

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 413 161

(51) Int. CI.:

A61K 38/17 (2006.01) A61K 38/45 (2006.01) A61K 31/7068 (2006.01) C12N 15/63 (2006.01) A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 10.10.2008 E 08844792 (5)

(97) Fecha y número de publicación de la concesión europea: 20.03.2013 EP 2209484

(54) Título: Productos de combinación para tratar el cáncer

(30) Prioridad:

10.10.2007 EP 07301447

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 15.07.2013

(73) Titular/es:

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) (50.0%) 101, rue de Tolbiac 75013 Paris, FR y **CAYLA (50.0%)**

(72) Inventor/es:

BUSCAIL, LOUIS; TIRABY, GÉRARD; **VERNEJOUL, FABIENNE;** SUSINI, CHRISTIANE y DROCOURT, DANIEL

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Productos de combinación para tratar el cáncer.

5 Campo de la invención

15

40

La invención se refiere al campo del cáncer, y en particular a nuevos productos, composiciones, vectores plasmídicos y métodos para la terapia contra el cáncer.

10 Antecedentes de la invención

Entre el cáncer, el cáncer pancreático es una de las neoplasias humanas más agresivas y devastadoras. Su agresividad se ilustra por el hecho de que el número de casos de cáncer pancreático estimados y el número de muertes relacionadas con cáncer pancreático son casi idénticos, con una tasa de supervivencia mínima de 5 años del 2%. El cáncer pancreático se encuentra en la quinta causa principal de muertes relacionadas con cáncer en los países occidentales. Hasta ahora, no es posible ni la detección temprana ni el tratamiento de la enfermedad avanzada: el 85% de las lesiones no son extirpables en el momento del diagnóstico, dando como resultado un tiempo de supervivencia medio de 4-5 meses.

Estas sombrías estadísticas son consistentes principalmente con la propensión de estos tumores a metastatizarse cuando son pequeños e indetectables, y a la resistencia intrínseca de las células de cáncer pancreático a agentes citotóxicos y a radioterapia.

Como otro cáncer agresivo, el carcinoma hepatocelular (hepatocarcinoma HCC) es la neoplasia primaria más habitual del hígado y el cuarto cáncer más habitual a nivel mundial, con una incidencia de 1.000.000 nuevos casos 25 por año. Representa la 3ª causa de muerte por cáncer en el mundo. En Francia, como en otros países industrializados, su incidencia está aumentando de manera constante debido a la pandemia del virus de la hepatitis C. HCC se desarrolla a partir de cirrosis. La probabilidad de 5 años para que los pacientes cirróticos desarrollen HCC es casi 20%. Las tres modalidades terapéuticas curativas principales usadas actualmente para HCC es la 30 estirpación hepática, la destrucción percutánea del tumor (radiofrecuencia) y el transplante hepático ortotópico. Estas opciones se pueden usar en pacientes con el denominado HCC «pequeño» (< 5 cm), con buenos resultados (70% de supervivencia durante 5 años y < 25% de tasa de recurrencia para el transplante). Desafortunadamente, tales opciones terapéuticas son sólo accesibles a menos del 50% de los pacientes diagnosticados con HCC. Por lo tanto, el grueso de los pacientes no se puede beneficiar de opciones terapéuticas curativas debido al gran tamaño 35 tumoral o a la enfermedad hepática subyacente. Por estas razones, se necesitan nuevas modalidades de diagnóstico y terapias. Hasta ahora, ninguna quimioterapia es eficaz, y de este modo está indicada en HCC.

En consecuencia, existe una necesidad urgente de terapias para tratar cáncer, como cáncer pancreático o cáncer hepatocelular, y específicamente cáncer metastásico, que sean más eficaces que los regímenes actuales.

Sumario de la invención

En un primer aspecto, la presente invención se refiere a productos que contienen:

- (i) al menos una secuencia de ácido nucleico que codifica la proteína del receptor de somatostatina 2 humana (SST2) que presenta la secuencia SEC ID nº:1, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:1, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%,
- (ii) al menos una secuencia de ácido nucleico que codifica la proteína desoxicitidina cinasa (DCK) humana que presenta la secuencia SEC ID nº:2, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:2, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%,
- (iii) al menos una secuencia de ácido nucleico que codifica la proteína uridina monofosfato cinasa (UMK) humana que presenta la secuencia SEC ID nº:3, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:3, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%,
- 60 (iv) gemcitabina,

como una preparación combinada para el uso simultáneo, separado o secuencial en el tratamiento de cáncer en un sujeto.

65 En un segundo aspecto, la presente invención se refiere a una composición farmacéutica que comprende:

- (i) al menos una secuencia de ácido nucleico que codifica la proteína del receptor de somatostatina 2 humana (SST2) que presenta la secuencia SEC ID nº:1, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:1, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%,
- (ii) al menos una secuencia de ácido nucleico que codifica la proteína desoxicitidina cinasa (DCK) humana que presenta la secuencia SEC ID nº:2, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:2, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%,
- (iii) al menos una secuencia de ácido nucleico que codifica la proteína uridina monofosfato cinasa (UMK) humana que presenta la secuencia SEC ID nº:3, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:3, preferentemente de al menos 90%, como ejemplo de al menos 99%.
- (iv) opcionalmente un vehículo farmacéuticamente aceptable.

En un tercer aspecto, la presente invención se refiere finalmente a un vector plasmídico que presenta la secuencia SEC ID nº:11, y que comprende secuencias de ácido nucleico que codifican la proteína del receptor de somatostatina 2 de *Homo sapiens* y un polipéptido que comprende las dos proteínas, proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens*, enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible.

Breve descripción de los dibujos

5

10

15

20

25

La figura 1 muestra el mapa esquemático del plásmido pHNeo Sst2 DCK::UMK (7548 pb) (SEC ID nº: 11).

La figura 2 muestra el mapa esquemático del vector plasmídico pHDuol4 LGFP-dckumk2A (7368 pb).

30 Descripción de las formas de realización preferidas

En el sentido de la presente solicitud, el cáncer es preferentemente un cáncer metastásico, como el cáncer pancreático y el carcinoma hepatocelular, y muy preferentemente un cáncer pancreático exocrino.

- La metástasis corresponde al proceso mediante el cual un cáncer se extiende desde el lugar en el que surge en primer lugar como tumor primario hacia localizaciones distantes en el cuerpo. Puesto que este proceso es muy particular en la progresión del cáncer, generalmente es necesario usar un régimen específico a fin de inhibir la metástasis.
- 40 Se ha establecido que la inyección intratumoral combinada de un vector de expresión que codifica SST2, DCK y UMK, asociada con la administración de gemcitabina da como resultado una disminución amplia y sorprendente de los sitios de metástasis.
- En consecuencia, y en una forma de realización preferida, la presente invención se refiere a la inhibición de la extensión de tumores, es decir, la inhibición de la metástasis tumoral.
 - El término sujeto se refiere a un mamífero, y preferentemente a un ser humano.
- Como se usa en la presente memoria, gemcitabina se refiere a gemcitabina HCl/clorhidrato, comercializado por ELI LILLY con la marca GEMZAR®, que es un análogo nucleosídico que muestra actividad antitumoral y pertenece a un grupo general de fármacos quimioterapéuticos conocidos como antimetabolitos. La gemcitabina evita que las células produzcan ADN y ARN interfiriendo con la síntesis de ácidos nucleicos, deteniendo de este modo el crecimiento de células cancerosas y haciendo que mueran.
- La gemcitabina, que se describe en la solicitud PCT Internacional WO 97/21719, es un análogo glucosídico sintético de citosina, que se describe químicamente como hidrocloruro de 1-(2'-desoxi-2',2'-difluoro-[beta]-D-ribofuranosil)-4-aminopirimidin-2-ona o isómero [beta] del monohidrocloruro de 2'-desoxi-2',2'-difluorocitidina.
- Como se usa aquí, "porcentaje de identidad" entre dos secuencias de aminoácidos significa el porcentaje de aminoácidos idénticos, entre las dos secuencias a comparar, obtenido con el mejor alineamiento de dichas secuencias, siendo este porcentaje puramente estadístico, y estando las diferencias entre estas dos secuencias extendidas al azar a lo largo de las secuencias de aminoácidos. Como se usa aquí, "mejor alineamiento" o "alineamiento óptimo" significa el alineamiento para el que el porcentaje determinado de identidad (véase más abajo) es el mayor. La comparación de secuencias entre dos secuencias de aminoácidos se realiza habitualmente comparando estas secuencias que se han alineado previamente según el mejor alineamiento; esta comparación se realiza en segmentos de comparación a fin de identificar y comparar las regiones locales de similitud. El mejor

alineamiento de secuencias para llevar a cabo la comparación se puede realizar, además de manera manual, usando el algoritmo de homología global desarrollado por SMITH y WATERMAN (Ad. App. Math., vol. 2, p: 482, 1981), usando el algoritmo de homología local desarrollado por NEDDLEMAN y WUNSCH (J. Mol. Biol., vol. 48, p: 443, 1970), usando el método de similitudes desarrollado por PEARSON y LIPMAN (Proc. Natl. Acd. Sci. USA, vol. 85, p: 2444, 1988), usando software de ordenador que usan tales algoritmos (GAP, BESTFIT, BLAST P, BLAST N, FASTA, TFASTA en el Wisconsin Genetics software Package, Genetics Computer Group, 575 Science Dr., Madison, WI USA), usando los algoritmos de alineamientos múltiples MUSCLE (Edgar, Robert C., Nucleic Acids Research, vol. 32, p: 1792, 2004). Para obtener el mejor alineamiento local, se puede usar preferentemente el software BLAST, con la matriz BLOSUM 62, o la matriz PAM 30. El porcentaje de identidad entre dos secuencias de aminoácidos se determina comparando estas dos secuencias alineadas óptimamente, siendo capaces las secuencias de aminoácidos de comprender adiciones o supresiones con respecto a la secuencia de referencia a fin de obtener el mejor alineamiento entre estas dos secuencias. El porcentaje de identidad se calcula determinando el número de posiciones idénticas entre estas dos secuencias, y dividiendo este número entre el número total de posiciones comparadas, y multiplicando el resultado obtenido por 100 para obtener el porcentaje de identidad entre estas dos secuencias.

10

15

20

65

Según otra realización preferida, la proteína desoxicitidina cinasa (dck) de *Homo sapiens* que presenta la secuencia SEC ID nº: 2, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº: 3, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%, y la proteína uridina monofosfato cinasa (umk) de *Homo sapiens* que presenta la secuencia SEC ID nº: 3, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº: 3, preferentemente de al menos 90%, como ejemplo de al menos 95%, y más preferentemente de al menos 99%, están codificadas por una única secuencia de aminoácido.

- Preferentemente, dicha al menos una secuencia de aminoácido codifica un polipéptido que comprende las dos proteínas, proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens*, enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible, polipéptido el cual tiene la secuencia SEC ID nº: 10.
- 30 Según todavía otra realización preferida, los ácidos nucleicos que codifican la proteína del receptor de somatostatina 2 (sst2), la proteína desoxicitidina cinasa (dck), y/o la proteína uridina monofosfato cinasa (umk), están enlazados operativamente a una secuencia de expresión génica, que dirige la expresión de ácidos nucleicos en una célula eucariota. La "secuencia de expresión génica" es cualquier secuencia nucleotídica reguladora, tal como una secuencia promotora o una combinación de promotor-potenciador, que facilita la transcripción y traducción eficientes 35 del ácido nucleico al que está enlazada operativamente. La secuencia de expresión génica puede ser, por ejemplo, un promotor de mamífero o vírico, tal como un promotor constitutivo o inducible. En el plásmido diseñado para el presente concepto, los dos genes (sst2 y la fusión dck::umk) están bajo el control de dos promotores diferentes sensibles a hipoxia (la actividad basal de cada promotor aumenta drásticamente en el tumor debido al área hipóxica presente en tejidos de carcinoma pancreático): la región promotora del gen GRP78 (proteína 78 regulada por 40 glucosa) y la región promotora del gen GRP94 (proteína 94 regulada por glucosa) para la fusión dck::umk y sst2, respectivamente. Los promotores constitutivos de mamíferos incluyen, pero no se limitan a, los promotores para los siguientes genes: hipoxantina fosforribosol transferasa (HPTR), adenosina desaminasa, piruvato cinasa, promotor de beta-actina, promotor de creatina cinasa muscular, promotor del factor de alargamiento humano, y otros promotores constitutivos. Los promotores víricos ejemplares que funcionan constitutivamente en células eucariotas incluyen, por 45 ejemplo, promotores procedentes del virus del simio (por ejemplo, SV40), virus del papiloma, adenovirus, virus de la inmunodeficiencia humana (VIH), citomegalovirus (CMV), virus del sarcoma de Rous (RSV), virus de la hepatitis B (HBV), las repeticiones terminales largas (LTR) del virus de la leucemia de Moloney, y otros retrovirus, y el promotor de timidina cinasa del virus del herpes simple. Los expertos en la materia conocen otros promotores constitutivos. Los promotores útiles como secuencias de expresión génica de la invención también incluyen promotores inducibles. 50 Los promotores inducibles se expresan en presencia de un agente inductor. Por ejemplo, el promotor de metalotioneína es inducido a promover la transcripción y traducción en presencia de ciertos iones metálicos. Los expertos en la materia conocen otros promotores inducibles.

En general, la secuencia de expresión génica debe incluir, como necesarias, secuencias no transcriptoras en 5' y no traductoras en 5' implicadas en la iniciación de la transcripción y traducción, respectivamente, tales como una caja TATA, secuencias de protección de los extremos, secuencia CAAT, y similares. Especialmente, tales secuencias no transcriptoras en 5' incluirán una región promotora que incluye una secuencia promotora para el control transcripcional del ácido nucleico del antígeno operablemente unido. Las secuencias de expresión génica incluyen opcionalmente secuencias potenciadoras o secuencias activadoras en 5', según se desee.

Como se usa aquí, se afirma que las secuencias de ácidos nucleicos que codifican las proteínas sst2, dck y umk, y la secuencia de expresión génica están "enlazadas operablemente" cuando están enlazadas covalentemente de tal forma para poner la expresión o transcripción y/o traducción de las secuencias que codifican las proteínas bajo la influencia o control de la secuencia de expresión génica. Se afirma que dos secuencias de ADN están enlazadas operablemente si la inducción de un promotor en la secuencia de expresión génica de 5' da como resultado la transcripción de las proteínas, y si la naturaleza del enlace entre las dos secuencias de ADN no (1) da como

resultado la introducción de una mutación de desplazamiento del marco, (2) interfiere con la capacidad de la región promotora para dirigir la transcripción del polipéptido de la invención, o (3) interfiere con la capacidad del transcrito de ARN correspondiente para ser traducido a una proteína.

El ácido nucleico que codifica las proteínas sst2, dck y umk se puede suministrar *in vivo* solo o en asociación con un vector. En su sentido más amplio, un "vector" es cualquier vehículo capaz de facilitar la transferencia del ácido nucleico que codifica las proteínas sst2, dck y umk a las células. Preferentemente, el vector transporta el ácido nucleico a las células con degradación relativa con respecto al grado de degradación que daría como resultado si el vector estuviera ausente. En general, los vectores útiles en la invención incluyen, pero no se limitan a, plásmidos, fagómidos, virus, otros vehículos derivados de fuentes víricas o bacterianas que se han manipulado mediante la inserción o incorporación de las secuencias de ácidos nucleicos antagonistas peptídicos.

Los vectores víricos preferidos para ciertas aplicaciones son los adenovirus y los vinos adenoasociados, que son virus de ADN bicatenario que ya se han aceptado para uso humano en terapia génica. El virus adenoasociado se puede manipular para que sea deficiente en la replicación, y es capaz de infectar a un amplio abanico de tipos celulares y especies. Además, tiene ventajas tales como estabilidad al calor y a disolventes lipídicos, elevadas frecuencias de transducción en células de diversas estirpes, incluyendo células hematopoyéticas, y carece de la inhibición de superinfección, permitiendo así múltiples series de transducciones. Aparentemente, el virus adenoasociado se puede integrar en ADN celular humano de una manera específica del sitio, minimizando así la posibilidad de mutagénesis de inserción y variabilidad de la expresión génica insertada, característica de la infección retrovírica. Además, las infecciones con virus adenoasociados de tipo salvaje han sido seguidas en cultivo tisular durante más de 100 pasadas en ausencia de presión selectiva, implicando que la integración genómica del virus adenoasociado es un suceso relativamente estable. El virus adenoasociado también puede funcionar de una manera extracromosómica.

El vector de ácido nucleico puede incluir marcadores seleccionables que son activos tanto en células bacterianas como en células de mamíferos.

Según todavía otra realización, las secuencias de ácidos nucleicos previamente descritas corresponden a "ADN desnudo" como plásmidos, cósmidos o fagómidos, preferentemente a al menos un vector plasmídico, y más preferentemente a un vector plasmídico.

Los vectores plasmídicos se han descrito ampliamente en la técnica y son bien conocidos por los expertos en la materia. Véase, por ejemplo, SANBROOK et al., "Molecular Cloning: A Laboratory Manual", Segunda Edición, Cold Spring Harbor Laboratory Press, 1989. En los últimos años recientes, se han usado vectores plasmídicos como vacunas de ADN para suministrar genes que codifican antígenos a células in vivo. Son particularmente ventajosos por esto debido a que no tienen los mismos problemas de seguridad que con muchos de los vectores víricos. Sin embargo, estos plásmidos, que tienen un promotor compatible con la célula hospedante, pueden expresar un péptido de un gen codificado operativamente en el plásmido. Algunos plásmidos usados habitualmente incluyen pBR322, pUC18, pUC19, pRC/CMV, SV40, y pBlueScript. Otros plásmidos son bien conocidos por los expertos en la materia. Adicionalmente, los plásmidos se pueden diseñar de forma personalizada usando enzimas de restricción y reacciones de ligación para eliminar y añadir fragmentos específicos de ADN. Los plásmidos se pueden suministrar mediante una variedad de vías parenterales, mucosales y tópicas. Por ejemplo, el plásmido de ADN se puede inyectar mediante vía intramuscular, intradérmica, subcutánea, u otras vías. También se puede administrar mediante pulverizaciones o gotas intranasales, supositorio rectal y oralmente. También se puede administrar en la epidermis o en una superficie mucosal usando una pistola génica. Los plásmidos se pueden proporcionar en una disolución acuosa, secos sobre partículas de oro, o en asociación con otro sistema de suministro de ADN, incluyendo, pero sin limitarse a, liposomas, dendrímeros, cocleatos y microencapsulamiento.

50 En otra realización preferida, el ácido nucleico que codifica las proteínas sst2, dck y umk está comprendido en un vector plasmídico.

Dicho vector plasmídico tiene la secuencia SEC ID nº:11, y comprende secuencias de ácidos nucleicos que codifican la proteína del receptor de somatostatina 2 de *Homo sapiens* y un polipéptido que comprende las dos proteínas, proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens*, enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible.

Tal "ADN desnudo" o vector o vectores plasmídicos están asociados preferentemente a polímeros catiónicos no lipídicos (WU y WU J. Biol. Chem., vol. 263, p: 14621-4, 1988), tales como polietilenimina (PEI) como se describe en el documento EP 0770140, o liposomas (BRIGHMAN et al., Am. J. Med. Sci., vol. 298, p: 278-81, 1989), para formar complejos que potencian la captación celular.

Ventajosamente, tal ADN desnudo o vector o vectores plasmídicos están asociados con polímeros catiónicos no lipídicos, preferentemente con polietilenimina (PEI) como se describe en el documento EP 0770140.

65

15

20

25

35

40

45

55

En una realización específica, los productos de la invención comprenden además al menos un vehículo farmacéuticamente aceptable.

La frase "farmacéuticamente aceptable" se refiere a entidades moleculares y composiciones que son fisiológicamente aceptables y no producen típicamente una reacción alérgica o desfavorable similar, tal como malestar gástrico, mareo y similar, cuando se administran a un ser humano. Preferentemente, como se usa aquí, la expresión "farmacéuticamente aceptable" significa aceptado por una agencia reguladora del gobierno federal o estatal, o dado a conocer en la U.S. Pharmacopea u otra farmacopea generalmente reconocida para uso en animales, y más particularmente en seres humanos.

10

15

5

El término "vehículo" se refiere a un diluyente, adyuvante, excipiente o vehículo con el que se administra el compuesto. Tales vehículos farmacéuticos pueden ser líquidos estériles, tales como agua y aceites, incluyendo aquellos de origen de petróleo, animal, vegetal o sintético, tal como aceite de cacahuete, aceite de haba de soja, aceite mineral, aceite de sésamo y similar. El agua o disolución salina acuosa y las disoluciones acuosas de dextrosa y de glicerol se emplean preferentemente como vehículos, particularmente para disoluciones inyectables. Los vehículos farmacéuticos adecuados se describen en "Remington's Pharmaceutical Sciences" por E.W. Martin.

20

Las secuencias de ácidos nucleicos o los vectores de ácidos nucleicos o gemcitabina se pueden solubilizar en un tampón o agua, o se pueden incorporar en emulsiones y microemulsiones. Los tampones adecuados incluyen, pero no se limitan a, disolución salina tamponada con fosfato libre de Ca⁺⁺/Mg⁺⁺ (PBS), disolución salina tamponada con fosfato (PBS), disolución salina normal (NaCl 150 mM en agua), tampón Tris, y tensioactivos.

Según todavía otra realización específica, las secuencias de ácidos nucleicos descritas previamente se administran mediante inyección intratumoral, preferentemente mediante inyección de ultrasonidos endoscópica intratumoral (es decir, ecoendoscopia), como se describe en HECHT et al. (Clin. Cancer Res., vol. 9, p: 555-61, 2003) como ejemplo.

Según otra realización específica, la gemcitabina se administra por vía intravenosa.

30

25

Según la presente invención, una "cantidad eficaz" de una composición es aquella que es suficiente para lograr un efecto biológico deseado, en este caso producir apoptosis en células tumorales e inhibir la metástasis. Se entiende que la dosis eficaz dependerá de la edad, sexo, salud y peso del receptor, del tipo de tratamiento concurrente, si existe, frecuencia de tratamiento, y de la naturaleza del efecto deseado. Sin embargo, la dosis preferida se puede adecuar al sujeto individual, como se entiende y es determinable por un experto en la materia, sin experimentación innecesaria.

35

Como ejemplo, una cantidad eficaz de un vector plasmídico que tiene una secuencia SEC ID n^0 :11 para una inyección intratumoral depende del volumen tumoral, y comprende entre 1 y 1.000 μ g de ADN por cm³ de tumor, preferentemente entre 5 y 500 μ g/cm³.

40

Como ejemplo, una cantidad eficaz de gemcitabina corresponde a una administración de gemcitabina a 1000 mg/cm² (de superficie del paciente) por día. Tal administración se realiza una vez a la semana durante cuatro semanas consecutivas.

45

Sorprendentemente, se ha establecido que la inyección intratumoral del plásmido que presenta la secuencia SEC ID nº:11 permite obtener una regresión tumoral en combinación con una dosis de gemcitabina menor que la dosis usada para el tratamiento convencional de cáncer pancreático (2/3 de la dosis normal de gemcitabina).

50

De este modo, en una realización preferida, una cantidad eficaz de gemcitabina corresponde a una dosis igual o menor que 750 mg/m² por día. Tal administración se realiza una vez a la semana durante cuatro semanas consecutivas, como antes.

Preferentemente, una cantidad eficaz de gemcitabina corresponde a una dosis de 500 mg/m² por día, y una vez a la semana durante cuatro semanas consecutivas, como antes.

55 A

65

A continuación, la invención se describe con mayor detalle haciendo referencia a secuencias de ácidos nucleicos y a los ejemplos. No obstante, no se pretende ninguna limitación de la invención por los detalles de los ejemplos. Antes bien, la invención pertenece a cualquier forma de realización, que comprende detalles que no están mencionados explícitamente en la presente memoria en los ejemplos, pero que resulta evidente para el experto en la materia.

60 Ejemplos

I. Tratamiento de cáncer de páncreas

1) La combinación de sst2 y DCK:UMK/gemcitabina sensibiliza a las células de cáncer pancreático para morir *in vitro*:

Unas células BxPC-3 y MiaPaca-2, derivadas de carcinoma ductal pancreático humano (DELESQUE et al., Cancer Research, vol. 57, p: 956-962, 1997) se mantuvieron en medio RPMI 1640 (INVITROGEN) suplementado con 5% de suero fetal de ternera (FCS; INVITROGEN), fungizona (INVITROGEN), antibióticos (estreptomicina, penicilina, SIGMA), L-glutamina (INVITROGEN), y un reactivo anti-micoplásmico (PLASMOCIN™, CAYLA).

5

10

15

25

Se sembraron células de cáncer pancreático humano en placas de 35 mm de diámetro a 50 x 10^3 células/ml (2 ml por placa) en RPMI 1640 que contiene 5% de FCS. Después de una fase de adhesión de 12 h, las células se transfectaron con 5 μ g de un vector simulado o con 5 μ g de plásmido que comprende un ADNc de fusión DCK:UMK que comprende el péptido FMDV 2A de autoescisión insertado entre los ADNc de DCK y UMK con (pHNeo Sst2 DCK::UMK; figura 1) o sin (pHDuo14 LGFP DCK-UMK; figura 2) el ADNc de sst2 humana (CAYLA) usando polímeros lineales de etilenimina (PEI o L-PEI) con una masa molecular media de 22 kDa (POLYPLUS-Transfection) (relación de nitrógeno de PEI a fosfato de ADN N/P = 8 a 10). Los complejos de PEI-ADN se prepararon en glucosa al 5% (p/v). Después de 24 h de cultivo celular en RPMI 1640 que contiene 5% de FCS, el medio se sustituyó por medio reciente suplementado o no con concentraciones crecientes de gemcitabina (0,05 a 5 μ g/mI), y se llevó a cabo el recuento celular después de 48 h de cultivo.

Los resultados muestran que la expresión combinada de UMK, DCK y SST2 sensibiliza a las células tumorales frente a gemcitabina.

20 2) La combinación de sst2 y DCK:UMK/gemcitabina inhibe el crecimiento de tumores pancreáticos in vivo:

Las células PC1.0, derivadas de un carcinoma ductal pancreático inducido por *N*-nitrosobis(2-oxopropil)amina en hámsters dorados sirios (BENALI et al., Proc. Natl. Acad. Sci. USA, vol. 97, p: 9180-9185, 2000), se mantuvieron en medio RPMI 1640 (INVITROGEN) suplementado con 5% de suero fetal de ternera (FCS; INVITROGEN), fungizona (INVITROGEN), antibióticos (estreptomicina, penicilina, SIGMA), L-glutamina (INVITROGEN), y un reactivo antimicoplásmico (PLASMOCIN™, CAYLA).

Para la transfección estable, las células PC1.0 se colocaron en placas de 60 mm de diámetro (2 x 10⁵ células por placa) en 4 ml de RPMI 1640 que contiene 5% de FCS. Después de una fase de adhesión de 12 h, las células se transfectaron con 5 μg del vector simulado (VERNEJOUL et al., Cancer Research, vol. 62, p: 6124-31, 2002), de plásmido que comprende un ADNc de fusión DCK:UMK que comprende el péptido FMDV 2A de autoescisión insertado entre los ADNc de DCK y UMK (pHNeo Sst2 DCK::UMK; figura 1) o sin (pHDuo14 LGFP DCK-UMK; figura 2) el ADNc de sst2 humana (CAYLA) usando una molécula catiónica lipídica (Lyo-Vec[™], CAYLA) (relación lípido a ADN p/p = 1:6). Se seleccionaron poblaciones clonales estables en presencia de 0,4 a 0,6 mg/ml de zeocina. Los transfectantes estables se cultivaron entonces en medio RPMI 1640 que contiene 5% de SVF y 0,3 mg/ml de zeocina

Se aclimataron hámsters dorados sirios (GANNAT) machos de cinco semanas en una habitación de temperatura controlada bajo un programa de 12 h de luz/12 h de oscuridad, y recibieron una dieta peletizada y agua.

40

Células PC1.0 o poblaciones mixtas de PC1.0.DCK:UMK:SST2 y células de tipo salvaje PC1.0 se implantaron ortotópicamente en hámsters. De forma breve, con anestesia de pentobarbital y tras una pequeña laparotomía, se inyectaron 5 x 10^5 células PC1.0 resuspendidas en 0,1 ml de medio RPMI 1640 libre de FCS en la cola del páncreas bajo microscopio por medio de un conjunto de catéter de linfografía 29G estéril.

45

En el día 7, durante la fase exponencial de tumores pancreáticos primarios, los animales se trataron con gemcitabina o vehículo, NaCl al 0,9%. La gemcitabina se administró intraperitonealmente tres veces a una dosis de 120 mg/kg/día en los días 9, 11 y 13 tras la implantación.

50 Ei U

En el día 15, los resultados han mostrado una recesión completa del tumor para los animales que expresan DCK, UMK y SST2, mientras que la gemcitabina solamente ralentiza la progresión tumoral en los animales que no expresan estas proteínas.

3) Transferencia in vivo de la combinación de sst2 y DCK:UMK/gemcitabina

55

60

Se implantaron ortotópicamente células PC1.0 en hámster como se describe previamente. Ocho días más tarde, tras laparotomía mediana con anestesia, se midió el volumen del tumor y se llevó a cabo una transferencia génica intratumoral usando PEI de 22 kDa *in vivo* (relación nitrógeno de PEI a fosfato de ADN N/P = 10) en glucosa al 5%. Los complejos de PEI/ADN se inyectaron entonces en tumores que crecen exponencialmente usando un conjunto de catéter de linfografía de calibre 29 estéril con un caudal de 25 μ l/min. Se inyectó un total de 25 a 50 μ g de vectores de expresión de DCK:UMK o DCK:UMK:SST2. A los animales se les inyectó entonces i.p. con NaCl al 0,9% o gemcitabina (80 a 120 mg/kg/día cada tres días). Los volúmenes y progresión tumorales se evaluaron tras el sacrificio en el día 15 tras la implantación de las células.

65

Los resultados de la progresión tumoral tras la expresión génica ex vivo e in vivo y de la evolución de la metástasis se dan en las siguientes tablas I y II.

Tabla I: Progresión del tumor

	Progresión del tumor (porcentaje)
Sin ADN, Sin Gemcitabina	+ 800 a 1060
Gemcitabina, Sin ADN	+ 150 a 378
DCK:UMK:SST2	+200
DCK:UMK, Gemcitabina	-60
DCK:UMK:SST2, Gemcitabina	-15 a -30

Tabla II: Número de sitios metastásicos

	Número de sitios metastásicos (porcentaje)
Sin ADN, Sin Gemcitabina (control)	100
DCK:UMK	82
DCK:UMK:SST2	100
DCK:UMK, Gemcitabina	47,6
DCK:UMK:SST2, Gemcitabina	12,2

Los resultados establecen que la expresión de la fusión DCK:UMK en algunas células tumorales, en combinación con una administración de gemcitabina, da como resultado la regresión tumoral (tabla I).

Los resultados también establecieron que la inyección intratumoral de la fusión DCK::UMK y SST2 en combinación con gemcitabina da como resultado la regresión tumoral incluso a una dosis menor que la aplicada normalmente: 120 mg/kg aplicada en hámster corresponde a una dosis de 1000 mg/m² en ser humano. De este modo, 80 mg/kg de gemcitabina en hámster (que también indujo una regresión tumoral cuando se coadministró con DCK::UMK y SST2) corresponde a 2/3 de la dosis normal aplicada en el ser humano. La inyección intratumoral de DCK::UMK y SST2 permite reducir la dosis de gemcitabina sin alterar el efecto antitumoral.

Los resultados también establecieron que la expresión de SST2 (DCK:UMK:SST2 sin gemcitabina; tabla II) no inhibe la metástasis tumoral, mientras que la expresión combinada de DCK:UMK con el tratamiento con gemcitabina inhibe la metástasis tumoral en dos veces. Inesperadamente, la coexpresión de SST2 con DCK:UMK asociado con el tratamiento con gemcitabina da como resultado una potente inhibición de la metástasis tumoral – es decir, una reducción de casi diez veces.

Finalmente, los resultados han establecido que la inyección de plásmidos nunca ha dado como resultado una reacción alérgica inmediata o retrasada en ninguno de los animales tratados. Además, la administración intratumoral del vector terapéutico que coexpresa SST2 y DCK:UMK no da como resultado en ningún animal ninguna toxicidad general – es decir, supervivencia -, ninguna toxicidad regional – es decir, estómago, hígado, bazo o peritoneo – o ninguna toxicidad local – es decir, páncreas adyacente normal -.

4) Terapia génica humana usando la combinación de sst2 y DCK:UMK/gemcitabina

Se seleccionaron 24 pacientes que sufren cáncer pancreático por adenocarcinoma no estirpable.

Se complejaron 125 μg, 250 μg, 500 μg, y 1 mg de plásmido pHNeo Sst2 DCK::UMK (CAYLA, SEC ID nº: 11) en glucosa al 5% con un derivado de polietilenimina lineal (jetPEITM, POLYPLUS, relación nitrógeno de PEI a fosfato de ADN *N/P* = 10) según la instrucción del fabricante. Los complejos resultantes se liofilizaron en viales de 5 ml. Antes de la inyección al paciente, los complejos se reconstituyeron en 2,5 ml de agua estéril para inyección, y se mantuvieron a temperatura ambiente durante 10 minutos antes del uso.

Cuatro grupos de 6 pacientes se sometieron a una administración intratumoral de los complejos que comprenden respectivamente 125 μg, 250 μg, 500 μg, y 1 mg de ADN (dosis en aumento partiendo de la dosis más baja, es decir, los primeros 6 pacientes recibieron 125 μg, los 6 nuevos pacientes 250 μg, etc.). Dicha etapa de administración se realiza mediante inyección ultrasónica endoscópica, que se lleva a cabo en el día uno.

En el día 3, a los pacientes tratados se les perfunde una administración intravenosa de 1000 mg/m² de gemcitabina (GEMZAR®) durante 30 minutos. Se realizan perfusiones similares en los días 10, 17 y 24 tras la administración intratumoral del plásmido.

Se establece para todos los pacientes la evolución diaria de la progresión tumoral, y, en el día 29, se realiza una segunda administración intratumoral del plásmido en los cuatro grupos de 6 pacientes como se describe anteriormente.

10

15

20

30

En los días 31, 38 y 45, a los pacientes tratados se les perfunde una administración intravenosa de gemcitabina como se describe previamente.

Se establece la evolución diaria de la progresión tumoral para todos los pacientes hasta el día 60.

5

La media del volumen tumoral del páncreas humano es 32 cm 3 ± 8. Considerando los experimentos realizados en animales y en un tumor de 30 cm 3 , la dosis de 125 μ g de ADN (4,17 μ g/cm 3) debería ser ineficaz para inhibir la progresión tumoral, mientras que la dosis de 250 μ g de ADN (8,35 μ g/cm 3) y mayor debería ser eficaz para tratar cáncer de páncreas y para inhibir la metástasis del cáncer de páncreas.

10

- II. Tratamiento de otros cánceres
- 1) La combinación de sst2 y DCK:UMK/gemcitabina sensibiliza a células de carcinoma hepatocelular y de hepatoma para morir *in vitro*:

15

20

25

Unas células HuH7, derivadas de carcinoma hepatocelular humano, y células HepG2, derivadas de hepatoma, se cultivaron en placas de 35 mm de diámetro a 50 x 10³ células/ml (2 ml por placa) en medio de cultivo DMEM. Después de una fase de adhesión de 12 h, las células se transfectaron con 5 μg de un vector simulado o con 5 μg de plásmido que comprende un ADNc de fusión DCK:UMK que comprende el péptido FMDV 2A de autoescisión insertado entre los ADNc de DCK y UMK con (pHNeo Sst2 DCK::UMK; figura 1) el ADNc de sst2 humana (CAYLA) usando polímeros lineales de etilenimina (PEI o L-PEI) con una masa molecular media de 22 kDa (POLYPLUS-Transfection) (relación nitrógeno de PEI a fosfato de ADN N/P = 8 a 10). Los complejos de PEI-ADN se prepararon en glucosa al 5% (p/v). Después de 24 h de cultivo celular en DMEM que contiene 10% de FCS, el medio se sustituyó por medio reciente suplementado o no con cantidades crecientes de gemcitabina (0,05 a 5 μg/ml), y se llevó a cabo el recuento celular después de 48 h de cultivo.

Los resultados muestran que la expresión combinada de UMK, DCK y SST2 sensibiliza drásticamente a las células tumorales derivadas de HCC y de hepatoma frente a gemcitabina.

30 Listado de secuencias

<110> INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

CAYLA

BUSCAIL, Louis

35 TIRABY, Gerard

VERNEJOUL, Fabienne

SUSINI, Christiane

DROCOURT, Daniel

- 40 <120> PRODUCTOS DE COMBINACIÓN PARA TRATAR EL CÁNCER
 - <130> 353524D25724

<150> EP 07301447.1

45 <151> 10/10/2007

<160> 11

<170> PatentIn versión 3.3

50

<210> 1

<211> 369

<212> PRT

<213> Homo sapiens

55

<400> 1

Met	Asp	Met	Ala	Asp	Glu	Pro	Leu	Asn	Gly	Ser	His	Thr	Trp	Leu	Ser
1				5					10					15	

- Ile Pro Phe Asp Leu Asn Gly Ser Val Val Ser Thr Asn Thr Ser Asn 20 25 30
- Gln Thr Glu Pro Tyr Tyr Asp Leu Thr Ser Asn Ala Val Leu Thr Phe 35 40 45
- Ile Tyr Phe Val Val Cys Ile Ile Gly Leu Cys Gly Asn Thr Leu Val 50 60
- Ile Tyr Val Ile Leu Arg Tyr Ala Lys Met Lys Thr Ile Thr Asn Ile 65 70 75 80
- Tyr Ile Leu Asn Leu Ala Ile Ala Asp Glu Leu Phe Met Leu Gly Leu 85 90 95
- Pro Phe Leu Ala Met Gln Val Ala Leu Val His Trp Pro Phe Gly Lys
 100 105 110
- Ala Ile Cys Arg Val Val Met Thr Val Asp Gly Ile Asn Gln Phe Thr 115 120 125

Ser	Ile 130	Phe	Суз	Leu	Thr	Val 135	Met	Ser	Ile	Asp	Arg 140	Tyr	Leu	Ala	Val
Val 145	His	Pro	Ile	Lys	Ser 150	Ala	Lys	Trp	Arg	Arg 155	Pro	Arg	Thr	Ala	Lys 160
Met	Ile	Thr	Met	Ala 165	Val	Trp	Gly	Val	Ser 170	Leu	Leu	Val	Ile	Leu 175	Pro
Ile	Met	Ile	Tyr 180	Ala	Gly	Leu	Arg	Ser 185	Asn	Gln	Trp	Gly	Arg 190	Ser	Ser
Cys	Thr	Ile 195	Asn	Trp	Pro	Gly	Glu 200	Ser	Gly	Ala	Trp	Tyr 205	Thr	Gly	Phe
Ile	Ile 210	Tyr	Thr	Phe	Ile	Leu 215	Gly	Phe	Leu	Val	Pro 220	Leu	Thr	Ile	Ile
Cys 225	Leu	Cys	Tyr	Leu	Phe 230	Ile	Ile	Ile	Lys	Val 235	Lys	Ser	Ser	Gly	Ile 240
Arg	Val	Gly	Ser	Ser 245	Lys	Arg	Lys	Lys	Ser 250	Glu	Lys	Lys	Val	Thr 255	Arg
Met	Val	Ser	Ile 260	Val	Val	Ala	Val	Phe 265	Ile	Phe	Cys	Trp	Leu 270	Pro	Phe
Tyr	Ile	Phe 275	Asn	Val	Ser	Ser	Val 280	Ser	Met	Ala	Ile	Ser 285	Pro	Thr	Pro
Ala	Leu 290	Lys	Gly	Met	Phe	Asp 295	Phe	Val	Val	Val	Leu 300	Thr	Tyr	Ala	Asn
Ser 305	Суз	Ala	Asn	Pro	Ile 310	Leu	Tyr	Ala	Phe	Leu 315	Ser	Asp	Asn	Phe	Lys 320
Lys	Ser	Phe	Gln	Asn 325	Val	Leu	Суз	Leu	Val 330	Lys	Val	Ser	Gly	Thr 335	Asp
Asp	Gly	Glu	Arg 340	Ser	Asp	Ser	Lys	Gln 345	Asp	Lys	Ser	Arg	Leu 350	Asn	Glu
Thr	Thr	Glu 355	Thr	Gln	Arg	Thr	Leu 360	Leu	Asn	Gly	Asp	Leu 365	Gln	Thr	Ser

Ile

<210> 2 <211> 260 <212> PRT <213> Homo sapiens

<400> 2

Met Ala Thr Pro Pro Lys Arg Ser Cys Pro Ser Phe Ser Ala Ser Ser Glu Gly Thr Arg Ile Lys Lys Ile Ser Ile Glu Gly Asn Ile Ala Ala Gly Lys Ser Thr Phe Val Asn Ile Leu Lys Gln Leu Cys Glu Asp Trp Glu Val Val Pro Glu Pro Val Ala Arg Trp Cys Asn Val Gln Ser Thr 55 Gln Asp Glu Phe Glu Glu Leu Thr Met Ser Gln Lys Asn Gly Gly Asn Val Leu Gln Met Met Tyr Glu Lys Pro Glu Arg Trp Ser Phe Thr Phe Gln Thr Tyr Ala Cys Leu Ser Arg Ile Arg Ala Gln Leu Ala Ser Leu 105 Asn Gly Lys Leu Lys Asp Ala Glu Lys Pro Val Leu Phe Phe Glu Arg Ser Val Tyr Ser Asp Arg Tyr Ile Phe Ala Ser Asn Leu Tyr Glu Ser 135 Glu Cys Met Asn Glu Thr Glu Trp Thr Ile Tyr Gln Asp Trp His Asp Trp Met Asn Asn Gln Phe Gly Gln Ser Leu Glu Leu Asp Gly Ile Ile 165 170 Tyr Leu Gln Ala Thr Pro Glu Thr Cys Leu His Arg Ile Tyr Leu Arg 180 185 190 Gly Arg Asn Glu Glu Gln Gly Ile Pro Leu Glu Tyr Leu Glu Lys Leu

200

205

His Tyr Lys His Glu Ser Trp Leu Leu His Arg Thr Leu Lys Thr Asn 215 Phe Asp Tyr Leu Gln Glu Val Pro Ile Leu Thr Leu Asp Val Asn Glu Asp Phe Lys Asp Lys Tyr Glu Ser Leu Val Glu Lys Val Lys Glu Phe Leu Ser Thr Leu 260 <211> 228 <212> PRT <213> Homo sapiens Met Leu Ser Arg Cys Arg Ser Gly Leu Leu His Val Leu Gly Leu Ser Phe Leu Leu Gln Thr Arg Arg Pro Ile Leu Leu Cys Ser Pro Arg Leu 25 20 Met Lys Pro Leu Val Val Phe Val Leu Gly Gly Pro Gly Ala Gly Lys Gly Thr Gln Cys Ala Arg Ile Val Glu Lys Tyr Gly Tyr Thr His Leu Ser Ala Gly Glu Leu Leu Arg Asp Glu Arg Lys Asn Pro Asp Ser Gln Tyr Gly Glu Leu Ile Glu Lys Tyr Ile Lys Glu Gly Lys Ile Val Pro 85 Val Glu Ile Thr Ile Ser Leu Leu Lys Arg Glu Met Asp Gln Thr Met 100 105 110 Ala Ala Asn Ala Gln Lys Asn Lys Phe Leu Ile Asp Gly Phe Pro Arg 115 125 120 Asn Gln Asp Asn Leu Gln Gly Trp Asn Lys Thr Met Asp Gly Lys Ala 130 135 140

<210> 3

<400> 3

Asp Val Ser Phe Val Leu Phe Phe Asp Cys Asn Asn Glu Ile Cys Ile

	145					150					155					160
	Glu	Arg	Суз	Leu	Glu 165	Arg	Gly	Lys	Ser	Ser 170	Gly	Arg	Ser	Asp	Asp 175	neA
	Arg	Glu	Ser	Leu 180	Glu	Lys	Arg	Ile	Gln 185	Thr	Tyr	Leu	Gln	Ser 190	Thr	Lys
	Pro	Ile	Ile 195	Asp	Leu	Tyr	Glu	Glu 200	Met	Gly	Lys	Val	Lys 205	Lys	Ile	Asp
	Ala	Ser 210	Lys	Ser	Val	Asp	Glu 215	Val	Phe	Asp	Glu	Val 220	Val	Gln	Ile	Phe
	Asp 225	Lys	Glu	Gly												
<210> 4 <211> 34 <212> PF <213> M	RT	sculus	:													
<400> 4																
	Met 1	Glu	Met	Ser	Ser 5	Glu	Gln	Leu	Asn	G1y 10	Ser	Gln	Val	Trp	Val 15	Ser
	Ser	Pro	Phe	Asp 20	Leu	Asn	Gly	Ser	Leu 25	Gly	Pro	Ser	Asn	Gly 30	Ser	Asn
	Gln	Thr	Glu 35	Pro	Tyr	Tyr	Asp	Met 40	Thr	Ser	Asn	Ala	Val 45	Leu	Thr	Phe
	Ile	Tyr 50	Phe	Val	Val	Суз	Val 55	Val	Gly	Leu	Cys	Gly 60	Asn	Thr	Leu	Val
	Ile 65	Tyr	Val	Ile	Leu	Arg 70	Tyr	Ala	Lys	Met	Lys 75	Thr	Ile	Thr	Asn	11e 80
	Tyr	Ile	Leu	Asn	Leu 85	Ala	Ile	Ala	Asp	G1u 90	Leu	Phe	Met	Leu	Gly 95	Leu
	Pro	Phe	Leu	Ala 100	Met	Gln	Val	Ala	Leu 105	Val	His	Trp	Pro	Phe 110	Gly	Lys
	Ala	Ile	Cys 115	Arg	Val	Val	Met	Thr 120	Val	Asp	Gly	Ile	Asn 125	Gln	Phe	Thr

Ser Ile Phe Cys Leu Thr Val Met Ser Ile Asp Arg Tyr Leu Ala Val 130 135 Val His Pro Ile Lys Ser Ala Lys Trp Arg Arg Pro Arg Thr Ala Lys 150 Met Ile Asn Val Ala Val Trp Cys Val Ser Leu Leu Val Ile Leu Pro 170 Ile Met Ile Tyr Ala Gly Leu Arg Ser Asn Gln Trp Gly Arg Ser Ser Cys Thr Ile Asn Trp Pro Gly Glu Ser Gly Ala Trp Tyr Thr Gly Phe 200 Ile Ile Tyr Ala Phe Ile Leu Gly Phe Leu Val Pro Leu Thr Ile Ile 210 215 Cys Leu Cys Tyr Leu Phe Ile Ile Ile Lys Val Lys Ser Ser Gly Ile 230 235 Arg Val Gly Ser Ser Lys Arg Lys Lys Ser Glu Lys Lys Val Thr Arg Met Val Ser Ile Val Val Ala Val Phe Ile Phe Cys Trp Leu Pro Phe Tyr Ile Phe Asn Val Ser Ser Val Ser Val Ala Ile Ser Pro Thr Pro 275 280 285 Ala Leu Lys Gly Met Phe Asp Phe Val Val Ile Leu Thr Tyr Ala Asn 290 295 300 Ser Cys Ala Asn Pro Ile Leu Tyr Ala Phe Leu Ser Asp Asn Phe Lys 305 310 320 315 Lys Ser Phe Gln Asn Val Leu Cys Leu Val Lys Ala Asp Asn Ser Gln 335 330 Ser Gly Ala Glu Asp Ile Ile Ala Trp Val

<210>5

<211> 369

<212> PRT

<213> Rattus norvegicus

340

<400> 5

Met 1	Glu	Leu	Thr	Ser 5	Glu	Gln	Phe	Asn	Gly 10	Ser	Gln	Val	Trp	Ile 15	Pro
Ser	Pro	Phe	Asp 20	Leu	Asn	Gly	Ser	Leu 25	Gly	Pro	Ser	Asn	Gly 30	Ser	Asn
Gln	Thr	G1u 35	Pro	Tyr	Tyr	Asp	Met 40	Thr	Ser	Asn	Ala	Val 45	Leu	Thr	Phe
Ile	Tyr 50	Phe	Val	Val	Cys	Val 55	Val	Gly	Leu	Суз	Gly 60	Asn	Thr	Leu	Val
Ile 65	Tyr	Val	Ile	Leu	Arg 70	Tyr	Ala	Lys	Met	Lys 75	Thr	Ile	Thr	Asn	11e 80
Tyr	Ile	Leu	Asn	Leu 85	Ala	Ile	Ala	Asp	Glu 90	Leu	Phe	Met	Leu	Gly 95	Leu
Pro	Phe	Leu	Ala 100	Met	Gln	Val	Ala	Leu 105	Val	His	Trp	Pro	Phe 110	Gly	Lys
Ala	Ile	Cys 115	Arg	Val	Val	Met	Thr 120	Val	Asp	Gly	Ile	Asn 125	Gln	Phe	Thr
Ser	11e 130	Phe	Cys	Leu	Thr	Val 135	Met	Ser	Ile	Asp	Arg 140	Tyr	Leu	Ala	Val
Val 145	His	Pro	Ile	Lya	Ser 150	Ala	Lys	Trp	Arg	Arg 155	Pro	Arg	Thr	Ala	Lys 160
Met	Ile	Asn	Val	Ala 165	Val	Trp	Gly	Val	Ser 170	Leu	Leu	Val	Ile	Leu 175	Pro
Ile	Met	Ile	Tyr 180	Ala	Gly	Leu	Arg	Ser 185	Asn	Gln	Trp	Gly	Arg 190	Ser	Ser
Суз	Thr	Ile 195	Asn	Trp	Pro	Gly	Glu 200	Ser	Gly	Ala	Trp	Tyr 205	Thr	Gly	Phe
Ile	Ile 210	Tyr	Ala	Phe	Ile	Leu 215	Gly	Phe	Leu	Val	Pro 220	Leu	Thr	Ile	Ile
Cys 225	Leu	Суз	Tyr	Leu	Phe 230	Ile	Ile	Ile	Lys	Val 235	Lys	Ser	Ser	Gly	Ile 240

	Arg	Val	Gly	Ser	Ser 245	ГÀЗ	Arg	Lys	Lys	Ser 250	Glu	Lys	Lys	Val	Thr 255	Arg
	Met	Val	Ser	11e 260	Val	Val	Ala	Val	Phe 265	Ile	Phe	Суз	Trp	Leu 270	Pro	Phe
	Tyr	Ile	Phe 275	Asn	Val	Ser	Ser	Val 280	Ser	Val	Ala	Ile	Ser 285	Pro	Thr	Pro
	Ala	Leu 290	Lys	Gly	Met	Phe	Asp 295	Phe	Val	Val	Ile	Leu 300	Thr	Tyr	Ala	Asn
	Ser 305	Суз	Ala	Asn	Pro	11e 310	Leu	Туr	Ala	Phe	Leu 315	Ser	Asp	neA	Phe	Lys 320
	Lys	Şer	Phe	Gln	Asn 325	Val	Leu	Cys	Leu	Val 330	Lys	Val	Ser	Gly	Ala 335	Glu
	Asp	Gly	Glu	Arg 340	Ser	Asp	Ser	Lys	Gln 345	qeA	Lys	Ser	Arg	Leu 350	Asn	Glu
	Thr	Thr	G1u 355	Thr	Gln	Arg	Thr	Leu 360	Leu	Asn	Gly	Asp	Leu 365	Gln	Thr	Ser
	Ile				٠											
<210> 6 <211> 26 <212> PF <213> Ma	RT	sculus														
<400> 6																
	Met 1	Ala	Thr	Pro	Pro 5	Lys	Arg	Phe	Суз	Pro 10	Ser	Pro	Ser	Thr	Ser 15	Ser
	Glu	Gly	Thr	Arg 20	Ile	Lys	Lys	Ile	Ser 25	Ile	Glu	Gly	Asn	Ile 30	Ala	Ala
	Gly	Lys	Ser 35	Thr	Phe	Val	Asn	Ile 40	Leu	Lys	Gln	Ala	Ser 45	Glu	Asp	Trp
	Glu	Val 50	Val	Pro	Glu	Pro	Val 55	Ala	Arg	Trp	Cys	Asn 60	Val	Gln	Ser	Thr

	Gln 65	Glu	Glu	Phe	Glu	Glu 70	Leu	Thr	Thr	Ser	Gln 75	Lys	Ser	Gly	Gly	Asn 80
	Val	Leu	Gln	Met	Met 85	Tyr	Glu	Lys	Pro	Glu 90	Arg	Trp	Ser	Phe	Thr 95	Phe
	Gln	Ser	Tyr	Ala 100	Cys	Leu	Ser	Arg	Ile 105	Arg	Ala	Gln	Leu	Ala 110	Ser	Leu
	Asn	Gly	Lys 115	Leu	Lys	Asp	Ala	Glu 120	Lys	Pro	Val	Leu	Phe 125	Phe	Glu	Arg
	Ser	Val 130	Tyr	Ser	Asp	Arg	Tyr 135	Ile	Phe	Ala	Ser	Asn 140	Leu	Tyr	Glu	Ser
	Asp 145	Суз	Met	Asn	Glu	Thr 150	Glu	Trp	Thr	Ile	Tyr 155	Gln	Asp	Trp	His	Asp 160
	Trp	Met	Asn	Ser	Gln 165	Phe	Gly	Gln	Ser	Leu 170	Glu	Leu	Asp	Gly	Ile 175	Ile
	Tyr	Leu	Arg	Ala 180	Thr	Pro	Glu	Lys	Cys 185	Leu	Asn	Arg	Ile	Tyr 190	Leu	Arg
	Gly	Arg	Asn 195	Glu	Glu	Gln	G1y	Ile 200	Pro	Leu	Glu	Tyr	Leu 205	Glu	Lys	Leu
	His	Tyr 210	Lys	His	Glu	Ser	Trp 215	Leu	Leu	His	Arg	Thr 220	Leu	Lys	Thr	Ser
	Phe 225	Asp	Tyr	Leu	Gln	Glu 230	Val	Pro	Val	Leu	Thr 235	Leu	Asp	Val	Asn	Glu 240
	Asp	Phe	Lys	Asp	Lys 245	His	Glu	Ser	Leu	Val 250	Glu	Lys	Val	Lys	G1u 255	Phe
	Leu	Ser	Thr	Leu 260												
<210> 7 <211> 26 <212> PF																

18

Met Ala Thr Pro Pro Lys Arg Phe Cys Ser Ser Pro Ser Thr Ser Ser 1 10 15

<400> 7

<213> Rattus norvegicus

Glu	Gly	Thr	Arg 20	Ile	Lys	Lys	Ile	Ser 25	Ile	Glu	Gly	Asn	11e 30	Ala	Ala
Gly	Lys	Ser 35	Thr	Phe	Val	Asn	11e 40	Leu	Lys	Gln	Val	Cys 45	Glu	Asp	Trp
Glu	Val 50	Val	Pro	Glu	Pro	Val 55	Ala	Arg	Trp	Суз	Asn 60	Val	Gln	Ser	Thr
Gln 65	Asp	Glu	Phe	Glu	Glu 70	Leu	Thr	Thr	Ser	Gln 75	Lys	Ser	Gly	Gly	Asn 80
Val	Leu	Gln	Met	Met 85	Tyr	Glu	ГЛЗ	Pro	G1u 90	Arg	Trp	Ser	Phe	Ile 95	Phe
Gln	Ser	Tyr	Ala 100	Cys	Leu	Ser	Arg	Ile 105	Arg	Ala	Gln	Leu	Ala 110	Ser	Leu
Asn	Gly	Ser 115	Leu	Arg	Asp	Ala	Glu 120	Lys	Pro	Val	Leu	Phe 125	Phe	Glu	Arg
Ser	Val 130	Tyr	Ser	Asp	Arg	Tyr 135	Ile	Phe	Ala	Ser	Asn 140	Leu	Tyr	Glu	Ser
Asp 145	Суз	Met	Asn	Glu	Thr 150	Glu	Trp	Thr	Ile	Tyr 155	Gln	Asp	Trp	His	Asp 160
Trp	Met	Asn	Ser	Gln 165	Phe	Gly	Gln	Ser	Leu 170	Glu	Leu	Asp	Gly	Ile 175	Ile
Tyr	Leu	Arg	Ala 180	Thr	Pro	Glu	Lys	Суз 185	Leu	Asn	Arg	Ile	Tyr 190	Ile	Arg
Gly	Arg	Asp 195	Glu	Glu	Gln	Gly	Ile 200	Pro	Leu	Glu	Tyr	Leu 205	Glu	Lys	Leu
His	Tyr 210	Lys	His	Glu	Ser	Trp 215	Leu	Leu	His	Arg	Thr 22 0	Leu	Lys	Thr	Asn
Phe 225	Glu	Tyr	Leu	Gln	Glu 230	Val	Pro	Ile	Leu	Thr 235	Leu	Asp	Val	Asn	Leu 240
Asp	Phe	Lys	Asp	Lys 245	Glu	Glu	Ser	Leu	Val 250	Glu	Lys	Val	Lys	Glu 255	Phe

Leu Ser Thr Thr 260

<210> 8 <211> 260 <212> PRT <213> Bos taurus

<400> 8

Met Ala Thr Pro Pro Lys Arg Ser Cys Pro Ser Pro Ala Ala Ser Ser 1 10 15

Glu Gly Thr Arg Ile Lys Lys Ile Ser Ile Glu Gly Asn Ile Ala Ala 20 25 30

Gly Lys Ser Thr Phe Val Asn Ile Leu Lys Gln Val Cys Glu Asp Trp 35 40 45

Glu Val Val Pro Glu Pro Val Ala Arg Trp Cys Asn Val Gln Ser Thr 50 55 60

Gln Asp Glu Phe Glu Glu Leu Thr Thr Ser Gln Lys Ser Gly Gly Asn 65 70 75 80

Val Leu Gln Met Met Tyr Glu Lys Pro Glu Arg Trp Ser Phe Thr Phe 85 90 95

Gin Ser Tyr Ala Cys Leu Ser Arg Ile Arg Ala Gln Leu Ala Ala Leu 100 105 110

Asn Gly Lys Leu Lys Asp Ala Glu Lys Pro Val Leu Phe Phe Glu Arg 115 120 125

Ser Val Tyr Ser Asp Arg Tyr Ile Phe Ala Ser Asn Leu Tyr Glu Ser 130 135 140

Asp Cys Met Asn Glu Thr Glu Trp Thr Ile Tyr Gln Asp Trp His Asp 145 150 155 160

Trp Met Asn Asn Gln Phe Gly Gln Ser Leu Glu Leu Asp Gly Ile Ile 165 170 175

Tyr Leu Arg Ala Thr Pro Glu Lys Cys Leu Asn Arg Ile Tyr Leu Arg 180 185 190

Gly Arg Asn Glu Glu Gln Gly Ile Pro Leu Glu Tyr Leu Glu Lys Leu

			195					200					205			
	His	Tyr 210	Lys	His	Glu	Ser	Trp 215	Leu	Leu	His	Arg	Thr 220	Leu	Lys	Thr	Asn
	Phe 225	Азр	Tyr	Leu	Gln	Glu 230	Val	Pro	Ile	Leu	Thr 235	Leu	Asp	Val	Asn	G1u 240
	Asp	Phe	Lys	Asp	Lys 245	His	Asp	Ser	Leu	Ile 250	Glu	Lys	Val	Lys	Asp 255	Phe
	Leu	Ser	Thr	Leu 260					•							
<210> 9 <211> 22 <212> PF <213> Ra	RT	orvegi	icus													
<400> 9																
	Met 1	Leu	Ser	Ser	Cys 5	Arg	Arg	Trp	Leu	Leu 10	His	Val	Leu	Val	Pro 15	Sei
	Phe	Pro	Pro	Leu 20	Thr	Arg	Gly	Leu	Arg 25	Phe	Phe	Pro	Leu	Gln 30	Leu	Met
	Lys	Pro	Leu 35	Val	Val	Phe	Val	Leu 40	Gly	Gly	Pro	Gly	Ala 45	Gly	Lys	G1y
	Thr	Gln 50	Cys	Ala	Arg	Ile	Val 55	Glu	Lys	Туг	Gly	Tyr 60	Thr	His	Leu	Ser
	Ala 65	Gly	Glu	Leu	Leu	Arg 70	Asp	Glu	Arg	Lys	Asn 75	Pro	Asp	Ser	Gln	Tyr 80
	Gly	Glu	Leu	Ile	Glu 85	Lys	Tyr	Ile	Lys	Glu 90	Gly	Lys	Ile	Val	Pro 95	Val
	Glu	Ile	Thr	11e 100	Ser	Leu	Leu	Lys	Arg 105	Glu	Met	Asp	Gln	Thr 110	Met	Ala
	Ala	Asn	Ala 115	Gln	Lys	Asn	Lys	Phe 120	Leu	Ile	Asp	Gly	Phe 125	Pro	Arg	Asn
	Gln	Asp 130	Asn	Leu	Gln	Gly	Trp 135	Asn	Lys	Thr	Met	Asp 140	Gly	Lys	Ala	Asp

	Val 145		Phe	Val	Leu	Phe 150	Phe	Asp	Суз	Asn	Asn 155		Ile	Суз	Ile	Asp 160
	Arg	Cys	Leu	Glu	Arg 165	Gly	Lys	Ser	Ser	Gly 170		Ser	Asp	Asp	Asn 175	Arg
	Glu	Ser	Leu	Glu 180	Lys	Arg	Ile	Gln	Thr 185	Туг	Leu	Glu	Ser	Thr 190	Lys	Pro
	Ile	Ile	Asp 195	Leu	Tyr	Glu	Glu	Met 200	Gly	Lys	Val	Lys	Lys 205	Ile	Asp	Ala
	Ser	Lys 210		Val	Asp	Glu	Val 215	Phe	Gly	Asp	Val	Met 220	Lys	Ile	Phe	qeA
	Lys 225	Glu	Gly													
<210> 1 <211> 5 <212> P <213> S	07 PRT	cia art	ificial													
<220> <223> F	usión	DCK:L	JMK													
<400> 1	0															
	Met 1	Ala	Thr	Pro	Pro 5	Lys	Arg	Ser	Суз	Pro 10	Ser	Phe	Ser	Ala	Ser 15	Ser
	Glu	Gly	Thr	Arg 20	Ile	Lys	Lys	Ile	Ser 25	Ile	Glu	Gly	Asn	11e 30	Ala	Ala
	Gly	Lys	Ser 35	Thr	Phe	Val	Asn	Ile 40	Leu	Lys	Gln	Leu	Cys 45	Glu	Asp	Trp
	Glu	Val 50	Val	Pro	Glu	Pro	Val 55	Ala	Arg	Trp	Суз	Asn 60	Val	Gln	Ser	Thr
	Gln 65	Asp	Glu	Phe	Glu	Glu 70	Leu	Thr	Met	Ser	Gln 75	Lys	Asn	Gly	Gly	Asn 80
	Val	Leu	Gln	Met	Met 85	Tyr	Glu	Lys	Pro	Glu 90	Arg	Trp	Ser	Phe	Thr 95	Phe

5

10

Asn	Gly	Lys 115	Leu	Lys	Asp	Ala	Glu 120	Lys	Pro	Val	Leu	Phe 125	Phe	Glu	Arg
Ser	Val 130	Tyr	Ser	Asp	Arg	Tyr 135	Ile	Phe	Ala	Ser	Asn 140	Leu	Tyr	Glu	Ser
Glu 145	Cys	Met	Asn	Glu	Thr 150	Glu	Trp	Thr	Ile	Tyr 155	Gln	Asp	Trp	His	Asp 160
Trp	Met	Asn	Asn	Gln 165	Phe	Gly	Gln	Ser	Leu 170	Glu	Leu	Asp	Gly	Ile 175	Ile
Tyr	Leu	Gln	Ala 180	Thr	Pro	Glu	Thr	Cys 185	Leu	His	Arģ	Ile	Tyr 190	Leu	Arg
Gly	Arg	Asn 195	Glu	Glu	Gln	Gly	Ile 200	Pro	Leu	Glu	Tyr	Leu 205	Glu	Lys	Leu
His	Tyr 210	Lys	His	Glu	Ser	Trp 215	Leu	Leu	His	Arg	Thr 220	Leu	Lys	Thr	Asn
Phe 225	Asp	Tyr	Leu	Gln	Glu 230	Val	Pro	Ile	Leu	Thr 235	Leu	Asp	Val	Asn	Glu 240
Asp	Phe	Lys	Asp	Lys 245	Tyr	Glu	Ser	Leu	Val 250	Glu	Lys	Val	Lys	G1u 255	Phe
Leu	Ser	Thr	Leu 260	Gln	Leu	Leu	Asn	Pro 265	Asp	Leu	Leu	Lys	Leu 270	Ala	Gly
Asp	Val	Glu 275	Ser	Asn	Pro	Gly	Met 280	Leu	Ser	Arg	Cys	Arg 285	Ser	Gly	Leu
Leu	His 290	Val	Leu	Gly	Leu	Ser 295	Phe	Leu	Leu	Gln	Thr 300	Arg	Arg	Pro	Ile
Leu 305	Leu	Суз	Ser	Pro	Arg 310	Leu	Met	Lys	Pro	Leu 315	Val	Val	Phe	Val	Leu 320
Gly	Gly	Pro	Gly	Ala 325	Gly	Lys	Gly	Thr	G1n 330	Cys	Ala	Arg	Ile	Val 335	Glu
Lys	Tyr	Gly	Tyr 340	Thr	His	Leu	Ser	Ala 345	Gly	Glu	Leu	Leu	Arg 350	Asp	Glu

	Arg	Lys	Asn 355	Pro	Asp	Ser	Gln	Tyr 360	Gly	Glu	Leu	Ile	Glu 365	Lys	Tyr	Ile	
	Lys	Glu 370	-	Lys	Ile	Val	Pro 375	Val	Glu	Ile	Thr	Ile 380	Ser	Leu	Leu	Lys	
	Arg 385		Met	Asp	Gln	Thr 390	Met	Ala	Ala	Asn	Ala 395	Gln	Lys	neA	Lys	Phe 400	
	Leu	Ile	Asp	Gly	Phe 405	Pro	Arg	Asn	Gln	Asp 410	Asn	Leu	Gln	Gly	Trp 415	Asn	
	Lys	Thr	Met	Asp 420	Gly	Lys	Ala	Asp	Val 425	Ser	Phe	Val	Leu	Phe 430	Phe	Asp	
	Суз	Asn	Asn 435	Glu	Ile	Cys	Ile	Glu 440	Arg	Суз	Leu	Glu	Arg 445	Gly	Lys	Ser	
	Ser	Gly 450	Arg	Ser	Азр	Asp	Asn 455	Arg	Glu	Ser	Leu	Glu 460	Lys	Arg	Ile	Gln	
	Thr 465		Leu	Gln	Ser	Thr 470	Lys	Pro	Ile	Ile	Asp 475	Leu	Tyr	Glu	Glu	Met 480	
	Gly	Lys	Val	Lys	Lys 485	Ile	Asp	Ala	Ser	Lys 490	Ser	Val	Asp	Glu	Val 495	Phe	
	Asp	Glu	Val	Val 500	Gln	Ile	Phe	Asp	Lys 505	Glu	Gly						
<212)> 11 > 7548 ?> ADN 3> Secuence	cia arti	ficial														
<220 <223)> 3> Vector p	HNeo	Sst2 [OCK:U	MK												
<400)> 11																
c	ctgcagg	ıcg t	taca	taac	t ta	cggt	aaat	ggc	ccgc	ctg	gctg	accg	cc c	aacg	accc	c	60
c	gcccatt	ga c	gtca	ataa	t ga	cgta	tgtt	ccc	atag	taa	cgcc	aata	gg g	actt	tcca	t	120
t	gacgtca	at g	iggtg	gagt	a tt	tacg	gtaa	act	gccc	act	tggc	agta	ca t	caag	tgta	t	180
¢	atatgcc	aa g	tacg	cccc	c ta	ttga	cgtc	aat	gacg	gta	aatg	gccc	gc c	tggc	atta	t	240
g	cccagta	ca t	gacc	ttat	g gg	actt	tcct	act	tggc	agt	acat	ctac	gt a	ttag	tcat	c	300

10

360

gctattacca tgatgatgcg gttttggcag tacatcaatg ggcgtggata gcggtttgac

tcacggggat	ttccaagtct	ccaccccatt	gacgtcaatg	ggagtttgtt	ttgactagtc	420
gcgtcgtgca	ggacgtgaca	aatctagtcg	cgtcgtgcag	gacgtgacaa	atctagtcgc	480
gtcgtgcagg	acgtgacaat	ctagttaccg	gcggaaacgg	tetegggttg	agaggtcacc	540
cgagggacag	gcagctgctg	aaccaatagg	accggcgcac	agggcggatg	ctgcccctca	600
ttggcggccg	ttgagagtga	ccaagagcca	atgagtcagc	ccggggggcg	tagcagtgac	660
gtaagttgcg	gaggaggccg	cttcgaatcg	gcagcggcca	gcttggtggc	atggaccaat	720
cagcgtcctc	caacgaggag	cgccttcgcc	aatcggaggc	ctccacgacg	gggctggggg	780
gagggtatat	aagccgagtc	ggcggcggcg	cgctccacac	gggccgagac	cacagcgacg	840
ggagcgtctg	cctctgcggg	gccgagaggt	aagegeegeg	gcctgccctt	tccaggccaa	900
ctcggagccc	gtctcgtggc	tccgcctgat	cgggggctcc	tgtcgccctc	agatcggtcg	960
gaacgccgtc	gcgctccggg	actacaagcc	tgttgctggg	cccggagact	gccgaaggac	1020
cgctgagcac	tgtcctcagc	gccggcacca	tggccacccc	gcccaagaga	agctgcccgt	1080
ctttctcagc	cagctctgag	gggacccgca	tcaagaaaat	ctccatcgaa	gggaacatcg	1140
ctgcagggaa	gtcaacattt	gtgaatatcc	ttaaacaatt	gtgtgaagat	tgggaagtgg	1200
ttcctgaacc	tgttgccaga	tggtgcaatg	ttcaaagtac	tcaagatgaa	tttgaggaac	1260
ttacaatgtc	tcagaaaaat	ggtgggaatg	ttcttcagat	gatgtatgag	aaacctgaac	1320
gatggtcttt	taccttccaa	acatatgcct	gtctcagtcg	aataagagct	cagettgeet	1380
ctctgaatgg	caageteaaa	gatgcagaga	aacctgtatt	attttttgaa	cgatctgtgt	1440
atagtgacag	gtatattttt	gcatctaatt	tgtatgaatc	tgaatgcatg	aatgagacag	1500
agtggacaat	ttatcaagac	tggcatgact	ggatgaataa	ccaatttggc	caaagccttg	1560
aattggatgg	aatcatttat	cttcaagcca	ctccagagac	atgcttacat	agaatatatt	1620
tacggggaag	aaatgaagag	caaggcattc	ctcttgaata	tttagagaag	cttcattata	1680
aacatgaaag	ctggctcctg	cataggacac	tgaaaaccaa	cttcgattat	cttcaagagg	1740
tgcctatctt	aacactggat	gttaatgaag	actttaaaga	caaatatgaa	agtctggttg	1800
aaaaggtcaa	agagttttg	agtactttgg	taccacaget	gctcaacttt	gacctgctca	1860
agctggctgg	ggatgtggag	agcaaccctg	ggcccatcat	gaagccgctg	gtcgtgttcg	1920
tcctcggcgg	ccccggcgcc	ggcaagggga	cccagtgcgc	ccgcatcgtc	gagaaatatg	1980
gctacacaca	cctttctgca	ggagagctgc	ttcgtgatga	aaggaagaac	ccagattcac	2040
agtatggtga	acttattgaa	aagtacatta	aagaaggaaa	gattgtacca	gttgagataa	2100
ccatcagttt	attaaagagg	gaaatggatc	agacaatggc	tgccaatgct	cagaagaata	2160

aattcttgat	tgatgggttt	ccaagaaatc	aagacaacct	tcaaggatgg	aacaagacca	2220
tggatgggaa	ggcagatgta	tctttcgttc	tctttttga	ctgtaataat	gagatttgta	2280
ttgaacgatg	tcttgagagg	ggaaagagta	gtggtaggag	tgatgacaac	agagagagct	2340
tggaaaagag	aattcagacc	taccttcagt	caacaaagcc	aattattgac	ttatatgaag	2400
aaatggggaa	agtcaagaaa	atagatgctt	ctaaatctgt	tgatgaagtt	tttgatgaag	2460
ttgtgcagat	ttttgacaag	gaaggctaag	ctagctggcc	agacatgata	agatacattg	2520
atgagtttgg	acaaaccaca	actagaatgc	agtgaaaaaa	atgctttatt	tgtgaaattt	2580
gtgatgctat	tgctttattt	gtaaccatta	taagctgcaa	taaacaagtt	aacaacaaca	2640
attgcattca	ttttatgttt	caggttcagg	gggaggtgtg	ggaggttttt	taaagcaagt	2700
aaaacctcta	caaatgtggt	atggaaatgt	taattaacta	gccatgacca	aaatccctta	2760
acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	2820
agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	2880
ggtggtttgt	ttgccggatc	aagagctacc	aactctttt	ccgaaggtaa	ctggcttcag	2940
cagagcgcag	ataccaaata	ctgttcttct	agtgtagccg	tagttaggcc	accacttcaa	3000
gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	ctgttaccag	tggctgctgc	3060
cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	3120
gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagece	agcttggagc	gaacgaccta	3180
caccgaactg	agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	3240
aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	3300
tccaggggga	aacgcctggt	atctttatag	tectgteggg	tttcgccacc	tctgacttga	3360
gcgtcgattt	ttgtgatgct	cgtcaggggg	gcggagccta	tggaaaaacg	ccagcaacgc	3420
ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	cacatgttct	taattaacct	3480
gcagggcctg	aaataacctc	tgaaagagga	acttggttag	gtaccttctg	aggctgaaag	3540
aaccagctgt	ggaatgtgtg	tcagttaggg	tgtggaaagt	ccccaggete	cccagcaggc	3600
agaagtatgc	aaagcatgca	tctcaattag	tcagcaacca	ggtgtggaaa	gtccccaggc	3660
tccccagcag	gcagaagtat	gcaaagcatg	catctcaatt	agtcagcaac	catagtccca	3720
ctagtacacg	tgggttcccg	cacgtccgct	gggctcccac	tctgacgtga	ttctagtttc	3780
atcaccaccg	ccacccccc	gccccccgc	catctgaaag	ggttctaggg	gatttgcaac	3840
ctctctcgtg	tgtttcttct	ttccgagaag	cgccgccaca	cgagaaagct	ggccgcgaaa	3900
gtcgtgctgg	aatcacttcc	aacgaaaccc	caggcataga	tgggaaaggg	tgaagaacac	3960
gttgtcatgg	ctaccgtttc	cccggtcacg	gaataaacgc	tctctaggat	ccggaagtag	4020

ttccgccgcg	acctctctaa	aaggatggat	gtgttctctg	cttacattca	ttggacgttt	4080
tcccttagag	gccaaggccg	cccaggcaaa	ggggcggtcc	cacgcgtgag	gggcccgcgg	4140
agccatttga	ttiggagaaaa	gctgcaaacc	ctgaccaatc	ggaaggagcc	acgcttcggg	4200
categgteac	cgcacctgga	cagctccgat	tggtggactt	ccgcccccc	tcacgaatcc	4260
tcattgggtg	ccgtgggtgc	gtggtgcggc	gcgattggtg	ggttcatgtt	tcccgtcccc	4320
cgcccgcgag	aagtgggggt	gaaaagcggc	ccgacctgct	tggggtgta g	tgggcggacc	4380
gcgcggctgg	aggtgtgagg	atccgaaccc	aggggtgggg	ggtggaggcg	gctcctgcga	4440
tcgaagggga	cttgagactc	accggtacca	ccatggacat	ggcggatgag	ccactcaatg	4500
gaagccacac	atggctatcc	attccatttg	acctcaatgg	ctctgtggtg	tcaaccaaca	4560
cctcaaacca	gacagagccg	tactatgacc	tgacaagcaa	tgcagtcctc	acattcatct	4620
attttgtggt	ctgcatcatt	gggttgtgtg	gcaacacact	tgtcatttat	gtcatcctcc	4680
gctatgccaa	gatgaagacc	atcaccaaca	tttacatcct	caacctggcc	atcgcagatg	4740
agctcttcat	gctgggtctg	cctttcttgg	ctatgcaggt	ggctctggtc	cactggccct	4800
ttggcaaggc	catttgccgg	gtggtcatga	ctgtggatgg	catcaatcag	ttcaccagca	4860
tcttctgcct	gacagtcatg	agcatcgacc	gatacctggc	tgtggtccac	cccatcaagt	4920
cggccaagtg	gaggagaccc	cggacggcca	agatgatcac	catggctgtg	tggggagtct	4980
ctctgctggt	catcttgccc	atcatgatat	atgctgggct	ccggagcaac	cagtggggga	5040
gaagcagctg	caccatcaac	tggccaggtg	aatctggggc	ttggtacaca	gggttcatca	5100
tctacacttt	cattctgggg	ttcctggtac	ccctcaccat	catctgtctt	tgctacctgt	5160
tcattatcat	caaggtgaag	tcctctggaa	tccgagtggg	ctcctctaag	aggaagaagt	5220
ctgagaagaa	ggtcacccga	atggtgtcca	tcgtggtggc	tgtcttcatc	ttctgctggc	5280
ttcccttcta	catattcaac	gtttcttccg	tctccatggc	catcagcccc	accccagccc	5340
ttaaaggcat	gtttgacttt	gtggtggtcc	tcacctatgc	taacagctgt	gecaacceta	5400
tcctatatgc	cttcttgtct	gacaacttca	agaagagctt	ccagaatgtc	ctctgcttgg	5460
tcaaggtgag	cggcacagat	gatggggagc	ggagtgacag	taagcaggac	aaatcccggc	5520
tgaatgagac	cacggagacc	cagaggaccc	tcctcaatgg	agacctccaa	accagtatct	5580
gaagctagga	gcaggtttcc	ccaatgacac	aaaacgtgca	acttgaaact	ccgcctggtc	5640
tttccaggtc	tagaggggta	acactttgta	ctgcgtttgg	ctccacgctc	gatccactgg	5700
cgagtgttag	taacagcact	gttgcttcgt	agcggagcat	gacggccgtg	ggaactcctc	5760
cttggtaaca	aggacccacg	gggccaaaag	ccacgcccac	acgggcccgt	catgtgtgca	5820

accccagcac	ggcgacttta	ctgcgaaacc	cactttaaag	tgacattgaa	actggtaccc	5880
acacactggt	gacaggctaa	ggatgccctt	caggtacccc	gaggtaacac	gcgacactcg	5940
ggatctgaga	aggggactgg	ggcttctata	aaagcgctcg	gtttaaaaag	cttctatgcc	6000
tgaataggtg	accggaggtc	ggcacctttc	ctttgcaatt	actgacccta	tgaatacaac	6060
tgactgtttg	acaattaatc	atcggcatag	tatatcggca	tagtataata	cgactcacta	6120
taggagggcc	accatgattg	aacaagatgg	attgcacgca	ggttctccgg	ccgcttgggt	6180
ggagaggcta	ttcggctatg	actgggcaca	acagacaatc	ggctgctctg	atgccgccgt	6240
gttccggctg	tcagcgcagg	ggcgcccggt	tctttttgtc	aagaccgacc	tgtccggtgc	6300
cctgaatgaa	ctgcaggacg	aggcagcgcg	gctatcgtgg	ctggccacga	cgggcgttcc	6360
ttgcgcagct	gtgctcgacg	ttgtcactga	agcgggaagg	gactggctgc	tattgggcga	6420
agtgccgggg	caggatetee	tgtcatctca	ccttgctcct	gccgagaaag	tatccatcat	6480
ggctgatgca	atgcggcggc	tgcatacgct	tgatccggct	acctgcccat	togaccacca	6540
agcgaaacat	cgcatcgagc	gagcacgtac	tcggatggaa	gccggtcttg	tcgatcagga	6600
tgatctggac	gaagagcatc	aggggctcgc	gccagccgaa	ctgttcgcca	ggctcaaggc	6660
gcgcatgccc	gacggcgagg	atctcgtcgt	gacccatggc	gatgcctgct	tgccgaatat	6720
catggtggaa	aatggccgct	tttctggatt	catcgactgt	ggccggctgg	gtgtggcgga	6780
ccgctatcag	gacatagcgt	tggctacccg	tgatattgct	gaagagcttg	gcggcgaatg	6840
ggctgaccgc	ttcctcgtgc	tttacggtat	cgccgctccc	gattcgcagc	gcatcgcctt	6900
ctatcgcctt	cttgacgagt	tcttctgagc	gggactctgg	ggttcgaaat	gaccgaccaa	6960
gcgaattcgc	tagcattatc	cctaatacct	gccaccccac	tcttaatcag	tggtggaaga	7020
acggtctcag	aactgtttgt	ttcaattggc	catttaagtt	tagtagtaaa	agactggtta	7080
atgataacaa	tgcatcgtaa	aaccttcaga	aggaaaggag	aatgttttgt	ggaccacttt	7140
ggttttcttt	tttgcgtgtg	gcagttttaa	gttattagtt	tttaaaatca	gtacttttta	7200
atggaaacaa	cttgaccaaa	aatttgtcac	agaattttga	gacccattaa	aaaagttaaa	7260
tgagaaacct	gtgtgttcct	ttggtcaaca	ccgagacatt	taggtgaaag	acatctaatt	7320
ctggttttac	gaatctggaa	acttcttgaa	aatgtaattc	ttgagttaac	acttctgggt	7380
ggagaatagg	gttgttttcc	ccccacataa	ttggaagggg	aaggaatatc	atttaaagct	7440
atgggagggt	tgctttgatt	acaacactgg	agagaaatgc	agcatgttgc	tgattgcctg	7500
tcactaaaac	aggccaaaaa	ctgagtcctt	gggttgcata	gaaagctg		7548

REIVINDICACIONES

1. Productos que contienen:

5

10

15

30

- (i) al menos una secuencia de ácido nucleico que codifica la proteína del receptor de somatostatina 2 humana (sst2) que presenta la secuencia SEC ID nº:1, o una secuencia que presenta un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:1,
- (ii) al menos una secuencia de ácido nucleico que codifica la proteína desoxicitidina cinasa (dck) humana que presenta la secuencia SEC ID nº:2, o una secuencia que presenta un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:2,
 - (iii) al menos una secuencia de ácido nucleico que codifica la proteína uridina monofosfato cinasa (umk) humana que presenta la secuencia SEC ID nº:3, o una secuencia que presenta un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:3, y
 - (iv) gemcitabina,
- como una preparación combinada para la utilización simultánea, separada o secuencial en el tratamiento de cáncer 20 en un sujeto.
 - 2. Productos para la utilización según la reivindicación 1, en los que dichos productos se dirigen a la inhibición de la metástasis tumoral.
- 3. Productos para la utilización según cualquiera de las reivindicaciones 1 o 2, en los que dichos productos son útiles para tratar el cáncer pancreático.
 - 4. Productos para la utilización según cualquiera de las reivindicaciones 1 o 2, en los que dichos productos son útiles para tratar el carcinoma hepatocelular.
 - 5. Productos para la utilización según cualquiera de las reivindicaciones 1 a 4, en los que dicho sujeto es un ser humano.
- 6. Productos para la utilización según cualquiera de las reivindicaciones 1 a 5, en los que dichos productos comprenden al menos una secuencia de ácido nucleico que codifica simultáneamente la proteína desoxicitidina cinasa (dck) humana que presenta la secuencia SEC ID nº:2, o una secuencia que presenta un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:2, y la proteína uridina monofosfato cinasa (umk) humana que presenta la secuencia SEC ID nº:3, o una secuencia que presenta un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:3.
 - 7. Productos para la utilización según la reivindicación 6, en los que dichos productos comprenden al menos una secuencia de ácido nucleico que codifica un polipéptido que comprende las dos proteínas proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens*, enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible, presentando dicho polipéptido la secuencia SEC ID nº: 10.
 - 8. Productos para la utilización según cualquiera de las reivindicaciones 1 a 7, en los que dichas secuencias de ácidos nucleicos están comprendidas en al menos un vector, preferentemente un vector plasmídico.
- 9. Productos para la utilización según la reivindicación 8, en los que dicho vector plasmídico presenta la secuencia SEC ID nº: 11, y comprende unas secuencias de ácidos nucleicos que codifican la proteína del receptor de somatostatina 2 de *Homo sapiens* y un polipéptido que comprende las dos proteínas proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens* enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible.
- 55 10. Productos para la utilización según cualquiera de las reivindicaciones 8 o 9, en los que dichos vector o vectores plasmídicos están asociados con polímeros catiónicos no lipídicos, preferentemente con polietilenimina (PEI).
 - 11. Composición farmacéutica que comprende:
- (i) al menos una secuencia de ácido nucleico que codifica la proteína del receptor de somatostatina 2 humana (SST2) que presenta la secuencia SEC ID nº:1, o una secuencia que presenta un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:1,
- (ii) al menos una secuencia de ácido nucleico que codifica la proteína desoxicitidina cinasa (DCK) humana que presenta la secuencia SEC ID nº:2, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:2,

- (iii) al menos una secuencia de ácido nucleico que codifica la proteína uridina monofosfato cinasa (UMK) humana que presenta la secuencia SEC ID nº:3, o una secuencia que tiene un porcentaje de identidad de al menos 80% con la secuencia completa SEC ID nº:3, y
- (iv) opcionalmente, un vehículo farmacéuticamente aceptable.
- 12. Composición farmacéutica según la reivindicación 11, en la que dichas secuencias de ácidos nucleicos están comprendidas en el interior de un vector plasmídico que presenta la secuencia SEC ID nº: 11, y que comprende unas secuencias de ácidos nucleicos que codifican la proteína del receptor de somatostatina 2 de *Homo sapiens* y un polipéptido que comprende las dos proteínas proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens* enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible.
- 13. Composición farmacéutica según la reivindicación 12, en la que dicho vector plasmídico está asociado con la polietilenimina (PEI).
 - 14. Vector plasmídico que presenta la secuencia SEC ID nº: 11, y que comprende unas secuencias de ácidos nucleicos que codifican la proteína del receptor de somatostatina 2 de *Homo sapiens* y un polipéptido que comprende las dos proteínas proteína desoxicitidina cinasa (dck) de *Homo sapiens* y proteína uridina monofosfato cinasa (umk) de *Homo sapiens* enlazadas mediante el péptido FMDV (virus de la glosopeda) 2A escindible.
 - 15. Productos para la utilización según la reivindicación 3, en los que dicha gemcitabina se administrará a una dosis igual o inferior a 750 mg/m² por día.

25

20

5

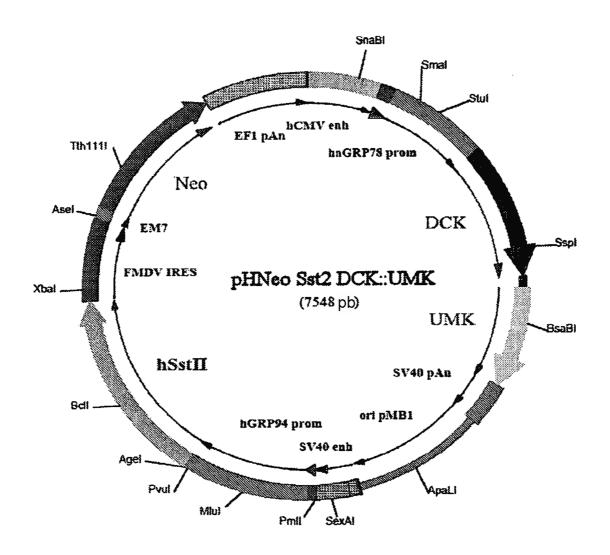


Figura 1

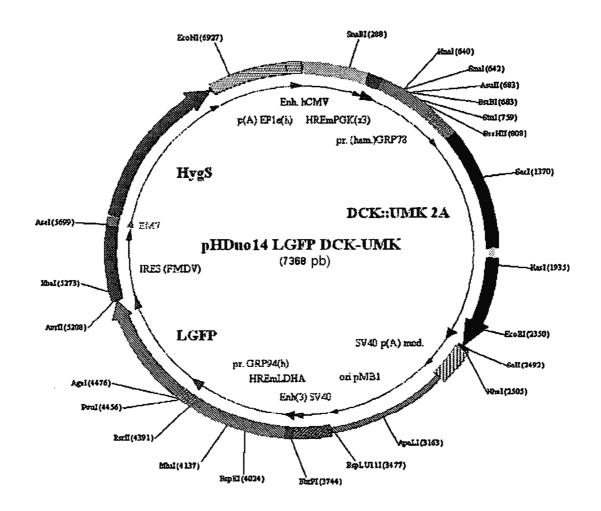


Figura 2