

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 413 430

51 Int. Cl.:

A61F 2/24 (2006.01) **A61F 2/01** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 10.12.2004 E 04813777 (2)
 (97) Fecha y número de publicación de la concesión europea: 27.03.2013 EP 1701668
- (54) Título: Aparato para la sustitución de válvula del corazón
- (30) Prioridad:

23.12.2003 US 746280 17.08.2004 US 920736

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 16.07.2013 (73) Titular/es:

SADRA MEDICAL, INC. (100.0%) 1717 DELL AVENUE CAMPBELL CA 95008, US

(72) Inventor/es:

SALAHIEH, AMR; BRANDT, BRIAN; MOREJOHN, DWIGHT, P.; MICHLITSCH, KENNETH, J. y SAUL, TOM

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Aparato para la sustitución de válvula del corazón

ANTECENDENTES DE LA INVENCIÓN

La presente invención se refiere a métodos y aparatos para proteger a un paciente de sufrir una embolia durante la sustitución endovascular de la válvula del corazón del paciente. Más concretamente, la presente invención se refiere a métodos y aparatos para proporcionar protección embólica filtrando la sangra aguas abajo de la válvula durante la sustitución endovascular.

La cirugía de válvula del corazón se utiliza para reparar o sustituir válvulas de corazón enfermas. La cirugía de válvula típicamente es un procedimiento a corazón abierto realizado bajo anestesia general. Se practica una incisión a través del esternón del paciente (esternotomía), y se detiene el corazón del paciente mientras que el flujo de sangre es reconducido a través de una máquina cardio-respiratoria de bypass. La válvula es entonces reparada o sustituida quirúrgicamente, la sangre es reconducida de nuevo a través del corazón del paciente, el corazón se restablece y el paciente se sutura.

El reemplazamiento de válvula puede ser indicado cuando hay un estrechamiento de la válvula de corazón original, comúnmente referido como estenosis, o cuando en la válvula original se producen fugas o regurgita. Cuando se sustituye la válvula, se corta la válvula originar y se sustituye por una válvula o bien biológica o bien mecánica. Las válvulas mecánicas requieren una medicación anticoagulante de larga duración para evitar la formación de coágulos de sangre, y el chasquido de la válvula a menor se puede oír a través del pecho. Las válvulas de tejido biológico normalmente no requieren tal medicación. Las válvulas de tejido se pueden obtener a partir de cadáveres o pueden ser bobinas o porcinas, y son comúnmente unidas a anillos sintéticos que son asegurados al corazón del paciente.

La cirugía de sustitución de válvulas es una operación altamente invasiva con un riesgo significativo concomitante. Los riesgos incluyen hemorragia, infección, derrames, ataques al corazón, arritmia, fallo renal, reacciones adversas a los medicamentos de anestesia, así como la muerte repentina, entre un 2 y un 5 % de los pacientes muere durante la cirugía.

- Después de la cirugía, los pacientes temporalmente pueden estar confusos debido a embolia u otros factores asociados con la máquina cardio-respiratoria. Los 2 ó 3 primeros días siguientes a la cirugía se pasan en la unidad de cuidados intensivos donde las funciones del corazón son intensamente monitorizadas. La estancia media en el hospital está comprendida entre 1 y 2 semanas, con varias semanas o meses más, necesarios para la completa recuperación.
- En los últimos años, el fomento en la cirugía mínimamente invasiva y cardiología convencional ha animado a algunos investigadores a ejercer sustitución endovascular, percutánea de la válvula del corazón aórticas. Véase, por ejemplo la Patente de Estados Unidos 6.168.614. La válvula de sustitución se puede desarrollar a través de una válvula enferma original para sujetar permanentemente la válvula original abierta, por lo que se alivia la necesidad de extirpar la válvula original y para colocar la válvula de sustitución en lugar de la válvula de sustitución. El documento US 2003/040756 expone catéteres. El sistema puede comprender una unidad de filtro de sangre fuera del cuerpo.

Dado que la válvula original puede estar calcificada o sufrir estenosis, la valvuloplastia y/o el despliegue de la válvula de sustitución representa un riesgo consistente en que se suelte y libere material embólico en el torrente sanguíneo del paciente. Este material puede, por ejemplo, viajar aguas abajo a través de la aorta o carótida del paciente hacia el sistema vascular cerebral del cerebro. De este modo, existe un riesgo de reducción de la facultades mentales, derrame o incluso la muerte durante la sustitución de la válvula de corazón endovascular, debido a la liberación de material embólico.

En vista de lo anterior, sería deseable proporcionar métodos y aparatos para proteger contra la embolización durante la sustitución endovascular de una válvula de corazón del paciente.

45 SUMARIO DE LA INVENCIÓN

40

Un aspecto de la invención proporciona un aparato para proteger contra la embolización durante la sustitución endovascular de una válvula de corazón de paciente, que incluye: una válvula de sustitución configurada para el envío y despliegue endovascular; y un filtro embólico configurado para disponer aguas abajo de la válvula de sustitución durante el despliegue endovascular de la válvula.

Un ejemplo proporciona un método para porter un paciente de la embolización durante la sustitución endovascular de la válvula de corazón del paciente, que incluye las etapas de: enviar endovascularmente una válvula de sustitución en las proximidades de la válvula de corazón del paciente; desplegar endovascularmente un filtro embólico aguas abajo de la válvula del corazón; y desplegar endovascularmente la válvula de sustitución. El método también puede incluir la etapa de retirar el filtro embólico del paciente después del despliegue endovascular de la válvula de sustitución. En las realizaciones en las que la válvula de corazón es una válvula aórtica, la etapa de envío

endovascular puede incluir la etapa de envío endovascular de la válvula de sustitución a lo largo de una aproximación retrógrada, y la etapa de despliegue del filtro puede incluir desplegar el filtro en la aorta del paciente. El método puede incluir también la etapa de enviar endovascularmente un globo expandible a las proximidades de la válvula del corazón y realizar la valvuloplastia con el globo expandible.

Todavía otro aspecto de la invención proporciona un aparato para proteger de la embolización durante la sustitución endovascular de la válvula de corazón del paciente, que incluye: un catéter de envío que tiene una válvula de sustitución expandible dispuesta en el mismo; y un filtro embólico que puede avanzar a lo largo del catéter de envío para desviar la embolia liberada durante el despliegue endovascular de la válvula de sustitución. La invención se expone en las reivindicaciones adjuntas.

10 BREVE DESCRIPCIÓN DE LOS DIBUJOS

30

Las características novedosas de la invención se exponen de manera particular en las reivindicaciones adjuntas. Se obtendrá un mejor entendimiento de las características y ventajas de la presente invención con referencia a la siguiente descripción detallada que expone las realizaciones ilustrativas, en las que se utilizan los principios de la invención, y los dibujos adjuntos en los que:

Las Figuras 1A-F son vistas laterales, parcialmente en sección, que ilustran un método y aparato para proteger un paciente de formación de embolia durante la sustitución endovascular de la válvula aórtica enferma del paciente.

La Figura 2 es una vista lateral, parcialmente en sección, que ilustra una realización alternativa del aparato y método de las Figuras 1.

Las Figuras 3A-D son vistas esquemáticas en sección lateral que ilustran otro método y aparato alternativo para proteger contra la formación de embolia durante la sustitución endovascular.

Las Figuras 4A-D son vistas laterales, parcialmente en sección, que ilustran todavía otro método y aparato para proteger contra la formación de embolia, en donde un filtro embólico es hecho avanzar coaxialmente sobre, o acoplado a, un exterior de un catéter de envío de válvula de sustitución.

Las Figuras 5A-F son vistas esquemáticas isométricas que ilustran realizaciones alternativas del aparato de la Figuras 4.

Las Figuras 6A-D son vistas laterales, parcialmente en sección, que ilustran otro método y aparato para proteger contra la formación de embolias.

Las Figuras 7A-B son vistas de detalle en sección transversal y sección lateral, respectivamente, a lo largo de las líneas de sección A--A y B--B de la Figura 6A, respectivamente, que ilustran un método y aparato opcionales para mejora el flujo sanguíneo de las arterias coronarias del paciente mientas se utiliza el aparato de las Figuras 6.

La Figura 8 es una vista esquemática de una realización del aparato de la Figura 6 que comprende un elemento de medida.

Las Figuras 9A-L son vistas esquemáticas de realizaciones alterativas a modo de ejemplo del aparato de las Figuras

35 Las Figuras 10A-B con vistas esquemáticas detalladas que ilustran una estructura de soporte enrollada en espiral.

La Figura 11 es una vista esquemática detallada que ilustra los soportes longitudinales para mantener una longitud del aparato.

Las Figuras 12A-C son vistas esquemáticas en detalle que ilustran métodos de despliegue y recuperación alternativos del aparato.

40 Las Figuras 13A-G son vistas esquemáticas y vistas laterales, parcialmente en sección, que ilustran un método y aparato para proteger un paciente de la formación de embolias durante la valvuloplastia endovascular y sustitución de la válvula aórtica enferma de paciente.

DESCRIPCIÓN DETALLADA DE LA INVECIÓN

- Aunque aquí se muestran y describen realizaciones preferidas de la presente invención, es evidente que para los expertos en la técnica que tales realizaciones se proporcionan sólo a modo de ejemplo. Los expertos en la técnica pueden realizar numerosas variaciones, cambios y sustituciones sin que se salgan del campo de la invención. Se entenderá que diversas alternativas a las realizaciones de la invención descrita aquí se pueden emplear en la práctica de la invención. Las reivindicaciones adjuntas están destinadas a definir el campo de la invención y los métodos y estructuras dentro del campo de estas reivindicaciones y sus equivalentes, por tanto, están cubiertos.
- La presente invención se refiere a métodos y aparatos para proteger a un paciente de formación de embolia durante

la sustitución endovascular de la válvula de corazón enferma del paciente. Más concretamente, la presente invención se refiere a métodos y aparatos para proporcionar protección embólica mediante el filtrado de sangre aguas abajo de la válvula durante la sustitución endovascular. El solicitante previamente ha descrito métodos y aparatos para sustituir endovascularmente una válvula de corazón enferma del paciente, por ejemplo en la Solicitud de Patente de Estados Unidos copendiente Nº 10/746.280, presentada el 23 de Diciembre de 2003, a partir de la cual, la presente solicitud reivindica la prioridad.

5

10

15

20

25

30

35

40

45

Haciendo referencia ahora a las Figuras 1, se describe una primera realización de un método y aparato para proteger a un paciente de la formación de embolia durante la sustitución endovascular de la válvula aortica enferma del paciente. En las Figuras 1, el aparato de sustitución de válvula 10 ilustrativamente comprende la válvula de sustitución 20 dispuesta dentro y acoplada con el anclaje expandible 30. El aparato 10 se proporciona solo para fines de ilustración, y alternativamente puede estar dispuesto cualquier otro aparato de válvula de sustitución.

La válvula de sustitución 20 preferiblemente procede de tejidos biológicos, por ejemplo, hojillas de válvula porcina o bobina o tejidos de pericardio equinos. Alternativamente, se puede hacer a partir de materiales de ingeniería de tejidos (tales como material de matriz extracelular procedentes de Submucosa Intestinal Pequeña (SIS)). Como todavía otra alternativa, la válvula de sustitución puede ser prostética a partir de un polímero elastómero o silicona, o Nitinol o malla de diseño de acero inoxidable (pulverizado iónicamente, molido químicamente o cortada con láser). La válvula de sustitución 20 puede comprender hojillas que también pueden estar hechas de un compuesto de materiales elastómeros o silicona y aleaciones de metal u otras fibras, tales como Kevlar o carbono. El anclaje 30 puede, por ejemplo, autoexpandirse dinámicamente; expandirse a través de una fuerza hidráulica o neumática, tal como la expansión de un catéter de globo en el mismo; expandirse mediante una fuerza no hidráulica y no neumática; y/o ser escorzado para incrementar su resistencia radial.

El aparato de válvula de sustitución 10 está acoplado de manera reversible con el sistema de envío 100, que ilustrativamente comprende una funda 110 que tiene un lumen 112, así como cables de control 50 y barras o tubos de control 60. El sistema de envío 100 puede comprender además el elemento de acoplamiento de hojillas 120, así como la estructura de filtro 61A. El elemento de acoplamiento 120, que puede estar acoplado de manera liberable al anclaje, está dispuesto entre el anclaje y los tubos 60 del sistema de envío. La estructura de filtro 61A puede, por ejemplo, comprender una membrana o trenza, por ejemplo, una tranza de Nitinol, circunferencialmente dispuesta alrededor de los tubos 60. La estructura 61A preferiblemente comprende una porosidad específica, preferiblemente comprende una pluralidad de poros del orden de aproximadamente 100µm o menor para facilitar el flujo de sangra a través de la misma a la vez que filtra las embolias de tamaño peligroso de la sangre. La estructura 61A puede ser utilizada independientemente o en combinación con el elemento de acoplamiento 120 para proporcionar protección embólica durante el despliegue del aparato de válvula de sustitución 10.

El aparato de válvula de sustitución 10 está configurado para retirar en una configuración de envío dentro del lumen 112 de la funda 110 para facilitar el envío percutáneo endoluminal del mismo. Los cables 50, los tubos 60, el elemento 120 y/o la funda 110 del sistema de envío 100 pueden ser utilizados para desplegar el aparato 10 desde la configuración de envío hasta una configuración desplegada expandida.

En la Figura 1A, la funda 110 del sistema de envío 100, que tiene el aparato 10 dispuesto en el mismo, puede avanzar endovascularmente sobre el cable de guía G, preferiblemente en una forma retrógrada (aunque una aproximación anterógrada o híbrida se puede utilizar de manera alternativa), a través de una aorta del paciente A hasta la válvula aortica enferma del paciente AV. Una nariz 102 precede la funda 110 de una manera conocida. En la Figura 1B, la funda 110 está colocada de manera que su región digital está dispuesta dentro del ventrículo izquierdo LV del corazón del paciente H.

Después de alinear adecuadamente el aparato con relación a los puntos de referencia anatómicos, tales como la ostia coronaria del paciente o las hojillas de válvula original del paciente L, el aparato 10 puede ser desplegado desde el lumen 112 de la funda 110, por ejemplo bajo guiado fluoroscópico. El anclaje 30 del aparato 10 ilustrativamente se autoexpande hasta una configuración parcialmente desplegada, como en la Figura 1C. El elemento de acoplamiento de hojillas 120 del sistema de envío 100 preferiblemente se autoexpande junto con el anclaje 30.

El elemento 120 inicialmente se despliega próximo a las hojillas de válvula original del paciente L, de manera que el elemento se acopa obturadamente contra la aorta A del paciente para capturar o filtrar de otro modo la embolia E que se puede liberar durante el maniobrado o despliegue del aparato 10. El elemento 120 también puede dirigir la embolia E a la estructura de filtro 61A y fuera a través de la funda 110, de manera que la embolia no viaja aguas abajo a través de la aorta de paciente o al sistema vascular cerebrar del paciente. La succión opcionalmente se puede extraer a través del lumen 112 de la funda 110 durante la colocación del aparato 10 para facilitar la aspiración y extracción de la embolia E del torrente sanguíneo de paciente para reducir más el riesgo de embolización.

Como se muestra en la Figura 1D, el aparato 10 y el elemento 120 pueden avanzar, y/o el anclaje 30 puede ser escorzado, hasta que el elemento de acoplamiento se coincida con las hojillas de válvula L, con lo que se asegura la correcta colación de aparato 10. Después de la alineación positiva del elemento 120 en las hojillas L, el elemento 120 impide más la migración distal del aparato 10 durante el escorzado adicional u otro despliegue del aparato 10,

por lo que se reduce el riesgo de colocación inadecuada del aparato. Una vez expandido a la configuración totalmente desplegada de la Figura 1D, el aparato de válvula de sustitución 10 regula el flujo de sangre normal entre el ventrículo izquierdo LV y la aorta A.

Como se ha expuesto, la embolia se puede generar durante la manipulación y colocación del aparato 10, por ejemplo, desde las hojillas originales enfermas o desde el tejido aórtico circundante. Las flechas 61B de la Figura 1E muestran la sangre que fluye pasado el elemento de acoplamiento 120 a través de la estructura de filtro porosa 61A. Aunque la sangre es capaz de fluid a través de la estructura de filtro, las embolias E son atrapadas en el sistema de envío y retiradas con el en el extremo del procedimiento o aspiradas a través de la succión durante el proceso. La Figura 1E también detalla el acoplamiento del elemento 120 contra las hojillas originales e ilustra los bloqueos 40, que opcionalmente se pueden utilizar para mantener el aparato 10 en la configuración desplegada.

Como se ve en la Figura 1F, el sistema de envío 100 puede ser desacoplado del aparato 10 y extraído del paciente, retirando con ello el filtro embólico provisto por el elemento 120 y la estructura de filtro 61A, y completando la sustitución endovascular, con el corazón latiendo, protegida, de la válvula aortica enferma del paciente.

Haciendo referencia a la Figura 2, se describe una realización alternativa del aparato de las Figuras 1, en el que un elemento de acoplamiento de lealeft 120 está acoplado al anclaje 30 del aparato 10, en lugar del sistema de envío 100. El elemento de acoplamiento 120 permanece implantado en el aparato de post-despliegue del paciente 10, y las hojillas L de la válvula aórtica original AV están entre el elemento de acoplamiento y el anclaje 30. De esta manera, el elemento 120 coincide positivamente con el aparato 10 con relación a las hojillas e impide la migración del aparato en el tiempo. Además, dado que el elemento 120 puede actuar como un filtro embólico durante el despliegue del aparato 10, cualquier embolia E capturada con el elemento 120 puede permanecer sin causar daño entre el elemento y las hojillas originales del paciente, por lo que se reduce el riesgo de embolización.

Haciendo ahora referencia a las Figuras 3, se describe otro método y aparato alternativo para proteger de la embolización. En la figura 3A, el aparato de válvula de sustitución 10 está una vez de nuevo dispuestos con el lumen 112 de la funda 110 del sistema de envío 100. Como se observa en la Figura 3B, el aparato se despliega desde el lumen y se expande hasta una configuración parcialmente desplegada a través de la válvula aórtica original del paciente AV. Un filtro embólico separado, expandible 200 también es desplegado desde el lumen 112 aguas abajo del aparato 10 con la aorta A del paciente, de manera que el filtro de acopla obturadamente con la aorta. Cualquier embolia generada durante la expansión adicional del aparato 10 a la configuración totalmente desplegada sería filtrada fuera del torrente sanguíneo del paciente a través del filtro y/o lumen 112 de la funda 110. El filtro 200 preferiblemente es poroso para permitir el flujo de sangre ininterrumpid a través de la aorta A durante el uso del filtro. El filtro puede, por ejemplo, estar fabricado a partir de una membrana polímera porosa, o a partir de una trenza o malla, por ejemplo una estructura de Nitinol trenzada.

25

30

55

Como se observa en la Figura 3C, el catéter del globo 130 puede avanzar a través de la funda 110 y el filtro 200 dentro del aparato 10. El globo se puede inflar para expandir más el aparato 10 hasta la configuración totalmente desplegada. La embolia E generada durante el despliegue del aparato 10 puede entonces ser capturada o filtrada de otro modo por el filtro 200. Como se observa en la Figura 3D, el catéter de globo 10 puede entonces ser desinflado y retirado del paciente, el filtro 200 puede ser colapsado dentro del lumen 112 de la funda 110, y el sistema de envío 100 puede ser retirado, por lo que se completa el proceso de sustitución de válvula protegido.

Se ha de entender que el catéter de globo 130 puede ser utilizado alternativamente para realzar valvuloplastia antes de la colación del aparato 10 a través de la válvula enferma. En esta configuración, el filtro 200 puede ser utilizado para capturar las embolias generadas durante el proceso de valvuloplastia y antes de la colocación del aparato 10, así como para proporcionar protección embólica durante la colocación y despliegue del aparato de válvula de sustitución. Después del proceso de valvuloplastia, el aparato 10 puede ser desplegado con o sin el catéter de globo 130.

Haciendo ahora referencia a las Figuras 4, se describe todavía otro método y aparato para proteger contra la embolización, en el que el filtro embólico es hecho avanzar coaxialmente sobre, o está acoplado a, un exterior de un catéter de envío de válvula. En la Figura 4A, el aparato de válvula de sustitución, por ejemplo el aparato 10, está dispuesto para el envío dentro del lumen de una funda de envío, por ejemplo la funda de envío 110 del sistema de envío 100. El filtro embólico expandible 300 está o bien acoplado a, o bien puede avanzar sobre, una superficie exterior de la funda de envío.

Cuando el filtro 300 puede avanzar sobre la funda de envío, la funda 110 se puede colocar en las proximidades de una válvula de corazón enferma del paciente, como se muestra, y el filtro 300 puede avanzar a lo largo del exterior de la funda de envío a través de de la funda empujadora dispuesta coaxialmente 310. La funda de envío 110 preferiblemente comprende un elemento de limitación de movimiento, tal como una sección transversal de diámetro localmente aumentado (no mostrada), que limita el avance del filtro 300 con relación a la funda de envío.

Cuando el filtro 300 está acoplado al exterior de la funda de envío 110, el filtro puede ser colapsado para el envío haciendo avanzar la funda empujadora 310 sobre el filtro, de manera que el filtro está encajado en un espacio anular entre la funda de envío 110 y la funda empujadora 310. El aparato de válvula de sustitución 10, el sistema de envío

100 y la funda empujada 310 pueden entonces avanzar endovascularmente a las proximidades de la válvula de corazón enferma del paciente AV. Una vez que se ha colocado apropiadamente, la funda empujadora puede ser retraída, de manera que el filtro 300 se expande dinámicamente en el contacto de obturación con la aorta A del paciente, como en la Figura 4A.

- 5 Independientemente de si el filtro 300 está acoplado a, o puede avanzar sobre, la funda de envío 110; una vez que está apropiadamente colocado, el filtro entra en contacto obturadamente con la aorta del paciente y filtra la sangre que atraviesa la aorta para retirar cualquier embolia dañina (las flechas ilustran el flujo de sangre en la Figura 4A). De este modo, el aparato de válvula de sustitución puede ser desplegado mientras que el filtro protege de la embolización. Como se puede ver en la Figura 4B, una vez que la protección embólica ya no es deseada, por 10 ejemplo, después de la sustitución endovascular de la válvula de corazón enferma del paciente, el filtro 300 se puede colapsar para par retirada médiate el avance de la funda empujadora 310 con relación a la funda de envío 110 y el filtro 300. La Figura 3B ilustra el filtro después del colapso parcial, mientras que la Figura 4C muestra el filtro casi completamente colapsado. En la Figura 4D, el filtro 300 está totalmente encerrado dentro del espacio anular entre la funda de envío 110 y la funda empujadora 310. Cualquier embolia peligrosa generada durante el despliegue 15 del aparato de sustitución de válvula es atrapada entre el filtro 300 y la superficie exterior de la funda de envío 110. El sistema de envío 100, el filtro 300 y la funda empujadora 310 entonces son retiradas del paciente para completar el proceso.
- Con referencia a las Figuras 5, se describen realizaciones alternativas del aparato de protección embólico de las Figuras 4. En la Figura 5A, el filtro 300 es sustancialmente el mismo que en las Figuras 4, pero también se describe una región de control próximas del aparato de protección embólico, que está dispuesta fuera del paciente. La región 400, que generalmente se muestra utilizable con cualquiera de las reivindicaciones de la Figura 5, comprende un mango proximal 115 de la funda de envío 110, así como un mango proximal 315 de la funda empujadora 310. Un médico puede agarrar el mango 115 con una primera mano y el mango 31 con una segunda mano para el movimiento relativo de la funda empujadora 310 y la funda de envío 110.
- En la Figura 5B, el filtro 300 comprende un primer filtro 300a y un segundo filtro 300b. Al igual que con el filtro unitario de las Figuras 4 y 5A, los filtros 300a y 300b se pueden acoplar a, o pueden avanzar sobre, el exterior de la funda 110. Como otra alternativa, el filtro 300a puede estar acoplado a la funda de envío, mientras que el filtro 300b puede avanzar sobre la funda. Los filtros 300a y 300b pueden ser desplegados y recuperados como se ha descrito previamente con respecto a las Figuras 4. Específicamente, uno o ambos de los filtros pueden avanzar a lo largo de la funda de envío 110 a través de la funda empujadora 310 o se pueden expandir desde es espacio anular entre las fundas de envío y empujadora. De manera similar, los filtros se pueden colapsar para la extracción dentro del espacio anular.
- El proporcionar múltiples filtros puede reducir el riesgo de embolización al realizar inadvertidamente un bypass del primer filtro, por ejemplo, debido a una obturación imperfecta entre el filtro y la anatomía del paciente.

 Adicionalmente, cada uno de los filtros puede tener una porosidad diferente; por ejemplo, el filtro 300a puede proporcionar un filtro vasto para retirar las embolias más grandes, mientras que el filtro 300b puede tener una porosidad más fina para capturar las embolias más pequeñas. El filtrado de la embolia a través de los múltiples filtros puede esparcir la embolia a múltiples filtros, por lo que se reduce el riesgo de impedir el flujo de sangre debido a la obstrucción de un único filtro con demasiadas embolias. La realización de la Figura 5C amplía estos conceptos: el filtro 300 comprende el primer filtro 300a, el segundo filtro 300b y el tercer filtro 300c. Es evidente que se puede proporcionar cualquier número de filtros.
 - Los filtros de las Figuras 5A-5C generalmente comprende cestas expansibles que tiene nervios auto-expansibles 302, por ejemplo, nervios de acero de muelle o Nitinol, rodeados por una membrana de filtro porosa y/o impermeable 304. La Figura 5D proporciona un filtro alternativo 300 que comprende un lazo de alambre auto-expansible 396 rodeado por la membrana 304. El despliegue y retirada del filtro 300 de la Figura 5D es similar al de los filtros 300 de las Figuras 5A-5C.

45

50

- Las Figuras 5E y 5F ilustran todavía otra realización del filtro 300. En la Figura 5E, el filtro 300 se muestra en una configuración de envío colapsada contra la superficie exterior de la funda de envío 110. El filtro 300 está acoplado próximamente a la funda empujadora 310 en el punto de unión 308a, y está distalmente acoplado a, o con movimiento limitado por, la funda de envío 110 en el punto de unión 308b. El filtro 300 comprende la trenza proximal 310a y la trenza distal 310b, por ejemplo, las trenzas proximales y distales de Nitinol. La trenza proximal preferiblemente comprende un tejido más cerrado para filtra embolias más pequeñas, y también puede estar convierta por una membrana permeable/porosa (no mostrada). La trenza distal 310b comprende una trenza más abierta para facilitar la expansión, así como para capturar las embolias de mayor tamaño.
- En la Figura 5F, la funda empujadora 310 ha sido avanzada con relación a la funda de envío 110, por lo que se expande el filtro 300 para capturar las embolias. Una vez que la protección embólica ya no se desea, por ejemplo, después de la sustitución endovascular de la válvula de corazón enferma del paciente, la funda empujadora 310 se puede retraer con relación a la funda de envío, que colapsa el filtro de nuevo a la configuración de envío de la Figura 5E y captura las embolias entre el filtro y la funda de envío. Como otra alternativa, la funda empujadora 310 puede avanzar más con relación a la funda de envío, por lo que se colapsa el filtro a una configuración de retirada en la que

la tranza proximal cubre la trenza distal (no mostrada).

5

10

45

Haciendo ahora referencia a la Figura 6, se describe otro método y aparato para proteger de la embolización. En la Figura 6A, el cable de guía G es hecho avanzar percutáneamente a través de la aorta A del paciente, pasada la válvula aortica enferma del paciente AV y dentro del ventrículo izquierdo. Los cacles de guía coronarios CG también pueden estar provistos para facilitar la correcta colocación de los elementos avanzados sobre el cable de guía G.

El sistema de protección embólica 500 ha avanzado endovascularmente sobre el cable de guía G hasta las proximidades de la válvula aórtica del paciente AV. El sistema 500 incluye la funda exterior 510 y el filtro embólico 520. El filtro embólico puede ser colapsado para el envío y/o retirada dentro del lumen 512 de la funda. Como se muestra en las Figuras 6A y 6B, la funda exterior 510 puede ser retirada con relación al filtro 520, de manera que el filtro se auto-expande hasta entra en contacto con la anatomía del paciente. La malla abierta de la trenza, por ejemplo, la trenza de Nitinol, a partir de la cual es fabricado el filtro, proporciona perfusión filtrada: la sangre filtrada continua fluyendo a través del filtro y a través de la aorta del paciente, así como a través de las ramificaciones laterales de la aorta. Opcionalmente, el filtro 520 también puede comprender una membrana permeable/porosa para ayudar al filtrado.

- Como se muestra en la Figura 6A, el filtro 520 opcionalmente puede comprender un borde distal festoneado 522 se encaja detrás de los hojillas de válvula y sobre las comisuras de hojilla de la válvula aortica AV. La profundidad, número y/o forma(s) del borde distal 522 se pueden especificar como se desee. Además, la indicaciones de marcado I (véase la Fig. 6B) puede estar provista en o cerca del borde para facilitar la alineación adecuada del borde con la ostia coronaria O del paciente. La Figura 6B ilustra una realización alternativa del filtro en el que el borde distal 522 es sustancialmente plano. Esto puede simplificar la colocación del filtro sin requerir la complicada alineación con la ostia coronaria O del paciente., y el borde distal plano puede simplificar el apoyo sobre o cerda de las comisuras de hojilla de la válvula.
- Además de proporcionar protección embólica, el filtro 520 puede ayudar al envío del aparato de válvula de sustitución. Como se observa en la Figura 6B, el filtro 520 está en contacto con la pared interna de la aorta A sobre una distancia significativa, por lo que se proporciona una capa protectora de no deslizamiento para guiar los catéteres adicionales pasadas las ramificaciones de los vasos sanguíneos son dañar las paredes de los vasos. Como se observa en la vista recortada de la Figura 6C, el sistema de envío 100, que tiene el aparato de válvula de sustitución 10 dispuesto en el mismo, puede entonces avanzar a través de sistema de protección embólica 500; y se puede proceder a la sustitución con el corazón latiendo, endovascular, de la válvula aortica enferma del paciente AV de una manera embólicamente protegida. Como es evidente, cualquier aparato de válvula de sustitución alternativo y sistema de envío se puede utilizar en combinación con el sistema de protección embólica 500. Además, como se ve en la vista detallada de la Figura 6D, todo o parte del filtro 520 se puede separar y permanecer como parte del aparato de válvula de sustitución implantada, por ejemplo, como un anclaje para la válvula de sustitución.
- Haciendo ahora referencia a las Figuras 7, se describe la geometría de extremo opcional del filtro 520. Como se observa en la Figura 7B, el borde distal 522 del filtro 520 se puede extender distalmente en la cúspide de la válvula enferma del paciente, por ejemplo, como medio para referenciar distancias y/o asegurar el completo acoplamiento. Para garantizar el adecuado flujo de sangre a las arterias coronarias del paciente, el filtro 520 puede comprender hendiduras 524 endurecidas al calor o formadas de otra forma que incrementan el flujo de área de superficie a través del filtro hasta las arterias coronarias del paciente. Las hendiduras también pueden ayudar a la correcta alineación del aparato de válvula de sustitución, por ejemplo, se puede utilizar en combinación como los cables de guía coronarios CG.

Haciendo referencia a la Figura 8, se describe una realización del aparato de protección embólica 500 que comprende un elemento de medida. El filtro embólico 520 puede, por ejemplo, comprender un par de cables delgados opuestos 530 que están anclados al extremo distal del filtro y se extiende fuera del extremo exterior para proporcionar un elemento de medida. Los cables opcionalmente pueden ser opacos a la radiación para facilitar la visualización. Los cables 530 comprenden indicadores de medida 532 en sus extremos proximales que proporcionan la distancia entre los indicadores y el extremo distal del cable. La distancia media medida entre los dos cables proporciona la distancia de eje central a través de la aorta del paciente hasta las comisuras de válvula.

- Haciendo ahora referencia a las Figuras 9, se describen varias realizaciones alternativas a modo de ejemplo del sistema de protección embólica 500. En la Figura 9A, se muestra una versión más corta del filtro embólico 520. El filtro está dispuesto en el espacio anular entre la funda exterior 510 y el sistema de envío 100/aparato de válvula de sustitución 10. El filtro puede estar fabricado en una longitud más corta, o puede ser desplegado sólo parcialmente a una longitud deseada.
- La Figura 9B ilustra otra versión del filtro 520 opcionalmente de cuello corto. Sin embargo, a diferencia del filtro de la Figura 9A, el extremo proximal del filtro 520 de la Figura 9B está al menos parcialmente desconectado de la funda 510. De este modo, el filtro 520 es un desviador que desvía la embolia pasada las ramificaciones circulatorias superiores primarias de la aorta A, por ejemplo, las que conducen a las arterias carótidas del paciente, por lo que se protege al paciente de la embolización cerebral. Entonces se puede permitir que las embolias continúen aguas abajo hasta regiones menos críticas y/o menos peligrosas de la anatomía del paciente.

Opcionalmente se puede aplicar succión a través del lumen de la funda 510 para retirar del paciente al menos una parte de la embolia. Alternativamente, un catéter de succión de independiente (no mostrado) puede avanzar sobre, a través de o a lo largo de la funda 510 hasta las proximidades de, o dentro del filtro 520; la succión se puede entonces realizar a través del catéter de succión para aspirar la embolia. El catéter de succión opcionalmente puede ser parte del sistema de envío 100, por ejemplo, la funda 110.

5

35

40

El extremo proximal del filtro 520 comprende ilustrativamente una abertura ahusada o en ángulo para facilitar el colapso y retirada del paciente del filtro. El extremo distal del filtro puede de igual modo estar ahusado o en ángulo en cualquier dirección o configuración deseada.

- En la Figura 9B, el aparato de válvula de sustitución opcionalmente puede ser desplegado directamente a través de la funda 510 sin que intervenga una funda de envío. Alternativamente, una funda de envío, tal como la funda 110, puede estar dispuesta, como se ha descrito previamente. La funda de envío puede avanzar a través de, o adyacente a, la funda de filtro 510; alternativamente, la funda 510 puede ser retirada durante la colocación del aparato de válvula de sustitución.
- La Figura 9C ilustra una realización alternativa del filtro 520 en la que el filtro comprende un membrana permeable o porosa, lámina, película, etc., opuesta a una trenza. La membrana puede comprender una porosidad específica, por ejemplo de aproximadamente 100 µm o menor. En la Figura 9C, la abertura proximal del filtro 520 ha sido ajustada. La Figura 9B ilustra una realización en laque la funda 510 está dispuesta a lo largo del lado opuesto de la aorta A del paciente, comparad con la realización de la Figura 9C.
- En la Figura 9E, el filtro 520 comprende la membrana M con el soporte enrolado en espiral, de refuerzo S. El soporte opcionalmente puede estar dispuesto dentro de una pista de guía de la membrana y puede avanzar o retraer dentro de la membrana si se desea. La Figura 9E muestra ilustrativamente el extremo proximal del filtro 520 ahusado o en ángulo en dos configuraciones diferentes; en la Figura 9E(a), el ahusamiento se extiende distalmente hacia la curvatura menor de la aorta, mientras que en la Figura 9E(b), el ahusamiento se extiende distalmente hacia la curvatura mayor. Son evidentes configuraciones adicionales.
- La Figura 9F ilustra una realización de membrana de filtro 520, que es similar a la realización de trenza de la Figura 9B. La Figura 9G ilustra otra realización de filtro de membrana/enrolado en espiral 520. Sin embargo, el filtro de la Figura 9G.está próximamente unida a la funda 510, de manera que las partículas embólicas son capturadas y retiradas del paciente, en lugar de desviadas. La Figura 9H proporciona otra realización unida próximamente del filtro que tiene una o más regiones de porosidad P especialmente diseñada. Por ejemplo, el tamaño y/o densidad de los poros puede varias como se desee en las proximidades de las ramificaciones de los vasos, por ejemplo, para aumentar el flujo de sangre y/o para filtrar partículas más finas.
 - El filtro 520 puede tener un perfil cargado, por ejemplo de manera que de forma natural adopte la curva de la aorta del paciente. Alternativamente, el filtro puede comprender un perfil no cargado o recto como en la Figura 9I que puede ser impulsado a una configuración curvada. En la Figura 9I, el filtro 520 comprende la membrana M tendida entre la estructura de soporta longitudinal S.
 - Haciendo ahora referencia a las Figuras 10, se describe una estructura enrollada en espiral para utilizar con cualquiera de los filtros descritos anteriormente. La estructura S actúa como un soporte radialmente expansivo cuando es torsionado en una primera dirección, como se ve en la Figura 10A. Cuando se torsiona en la dirección opuesta, la estructura se afloja y disminuye de diámetro, como se ve en la figura 10B. Las características de la torsión de la estructura S se pueden utilizar para expandir y contraer un filtro embólico, así como para capturar la embolia dispuesta dentro del filtro.
 - Como se muestra en la Figura 11, el filtro 520 puede comprender múltiples soportes longitudinales enrollados en espirales largas. Los soportes pueden incrementar la resistencia del aro. También pueden ayudar a mantener una longitud del filtro deseada.
- Las Figuras 12 ilustran el despliegue alternativo y los métodos de recuperación para el filtro 520. En la Figura 12A, el extremo proximal del filtro 520 está unido al extremo distal de la funda 510. El filtro y la funda pueden avanzar y retirarse juntas con el filtro que se adapta a la anatomía del paciente cuando es recolocado. Alternativamente, una sobre-funda adicional puede estar dispuesta para colapsar el filtro a una configuración de envío y recuperación.
- Como se observa en la figura 12B, el filtro 520 alternativamente puede ser colapsado dentro de la funda 510 durante el envío y recuperación, por ejemplo, a través de un cable de tiro acoplado a un extremo proximal del filtro (véanse las Figuras 13). Como se observa en la Figura 12C, el sistema de protección 500 opcionalmente puede comprender el cable de tiro 540 unido a la salida distal del filtro 520. Manteniendo el cable tenso durante la retirada del filtro 520, se espera que el riesgo de enganche, o de colgar de otro modo, el filtro 520 sobre la funda 510 sea reducido.
- Antes de la implementación de una válvula de sustitución, tal como la descrita anteriormente, puede ser deseable realizar una valvuloplastia sobre la válvula deseada insertando un globo dentro de la válvula y expandiéndolo, por ejemplo utilizando una solución salina mezclada con una agente de contraste. Además de preparar el sitio de la válvula para la implantación, el visionado fluoroscopio de la valvuloplastia ayudará a determinar el tamaño apropiado

del implante de válvula de sustitución a utilizar. Durante la valvuloplastia, se puede proporcionar protección embolica, por ejemplo, que utiliza cualquiera de los filtros embólico descritos previamente.

Haciendo ahora referencia a las Figuras 13, se describe un método de sustitución de una válvula aortica de paciente utilizando el aparato de válvula de sustitución 10 y el sistema de envío 100, en combinación con una realización de desviador del sistema de protección embólico 500. Aunque se utiliza ilustrativamente una aproximación retrógrada a través de la arteria femoral, se ha de entender que se pueden utilizar aproximaciones alternativas, que incluyen, pero no se limita a, aproximaciones radiales o carótidas, así como aproximaciones venosas anterógradas transeptales.

5

30

35

40

45

50

55

- Como se ven en la Figura 13A, está formado el sitio de punción de arteriotomía Ar, y la funda introductora 600 avanza de un modo mínimamente invasivo dentro de la arteria femoral del paciente. El introductor preferiblemente comprende inicialmente una funda relativamente pequeña, por ejemplo un una funda introductora del orden de aproximadamente 6 Fr-compatible. El cable de guía G es hecho avanzar a través de la funda introductora en la arteria femoral, y después es hecho avanzar más a través de la aorta del paciente y a través de la válvula aortica enferma del paciente.
- Adicionalmente, se pueden realizar imágenes para determinar son el paciente es una candidato para la valvuloplastia y/o la sustitución de válvula endovascular. Por ejemplo, imágenes angiográficas, conocidas *per se*, se pueden realizar mediante un catéter de angiografía (no mostrado) avanzado desde un sitio de entrada femoral, radial u otro sitio apropiado. El catéter de angiografía puede, por ejemplo, tener un perfil del orden de aproximadamente 5 Fr a 8 Fr, aunque se pueden utilizar tamaños alternativos.
- Si se determina que el paciente no es un candidato para la valvuloplastia y/o sustitución de válvula endovascular, el cable de guía y la funda introductora (así como cualquier aparato de generación de imágenes, por ejemplo el catéter de angiografía) se pueden retirar del paciente y el sitio de arteriotomía se puede obturar. Si se determina que el paciente es un candidato, el sitio de arteriotomía se puede expandir, y, después de la retirada del aparato de generación de imágenes, la funda introductora 600 se puede intercambiar por una funda introductora más grande 602 (véase la Figura 13C), por ejemplo, una funda introductora del orden de aproximadamente 14 Fr compatible, para facilitar la valvuloplastia endovascular y/o la sustitución de válvula.

Como se observa en la Figura 13B, el sistema de protección embólica 500 entonces puede avanzar sobre el cable de guía G hasta las inmediaciones de la válvula enferma del paciente. La funda 510 puede ser retraída con relación al filtro desviador 520, de manera que el filtro desviador, que preferiblemente comprende una trenza de cable auto-expansible, se expande hasta entrar en contacto con la pared de la aorta A aguas abajo de la válvula aortica AV. La funda 510 el sistema de protección embólica 500 puede entonces ser retirado del paciente.

El filtro 520 está configurado para desviar la embolia, generada durante el tratamiento endovascular de la válvula AV, alejándola del sistema vascular cerebral del paciente. El filtro ilustrativamente comprende interfaces opcionales proximal y distal 521 de diámetro agradado que entran en contacto con la pared de la aorta A, mientras que una sección central del filtro dispuesta entre las interfaces se mueve libremente o "flota" sin acoplar la aorta. Esto puede reducir la fricción durante el despliegue y/o recuperación del filtro, y también puede reducir el daño causado por el filtro a la pared de la aorta. El filtro 520 alternativamente puede entras en contacto con la aorta A, a lo largo de su longitud, como en las Figuras 13D-13G. El filtro 520 también opcionalmente puede comprender raíles internos R que se pueden utilizar para guiar las herramientas del tratamiento endovascular a través del filtro. El filtro 520 está ilustrativamente acoplado proximalmente al cable de tiro 540, que se extiende desde el extremo proximal del filtro al exterior del paciente. El cable de tiro 540 permite que un profesional médico maneje el filtro 520 como desee.

Como se ve en la Figura 13C, después de la retirada de la funda 510 del paciente, el cable de guía G y el cable de tiro 540 se extiende a través de la funda introductora 602. De manera ventajosa, con el filtro 520 colocado como se desee dentro de la aorta del paciente y con la flojedad eliminada del cable de tiro 540, el filtro puede ser mantenido en la posición deseada manteniendo inversamente la posición del cable de tiro 540, por ejemplo, uniendo inversamente el cable de tiro al exterior del paciente a través de la cinta quirúrgica T. De esta manera, el profesional médico puede colocar apropiadamente el filtro desviador 520, después dejarlo en la posición deseada sin requerir manipulación significativa o monitorización durante el tratamiento endovascular de la válvula aortica enferma del paciente AV. El extremo proximal abierto del filtro desviador 520 permite que sean hechas avanzar herramientas endovasculares adicionales tales como el catéter de valvuloplastia 700 y/o el aparato de sustitución de válvula 10 dispuesto dentro del sistema de envío 100, a través del desviador.

En las Figuras 13C y 13D, el catéter de valvuloplastia opcional 700, que tiene el globo expansible 702 es hecho avanzar sobre el cable de guía G y a través de la funda introductora 602 dentro del sistema vascular del paciente. El catéter 700 preferiblemente comprende un perfil de envío en el orden de aproximadamente 8-16 Fr, mientras que el globo 702 preferiblemente comprende un diámetro expandido del orden de 18 mm a 30 mm, más preferiblemente aproximadamente entre 20 mm y 23 mm. El tamaño adecuado del globo 702 opcionalmente puede ser determinado, por ejemplo, a través de la generación de imágenes angiográficas de la válvula aortica AV.

El globo 702 es hecho avanzar endovascularmente a través de la aorta A y el filtro desviador 520 a través de la

válvula aortica enferma AV. El filtro desviador 520 guía de manera ventajosa el catéter 700 pasadas las ramificaciones arteriales de la aorta A, a medida que el catéter atraviesa el filtro. De esta manera, el filtro 520 facilita la colocación adecuada del globo 702, mientras que se reduce el riesgo de lesión de las ramificaciones arteriales.

En la Figura 13E, una vez colocado a través de la válvula aórtica, el globo 702 se expande para deshacer o de otro modo fisurar la calcificación y/o la(s) lesión(es) a lo argo de la válvula. La expansión puede, por ejemplo, conseguirse utilizando una solución salina mezclada con un agente de contraste. Además, para preparar el sitio de la válvula para la implantación, el visionado fluoroscópico del agente de contraste y la valvuloplastia puede ayudar a determinar el tamaño apropiado del aparato de la válvula de sustitución 10 a utilizar. El globo 702 es entonces desinflado, y el catéter de valvuloplastia 700 es retirado del paciente. La embolia E generada durante la valvuloplastia se desplaza aguas abajo a través de la aorta A, en donde es desviada por el filtro 520 alejándola del sistema vascular cerebral del paciente.

Opcionalmente, se pueden proporcionar y utilizar múltiples catéteres secuencialmente para realizar la valvuloplastia. Alternativa o adicionalmente, se pueden utilizar múltiples catéteres 700 en paralelo (por ejemplo, a través de una técnica de "globo besando"). Los múltiples catéteres pueden comprender globos 702 del mismo tamaño o de diferentes tamaños.

15

20

40

45

Después de realizar opcionalmente la valvuloplastia, la válvula aórtica AV puede una vez más ser fotografiada, por ejemplo a través de la fluoroscopia y angiográfica, para determinad sin el paciente es un candidato para la sustitución de válvula endovascular. Si se determina que el paciente no es un candidato, el sistema de protección embólica 500, así como el cable de guía G y la funda introductora 602, pueden ser retirados del paciente, y el sitio de arteriotomía AR puede ser obturado. Un catéter de succión puede opcionalmente ser colocado dentro del filtro 520 antes de la retirada del filtro para "vaciar" cualquier embolia capturara en el mismo.

Con el fin de colapsar el filtro 520 para la recuperación, la funda 510 del sistema de protección embólica 500 opcionalmente puede avanzar a través del introductor 602 y sobre el cable de tiro 540 (opcionalmente, también sobre el cable de guía G) para entrar en contacto con una región proximal del filtro (véanse las Figuras 12).

- La región proximal ahusada puede funcionar como elemento de colapso que facilite la cubierta del filtro 520 para el envío y/o recuperación, por ejemplo distribuyendo las fuerzas aplicadas al filtro por la funda 510 a lo largo de una longitud longitudinal mayor del filtro, en comparación, por ejemplo, con las realizaciones del filtro que no están ahusadas proximalmente. Los elementos de colapso adicionales y alternativos pueden estar provistos de un filtro 520 o de una funda 510. El elemento de colapso puede colapsar el filtro, por ejemplo, colapsando la trenza del filtro.
- 30 El filtro 520 alternativamente puede ser recuperador retrayendo proximalmente el cable de tiro 540 sin colapsar el filtro dentro de una funda de una funda de recuperación, por lo que se retrae proximalmente el filtro 520 directamente a través del sistema vascular del paciente. Como todavía otra realización alternativa, se puede utilizar una funda de recuperación especializada, por ejemplo, una funda de perfil más grande o más pequeño que la funda 510. La funda de recuperación opcionalmente puede comprender un lumen aumentado distalmente para adaptarse al filtro colapsado.

En la Figura 13F, si se determina que el paciente es una candidato para la sustitución de válvula endovascular, el sistema de envío 100, que tiene el aparato de válvula de sustitución 10 dispuestos en el mismo en una configuración de envío colapsada, puede avanzar endovascularmente sobre el cable de guía G a través de la funda introductora, a través del filtro 520 y a través de la válvula aórtica del paciente AV. Al igual que durante el avance del catéter de globo 700, el filtro desviador 520 ventajosamente guía el sistema de envío 100 pasadas las ramificaciones arteriales de la aorta A, mientas que el sistema de envío avanza a través del filtro. De esta manera, el filtro 520 facilita la colocación adecuada del aparato 10, a la vez que protege de lesión las ramificaciones laterales aórticas.

Como se espera que el sistema de envío 100 pueda tener un perfil de envío del orden de aproximadamente 18-21 Fr, preferiblemente 19 Fr, la funda introductora 602 opcionalmente puede ser intercambiada por una funda introductora más grande para adaptarse al sistema de envío. Alternativamente, para reducir el tamaño del sitio de arteriotomía AR, puede ser deseable retirar la funda introductora y avanzar el sistema de envío 100 directamente a través del sitio de arteriotomía sin que una funda introductora interviniente, tal como la funda 110 del sistema de envío, actúe como funda introductora. El sistema de envío 100 opcionalmente puede comprender un lumen de intercambio rápido para avanzar el cable de guía G.

Si la funda introductora 602 es intercambiada o retirada, el cable de tiro 540 temporalmente puede ser desconectado del exterior del paciente, por ejemplo, mediante la cinta de retirada T. La funda introductora, entonces puede ser opcionalmente retirada o intercambiada, y el cable de tiro 540 puede ser fijado de nuevo al paciente. Durante la retirada y/o el intercambio de la funda introductora 602 (es decir, mientras el cable de tiro 540 no está fijado al paciente), un profesional médico preferiblemente agarra el cable de tiro 540 y mantiene su posición con relación al sitio de arteriotomía AR, manteniendo por tanto la posición del filtro 520 desplegada dentro del paciente.

En la Figura 13G, una vez que el aparato de válvula de sustitución 10 ha sido colocado adecuadamente a través de la válvula aórtica enferma AV del paciente, la funda 110 del sistema de envío 100 se puede retraer, y el aparato 10 de puede desplegar como se ha descrito anteriormente, por lo que se sustituye vascularmente la válvula enferma del

paciente. Las embolias E generadas durante el despliegue del aparato 10 son desviadas alejándolas de las arterias carótidas del paciente y el sistema vascular cerebral por el filtro 520. El sistema de envío 100 puede entonces ser retirado del paciente.

- El filtro 520 opcionalmente puede ser sometido a vacío a través del catéter de succión, por ejemplo generar succión a través de la funda 110. El filtro 520 y el cable de guía G pueden entonces ser retirados del paciente, como se ha expuesto anteriormente, y el sitio de arteriotomía AR puede ser obturado para completar el procedimiento. El cable de guía G puede ser recuperado y retirado antes, durante o después de la recuperación y retirada del filtro 520. La retirada y recuperación del filtro puede comprender la reintroducción de la funda 510 (por ejemplo, sobre el cable de tiro 540 y directamente a través del sitio de arteriotomía, a través de una funda introductora o a través de la funda 110 del sistema de envío 100) y colapsar el filtro 520 dentro de la funda. Alternativamente, la retirada del filtro 520 puede comprender la retracción del cable de tiro 540 son el colapso del filtro en una funda de recuperación interviniente. La obturación del sitio de arteriotomía puede comprender cualquier método de obturación conocido, incluyendo, pero sin limitarse a, la aplicación de presión, introducción de elementos de obturación, suturación, recorte y/o colocación de un tapón de colágeno.
- En las Figuras 13, aunque la desviación y/o filtrado del a embolia ha sido conducida ilustrativamente durante tanto la valvuloplastia como el despliegue endovascular del aparato de válvula de sustitución, se ha de entender que tal desviación/filtrado alternativamente pueden ser realizados durante la valvuloplastia o sólo durante la sustitución de válvula endovascular. Además, se ha de entender que la protección embólica se puede proporcionar durante el despliegue de cualquier aparado de sustitución endovascular y no se limita a la utilización de las realizaciones específicas del aparato descrito aquí.

REIVINDICACIONES

1. Un aparato para proteger contra la embolización durante la sustitución endovascular de una válvula de corazón del paciente, comprendiendo el aparato:

una válvula de sustitución (20) configurada para el envío y el despliegue endovascular; y

15

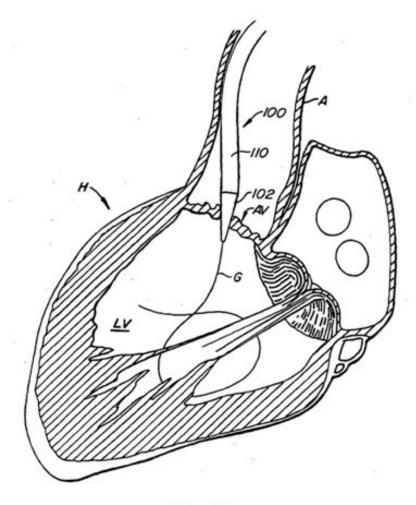
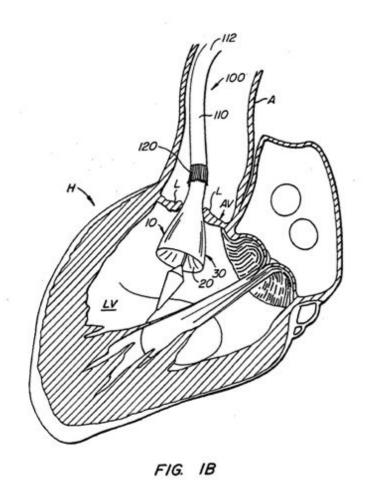
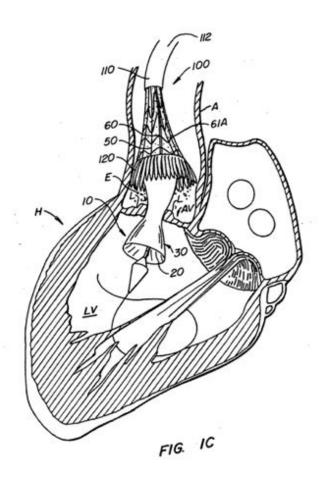
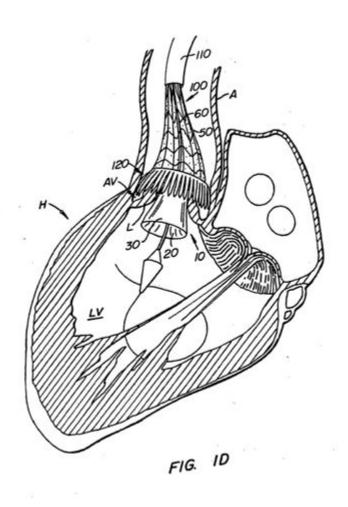
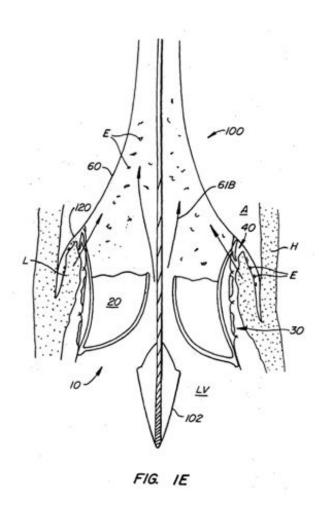
30

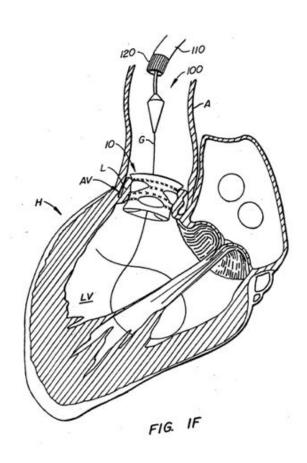
- 5 un sistema de protección embólico (500) que incluye una funda exterior (510) y un filtro embólico (520), en el que el filtro embólico (520) está configurado para disponerse aguas abajo de la válvula de sustitución (20) durante el despliegue de la válvula, caracterizado porque
- el filtro embólico (520) está configurado para la expansión desde una configuración de envío colapsada hasta una configuración desplegada expandida, en el que el filtro embólico (520) está configurado para ser colapsado para el envío y/o recuperación dentro del lumen (512) de la funda (510), en el que el extremo proximal del filtro (520) está al menos parcialmente desconectado de la funda (510), por lo que se desvían las embolias o coágulos alejándolas del sistema vascular cerebral del paciente sin capturar la embolia dentro del filtro (520).
 - 2. El aparato de la reivindicación 1, en el que el filtro embólico (520) está acoplado a la válvula de sustitución (20).
 - 3. El aparato de la reivindicación 1, en el que el filtro embólico (520) está desacoplado de la válvula de sustitución (20).
 - 4. El aparato de la reivindicación 1, en el que el filtro embólico (520) está configurado para entrar en contacto con la aorta del paciente y formar una obturación circunferencial contra la aorta en la configuración desplegada.
 - 5. El aparato de la reivindicación 1, en el que el filtro embólico (520) está configurado para el envío endovascular en la configuración de envío colapsada.
- 20 6. El aparato de la reivindicación 1, en el que la válvula de sustitución (20) está configurada para el envío endovascular a través del filtro embólico (520).
 - 7. El aparato de la reivindicación 1, que además comprende un elemento de succión configurado para aspirar la embolia o coágulo desviado del torrente sanguíneo del paciente.
- 8. El aparato de la reivindicación 1, en el que el filtro embólico (520) está fabricado a partir de una trenza o malla de cable expansible.
 - 9. El aparato de la reivindicación 1, en el que el filtro embólico (520) comprende una estructura enrollada en espiral.
 - 10. El aparato de la reivindicación 9, en el que la estructura enrollada en espiral está configurada para expandirse cuando es torsionada en una primera dirección y para entrar en contacto cuando es torsionada en una dirección opuesta.
 - 11. El aparato de la reivindicación 1, en el que el filtro embólico (520) comprende una membrana permeable que tiene una porosidad específica.
 - 12. El aparato de la reivindicación 11, en el que la porosidad específica comprende poros menores de aproximadamente 100 µm de diámetro.
- 35 13. El aparato de la reivindicación 11, en el que la membrana permeable comprende una porosidad variable.
 - 14. El aparato de la reivindicación 1, que además comprende un globo expansible (702) para realizar la valvuloplastia, en el que el filtro embólico (520) está configurado para desviar las embolias generadas durante la valvuloplastia.
- 15. El aparato de la reivindicación 1, en el que el filtro embólico (520) comprende al menos un elemento de medida 40 para determinar distancias en el interior del paciente.
 - 16. El aparato de la reivindicación 16, en el que el elemento de medida está configurado para proporcionar una distancia de centro de ejes entre la válvula del corazón del paciente y una localización deseada dentro de la aorta del paciente.
- 17. El aparato de la reivindicación 1, en el que el filtro embólico (520) comprende un perfil curvado en la configuración desplegada.
 - 18. El aparato de la reivindicación 1, en el que el filtro embólico (520) está configurado para colapsar desde la configuración desplegada expandida a una configuración de recuperación colapsada.

- 19. El aparato de la reivindicación 18 que comprende además un elemento de colapso adaptado para facilitar el colapso y la recuperación del filtro (520) del paciente.
- 20. El aparato de la reivindicación 19, en el que el filtro embólico (520) comprende el elemento de colapso.
- 21. El aparato de la reivindicación 20, en el que el elemento de colapso comprende una abertura ahusada dispuesta en un extremo proximal del filtro embólico (520).
 - 22. El aparato de la reivindicación 19, en el que el elemento de colapso comprende una funda de recuperación que puede avanzar sobre el filtro (520).
- 23. El aparato de la reivindicación 4, en el que el filtro embólico (520) comprende además interfaces proximales y distales (521), y en el que el filtro embólico está configurado para contactar con la aorta del paciente sólo a lo largo de las interfaces proximal y distal (521).
 - 24. El aparato de la reivindicación 6, en el que el filtro embólico (520) está configurado para guiar un catéter desde un extremo proximal del filtro (520) a un extremo distal del filtro (520).
 - 25. El aparato de la reivindicación 8, en el que la trenza o malla de cable expandible comprende además una trenza o malla de cable de Nitinol.
- 26. Un kit o equipo para la sustitución de una válvula de corazón enferma de paciente, comprendiendo el equipo: un catéter de globo de valvuloplastia (702);
 - una válvula de sustitución expansible (20) configurada para el envío endovascular y el despliegue transversal a la válvula enferma del paciente; y
- un sistema de protección embólica (500) que incluye una funda exterior (510) y un filtro embólico (520), en el que el filtro embólico (520) está configurado para el envío endovascular y el despliegue aguas abajo de la válvula enferma del paciente, caracterizado porque

25

- el filtro embólico (520) está configurado para la expansión desde una configuración de envío colapsada a una configuración desplegada expandida, en donde el filtro embólico (520) está configurado para ser colapsado para el envío y/o recuperación dentro de un lumen (512) de la funda (510), en donde el extremo proximal del filtro (520) está al menos parcialmente desconectado de la funda (510), por lo que se desvía la embolia generada durante la valvuloplastia o el despliegue de la válvula de sustitución.
- 27. El kit o equipo de la reivindicación 26, que además comprende un sistema de envío para enviar endovascularmente y desplegar la válvula de sustitución expansible (20).
- 28. El kit o equipo de la reivindicación 26, que además comprende un sistema de envío para enviar endovascularmente y desplegar el filtro embólico (520).


FIG. IA

