Ser	Val 2010	Pro	Tyr	Val
Gly	Gly 2015		Met	Glu	Val	Asn 2020	Val	Tyr	Gly	Ala	Ile 2025		His	Glu
Val	Arg 2030	Phe	Asn	His	Leu	Gly 2035	His	Ile	Phe	Thr	Phe 2040		Pro	Gln
Asn	Asn	Glu	Phe	Gln	Leu	Gln	Leu	Ser	Pro	Lys	Thr	Phe	Ala	Ser

	2045					2050					2055			
Lys	Thr 2060	Tyr	Gly	Leu		Gly 2065	Ile	Cys	Asp	Glu	Asn 2070	Gly	Ala	Asn
Asp	Phe 2075	Met	Leu	Arg		Gly 2080	Thr	Val	Thr	Thr	Asp 2085	Trp	Lys	Thr
Leu	Val 2090	Gln	Glu	Trp	Thr	Val 2095	Gln	Arg	Pro	Gly	Gln 2100	Thr	Cys	Gln
Pro	Glu 2105	Gln	Cys	Leu	Val	Pro 2110	Asp	Ser	Ser	His	Cys 2115	Gln	Val	Leu
Leu	Leu 2120	Pro	Leu	Phe	Ala	Glu 2125	Cys	His	Lys	Val	Leu 2130	Ala	Pro	Ala
Thr	Phe 2135		Ala	Ile	Cys	Gln 2140	Gln	Asp	Ser	Cys	His 2145	Gln	Glu	Gln
Val	Cys 2150		Val	Ile		Ser 2155		Ala	His	Leu	Cys 2160		Thr	Asn
Gly	Val 2165	Cys	Val	Asp	Trp	Arg 2170	Thr	Pro	Asp	Phe	Cys 2175	Ala	Met	Ser
Суѕ	Pro 2180		Ser	Leu	Val	Tyr 2185		His	Суз	Glu	His 2190	Gly	Суѕ	Pro
						Val 2200							Pro	Ser
Glu	Gly 2210		Phe	Суѕ	Pro	Pro 2215	Asp	Lys	Val	Met	Leu 2220	Glu	Gly	Ser
Cys	Val 2225		Glu	Glu	Ala	Cys 2230	Thr	Gln	Суз	Ile	Gly 2235		Asp	Gly
Val	Gln 2240		Gln	Phe	Leu	Glu 2245	Ala	Trp	Val	Pro	Asp 2250		Gln	Pro
Суз	Gln 2255		Суз	Thr	Суз	Leu 2260	Ser	Gly	Arg	Lys	Val 2265	Asn	Суѕ	Thr
Thr	Gln 2270	Pro	Cys	Pro	Thr	Ala 2275	Lys	Ala	Pro	Thr	Cys 2280	Gly	Leu	Cys

Glu Val Ala 2285	Arg Leu Arg	Gln Asn 2290	Ala Asp	Gln Cys 2295	Cys Pro Glu
Tyr Glu Cys 2300	Val Cys Asp	Pro Val 2305	Ser Cys	Asp Leu 2310	Pro Pro Val
Pro His Cys 2315	Glu Arg Gly	Leu Gln 2320	Pro Thr	Leu Thr 2325	Asn Pro Gly
Glu Cys Arg 2330	Pro Asn Phe	Thr Cys 2335	Ala Cys	Arg Lys 2340	Glu Glu Cys
Lys Arg Val 2345	Ser Pro Pro	Ser Cys 2350	Pro Pro	His Arg 2355	Leu Pro Thr
Leu Arg Lys 2360	Thr Gln Cys	Cys Asp 2365	Glu Tyr	Glu Cys 2370	Ala Cys Asn
Cys Val Asr 2375	Ser Thr Val	Ser Cys 2380	Pro Leu	Gly Tyr 2385	Leu Ala Ser
Thr Ala Thr 2390	: Asn Asp Cys	Gly Cys 2395	Thr Thr	Thr Thr 2400	Cys Leu Pro
Asp Lys Val	. Cys Val His	arg Ser 2410	Thr Ile	Tyr Pro 2415	Val Gly Gln
Phe Trp Glu 2420	ı Glu Gly Cys	Asp Val 2425	Cys Thr	Cys Thr 2430	Asp Met Glu
Asp Ala Val 2435	. Met Gly Leu	ı Arg Val 2440	Ala Gln	Cys Ser 2445	Gln Lys Pro
Cys Glu Asp 2450	Ser Cys Arq	g Ser Gly 2455	Phe Thr	Tyr Val 2460	Leu His Glu
Gly Glu Cys 2465	s Cys Gly Arq	g Cys Leu 2470	Pro Ser	Ala Cys 2475	Glu Val Val
Thr Gly Ser 2480	Pro Arg Gly	Asp Ser 2485	Gln Ser	Ser Trp 2490	Lys Ser Val
Gly Ser Glr 2495	n Trp Glu Ası	n Pro Cys 2500	Leu Ile	Asn Glu 2505	Cys Val Arg

	Lys 2510		Glu	Val	Phe	Ile 2515	Gln	Gln	Arg	Asn	Val 2520	Ser	Cys	Pro
	Leu 2525	Glu	Val	Pro		Cys 2530	Pro	Ser	Gly		Gln 2535	Leu	Ser	Cys
	Thr 2540		Ala	Cys	Суз	Pro 2545	Ser	Суз	Arg		Glu 2550	Arg	Met	Glu
	Cys 2555		Leu	Asn		Thr 2560		Ile	Gly		Gly 2565	Lys	Thr	Val
	Ile 2570	Asp	Val	Суѕ	Thr	Thr 2575		Arg	Cys	Met	Val 2580	Gln	Val	Gly
	Ile 2585		Gly	Phe		Leu 2590		Cys	Arg		Thr 2595		Cys	Asn
	Cys 2600		Leu	Gly	Tyr	Lys 2605	Glu	Glu	Asn	Asn	Thr 2610	Gly	Glu	Cys
	Gly 2615		Суз	Leu		Thr 2620		Cys	Thr		Gln 2625	Leu	Arg	Gly
50-5-0-00 C	Gln 2630		Met	Thr	Leu	Lys 2635	Arg	Asp	Glu	Thr	Leu 2640	Gln	Asp	Gly
0.000	Asp 2645		His	Phe		Lys 2650		Asn	Glu		Gly 2655		Tyr	Phe
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Glu 2660		Arg	Val	Thr	Gly 2665		Pro	Pro	Phe	Asp 2670	Glu	His	Lys
Суз	Leu 2675		Glu	Gly	Gly	Lys 2680		Met	Lys	Ile	Pro 2685		Thr	Cys
Суѕ	Asp 2690	Thr	Суѕ	Glu	Glu	Pro 2695	Glu	Суѕ	Asn	Asp	Ile 2700		Ala	Arg
Leu	Gln 2705	10000	Val	Lys	Val	Gly 2710	Ser	Cys	Lys	Ser	Glu 2715		Glu	Val
Asp	Ile 2720	His	Tyr	Cys	Gln	Gly 2725	Lys	Cys	Ala	Ser	Lys 2730		Met	Tyr

Ser Ile Asp Ile Asn Asp Val Gln Asp Gln Cys Ser Cys Cys Ser 2735 2740 2745

Pro Thr Arg Thr Glu Pro Met Gln His Cys Thr Asn Gly Ser Val 2750 2755 2760

Val Tyr His Glu Val Leu Asn Ala Met Glu Cys Lys Cys Ser Pro 2765 2770 2775

Arg Lys Cys Ser Lys 2780

<210> 3 <211> 2050

<212> PRT

<213> Homo sapiens

<400> 3

Ser Leu Ser Cys Arg Pro Pro Met Val Lys Leu Val Cys Pro Ala Asp 1 5 10 15

Asn Leu Arg Ala Glu Gly Leu Glu Cys Thr Lys Thr Cys Gln Asn Tyr 20 25 30

Asp Leu Glu Cys Met Ser Met Gly Cys Val Ser Gly Cys Leu Cys Pro 35 40 45

Pro Gly Met Val Arg His Glu Asn Arg Cys Val Ala Leu Glu Arg Cys 50 60

Pro Cys Phe His Gln Gly Lys Glu Tyr Ala Pro Gly Glu Thr Val Lys 65 70 75 80

Ile Gly Cys Asn Thr Cys Val Cys Arg Asp Arg Lys Trp Asn Cys Thr 85 90 95

Asp His Val Cys Asp Ala Thr Cys Ser Thr Ile Gly Met Ala His Tyr 100 105 110

Leu Thr Phe Asp Gly Leu Lys Tyr Leu Phe Pro Gly Glu Cys Gln Tyr 115 120 125

Val Leu Val Gln Asp Tyr Cys Gly Ser Asn Pro Gly Thr Phe Arg Ile 130 135 140

Leu Val Gly Asn Lys Gly Cys Ser His Pro Ser Val Lys Cys Lys Lys 145 150 155 160

Arg	Val	Thr	Ile	Leu 165	Val	Glu	Gly	Gly	Glu 170	Ile	Glu	Leu	Phe	Asp 175	Gly
Glu	Val	Asn	Val 180	Lys	Arg	Pro	Met	Lys 185	Asp	Glu	Thr	His	Phe 190	Glu	Val
Val	Glu	Ser 195	Gly	Arg	Tyr	Ile	Ile 200	Leu	Leu	Leu	Gly	Lys 205	Ala	Leu	Ser
Val	Val 210	Trp	Asp	Arg	His	Leu 215	Ser	Ile	Ser	Val	Val 220	Leu	Lys	Gln	Thr
Туг 225	Gln	Glu	Lys	Val	Cys 230	Gly	Leu	Суѕ	Gly	Asn 235	Phe	Asp	Gly	Ile	Gln 240
Asn	Asn	Asp	Leu	Thr 245	Ser	Ser	Asn	Leu	Gln 250	Val	Glu	Glu	Asp	Pro 255	Val
Asp	Phe	Gly	Asn 260	Ser	Trp	Lys	Val	Ser 265	Ser	Gln	Суѕ	Ala	Asp 270	Thr	Arg
Lys	Val	Pro 275	Leu	Asp	Ser	Ser	Pro 280	Ala	Thr	Суѕ	His	Asn 285	Asn	Ile	Met
Lys	Gln 290	Thr	Met	Val	Asp	Ser 295	Ser	Cys	Arg	Ile	Leu 300	Thr	Ser	Asp	Val
Phe 305	Gln	Asp	Cys	Asn	Lys 310	Leu	Val	Asp	Pro	Glu 315	Pro	Tyr	Leu	Asp	Val 320
Cys	.Ile	Tyr	Asp	Thr 325	Cys	Ser	Суѕ	Glu	Ser 330	Ile	Gly	Asp	Суз	Ala 335	Суз
Phe	Cys	Asp	Thr 340	Ile	Ala	Ala	Tyr	Ala 345	His	Val	Cys	Ala	Gln 350	His	Gly
Lys	Val	Val 355	Thr	Trp	Arg	Thr	Ala 360	Thr	Leu	Суѕ	Pro	Gln 365	Ser	Суѕ	Glu
Glu	Arg 370	Asn	Leu	Arg	Glu	Asn 375	Gly	Tyr	Glu	Cys	Glu 380	Trp	Arg	Tyr	Asn
Ser 385	Cys	Ala	Pro	Ala	Cys 390	Gln	Val	Thr	Cys	Gln 395	His	Pro	Glu	Pro	Leu 400

Ala	Cys	Pro	Val	Gln 405	Cys	Val	Glu	Gly	Cys 410	His	Ala	His	Cys	Pro 415	Pro
Gly	Lys	Ile	Leu 420	Asp	Glu	Leu	Leu	Gln 425	Thr	Cys	Val	Asp	Pro 430	Glu	Asp
Суѕ	Pro	Val 435	Cys	Glu	Val	Ala	Gly 440	Arg	Arg	Phe	Ala	Ser 445	Gly	Lys	Lys
Val	Thr 450	Leu	Asn	Pro	Ser	Asp 455	Pro	Glu	His	Cys	Gln 460	Ile	Cys	His	Cys
Asp 465	Val	Val	Asn	Leu	Thr 470	Cys	Glu	Ala	Суѕ	Gln 475	Glu	Pro	Gly	Gly	Leu 480
Val	Val	Pro	Pro	Thr 485	Asp	Ala	Pro	Val	Ser 490	Pro	Thr	Thr	Leu	Tyr 495	Val
Glu	Asp	Ile	Ser 500	Glu	Pro	Pro	Leu	His 505	Asp	Phe	Tyr	Суѕ	Ser 510	Arg	Leu
Leu	Asp	Leu 515	Val	Phe	Leu	Leu	Asp 520	Gly	Ser	Ser	Arg	Leu 525	Ser	Glu	Ala
Glu	Phe 530	Glu	Val	Leu	Lys	Ala 535	Phe	Val	Val	Asp	Met 540	Met	Glu	Arg	Leu
Arg 545	Ile	Ser	Gln	Lys	Trp 550	Val	Arg	Val	Ala	Val 555	Val	Glu	Tyr	His	Asp 560
Gly	Ser	His	Ala	Tyr 565	Ile	Gly	Leu	Lys	Asp 570	Arg	Lys	Arg	Pro	Ser 575	Glu
Leu	Arg	Arg	Ile 580	Ala	Ser	Gln	Val	Lys 585	Tyr	Ala	Gly	Ser	Gln 590	Val	Ala
Ser	Thr	Ser 595	Glu	Val	Leu	Lys	Tyr 600	Thr	Leu	Phe	Gln	Ile 605	Phe	Ser	Lys
Ile	Asp 610	Arg	Pro	Glu	Ala	Ser 615	Arg	Ile	Thr	Leu	Leu 620	Leu	Met	Ala	Ser
Gln 625	Glu	Pro	Gln	Arg	Met 630	Ser	Arg	Asn	Phe	Val 635	Arg	Tyr	Val	Gln	Gly 640

Leu _.	Lys	Lys	Lys	Lys 645	Val	Ile	Val	Ile	Pro 650	Val	Gly	Ile	Gly	Pro 655	His
Ala	Asn	Leu	Lys 660	Gln	Ile	Arg	Leu	11e 665	Glu	Lys	Gln	Ala	Pro 670	Glu	Asn
Lys	Ala	Phe 675	Val	Leu	Ser	Ser	Val 680	Asp	Glu	Leu	Glu	Gln 685	Gln	Arg	Asp
Glu	Ile 690	Val	Ser	Tyr	Leu	Cys 695	Asp	Leu	Ala	Pro	Glu 700	Ala	Pro	Pro	Pro
Thr 705	Leu	Pro	Pro	Asp	Met 710	Ala	Gln	Val	Thr	Val 715	Gly	Pro	Gly	Leu	Leu 720
Gly	Val	Ser	Thr	Leu 725	Gly	Pro	Lys	Arg	Asn 730	Ser	Met	Val	Leu	Asp 735	Val
Ala	Phe	Val	Leu 740	Glu	Gly	Ser	Asp	Lys 745	Ile	Gly	Glu	Ala	Asp 750	Phe	Asn
Arg	Ser	Lys 755	Glu	Phe	Met	Glu	Glu 760	Val	Ile	Gln	Arg	Met 765	Asp	Val	Gly
Gln	Asp 770	Ser	Ile	His	Val	Thr 775	Val	Leu	Gln	Tyr	Ser 780	Tyr	Met	Val	Thr
Val 785	Glu	Tyr	Pro	Phe	Ser 790	Glu	Ala	Gln	Ser	Lys 795	Gly	Asp	Ile	Leu	Gln 800
Arg	Val	Arg	Glu	Ile 805	Arg	Tyr	Gln	Gly	Gly 810	Asn	Arg	Thr	Asn	Thr 815	Gly
Leu	Ala	Leu	Arg 820	Tyr	Leu	Ser	Asp	His 825	Ser	Phe	Leu	Val	Ser 830	Gln	Gly
Asp	Arg	Glu 835	Gln	Ala	Pro	Asn	Leu 840	Val	Tyr	Met	Val	Thr 845	Gly	Asn	Pro
Ala	Ser 850	Asp	Glu	Ile	Lys	Arg 855	Leu	Pro	Gly	Asp	Ile 860	Gln	Val	Val	Pro
Ile 865	Gly	Val	Gly	Pro	Asn 870	Ala	Asn	Val	Gln	Glu 875	Leu	Glu	Arg	Ile	Gly 880
Tro	Pro	Asn	Ala	Pro	Tle	Len	Tle	Gln	Asp	Phe	Glu	Thr	Len	Pro	Ara

				885					890					895	
Glu	Ala	Pro	Asp 900	Leu	Val	Leu	Gln	Arg 905	Cys	Суз	Ser	Gly	Glu 910	Gly	Leu
Gln	Ile	Pro 915	Thr	Leu	Ser	Pro	Ala 920	Pro	Asp	Cys	Ser	Gln 925	Pro	Leu	Asp
Val	Ile 930	Leu	Leu	Leu	Asp	G1y 935	Ser	Ser	Ser	Phe	Pro 940		Ser	Tyr	Phe
Asp 945	Glu	Met	Lys	Ser	Phe 950	Ala	Lys	Ala	Phe	Ile 955	Ser	Lys	Ala	Asn	Ile 960
Gly	Pro	Arg	Leu	Thr 965	Gln	Val	Ser	Val	Leu 970	Gln	Tyr	Gly	Ser	Ile 975	Thr
Thr	Ile	Asp	Val 980	Pro	Trp	Asn	Val	Val 985	Pro	Glu	Lys	Ala	His 990		Leu
Ser	Leu	Val 995	Asp	Val	Met	Gln	Arg 100		u Gl	y Gl	y Pr		r G	ln I	le Gly
Asp	Ala 1010		ı Gly	y Phe	e Ala	Val 101		rg T	yr L	eu T		er 020	Glu	Met	His
Gly	Ala 1025		g Pro	Gly	/ Ala	Ser 103		ys A	la V	al V		le 035	Leu	Val	Thr
Asp	Val 1040		r Val	l Asp	Ser	Va 104		sp A	la A	la A		sp 050	Ala	Ala	Arg
Ser	Asn 1055		g Val	l Thr	Val	Phe 106	e P 60	ro I	le G	ly I	le G 1	ly 065	Asp	Arg	Tyr
Asp	Ala 1070		a Glr	n Leu	a Arg	11¢		eu A	la G	ly P		la 080	Gly	Asp	Ser
Asn	Val 1085		l Ly:	s Lei	ı Glr	10:		le G	lu A	sp L		ro 095	Thr	Met	Val
Thr	Leu 1100	100	y Ası	n Sei	Phe	Le: 110		is L	ys L	eu C	0.00	er 110	Gly	Phe	Val
Arg	Ile 1115	Access to the second	s Met	t Asp	o Glu		p G 20	ly A	sn G	lu L		rg 125	Pro	Gly	Asp

Val	Trp 1130	Thr	Leu	Pro	Asp	Gln 1135	Cys	His	Thr	Val	Thr 1140	Cys	Gln	Pro
Asp	Gly 1145	Gln	Thr	Leu	Leu	Lys 1150	Ser	His	Arg	Val	Asn 1155	Суѕ	Asp	Arg
Gly	Leu 1160	Arg	Pro	Ser	Cys	Pro 1165		Ser	Gln	Ser	Pro 1170	Val	Lys	Val
Glu	Glu 1175	Thr	Cys	Gly	Суз	Arg 1180		Thr	Суз	Pro	Cys 1185	Val	Суз	Thr
Gly	Ser 1190	Ser	Thr	Arg	His	Ile 1195		Thr	Phe	Asp	Gly 1200	Gln	Asn	Phe
Lys	Leu 1205	Thr	Gly	Ser	Cys	Ser 1210		Val	Leu	Phe	Gln 1215	Asn	Lys	Glu
Gln	Asp 1220	Leu	Glu	Val	Ile	Leu 1225	His	Asn	Gly	Ala	Cys 1230	Ser	Pro	Gly
Ala	Arg 1235	Gln	Gly	Cys	Met	Lys 1240	Ser	Ile	Glu		Lys 1245	His	Ser	Ala
Leu	Ser 1250	Val	Glu	Leu	His	Ser 1255	Asp	Met	Glu	Val	Thr 1260	Val	Asn	Gly
Arg	Leu 1265		Ser	Val	Pro	Tyr 1270		Gly	Gly		Met 1275		Val	Asn
Val	Tyr 1280		Ala	Ile	Met	His 1285		Val	Arg	Phe	Asn 1290	His	Leu	Gly
His	Ile 1295		Thr	Phe	Thr	Pro 1300		Asn	Asn	Glu	Phe 1305	Gln	Leu	Gln
Leu	Ser 1310		Lys	Thr	Phe	Ala 1315	Ser	Lys	Thr	Tyr	Gly 1320	Leu	Cys	Gly
Ile	Cys 1325	55	Glu	Asn	Gly	Ala 1330		Asp	Phe	Met	Leu 1335	2570	Asp	Gly
Thr	Val 1340		Thr	Asp	Trp	Lys 1345		Leu	Val	Gln	Glu 1350		Thr	Val

Gln	Arg 1355	Pro	Gly	Gln	Thr	Cys 1360		Pro	Ile		Glu 1365	Glu	Gln	Cys
Leu	Val 1370	Pro	Asp	Ser	Ser	His 1375	Суѕ	Gln	Val	Leu	Leu 1380	Leu	Pro	Leu
Phe	Ala 1385	Glu	Cys	His		Val 1390		Ala	Pro		Thr 1395	Phe	Tyr	Ala
Ile	Cys 1400	Gln	Gln	Asp	Ser	Cys 1405		Gln	Glu	Gln	Val 1410	Cys	Glu	Val
Ile	Ala 1415	Ser	Tyr	Ala	His	Leu 1420		Arg	Thr		Gly 1425	Val	Cys	Val
Asp	Trp 1430	Arg	Thr	Pro	Asp	Phe 1435	Суз	Ala	Met	Ser	Cys 1440	Pro	Pro	Ser
Leu	Val 1445	-	Asn	His		Glu 1450		Gly	Cys		Arg 1455	His	Суз	Asp
Gly	Asn 1460	Val	Ser	Ser	Cys	Gly 1465	Asp	His	Pro	Ser	Glu 1470	Gly	Суѕ	Phe
Cys	Pro 1475		Asp	Lys	Val	Met 1480		Glu	Gly	Ser	Cys 1485		Pro	Glu
Glu	Ala 1490		Thr	Gln	Суѕ	Ile 1495	Gly	Glu	Asp	Gly	Val 1500	Gln	His	Gln
Phe	Leu 1505		Ala	Trp	Val	Pro 1510	V=	His			Cys 1515		Ile	Cys
Thr	Cys 1520		Ser	Gly	Arg	Lys 1525	Val	Asn	Cys	Thr	Thr 1530		Pro	Cys
Pro	Thr 1535		Lys	Ala	Pro	Thr 1540	Cys	Gly	Leu	Cys	Glu 1545	Val	Ala	Arg
Leu	Arg 1550	Gln	Asn	Ala	Asp	Gln 1555		Cys	Pro	Glu	Tyr 1560		Cys	Val
Cys	Asp 1565		Val	Ser	Суѕ	Asp 1570		Pro	Pro	Val	Pro 1575	His	Cys	Glu

Arg	Gly 1580	Leu	Gln	Pro		Leu 1585		Asn	Pro	Gly	Glu 1590	Cys	Arg	Pro
Asn	Phe 1595	Thr	Cys	Ala	Cys	Arg 1600	Lys	Glu	Glu	Cys	Lys 1605	Arg	Val	Ser
Pro	Pro 1610	Ser	Cys	Pro		His 1615		Leu	Pro	Thr	Leu 1620	Arg	Lys	Thr
Gln	Cys 1625	Суѕ	Asp	Glu	Tyr	Glu 1630	Cys	Ala	Cys	Asn	Cys 1635	Val	Asn	Ser
Thr	Val 1640		Суѕ	Pro	Leu	Gly 1645		Leu	Ala	Ser	Thr 1650	Ala	Thr	Asn
Asp	Cys 1655	Gly	Суѕ	Thr	Thr	Thr 1660	Thr	Cys	Leu	Pro	Asp 1665	Lys	Val	Cys
Val	His 1670		Ser	Thr	Ile	Tyr 1675		Val	Gly	Gln	Phe 1680	Trp	Glu	Glu
Gly	Cys 1685	Asp	Val	Cys	Thr	Cys 1690	Thr	Asp	Met	Glu	Asp 1695	Ala	Val	Met
Gly	Leu 1700		Val	Ala		Cys 1705		Gln	Lys	Pro	Cys 1710	Glu	Asp	Ser
Cys	Arg 1715	Ser	Gly	Phe	Thr	Tyr 1720	Val	Leu	His	Glu	Gly 1725	Glu	Cys	Cys
Gly	Arg 1730		Leu	Pro	Ser	Ala 1735		Glu	Val	Val	Thr 1740	Gly	Ser	Pro
Arg	Gly 1745	0.000	Ser	Gln	Ser	Ser 1750	Trp	Lys	Ser	Val	Gly 1755		Gln	Trp
Ala	Ser 1760	Pro	Glu	Asn	Pro	Cys 1765	Leu	Ile	Asn	Glu	Cys 1770		Arg	Val
Lys	Glu 1775		Val	Phe	Ile	Gln 1780	Gln	Arg	Asn	Val	Ser 1785		Pro	Gln
Leu	Glu 1790	Val	Pro	Val	Cys	Pro 1795		Gly	Phe	Gln	Leu 1800		Cys	Lys
Thr	Ser	Ala	Cys	Суѕ	Pro	Ser	Суѕ	Arg	Cys	Glu	Arg	Met	Glu	Ala

	1805					1810					1815			
Суѕ	Met 1820	Leu	Asn	Gly	Thr	Val 1825	Ile	Gly	Pro	Gly	Lys 1830	Thr	Val	Met
Ile	Asp 1835	Val	Cys	Thr		Cys 1840	Arg	Cys	Met	Val	Gln 1845	Val	Gly	Val
Ile	Ser 1850	Gly	Phe	Lys	Leu	Glu 1855	Суѕ	Arg	Lys	Thr	Thr 1860	Cys	Asn	Pro
Cys	Pro 1865		Gly	Tyr	Lys	Glu 1870	Glu	Asn	Asn	Thr	Gly 1875	Glu	Cys	Cys
Gly	Arg 1880	Cys	Leu	Pro	Thr	Ala 1885	Cys	Thr	Ile	Gln	Leu 1890	Arg	Gly	Gly
Gln	Ile 1895	Met	Thr	Leu	Lys	Arg 1900	Asp	Glu	Thr	Leu	Gln 1905	Asp	Gly	Cys
Asp	Thr 1910	His	Phe	Cys	Lys	Val 1915	Asn	Glu	Arg	Gly	Glu 1920	Tyr	Phe	Trp
Glu	Lys 1925	Arg	Val	Thr	Gly	Cys 1930	Pro	Pro	Phe	Asp	Glu 1935	His	Lys	Cys
Leu	Ala 1940	Glu	Gly	Gly	Lys	Ile 1945	Met	Lys	Ile	Pro	Gly 1950		Суз	Cys
Asp	Thr 1955		Glu	Glu	Pro	Glu 1960	Cys	Asn	Asp	Ile	Thr 1965	Ala	Arg	Leu
Gln	Tyr 1970	Val	Lys	Val	Gly	Ser 1975	Cys	Lys	Ser	Glu	Val 1980	Glu	Val	Asp
Ile	His 1985	Tyr	Cys	Gln	Gly	Lys 1990		Ala	Ser	Lys	Ala 1995		Tyr	Ser
Ile	Asp 2000	Ile	Asn	Asp	Val	Gln 2005	Asp	Gln	Cys	Ser	Cys 2010		Ser	Pro
Thr	Arg 2015		Glu	Pro	Met	Gln 2020	Val	Ala	Leu	His	Cys 2025		Asn	Gly
Ser	Val 2030	Val	Tyr	His	Glu	Val 2035	Leu	Asn	Ala	Met	Glu 2040	Cys	Lys	Cys

Ser Pro Arg Lys Cys Ser Lys 2045

REIVINDICACIONES

- 1. Formulación farmacéutica estable liofilizada de un factor von Willebrand recombinante (rVWF) que comprende: (a) un rVWF; (b) uno o más agentes tampón; (c) uno o más aminoácidos; (d) uno o más agentes estabilizantes; y (e) uno o más tensioactivos, preparándose dicha formulación mediante la liofilización de una solución que comprende:
 - (a) dicho rVWF, comprendiendo un polipéptido seleccionado de entre el grupo consistente en:
 - a) la secuencia de aminoácidos de SEQ ID Nº 3;

5

10

20

- b) un análogo, fragmento o variante de a) capaz de causar la aglutinación de las plaquetas estabilizadas en presencia de ristocetina o de unirse al Factor VIII;
- c) un polipéptido codificado por el nucleótido dee SEQ ID Nº 1;
- d) un análogo, fragmento o variante de c) capaz de causar la aglutinación de las plaquetas estabilizadas en presencia de ristocetina o de unirse al Factor VIII; y
- e) un polipéptido codificado por un nucleótido que se hibrida con el polinucleótido de SEq ID Nº 1 bajo condiciones de hibridación moderadamente restrictivas;
- (b) comprendiendo dicho tampón un agente tampón del pH en un rango de aproximadamente 0,1 mM y aproximadamente 500 mM y con un pH de aproximadamente 2,0 a aproximadamente 12,0;
 - (c) estando presente dicho aminoácido a una concentración de aproximadamente 1 a aproximadamente 500 mM;
 - (d) estando presente dicho agente estabilizante a una concentración de aproximadamente 0,1 a aproximadamente1.000 mM; y
 - (e) estando presente dicho tensioactivo a una concentración de aproximadamente 0,01 g/l a 0,5 g/l.
 - 2. Formulación según la reivindicación 1, caracterizada porque el rVWF comprende la secuencia de aminoácidos de SEQ ID Nº 3.
- 3. Formulación según la reivindicación 1, caracterizada porque el agente tampón se selecciona de entre el grupo consistente en citrato, glicina, histidina, HEPES, Tris y combinaciones de los mismos.
 - **4.** Formulación según la reivindicación 1, caracterizada porque el pH de la solución está en el rango de aproximadamente 6,0 a aproximadamente 8,0, por ejemplo aproximadamente 6,5 a aproximadamente 7,5, tal como 7,3.
- 5. Formulación según la reivindicación 1, caracterizada porque el agente tampón de la solución es citrato y el pH es aproximadamente 7,3.
 - **6.** Formulación según la reivindicación 1, caracterizada porque el aminoácido se selecciona de entre el grupo consistente en glicina, histidina, prolina, serina, alanina y arginina.
 - 7. Formulación según la reivindicación 6, caracterizada porque el aminoácido está presente en un rango de concentración de aproximadamente 0,5 mM a aproximadamente 300 mM en la solución.
- **8.** Formulación segúne la reivindicación 7, caracterizada porque el aminoácido es glicina a una concentración de aproximadamente 15 mM en la solución.
 - **9.** Formulación según la reivindicación 1, caracterizada porque el rVWF comprende la secuencia de aminoácidos de SEQ ID Nº 3, el agente tampón de la solución es citrato y el pH es aproximadamente 7,3; y porque el aminoácido es glicina a una concentración de aproximadamente 15 mM en la solución.
- **10.** Formulación según la reivindicación 1, caracterizada porque el o los agentes estabilizantes se seleccionan de entre el grupo consistente en manitol, lactosa, sorbitol, xilitol, sacarosa, trehalosa, manosa, maltosa, lactosa, glucosa, rafinosa, celobiosa, gentiobiosa, isomaltosa, arabinosa, glucosamina, fructosa y combinaciones de los mismos.

- **11.** Formulación según la reivindicación 10, caracterizada porque los agentes estabilizantes son trehalosa a una concentración de aproximadamente 10 g/l en la solución y manitol a una concentración de aproximadamente 20 g/l en la solución.
- Formulación según la reivindicación 1, caracterizada porque el tensioactivo se selecciona de entre el grupo consistente en digitonina, Triton X-100, Triton X-114, TWEEN-20, TWEEN-80 y combinaciones de los mismos.
 - **13.** Formulación según la reivindicación 12, caracterizada porque el tensioactivo es TWEEN-80 a una concentración de aproximadamente 0,01 g/l en la solución.
- 14. Formulación según la reivindicación 1, caracterizada porque el rVWF comprende la secuencia de aminoácidos de SEQ ID Nº 3, el agente tampón de la solución es citrato a una concentración aproximadamente 15 mM con un pH de aproximadamente 7,3, el aminoácido es glicina a una concentración aproximadamente 15 mM en la solución, los agentes estabilizantes son trehalosa a una concentración en solución de aproximadamene 10 g/l y manitol a una concentración en solución de aproximadamente 20 g/l y el tensioactivo es TWEEN-80 a aproximadamente 0,1 g/l en la solución.

15

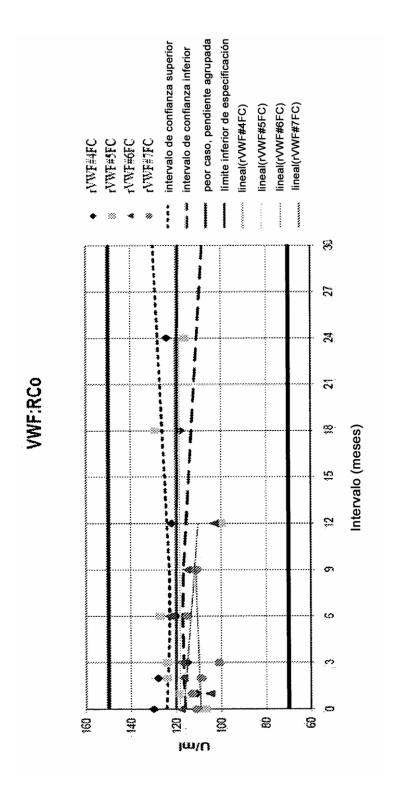
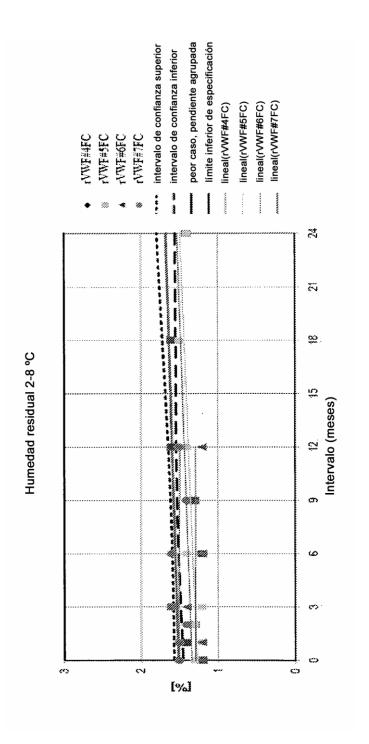



Figura 1

gura 2

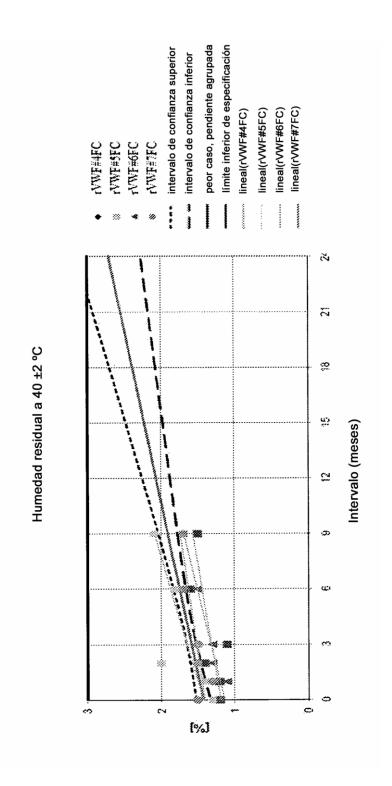


Figura 3