

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 413 486

51 Int. Cl.:

B67C 3/22 (2006.01) **B65B 3/04** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 11.12.2003 E 03778810 (6)
 (97) Fecha y número de publicación de la concesión europea: 29.05.2013 EP 1598308
- (54) Título: Método de llenado de líquido y dispositivo de llenado de líquido
- (30) Prioridad:

12.12.2002 JP 2002361443

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 16.07.2013

(73) Titular/es:

SUNTORY BEVERAGE & FOOD LIMITED (100.0%) 2-3-3 Daiba, Minato-ku Tokyo 135-8631, JP

(72) Inventor/es:

TAKEDA, ICHIRO; TSUKANO, KENICHI; TANIKAWA, KATSUNORI y EDA, MASAAKI

74 Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Método de llenado de líquido y dispositivo de llenado de líquido

5 Campo técnico

10

40

45

50

55

La presente invención se refiere a un método de introducir un líquido y también se refiere a un aparato para uso al llevar a la práctica el método. La presente invención también se refiere a un método y un aparato de llenado de líquido capaces de reanudar rápidamente la operación de una línea de llenado después de la interrupción evitando al mismo tiempo el deterioro de un líquido de llenado a temperatura alta. Un método y un aparato de este tipo son conocidos por los documentos de patente US 3515180A y DE 20105716U1 que se explican a continuación.

Antecedentes de la invención

15 En una línea de producción de bebidas ordinaria, el suministro de una bebida desde un depósito de almacenamiento de bebida a una máquina llenadora de bebida (denominada a continuación simplemente "llenadora") es un flujo en una dirección. Si la llenadora deja de operar, debido por ejemplo a algún problema con una botella, y es incapaz de aceptar la bebida, un sensor detecta esta situación y detiene el suministro de líquido a la llenadora. Cuando se para el suministro de líquido, la bebida en un recipiente de llenadora, es decir, un depósito de llenadora, se enfría 20 naturalmente o se enfría con un flujo de aire aséptico. Por lo tanto, si la línea de producción se detiene durante más de un cierto período de tiempo, la temperatura del líquido es inferior a la temperatura de esterilización de los recipientes, tapones, etc. En este caso, es necesario, al reanudar la operación de la línea de llenado, desechar el líquido enfriado en el depósito de llenadora e impulsar la bebida calentada (es decir, hay que suministrar la bebida calentada a la llenadora y descargarla de las boquillas de llenado) con el fin de elevar la temperatura del depósito de 25 llenadora y las boquillas de llenado. Consiguientemente, hay pérdidas de bebida debidas al desecho y la impulsión. Para reducir estas pérdidas de bebida, se han desarrollado algunos métodos; por ejemplo, un método donde cuando se para la línea de llenado, la bebida presente en la llenadora es recuperada y devuelta al depósito de producto en el que la bebida es recalentada antes de se introducida [Patente japonesa examinada publicada (KOKAI) número 2001-72189], y un método donde la bebida en la llenadora se recalienta y hace circular [Patente japonesa examinada 30 publicada (KOKAI) número 2002-337988]. Sin embargo, el primer método no puede evitar la disminución de la temperatura de la llenadora y precisa que la bebida calentada sea impulsada con el fin de calentar la llenadora y las boquillas al reanudar la operación. Consiguientemente, el método experimenta una pérdida de bebida debida al proceso de impulsión. El último método siempre mantiene la bebida en la llenadora a temperatura alta y por lo tanto permite reanudar la operación inmediatamente después de eliminar el problema. Por otra parte, dado que el líquido 35 en la llenadora se mantiene a temperatura alta en todo momento, se puede deteriorar el aroma y el sabor de la bebida, dependiendo del tipo de bebida.

US 3515180 A se refiere a un método y un aparato para llenar recipientes con bebida usando un principio de línea empaquetada.

DE 201 05 716 U1 se refiere a un dispositivo de llenado y FR 2 165 430 A5 se refiere a una planta para llenar líquidos.

También se ha desarrollado un sistema en el que un líquido se hace circular constantemente a través de una línea de llenado incluyendo un depósito de almacenamiento de producto, un esterilizador por calor, y válvulas de llenado [Patente japonesa examinada publicada (KOKAI) número Sho 59-74097]. En este sistema, el líquido se mantiene a temperatura alta mientras que es reenviado desde las válvulas de llenado al depósito de almacenamiento de producto. Por lo tanto, el aroma y el sabor de los productos se degradan. Además, dado que el líquido de temperatura alta es reenviado al depósito de almacenamiento de producto, el depósito de almacenamiento temperatura no es uniforme, haciendo que el proceso de esterilización por calor sea inestable. Además, se ha desarrollado un sistema en el que, cuando la operación de llenado se detiene, la bebida calentada puede circular por derivación a través de una parte de la línea de llenado, excluyendo la llenadora (es decir, la denominada circulación desviada; Patente japonesa post-examinada publicada número Hei 2-27236). En este caso, la temperatura de la bebida en la llenadora disminuye. Por lo tanto, hay que realizar impulsión para elevar la temperatura de la llenadora. Consiguientemente, se demanda el desarrollo de un método capaz de evitar la disminución de la temperatura de la bebida en la llenadora y que el llenado se pueda iniciar inmediatamente a la reanudación de la operación de la línea de llenado, y también capaz de evitar el deterioro del aroma y sabor de la bebida.

Mientras tanto, al introducir una bebida conteniendo un componente sólido, es difícil mantener constante el contenido de componentes sólidos del líquido de llenado. Por lo tanto, en un tipo de método de llenado, el componente sólido y el líquido se introducen por separado uno de otro. En este caso, sin embargo, el aparato es de gran tamaño y de costo alto, y es difícil añadir el aparato a equipo existente. Consiguientemente, se ha desarrollado un aparato en el que se facilita una línea adicional para que la bebida presente en la llenadora pueda circular a través de un recorrido cerca de la llenadora [Patente japonesa examinada publicada (KOKAI) número Hei 6-293302]. Sin embargo, aunque el contenido de componentes sólidos se mantenga constante haciendo circular la bebida cerca de la llenadora, si el contenido de componentes sólidos de la bebida no es uniforme en otra parte de la línea de llenado, es imposible

realizar un llenado uniforme. Por lo tanto, también se demanda un método capaz de mantener uniformes las condiciones en toda la línea de producción.

Cuando el proceso de llenado se interrumpe por alguna razón, el flujo de entrada y salida de líquido de la llenadora se para, y el movimiento de giro de la llenadora también se para. En consecuencia, la bebida en la llenadora deja de circular. Si no hay flujo de bebida en la llenadora, el contenido de componentes sólidos en la bebida sedimenta por gravedad o sube a la superficie, dando lugar a la separación del componente sólido y el líquido. Si el proceso de llenado se reanuda en este estado, el contenido de componentes sólidos cambia de la siguiente manera. Por ejemplo, al inicio del proceso de llenado reanudado, el contenido de componentes sólidos es alto porque se ha sedimentado. A continuación, el contenido de componentes sólidos es sumamente bajo, y a medida que pasa el tiempo, vuelve a ser normal y es uniforme. En este caso, el contenido de componentes sólidos varía indeseablemente de un producto a otro. Consiguientemente, se ha demandado desarrollar un método capaz de llenar con un contenido constante de componentes sólidos cuando la operación de la línea de producción se reanuda después de una interrupción.

Resumen de la invención

5

10

15

20

25

35

40

45

50

55

60

65

La presente invención se ha realizado en vista de los problemas antes descritos del método convencional de llenado de líquido. Un objeto de la presente invención es proporcionar un método y un aparato de llenado de líquido que son capaces de reducir el tiempo de espera cuando se reanuda la operación de llenado, además de ser capaces de suprimir el deterioro del aroma y sabor del líquido de llenado.

Otro objeto de la presente invención es proporcionar un método y un aparato de llenado de líquido capaces de mantener constante el contenido de componentes sólidos al introducir un líquido conteniendo un componente sólido.

Otro objeto de la presente invención es proporcionar un método y un aparato de llenado de líquido capaces de evitar la disminución de la temperatura de un líquido a alta temperatura a introducir, reduciendo por ello el tiempo de espera cuando se reanuda la operación de llenado, y lograr un ahorro de energía.

Otro objeto de la presente invención es proporcionar un método y un aparato de llenado de líquido que tienen un recorrido de circulación capaz de minimizar la pérdida de líquido de llenado al introducir un líquido a temperatura alta.

Según la presente invención, se facilita un método de llenado de líquido donde un líquido es distribuido desde un depósito de almacenamiento a un depósito de llenadora de una llenadora, y el líquido es introducido en recipientes por la llenadora. En el método de llenado de líquido, el líquido en dicho depósito de llenadora es devuelto a través de un tubo de retorno montado en dicho depósito de llenadora y es reenviado a dicho depósito de almacenamiento a través de un recorrido de reflujo de modo que el líquido circule por toda la línea de llenado que se extiende desde dicho depósito de almacenamiento a dicha llenadora, caracterizado porque una cantidad de líquido en el depósito de llenadora es detectada por medio de un dispositivo detector, y al menos una de una cantidad de líquido suministrado a dicho depósito de llenadora y una cantidad de líquido devuelto desde dicho depósito de llenadora es controlada según un valor detectado de dicho dispositivo detector, donde, durante el llenado realizado por dicha llenadora, la cantidad de líquido suministrado a dicho depósito de llenadora es mayor que la cantidad de líquido devuelto desde dicho depósito de llenadora, y durante la interrupción del llenado, la cantidad de líquido suministrado a dicho depósito de llenadora es igual a la cantidad de líquido devuelto desde dicho depósito de llenadora. Según la presente invención, se facilita un aparato de llenado de líquido que introduce un líquido en recipientes. El aparato incluye una línea de llenado de líquido que tiene un depósito de almacenamiento que guarda el líquido y una llenadora que introduce dicho líquido en los recipientes, donde el líquido en un depósito de llenadora es devuelto a través de un tubo de retorno montado en el depósito de llenadora a toda la línea de llenado de líquido de modo que dicho líquido circula constantemente a través de toda la línea de llenado de líquido, caracterizado porque el aparato de llenado de líquido incluye además: un dispositivo detector que detecta una cantidad de líquido en dicho depósito de llenadora; v

un controlador que controla al menos una de una cantidad de líquido suministrado a dicho depósito de llenadora y una cantidad de líquido devuelto desde dicho depósito de llenadora según un valor detectado de dicho dispositivo detector, donde, durante el llenado por dicha llenadora, la cantidad de líquido suministrado a dicho depósito de llenadora es mayor que la cantidad de líquido devuelto desde dicho depósito de llenadora, y durante la interrupción del llenado, la cantidad de líquido suministrado a dicho depósito de llenadora es igual a la cantidad de líquido devuelto desde dicho depósito de llenadora.

Según la presente invención, líquido excedente presente en el depósito de llenadora se puede hacer circular por toda la línea de llenado. En consecuencia, el líquido puede circular constantemente a través de la línea. Por lo tanto, es posible evitar la disminución de la temperatura del líquido en el depósito de llenadora incluso durante la interrupción de la operación de la línea y por lo tanto es posible reanudar la producción después de la interrupción de la operación de la línea sustancialmente sin tiempo de espera. Al introducir un líquido conteniendo un componente sólido, se puede mantener condiciones uniformes en toda la línea de producción. Por lo tanto, es posible producir

productos sin variaciones en el contenido de componentes sólidos, independientemente de si la temperatura de llenado es normal o baja.

- Se explica un método de llenado de líquido donde un líquido distribuido desde un depósito de almacenamiento es 5 esterilizado por calor antes de ser distribuido a un depósito de llenadora de una llenadora, y el líquido es introducido en recipientes por la llenadora. El método de llenado de líquido se caracteriza porque el líquido en dicho depósito de llenadora es devuelto a través de un tubo de retorno montado en dicho depósito de llenadora y es reenviado a dicho depósito de almacenamiento a través de un recorrido de reflujo de modo que el líquido circule por toda la línea de llenado que se extiende desde dicho depósito de almacenamiento a dicha llenadora, donde el líquido que fluye a 10 través de dicho recorrido de reflujo a dicho depósito de almacenamiento se enfría. Se explica un aparato de llenado de líquido que introduce un líquido en recipientes. El aparato de llenado de líquido incluye una línea de llenado de líquido que tiene un depósito de almacenamiento que contiene el líquido, un esterilizador por calor que esteriliza por calor dicho líquido, y una llenadora que introduce dicho líquido en los recipientes, donde el líquido presente en un depósito de llenadora es devuelto a través de un tubo de retorno montado en dicho depósito de llenadora a toda la 15 línea de llenado de líquido de modo que dicho líquido circule por toda la línea de llenado de líquido, incluyendo además dicho aparato un dispositivo refrigerador que enfría el líquido que circula a través de dicho recorrido de reflujo.
- Según el método y aparato antes descritos, una parte de líquido presente en el depósito de llenadora es reenviada constantemente al depósito de almacenamiento a través del recorrido de reflujo, y el líquido que fluye a través del recorrido de reflujo es enfriado por un proceso de enfriamiento usando un dispositivo refrigerador. Mediante este proceso, el líquido que queda sin usar para el llenado puede hacerse circular en toda la línea de llenado de líquido, independientemente de si el llenado se está realizando o no, y la temperatura de la llenadora siempre se puede mantener a un nivel alto. Además, se puede asegurar la uniformidad del líquido en la línea. La provisión del proceso para enfriar el líquido antes de que sea reenviado al depósito de almacenamiento evita el deterioro de la calidad del líquido, que en otro caso podría producirse cuando el líquido se mantenga a temperatura alta durante un período de tiempo largo. También es posible mantener constante la temperatura del depósito de almacenamiento y estabilizar el proceso de esterilización por calor.
- 30 El método de llenado de líquido antes descrito puede ser el siguiente. La cantidad de líquido en el depósito de llenadora es detectada por medio de un dispositivo detector, y al menos una de la cantidad de líquido suministrado al depósito de llenadora y la cantidad de líquido devuelto del depósito de llenadora es controlada según un valor detectado del dispositivo detector. En este caso, la cantidad de líquido puede ser controlada como sigue. Durante el llenado efectuado por la llenadora, la cantidad de líquido suministrado al depósito de llenadora puede ser mayor que la cantidad de líquido devuelto desde el depósito de llenadora. Durante la interrupción del llenado, la cantidad de líquido suministrado al depósito de llenadora puede ser igual a la cantidad de líquido devuelto desde el depósito de llenadora.
- El aparato de llenado de líquido tiene un dispositivo detector que detecta la cantidad de líquido en el depósito de llenadora, y un controlador que controla al menos una de la cantidad de líquido suministrado al depósito de llenadora y la cantidad de líquido devuelto desde el depósito de llenadora según un valor detectado por el dispositivo detector. La cantidad de líquido es controlada de la siguiente manera. Durante el llenado efectuado por la llenadora, la cantidad de líquido suministrado al depósito de llenadora es mayor que la cantidad de líquido devuelto desde el depósito de llenadora. Durante la interrupción del llenado, la cantidad de líquido suministrado al depósito de llenadora es igual a la cantidad de líquido devuelto desde el depósito de llenadora.

Breve descripción de los dibujos

La figura 1 es una vista esquemática general de un aparato de llenado de líquido para llevar a cabo la invención de esta solicitud.

La figura 2 es una vista en planta de una llenadora.

La figura 3 es una vista ampliada de una parte de la figura 2, que representa un agujero de entrada y un agujero de retorno en la llenadora.

La figura 4 es una vista esquemática en sección de un depósito de llenadora equipado con elementos agitadores.

La figura 5 es una vista esquemática general que representa otra realización del aparato de llenado de líquido según la invención de esta solicitud.

La figura 6 es un diagrama que representa tubos de suministro y retorno montados en un depósito de llenadora del aparato de llenado de líquido representado en la figura 5.

Mejor modo de llevar a la práctica la invención

65

A continuación se describirá realizaciones de la presente invención con referencia a los dibujos acompañantes y con respecto a un aparato de llenado de bebida que introduce una bebida como un líquido de llenado.

5

10

15

20

25

30

35

40

45

50

55

60

65

La figura 1 representa un ejemplo de la disposición general de un aparato de llenado de líquido usado para llevar a la práctica la invención de esta solicitud. Una bebida almacenada en un depósito de bebida 5 es distribuida a través de una bomba de suministro de líquido 6 dispuesta en una línea de suministro 14 a un esterilizador por calor 7 en el que la bebida es esterilizada por calor. La temperatura de esterilización por calor difiere según el tipo de bebida. Por ejemplo, el té es esterilizado por calor a una temperatura de aproximadamente 140°C. Una bebida conteniendo carne de fruta es esterilizada por calor a una temperatura de alrededor de 90°C. Este proceso es innecesario en el caso de llenado normal o a baja temperatura. La bebida esterilizada por calor es enfriada por un dispositivo refrigerador 8 a una temperatura adecuada para el llenado, por ejemplo, a una temperatura de aproximadamente 82°C a 87°C si los recipientes a llenar son botellas de PET (tereftalato de polietileno). Este proceso se puede omitir en el caso de llenado normal o a baja temperatura. El líquido enfriado es desaireado, por ejemplo, en un depósito de desaireación 9. Esto se lleva a cabo con el objetivo de evitar la formación de espuma y también de evitar la degradación de la calidad debida a oxidación. El proceso de desaireación se puede omitir en el caso de llenado normal o a baja temperatura.

A continuación, la bebida es distribuida en la dirección de la flecha A a través de una bomba 10 que sirve como un dispositivo de administración, e introducida en un depósito de llenadora 4 de una llenadora 1. Durante una operación de llenado, la bebida es introducida en recipientes, por ejemplo botellas de PET, por la llenadora 1 que tiene una estructura de conocimiento público. Entonces, el nivel de líquido en el depósito de llenadora 4 es supervisado por medio de un medidor de nivel. Si tiene lugar rebosamiento, la bebida es recuperada a través de tubos de retorno 3 y distribuida por una bomba de descarga 11 dispuesta en una línea de retorno 15 en la dirección de la flecha B a un dispositivo refrigerador 12 en el que la bebida es enfriada a temperatura aproximadamente normal. La bebida enfriada vuelve al depósito de bebida 5.

Mediante la circulación indicada anteriormente, la bebida fluye de forma continua a través de la línea y es agitada efectivamente de modo que el componente sólido no sedimente o suba a la superficie. Consiguientemente, se puede llevar a cabo un llenado uniforme. Además, el contenido de componentes sólidos de la bebida no variará cuando el proceso de llenado se reanude después de la interrupción de la operación de la línea. Además, dado que se puede evitar la disminución de la temperatura de la llenadora, es posible reanudar rápidamente el proceso de llenado después de la interrupción de la operación de la línea. También es posible reducir la pérdida por desperdicio debida a la impulsión de bebida (descarga de la llenadora). Además, dado que el líquido de retorno se enfría, es posible evitar la degradación de la calidad que en caso contrario podría producirse cuando la bebida quede expuesta constantemente a temperatura alta. Además, es posible mantener la temperatura del depósito de bebida 5 sustancialmente constante y por lo tanto es posible estabilizar el proceso posterior de esterilización por calor. El proceso de enfriamiento se puede omitir en el caso de llenado normal o a baja temperatura.

Con el fin de reenviar la bebida desde la llenadora, el depósito de llenadora está provisto de tubos de retorno. Cada tubo de retorno está conectado al depósito de llenadora por soldadura o por un método conocido por todos en un estado sin escapes con una empaquetadura o análogos interpuesta entremedio. El número de tubos de retorno es típicamente de aproximadamente 2 a 4, pero puede ser mayor. Si se usa un tubo doble para una combinación de un tubo de suministro y un tubo de retorno, el tubo se puede formar a partir de un sistema único de tubos y así se simplifica. En tal caso, el líquido de alimentación y el líquido de retorno, que están a temperatura alta, están adyacentes uno a otro a través de la pared de tubo y por lo tanto son capaces de mantenerse efectivamente tibios uno con otro. Como se representa en las figuras 2 y 3, tubos de suministro 2 se abren en una dirección opuesta a la dirección de rotación de la llenadora 1 produciendo turbulencia en el flujo de líquido en la llenadora 1, pudiendo mejorar por ello el efecto de agitación. Los tubos de retorno 3 se pueden abrir perpendicularmente a la dirección circunferencial como se representa en las figuras 2 y 3. Alternativamente, los tubos de retorno 3 se pueden abrir en un cierto ángulo a la dirección circunferencial produciendo turbulencia en el flujo de bebida. Los tubos de retorno 3 también se pueden abrir en la misma dirección que la dirección de flujo de bebida para no producir un flujo turbulento. Es preferible que el aquiero de cada tubo de retorno 3 esté dispuesto en una posición donde el líquido sea uniforme en vista de las propiedades de la bebida; por ejemplo, cerca del agujero de entrada de un tubo de suministro 2 desde el que el líquido fluye a la llenadora 1. En el caso en el que se facilitan adicionalmente elementos agitadores, el agujero de cada tubo de retorno 3 se dispone preferiblemente cerca de un elemento agitador.

En la presente invención, el líquido se hace circular constantemente y así es agitado en el depósito de llenadora. Si se usan elementos agitadores, el líquido se puede agitar aún más eficientemente. En particular, cuando la operación de llenado realizada por la llenadora se para, aunque el líquido se haga circular de forma continua, la agitación puede ser insuficiente porque el giro de la llenadora y la operación de llenado se han interrumpido. En tal caso, el uso de elementos agitadores hace posible empujar hacia abajo un componente sólido que probablemente subirá a la superficie y permitir que un componente de sedimentación fácil suba hacia arriba. Por lo tanto, un líquido conteniendo un componente sólido se puede mantener más uniforme. En este caso, se puede usar elementos agitadores capaces de empujar hacia abajo o hacia arriba en el líquido. Por ejemplo, como se representa en la figura 4, cada uno de los elementos agitadores 13 tiene una configuración paralelepípeda con un grosor de 2 mm a 5 mm y una anchura suficiente para que el elemento agitador 13 cruce el interior del depósito de llenadora horizontalmente

de modo que el elemento agitador 13 se pueda fijar en su extremo lateral a la superficie exterior de la periferia interior del depósito de llenadora y en su otro extremo lateral a la superficie interior de la periferia exterior del depósito de llenadora. La longitud del elemento agitador 13 es, por ejemplo, aproximadamente 70% de la profundidad desde la superficie de líquido. El elemento agitador 13 tiene un ángulo de aproximadamente 20 a 40 grados con respecto al plano horizontal. La configuración de los elementos agitadores no se limita necesariamente a que sea paralelepípeda rectangular. Por ejemplo, también es posible utilizar elementos agitadores que tengan una forma aerodinámica, elíptica u oval, una forma de prisma triangular, o una forma de prisma cuadrangular con una sección trapezoidal. Se deberá indicar, sin embargo, que la configuración de los elementos agitadores no se limita necesariamente a éstas. Sólo es esencial que los elementos agitadores sean capaces de empujar hacia abajo o hacia arriba en el líquido. El uso de tales elementos agitadores permite mantener un líquido conteniendo un componente sólido aún más uniforme cuando se haga circular por todo el recorrido. Por lo tanto, es posible reanudar rápidamente la operación de llenado después de la interrupción de la llenadora.

10

25

60

65

La figura 5 representa esquemáticamente la disposición general de un aparato de llenado de líquido que tiene un recorrido de circulación según otra realización de la presente invención. En esta realización, los elementos constituyentes que son sustancialmente los mismos que los mostrados en la realización anterior se designan con los mismos números de referencia añadiéndoles el sufijo "a". Un líquido introducido por este aparato de llenado se prepara en un depósito de preparación (no representado) y es distribuido a un depósito amortiguador 5a donde se almacena. Se deberá indicar que en esta realización se introduce un líquido a alta temperatura, pero el líquido suministrado al depósito amortiguador 5a está a temperatura normal.

El líquido almacenado en el depósito amortiguador 5a es suministrado a un depósito de líquido de llenado, es decir un depósito de llenadora 4a, de una llenadora 1a a través de una línea de suministro 14a por la operación de una bomba de suministro 10a que sirve como un dispositivo de suministro de líquido. La línea de suministro 14a está provista de un calentador (intercambiador de calor) 7a como un dispositivo de calentamiento. El líquido procedente del depósito amortiguador 5a es calentado a una temperatura predeterminada para esterilización por el calentador 7a. Después de esterilizarse de esta forma, el líquido es distribuido al depósito de llenadora 4a. Se deberá indicar que en esta realización la bomba de suministro 10a suministra constantemente una cantidad fija de líquido.

La línea de suministro 14a está conectada al depósito de llenadora 4a de la llenadora 1a a través de una junta rotativa 16a. Como se representa en la figura 6, el depósito de llenadora 4a tiene una configuración anular. La línea de suministro 14a está conectada al depósito de llenadora 4a a través de una pluralidad (3 en esta realización) de tubos de suministro 2a espaciado circunferencialmente a igual distancia.

35 El depósito de llenadora 4a también está conectado con una línea de retorno 15a a través de una pluralidad (3 en esta realización) de tubos de retorno 3a de la misma forma que la línea de suministro 14a. Los tubos de suministro 2a de la línea de suministro 14a y los tubos de retorno 3a de la línea de retorno 15a están espaciados a igual distancia. Los tubos de suministro y retorno 2a y 3a están dispuestos alternativamente en la dirección circunferencial. La línea de retorno 15a conecta entre el depósito de llenadora 4a de la llenadora 1a y el depósito amortiguador 5a a 40 través de la junta rotativa 16a. El depósito amortiguador 5a, la línea de suministro 14a, el depósito de llenadora 4a y la línea de retorno 15a forman en combinación un recorrido de circulación. La línea de retorno 15a está provista de una bomba de descarga 11a que sirve como un dispositivo que devuelve el líquido del depósito de llenadora 4a al depósito amortiguador 5a. La línea de retorno 15a está provista además de un refrigerador (intercambiador de calor) 12a. Mediante la operación de la bomba de descarga 11a, el líquido en el depósito de llenadora 4a es distribuido al 45 refrigerador 12a donde es enfriado antes de ser devuelto al depósito amortiguador 5a. Se deberá indicar que en esta realización se puede controlar la cantidad de líquido distribuido por la bomba de descarga 11a. La cantidad de líquido distribuido es controlada según una señal de un sensor de nivel 22a (descrito más tarde).

El depósito de llenadora 4a de la llenadora 1a tiene una pluralidad de dispositivos de llenado (válvulas de llenado)
17a dispuestas en su periferia exterior a igual distancia en la dirección circunferencial. El líquido de llenado suministrado al depósito de llenadora 4a a través de la línea de suministro 14a es introducido en recipientes (no representados) a través de las válvulas de llenado 17a.

El depósito de llenadora 4a está provisto de un sensor de nivel 22a para detectar la cantidad de líquido en el depósito de llenadora 4a. Una señal de detección del sensor de nivel 22a es transmitida a un controlador 23a. Una orden procedente del controlador 23a controla la cantidad de líquido distribuido por la bomba de descarga 11a.

A continuación se describirá la operación del sistema de llenado dispuesto como se ha indicado anteriormente. Se prepara un líquido a introducir en recipientes en un depósito de preparación (no representado) y se distribuye al depósito amortiguador 5a donde se almacena. Entonces, el líquido está a temperatura normal. El líquido en el depósito amortiguador 5a es distribuido al calentador 7a por el accionamiento de la bomba de suministro 10a. Después de ser calentado a una temperatura predeterminada y así esterilizado en el calentador 7a, el líquido es suministrado al depósito de llenadora 4a de la llenadora 1a. El sensor de nivel 22a dispuesto en el depósito de llenadora 4a detecta constantemente la cantidad de líquido de llenado en el depósito de llenadora 4a. El controlador 23a controla la cantidad de líquido distribuido por la bomba de descarga 11a según el valor de cantidad de líquido detectado por el sensor de nivel 22a.

Durante la operación normal, el líquido suministrado al depósito de llenadora 4a se introduce en recipientes a través de las válvulas de llenado 17a, y se suministra al depósito de llenadora 4a una cantidad de líquido mayor que la necesaria para el llenado. Mientras tanto, el líquido de llenado en el depósito de llenadora 4a es devuelto al depósito amortiguador 5a a través del refrigerador 12a por la operación de la bomba de descarga 11a. Como se representa en la figura 5, el líquido de llenado del depósito amortiguador 5a circula constantemente a través de la línea de suministro 14a, el calentador 7a, la bomba de suministro 10a, los tubos de suministro 2a, el depósito de llenadora 4a, los tubos de retorno 3a, la bomba de descarga 11a, el refrigerador 12a y la línea de retorno 15a. En esta realización, la bomba de suministro 10a suministra constantemente una cantidad fija de líquido al depósito de llenadora 4a, mientras que la bomba de descarga 11a devuelve una cantidad fija de líquido de llenado al depósito amortiguador 5a según la cantidad de líquido de llenado procedente de las válvulas de llenado 17a.

Durante la interrupción de la operación de la llenadora 1a, no se lleva a cabo llenado de las válvulas de llenado 17a a los recipientes. Por lo tanto, si se descarga del depósito de llenadora 4a la misma cantidad de líquido de llenado que durante la operación normal, la cantidad de líquido en el depósito de llenadora 4a aumentará gradualmente. En esta realización, sin embargo, la cantidad de líquido descargado del depósito de llenadora 4a se incrementa controlando la bomba de descarga 11a según el valor de cantidad de líquido detectada por el sensor de nivel 22a, regulando por ello la cantidad de líquido en el depósito de llenadora 4a. Más específicamente, si el valor detectado del sensor de nivel 22a excede de un límite predeterminado superior, el controlador 23a determina que la llenadora 1a ha dejado de operar, y controla la bomba de descarga 11a de modo que la misma cantidad de líquido de llenado que la suministrada desde la bomba de suministro 10a sea devuelta desde el depósito de llenadora 4a. Por ejemplo, supóngase que durante la operación normal, el líquido es suministrado desde la bomba de suministro 10a a una tasa de 250 l/m, y el líquido se introduce en los recipientes a una tasa de 200 l/m, y que la bomba de descarga 11a hace volver el líquido al depósito amortiguador 5a a una tasa de 50 l/m. En este supuesto, si la llenadora 1a deja de operar, no se introduce líquido en los recipientes. Por lo tanto, la capacidad de la bomba de descarga 11a se incrementa de modo que el líquido sea devuelto al depósito amortiguador 5a a una tasa de 250 l/m que es la misma que la tasa (250 l/m) de suministro de la bomba de suministro 10a. Se deberá indicar que cuando la llenadora 1a deja de operar, la capacidad de la bomba de suministro 10a se puede reducir de modo que la bomba de suministro 10a suministre el líquido a una tasa de 50 l/m que es la misma que la tasa (50 l/m) a la que el líquido es devuelto por la bomba de descarga 11a. El control se puede realizar de tal manera que la capacidad de la bomba de suministro 10a se reduzca a 100 l/m, mientras que la capacidad de la bomba de descarga 11a se incrementa a 100 l/m.

El líquido de llenado reenviado desde el depósito de llenadora 4a es enfriado a través del refrigerador 12a antes de ser devuelto al depósito amortiguador 5a. En el caso de llenar un líquido a alta temperatura, si el líquido reenviado del depósito de llenadora 4a es devuelto al depósito amortiguador 5a tal cual, la temperatura en el depósito amortiguador 5a se eleva indeseablemente. En consecuencia, cuando el líquido procedente del depósito amortiguador 5a es suministrado a continuación a través del calentador 7a, la temperatura del líquido se eleva más indeseablemente por encima de una temperatura establecida. Por lo tanto, el líquido reenviado desde el depósito amortiguador 5a es enfriado por el refrigerador 12a a una temperatura sustancialmente igual a la temperatura del líquido almacenado en el depósito amortiguador 5a.

Consiguientemente, la cantidad de líquido que se tiene que impulsar cuando la operación se reanude, es sumamente pequeña (sólo hay que impulsar una cantidad muy pequeña de líquido que queda en el paso que se extiende desde el depósito de llenadora 4a a las válvulas de llenado 17a). Así, se puede minimizar la pérdida de líquido de llenado. Aunque en esta realización la bomba de descarga 11a es controlada para regular la cantidad de líquido devuelto desde el depósito de llenadora 4a, se deberá indicar que la regulación de la cantidad de líquido devuelto no se limita necesariamente a la efectuada controlando la bomba de descarga 11a, sino que se puede hacer, por ejemplo, usando una válvula de control facilitada adicionalmente. También es posible controlar la cantidad de líquido distribuido desde la bomba de suministro 10a en el lado de suministro.

Efectos ventajosos de la invención

5

10

15

20

25

30

35

40

45

50

La presente invención ofrece los efectos ventajosos siguientes.

- (a) Incluso cuando la operación de llenado de la llenadora se para, dado que la bebida se hace circular constantemente, se agita la bebida en la llenadora. Consiguientemente, la uniformidad de la bebida se mantiene en toda la línea de llenado.
- (b) Un componente sólido no sedimentará ni subirá a la superficie, y es posible mantener constante el contenido de componentes sólidos al introducir una bebida conteniendo un componente sólido.
 - (c) Dado que el líquido se hace circular por toda la línea de llenado, se puede evitar que disminuya la temperatura del depósito de llenadora y la de la bebida en el depósito de llenadora.
- (d) La circulación permite que el líquido en el depósito de llenadora fluya constantemente y por lo tanto hace posible evitar la adhesión del contenido de pulpa a la superficie interior del depósito de llenadora. Además, dado que el

ES 2 413 486 T3

líquido circula, es posible aumentar la velocidad de flujo de lavado en el depósito de llenadora a la terminación de la operación de llenado y por lo tanto es posible mejorar la capacidad de quitar el contenido de pulpa.

- (e) Dado que el líquido de retorno se enfría, es posible evitar la degradación de la calidad que de otro modo podría tener lugar cuando la bebida esté expuesta constantemente a una temperatura alta.
 - (f) Cuando una bebida conteniendo un componente sólido es introducida a temperatura alta, se puede evitar la disminución de la temperatura de la llenadora por la circulación de la bebida por todo el recorrido de circulación que se extiende desde el depósito de almacenamiento a la llenadora. Al mismo tiempo, la agitación inducida por la circulación mezcla el componente sólido con el componente líquido. Así, la operación de llenado se puede iniciar rápidamente a la reanudación de la operación de la línea de llenado.
- (g) La circulación elimina el estancamiento de un líquido de bebida. En consecuencia, el recorrido del calentador a través de la llenadora hasta un punto inmediatamente hacia arriba del refrigerador siempre se mantiene a temperatura alta. Así, es posible evitar la propagación de microorganismos en esta parte del recorrido.
- (h) Incluso en Ilenado normal o a baja temperatura de una bebida conteniendo un componente sólido, el componente sólido y el componente líquido siempre se mezclan conjuntamente por la circulación de la bebida por toda la línea de llenado que se extiende desde el depósito de almacenamiento a la llenadora. Por lo tanto, no habrá separación entre el componente sólido y los componentes líquidos en la llenadora o el tubo. La agitación que tiene lugar durante todo el recorrido desde el depósito de almacenamiento a la llenadora permite que la bebida sea agitada aún más uniformemente que la agitación realizada solamente alrededor de la llenadora como en la técnica convencional. Consiguientemente, la uniformidad de los productos se mejora más.
- (i) La cantidad de líquido en el depósito de llenadora es detectada por medio de un dispositivo detector, y al menos una de la cantidad de líquido suministrado al depósito de llenadora y la cantidad de líquido devuelto del depósito de llenadora es controlada por medio de un controlador según un valor detectado del dispositivo detector. Consiguientemente, es posible minimizar la cantidad de líquido que hay que impulsar en el proceso de calentamiento cuando se reanude la operación de llenado.

30

5

10

15

20

REIVINDICACIONES

- 1. Un método de llenado de líquido donde un líquido es distribuido desde un depósito de almacenamiento (5) a un depósito de llenadora (4) de una llenadora (1), y dicho líquido es introducido en recipientes por dicha llenadora (1), donde el líquido presente en dicho depósito de llenadora (4) se hace volver a través de un tubo de retorno (3) montado en dicho depósito de llenadora (4) y es reenviado a dicho depósito de almacenamiento (5) a través de un recorrido de reflujo (15) de modo que el líquido circule a través de toda la línea de llenado que se extiende desde dicho depósito de almacenamiento a dicha llenadora (1), caracterizado porque una cantidad de líquido en el depósito de llenadora (4) es detectada por medio de un dispositivo detector (22a), y al menos una de una cantidad de líquido suministrado a dicho depósito de llenadora (4) y una cantidad de líquido devuelto desde dicho depósito de llenadora (4) es controlada según un valor detectado de dicho dispositivo detector (22a), donde durante el llenado realizado por dicha llenadora (1), la cantidad de líquido suministrado a dicho depósito de llenadora (4) es mayor que la cantidad de líquido devuelto desde dicho depósito de llenadora (4), y durante la interrupción del llenado, la cantidad de líquido suministrado a dicho depósito de llenadora (4).
 - 2. Un método de llenado de líquido según la reivindicación 1, donde dicho líquido es una bebida conteniendo un componente sólido.
- 3. Un aparato de llenado de líquido que introduce un líquido en recipientes, incluyendo dicho aparato una línea de llenado de líquido que tiene un depósito de almacenamiento (5) que contiene el líquido y una llenadora (1) que introduce dicho líquido en los recipientes, donde el líquido en un depósito de llenadora (4) es devuelto a través de un tubo de retorno (3) montado en el depósito de llenadora (4) a toda la línea de llenado de líquido de modo que dicho líquido circule constantemente a través de dicha línea de líquido, caracterizado porque el aparato de llenado de líquido incluye además:

un dispositivo detector (22a) que detecta una cantidad de líquido en dicho depósito de llenadora (4); y

- un controlador (23a) que controla al menos una de una cantidad de líquido suministrado a dicho depósito de llenadora (4) y una cantidad de líquido devuelto desde dicho depósito de llenadora (4) según un valor detectado de dicho dispositivo detector, donde durante el llenado efectuado por dicha llenadora (1), la cantidad de líquido suministrado a dicho depósito de llenadora (4) es mayor que la cantidad de líquido devuelto desde dicho depósito de llenadora (4), y durante la interrupción del llenado, la cantidad de líquido suministrado a dicho depósito de llenadora (4) es igual a la cantidad de líquido devuelto desde dicho depósito de llenadora (4).
 - 4. Un aparato de llenado de líquido según la reivindicación 3 donde dicho líquido es una bebida conteniendo un componente sólido.

35

5

10

15

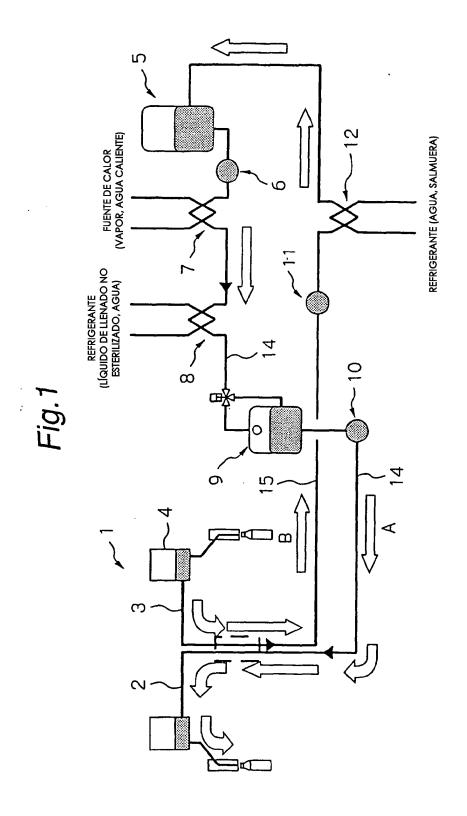


Fig.2

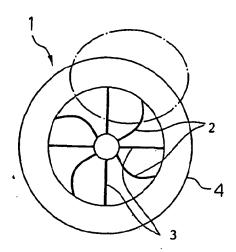
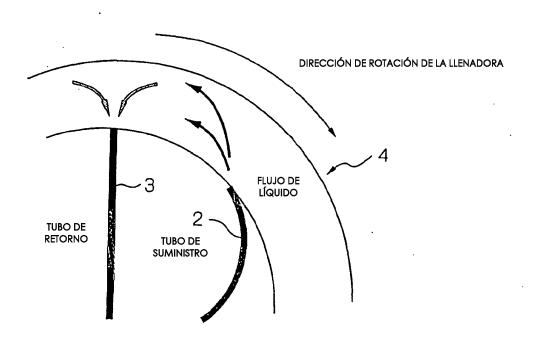
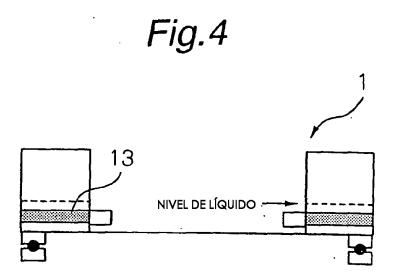
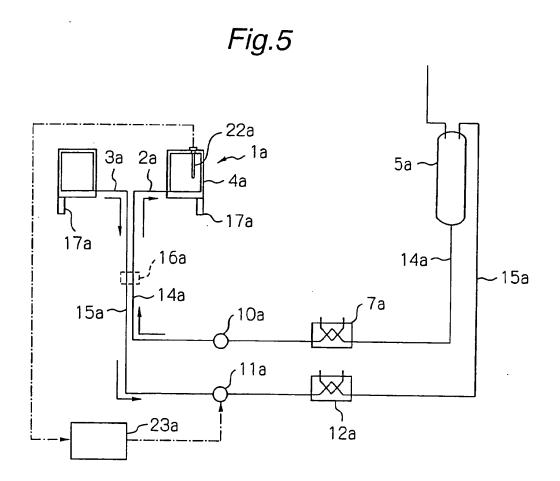
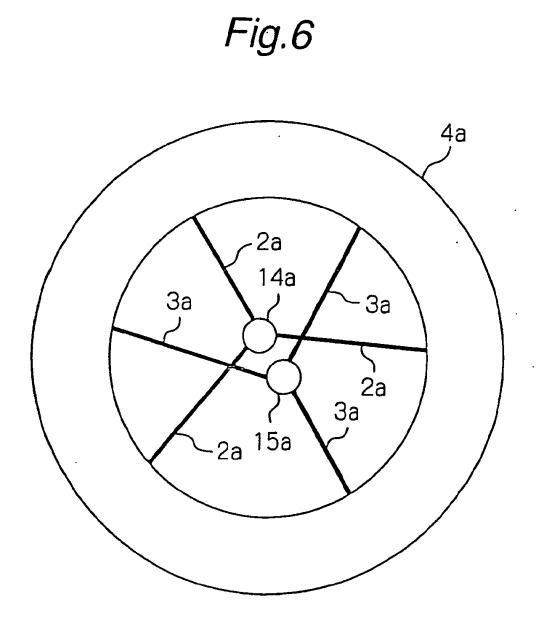






Fig.3

