

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 414 460

51 Int. Cl.:

C07K 16/18 (2006.01) A61K 39/395 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 04.08.2005 E 05807469 (1)
 (97) Fecha y número de publicación de la concesión europea: 01.05.2013 EP 1786837

(54) Título: Anticuerpos para Dkk-1

(30) Prioridad:

04.08.2004 US 598791 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.07.2013

(73) Titular/es:

AMGEN INC. (100.0%) ONE AMGEN CENTER DRIVE THOUSAND OAKS, CALIFORNIA 91320-1799, US

(72) Inventor/es:

LI, JI; SHEN, WENYAN; LU, HSIENG SEN y RICHARDS, WILLIAM GLEASON

74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Anticuerpos para Dkk-1.

Campo de la invención

5

10

15

20

25

30

35

45

50

La invención se refiere a agentes de unión selectiva para la proteína dickkopf-1 (Dkk-1), y más concretamente, a anticuerpos y dominios de unión a antígeno y regiones CDR que median la unión selectiva a un epítopo localizado en la mitad carboxilada de la proteína Dkk-1.

Antecedentes de la invención

El tejido óseo vivo muestra un equilibrio dinámico entre el depósito y la resorción de hueso. Estos procesos están mediados principalmente por dos tipos de células: osteoblastos, que secretan moléculas que comprenden la matriz orgánica del hueso, y osteoclastos, que median la disolución de la matriz ósea y la solubilización de las sales del hueso. En individuos jóvenes con hueso en crecimiento, la tasa de depósito óseo excede la tasa de resorción ósea, mientras en individuos de edad más avanzada la tasa de resorción puede exceder el depósito conduciendo a una pérdida neta de masa ósea. Esta última situación puede conducir a un incremento del riesgo de fractura ósea y a una reparación lenta o incompleta de los huesos rotos. La comprensión del mecanismo molecular que subyace a estos procesos es crítica para el desarrollo de agentes terapéuticos para el tratamiento de enfermedades óseas. La genética humana ha jugado un papel principal en la elucidación de estos mecanismos y ha permitido la identificación de múltiples factores implicados en la actividad tanto catabólica como anabólica del hueso (Janssens and Van Hul, Hum Mol Gen, 11(20):2385-93, 2002; Ralston, J Clin Endocrin Metab. 87(6):2460-66, 2002).

Dickkopf-1 (Dkk-1) es un miembro de la familia de proteínas dickkopf que se ha demostrado que son reguladores negativos de la ruta de señalización canónica de Wnt, que tiene un papel central en el desarrollo y la formación de hueso (véanse, por ejemplo, Glinka et al., *Nature* 391:357-62 (1998); Fedi et al., *J Biol Chem* 274(27):19465-72 (1999); Zorn, *Curr Biol* 11:R592-95 (2001); y Krupnik et al., *Gene* 238: 301-13 (1999)). Dkk-1 inhibe la señalización Wnt a través de su correlación con los receptores de Wnt LRP5 o LRP6 y las proteínas kremen (véanse, por ejemplo, Bafico et al, *Nature Cell Biol* 3:683 (2001); Mao et al, *Nature* 411(17):321 (2001); Mao et al, Nature 417:664 (2002); y Semënov et al, *Curr Biol* 11:951-61 (2001). Por medio de la unión de LRP5 (LRP6) y proteínas kremen, Dkk-1 evita que LRP5 o LRP6 se asocien con miembros de la ruta Wnt y de ese modo evita la transducción de la señal mediada por Wnt, que a su vez da como resultado la inhibición de la formación de hueso.

LRP5 es una proteína clave en la regulación de la masa ósea (véanse, por ejemplo, Gong et al., *Cell* 107:513-23 (2001); Patel, *N Eng J Med* 346(20):1572 (2002)). Se ha identificado un trastorno recesivo autosómico caracterizado por una baja masa ósea (síndrome de osteoporosis-pseudoglioma, u "OPPG") que está causado por mutaciones de pérdida de función en LRP5 (Gong et al, 2001). Además, se ha demostrado que las mutaciones de ganancia de función en LRP5 dan como resultado una masa ósea elevada dominante autosómica en seres humanos (Little et al., *Am J Human Genetics*. 70 (1):11-19, 2002). Las mismas mutaciones en LRP5 que dan como resultado una masa ósea elevada pueden interferir en la capacidad de Dkk-1 para inhibir la señalización de LRP5 (véase, por ejemplo, Boyden et al., *N Eng J Med*. 346(20):1513-1521, 2002). De este modo, Dkk-1 se caracteriza apropiadamente por ser un regulador negativo del depósito óseo.

En vista de la implicación de Dkk-1 en la regulación de la formación de hueso y su papel en otras diversas enfermedades que están asociadas con la pérdida de hueso (p. ej., cáncer y diabetes), existe una necesidad de anticuerpos anti-Dkk-1 mejorados para uso terapéutico y para otros propósitos.

40 Breve resumen de la invención

La presente invención proporciona anticuerpos aislados y fragmento inmunológicamente funcionales de los mismos que se unen específicamente a una proteína de Dkk-1 humana madura que consiste en los aminoácidos 32-266 del SEC ID NO: 2, en donde dicho anticuerpo se une a un epítopo que comprende dos bucles, estando formados dichos bucles por enlaces disulfuro y estando dichos bucles entre 220 y 237 del SEC ID NO: 2 y entre los residuos de cisteína 245 y 263 del SEC ID NO: 2.

Los anticuerpos o fragmentos inmunológicamente funcionales de los mismos pueden comprender:

(a)

- (i) una CDR1 de LC con la secuencia de aminoácidos expuesta en el SEC ID NO: 70; y
- (ii) una CDR2 de LC con la secuencia de aminoácidos expuesta en el SEC ID NO: 72: v
- (iii) una CDR3 de LC con la secuencia de aminoácidos expuesta en el SEC ID NO: 74; y

(b)

(i) una CDR1 de HC con la secuencia de aminoácidos expuesta en el SEC ID NO: 76; y

- (ii) una CDR2 de HC con la secuencia de aminoácidos expuesta en el SEC ID NO: 78; y
- (iii) una CDR3 de HC con la secuencia de aminoácidos expuesta en el SEC ID NO: 80.

En un aspecto relacionado, los anticuerpos aislados y los fragmentos inmunológicamente funcionales comprenden:

una región variable de la cadena ligera (VL) que tiene una identidad de secuencia de al menos 80% con el SEC ID NO: 84; y

una región variable de la cadena pesada (VH) que tiene una identidad de secuencia de al menos 80% con el SEC ID NO: 91.

De acuerdo con una realización preferida adicional, la presente invención proporciona anticuerpos y fragmentos inmunológicamente funcionales de los mismos que compiten con los anticuerpos definidos anteriormente por la unión específica a un polipéptido Dkk-1.

En otro aspecto, la presente invención proporcionar un ácido nucleico que codifica

una CDR de la cadena ligera con la secuencia de aminoácidos expuesta en el SEC ID NO: 70, 72 y/o 74; y/o

una CDR de la cadena pesada con la secuencia de aminoácidos expuesta en el SEC ID NO: 70, 78 y/o 80,

en donde el ácido nucleico codifica un anticuerpo como se ha definido anteriormente.

La presente invención proporciona adicionalmente vectores de expresión que comprenden los respectivos ácidos nucleicos y células aisladas que comprenden los respectivos vectores de expresión.

Adicionalmente se proporcionan métodos para producir un anticuerpo o un fragmento inmunológicamente activo del mismo que comprende la etapa de cultivar las respectivas células. De acuerdo con una realización adicionalmente preferida de la presente invención se proporcionan composiciones farmacéuticas, que comprenden un anticuerpo o un fragmento inmunológicamente funcional del mismo como se ha descrito anteriormente y un componente seleccionado del grupo que consiste en un tampón, un diluyente farmacéuticamente aceptable, un portador, un agente solubilizador, un emulsionante y un conservante.

Los anticuerpos y los fragmentos inmunológicamente activos de los mismos descritos anteriormente también se pueden utilizar para la preparación de una composición farmacéutica para su uso en la reparación ósea o para tratar una enfermedad, en donde la enfermedad se selecciona del grupo que consiste en artritis, un trastorno óseo y un cáncer que incrementa la actividad de los osteoclastos e induce la resorción ósea.

En aspectos relacionados, los anticuerpos y los fragmentos inmunológicamente activos de los mismos se pueden utilizar para la preparación de una composición farmacéutica para tratar a un paciente con cáncer que experimenta terapia con radiación o quimioterapia y para tratar el mieloma múltiple.

Breve descripción de las figuras

5

10

20

25

30

35

50

La Figura 1 muestra un diagrama de cintas que representa la estructura tridimensional de un segmento de Dkk-1 humana localizado cerca del extremo carboxi de la proteína. Todos los números de aminoácidos indicados en la figura corresponden a la secuencia de aminoácidos del SEC ID NO: 2. Las dos secuencias de péptidos representadas en la figura representan regiones que son importantes para que el anticuerpo monoclonal 11H10 se una específicamente a esta proteína. Se cree que los aminoácidos que se encuentran subrayados juegan un papel importante para la unión del anticuerpo a la proteína de Dkk-1. Los bucles que comprenden el epítopo están sombreados, estando uno de los dos bucles del epítopo sombreado ligeramente más oscuro que el otro bucle. Las porciones de color muy claro del diagrama de cintas representan partes del polipéptido que se cree que desempeñan un papel menor en la interacción de unión entre 11H10 y Dkk-1 humana.

40 Las Figuras 2A y 2B muestran resultados μCT para ratones jóvenes y viejos tratados con 11H10 de rata. La Figura 2A es una representación gráfica del número trabecular a diferentes niveles de dosificación de 11H10 de rata (5, 10 o 20 mg/kg) tanto en ratones viejos (8,5 meses de edad) como en ratones jóvenes (6 semanas de edad) frente al vehículo (control negativo) y PTH (control positivo). La Figura 2B es un gráfico del perímetro endosteal a diferentes niveles de dosificación de 11H10 de rata (5, 10 o 20 mg/kg) en ratones viejos (8,5 meses de edad) frente a vehículo (control negativo) y PTH (control positivo).

Las Figuras 3A y 3B son gráficos que representan el porcentaje de cambio en la DMO en ratones oviarectomizados (OVX) 28 días después de ser tratados con 11H10 de rata (3, 10 o 30 mg/kg) frente a vehículo o PTH (100 mg/kg). Los ratones se utilizaron 5 meses después de la OVX. La Figura 3A muestra el cambio en la DMO en la tibia el día 28 con respecto al período inicial. La Figura 3B muestra el cambio en la DMO en la zona lumbar el día 28 con respecto al período inicial.

La Figura 4 es un gráfico del porcentaje de cambio en la DMO en ratones jóvenes tres semanas después de haberles administrado 11H10 RT IgG1 o 11H10 RT IgG2 con respecto a 11H10 de rata o PTH.

Descripción detallada de la invención

I. Definiciones

30

35

50

- A menos que se defina de otro modo en la presente memoria, los términos científicos y técnicos usados en relación 5 con la presente invención tendrán los significados que son comúnmente entendidos por los expertos normales en la técnica. Adicionalmente, a menos que sea requerido por el contexto, los términos en singular incluirán las pluralidades y los términos en plural incluirán el singular. Generalmente, las nomenclaturas utilizadas en relación con, y los mecanismos de, cultivo de células y tejidos, biología molecular, inmunología, microbiología, genética y 10 química de proteínas y ácidos nucleicos e hibridación descritos en la presente memoria son aquellos bien conocidos y utilizados comúnmente en la técnica. Los métodos y mecanismos de la presente invención se llevan a cabo generalmente de acuerdo con métodos convencionales bien conocidos en la técnica y como se describe en diversas referencias generales y más específicas que se citan y se comentan a lo largo de la presente memoria a menos que se indique lo contrario. Véanse, p. ej., Sambrook et al Molecular Cloning: A Laboratory Manual, 2ª edición, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989.) y Ausubel et al., Current Protocols in Molecular 15 Biology, Greene Publishing Associates (1992), y Harlow and Lane Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1990), que se incorporan a la presente memoria como referencia. Las reacciones enzimáticas y los mecanismos de purificación se llevan a cabo de acuerdo con las especificaciones del fabricante, según se consigue comúnmente en la técnica o como se describe en la presente memoria. La 20 terminología utilizada en relación con, y los procedimientos de laboratorio y los mecanismos de, química analítica, química orgánica sintética, y química médica y farmacéutica descritos en la presente memoria son aquellos bien conocidos y comúnmente utilizados en la técnica. Se pueden utilizar mecanismos convencionales para las síntesis químicas, los análisis químicos, la preparación farmacéutica, la formulación y la liberación, y el tratamiento de los pacientes.
- 25 Se entenderá que los siguientes términos utilizados en esta descripción, a menos que se indique de otro modo, tienen los siguientes significados:
 - Según se utiliza en la presente memoria "Dkk-1" incluye, por ejemplo, las formas nativas de rata, murinas y humanas de Dkk-1. Las secuencias de nucleótidos ilustrativas que codifican las proteínas de Dkk-1 humana y murina se muestran, respectivamente, en los SEC ID NO: 1 y 3; las secuencias de aminoácidos correspondientes se muestran, respectivamente, en los SEC ID NOS: 2 y 4. La proteína Dkk-1 humana (SEC ID NO: 2) tiene una secuencia líder que consiste en los aminoácidos 1-31 del SEC ID NO: 2. Una secuencia de la proteína Dkk-1 de rata ilustrativa aparece en el acceso de GenBank XP_219804. El término también incluye variantes de tales secuencias nativas que presentan una reacción cruzada desde el punto de vista inmunológico con estas proteínas nativas. Estas proteínas pueden inhibir la interacción entre LRP5 o LRP6 con Wnt. Una secuencia de nucleótidos ilustrativa que codifica LRP5 humana se proporciona en el SEC ID NO: 5, y la correspondiente secuencia de aminoácidos se muestra en el SEC ID NO: 6. Una secuencia de nucleótidos ilustrativa que codifica LRP6 humana se proporciona en el SEC ID NO: 7, y la secuencia de aminoácidos correspondiente se muestra en SEC ID NO: 8. El término también se puede referir a un fragmento de una forma nativa o variante de Dkk-1 que contiene un epítopo al que puede unirse específicamente un anticuerpo.
- 40 El término "polinucleótido" o "ácido nucleico", representa polímeros de cadena sencilla o de cadena doble. Los nucleótidos que comprenden el polinucleótido pueden ser ribonucleótidos o desoxirribonucleótidos o una forma modificada de cualquier tipo de nucleótido. Dichas modificaciones incluyen modificaciones de bases, tales como derivados de bromouridina e inosina, modificaciones de la ribosa, tales como 2',3'-didesoxirribosa, y modificaciones de la unión internucleótido tales como fosforotioato, fosforoditioato, fosforoselenoato, fosforodiselenoato, fosforoanilotioato, fosforaniladato y fosforoamidato. El término incluye tanto las formas de cadena sencilla y doble.
 - El término "oligonucleótido" representa un polinucleótido que comprende 200 nucleótidos o menos. En algunas realizaciones, los oligonucleótidos tienen de 10 a 60 bases de longitud. En otras realizaciones, los oligonucleótidos tienen 12, 13, 14, 15, 16, 17, 18, 19, o 20 a 40 nucleótidos de longitud. Los oligonucleótidos pueden ser de cadena sencilla o de cadena doble, p. ej., para su uso en la construcción de un gen mutante. Los oligonucleótidos de la invención pueden ser oligonucleótidos efectores o antisentido. Un oligonucleótido de la invención puede incluir una marca, incluyendo una radiomarca, una marca fluorescente, un hapteno o una marca antigénica, para los análisis detección. Los oligonucleótidos de la invención se pueden usar, por ejemplo, como cebadores de PCR, cebadores de clonación o sondas de hibridación.
- Una "molécula de ácido nucleico aislada" significa un ADN o ARN de origen genómico, ARNm, ADNc o sintético o alguna combinación de los mismos que no están asociados con todo o una porción de un polinucleótido con el cual se encuentra el polinucleótido aislado en la naturaleza, o está conectado a un polinucleótido al que no está conectado en la naturaleza. Para los fines de esta descripción, se debe entender que "una molécula de ácido nucleico que comprende" una secuencia de nucleótidos concreta, no incluye cromosomas intactos. Las moléculas de ácido nucleico aisladas "que comprenden" secuencias de ácido nucleico especificadas puede incluir, además de las

secuencias especificadas, secuencias codificantes para hasta diez o incluso hasta veinte proteínas diferentes o porciones de las mismas, o pueden incluir secuencias reguladoras conectadas operablemente que controlan la expresión de la región codificante de las secuencias de ácidos nucleicos citadas, y/o pueden incluir secuencias de vectores.

A menos que se especifique lo contrario, el extremo izquierdo de cualquier secuencia de polinucleótidos de cadena sencilla comentado en la presente memoria es el extremo 5'; la dirección hacia la izquierda de las secuencias de polinucleótidos de doble cadena es referida como la dirección 5'. La dirección de adición 5' a 3' de los transcritos de ARN nacientes es referida como dirección de transcripción; las regiones de secuencia de la cadena de ADN que tienen la misma secuencia que el transcrito de ARN que se encuentran 5' con respecto al extremo 5' del transcrito de ARN son referidas como "secuencias aguas arriba"; las regiones de secuencia en la cadena de ADN que tienen la misma secuencia que el transcrito de ARN que se encuentran 3' con respecto al extremo 3' del transcrito de ARN son referidas como "secuencias aguas abajo".

El término "secuencia de control" hace referencia a una secuencia de polinucleótido que puede afectar a la expresión y el procesamiento de las secuencias codificantes a las cuales está ligada. La naturaleza de tales secuencias de control puede depender del organismo anfitrión. En realizaciones concretas, las secuencias de control de procariotas pueden incluir un promotor, un sitio de unión ribosomal, y una secuencia de terminación de la transcripción. Por ejemplo, las secuencias de control para eucariotas pueden incluir promotores que comprenden uno o una pluralidad de sitios de reconocimiento para los factores de transcripción, secuencias intensificadoras de la transcripción, y la secuencia de terminación de la transcripción. Las "secuencias de control" de acuerdo con la invención pueden incluir secuencias líder y/o secuencias de compañeros de fusión.

15

20

25

30

35

40

45

50

El término "vector" significa cualquier molécula o entidad (p. ej., ácido nucleico, plásmido, bacteriófago o virus) utilizado para transferir información codificante de la proteína a una célula anfitriona.

El término "vector de expresión" o "constructo de expresión" hace referencia a un vector que es adecuado para la transformación de una célula anfitriona y contiene secuencias de ácidos nucleicos que dirigen o controlan (junto con la célula anfitriona) la expresión de una o más regiones codificantes heterólogas conectadas operativamente al mismo. Un constructo de expresión puede incluir, pero está limitado a, secuencias que afectan o controlan la transcripción, la traducción, y, si están presentes intrones, afectan al empalme de ARN de una región codificante conectada operablemente a la misma.

Según se utiliza en la presente memoria, "conectado operablemente" significa que los componentes a los que se aplica el término están en una relación que les permite llevar a cabo sus funciones inherentes en condiciones adecuadas. Por ejemplo, una secuencia de control en un vector que está "conectado operablemente" a una secuencia codificante de la proteína está ligada al mismo, de modo que la expresión de la secuencia codificante de la proteína se consigue en condiciones compatibles con la actividad transcripcional de las secuencias de control.

El término "célula anfitriona" significa una célula que ha sido transformada, o es susceptible de ser transformada, con una secuencia de ácido nucleico y de ese modo expresa un gen de interés. El término incluye la progenie de la célula parental, ya sea la progenie idéntica o no en morfología o en composición genética a la célula parental original, siempre que el gen de interés esté presente.

El término "transducción" significa la transferencia de genes de una bacteria a otra, generalmente por bacteriófagos. "Transducción" hace referencia también a la adquisición y transferencia de secuencias celulares eucarióticas por retrovirus.

El término "transfección" significa la captación de ADN foráneo o exógeno por una célula, y una célula ha sido "transfectada" cuando el ADN exógeno ha sido introducido dentro de la membrana celular. Diversos mecanismos transfección son bien conocidos en la técnica y se describen en la presente memoria. Véanse, por ejemplo, Graham y col., 1973, Virology 52:456; Sambrook et al, 2001, Molecular Cloning: A Laboratory Manual, Id.; Davis et al., 1986, Basic Methods in Molecular Biology, Elsevier; y Chu et al., 1981, Gene 13:197. Tales técnicas se pueden utilizar para introducir uno o más radicales de ADN exógeno en células anfitrionas adecuadas.

El término "transformación" hace referencia a un cambio en las características genéticas de una célula, y una célula ha sido transformada cuando ha sido modificada para que contenga un nuevo ADN o ARN. Por ejemplo, una célula es transformada cuando se modifica genéticamente a partir de su estado nativo mediante la introducción de nuevo material genético a través de la transfección, transducción, u otras técnicas. Después de la transfección o transducción, el ADN transformante puede recombinarse con el de la célula integrándose físicamente en el cromosoma de la célula, o se puede mantener transitoriamente como un elemento episómico sin ser replicado, o puede replicarse independientemente en forma de un plásmido. Se considera que una célula ha sido "transformada de forma estable" cuando el ADN transformante se replica con la división de la célula.

Los términos "polipéptido" o "proteína" significan una macromolécula que tiene la secuencia de aminoácidos de una proteína nativa, es decir, una proteína producida por una célula de origen natural y no recombinante, o producida por una célula diseñada mediante ingeniería genética o recombinante, y comprenden moléculas que tienen la secuencia de aminoácidos de la proteína nativa, o moléculas que tienen deleciones, adiciones, y/o sustituciones de uno o más

aminoácidos de la secuencia nativa. Los términos "polipéptido" y "proteína" abarcan específicamente y anticuerpos anti-Dkk-1, o secuencias que tienen deleciones, adiciones, y/o sustituciones de uno o más aminoácidos de un anticuerpo anti-Dkk-1. El término "fragmento de polipéptido" hace referencia a un polipéptido que tiene una deleción amino-terminal, una deleción carboxi terminal, y/o deleciones internas en comparación con la proteína nativa completa. Tales fragmentos también pueden contener aminoácidos modificados en comparación con la proteína nativa. En ciertas realizaciones, los fragmentos tienen aproximadamente de 5 a 500 aminoácidos de longitud. Por ejemplo, los fragmentos pueden tener al menos 5, 6, 8, 10, 14, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, o 450 aminoácidos de longitud. Los fragmentos de polipéptidos útiles para la presente invención incluyen fragmentos inmunológicamente funcionales de anticuerpos, incluyendo dominios de unión. En el caso del anticuerpo anti-Dkk-1, los fragmentos útiles incluyen, pero no se limitan a una región CDR, un dominio variable de una cadena pesada o ligera, una porción de una cadena de anticuerpo o simplemente su región variable incluyendo dos CDR, y similares.

10

15

20

30

35

40

45

50

55

60

El término "proteína aislada" referido en la presente memoria significa que una proteína sujeto (1) está libre de al menos algunas otras proteínas con las que normalmente se encontraría, (2) está esencialmente libre de otras proteínas de la misma procedencia, p. ej., de la misma especie, (3) es expresada por una célula de una especie diferente, (4) se ha separado de al menos aproximadamente 50 por ciento de polinucleótidos, lípidos, hidratos de carbono, u otros materiales con los que está asociada en la naturaleza, (5) está asociada operablemente (mediante interacción covalente o no covalente) con un polipéptido con el que no está asociada en la naturaleza, o (6) no existe en la naturaleza. El ADN genómico, el ADNc, el ARNm u otro ARN, de origen sintético, o cualquier combinación de los mismos pueden codificar tal proteína aislada. Preferiblemente, la proteína aislada está sustancialmente libre de proteínas o polipéptidos u otros contaminantes que se encuentran en su entorno natural que interferirían en su uso terapéutico, diagnóstico, profiláctico, de investigación u otro uso.

Una "variante" de un polipéptido (p. ej., un anticuerpo) comprende una secuencia de aminoácidos en donde uno o más residuos de aminoácidos se insertan, eliminan y/o se sustituyen en la secuencia de aminoácidos con respecto a otra secuencia de polipéptido. Las variantes de la invención incluyen proteínas de fusión.

Un "derivado" de un polipéptido es un polipéptido (p. ej., un anticuerpo) que ha sido modificado químicamente de alguna forma distinta de las variantes de inserción, deleción, o sustitución, p. ej., por medio de conjugación a otro radical químico.

El término "anticuerpo" hace referencia a una inmunoglobulina intacta de cualquier isotipo, o un fragmento de la misma que puede competir con el anticuerpo intacto por la unión específica al antígeno diana, e incluye anticuerpos quiméricos, humanizados, y biespecíficos. Un anticuerpo intacto generalmente comprenderá al menos dos cadenas pesadas completas y dos cadenas ligeras completas, pero en algunos casos puede incluir menos cadenas tales como los anticuerpos de origen natural de los camélidos que pueden comprender solamente las cadenas pesadas. Los anticuerpos de acuerdo con la invención pueden derivarse exclusivamente de una sola fuente, o pueden ser "quiméricos", es decir, las diferentes porciones del anticuerpo pueden derivar de dos anticuerpos diferentes. Por ejemplo, las regiones CDR se pueden obtener de rata o tener origen murino, mientras que la región marco de la región V se obtiene de una fuente animal diferente, tal como un ser humano. Los anticuerpos o los fragmentos de unión de la invención se pueden producir en hibridomas, mediante técnicas de ADN recombinante, o mediante escisión enzimática o química de anticuerpos intactos. A menos que se indique lo contrario, el término "anticuerpo" incluye, además de los anticuerpos que comprenden dos cadenas pesadas completas y dos cadenas ligeras completas, derivados, variantes, fragmentos, y muteínas de los mismos, cuyos ejemplos se describen a continuación.

El término "cadena ligera" incluye una cadena ligera completa y fragmentos de la misma que tienen una secuencia de la región variable suficiente para conferir especificidad de unión. Una cadena ligera completa incluye un dominio de la región variable, V_L, y un dominio de la región constante, C_L. El dominio de la región variable de la cadena ligera está en el extremo amino del polipéptido. Las cadenas ligeras de acuerdo con la invención incluyen cadenas kappa y cadenas lambda.

El término "cadena pesada" incluye una cadena pesada completa y fragmentos de la misma que tienen una secuencia de la región variable suficiente para conferir especificidad de unión. Una cadena pesada completa incluye un dominio de la región variable, V_H, y tres dominios de la región constante, C_H1, C_H2, y C_H3. El dominio V_H está en el extremo amino del polipéptido, y los dominios C_H están en el extremo carboxilo, siendo C_H3 el más cercano al extremo -COOH. Las cadenas pesadas de acuerdo con la invención pueden ser de cualquier isotipo, incluyendo IgG (incluyendo los subtipos IgG1, IgG2, IgG3 e IgG4), IgA (incluyendo los subtipos IgA e IgA₂), IgM e IgE.

El término "fragmento inmunológicamente funcional" (o simplemente "fragmento") de una cadena de inmunoglobulina, según se utiliza en la presente memoria, hace referencia a una porción de una cadena ligera o una cadena pesada de anticuerpo que carece al menos de algunos de los aminoácidos presentes en una cadena completa, pero que es capaz de unirse específicamente a un antígeno. Tales fragmentos son biológicamente activos ya que se unen específicamente al antígeno diana y pueden competir con anticuerpos intactos por la unión específica a un determinado epítopo. En un aspecto de la invención, tal fragmento conservará al menos una CDR presente en la cadena ligera o pesada completa, y en algunas realizaciones comprenderá una única cadena pesada y/o cadena ligera o porción de las mismas. Estos fragmentos biológicamente activos se pueden producir mediante

técnicas de ADN recombinante, o se pueden producir mediante escisión enzimática o química de anticuerpos intactos. Los fragmentos de inmunoglobulina inmunológicamente funcionales de la invención incluyen, pero no se limitan a, Fab, Fab', F(ab')₂, Fv, anticuerpos de dominio y anticuerpos de cadena sencilla, y puede derivar de cualquier fuente de mamífero, incluyendo pero sin limitarse a, ratón, rata, camélido o conejo. Se contempla adicionalmente que una porción funcional de los anticuerpos de la invención, por ejemplo, una o más CDR, pueda estar unida covalentemente a una segunda proteína o una molécula pequeña para crear un agente terapéutico dirigido a una diana concreta en el organismo, poseyendo propiedades terapéuticas bifuncionales, o teniendo una vida media en suero prolongada.

Un "fragmento Fab" se compone de una cadena ligera y regiones C_H1 y variable de una cadena pesada. La cadena pesada de una molécula Fab no puede formar un enlace disulfuro con otra molécula de cadena pesada.

Una región "Fc" contiene dos fragmentos de cadena pesada que comprenden los dominios $C_{H}1$ y $C_{H}2$ de un anticuerpo. Los dos fragmentos de cadena pesada se mantienen juntos por medio de dos o más enlaces disulfuro y por medio de interacciones hidrófobas de los dominios CH3.

Un "fragmento Fab" contiene una cadena ligera y una porción de una cadena pesada que contiene el dominio V_H y el dominio C_H1 y también la región entre los dominios C_H1 y C_H2, de manera que se pueden formar un enlace disulfuro intercatenario entre las dos cadenas pesadas de dos fragmentos Fab' para formar una molécula F(ab')₂.

Un "fragmento $F(ab')_2$ " contiene dos cadenas ligeras y dos cadenas pesadas que contienen una porción de la región constante entre los dominios C_H1 y C_H2 , de manera que se forma un enlace disulfuro intercatenario entre las dos cadenas pesadas. Un fragmento $F(ab')_2$ se compone por lo tanto de dos fragmentos Fab' que se mantienen unidos por medio de un enlace disulfuro entre las dos cadenas pesadas.

La "región Fv" comprende las regiones variables de las cadenas tanto pesadas como ligeras, pero carece de las regiones constantes.

Los "anticuerpos de cadena sencilla" son moléculas Fv en las que las regiones variables de la cadena pesada y ligera han sido conectadas por un conector flexible para formar una sola cadena polipeptídica, que forma una región de unión a antígeno. Los anticuerpos de cadena sencilla se comentan con detalle en la Publicación de la Solicitud de Patente Internacional Núm. WO 88/01649 y las Patentes de los Estados Unidos Núms. 4.946.778 y 5.260.203, cuyas descripciones se incorporan como referencia.

Un "anticuerpo de dominio" es un fragmento de inmunoglobulina inmunológicamente funcional que contiene solo la región variable de una cadena pesada o la región variable de una cadena ligera. En algunos casos, dos o más regiones V_H se unen covalentemente con un conector peptídico para crear un anticuerpo de dominio bivalente. Los dos regiones V_H de un anticuerpo de dominio bivalente pueden elegir como diana el mismo o diferentes antígenos.

Un "anticuerpo bivalente" comprende dos sitios de unión al antígeno. En algunos casos, los dos sitios de unión tienen las mismas especificidades antigénicas. Sin embargo, los anticuerpos bivalentes pueden ser biespecíficos (véase más abajo).

Un "anticuerpo multiespecífico" es aquel que se dirige a más de un antígeno o epítopo.

15

20

25

30

40

45

50

55

Un anticuerpo "biespecífico", de "especificidad dual" o "bifuncional" es un anticuerpo híbrido que tiene dos sitios de unión a antígeno diferentes. Los anticuerpos biespecíficos son una especie de anticuerpo multiespecífico y se pueden producir mediante una variedad de métodos, incluyendo, pero no limitados a, fusión de hibridomas o unión de fragmentos Fab'. Véanse, p. ej.., Songsivilai y Lachmann (1990), *Clin. Exp. Immunol.* 79:315-321; Kostelny et al. (1992), *J. Immunol.* 148:1547-1553. Los dos sitios de unión de un anticuerpo biespecífico se unirán a dos epítopos diferentes, que pueden residir en la misma o diferentes dianas proteicas.

El término "anticuerpo neutralizador" hace referencia a un anticuerpo que se une a un ligando, previene la unión del ligando a su compañero de unión e interrumpe la respuesta biológica que de otro modo resultaría de la unión del ligando a su compañero de unión. En la evaluación de la unión y la especificidad de un anticuerpo o un fragmento inmunológicamente funcional del mismo, un anticuerpo o fragmentos inhibirá sustancialmente la unión de un ligando a su compañero de unión cuando un exceso de anticuerpo reduce la cantidad de compañero de unión unido al ligando en al menos aproximadamente 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 99% o más (medido en un análisis de unión competitiva *in vitro*). En el caso de los anticuerpos para Dkk-1, un anticuerpo neutralizador disminuirá la capacidad de Dkk-1 para unirse a LRP5 o LRP6, induciendo de ese modo un aumento medible en la actividad de Wnt.

El término "compite" cuando se utiliza en el contexto de anticuerpos que compiten por el mismo epítopo significa la competición entre anticuerpos determinada mediante un análisis en el que el anticuerpo o fragmento inmunológicamente funcional a prueba impiden o inhiben la unión específica de un anticuerpo de referencia a un antígeno común (p. ej., Dkk-1 o un fragmento del mismo). Se pueden utilizar numerosos tipos de análisis de unión competitiva, por ejemplo: radioinmunoanálisis directo o indirecto en fase sólida (RIA), inmunoanálisis enzimático directo o indirecto en fase sólida (EIA), análisis competitivo sándwich (véase, p. ej., Stahli et al (1983) Methods in

Enzymology 9:242-253); EIA con biotina-avidina directo en fase sólida (véase, p. ej., Kirkland et al., (1986) J. Immunol. 137:3614-3619), análisis de marcaje directo en fase sólida, análisis sándwich de marcaje directo en fase sólida (véase, por ejemplo, Harlow y Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Press), RIA de marcaje directo en fase sólida utilizando la marca I-125 (véase, p. ej., Morel et al (1988) Molec. Immunol. 25:7-15); EIA con biotina-avidina directo en fase sólida (véase, p. ej., Cheung, et al. (1990) Virology 176:546-552); y RIA de marcaje directo (Moldenhauer et al. (1990) Scand. J. Immunol. 32:77-82). Típicamente, tal análisis implica el uso de un antígeno purificado unido a una superficie sólida o a células que portan cualquiera de éstos, una inmunoglobulina de ensayo no marcada y una inmunoglobulina de referencia marcada. La inhibición competitiva se mide determinando la cantidad de marcador unida a la superficie sólida o las células en presencia de la inmunoglobulina de ensayo. Por lo general, la inmunoglobulina de ensayo está presente en exceso. Los anticuerpos identificados mediante el análisis competitivo (anticuerpos competitivos) incluyen anticuerpos que se unen al mismo epítopo que el anticuerpo de referencia y anticuerpos que se unen a un epítopo adyacente suficientemente próximo al epítopo unido al anticuerpo de referencia para que se produzca impedimento estérico. Los detalles adicionales referentes a los métodos para determinar la unión competitiva se proporcionan en los ejemplos de la presente memoria. Normalmente, cuando un anticuerpo competitivo está presente en exceso, inhibirá la unión específica de un anticuerpo de referencia a un antígeno común en al menos 40%, 45%, 50%, 55%, 60%, 65%, 70% o 75%. En algún caso, la unión es inhibida en al menos 80%, 85%, 90%, 95%, o 97% o más.

10

15

20

25

30

35

40

45

50

55

60

El término "antígeno" hace referencia a una molécula o una porción de una molécula capaz de unirse a agente de unión selectiva, tal como un anticuerpo, y adicionalmente susceptible de ser utilizado en un animal para producir anticuerpos capaces de unirse a ese antígeno. Un antígeno puede tener uno o más epítopos que son capaces de interactuar con anticuerpos diferentes.

El término "epítopo" incluye cualquier determinante capaz de unirse específicamente a una inmunoglobulina o a un receptor de células T. Un epítopo es una región de un antígeno que se une a un anticuerpo que se dirige específicamente a ese antígeno, y cuando el antígeno es una proteína, incluye los aminoácidos específicos que entran contacto directo con el anticuerpo. Muy a menudo, los epítopos residen en proteínas, pero en algunos casos pueden residir en otros tipos de moléculas, tales como ácidos nucleicos. Los determinantes epitópicos pueden incluir agrupamiento superficiales químicamente activos de moléculas tales como aminoácidos, cadenas laterales de azúcares, grupos fosforilo o sulfonilo, y pueden tener características estructurales tridimensionales específicas, y/o características de carga específicas. Generalmente, los anticuerpos específicos para un antígeno diana concreto reconocerán preferentemente un epítopo en el antígeno diana en una mezcla compleja de proteínas y/o macromoléculas.

Se dice que un anticuerpo de la invención "se une específicamente" a su antígeno diana cuando la constante de disociación (K_d) es $\leq 10^{-8}$ M. El anticuerpo se une específicamente al antígeno con una "alta afinidad" cuando la K_d es $\leq 5 \times 10^{-9}$ M, y con una "afinidad muy alta" cuando la K_d es $\leq 5 \times 10^{-10}$ M. En una realización de la invención, el anticuerpo tiene una $K_d \leq 10^{-9}$ M y una velocidad de disociación de aproximadamente 1 x 10^{-4} /seg. En una realización de la invención, la velocidad de disociación es $< 1 \times 10^{-5}$. En otras realizaciones de la invención, los anticuerpos se unirán a Dkk-1 humano con una K_d entre aproximadamente 10^{-8} M y 10^{-10} M, y en otra realización más se unirán con una $K_d \leq 2 \times 10^{-10}$.

El término "identidad" hace referencia a una relación entre las secuencias de dos o más moléculas de polipéptidos o dos o más moléculas de ácido nucleico, según se determina mediante alineamiento y comparación de las secuencias. "Porcentaje de identidad" significa el porcentaje de residuos idénticos entre los aminoácidos o nucleótidos de las moléculas comparadas y se calcula basándose en el tamaño de la más pequeña de las moléculas que se están comparando. Para estos cálculos, los espacios en los alineamientos (si los hubiera) deben ser tratados mediante un modelo matemático o un programa de informático concretos (es decir, un "algoritmo"). Los métodos que se pueden utilizar para calcular la identidad de los ácidos nucleicos o polipéptidos alineados incluyen los descritos en *Computational Molecular Biology*, (Lesk, A.M., ed.), 1988, Nueva York: Oxford University Press; *Biocomputing Informatics and Genome Projects*, (Smith, D.W., ed.), 1993, New York Academic Press; *Computer Analysis of Sequence Data, Part I*, (Griffin, A.M., y Griffin, H.G., eds.), 1994, New Jersey: Humana Press; von Heinje, G., 1987, *Sequence Analysis in Molecular Biology*, Nueva York: Academic Press; *Sequence Analysis Primer*, (Gribskov, M. y Devereux, J., eds.), 1991, Nueva York: M. Stockton Press; y Carrillo et al., 1988, *SIAM J. Applied Math.* 48:1073.

Al calcular el porcentaje de identidad, las secuencias que se están comparando se alinean de una manera que proporciona el mayor emparejamiento entre las secuencias. El programa informático utilizado para determinar el porcentaje de identidad es el paquete de programas GCG, que incluye GAP (Devereux et al, 1984, *Nucl Acid Res* 12:387; Genetics Computer Group, Universidad de Wisconsin, Madison, WI). El algoritmo informático GAP se utiliza para alinear los dos polipéptidos o polinucleótidos para los cuales se va a determinar el porcentaje de identidad de secuencia. Las secuencias se alinean para un emparejamiento óptimo de sus respectivos aminoácidos o nucleótidos (el "tramo emparejado", según se determina mediante el algoritmo). Se utilizan junto con el algoritmo una penalización de apertura del espacio (que se calcula como 3X la diagonal media, en donde la "diagonal media" es la media de la diagonal de la diagonal de la matriz de comparación que se está utilizando; la "diagonal" es la puntuación o número asignado a cada emparejamiento de aminoácidos perfecto por la matriz de comparación concreta) y una penalización de prolongación del espacio (que es usualmente 1/10 veces la penalización de apertura del espacio), así como una matriz de comparación tal como PAM 250 o BLOSUM 62. En ciertas realizaciones,

también se utiliza con el algoritmo una norma matriz de comparación patrón (véase Dayhoff et al., 1978, *Atlas of Protein Sequence and Structure* 5:345-352 para la matriz de comparación PAM 250; Henikoff et al., 1992, *Proc. Natl. Acad. USA* 89: 10915-10919 para la matriz de comparación BLOSUM 62).

Los parámetros recomendados para determinar el porcentaje de identidad para secuencias de polipéptidos o nucleótidos utilizando el programa GAP, son los siguientes:

Algoritmo: Needleman et al., 1970, J. Mol. Biol. 48:443-453;

Matriz de comparación: BLOSUM 62 de Henikoff et al., 1992, más arriba;

Penalización del espacio: 12 (pero sin penalización por espacios en los extremos)

Penalización por longitud del espacio: 4

10 Umbral de similitud: 0

5

15

20

25

30

35

40

45

50

55

Ciertos esquemas de alineamiento para alinear dos secuencias de aminoácidos pueden dar como resultado el apareamiento de solamente una región corta de las dos secuencias, y esta pequeña región alineada puede tener una identidad de secuencia muy alta a pesar de que no exista una relación significativa entre las dos secuencias completas. En consecuencia, el método de alineamiento seleccionado (programa GAP) puede ajustarse si así se desea para dar como resultado una alineamiento que abarca al menos 50 aminoácidos contiguos del polipéptido diana.

Según se utiliza en la presente memoria, "sustancialmente puro" significa que la especie de molécula descrita es la especie predominante presente, es decir, sobre una base molar es más abundante que cualquier otra especie individual en la misma mezcla. En ciertas realizaciones, una molécula sustancialmente pura es una composición en la que la especie objeto comprende al menos 50% (sobre una base molar) de todas las especies macromoleculares presentes en otras realizaciones, una composición sustancialmente pura comprenderá al menos 80%, 85%, 90 %, 95%, o 99% de todas las especies macromoleculares presentes en la composición. En otras realizaciones, la especie objeto se purifica hasta la homogeneidad esencial en donde las especies contaminantes no pueden ser detectadas en la composición por métodos de detección convencionales y por lo tanto la composición consiste en una única especie macromolecular detectable.

El término "osteopenia" hace referencia a un paciente con pérdida de hueso de al menos una desviación típica en comparación con un paciente patrón que se considera que tienen una densidad mineral ósea (DMO) normal. Para los fines de la presente invención, la medición se determina mediante Absorciometría de Rayos X de Energía Dual (DEXA) y la DMO del paciente se compara con un patrón de la misma edad y sexo (puntuación Z). En la determinación de la osteopenia, las mediciones de la DMO pueden tomarse de uno o más huesos.

El término "cantidad terapéuticamente eficaz" hace referencia a la cantidad de un anticuerpo anti-Dkk-1 determinada para producir una respuesta terapéutica en un mamífero. Tales cantidades terapéuticamente eficaces son determinadas fácilmente por un experto normal en la técnica.

"Aminoácido" incluye su significado normal en la técnica. Los veinte aminoácidos origen natural y sus abreviaturas siguen el uso convencional. Véase *Immunology - A Sythesis*, 2ª Edición, (E. S. Golub y D. R. Gren, eds.), Sinauer Associates: Sunderland, MA (1991), incorporada a la presente memoria como referencia para cualquier fin. Los estereoisómeros (p. ej., D-aminoácidos) de los veinte aminoácidos convencionales, aminoácidos no naturales tales como aminoácidos α-,α-disustituidos, N-alquil-aminoácidos, y otros aminoácidos no convencionales también pueden ser componentes adecuados para los polipéptidos de la invención. Los ejemplos de los aminoácidos no convencionales incluyen: 4-hidroxiprolina, γ-carboxiglutamato, ε-N,N,N-trimetil-lisina, ε-N-acetil-lisina, O-fosfoserina, N-acetilserina, N-formilmetionina, 3-metilhistidina, 5-hidroxilisina, σ-N-metilarginina, y otros aminoácidos e iminoácidos similares (p. ej., 4-hidroxiprolina). En la notación de polipéptidos usada en la presente memoria, la dirección hacia la izquierda es la dirección amino terminal y la dirección hacia la derecha es la dirección carboxi terminal, de acuerdo con el uso y la convención normalizados.

II. Visión de conjunto

La presente invención proporciona composiciones novedosas que comprenden anticuerpos y sitios de unión a antígenos de inmunoglobulinas como se ha escrito anteriormente, que son específicos para Dkk-1 (p. ej., un polipéptido que consiste en los aminoácidos 32-266 del SEC ID NO: 2 o un polipéptido que consiste en los aminoácidos 32 a 272 del SEC ID NO: 4). Algunos de estos anticuerpos y fragmentos de anticuerpos pueden reaccionar de forma cruzada con Dkk-1 de varias fuentes de mamíferos, incluyendo Dkk-1 rata, ratón y humana. Algunos de los anticuerpos y fragmentos tienen una mayor afinidad por Dkk-1 de una especie que de otra (p. ej., algunos anticuerpos y fragmentos de tener mayor afinidad por Dkk-1 humana en comparación con Dkk-1 de rata o murina; otros anticuerpos tienen una mayor afinidad por Dkk-1 de rata o murina en comparación con Dkk-1 humana). La invención también proporciona anticuerpos neutralizadores novedosos, incluyendo anticuerpos quiméricos, humanizados, así como anticuerpos y fragmentos inmunológicamente funcionales de los mismos que se unen a un

epítopo conformacional de Dkk-1 humana. También se describen los ácidos nucleicos que codifican los anticuerpos y fragmentos, así como los métodos para la expresión de los anticuerpos usando estos ácidos nucleicos. En otro aspecto, la invención se refiere a moléculas (p. ej., fragmentos inmunológicamente funcionales y polipéptidos) que son capaces de mostrar las propiedades de unión inmunológicas de los sitios de unión al antígeno de los anticuerpos.

Los anticuerpos y fragmentos inmunológicamente funcionales que se describen en la presente memoria tienen una variedad de utilidades. Algunos de los anticuerpos y fragmentos, por ejemplo, son útiles en análisis de unión específica, purificación por afinidad de Dkk-1 o sus ligandos y en análisis de escrutinio para identificar otros antagonistas de la actividad de Dkk-1. Algunos de los anticuerpos se pueden utilizar para tratar diversas enfermedades que están asociadas con la actividad de Dkk-1. Algunos anticuerpos y fragmentos se pueden utilizar por lo tanto en una variedad de tratamientos relacionados con los huesos, tales como el aumento de la densidad mineral ósea, la síntesis de hueso nuevo, el tratamiento de la pérdida ósea sistémica (p. ej., erosiones óseas), la reparación del hueso, y tratamientos para diversas formas de artritis. Algunos anticuerpos también se pueden utilizar para aumentar la actividad de los osteoclastos e inducir la resorción ósea.

III. Anticuerpos y fragmentos inmunológicamente funcionales

Se proporciona una variedad de anticuerpos y fragmentos inmunológicamente funcionales de los mismos como se ha descrito anteriormente. Estos pueden contener un dominio de unión a antígeno (p. ej., anticuerpos de cadena sencilla, anticuerpos de dominio, immunoadherencias, y polipéptidos con una región de unión a antígeno) y se unen específicamente a un polipéptido Dkk-1 (p. ej., un polipéptido Dkk-1 humano, de rata y/o murino). Algunos de los agentes, por ejemplo, son útiles en la inhibición de la unión de Dkk-1 a LRP5 y/o LRP6, y por lo tanto se pueden utilizar para estimular una o más de las actividades asociadas con la señalización de Wnt.

A. Estructura de anticuerpos de origen natural

5

10

15

20

25

30

35

40

45

50

55

60

Algunos de los agentes de unión que se proporcionan tienen la estructura típicamente asociada con los anticuerpos de origen natural. Las unidades estructurales de estos anticuerpos comprenden típicamente uno o más tetrámeros, cada uno compuesto de dos pareados idénticos de cadenas polipeptídicas, aunque algunas especies de mamíferos también producen anticuerpos que tienen solamente una única cadena pesada. En un anticuerpo típico, cada par o pareado incluye una cadena "ligera" completa (en ciertas realizaciones, aproximadamente 25 kDa) y una cadena pesada" completa (en ciertas realizaciones, aproximadamente 50-70 kDa). Cada cadena de inmunoglobulina individual está compuesta de varios "dominios de inmunoglobulina", que consisten cada uno en aproximadamente 90 a 110 aminoácidos y que expresan un patrón de plegamiento característico. Estos dominios son las unidades básicas de las que están compuestos los polipéptidos anticuerpo. La porción amino-terminal de cada cadena incluye típicamente un dominio variable que es responsable del reconocimiento del antígeno. La porción carboxi-terminal está más conservada evolutivamente que el otro extremo de la cadena y es referida como "región constante" o "región C". Las cadenas ligeras humanas se clasifican generalmente como cadenas ligeras kappa y lambda, y cada una de ellas contiene un dominio variable y un dominio constante. Las cadenas pesadas se clasifican típicamente como cadenas mu, delta, gamma, alfa, o épsilon, y éstas definen el isotipo del anticuerpo como IgM, IgD, IgG, IgA, e IgE, respectivamente. La IgG tiene varios subtipos, incluyendo, pero sin limitarse a, IgG₁, IgG₂, IgG₃, e IgG₄. Los subtipos de IgM incluyen IgM₁ e IgM₂. Los subtipos de IgA incluyen IgA₁ e IgA₂. En los seres humanos, los isotipos IgA e IgD contienen cuatro cadenas pesadas y cuatro cadenas ligeras; los isotipos IgG e IgE contiene dos cadenas pesadas y dos cadenas ligeras, y el isotipo IgM contiene cinco cadenas pesadas y cinco cadenas ligeras. La región C de la cadena pesada comprende típicamente uno o más dominios que pueden ser responsables de la función efectora. El número de dominios de la región constante de la cadena pesada dependerá del isotipo. Las cadenas pesadas de IqG, por ejemplo, contienen cada una tres dominios de la región C conocidos como C_H1, C_H2 y C_H3. Los anticuerpos que se proporcionan pueden tener cualquiera de estos isotipos y subtipos. En ciertas realizaciones de la invención, el anticuerpo anti-Dkk-1 es del subtipo a IgG1, IgG2 o IgG4.

En las cadenas ligeras y pesadas completas, las regiones variables y constantes están unidas por una región "J" de aproximadamente 12 o más aminoácidos, incluyendo también la cadena pesada una región "D" de aproximadamente 10 aminoácidos más. Véase, p. ej., *Fundamental Immunology*, 2ª ed., Cap. 7 (Paul, W., ed.) 1989, Nueva York: Raven Press (incorporada a la presente memoria como referencia en su totalidad para todos los propósitos). Las regiones variables de cada par de cadena ligera/pesada forman típicamente el sitio de unión al antígeno.

Las regiones variables de las cadenas de inmunoglobulinas exhiben generalmente la misma estructura general, que comprende regiones marco relativamente conservadas (FR) unidas por tres regiones hipervariables, más a menudo denominadas "regiones determinantes de la complementariedad" o CDR. Las CDR de las dos cadenas de cada par de cadena pesada /cadena ligera mencionado anteriormente están alineadas típicamente por las regiones marco para formar una estructura que se une específicamente a un epítopo específico de la proteína diana (por ejemplo, Dkk-1). Desde el extremo N-terminal al C-terminal, las regiones variables de las cadenas ligeras y pesadas de origen natural conforman ambas típicamente el siguiente orden de estos elementos: FR1, CDR1, FR2, CDR2, FR3, CDR3 y FR4. Se ha ideado un sistema de numeración para asignar números a los aminoácidos que ocupan las posiciones en cada uno de estos dominios. Este sistema de numeración se define en *Kabat Sequences of Proteins of*

Immunological Interest (1987 y 1991, National Institutes of Health, Bethesda, Md), o Chothia y Lesk, 1987, J. Mol. Biol. 196: 901-917; Chothia et al, 1989, Nature 342: 878-883.

Los ejemplos específicos de algunas de las cadenas ligeras y pesadas completas de los anticuerpos que se proporcionan y sus correspondientes secuencias de nucleótidos y aminoácidos se resumen en la Tabla 1.

Tabla 1: Cadenas ligera y pesada

Designación Interna	Nombre Abrev.	Tipo de Cadena	Secuencia de NT (SEC ID NO :)	Secuencia de AA (SEC ID NO :)
11H10	L1	Ligera	81	82
11H10 CR	L2	Ligera	25	26
11H10 A1D	L3	Ligera	29	30
11H10	H1	Pesada	88	89
11H10 RT lgG1	H2	Pesada	33	34
11H10 ATT IgG1	НЗ	Pesada	37	38
11H10 RT lgG2	H4	Pesada	41	42
11H10 LT IgG2	H5	Pesada	45	46
11H10 SKLT IgG2	H6	Pesada	49	50
11H10 D3A IgG2	H7	Pesada	53	54
11H10 D23A lgG2	H8	Pesada	57	58
11H10 D32A lgG2	H9	Pesada	61	62
11H10 D89A IgG2	H10	Pesada	65	66

Cada una de las cadenas ligeras enumeradas en la Tabla 1 se puede combinar con cualquiera de las cadenas pesadas que se muestran en la Tabla 1 para formar un anticuerpo. Los ejemplos de tales combinaciones incluyen L1 combinada con H1-H10 o L2 combinada con H1-H10 y L3 combinada con H1-H10 (es decir, L1H1, L1H2, L1H3, L1H4, L1H5, L1H6, L1H7, L1H8, L1H9, L1H10, L2H1 , L2H2, L2H3, L2H4, L2H5, L2H6, L2H7, L2H8, L2H9, L2H10, L3H1, L3H2, L3H3, L3H4, L3H5, L3H6, L3H7, L3H8, L3H9 y L3H10. En algunos casos, los anticuerpos incluyen al menos una cadena pesada y una cadena ligera de las enumeradas en la Tabla 1. En otros casos, los anticuerpos contienen dos cadenas ligeras idénticas y dos cadenas pesadas idénticas. Como ejemplo, un anticuerpo o fragmento inmunológicamente funcional puede incluir dos cadenas ligeras L1 y dos cadenas pesadas H1, o dos cadenas ligeras L2 y dos cadenas pesadas H4 o dos L2 y dos cadenas pesadas H5 y otras combinaciones similares de pares de cadenas ligeras y pares de cadenas pesadas enumeradas en la Tabla 1.

Como ejemplo específico de tales anticuerpos, en una realización, el anticuerpo anti-Dkk-1 es un anticuerpo monoclonal derivado de ratas. Los anticuerpos ilustrativos capaces de unirse al epítopo conformacional anteriormente mencionado son los anticuerpos monoclonales 11H10 y 1F11 (véanse, los ejemplos de más abajo), cada uno de los cuales comprende una cadena ligera y una cadena pesada. La cadena ligera completa de 11H10 está codificada por la secuencia de nucleótidos mostrada en el SEC ID NO: 9, y la cadena pesada completa de 11H10 por la secuencia de nucleótidos mostrada en el SEC ID NO: 11. La secuencias de aminoácidos de la cadena ligera y pesada correspondientes de 11H10 se muestran, respectivamente, en los SEC ID NO: 10 y 12. Los residuos 1-20 del SEC ID NO: 10 y los residuos 1-19 del SEC ID NO: 12 corresponden a las secuencias señal de estas cadenas ligera y pesada de 11H10, respectivamente. La secuencia de aminoácidos de la cadena ligera sin la secuencia señal se muestra en el SEC ID NO: 82, la secuencia de aminoácidos de la cadena pesada que carece de la secuencia señal se muestra en el SEC ID NO: 89.

De este modo, en un aspecto de la realización anterior, la cadena pesada puede consistir en los aminoácidos 20-465 del SEC ID NO: 12 (es decir, H1, correspondiente al SEC ID NO: 89), y en otro aspecto de esta realización, la cadena ligera puede consistir de los aminoácidos 21-234 del SEC ID NO: 10 (es decir, L1, correspondiente al SEC ID NO: 82). En otro aspecto de esta realización, el anticuerpo comprende tanto una cadena pesada que consiste en los aminoácidos 20-465 del SEC ID NO: 12 como una cadena ligera consiste en los aminoácidos 21-234 del SEC ID

11

5

15

10

20

25

30

NO: 10. En algunos casos, el anticuerpo consiste en dos cadenas pesadas idénticas que consisten cada una en los aminoácidos 20-465 del SEC ID NO: 12 y dos cadenas ligeras idénticas que consisten cada una en los aminoácidos 21-234 del SEC ID NO: 10. Otro ejemplo específico es un anticuerpo que incluye la cadena ligera L2 (SEC ID NO: 26) y la cadena pesada H2 (SEC ID NO: 34). Las secuencias codificantes para estas cadenas ligera y pesada se presentan, respectivamente, en los SEC ID NO: 25 y 33. Estos anticuerpos pueden incluir dos cadenas pesadas y ligeras idénticas. Las otras cadenas pesadas y cadenas ligeras enumeradas en la Tabla 1 se pueden combinar de una manera similar.

Otros anticuerpos que se proporcionan son variantes de anticuerpos formados por la combinación de las cadenas pesadas y ligeras que se muestran en la Tabla 1 y comprenden cadenas ligeras y/o pesadas que tienen cada una identidad de al menos 80%, 85%, 90%, 95%, 97% o 99% con las secuencias de aminoácidos de estas cadenas. En algunos casos, tales anticuerpos incluyen al menos una cadena pesada y una cadena ligera, mientras que en otros casos tales formas variantes contienen dos cadenas ligeras idénticas y dos cadenas pesadas idénticas.

B. Dominios variables de anticuerpos

5

10

20

25

30

También se proporcionan anticuerpos que comprenden una región variable de la cadena ligera seleccionada del grupo que consiste en VL1, VL2, VL3 y/o una región variable de la cadena pesada seleccionada del grupo que consiste en VH1-VH10 como se muestra en la Tabla 2 a continuación, y fragmentos, derivados, muteínas y variantes inmunológicamente funcionales de estas regiones variables de la cadenas ligera y la cadena pesada.

Los anticuerpos de este tipo se pueden designar generalmente por la fórmula "VLxVHy", donde "x" es el número de la región variable de la cadena ligera e "y" corresponde al número de la región variable de la cadena pesada que se enumera en la Tabla 2. En general, x e y son cada uno 1 o 2.

Designación interna	Nombre Abrev.	Tipo de Cadena	Secuencia de NT (SEC ID NO :)	Secuencia de AA (SEC ID NO :)
11H10	VL1	Ligera	83	84
11H10 CR	VL2	Ligera	27	28
11H10 A1D	VL3	Ligera	31	32
11H10	VH1	Pesada	90	91
11H10 RT lgG1	VH2	Pesada	35	36
11H10 ATT IgG1	VH3	Pesada	39	40
11H10 RT lgG2	VH4	Pesada	43	44
11H10 LT IgG2	VH5	Pesada	47	48
11H10 SKLT IgG2	VH6	Pesada	51	52
11H10 D3A IgG2	VH7	Pesada	55	56
11H10 D23A IgG2	VH8	Pesada	59	60
11H10 D32A lgG2	VH9	Pesada	63	64
11H10 D89A lgG2	VH10	Pesada	67	68

Tabla 2: regiones variables

De este modo, VL2VH1 hace referencia a un anticuerpo con un dominio de la región variable de la cadena ligera que comprende la secuencia de aminoácidos de VL2 y una región variable de la cadena pesada que comprende la secuencia de aminoácidos de VH1. Los anticuerpos que se proporcionan por tanto, incluyen, pero no se limitan a, aquellos que tienen la siguiente forma: VL1VH1, VL1VH2, VL1VH3, VL1VH4, VL1VH5, VL1VH6, VL1VH7, VL1VH7, VL1VH8, VL1VH9, VL1VH10, VL2VH1, VL2VH2, VL2VH3, VL2VH4, VL2VH5, VL2VH6, VL2VH7, VL2VH8, VL2VH9, VL2VH10, VL3VH1, VL3VH2, VL3VH3, VL3VH4, VL3VH6, VL3VH7, VL3VH8, VL3VH9, y VL3VH10. En algunos casos, los anticuerpos anteriores incluyen dos dominios de la región variable de la cadena ligera y dos dominios de la región variable de la cadena pesada (por ejemplo, VL12VH12 etc.).

Como ejemplo específico de tales anticuerpos, ciertos anticuerpos o fragmentos inmunológicamente funcionales de los mismos comprenden la región variable de la cadena ligera o la región variable de la cadena pesada de 11H10,

en donde la región variable de la cadena ligera consiste en los aminoácidos 21-127 del SEC ID NO: 10 (es decir, VL1, correspondiente al SEC ID NO: 84) y la región variable de la cadena pesada consiste en los aminoácidos 20-139 del SEC ID NO: 12 (es decir, VH1, correspondiente al SEC ID NO: 91). En un aspecto de esta realización, el anticuerpo consiste en dos cadenas pesadas idénticas y dos cadenas ligeras idénticas.

También se proporciona, por ejemplo, un anticuerpo que comprende una región variable de la cadena ligera que consiste en los aminoácidos 21-127 de la SEC ID NO: 10 o un fragmento unión al antígeno o uno inmunológicamente funcional del mismo que comprende adicionalmente una región variable de la cadena pesada que consiste en los aminoácidos 20-139 del SEC ID NO: 12.

Ciertos anticuerpos comprenden un dominio variable de la cadena ligera que comprende una secuencia de aminoácidos que difiere de la secuencia de un dominio variable de la cadena ligera seleccionada entre L1, L2 o L3 en solo 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 o 15 residuos de aminoácidos, en donde cada una de tales diferencias de secuencia es independientemente una deleción, una inserción o una sustitución de un aminoácido. La región variable de la cadena ligera en algunos anticuerpos comprende una secuencia de aminoácidos que tiene una identidad de secuencia de al menos 80%, 85%, 90%, 95%, 97% o 99% con las secuencias de aminoácidos de la región variable de la cadena ligera de VL1, VL2 o VL3.

Algunos anticuerpos que se proporcionan comprenden un dominio variable de la cadena pesada que comprende una secuencia de aminoácidos que difiere de la secuencia del dominio variable de la cadena pesada seleccionada entre H1-H10 en sólo 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 o 15 residuos de aminoácidos, en donde cada una de tales diferencias de secuencia es independientemente una deleción, una inserción o una sustitución de un aminoácido. La región variable de la cadena pesada en algunos anticuerpos comprende una secuencia de aminoácidos que tiene una identidad de secuencia de al menos 80%, 85%, 90%, 95%, 97% o 99% con las secuencias de aminoácidos de la región variable de la cadena pesada de VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9; VH10. Sin embargo, otros anticuerpos o fragmentos inmunológicamente funcionales incluyen formas variantes de una cadena ligera variante y una cadena pesada variante como se acaba de describir.

25 C. CDR de anticuerpos

20

30

35

Las regiones determinantes de la complementariedad (CDR) y las regiones marco (FR) de un anticuerpo dado se pueden identificar usando el sistema descrito por Kabat et al. en SECuences of Proteins of Immunological Interest, 5ª ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication Núm. 91-3242, 1991. Ciertos anticuerpos que se describen en la presente memoria comprenden una o más secuencias de aminoácidos que son idénticas o tienen una identidad de secuencia sustancial con las secuencias de aminoácidos de una o más de las CDR como se resume en la Tabla 3.

Tabla 3: CDR

Cadena	CDR	Secuencia de NT (SEC ID NO:)	Secuencia de AA
Cadena	CDR	Secuencia de NT (SEC ID NO.)	Secuencia de AA
Ligera	CDR1	69 o 85	LASEDIYSDLA
			(SEC ID NO: 70)
Ligera	CDR2	71 o 86	NANSLQN
			(SEC ID NO: 72)
Ligera	CDR3	73 o 87	QQYNNYPPT
			(SEC ID NO: 74)
Pesada	CDR1	75 o 92	DYAMA
			(SEC ID NO: 76)
Pesada	CDR2	77 o 93	TIIYDGSSTYYRDSVKG
			(SEC ID NO: 78)
Pesada	CDR3	79 o 94	GLGIATDYFDY
			(SEC ID NO: 80)

Los anticuerpos y los fragmentos funcionales inmunológicos que se proporcionan pueden incluir uno, dos, tres, cuatro, cinco o las seis CDR enumeradas anteriormente. Algunos anticuerpos o fragmentos incluyen tanto la CDR3 de la cadena ligera como la CDR3 de la cadena pesada. Ciertos anticuerpos tienen formas variantes de las CDR enumeradas en la Tabla 3, teniendo una o más (es decir, 2, 3, 4, 5 o 6) de cada una de las CDR una identidad de secuencia de al menos 80%, 85%, 90% o 95% con una secuencia de CDR enumerada en la Tabla 3. Por ejemplo, el anticuerpo o fragmento puede incluir tanto una CDR3 de la cadena ligera y una CDR3 de la cadena pesada que

tienen cada una identidad de secuencia de al menos 80%, 85%, 90% o 95% con la secuencia de la CDR3 de la cadena ligera y la CDR3 de la cadena pesada, respectivamente, enumeradas en la Tabla 3. Las secuencias de CDR de algunos de los anticuerpos que se proporcionan también pueden diferir de las secuencias de CDR enumeradas en la Tabla 3 de manera que la secuencia de aminoácidos para cualquier CDR dada difiere de la secuencia enumerada en la Tabla 3 en no más de 1, 2, 3, 4 o 5 residuos de aminoácidos. Las diferencias de las secuencias enumeradas son por lo general sustituciones conservativas (véase más adelante).

Como ejemplo específico, los anticuerpos y fragmentos inmunológicamente funcionales que se proporcionan pueden comprender una o más de las siguientes secuencias de CDR de la cadena ligera de 11H10:

CDR1: aminoácidos 44-54 del SEC ID NO: 10, que también corresponde al SEC ID NO: 70 (codificado por los nucleótidos 130-162 del SEC ID NO: 9 (SEC ID NO: 85) o SEC ID NO: 69);

CDR2: aminoácidos 70-76 del SEC ID NO: 10, que también corresponde al SEC ID NO: 72 (codificado por los nucleótidos 208-228 del SEC ID NO: 9 (SEC ID NO: 86) o SEC ID NO: 71);

CDR3: los aminoácidos 109-117 de la SEC ID NO: 10, que también corresponde al SEC ID NO: 74 (codificado por los nucleótidos 325-351 del SEC ID NO: 9 (SEC ID NO: 87) o SEC ID NO: 73);

Los anticuerpos y fragmentos de inmunoglobulina inmunológicamente funcionales adicionales de la invención puede comprender una o más de las siguientes secuencias de CDR de la cadena pesada de 11H10:

CDR1: aminoácidos 50-54 del SEC ID NO: 12, que también corresponde al SEC ID NO: 76 (codificado por los nucleótidos 148-162 del SEC ID NO: 11 (SEC ID NO: 92) o SEC ID NO: 75);

CDR2: aminoácidos 69-85 del SEC ID NO: 12, que también corresponde al SEC ID NO: 78 (codificado por los nucleótidos 205-255 del SEC ID NO: 11 (SEC ID NO: 93) o SEC ID NO: 77);

CDR3: los aminoácidos 118-128 de la SEC ID NO: 12, que también corresponde al SEC ID NO: 80 (codificado por los nucleótidos 352-384 del SEC ID NO: 11 (SEC ID NO: 94) o el SEC ID NO: 79).

Los polipéptidos que comprenden una o más de las CDR de la cadena ligera o pesada se pueden producir mediante el uso de un vector adecuado para expresar los polipéptidos en una célula anfitriona adecuada como se describe con más detalle a continuación.

Las regiones variables de la cadena pesada y ligera y las CDR que se describen en la Tabla 2 y 3 se pueden utilizar para preparar cualquiera de los diferentes tipos de fragmentos inmunológicamente funcionales que se conocen en la técnica, incluyendo, pero no limitados a, anticuerpos de dominio, fragmentos Fab, fragmentos Fab', fragmentos F(ab')₂, fragmentos Fv, anticuerpos de cadena sencilla y scFv.

30 D. Anticuerpos y epítopos de unión

10

20

25

35

40

45

50

55

Cuando se dice que un anticuerpo se une a un epítopo en de los residuos especificados, tal como Dkk-1, por ejemplo, lo que se quiere decir es que el anticuerpo se une específicamente a un polipéptido que consiste en los residuos especificados (p. ej., un segmento especificado de Dkk-1). Tal anticuerpo no entra necesariamente en contacto con cada residuo en de Dkk-1. Ni cada sustitución o deleción de un único aminoácido en Dkk-1 afectan necesariamente de manera significativa a la afinidad de unión. La especificidad de epítopo de un anticuerpo se puede determinar de diferentes maneras. Un enfoque, por ejemplo, implica someter a ensayo una colección de péptidos solapantes de aproximadamente 15 aminoácidos que abarcan la secuencia de Dkk-1 y que difiere en incrementos de un pequeño número de aminoácidos (p. ej., 3 aminoácidos). Los péptidos se inmovilizan en los pocillos de una placa de microtitulación. La inmovilización se puede efectuar mediante biotinilación de un extremo de los péptidos. Opcionalmente, se pueden biotinilar diferentes muestras del mismo péptido en el extremo N y C e inmovilizarlas en pocillos separados con fines comparativos. Esto resulta útil para la identificación de anticuerpos específicos de los extremos. Opcionalmente, se pueden incluir péptidos adicionales que terminan en un aminoácido concreto de interés. Este enfoque es útil para la identificación de anticuerpos específicos del extremo para fragmentos internos de Dkk-1. Un anticuerpo o fragmento inmunológicamente funcional se escruta para determinar la unión específica a cada uno de los diversos péptidos. El epítopo se define como el que aparece con un segmento de aminoácidos que es común a todos los péptidos para los cuales el anticuerpo muestra una unión específica. Los detalles relativos a un enfoque específico para la definición de un epítopo se expone en el Ejemplo 6.

También se proporcionan anticuerpos y fragmentos funcionales de los mismos que se unen a un epítopo conformacional que se encuentra en la porción carboxi terminal de Dkk-1 (véase la Figura 1). El extremo carboxi de Dkk-1 contiene varios residuos de cisteína que forman un conjunto de enlaces disulfuro que crea varios bucles. La invención proporciona anticuerpos que se unen a dos de estos bucles, neutralizando así la capacidad de Dkk-1 para suprimir la actividad de Wnt. Los anticuerpos ilustrativos capaces de unirse al epítopo conformacional antes mencionado son los anticuerpos monoclonales 11H10 y 1F11, cada uno de los cuales comprende una cadena ligera y una cadena pesada. La cadena ligera completa de 11H10 está codificada por la secuencia de nucleótidos mostrada en el SEC ID NO: 9, y la cadena pesada completa de 11H10 por la secuencia de nucleótidos mostrada en

el SEC ID NO: 11. Las secuencias de aminoácidos de la cadena ligera y pesada correspondientes de 11H10 (incluyendo las secuencias señal) se muestran, respectivamente, en los SEC ID NOS: 10 y 12. Las formas maduras sin las secuencias señal corresponden a los SEC ID NO: 82 y 89.

El epítopo que comprende estos dos bucles está formado por enlaces disulfuro entre los residuos de cisteína 220 y 237 del SEC ID NO: 2 y entre los residuos de cisteína 245 y 263 del SEC ID NO: 2. El cuerpo de los dos bucles que forman el epítopo incluye por lo tanto los aminoácidos 221-236 y 246-262 del SEC ID NO: 2. Los segmentos dentro de este bucle que están implicados en la unión incluyen los aminoácidos 221-229 del SEC ID NO: 2 y los aminoácidos 246-253 del SEC ID NO: 2. De este modo, ciertos anticuerpos y fragmentos que se proporcionan en la presente memoria se unen específicamente a la región o las regiones anteriores. Algunos de los anticuerpos y fragmentos, por ejemplo, se unen a un péptido que comprende o consiste en los aminoácidos 221 a 262 del SEC ID NO: 2

En un aspecto de la invención, se proporcionan péptidos que comprenden o consisten en los aminoácidos 221-229 y/o 246-253 del SEC ID NO: 2. Otros péptidos comprenden o consisten en los aminoácidos 221-236 y/o 246-262 del SEC ID NO: 2. Otros péptidos que se proporcionan comprenden o consisten en la región de los aminoácidos 221 a 262 del SEC ID NO: 2 o 221-253 del SEC ID NO: 2. Tales péptidos son más cortos que la secuencia de la proteína completa de una Dkk-1 nativa (p. ej., los péptidos pueden incluir una o más de las regiones anteriores y tener 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 40, 50, 75, 100, 150, o 200 aminoácidos de longitud). Estos péptidos pueden fusionarse con otro péptido para aumentar la inmunogenicidad y así estar en forma de una proteína de fusión.

20 E. Anticuerpos competidores

5

10

15

25

30

35

40

45

También se proporcionan anticuerpos y fragmentos inmunológicamente funcionales de los mismos que compiten con uno de los anticuerpos o fragmentos funcionales ilustrados por la unión específica a Dkk-1. Tales anticuerpos y fragmentos también pueden unirse al mismo epítopo que uno de los anticuerpos ilustrados. Se espera que los anticuerpos y los fragmentos que compiten con o se unen al mismo epítopo que el anticuerpo o fragmento ilustrado muestren propiedades funcionales similares. Los anticuerpos y fragmentos ilustrados incluyen los descritos anteriormente, incluyendo aquellos con las cadenas pesada y ligera, los dominios de las región variable y las CDR enumerados en las Tablas 1-3. Los anticuerpos o fragmentos inmunológicamente funcionales competidores pueden incluir aquellos que se unen al epítopo descrito en la sección sobre anticuerpos y epítopos de más arriba.

Como ejemplo específico, algunos anticuerpos o fragmentos competidores incluyen aquellos que se unen específicamente a una proteína Dkk-1 que consiste en los aminoácidos 32 a 266 del SEC ID NO: 2 o los aminoácidos 32 a 272 del SEC ID NO: 4 y pueden evitar o reducir la unión a Dkk-1 humana de un anticuerpo que consiste en dos cadenas pesadas idénticas y dos cadenas ligeras idénticas, en donde dichas cadenas pesadas consisten en los aminoácidos 20-465 del SEC ID NO: 12 y dichas cadenas ligeras consisten en los aminoácidos 21-234 del SEC ID NO: 10. Otros anticuerpos competidores evitan o reducen la unión a Dkk-1 humana de un anticuerpo que consiste en dos cadenas pesadas idénticas y dos cadenas ligeras idénticas, tales como las enumeradas en la Tabla 1.

F. Anticuerpos monoclonales

Los anticuerpos que se proporcionan incluyen anticuerpos monoclonales que se unen a Dkk-1. Los anticuerpos monoclonales se pueden producir usando cualquier mecanismo conocido en la técnica, p. ej., inmortalizando las células de bazo recogidas de animales transgénicos después de la finalización del programa de inmunización. Las células del bazo se pueden inmortalizar usando cualquier mecanismo conocido en la técnica, p. ej., fusionándolas con células de mieloma para producir hibridomas. Las células de mieloma para su uso en los procedimientos de fusión para producir hibridomas son preferiblemente no productoras de anticuerpos, tienen alta eficacia de fusión, y deficiencias enzimáticas que las hacen incapaces de crecer en ciertos medios selectivos que soportan el crecimiento solamente de las células fusionadas deseadas (hibridomas). Los ejemplos de líneas celulares adecuadas para uso en fusiones de ratón incluyen SP-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, SP210-GA14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 y S194/5XX0 Bul; los ejemplos de las líneas celulares utilizadas en las fusiones de rata incluyen R210.RCY3, Y3-Ag 1.2.3, IR983F y 4B210. Otras líneas celulares útiles para las fusiones celulares son U-266, GM1500-GRG2, LICR-LON-HMy2 y UC729-6.

En algunos casos, se produce una línea celular de hibridoma inmunizando un animal con un inmunógeno Dkk-1; cosechando las células de bazo del animal inmunizado; fusionando las células de bazo cosechadas con una línea celular de mieloma, generando así células de hibridoma; establecimiento las líneas celulares de hibridoma a partir de las células de hibridoma, e identificando una línea celular de hibridoma que produce un anticuerpo que se une a un polipéptido Dkk-1. Tales líneas celulares de hibridoma, y anticuerpos monoclonales anti-Dkk-1 producidos por las mismas, están abarcados por la presente invención.

Los anticuerpos monoclonales secretados por una línea celular de hibridoma se pueden purificar utilizando cualquier mecanismo conocido en la técnica. Los hibridomas o mAb se pueden escrutar adicionalmente para identificar mAb

con propiedades concretas, tales como la capacidad de bloquear una actividad inducida por Wnt. Los ejemplos de tales escrutinios se proporcionan en los ejemplos siguientes.

G. Anticuerpos quiméricos y humanizados

10

15

20

25

30

50

55

También se proporcionan anticuerpos quiméricos y humanizados basados en las secuencias anteriores. Los anticuerpos monoclonales para su uso como agentes terapéuticos pueden ser modificados de diversas maneras antes de su uso. Un ejemplo es un anticuerpo "quimérico", que es un anticuerpo compuesto de segmentos de proteínas de diferentes anticuerpos que se unen covalentemente para producir cadenas ligeras o pesadas de inmunoglobulinas funcionales o porciones inmunológicamente funcionales de las mismas. En general, una porción de la cadena pesada y/o de la cadena ligera es idéntica u homóloga a una secuencia correspondiente en los anticuerpos derivados de una especie concreta o pertenecientes a una clase o subclase de anticuerpo concreto, mientras que el resto de la cadena o de las cadenas es o son idénticas u homólogas a una secuencia correspondiente en los anticuerpos derivados de otra especie o pertenecientes a otra clase o subclase de anticuerpos. Para los métodos referentes a los anticuerpos quiméricos, véanse, por ejemplo, la Patente de los Estados Unidos Núm. 4.816.567; y Morrison et al., Proc. Natl. Acad. Sci. USA. 81:6851-6855 (1985), que se incorporan a la presente como referencia. El injerto de CDR se describe, por ejemplo, en las Patentes de los Estados Unidos Núms. 6.180.370, 5.693.762, 5.693.761, 5.585.089, y 5.530.101, que se incorporan todas a la presente como referencia para todos los propósitos.

En general, el objetivo de elaborar un anticuerpo quimérico es crear una quimera en la que se maximiza el número de aminoácidos de la especie del paciente pretendido. Un ejemplo es el anticuerpo "injertado con CDR", en el que el anticuerpo comprende una o más regiones determinantes de complementariedad (CDR) de una especie concreta o perteneciente a una clase o subclase de anticuerpos concretas, mientras que el resto de la cadena o de las cadenas de anticuerpo es o son idénticas u homólogas a una secuencia correspondiente en los anticuerpos derivados de otras especies o pertenecientes a otra clase o subclase de anticuerpos. Para su uso en los seres humanos, a menudo se injertan la región V o CDR seleccionadas de un anticuerpo de roedor en un anticuerpo humano, remplazando las regiones V o CDR de origen natural del anticuerpo humano.

Un tipo útil de anticuerpo quimérico es un anticuerpo "humanizado". Generalmente, un anticuerpo humanizado se produce a partir de un anticuerpo monoclonal producido inicialmente en un animal no humano. Ciertos residuos de aminoácidos en este anticuerpo monoclonal, típicamente en las porciones del anticuerpo que no son de reconocimiento de antígeno, se modifican para que sean homólogos a los residuos correspondientes en un anticuerpo humano del isotipo correspondiente. La humanización se puede realizar, por ejemplo, utilizando diversos métodos mediante la sustitución de al menos una parte de una región variable de roedor por las regiones correspondientes de un anticuerpo humano (véanse, por ejemplo, las Patentes de los Estados Unidos Núms. 5.585.089, y 5.693.762; Jones y col., 1986, *Nature* 321:522-25; Riechmann et al., 1988, *Nature* 332:323-27; Verhoeyen et al., 1988, *Science* 239:1534-36).

35 En un aspecto de la invención, las CDR de las regiones variables de la cadena ligera y pesada de los anticuerpos proporcionados en la presente memoria (véase la Tabla 3) se injertan en las regiones marco (FR) de anticuerpos de la misma especie filogenética, o de una diferente. Por ejemplo, las CDR de las regiones variables de las cadenas ligeras y pesadas del anticuerpo 11H10 se pueden injertar en FR humanas consenso. Para crear FR humanas consenso, se pueden alinear las FR de varias secuencias de aminoácidos de cadenas pesadas o cadenas ligeras 40 humanas para identificar una secuencia de aminoácidos consenso. En otras realizaciones, las FR de la cadena pesada o la cadena ligera del anticuerpo 11H10 se remplazan por las FR de una cadena pesada o una cadena ligera diferentes. En un aspecto de la invención, los aminoácidos raros de las FR de las cadenas pesada y ligera del anticuerpo anti-Dkk-1 no se remplazan, mientras que el resto de los aminoácidos de la FR se remplazan. Un "aminoácido raro" es un aminoácido específico que se encuentra en una posición en la que este aminoácido 45 concreto no se encuentra generalmente en una FR. Alternativamente, las regiones variables injertadas del anticuerpo 11H10 se pueden utilizar con una región constante que es diferente de la región constante de 11H10. En otras realizaciones de la invención, las regiones variables injertadas forman parte de un anticuerpo Fv de cadena sencilla.

En ciertas realizaciones, se pueden utilizar regiones constantes de especies distintas a la humana junto con la región o las regiones variables humanas para producir anticuerpos híbridos.

H. Anticuerpos completamente humanos

Se proporcionan métodos para producir anticuerpos completamente humanos específicos para un antígeno dado sin exponer a los seres humanos al antígeno ("anticuerpos completamente humanos"). Uno de los medios para implementar la producción de anticuerpos completamente humanos es la "humanización" del sistema inmunitario humoral del ratón. La introducción de loci de inmunoglobulina humana (Ig) en ratones en los que se han inactivado genes de Ig endógenos es uno de los medios de producción de anticuerpos monoclonales completamente humanos (Mab) en ratón, un animal que puede ser inmunizado con cualquier antígeno deseable. Mediante el uso de anticuerpos completamente humanos se pueden minimizar las respuestas inmunogénicas y alérgicas que a veces

pueden ser causadas por la administración de Mab de ratón o derivatizados de ratón a seres humanos como agentes terapéuticos.

Se pueden producir anticuerpos completamente humanos mediante la inmunización de animales transgénicos (generalmente ratones) que son capaces de producir un repertorio de anticuerpos humanos en ausencia de producción de inmunoglobulinas endógenas. Los antígenos para este fin tienen típicamente seis o más aminoácidos contiguos, y se conjugan opcionalmente con un portador, tal como un hapteno. Véanse, por ejemplo, Jakobovits et al., 1993, Proc. Natl. Acad. Sci. USA 90:2551-2555; Jakobovits et al., 1993, Nature 362:255-258; y Bruggermann et al., 1993, Year in Immunol. 7:33. En un ejemplo de tal método, se producen animales transgénicos incapacitando los loci de inmunoglobulina de ratón endógenos que codifican las cadenas de inmunoglobulina pesada y ligera de ratón en el mismo, e insertando en el genoma de ratón grandes fragmentos de ADN del genoma humano que contienen loci que codifican las proteínas de las cadenas pesada y ligera humanas. Los animales parcialmente modificados, que tienen menos que el complemento completo de loci de inmunoglobulina humana, son cruzados a continuación para obtener un animal que tenga todas las modificaciones del sistema inmunitario deseadas. Cuando se administra un inmunógeno, estos animales transgénicos producen anticuerpos que son inmunoespecíficos para el inmunógeno, pero tienen secuencias de aminoácidos humanas en lugar de murinas, incluyendo las regiones variables. Para más detalles de tales métodos, véase, por ejemplo, los documentos WO 96/33735 y WO 94/02602, que se incorporan a la presente como referencia. Los métodos adicionales relativos a los ratones transgénicos para producir anticuerpos humanos se describen en las Patentes de los Estados Unidos Núms. 5.545.807; 6.713.610; 6.673.986; 6.162.963; 5.545.807; 6.300.129; 6.255.458; 5.877.397; 5.874.299 y 5.545.806; en las publicaciones PCT WO91/10741, WO90/04036, y en los documentos EP 546073B1 y EP 546073A1.

Los ratones transgénicos descritos anteriormente, referidos en la presente memoria como "ratones HuMab", contienen un minilocus del gen de inmunoglobulina humana que codifica secuencias de inmunoglobulina de cadena pesada humana (μ y γ) y ligera κ no reordenadas, junto con mutaciones dirigidas que inactivan los loci de la cadena μ y κ endógenos (Lonberg et al, 1994, Nature 368: 856-859). Por consiguiente, los ratones muestran una expresión reducida de la IgM o κ de ratón en respuesta a la inmunización, y los transgenes de cadena pesada y ligera humanas introducidos experimentan cambio de clase y una mutación somática para generar anticuerpos monoclonales IgG κ humanos de alta afinidad (Lonberg et al., más arriba; Lonberg y Huszar, 1995, Intern. Rev. Immunol, 13: 65-93; Harding y Lonberg, 1995, Ann. NY Acad. Sci. 764: 536-546). La preparación de ratones HuMab es descrita en detalle por Taylor et al, 1992, Nucleic Acids Research, 20: 6287-6295; Chen et al, 1993, International Immunology 5: 647-656; Tuaillon et al., 1994, J. Immunol. 152: 2912-2920; Lonberg et al, 1994, Nature 368: 856-859; Lonberg, 1994, Handbook of Exp. Pharmacology 113: 49-101; Taylor et al., , 1994, International Immunology 6: 579-591; Lonberg y Huszar, 1995, Intern. Rev. Immunol. 13: 65-93; Harding y Lonberg, 1995, Ann. NY Acad. Sci. 764: 536-546; Fishwild et al, 1996, Nature Biotechnology 14: 845-851. Véanse adicionalmente las Patentes de los Estados Unidos Núms. 5.545.806; 5.569.825; 5.625.126; 5.633.425; 5.789.650; 5.877.397; 5.661.016; 5.814.318; 5.874.299; y 5.770.429; así como la Patente de los Estados Unidos Núm. 5.545.807; las publicaciones internacionales números WO 93/1227; WO 92/22646; y WO 92/03918. Las tecnologías utilizadas para la producción de anticuerpos humanos en estos ratones transgénicos se describen también en el documento WO 98/24893, y Méndez et al, 1997, Nature Genetics 15: 146-156. Por ejemplo, se pueden utilizar las cepas de ratones transgénicos HCo7 y HCo12 para generar anticuerpos anti-Dkk-1 humanos.

40 Utilizando la tecnología de hibridomas, se pueden producir y seleccionados MAb humanos específicos de antígenos con la especificidad deseada a partir de los ratones transgénicos tales como los descritos anteriormente. Tales anticuerpos pueden clonarse y expresarse utilizando un vector y una célula anfitriona adecuados, o se pueden cosechar los anticuerpos a partir de células de hibridoma cultivadas.

Los anticuerpos completamente humanos también pueden obtenerse de genotecas de presentación en fagos (como describen Hoogenboom et al., 1991, *J. Mol. Biol.* 227:381; y Marks et al., 1991, *J. Mol. Biol.* 222:581). Las técnicas de presentación de fagos imitan la selección inmunitaria por medio de la presentación de repertorios de anticuerpos sobre la superficie de bacteriófagos filamentosos, y la posterior selección de fagos por medio de su unión a un antígeno de elección. Una de tales técnicas se describe en la Publicación PCT Núm. WO 99/10494, que describe el aislamiento de alta afinidad y anticuerpos agonísticos funcionales para receptores MPL y msk utilizando tal enfoque.

I. Anticuerpos biespecíficos o bifuncionales

Los anticuerpos que se proporcionan también incluyen anticuerpos biespecíficos y bifuncionales que incluyen una o más CDR o una o más regiones variables como se ha descrito anteriormente. Un anticuerpo biespecífico o bifuncional en algunos casos es un anticuerpo híbrido artificial que tiene dos pares de cadenas pesada/ligera diferentes y dos sitios de unión diferentes. Los anticuerpos biespecíficos pueden producirse mediante una variedad de métodos, incluyendo, pero no limitados a, fusión de hibridomas o unión de fragmentos Fab'. Véanse, p. ej., Songsivilai y Lachmann, 1990, Clin. Exp. Immunol. 79: 315-321; Kostelny et al., 1992, J. Immunol. 148: 1547-1553.

J. Otras formas diversas

10

15

20

25

30

35

50

55

Algunos de los anticuerpos o fragmentos inmunológicamente funcionales que se proporcionan son formas variantes de los anticuerpos y fragmentos descritos anteriormente (p. ej., los que tienen las secuencias enumeradas en las

Tablas 1-3). Por ejemplo, algunos de los anticuerpos o fragmentos son los que tienen una o más sustituciones de aminoácidos conservativas en una o más de las cadenas pesada o ligera, regiones variables o CDR enumeradas en las Tablas 1-3.

Los aminoácidos de origen natural pueden dividirse en clases basándose en propiedades comunes de las cadenas laterales:

1) hidrófobos: norleucina, Met, Ala, Val, Leu, Ile;

2) hidrófilos neutros: Cys, Ser, Thr, Asn, Gln;

3) ácidos: Asp, Glu;

5

15

30

45

4) alcalinos: His, Lys, Arg;

10 5) residuos que influyen en la orientación de la cadena: Gly, Pro; y

6) aromáticos: Trp, Tyr, Phe.

Las sustituciones de aminoácidos conservativas pueden implicar el intercambio de un miembro de una de estas clases por otro miembro de la misma clase. Las sustituciones de aminoácidos conservativas pueden abarcar residuos de aminoácidos de origen no natural, que se incorporan típicamente mediante síntesis química de péptidos en lugar de mediante síntesis en sistemas biológicos. Estos incluyen peptidomiméticos y otras formas de radicales de aminoácidos revertidas o invertidas.

Las sustituciones no conservativas pueden implicar el intercambio de un miembro de una de las clases anteriores por un miembro de otra clase. Tales residuos sustituidos pueden introducirse en regiones del anticuerpo que son homólogas a los anticuerpos humanos, o en regiones no homólogas de la molécula.

Al realizar tales cambios, de acuerdo con ciertas realizaciones, se puede considerar el índice hidropático de los aminoácidos. El perfil hidropático de una proteína se calcula mediante la asignación a cada aminoácido de un valor numérico ("índice de hidropatía") y a continuación promediando repetitivamente estos valores a lo largo de la cadena peptídica. A cada aminoácido se le ha asignado un índice hidropático basándose en sus características de hidrofobia y carga. Estos son: isoleucina (+4,5); valina (+4,2); leucina (+3,8); fenilalanina (+2,8); cisteína/cistina (+2,5); metionina (+1,9); alanina (+1,8); glicina (-0,4); treonina (-0,7); serina (-0,8); triptófano (-0,9); tirosina (-1,3); prolina (-1,6); histidina (-3,2); glutamato (-3,5); glutamina (-3,5); aspartato (-3,5), asparragina (-3,5), lisina (-3,9) y arginina (-4,5).

La importancia del perfil hidropático para conferir una función biológica interactiva a una proteína es comprendida en la técnica (véase, *por ejemplo*, Kyte et al., 1982, *J. Mol. Biol.* 157:105-131). Se sabe que ciertos aminoácidos pueden ser sustituidos por otros aminoácidos que tienen un índice o puntuación hidropática similar y todavía conservan una actividad biológica similar. Al realizar cambios basados en el índice hidropático, en ciertas realizaciones, se incluye la sustitución de aminoácidos cuyos índices hidropáticos están dentro de ± 2. En algunos aspectos de la invención, se incluyen aquellos que están dentro de ± 1, y en otros aspectos de la invención, se incluyen aquellos dentro de ± 0.5.

También se entiende en la técnica que la sustitución de aminoácidos similares se puede realizar eficazmente basándose en la hidrofilia, concretamente cuando la proteína o péptido biológicamente funcionales creados de ese modo está destinados al uso en realizaciones inmunológicas, como en el presente caso. En ciertas realizaciones, la mayor hidrofilia media local de una proteína, que se rige por la hidrofilia de sus aminoácidos adyacentes, se correlaciona con su inmunogenicidad y unión al antígeno o inmunogenicidad, es decir, con una propiedad biológica de la proteína.

Se han asignado los siguientes valores de hidrofilia a estos residuos de aminoácidos: arginina (+3,0); lisina (+3,0); aspartato $(+3,0\pm1)$; glutamato $(+3,0\pm1)$, serina (+0,3); asparragina (+0,2); glutamina (+0,2), glicina (0); treonina (-0,4); prolina $(-0,5\pm1)$; alanina (-0,5); histidina (-0,5); cisteína (-1,0); metionina (-1,3); valina (-1,5); leucina (-1,8); isoleucina (-1,8); tirosina (-2,3); fenilalanina (-2,5) y triptófano (-3,4). Al realizar cambios basados en valores de hidrofilia similares, en ciertas realizaciones, se incluye la sustitución de aminoácidos cuyos valores de hidrofilia están dentro de ± 2 , en otras realizaciones, se incluyen los que están dentro de ± 1 , y en otras realizaciones más, se incluyen aquellos dentro de $\pm 0,5$. En algunos casos, se puede, identificar también epítopos procedentes de secuencias de aminoácidos primarias basándose en la hidrofilia. Estas regiones son también conocidas como "regiones centrales epitópicas".

50 Las sustituciones de aminoácidos conservativas ilustrativas se exponen en la Tabla 4.

Tabla 4

Sustituciones de aminoácidos		
Residuos originales	Sustituciones ilustrativas	
Ala	Val, Leu, lle	
Arg	Lys, Gln, Asn	
Asn	Gln	
Ásp	Glu	
Cys	Ser, Ala	
Gln	Asn	
Glu	Ásp	
Gly	Pro, Ala	
His	Asn, Gln, Lys, Arg	
lle	Leu, Val, Met, Ala, Phe, Norleucina	
Leu	Norleucina, Ile, Val, Met, Ala, Phe	
Lys	Arg, Gln, Asn, ácido 1,4-diaminobutírico	
Met	Leu, Phe, Ile	
Phe	Leu, Val, Ile, Ala, Tyr	
Pro	Ala	
Ser	Thr, Ala, Cys	
Thr	Ser	
Trp	Tyr, Phe	
Tyr	Trp, Phe, Thr, Ser	
Val	lle, Met, Leu, Phe, Ala, Norleucina	

Un experto en la técnica será capaz de determinar las variantes de polipéptidos adecuadas como se expone en la presente memoria utilizando mecanismos bien conocidos. Un experto en la técnica puede identificar zonas adecuadas de la molécula que se pueden cambiar sin destruir la actividad eligiendo como blanco regiones que se cree que no son importantes para la actividad. El experto en la técnica también será capaz de identificar los residuos y porciones de las moléculas que están conservados entre polipéptidos similares. En realizaciones adicionales, incluso las zonas que pueden ser importantes para la actividad biológica o para la estructura pueden ser objeto de sustituciones de aminoácidos conservativas sin destruir la actividad biológica o sin afectar adversamente la estructura del polipéptido.

5

20

Adicionalmente, un experto en la técnica puede revisar los estudios de estructura-función que identifican residuos en polipéptidos similares que son importantes para la actividad o la estructura. A la vista de tal comparación, se puede pronosticar la importancia de los residuos de aminoácidos en una proteína que corresponden a residuos de aminoácidos importantes para la actividad o estructura en proteínas similares. Un experto en la técnica puede optar por sustituciones de aminoácidos químicamente similares para tales residuos de aminoácidos importantes pronosticados.

Un experto en la técnica también puede analizar la estructura tridimensional y la secuencia de aminoácidos en relación con esa estructura en polipéptidos similares. A la vista de tal información, un experto en la técnica puede pronosticar el alineamiento de los residuos de aminoácidos de un anticuerpo con respecto a su estructura tridimensional. Un experto en la técnica puede elegir no realizar cambios radicales a los residuos de aminoácidos que se pronostica que están en la superficie de la proteína, ya que tales residuos pueden estar involucrados en importantes interacciones con otras moléculas. Por otra parte, un experto en la técnica puede generar variantes de ensayo que contienen una única sustitución de aminoácido en cada residuo de aminoácido deseado. Estas variantes

se pueden escrutar a continuación utilizando análisis para determinar la actividad neutralizadora de Dkk-1, (véanse los ejemplos de más abajo) proporcionando de ese modo información referente a cuales los aminoácidos se pueden cambiar y cuales no se deben cambiar. En otras palabras, basándose en la información recopilada a partir de tales experimentos rutinarios, un experto en la técnica puede determinar fácilmente las posiciones de aminoácidos en las que se deben evitar sustituciones adicionales ya sea solas o combinadas con otras mutaciones.

Numerosas publicaciones científicas se han dedicado a la predicción de la estructura secundaria. *Véanse* Moult, 1996, *Curr. Op. in Biotech.* 7:422-427; Chou et al., 1974, *Biochemistry* 13:222-245; Chou et al., 1974, *Biochemistry* 113:211-222; Chou et al., 1978, *Adv. Enzymol. Relat. Areas Mol. Biol.* 47:45-148; Chou et al., 1979, Ann. Rev. Biochem. 47:251-276; y Chou et al., 1979, *Biophys. J.* 26:367-384. Por otra parte, están disponibles en la actualidad programas informáticos para ayudar a la predicción de la estructura secundaria. Un método de predicción de la estructura secundaria se basa en el modelado de homología. Por ejemplo, dos polipéptidos o proteínas que tienen una identidad de secuencia de más de 30%, o similitud mayor de 40% a menudo tienen topologías estructurales similares. El reciente crecimiento de las bases de datos estructurales de proteínas (PDB) ha proporcionado una mejor previsibilidad de la estructura secundaria, incluyendo el número potencial de plegamientos en la estructura de un polipéptido o proteína. *Véase* Holm et al., 1999, *Nucl. Acid. Res.* 27:244-247. Se ha sugerido (Brenner et al., 1997, *Curr. Op. Struct. Biol.* 7:369-376) que hay un número limitado de plegamientos en un polipéptido o proteína dados y que una vez que se han resuelto un número crítico de estructuras, la predicción estructural llegará a ser notablemente más precisa.

10

15

25

30

35

40

45

60

Los métodos adicionales de predicción de la estructura secundaria incluyen el "enhebrado" (Jones, 1997, *Curr. Opin. Struct. Biol.* 7:377-87; Sippl et al., 1996, *Structure* 4:15-19), "Análisis del perfil" (Bowie et al., 1991, *Science* 253:164-170; Gribskov et al., 1990, *Meth. Enzym.* 183:146-159; Gribskov et al., 1987, *Proc. Nat. Acad. Sci.* 84:4355-4358), y "conexión evolutiva" (*Véase* Holm, 1999, más arriba, y Brenner, 1997, más arriba).

En algunas realizaciones de la invención, se realizan sustituciones de aminoácidos que: (1) reducen la susceptibilidad a la proteolisis, (2) reducen la susceptibilidad a la oxidación, (3) alteran la afinidad de unión para formar complejos de proteínas, (4) alteran las afinidades de unión de ligando o antígeno, y/o (4) confieren otras propiedades fisicoquímicas o funcionales a estos polipéptidos o las modifican. Por ejemplo, se pueden realizar sustituciones de un solo o múltiples aminoácidos (en determinadas realizaciones, sustituciones de aminoácidos conservativas) en la secuencia de origen natural. Las sustituciones se pueden realizar en aquella porción del anticuerpo que se encuentra fuera del dominio o los dominios formando contactos intermoleculares). En tales realizaciones, se pueden utilizar sustituciones de aminoácidos conservativas que no cambian sustancialmente las características estructurales de la secuencia parental (p. ej., remplazo de uno o más aminoácidos que no desorganizan la estructura secundaria que caracteriza el anticuerpo parental o nativo). Los ejemplos de las estructuras secundarias y terciarias de polipéptidos reconocidas en la técnica se describen en *Proteins, Structures and Molecular Principles* (Creighton, ed.), 1984, W. H. Nueva York: Freeman and Company; *Introduction to Protein Structure* (Branden y Tooze, eds.), 1991, Nueva York: Garland Publishing; y Thornton et al, 1991, *Nature* 354: 105, que se incorporan a la presente memoria como referencia.

La invención también abarca variantes de glicosilación de los anticuerpos de la invención en las que se han alterado el número y/o tipo de sitios de glicosilación en comparación con las secuencias de aminoácidos del polipéptido original. En ciertas realizaciones, las variantes de proteínas de anticuerpos comprenden un número mayor o un menor de sitios de glicosilación ligado a N que el anticuerpo nativo. Un sitio de glicosilación ligado a N se caracteriza por la secuencia: Asn-X-Ser o Asn-X-Thr, en donde el residuo de aminoácido designado como X puede ser cualquier residuo de aminoácido excepto prolina. La sustitución de residuos de aminoácidos para crear esta secuencia proporciona un nuevo sitio potencial para la adición de una cadena de carbohidrato ligada a N. Alternativamente, las sustituciones que eliminan o alteran esta secuencia evitarán la adición de una cadena de carbohidrato ligada a N presente en el polipéptido nativo. Por ejemplo, la glicosilación puede reducirse mediante la supresión de una Asn o mediante la sustitución de la Asn por un aminoácido diferente. En otras realizaciones, se crean uno o más sitios ligados a N nuevos. Los anticuerpos tienen típicamente un sitio de glicosilación ligado a N en la región Fc. Por ejemplo, el anticuerpo 11H10 descrito en la presente memoria tiene un sitio de glicosilación ligado a N en el aminoácido 315 (SEC ID NO: 12).

Las variantes de anticuerpos preferidas adicionales incluyen variantes de cisteína en donde uno o más residuos de cisteína en la secuencia de aminoácidos parental o nativa son suprimidos o sustituidos por otro aminoácido (p. ej. serina). Las variantes de cisteína son útiles, entre otros cuando los anticuerpos deben ser replegados a una conformación biológicamente activa. Las variantes de cisteína pueden tener menos residuos de cisteína que el anticuerpo nativo, y típicamente tienen un número par para minimizar las interacciones que resultan de las cisteínas desemparejadas.

Las cadenas pesadas y ligeras, los dominios de las regiones variables y las CDR que se han descrito se pueden utilizar para preparar polipéptidos que contienen una región de unión a antígeno que se puede unir específicamente a un polipéptido Dkk-1. Por ejemplo, se pueden incorporar una o más de las CDR enumeradas en la Tabla 3 a una molécula (p. ej., un polipéptido) de forma covalente o no covalentemente para formar una inmunoadhesina. Una inmunoadhesina puede incorporar las CDR como parte de una cadena polipeptídica más grande, puede conectar covalentemente las CDR a otra cadena polipeptídica, o puede incorporar las CDR de forma no covalente. Las CDR

permiten que la inmunoadhesina se una específicamente a un antígeno concreto de interés (p. ej., un polipéptido Dkk-1 o epítopo del mismo).

5

10

15

20

25

30

35

40

45

50

55

También se proporcionan derivados de los anticuerpos y fragmentos inmunológicamente funcionales que se describen en la presente memoria. El anticuerpo o fragmento derivatizados pueden comprender cualquier molécula o sustancia que confiera una propiedad deseada al anticuerpo o fragmento, tal como un aumento de la vida media en un uso concreto. El anticuerpo derivatizado puede comprender, por ejemplo, un radical detectable (o de marcaje) (p. ej., una molécula radiactiva, colorimétrica, antigénica o enzimática, una cuenta detectable (tal como una cuenta magnética o electrodensa (p. ej., oro)), o una molécula que se une a otra molécula (p. ej., biotina o estreptavidina)), un radical terapéutico o de diagnóstico (p. ej., un radical radiactivo, citotóxico, o farmacéuticamente activo), o una molécula que aumenta la idoneidad del anticuerpo para un uso concreto (p. ej., la administración a un sujeto, tal como un sujeto humano, u otros usos in vivo o in vitro). Los ejemplos de las moléculas que se pueden utilizar para derivar un anticuerpo incluyen albúmina (p. ej., albúmina de suero humano) y polietilenglicol (PEG). Se pueden preparar derivados unidos a albúmina y PEGilados de anticuerpos utilizando mecanismos bien conocidos en la técnica. En una realización, el anticuerpo se conjuga o se une de otra manera a transtiretina (TTR) o una variante de TTR. La TTR o la variante de TTR se pueden modificar químicamente, por ejemplo, con un agente químico seleccionado del grupo que consiste en dextrano, poli (N-vinilpirrolidona), polietilenglicoles, homopolímeros de propropilenglicol, co-polímeros óxido de polipropileno/óxido de etileno, polioles polioxietilados y poli(alcoholes vinílicos).

Otros derivados incluyen productos conjugados covalentes o de agregación de anticuerpos anti-Dkk-1, o fragmentos de los mismos, con otras proteínas o polipéptidos, por ejemplo mediante la expresión de proteínas de fusión recombinantes que comprenden polipéptidos heterólogos fusionados al extremo N-terminal o C-terminal de un polipéptido de anticuerpo anti-Dkk-1. Por ejemplo, el péptido conjugado puede ser un polipéptido señal heterólogo (o líder), p. ej., el líder del factor alfa de levadura, o un péptido tal como un epítopo tag. Las proteínas de fusión que contienen anticuerpo anti-Dkk-1 pueden comprender péptidos añadidos para facilitar la purificación o identificación del anticuerpo anti-Dkk-1 (p. ej., Poli-His). Un polipéptido de anticuerpo anti-Dkk-1 también puede estar conectado al péptido FLAG como describen Hopp et al., *Bio/Technology* 6:1204, 1988, y Patente de los Estados Unidos Núm. 5.011.912. El péptido FLAG es altamente antigénico y proporciona un epítopo unido reversiblemente a un anticuerpo monoclonal (mAb) específico, permitiendo un análisis rápido y una fácil purificación de la proteína recombinante expresada. Los reactivos útiles para la preparación de proteínas de fusión en las que el péptido FLAG se fusiona a un polipéptido dado son asequibles comercialmente (Sigma, St. Louis, MO).

Los oligómeros que contienen uno o más polipéptidos de anticuerpo anti-Dkk-1 se pueden emplear como antagonistas de Dkk-1. Los oligómeros pueden estar en la forma de dímeros, trímeros, u oligómeros superiores unidos covalentemente o unidos no covalentemente. Se contempla el uso de oligómeros que comprenden dos o más polipéptidos de anticuerpos anti-Dkk-1, siendo un ejemplo un homodímero. Otros oligómeros incluyen heterodímeros, homotrímeros, heterotrimeros, homotetrámeros, heterotetrámeros, etcétera.

Una realización está dirigida a oligómeros que comprenden múltiples polipéptidos de anticuerpo anti-Dkk-1 ensamblados a través de interacciones covalentes o no covalentes entre radicales peptídicos fusionados a los polipéptidos de anticuerpos anti-Dkk-1. Tales péptidos pueden ser conectores peptídicos (espaciadores), o péptidos que tienen la propiedad de promover la oligomerización. Las cremalleras de leucina y ciertos polipéptidos derivados de anticuerpos se encuentran entre los péptidos que pueden promover la oligomerización de polipéptidos de anticuerpos anti-Dkk-1 anclados a los mismos, como se describe con más detalle a continuación.

En realizaciones concretas, los oligómeros pueden comprenden de dos a cuatro polipéptidos de anticuerpos anti-Dkk-1. Los radicales de anticuerpos anti-Dkk-1 del oligómero pueden estar en cualquiera de las formas descritas anteriormente, p. ej., variantes o fragmentos. Preferiblemente, los oligómeros comprenden polipéptidos de anticuerpos anti-Dkk-1 que tienen actividad de unión a Dkk-1.

En una realización, se prepara un oligómero utilizando polipéptidos derivados de inmunoglobulinas. La preparación de proteínas de fusión que comprenden ciertos polipéptidos heterólogos fusionados a diversas porciones de polipéptidos derivados de anticuerpos (incluyendo el dominio Fc) ha sido descrita, p. ej., por Ashkenazi et al., 1991, PNAS USA 88:10535; Byrn et al., 1990, Nature 344:677; y Hollenbaugh et al., 1992 "Construction of Immunoglobulin Fusion Proteins", en *Current Protocols in Immunology*, Suppl. 4, páginas 10.19.1 - 10/19/11.

Una realización de la presente invención está dirigida a un dímero que comprende dos proteínas de fusión creadas fusionando de un fragmento de unión a Dkk-1 de un anticuerpo anti-Dkk-1 a la región Fc de un anticuerpo. El dímero se puede elaborar, por ejemplo, insertando una fusión génica que codifica la proteína de fusión en un vector de expresión apropiado, expresando la fusión génica en células anfitrionas transformadas con el vector de expresión recombinante, y permitiendo que la proteína de fusión expresada se ensamble en forma de moléculas de anticuerpo, después de lo cual se forman enlaces disulfuro intercatenarios entre los radicales de Fc para proporcionar el dímero.

El término "polipéptido de Fc" según se utiliza en la presente memoria incluye las formas nativas y de muteína de polipéptidos derivados de la región Fc de un anticuerpo. También se incluyen las formas truncadas de tales polipéptidos que contienen la región bisagra que promueve la dimerización. Las proteínas de fusión que comprenden

radicales Fc (y los oligómeros formados a partir de los mismos) ofrecen la ventaja de una fácil purificación mediante cromatografía de afinidad sobre columnas de Proteína A o Proteína G.

Un polipéptido de Fc adecuado, descrito en la solicitud PCT WO 93/10151 y en las Patentes de los Estados Unidos Núms. 5.426.048 y 5.262.522 (cada una de los cuales se incorpora a la presente como referencia), es un polipéptido de cadena sencilla que se extiende desde la región bisagra N-terminal hasta el extremo C nativo de la región Fc de un anticuerpo IgG1 humano. Otro polipéptido de Fc útil es la muteína de Fc descrita en la Patente de los Estados Unidos Núm. 5.457.035 y en Baum et al., 1994, EMBO J. 13:3992-4001. La secuencia de aminoácidos de esta muteína es idéntica a la de la secuencia de Fc nativa presentada en el documento WO 93/10151, excepto que el aminoácido 19 ha sido cambiado de Leu a Ala, el aminoácido 20 ha sido cambiado de Leu a Glu, y el aminoácido 22 ha sido cambiado de Gly a Ala. La muteína exhibe una afinidad reducida por los receptores Fc.

En otras realizaciones, la porción variable de las cadenas pesada y/o ligera de un anticuerpo anti-Dkk-1 tal como se describe en la presente memoria puede ser sustituida por la porción variable de una cadena pesada y/o ligera de un anticuerpo.

Alternativamente, el oligómero es una proteína de fusión que comprende múltiples polipéptidos de anticuerpos anti-Dkk-1, con o sin conectores peptídicos (péptidos espaciadores). Entre los conectores peptídicos adecuados se encuentran los descritos en las Patentes de los Estados Unidos Núms. 4.751.180 y 4.935.233.

Otro método para la preparación de derivados de anticuerpos anti-Dkk-1 oligoméricos implica el uso de una cremallera de leucina. Los dominios de cremallera de leucina son péptidos que promueven la oligomerización de las proteínas en las cuales se encuentran. Las cremalleras de leucina se identificaron originalmente en varias proteínas de unión al ADN (Landschulz et al., 1988, Science 240:1759), y desde entonces se han encontrado en una variedad de proteínas diferentes. Entre las cremalleras de leucina conocidas se encuentran los péptidos de origen natural y los derivados de los mismos que se dimerizan o trimerizan. Los ejemplos de los dominios de cremallera de leucina adecuados para producir proteínas oligoméricas solubles se describen en la solicitud PCT WO 94/10308, y la cremallera de leucina derivada de la proteína D de tensioactivo pulmonar (SPD) descrita por Hoppe et al., 1994, FEBS Letters 344:191, incorporada a la presente como referencia. El uso de una cremallera de leucina modificada que permite la trimerización estable de una proteína heteróloga fusionada a la misma es descrita por Fanslow et al., 1994, Semin. Immunol. 6:267-78. En un enfoque, las proteínas de fusión recombinantes que comprenden un fragmento de anticuerpo anti-Dkk-1 o un derivado fusionado a un péptido de cremallera de leucina se expresan en células anfitrionas adecuadas, y los fragmentos de anticuerpos anti-Dkk-1 oligoméricos solubles o derivados que se forman se recuperan del sobrenadante de cultivo

Algunos anticuerpos que se proporcionan tienen una afinidad de unión (K_a) para Dkk-1 de al menos 10^4 o $10^5/M$ x segundo medida, por ejemplo, como se describe en los ejemplos de más abajo. Otros anticuerpos tienen una k_a de al menos 10^6 , 10^7 , 10^8 o $10^9/M$ x segundo. Ciertos anticuerpos que se proporcionan tienen una baja velocidad de disociación. Algunos anticuerpos, por ejemplo, tienen una K_{off} 1 x $10^{-4}s^{-1}$, 1 x $10^{-5}s^{-1}$ o inferior. En otra realización, la K_{off} es la misma que en un anticuerpo que tiene las siguientes combinaciones de dominios de la región variable VL1VH1, VL1VH2, VL1VH3, VL1VH4, VL1VH5, VL1VH6, VL1VH7, VL1VH8, VL1VH9, VL1VH10, VL2VH1, VL2VH2, VL2VH3, VL2VH4, VL2VH5, VL2VH6, VL2VH7, VL2VH8, VL2VH9, VL2VH10, VL3VH1, VL3VH2, VL3VH3, VL3VH4, VL3VH5, VL3VH6, VL3VH7, VL3VH9, VL3VH9, VL3VH10.

En otro aspecto, la presente invención proporciona un anticuerpo anti-Dkk-1, que tiene una vida media de al menos un día *in vitro* o *in vivo* (p. ej. cuando se administra a un sujeto humano). En una realización, el anticuerpo tiene una vida media de al menos tres días. En otra realización, el anticuerpo o porción del mismo tiene una vida media de cuatro días o más. En otra realización, el anticuerpo o porción del mismo tiene una vida media de ocho días o más. En otra realización, el anticuerpo o porción del mismo son derivatizados o modificados de tal manera que tienen una vida media más larga en comparación con el anticuerpo no derivatizado o no modificado. En otra realización, el anticuerpo contiene mutaciones puntuales para aumentar la vida media en suero, tal como se describe en el documento WO 00/09560, publicado el 24 de Febrero de 2000, incorporado como referencia.

IV. Ácidos nucleicos

5

10

20

25

30

35

50

55

También se proporcionan los ácidos nucleicos descritos anteriormente que codifican una o ambas cadenas de un anticuerpo de la invención, o un fragmento. Los ácidos nucleicos pueden ser de cadena sencilla o de cadena doble y pueden comprender nucleótidos de ARN y/o de ADN, y variantes artificiales de los mismos (p. ej., ácidos peptidonucleicos).

El ADN que codifica polipéptidos de anticuerpos (p. ej., cadena pesada o ligera, solamente dominio variable, o completo) se puede aislar de células B de ratones que han sido inmunizados con Dkk-1 o un fragmento inmunogénico del mismo. El ADN puede ser aislado mediante procedimientos convencionales tales como la reacción en cadena de la polimerasa (PCR). La presentación en fagos es otro ejemplo de una técnica conocida por medio de la cual se pueden preparar derivados de anticuerpos. En un enfoque, los polipéptidos que son componentes de un anticuerpo de interés se expresan en cualquier sistema de expresión recombinante adecuado, y se permite que los polipéptidos expresados se ensamblen para formar moléculas de anticuerpo.

Los ácidos nucleicos ilustrativos que codifican las cadenas ligera y pesada, las regiones variables y las CDR de los anticuerpos y fragmentos inmunológicamente funcionales que se proporcionan se enumeran en las Tablas 1-3 de más arriba. Debido a la degeneración del código genético, cada una de las secuencias de polipéptidos enumeradas en las Tablas 1-3 también está codificada por un gran número de otras secuencias de ácidos nucleicos, además de las enumeradas en las Tablas 1-3. La presente invención proporciona cada secuencia de nucleótidos degenerada que codifica cada anticuerpo de la invención.

Se pueden introducir cambios mediante mutación en un ácido nucleico, lo que conduce a cambios en la secuencia de aminoácidos del polipéptido (p. ej., un anticuerpo o derivado de anticuerpo de la invención) que codifica. Las mutaciones se pueden introducir utilizando cualquier mecanismo conocido en la técnica. En una realización, se cambian uno o más residuos de aminoácidos concretos utilizando, por ejemplo, un protocolo de mutagénesis dirigida al sitio. En otra realización, se cambian uno o más residuos seleccionados al azar utilizando, por ejemplo, un protocolo de mutagénesis al azar. No obstante, con independencia de cómo se elabore, un polipéptido mutante puede ser expresado y escrutado para determinar una propiedad deseada.

Se pueden introducir mutaciones en un ácido nucleico sin alterar significativamente la actividad biológica del polipéptido que codifica. Por ejemplo, se puede realizar sustituciones de nucleótidos que conducen a sustituciones de aminoácidos en residuos de aminoácidos no esenciales.

En otro aspecto, la presente invención proporciona vectores que comprenden un ácido nucleico que codifica un polipéptido de la invención o una porción del mismo (p. ej., un fragmento que contiene una o más CDR o uno o más dominios de la región variable). Los ejemplos de vectores incluyen, pero se limitan a, plásmidos, vectores virales, vectores de mamíferos no episómicos y vectores de expresión, por ejemplo, vectores de expresión recombinantes. Los vectores de expresión recombinantes de la invención pueden comprender un ácido nucleico de la invención en una forma adecuada para la expresión del ácido nucleico en una célula anfitriona. Los vectores de expresión recombinantes incluyen una o más secuencias reguladoras, seleccionadas basándose en las células anfitrionas que se van a utilizar para la expresión, que están conectadas operablemente a la secuencia de ácido nucleico que se va a expresar. Las secuencias reguladoras incluyen aquellas que dirigen la expresión constitutiva de una secuencia de nucleótidos en muchos tipos de células anfitrionas (p. ej., el intensificador del gen temprano de SV40, el promotor del virus del sarcoma de Rous y promotor de citomegalovirus), aquellas que dirigen la expresión de la secuencia de nucleótidos solo en ciertas células anfitrionas (p. ej., Secuencias reguladoras específicas de tejidos, véanse Voss et al., 1986, Trends Biochem Sci. 11:287, Maniatis y col., 1987, Science 236:1237, incorporadas como referencia en la presente memoria en su totalidad), y aquellas que dirigen la expresión inducible de una secuencia de nucleótidos en respuesta a un tratamiento o afección concretos (p. ej., el promotor de la metalotioneína en células de mamífero y el promotor sensible a tet y/o sensible a estreptomicina en sistemas tanto procarióticos como eucarióticos (véase id.). Los expertos en la técnica apreciarán que el diseño del vector de expresión puede depender de factores tales como la elección de la célula anfitriona que se va a transformar, el nivel de expresión de la proteína deseada, etc. Los vectores de expresión de la invención se pueden introducir en células anfitrionas para producir de este modo proteínas o péptidos, incluyendo proteínas o péptidos de fusión, codificados por los ácidos nucleicos descritos en la presente memoria.

En otro aspecto, la presente invención proporciona células anfitrionas en las que se ha introducido un vector de expresión recombinante de la invención. Una célula anfitriona puede ser cualquier célula procariótica (p. ej., *E. coli*) o células eucariótica (p. ej., células de levadura, insecto, o mamífero (p. ej., células CHO)). El ADN vector se puede introducir en células procarióticas o eucarióticas a través de técnicas de transformación o transfección convencionales. Para la transfección estable de células de mamífero, se sabe que, dependiendo del vector de expresión y la técnica de transfección utilizados, solo una pequeña fracción de células puede integrar el ADN foráneo en su genoma. Con el fin de identificar y seleccionar estos integrantes, se introduce generalmente un gen que codifica un marcador seleccionable (p. ej., para la resistencia a antibióticos) en las células anfitrionas junto con el gen de interés. Los marcadores seleccionables preferidos incluyen aquellos que confieren resistencia a fármacos, tales como G418, higromicina y metotrexato. Las células transfectadas de forma estable con el ácido nucleico introducido pueden identificarse mediante selección con fármacos (p. ej., las células que han incorporado el gen marcador seleccionable sobrevivirán, mientras que las otras células morirán), entre otros métodos.

V. Preparación de Anticuerpos

5

10

15

20

25

30

35

40

45

50

55

60

Los anticuerpos no humanos que se proporcionan pueden derivar, por ejemplo, de cualquier animal productor de anticuerpos, tal como ratón, rata, conejo, cabra, burro, o primate no humano (tal como mono (p. ej., cynomolgus o mono rhesus) o simios (p. ej., chimpancé)). Se pueden utilizar anticuerpos no humanos, por ejemplo, en las aplicaciones basadas en el cultivo in vitro de células y en cultivos celulares, o cualquier otra aplicación en la que no se produzca o sea insignificante, se pueda prevenir, no sea una preocupación, o se desee una respuesta inmunitaria al anticuerpo. En ciertas realizaciones de la invención, los anticuerpos se pueden producir mediante la inmunización con Dkk-1 completa o con la mitad carboxi-terminal de Dkk-1. Alternativamente, los anticuerpos no humanos mencionados se pueden originar mediante inmunización con los aminoácidos 221-236 y/o los aminoácidos 246 a 262 del SEC ID NO: 2, que son segmentos de Dkk-1 humana que forman parte del epítopo al cual se unen ciertos anticuerpos proporcionados en la presente memoria (p. ej., 11H10, véase la Figura 1). Los anticuerpos pueden ser

policionales, monocionales, o pueden ser sintetizados en células anfitrionas mediante la expresión de ADN recombinante.

Los anticuerpos completamente humanos se pueden preparar como se ha descrito anteriormente mediante la inmunización de animales transgénicos que contienen loci de inmunoglobulina humana o mediante la selección de una genoteca de presentación en fagos que está expresando un repertorio de anticuerpos humanos.

5

10

15

20

25

30

45

50

55

Los anticuerpos monoclonales (mAb) de la invención se pueden producir mediante una variedad de técnicas, incluyendo la metodología de anticuerpos monoclonales convencional, p. ej., la técnica de hibridación de células somáticas estándar de Kohler y Milstein, 1975, *Nature* 256: 495. Alternativamente, se pueden emplear otras técnicas para producir anticuerpos monoclonales, por ejemplo, la transformación viral u oncogénica de linfocitos B. Un sistema animal adecuado para la preparación de hibridomas es el sistema murino, que es un procedimiento muy bien establecido. Los protocolos de inmunización y los mecanismos para el aislamiento de esplenocitos inmunizados para la fusión son conocidos en la técnica. Para tales procedimientos, las células B de ratones inmunizados se fusionan con un compañero de fusión inmortalizado adecuado, tal como una línea celular de mieloma murino. Si se desea, se pueden inmunizar además ratas u otros mamíferos en lugar de ratones y se pueden fusionar células B procedentes de estos animales con la línea celular de mieloma murino para formar hibridomas. Alternativamente, se puede utilizar una línea celular de mieloma de una fuente que no sea de ratón. Los procedimientos de fusión para la elaboración de hibridomas también son bien conocidos.

Los anticuerpos de cadena sencilla que se proporcionan se pueden formar conectando fragmentos del dominio variable (región Fv) de la cadena pesada y ligera (véase, p. ej., la Tabla 2) a través de un puente de aminoácidos (conector peptídico corto), dando como resultado una única cadena polipeptídica. Tales Fv de cadena sencilla (scFv) se pueden preparar fusionando el ADN que codifica un conector peptídico entre los ADN que codifican los dos polipéptidos del dominio variable (V_L y V_H). Los polipéptidos resultantes se pueden volver a plegar sobre sí mismos para formar monómeros de unión al antígeno, o pueden formar multímeros (p. ej., dímeros, trímeros, o tetrámeros), en función de la longitud de un conector flexible entre los dos dominios variables (Kortt et al., 1997, Prot. Ing. 10:423: Kortt et al., 2001, Biomol. Eng. 18:95-108). Mediante la combinación de diferentes polipéptidos que comprenden V_L y V_H, se puede formar scFv multiméricos que se unen a diferentes epítopos (Kriangkum et al., 2001, Biomol. Eng. 18:31-40). Las técnicas desarrolladas para la producción de anticuerpos de cadena sencilla incluyen las descritas en la Patente de los Estados Unidos Núm. 4.946.778; Bird, 1988, Science 242:423; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879; Ward et al., 1989, Nature 334:544, de Graaf et al., 2002, Methods Mol Biol. 178:379-87. Los anticuerpos de cadena sencilla derivados de los anticuerpos proporcionados en la presente memoria incluyen, pero no se limitan a los scFv que comprenden las combinaciones de dominios variables: VL1VH1, VL1VH2, . VL1VH3, VL1VH4, VL1VH5, VL1VH6, VL1VH7, VL1VH8, VL1VH9, VL1VH10, VL2VH1, VL2VH2, VL2VH3, VL2VH4, VL2VH5, VL2VH6, VL2VH7, VL2VH8, VL2VH9, VL2VH10, VL3VH1, VL3VH2, VL3VH3, VL3VH4, VL3VH5, VL3VH6, VL3VH7, VL3VH8, VL3VH9, VL3VH10.

Los anticuerpos proporcionados en la presente memoria que son de una subclase se pueden cambiar a anticuerpos de una subclase diferente utilizando métodos de cambio de subclase. De este modo, los anticuerpos IgG pueden derivar de un anticuerpo IgM, por ejemplo, y *viceversa*. Tales técnicas permiten la preparación de nuevos anticuerpos que poseen las propiedades de unión a antígenos de un anticuerpo dado (el anticuerpo parental), pero también exhiben propiedades biológicas asociadas a un isotipo o subclase de anticuerpo diferentes de los del anticuerpo parental. Se pueden emplear técnicas de ADN recombinante. El ADN clonado que codifica polipéptidos de anticuerpo concretos se puede emplear en tales procedimientos, p. ej., el ADN que codifica el dominio constante de un anticuerpo del isotipo deseado. Véase, p. ej., Lantto et al., 2002, Methods Mol. Biol. 178:303-16.

Por consiguiente, los anticuerpos que se proporcionan incluyen los que comprenden, por ejemplo, las siguientes combinaciones de dominios variables: VL1VH1, VL1VH2, VL1VH3, VL1VH4, VL1VH5, VL1VH6, VL1VH7, VL1VH8, VL1VH9, VL1VH10, VL2VH1, VL2VH2, VL2VH3, VL2VH4, VL2VH5, VL2VH6, VL2VH7, VL2VH8, VL2VH9, VL2VH10, VL3VH1, VL3VH2, VL3VH3, VL3VH4, VL3VH5, VL3VH6, VL3VH7, VL3VH8, VL3VH9, VL3VH10 que tiene un isotipo deseado (p. ej., IgA, IgG1, IgG2, IgG3, IgG4, IgM, IgE, e IgD), así como fragmentos Fab o F(ab ')₂ de los mismos. Por otra parte, si se desea una IgG4, también puede ser deseable introducir una mutación puntual (CPSCP → CPPCP) en la región de bisagra como describen Bloom et al., 1997, Protein Science 6:407, que se incorpora a la presente memoria como referencia) para aliviar una tendencia a formar enlaces disulfuro entre las cadenas H que puede conducir a la heterogeneidad de los anticuerpos IgG4.

Por otra parte, también se conocen técnicas para obtener anticuerpos que tienen diferentes propiedades (esto es, afinidades variables para el antígeno al que se unen). Una de estas técnicas, conocida como barajado de cadenas, implica desplegar repertorios de genes de dominios variables de inmunoglobulina sobre la superficie de bacteriófagos filamentosos, a menudo referida como presentación en fagos. El barajado de cadenas se ha utilizado para preparar anticuerpos de alta afinidad para el hapteno 2-feniloxazol-5-ona, como describen Marks et al., 1992, Biotechnology, 10:779.

Se pueden realizar modificaciones conservativas en las cadenas pesadas y ligeras descritas en la Tabla 1 (y las modificaciones correspondientes de los ácidos nucleicos que codifican) para producir un anticuerpo anti-Dkk-1 que

tiene características funcionales y bioquímicas. Los métodos para lograr tales modificaciones se han descrito anteriormente.

Los anticuerpos y fragmentos funcionales de los mismos de acuerdo con la invención se pueden modificar adicionalmente de diversas maneras. Por ejemplo, si se van a utilizar para fines terapéuticos, se pueden conjugar con polietilenglicol (pegilación) para prolongar la vida media en suero o para mejorar la liberación de proteínas. Alternativamente, la región V de los anticuerpos sujeto o fragmentos de los mismos se pueden fusionar con la región Fc de una molécula de anticuerpo diferente. La región Fc utilizada para este propósito se puede modificar de modo que no se una al complemento, reduciendo así la probabilidad de inducir la lisis de las células en el paciente cuando se utiliza la proteína de fusión como agente terapéutico. Además, los anticuerpos sujeto o fragmentos funcionales de los mismos se pueden conjugar con albúmina de suero humano para mejorar la vida media en suero del anticuerpo o fragmento del mismo. Otro compañero de fusión útil para los anticuerpos de la invención o fragmentos de los mismos es la transtiretina (TTR). La TTR tiene la capacidad de formar un tetrámero, de este modo una proteína de fusión de anticuerpo-TTR puede formar un anticuerpo multivalente que puede aumentar su avidez de unión.

Alternativamente, se pueden lograr modificaciones sustanciales en las características funcionales y/o bioquímicas de los anticuerpos y fragmentos descritos en la presente memoria mediante la creación de sustituciones en la secuencia de aminoácidos de las cadenas pesada y ligera que difieren significativamente en su efecto sobre el mantenimiento de (a) la estructura de la cadena molecular principal en la zona de la sustitución, por ejemplo, en forma de una lámina o conformación helicoidal, (b) la carga o hidrofobia de la molécula en el sitio diana, o (c) la voluminosidad de la cadena lateral. Una "sustitución de aminoácidos conservativa" puede implicar una sustitución de un residuo de aminoácido nativo por un residuo no nativo que tiene poco o ningún efecto sobre la polaridad o la carga del residuo de aminoácido en esa posición. Por otra parte, también se puede sustituir cualquier residuo nativo en el polipéptido por alanina, como se ha descrito previamente para la mutagénesis de barrido con alanina.

Las sustituciones de aminoácidos (ya sea conservativas o no conservativas) de los anticuerpos sujeto pueden ser implementadas por los expertos en la técnica mediante la aplicación de mecanismos rutinarios. Las sustituciones de aminoácidos se pueden utilizar para identificar residuos importantes de los anticuerpos proporcionados en la presente memoria, o para aumentar o disminuir la afinidad de estos anticuerpos por la Dkk-1 humana o para modificar la afinidad de unión de otros anticuerpos anti-Dkk-1 descritos en la presente memoria.

VI. Expresión de anticuerpos anti-Dkk-1

5

10

25

30

50

55

60

Los anticuerpos anti-Dkk-1 y los fragmentos funcionales inmunológicos se pueden preparar mediante cualquiera de diversas técnicas convencionales. Por ejemplo, se pueden producir anticuerpos anti-Dkk-1 mediante sistemas de expresión recombinante, utilizando cualquier mecanismo conocido en la técnica. Véanse, por ejemplo, Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analysis, Kennet et al. (Eds.) Plenum Press, Nueva York (1980); y Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1988).

35 Los anticuerpos de la presente invención se pueden expresar en líneas celulares de hibridoma o en líneas celulares distintas de hibridomas. Los constructos de expresión que codifican los anticuerpos se pueden usar para transformar una célula anfitriona de mamífero, insecto o microbiana. La transformación puede realizarse usando cualquier método conocido para introducir polinucleótidos en una célula anfitriona, incluyendo, por ejemplo el empaquetamiento del polinucleótido en un virus o un bacteriófago y la transducción de una célula anfitriona con el constructo por medio de procedimientos de transfección conocidos en la técnica, como se ilustra mediante las 40 Patentes de los Estados Unidos Núms. 4.399.216, 4.912.040, 4.740.461, y 4.959.455 (cuyas patentes se incorporan a la presente como referencia para cualquier propósito). El procedimiento de transformación óptimo utilizado dependerá de qué tipo de célula anfitriona está siendo transformado. Los métodos para la introducción de polinucleótidos heterólogos en células de mamífero son bien conocidos en la técnica e incluyen, pero no se limitan a, transfección mediada por dextrano, precipitación con fosfato de calcio, transfección mediada por polibreno, fusión de 45 protoplastos, electroporación, encapsulación de los polinucleótidos en el liposoma, mezclado de ácido nucleico con lípidos cargados positivamente, y microinyección directa del ADN en los núcleos.

Los constructos de expresión recombinantes de la invención comprenden típicamente una molécula de ácido nucleico que codifica un polipéptido que comprende uno o más de los siguientes: una región constante de la cadena pesada (p. ej., C_H1, C_H2 y/o C_H3) una región variable de la cadena pesada, una región constante de la cadena ligera, una región variable de la cadena ligera, una o más CDR de la cadena pesada o ligera del anticuerpo anti-Dkk-1. Estas secuencias de ácidos nucleicos se insertan en un vector de expresión apropiado utilizando técnicas de ligación convencionales. En una realización, la región constante de la cadena pesada o ligera de 11H10 se añade al extremo C de la región variable de la cadena pesada o ligera específica de Dkk-1 y se liga en un vector de expresión. El vector se selecciona típicamente para que sea funcional en la célula anfitriona concreta empleada (es decir, el vector es compatible con la maquinaria de la célula anfitriona, lo que permite que se pueda producir la amplificación y/o expresión del gen). En algunas realizaciones, se utilizan vectores que emplean análisis de complementación de fragmentos de proteínas utilizando informadores proteicos, tales como dihidrofolato reductasa (véase, por ejemplo, la Patente de los Estados Unidos Núm. 6.270.964, que se incorpora a la presente como referencia). Los vectores de expresión adecuados se pueden adquirir, por ejemplo, de Invitrogen Life Technologies o

BD Biosciences (antes "Clontech"). Otros vectores útiles para la clonación y expresión de los anticuerpos y fragmentos de la invención incluyen los descritos por Bianchi y McGrew, *Biotech Biotechnol Bioeng* 84 (4): 439-44 (2003), que se incorpora a la presente por referencia. Los vectores de expresión adecuados adicionales se comentan, por ejemplo, en Methods Enzymol, vol. 185 (DV Goeddel, ed.), 1990, Nueva York: Academic Press, que se incorpora a la presente como referencia.

5

10

25

40

45

50

Típicamente, los vectores de expresión utilizados en cualquiera de las células anfitrionas contienen secuencias para el mantenimiento de plásmido o virus y para la clonación y expresión de secuencias de nucleótidos exógenas. Tales secuencias, denominadas colectivamente como "secuencias flanqueantes" incluyen típicamente una o más de las siguientes secuencias de nucleótidos conectadas operativamente: un promotor, una o más secuencias intensificadoras, un origen de replicación, una secuencia de terminación transcripcional, una secuencia intrónica completa que contiene un sitio donador y aceptor de empalme, una secuencia que codifica una secuencia líder para la secreción de polipéptidos, un sitio de unión al ribosoma, una secuencia de poliadenilación, una región poliligadora para insertar el ácido nucleico que codifica el polipéptido que se va a expresar, y un elemento marcador seleccionable.

Opcionalmente, el vector puede contener una secuencia codificante "etiqueta", es decir, una molécula de oligonucleótido situada en el extremo 5' o 3' de la secuencia codificante, una secuencia de oligonucleótidos que codifica poliHis (tal como hexahis), u otra "etiqueta" para la cual existen anticuerpos asequibles comercialmente, tales como FLAG[®], HA (hemaglutinina del virus de influenza), o *myc.* La etiqueta se fusiona típicamente a la proteína de anticuerpo después de la expresión, y puede servir como un medio para purificación por afinidad del anticuerpo a partir de la célula anfitriona. La purificación por afinidad puede lograr, por ejemplo, mediante cromatografía en columna utilizando anticuerpos contra la etiqueta como una matriz de afinidad. Opcionalmente, la etiqueta puede eliminarse posteriormente del polipéptido de anticuerpo purificado mediante diversos medios tales como el uso de ciertas peptidasas para la escisión.

Las secuencias flanqueantes en el vector de expresión puede ser homólogas (es decir, de la misma especie y/o cepa que la célula anfitriona), heterólogas (es decir, de una especie distinta de la especie o cepa de la célula anfitriona), (es decir, una combinación de secuencias flanqueantes de más de una fuente), sintéticas o nativas. Como tal, la fuente de una secuencia flanqueante puede ser cualquier organismo procariótico o eucariótico, cualquier organismo vertebrado o invertebrado, o cualquier planta, siempre que la secuencia flanqueante sea funcional en, y pueda ser activada por, la maquinaria de la célula anfitriona.

30 Las secuencias flanqueantes útiles en los vectores de esta invención se pueden obtener por medio de cualquiera de diversos métodos bien conocidos en la técnica. Típicamente, las secuencias flanqueantes útiles en la presente memoria habrán sido identificadas previamente mediante mapeo y/o mediante digestión con endonucleasas de restricción y de ese modo pueden ser aisladas de la fuente tisular apropiada utilizando las endonucleasas de restricción apropiadas. En algunos casos, la secuencia de nucleótidos completa de una secuencia flanqueante puede ser conocida. Aquí, la secuencia flanqueante se puede sintetizar usando los métodos descritos en la presente memoria para la síntesis de ácidos o clonación nucleicos.

Cuando es conocida la totalidad o sólo una porción de la secuencia flanqueante, ésta se puede obtener utilizando la PCR y/o escrutando una biblioteca genómica con un oligonucleótido adecuado y/o un fragmento de secuencia flanqueante de la misma o de otra especie. Cuando no se conoce la secuencia flanqueante, se puede aislar un fragmento de ADN que contiene una secuencia flanqueante de una pieza más grande de ADN que puede contener, por ejemplo, una secuencia codificante o incluso otro gen u otros genes. El aislamiento se puede completar mediante digestión con endonucleasas de restricción para producir el fragmento de ADN apropiado seguido de aislamiento usando purificación en gel de agarosa, cromatografía en columna Qiagen[®] (Chatsworth, CA), u otros métodos conocidos por el experto en la técnica. La selección de enzimas adecuadas para lograr este propósito será fácilmente evidente para los expertos en la técnica.

Un origen de replicación es típicamente una parte de los vectores de expresión procariotas, particularmente los adquiridos comercialmente, y el origen ayuda a la amplificación del vector en una célula anfitriona. Si el vector de elección no contiene un origen del sitio de replicación, se puede sintetizar uno químicamente basándose en una secuencia conocida, y ligar en el vector. Por ejemplo, el origen de replicación del plásmido pBR322 (New England Biolabs, Beverly, MA) es adecuado para la mayoría de bacterias gram-negativas y son útiles diversos orígenes (p. ej., SV40, polioma, adenovirus, virus de la estomatitis vesicular (VSV), o papilomavirus tales como HPV o BPV) para vectores de clonación en células de mamíferos. Generalmente, no se necesita un origen de replicación de mamífero para los vectores de expresión en mamíferos (p. ej., el origen de SV40 es utilizado a menudo sólo porque contiene el promotor temprano).

Los vectores de expresión y clonación de la presente invención contendrán típicamente un promotor que es reconocido por el organismo anfitrión y está conectado operablemente a un ácido nucleico que codifica el anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo. Los promotores son secuencias no transcritas situadas aguas arriba (es decir, 5') con respecto al codón de inicio de un gen estructural (generalmente dentro de aproximadamente 100 a 1000 pb) que controlan la transcripción del gen estructural. Los promotores se agrupan convencionalmente en una de dos clases: promotores inducibles y promotores constitutivos. Los promotores

inducibles inician el aumento de los niveles de transcripción de ADN bajo su control en respuesta a algún cambio en las condiciones de cultivo, tales como la presencia o ausencia de un nutriente o un cambio en la temperatura. Los promotores constitutivos, por otra parte, inician la producción continua del producto génico; esto es, existe poco o ningún control experimental sobre la expresión génica. Se conoce un gran número de promotores, reconocidos por una variedad de células anfitrionas potenciales. Un promotor adecuado está conectado operablemente al ADN que codifica el anticuerpo anti-Dkk-1 mediante la eliminación del promotor del ARN de origen mediante digestión con enzimas de restricción o amplificando el promotor por medio de la reacción en cadena de la polimerasa e insertando la secuencia promotora deseada en el vector.

Los promotores adecuados para su uso con anfitriones de levadura también son bien conocidos en la técnica. Los intensificadores de levadura se utilizan ventajosamente con promotores de levadura. Los promotores adecuados para su uso con células anfitrionas de mamífero son bien conocidos e incluyen, pero no se limitan a, los obtenidos de genomas de virus tales como el virus del polioma, el virus de la viruela aviar, adenovirus (tal como el Adenovirus 2), el virus del papiloma bovino, el virus del sarcoma aviar, citomegalovirus, retrovirus, virus de la hepatitis B y lo más preferiblemente virus de simio 40 (SV40). Otros promotores de mamíferos adecuados incluyen promotores de mamífero heterólogos, por ejemplo, promotores de choque térmico y el promotor de la actina.

10

15

20

25

30

35

40

45

50

55

60

Los promotores concretos útiles en la práctica de los vectores de expresión recombinantes de la invención incluyen, pero no se limitan a: la región del promotor temprano de SV40 (Bernoist y Chambon, 1981, Nature 290: 304-10); el promotor de CMV; el promotor contenido en la repetición terminal 3' larga del virus del sarcoma de Rous (Yamamoto, et al, 1980, Cell, 22:. 787-97); el promotor de la timidina quinasa de herpes (Wagner et al., 1981, Proc. Natl. Acad. Ciencia. U.S.A. 78: 1444-1445); las secuencias reguladoras del gen de metalotioneína (Brinster et al, 1982, Nature 296: 39-42); vectores de expresión procarióticos tales como el promotor de la beta-lactamasa (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. U.S.A., 75: 3727-31); o el promotor tac (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80: 21-25). También se encuentran disponibles para su uso las siguientes regiones de control transcripcional animales, que presentan especificidad de tejido y se han utilizado en animales transgénicos: la región de control del gen de la elastasa I que es activa en células acinares pancreáticas (Swift et al, 1984, Cell 38: 639-46; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50: 399-409; MacDonald, 1987, Hepatology 7: 425-515), La región de control del gen de la insulina que es activa en células beta pancreáticas (Hanahan, 1985, Nature 315: 115-22); la región de control del virus del tumor mamario de ratón que es activa en células testiculares, de mama, linfoides y mastocitos (Leder et al, 1986, Cell 45: 485-95); la región de control del gen de albúmina que es activa en el hígado (Pinkert et al., 1987, Genes y Devel. 1: 268-76); la región de control del gen de alfa-feto-proteína que es activa en el hígado (Krumlauf et al., 1985, Mol. Cell. Biol. 5: 1639-1648; Hammer et al, 1987, Science 235: 53-58); la región de control del gen de la alfa 1-antitripsina que es activa en el hígado (Kelsey et al., 1987, Genes and Devel. 1: 161-71); la región de control del gen de la beta-globina que es activa en células mieloides (Mogram et al, 1985, Nature 315: 338-40; Kollias et al, 1986, Cell 46: 89-94); la región de control del gen de la proteína básica de la mielina que es activa en células oligodendrocíticas en el cerebro (Readhead et al, 1987, Cell, 48:. 703-12); la región de control del gen de la cadena-2 ligera de la miosina que es activa en el músculo esquelético (Sani, 1985, Nature 314: 283-86); la región de control del gen de la hormona liberadora de gonadotropina que es activa en el hipotálamo (Mason et al, 1986, Science 234: 1372-78); y muy concretamente la región de control del gen de inmunoglobulina que es activa en células linfoides (Grosschedl et al, 1984, Cell, 38: 647-58; Adames et al, 1985, Nature 318: 533-38; Alexander et al., 1987, Mol. Cell. Biol. 7: 1436-1444).

Se puede insertar una secuencia intensificadora en el vector para aumentar la transcripción en eucariotas superiores de un ácido nucleico que codifica un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo de la presente invención. Los intensificadores son elementos de ADN que actúan en cis, generalmente de aproximadamente 10-300 pb de longitud, que actúan sobre los promotores para aumentar la transcripción. Los intensificadores son relativamente independientes de la orientación y la posición. Se han encontrado 5' y 3' con respecto a la unidad de transcripción. Se conocen numerosas secuencias intensificadoras disponibles de genes de mamífero (p. ej., globina, elastasa, albúmina, alfa-feto-proteína e insulina). También se puede utilizar una secuencia intensificadora de un virus. El intensificador de SV40, el intensificador del promotor temprano de citomegalovirus, el intensificador del polioma, y los intensificadores de adenovirus son elementos intensificadores ilustrativos para la activación de promotores eucarióticos. Si bien un intensificador se puede empalmar en el vector en una posición 5' o 3' con respecto a una molécula de ácido nucleico, éste se coloca típicamente en un sitio 5' con respecto al promotor.

En los vectores de expresión, una secuencia de terminación de la transcripción se localiza típicamente 3' del extremo de una región codificante del polipéptido y sirve para terminar la transcripción. Una secuencia de terminación de la transcripción utilizada para la expresión en células procarióticas es típicamente un fragmento rico en GC seguido de una secuencia poli-T. Si bien la secuencia es clonada fácilmente a partir de una genoteca o incluso adquirida comercialmente como parte de un vector, también se puede sintetizar fácilmente utilizando métodos para la síntesis de ácido nucleico tales como los descritos en la presente memoria.

Un elemento de un gen marcador seleccionable codifica una proteína necesaria para la supervivencia y el crecimiento de una célula anfitriona desarrollada en un medio de cultivo selectivo. Los genes marcadores de selección típicos utilizados en los vectores de expresión que codifican proteínas que (a) confieren resistencia a antibióticos u otras toxinas, p. ej., ampicilina, tetraciclina o kanamicina para células anfitrionas procarióticas, (b) complementan deficiencias auxotróficas de la célula, o (c) suministran nutrientes críticos no disponibles en medios

complejos. Los ejemplos de los marcadores seleccionables incluyen el gen de resistencia a kanamicina, el gen de resistencia a ampicilina y el gen de resistencia a la tetraciclina. También se puede utilizar un gen de resistencia a neomicina bacteriano para la selección tanto en células anfitrionas procarióticas como eucarióticas.

Se pueden utilizar otros genes de selección para amplificar el gen que será expresado. La amplificación es un proceso por medio del cual los genes que no pueden ser expresados en una única copia a niveles suficientemente elevados como para permitir la supervivencia y el crecimiento de las células en condiciones de selección determinadas se reiteran en tándem dentro de los cromosomas de generaciones sucesivas de células recombinantes. Los ejemplos de los marcadores seleccionables amplificables adecuados para las células de mamífero incluyen la dihidrofolato reductasa (DHFR) y la timidina quinasa sin promotor. En el uso de estos marcadores los transformantes de células de mamífero se colocan bajo presión de selección en donde solo los transformantes están adaptados excepcionalmente para sobrevivir en virtud del gen de selección presente en el vector. La presión de selección se impone cultivando las células transformadas en condiciones en las que la concentración del agente de selección en el medio se incrementa sucesivamente, permitiendo de esta manera la supervivencia de solamente aquellas células en las que se ha amplificado el gen de selección. Bajo estas circunstancias, el ADN adyacente al gen de selección, tal como el ADN que codifica un anticuerpo de la invención, es co-amplificado con el gen de selección. Como resultado, se sintetizan cantidades crecientes de un polipéptido anti-Dkk-1 a partir del ADN amplificado.

Normalmente es necesario un sitio de unión al ribosoma para el inicio de la traducción del ARNm y se caracteriza por una secuencia de Shine-Dalgarno (procariotas) o una secuencia de Kozak (eucariotas). El elemento está situado típicamente 3' con respecto al promotor y 5' con respecto a la secuencia codificante del polipéptido que se va a expresar.

En algunos casos, por ejemplo cuando se desea la glicosilación en un sistema de expresión de una célula anfitriona eucariótica, se pueden manipular diversas presecuencias para mejorar la glicosilación o el rendimiento. Por ejemplo, se puede alterar el sitio de escisión de peptidasa de un péptido señal concreto, o añadir pro-secuencias, que también pueden afectar a la glicosilación. El producto proteico final puede tener, en la posición -1 (con respecto al primer aminoácido de la proteína madura) uno o más aminoácidos adicionales que inciden en la expresión, que pueden no haber sido totalmente eliminado. Por ejemplo, el producto proteico final puede tener uno o dos residuos de aminoácidos encontrados en el sitio de escisión de la peptidasa, anclados al extremo amino. Alternativamente, el uso de algunos sitios de escisión de enzimas puede dar como resultado una forma ligeramente truncada todavía activa del polipéptido deseado, si la enzima corta en dicha zona dentro del polipéptido maduro.

Cuando un vector de expresión disponible en el mercado carece de algunas de las secuencias flanqueantes deseadas como descritas anteriormente, el vector puede ser modificado ligando individualmente estas secuencias en el vector. Después de haber seleccionado y modificado el vector según se desee, se inserta una molécula de ácido nucleico que codifica un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo en el sitio apropiado del vector.

El vector completado que contiene secuencias que codifican el anticuerpo de la invención o el fragmento inmunológicamente funcional del mismo se inserta en una célula anfitriona adecuada para la amplificación y/o expresión del polipéptido. La transformación de un vector de expresión para un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo en una célula anfitriona seleccionada puede lograrse mediante métodos bien conocidos que incluyen métodos tales como transfección, infección, cloruro de calcio, electroporación, microinyección, lipofección, método de DEAE-dextrano, u otras técnicas conocidas. El método seleccionado estará en parte en función del tipo de célula anfitriona que se vaya a utilizar. Estos métodos y otros métodos adecuados son bien conocidos por el experto en la técnica.

La célula anfitriona transformada, cuando se cultiva bajo condiciones apropiadas, sintetiza un anticuerpo anti-Dkk-1 o un fragmento funcional del mismo que se puede recoger con posterioridad del medio de cultivo (si la célula anfitriona lo secreta al medio) o directamente de la célula anfitriona que lo produce (si no es secretado). La selección de una célula anfitriona apropiada dependerá de diversos factores, tales como los niveles de expresión deseados, las modificaciones polipeptídicas que son deseables o necesarias para la actividad (tales como la glicosilación o la fosforilación) y la facilidad de plegado en una molécula biológicamente activa.

Las líneas celulares de mamífero disponibles como anfitriones para la expresión son bien conocidas en la técnica e incluyen, pero no se limitan a, muchas líneas celulares inmortalizadas disponibles de la Colección de Cultivos Tipo Americana (ATCC), tales como células de ovario de hámster chino (CHO), células HeLa, células renales de cría hámster (BHK), células de riñón de mono (COS), células de carcinoma hepatocelular humano (p. ej., Hep G2), y un otras diversas líneas celulares. En ciertas realizaciones, la mejor línea celular para expresar un constructo de ADN concreto se puede seleccionar sometiendo a ensayo diferentes líneas celulares para determinar cuáles tienen los niveles más altos de los niveles de expresión y producen anticuerpos con propiedades de unión a Dkk-1 constitutivas.

VI. Composiciones farmacéuticas

5

10

15

20

25

30

35

40

45

A. Ejemplos de formulaciones

5

45

60

En ciertas realizaciones, la invención también proporciona composiciones que comprenden los anticuerpos anti-Dkk-1 sujeto o los fragmentos inmunológicamente funcionales de los mismos junto con uno o más de los siguientes: un diluyente farmacéuticamente aceptable; un portador; un solubilizante; un emulsionante; un conservante; y/o un coadyuvante. Tales composiciones pueden contener una cantidad eficaz del anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo. De este modo, también se incluye el uso de anticuerpos y fragmentos inmunológicamente activos que se proporcionan en la presente memoria en la preparación de una composición farmacéutica o medicamento. Tales composiciones se pueden utilizar en el tratamiento de una variedad de enfermedades tales como las enumeradas a continuación en la sección de utilidades ilustrativas.

10 Los componentes de formulación aceptables para las preparaciones farmacéuticas son no tóxicos para los receptores a las dosis y concentraciones empleadas. Además de los anticuerpos y de los fragmentos inmunológicamente funcionales que se proporcionan, las composiciones de acuerdo con la invención pueden contener componentes para modificar, mantener o conservar, por ejemplo, el pH, la osmolaridad, la viscosidad, la claridad, el color, la isotonicidad, el olor, la esterilidad, la estabilidad, la velocidad de disolución o liberación, la adsorción o penetración de la composición. Los materiales adecuados para la formulación de las composiciones 15 farmacéuticas incluyen, pero no se limitan a, aminoácidos (tales como glicina, glutamina, asparragina, arginina o lisina); antimicrobianos, antioxidantes (tales como ácido ascórbico, sulfito de sodio o hidrogenosulfito de sodio); tampones (tales como acetato, borato, bicarbonato, Tris-HCI, citratos, fosfatos u otros ácidos orgánicos), agentes volumétricos (tales como manitol o glicina); agentes quelantes (tales como ácido etilendiaminotetraacético (EDTA)); 20 agentes complejantes (tales como cafeína, polivinilpirrolidona, beta-ciclodextrina o hidroxipropil-beta-ciclodextrina); cargas; monosacáridos; disacáridos; y otros carbohidratos (tales como glucosa, manosa o dextrinas); proteínas (tales como albúmina de suero, gelatina o inmunoglobulinas); agentes colorantes, aromatizantes y diluyentes; agentes emulsionantes; polímeros hidrófilos (tales como polivinilpirrolidona); polipéptidos de bajo peso molecular; contraiones formadores de sales (tales como sodio); conservantes (tales como cloruro de benzalconio, ácido benzoico, ácido salicílico, timerosal, alcohol fenetílico, metilparabeno, propilparabeno, clorhexidina, ácido sórbico o 25 peróxido de hidrógeno); disolventes (tales como glicerina, propilenglicol o polietilenglicol); alcoholes de azúcares (tales como manitol o sorbitol); agentes de suspensión; tensioactivos o agentes humectantes (tales como pluronics. PEG, ésteres de sorbitán, polisorbatos tales como polisorbato 20, polisorbato 80, tritón, trometamina, lecitina, colesterol, tiloxapal); agentes para mejorar la estabilidad (tales como sacarosa o sorbitol); agentes mejoradores de la tonicidad (tales como haluros de metales alcalinos, preferiblemente cloruro de sodio o potasio, manitol, sorbitol); 30 vehículos de liberación; diluyentes; excipientes y/o coadyuvantes farmacéuticos. (Véase *Remington's Pharmaceutical Sciences*, 18ª edición, (AR Gennaro, ed.), 1990, Mack Publishing Company), incorporada a la presente como referencia.

El vehículo o portador primario en una composición farmacéutica pueden ser de naturaleza acuosa o no acuosa. Los vehículos o portadores adecuados para tales composiciones incluyen agua para inyectables, solución salina fisiológica o fluido cerebroespinal artificial, posiblemente con un suplemento de otros materiales comunes en composiciones para la administración parenteral. La solución salina tamponada neutra o la solución salina mezclada con albúmina de suero son vehículos ilustrativos adicionales. Las composiciones que comprenden anticuerpos anti-Dkk-1 o fragmentos inmunológicamente funcionales de los mismos se pueden preparar para su almacenamiento mezclando la composición seleccionada que tiene el grado de pureza deseado con agentes de formulación opcionales en forma de una torta liofilizada o una disolución acuosa. Adicionalmente, los anticuerpos anti-Dkk-1 o los fragmentos inmunológicamente funcionales de los mismos se pueden formular en forma de productos liofilizados utilizando excipientes apropiados tales como sacarosa.

Los componentes de la formulación están presentes a concentraciones que son aceptables para el sitio de administración. Los tampones se usan ventajosamente para mantener la composición a pH fisiológico o a un pH ligeramente inferior, típicamente dentro de un intervalo de pH de aproximadamente 4,0 a aproximadamente 8,5, o alternativamente, entre aproximadamente 5,0 y 8,0. Las composiciones farmacéuticas pueden comprender tampón TRIS de aproximadamente pH 6,5 a 8,5, o tampón de acetato de aproximadamente pH 4,0-5,5, que puede incluir adicionalmente sorbitol o un sustituto adecuado del mismo.

Una composición farmacéutica puede implicar una cantidad eficaz de anticuerpos anti-Dkk-1 o fragmentos inmunológicamente funcionales de los mismos mezclados con excipientes no tóxicos que son adecuados para la fabricación de comprimidos. Mediante la disolución de los comprimidos en agua estéril, u otro vehículo apropiado, las disoluciones se pueden preparar en una forma de dosificación unitaria. Los excipientes adecuados incluyen, pero no se limitan a, materiales inertes, tales como carbonato de calcio, carbonato o bicarbonato de sodio, lactosa o fosfato de calcio; o agentes aglutinantes, tales como almidón, gelatina o goma arábiga; o agentes lubricantes tales como estearato de magnesio, ácido esteárico, o talco.

Las composiciones farmacéuticas adicionales están en la forma de formulaciones de liberación sostenida o controlada. Se pueden utilizar técnicas para formular una variedad de otros medios de liberación sostenida o controlada, tales como portadores de liposomas, micropartículas bioerosionables o cuentas porosas e inyecciones de depósito (véase, por ejemplo, el documento PCT/US93/00829, que describe la administración controlada de micropartículas poliméricas porosas para la liberación de composiciones farmacéuticas). Las preparaciones de

administración sostenida pueden incluir matrices poliméricas semipermeables en forma de artículos conformados, p. ej., películas o microcápsulas, poliésteres, hidrogeles, polilactidas (Patente de los Estados Unidos Núm. 3.773.919 y Patente Europea EP 058.481), copolímeros de ácido L-glutámico y gamma-etil-L-glutamato (Sidman et al, 1983, *Biopolymers* 22:: 547-556), poli(metacrilato de 2-hidroxietilo) (Langer et al, 1981, *J Biomed Mater Res* 15: 167-277) y Langer, 1982, *Chem. Tech.* 12: 98-105), etileno-acetato de vinilo (Langer et al., *idem.*) o ácido poli-D(-)-3-hidroxibutírico (Patente Europea EP 133.988). Las composiciones de liberación sostenida también pueden incluir liposomas, que se pueden preparar mediante cualquiera de diversos métodos conocidos en la técnica. Véanse p. ej., Eppstein et al, 1985, *Proc. Natl. Acad. Sci. USA* 82: 3688-3692; Patente Europea EP 036.676; Patente Europea EP 088.046 y Patente Europea EP 143.949.

5

20

25

35

40

45

50

55

La composición farmacéutica que se va a utilizar para la administración *in vivo* es típicamente estéril. La esterilización puede conseguirse mediante filtración a través de membranas de filtración estériles. Si la composición está liofilizada, la esterilización puede llevarse a cabo ya sea antes o después de la liofilización y reconstitución. La composición para la administración parenteral puede almacenarse en forma liofilizada o en una disolución. En ciertas realizaciones, las composiciones parenterales se colocan en un recipiente que tiene un puerto de acceso estéril, por ejemplo, una bolsa para solución intravenosa o un vial que tiene un tapón perforable por medio de una aguja de inyección hipodérmica, o una jeringa precargada estéril lista para usar para la inyección.

Una vez que la composición farmacéutica de la invención ha sido formulada, ésta se puede almacenar en viales estériles en forma de disolución, suspensión, gel, emulsión, sólido, o en forma de un polvo deshidratado o liofilizado. Tales formulaciones se pueden almacenar ya sea en una forma lista para su uso o en una forma (p. ej., liofilizada) que se reconstituye antes de la administración.

Los componentes utilizados para formular las composiciones farmacéuticas son preferiblemente de gran pureza y están sustancialmente libres de contaminantes potencialmente nocivos (p. ej., al menos de grado alimentario (NF), generalmente al menos de grado analítico, y más típicamente al menos de grado farmacéutico). Por otra parte, las composiciones destinadas al uso in vivo son habitualmente estériles. En la medida en que un compuesto dado debe ser sintetizado antes de su uso, el producto resultante está típicamente sustancialmente libre de cualquier agente potencialmente tóxico, particularmente cualquier endotoxina, que pueda estar presente durante el proceso de síntesis o purificación. Las composiciones para la administración parental son también estériles, sustancialmente isotónicas y elaboradas en condiciones GMP.

La presente invención proporciona kits para la producción de unidades de administración de múltiples dosis o de una sola dosis. Por ejemplo, los kits de acuerdo con la invención pueden contener cada uno tanto un primer recipiente que tiene una proteína seca y un segundo recipiente que tiene un diluyente acuoso, incluyendo por ejemplo jeringas precargadas de una sola y múltiples cámaras (p. ej., jeringas de líquido, liojeringas o jeringas sin aguja).

Las composiciones farmacéuticas de la invención se pueden liberar por vía parenteral, típicamente mediante inyección. Las inyecciones pueden ser intraoculares, intraperitoneales, intraportales, intramusculares, intravenosas, intratecales, intracerebrales (intraparenquimales), intracerebroventriculares, intraarteriales, intralesionales, perilesionales o subcutáneas. Se pueden utilizar gotas oculares para la administración intraocular. En algunos casos, las inyecciones se pueden localizar en las proximidades de uno hueso o varios huesos concretos a los que se dirige el tratamiento. Para la administración parenteral, los anticuerpos se pueden administrar en una disolución acuosa parenteralmente aceptable, libre de pirógenos que comprende los anticuerpos anti-Dkk-1 deseados o fragmentos inmunológicamente funcionales de los mismos en un vehículo farmacéuticamente aceptable. Un vehículo particularmente adecuado para la inyección parenteral es el agua destilada estéril en la que se formulan los anticuerpos anti-Dkk-1 o los fragmentos inmunológicamente funcionales de los mismos en forma de una disolución isotónica, estéril, apropiadamente conservada.

Las composiciones farmacéuticas que comprenden las anticuerpos anti-Dkk-1 sujeto y los fragmentos funcionales de los mismos se pueden administrar mediante inyección en embolada o mediante infusión continua, mediante dispositivos de implantación, sistemas de liberación sostenida u otros medios para lograr una liberación prolongada. La composición farmacéutica también se puede administrar localmente a través de implantación de una membrana, esponja u otro material apropiado sobre el cual se ha absorbido o encapsulado la molécula deseada. Cuando se utiliza un dispositivo de implantación, el dispositivo puede ser implantado en cualquier tejido u órgano adecuado, y la liberación de la molécula deseada puede ser mediante difusión, embolada de liberación temporizada, o de liberación continua. La preparación se puede formular con un agente, tal como microesferas inyectables, partículas bioerosionables, compuestos poliméricos (tales como ácido poliláctico, ácido poliglicólico, o ácido copoli(láctico/glicólico) (PLGA), cuentas o liposomas, que pueden proporcionar una liberación controlada o sostenida del producto que puede ser administrado a continuación a través de una inyección de depósito. La formulación con ácido hialurónico tiene el efecto de promover la duración sostenida en la circulación.

Las composiciones sujeto que comprenden un anticuerpo anti-Dkk-1 o un fragmento funcional del mismo se pueden formular para su inhalación. En estas realizaciones, se formula un anti-anticuerpo Dkk-1 en forma de un polvo seco para su inhalación, o también se pueden formular disoluciones de inhalación de anticuerpo anti-Dkk-1 con un propelente para la administración en aerosol, por ejemplo mediante nebulización. Adicionalmente se describe la

administración pulmonar en el documento PGT/US94/001875, que describe la administración pulmonar de proteínas modificadas químicamente, y que se incorpora a la presente como referencia.

Ciertas composiciones farmacéuticas de la invención pueden ser administradas a través del tracto digestivo, por ejemplo por vía oral. Los anticuerpos anti-Dkk-1 sujeto o los fragmentos inmunológicamente funcionales de los mismos que se administran de esta manera se pueden formular con o sin los portadores utilizados habitualmente en la composición de las formas de dosificación sólidas tales como comprimidos y cápsulas. Se puede diseñar una cápsula para liberar la porción activa de la formulación en el punto del tracto gastrointestinal en el que se maximiza la biodisponibilidad y se minimiza la degradación pre-sistémica. Se pueden incluir agentes adicionales para facilitar la absorción del anticuerpo anti-Dkk-1 o fragmento funcional del mismo. Para la administración oral, se pueden utilizar aminoácidos modificados para conferir resistencia a las enzimas digestivas. También se pueden emplear diluyentes, aromatizantes, ceras de bajo punto de fusión, aceites vegetales, lubricantes, agentes de suspensión, agentes disgregantes de comprimidos, y aglutinantes.

Las composiciones sujeto que comprenden los anticuerpos anti-Dkk-1 o los fragmentos inmunológicamente funcionales de los mismos también se pueden usar *ex vivo*. En tales casos, células, tejidos u órganos que han sido retirados del paciente son expuestos a o se cultivan con el anticuerpo anti-Dkk-1. Las células cultivadas se pueden volver a implantar a continuación en el paciente o en un paciente diferente o se pueden utilizar para otros fines.

En ciertas realizaciones, los anticuerpos anti-Dkk-1 o los fragmentos inmunológicamente funcionales de los mismos se pueden administrar implantando ciertas células que se han modificado genéticamente, usando métodos tales como los descritos en la presente memoria, para expresar y secretar el polipéptido. Tales células pueden ser células animales o humanas, y pueden ser autólogas, heterólogas, o xenogénicas, o pueden ser inmortalizadas. Con el fin de disminuir la posibilidad de una respuesta inmunológica, las células pueden ser encapsuladas para evitar la infiltración de los tejidos circundantes. Los materiales de encapsulación son típicamente recintos o membranas poliméricos semipermeables, biocompatibles que permiten la liberación del producto o los productos proteicos pero evitan la destrucción de las células por el sistema inmunitario del paciente o por otros factores perjudiciales de los tejidos circundantes.

B. Dosis

5

10

15

20

25

30

35

40

45

50

55

Las composiciones farmacéuticas que se proporcionan pueden administrarse para tratamientos profilácticos y/o terapéuticos. Una "cantidad eficaz" hace referencia generalmente a una cantidad que es una cantidad suficiente, pero no tóxica, de ingrediente activo (es decir, un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo) para lograr el efecto deseado, que es una reducción o eliminación de la gravedad y/o frecuencia de los síntomas y/o una mejora o remedio del daño. Una "cantidad terapéuticamente eficaz" hace referencia a una cantidad que es suficiente para remediar un estado de enfermedad o sus síntomas, o prevenir, impedir, retrasar o revertir de otro modo el progreso de una enfermedad o cualquier otro síntoma no deseable. Una "cantidad profilácticamente eficaz" hace referencia a una cantidad que es eficaz para prevenir, impedir o retardar la aparición de un estado de enfermedad o sus síntomas.

En general, la toxicidad y la eficacia terapéutica del anticuerpo o fragmento se pueden determinar de acuerdo con procedimientos farmacéuticos convencionales en cultivos celulares y/o animales experimentales, incluyendo, por ejemplo, la determinación de la DL_{50} (la dosis letal para el 50% de la población) y la DE_{50} (la dosis terapéuticamente eficaz en el 50% de la población). La razón de la dosis entre los efectos tóxicos y terapéuticos es el índice terapéutico y se puede expresar como la razón DL_{50}/DE_{50} . Se prefieren las composiciones que exhiben índices terapéuticos grandes.

Los datos obtenidos a partir de los estudios de cultivo celulares y/o en animales se pueden utilizar para formular un intervalo de dosificaciones para los seres humanos. La dosificación del ingrediente activo se encuentra típicamente dentro de un intervalo de concentraciones circulantes que incluye la DE_{50} con poca o ninguna toxicidad. La dosificación puede variar dentro de este intervalo dependiendo de la forma de dosificación empleada y la ruta de administración utilizada.

La cantidad eficaz de una composición farmacéutica que comprende anticuerpos anti-Dkk-1 o fragmentos inmunológicamente funcionales de los mismos que se va a emplear terapéuticamente o profilácticamente dependerá, por ejemplo, del contexto y de los objetivos terapéuticos. Un experto en la técnica apreciará que los niveles de dosificación apropiados para el tratamiento, de acuerdo con determinadas realizaciones, variará de ese modo dependiendo, en parte, de la molécula liberada, la indicación para la que se esté utilizando el anticuerpo anti-Dkk-1, la ruta de administración, y el tamaño (peso corporal, superficie corporal o tamaño del órgano) y/o el estado (la edad y salud general) del paciente. Un médico clínico puede valorar la dosificación y modificar la ruta de administración para obtener el efecto terapéutico óptimo. Las dosificaciones típicas oscilan desde aproximadamente 0,1 mg/kg hasta aproximadamente 100 mg/kg o más, dependiendo de los factores mencionados anteriormente. En ciertas realizaciones, la dosificación puede oscilar de 0,1 mg/kg a aproximadamente 150 mg/kg; o de 1 mg/kg a aproximadamente 100 mg/kg, o de 5 mg/kg a aproximadamente 50 mg/kg.

La frecuencia de dosificación dependerá de los parámetros farmacocinéticos del anticuerpo anti-Dkk-1 o el fragmento inmunológicamente funcional del mismo en la formulación. Por ejemplo, un médico clínico administrará la composición hasta que se alcance una dosificación que consiga el efecto deseado. La composición se puede administrar por lo tanto como una dosis única, o como dos o más dosis (que pueden contener o no la misma cantidad de la molécula deseada) a lo largo del tiempo, o como una infusión continua mediante un dispositivo de implantación o un catéter. El tratamiento puede ser continuo o intermitente a lo largo del tiempo. La mejora adicional de la dosificación apropiada es realizada de forma rutinaria por los expertos normales en la técnica y está dentro del ámbito de las tareas realizadas rutinariamente por los mismos. Las dosificaciones apropiadas se pueden lograr mediante el uso de datos de dosis-respuesta apropiados.

Para tratar un trastorno médico caracterizado por una expresión anormal o exceso de Dkk-1, se puede administrar al paciente una composición que comprende los anticuerpos anti-Dkk-1 sujeto o los fragmentos inmunológicamente funcionales de los mismos en una cantidad y durante un tiempo suficiente para inducir una mejora sostenida en al menos un indicador que refleje la gravedad del trastorno. Una mejora se considera "sostenida" si el paciente presenta la mejoría en al menos dos ocasiones separadas por al menos uno a siete días, o en algunos casos una a seis semanas. El intervalo apropiado dependerá en cierta medida de qué afección se esté tratando; está dentro del alcance del médico experto determinar el intervalo apropiado para determinar si la mejora es sostenida. El grado de mejora se determina basándose en signos o síntomas, y también se pueden emplear cuestionarios que están dirigidos al paciente, tales como cuestionarios de calidad de vida.

Los diferentes indicadores que reflejan el grado de la enfermedad del paciente se pueden evaluar para determinar si la cantidad y el tiempo del tratamiento son suficientes. El valor en el período inicial para el indicador o los indicadores seleccionados se establece mediante el examen del paciente antes de la administración de la primera dosis de anticuerpo. Preferiblemente, el examen en el período inicial se realiza dentro de aproximadamente 60 días de la administración de la primera dosis. Si el anticuerpo se está administrando para tratar síntomas agudos, tal como por ejemplo, para tratar un hueso roto, la primera dosis se administra tan pronto como sea posible prácticamente después de que se haya producido la lesión.

La mejora se induce mediante la administración de los anticuerpos anti-Dkk-1 sujeto o los fragmentos inmunológicamente funcionales de los mismos hasta que el paciente manifiesta una mejora sobre el período inicial para el indicador o los indicadores escogidos. En el tratamiento de las afecciones crónicas, este grado de mejora se obtiene mediante la administración repetida de este medicamento durante un período de al menos un mes o más, p. ej., durante uno, dos, o tres meses o más, o indefinidamente. A menudo es suficiente un período de una a seis semanas, o incluso una sola dosis, para el tratamiento de las condiciones agudas. Para las lesiones o afecciones agudas, puede ser suficiente una sola dosis.

Aunque el grado de la enfermedad del paciente después del tratamiento puede parecer mejorado de acuerdo con uno o más indicadores, el tratamiento debe continuar indefinidamente al mismo nivel o a una dosis o frecuencia reducidas. Una vez que el tratamiento se ha reducido o interrumpido, se puede reanudar más tarde al nivel original si reaparecieran los síntomas.

VII. Utilidades ilustrativas para los anticuerpos anti-Dkk-1

A. Detección y Escrutinio

5

20

25

30

35

40

45

50

55

Los anticuerpos anti-Dkk-1 sujeto y los fragmentos inmunológicamente funcionales de los mismos se pueden utilizar para detectar Dkk-1 en muestras biológicas. Tales usos permiten la identificación de células o tejidos que producen la proteína o sirven como diagnóstico para la detección de afecciones patológicas en las que Dkk-1 se produce en exceso o se produce de manera insuficiente.

Los anticuerpos y fragmentos que son proporcionados también se pueden usar en métodos para detectar una molécula que se une a Dkk-1. Se puede utilizar, por ejemplo una variedad de métodos de escrutinio competitivos. En algunos métodos, se ponen en contacto una molécula de Dkk-1 o un fragmento de la misma al cual se une un anticuerpo anti-Dkk-1, con un anticuerpo o fragmento descritos en la presente memoria junto con otra molécula (es decir, una molécula candidato). Una reducción en la unión entre el anticuerpo o fragmento y Dkk-1 es una indicación de que la molécula se une a Dkk-1. La unión del anticuerpo o fragmento se puede detectar utilizando una variedad de métodos, por ejemplo, un ELISA. La detección de la unión entre el anticuerpo anti-Dkk-1 o el fragmento a Dkk-1 se puede simplificar marcando de forma detectable el anticuerpo. En algunos métodos, se analiza adicionalmente una molécula que exhibe unión en el escrutinio inicial para determinar si ésta inhibe una actividad de Dkk-1 (p. ej., si la molécula activa de señalización de Wnt).

B. Tratamiento de trastornos óseos relacionados

En otros aspectos, algunos de los anticuerpos y fragmentos inmunológicamente funcionales que se proporcionan se pueden utilizar para tratar pacientes con una variedad de enfermedades diferentes que incluyen, por ejemplo, enfermedades que son sensibles a la inhibición de la actividad de Dkk-1. Estos anticuerpos y fragmentos también se pueden utilizar para tratar enfermedades que son sensibles a la inducción de la señalización de Wnt. El término "paciente", según se utiliza en la presente memoria incluye sujetos humanos y animales a menos que se indique lo

contrario. Los ejemplos de tales enfermedades incluyen, pero no se limitan a, una variedad de enfermedades que implican un trastorno óseo incluyendo afecciones de baja masa ósea, pérdida ósea sistémica, supresión de la formación de hueso y erosiones óseas. Algunos de los anticuerpos y fragmentos también se pueden utilizar en la reparación ósea.

- Algunos de los anticuerpos o fragmentos tienen uso terapéutico en la estimulación de la actividad de los osteoblastos y el aumento de la densidad mineral ósea o de la masa ósea. Estos anticuerpos y fragmentos son por tanto útiles para el tratamiento de pacientes que sufren de diversos trastornos médicos que implican pérdida ósea excesiva o pacientes que requieren la formación de hueso nuevo, aun cuando puede no haber necesariamente una actividad excesiva de los osteoclastos. El bloqueo de la actividad de Dkk-1 da lugar a la activación de los osteoblastos a través de la señalización transmitida por las proteínas Wnt. La actividad excesiva de los osteoclastos está asociada con numerosos trastornos osteopénicos que se pueden tratar con los anticuerpos y fragmentos inmunológicamente funcionales que se proporcionan, incluyendo ostopenia, osteoporosis, periodontitis, enfermedad de Paget, pérdida ósea debida a inmovilización, metástasis óseas líticas y artritis, incluyendo artritis reumatoide, artritis soriásica, espondilitis anquilosante y otras afecciones que implican la erosión ósea.
- También se pueden tratar otras diferentes afecciones de baja masa ósea incluyendo una variedad de formas de osteoporosis, incluyendo, pero sin limitarse a, osteoporosis inducida por glucocorticoides, osteoporosis inducida después del trasplante, osteoporosis asociada con quimioterapia (es decir, osteoporosis inducida por quimioterapia), osteoporosis inducida por inmovilización, la osteoporosis debida a descarga mecánica, y osteoporosis asociada con el uso anticonvulsivos. Las enfermedades óseas adicionales que se pueden tratar con algunos anticuerpos o fragmentos incluyen la enfermedad ósea asociada con insuficiencia renal y enfermedades óseas nutricionales, gastrointestinales y/o hepáticas asociadas.

También se pueden tratar diferentes formas de artritis, incluyendo los ejemplos osteoartritis y artritis reumatoide. Los anticuerpos y fragmentos también se pueden utilizar para tratar la pérdida ósea sistémica asociada con la artritis (p. ej., artritis reumatoide). En el tratamiento de la artritis, los pacientes pueden beneficiarse mediante inyecciones intralesionales o perilesionales de los presentes anticuerpos o fragmentos de los mismos. Por ejemplo, el anticuerpo o fragmento del mismo se pueden inyectar adyacentes a o directamente en una articulación inflamada, estimulando de este modo la reparación de hueso dañado en el sitio.

25

30

35

45

50

55

60

Se sabe que algunos tipos de cáncer aumentan la actividad de los osteoclastos e inducen la resorción ósea, tales como el cáncer de mama y de próstata. El mieloma múltiple, que se origina en la médula ósea, también se asocia con la pérdida de hueso, en parte, debido probablemente al aumento de la expresión de Dkk-1 por las células plasmáticas, que a su vez suprime la actividad de formación de hueso de los osteoblastos en las proximidades. La reducción de la actividad Dkk-1 por medio de la administración de anticuerpos sujeto o los fragmentos inmunológicamente funcionales de los mismos puede dar como resultado un aumento de la actividad de los osteoblastos que sirve para contrarrestar el exceso de actividad de los osteoclastos, reduciendo de ese modo la gravedad de los trastornos mencionados anteriormente, reduciendo la erosión ósea e induciendo la formación de hueso nuevo en el paciente. El tratamiento con algunos de los anticuerpos específicos anti-Dkk-1 o fragmentos inmunológicamente funcionales puede inducir un aumento significativo en la densidad mineral ósea en un paciente que padece un trastorno osteopénico.

La inhibición de Dkk-1 con los anticuerpos o fragmentos inmunológicamente funcionales descritos en la presente memoria también se puede utilizado en diversas aplicaciones de reparación ósea. Por ejemplo, ciertos anticuerpos y fragmentos pueden ser útiles para retrasar la osteolisis inducida por restos de desgaste asociada con articulaciones artificiales, la aceleración de la reparación de fracturas óseas, y la mejora de la incorporación de injertos de hueso en el hueso vivo circundante en el que se han injertado.

Los anticuerpos anti-Dkk-1 o los fragmentos inmunológicamente funcionales de los mismos se pueden administrar solos o combinados con otros agentes terapéuticos, por ejemplo, combinados con agentes para la terapia de cáncer, con agentes que inhiben la actividad de los osteoclastos o con otros agentes que potencian la actividad de los osteoblastos. Por ejemplo, los anticuerpos de la invención se pueden administrar a pacientes de cáncer sometidos a terapia de radiación o quimioterapia. Las quimioterapias utilizadas combinadas con los anticuerpos de la invención pueden incluir antraciclinas, taxol, tamoxifeno, doxorrubicina, 5-fluorouracilo, oxaloplatino, Velcade[®] (ácido [(1R)-3-metil-1-[[(2S)-1-oxo-3-fenil-2-[(pirazinilcarbonil)amino]propil]amino]butil]-borónico) y/u otros fármacos de molécula pequeña que se utilizan en el tratamiento del cáncer. Los pacientes con cáncer de mama se beneficiarán de la administración de un inhibidor de la aromatasa simultáneamente a los tratamientos combinados que comprenden un agente quimioterapéutico y un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo.

Los anticuerpos anti-Dkk-1 y los fragmentos de inmunológicamente funcionales de los mismos se pueden utilizar solos para el tratamiento de las afecciones referidas anteriormente que producen pérdida de masa ósea o combinados con una cantidad terapéuticamente eficaz de un agente promotor del crecimiento óseo (anabólico) o un agente anti-resorción ósea incluyendo, pero no limitado a: factores morfogénicos óseos denominados BMP-1 a BMP-12; factor de crecimiento transformante β y miembros de la familia de TGF-β; factores de crecimiento de fibroblastos FGF-1 a FGF-10; inhibidores de interleucina-1 (incluyendo IL-1ra, anticuerpos para IL-1 y anticuerpos para receptores de IL-1); inhibidores de TNFα (incluyendo etanercept, adalibumab y infliximab); inhibidores del

ligando RANK (incluyendo RANK soluble, osteoprotegerina y anticuerpos antagónicos que se unen específicamente a RANK o ligando de RANK); hormona paratiroidea, prostaglandinas de la serie E, bisfosfonatos y minerales que mejoran el hueso tales como fluoruro y calcio. Los agentes anabólicos que se pueden utilizar combinados con los anticuerpos de la invención y los fragmentos funcionales de los mismos incluyen la hormona paratiroidea y el factor de crecimiento de tipo insulínico (IGF), en donde el último agente se compleja preferiblemente con una proteína de unión a IGF. Un antagonista del receptor de IL-1 adecuado para tal tratamiento combinado se describe en el documento WO89/11540 y un receptor de TNF de tipo 1 soluble adecuado se describe en el documento WO98/01555. Los antagonistas ilustrativos del ligando RANK se describen, por ejemplo, en el documento WO 03/086289, el documento WO 03/002713, las Patentes de los Estados Unidos Núms. 6.740.511 y 6.479.635. Todas las patentes y solicitudes de patente mencionadas anteriormente se incorporan a la presente como referencia).

Además, los anticuerpos anti-Dkk-1 se pueden administrar a pacientes combinados con anticuerpos que se unen a células tumorales e inducen un efecto citotóxico y/o citostático sobre el crecimiento tumoral. Los ejemplos de tales anticuerpos incluyen aquellos que se unen a las proteínas de la superficie celular Her2, CDC20, CDC33, glicoproteína de tipo mucina y receptor del factor de crecimiento epidérmico (EGFR) presentes en las células tumorales e inducen un efecto citostático y/o citotóxico sobre las células tumorales que presentan estas proteínas. Los ejemplos de tales anticuerpos incluyen HERCEPTIN[®] para el tratamiento de cáncer de mama y RITUXAN[®] para el tratamiento del linfoma no Hodgkin, y también incluyen fármacos basados en anticuerpos tales como ERBITUX[®] y Avastin[®]. Asimismo, la terapia combinada puede incluir como agentes de terapia del cáncer polipéptidos que inducen selectivamente la apoptosis en las células tumorales, tales como el polipéptido relacionado con TNF TRAIL.

Los anticuerpos sujeto o los fragmentos inmunológicamente funcionales de los mismos se pueden administrar concurrentemente con otros tratamientos y agentes terapéuticos que se administran para la misma afección. "Administración concurrente", según se utiliza en la presente memoria, incluye los tratamientos que se administran simultáneamente o sucesivamente. Los anticuerpos anti-Dkk-1 o los fragmentos inmunológicamente funcionales de los mismos se pueden administrar profilácticamente para evitar o mitigar el comienzo de la pérdida de masa ósea por el cáncer en fase temprana (fases I o II), o se pueden administrar para aliviar una afección existente de pérdida de masa ósea debida a metástasis en el hueso.

Los anticuerpos anti-Dkk-1 de la invención se pueden utilizar para evitar y/o tratar el crecimiento de células tumorales en el hueso. El cáncer que produce metástasis en el hueso se puede extender fácilmente ya que las células tumorales estimulan la resorción de la matriz ósea interna por los osteoclastos. El tratamiento con un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo ayudará a mantener la densidad mineral ósea en el sitio de tales metástasis mediante la estimulación del aumento de actividad de los osteoblastos. Cualquier tipo de cáncer que tenga potencial de producir metástasis en el hueso puede ser evitado o tratado con un anticuerpo anti-Dkk-1 administrado antes o después de que se haya producido la metástasis.

El mieloma múltiple es un ejemplo de un tipo de cáncer que puede prevenirse y/o tratarse con un anticuerpo anti-35 Dkk-1 o un fragmento de unión al antígeno del mismo. Los pacientes afectados presentan típicamente una pérdida de masa ósea debida a un aumento de la activación de los osteoclastos en regiones localizadas del hueso. Las células de mieloma producen directa o indirectamente ligando RANK, una proteína que activa los osteoclastos que da como resultado la lisis del hueso que rodea las células del mieloma incrustadas en los espacios de la médula ósea. Los osteoclastos normales adyacentes a la célula de mieloma producen a su vez IL-6, lo que conduce al 40 crecimiento y proliferación de células de mieloma. Además las células de mieloma múltiple producen Dkk-1 inhibiendo de ese modo la actividad de los osteoblastos y fomentando adicionalmente la actividad de resorción ósea en esta enfermedad. El tratamiento de un animal con un anticuerpo anti-Dkk-1 o un fragmento inmunológicamente funcional del mismo instigará la actividad de los osteoblastos, produciendo de ese modo un aumento de la masa ósea en el sitio de los tumores. Tal tratamiento puede dar como resultado la reducción de dolor óseo, y puede bloquear metástasis adicionales en el hueso mediante la prevención de la actividad de resorción que libera los 45 nutrientes óseos utilizados por las células tumorales. En el tratamiento de esta enfermedad, el anticuerpo anti-Dkk-1 o el fragmento inmunológicamente funcional del mismo se pueden administrar concurrentemente con anticuerpos antagónicos dirigidos contra el ligando de RANK o anticuerpos contra IL-6.

VIII. Kits

60

10

15

30

También se proporcionan kits que incluyen un anticuerpo o un fragmento inmunológicamente funcional o una composición farmacéutica como se describe en la presente memoria. Algunos kits incluyen tal anticuerpo, fragmento o composición en un recipiente (p. ej., vial o ampolla), y también pueden incluir instrucciones para uso del anticuerpo o fragmento en las diferentes aplicaciones de detección, escrutinio y terapéuticas descritas anteriormente. El anticuerpo, fragmento o composición pueden estar en diversas formas, incluyendo, por ejemplo, como parte de una disolución o como un sólido (p. ej., polvo liofilizado). Las instrucciones pueden incluir una descripción de cómo preparar (p. ej., disolver o resuspender) el anticuerpo o fragmento en un fluido apropiado y/o la forma de administrar el anticuerpo o fragmento para el tratamiento de las enfermedades descritas anteriormente (p. ej., trastornos óseos, tales como baja masa ósea, pérdida ósea sistémica, supresión de la formación de hueso y erosiones óseas).

Los kits también pueden incluir otros varios componentes, tales como tampones, sales, iones de metales complejantes y otros agentes descritos anteriormente en la sección de composiciones farmacéuticas. Estos

componentes pueden ser incluidos con el anticuerpo o fragmento o pueden estar en recipientes separados. Los kits también pueden incluir otros agentes terapéuticos para la administración con el anticuerpo o fragmento. Los ejemplos de tales agentes incluyen, pero no se limitan a, agentes para el tratamiento de cánceres, agentes promotores de hueso y anticuerpos que se unen a las células tumorales, y otros agentes enumerados anteriormente.

5 Ejemplo 1

10

15

20

35

40

55

Generación de anticuerpos monoclonales para Dkk-1 murina en ratones y ratas

A. Inmunización

Se clonó Dkk-1 murina recombinante que se había utilizado como antígeno a partir de una biblioteca de ADNc de placenta de ratón utilizando secuencias disponibles públicamente (Núm. de Acceso GenBank AF030433.1). La clonación de Dkk-1 humana, que se había utilizado para someter a ensayo la reactividad cruzada de los anticuerpos anti-Dkk-1 de ratón, fue como se describe en la Patente de los Estados Unidos Núm. 6.344.541. Para preparar la Dkk-1 de ratón para su uso como un antígeno, se sembraron botellas rodadoras 850 cm² con 4-5 x 10² células 293T adherentes (células de riñón de embriones humanos, obtenidas de Cellular and Molecular Technologies) durante la noche en DMEM con FBS al 5%, 1x aminoácidos no esenciales, 1x pen/estrept/glut y 1x piruvato de sodio (DMEM completo, Gibco, Grand Island NY).

Las células se transfectaron el día siguiente. Se diluyeron 675 µl de reactivo de transfección FuGene6 en 6,75 ml de DMEM sin de suero (Roche Diagnostics) y 112,5 µg de ADN pcDNA3.1 (este plásmido expresa Dkk-1 de ratón conjugada con FLAG). Después de la incubación a temperatura ambiente durante 30 minutos, se añadió la mezcla de ADN a cada botella rodadora (alrededor de 30 botellas en total) y se incubó en una incubadora con CO₂ al 5%. Después de 24 horas, se añadieron a cada botella 100 ml de DMEM sin suero que contenía 1x aminoácidos no esenciales, 1x pen/estrept/glut, 1x piruvato de sodio, 1x suplemento de insulina-transferrina-selenio (Invitrogen) y DMSO al 0,5%. El medio se recogió y se sustituyó por medio de nueva aportación cada 48 horas durante 14 días. La Dkk-1 de ratón se purificó a partir del medio de cultivo aclarado reunido.

Los ratones y las ratas se inmunizaron como se describe a continuación mediante inyección con Dkk-1 murina recombinante completa. En algunos experimentos, se inyectó a los ratones (pero no las ratas) muDkk-1 recombinante que se había conjugado antes de la inyección a un péptido PADRE (Epimmune). La conjugación se llevó a cabo haciendo reaccionar la Dkk-1 murina con un exceso molar de 25 veces de 6 maleimideocaproato de N-succinimidilo (MICA) (Fluka Núm. 63177) a temperatura ambiente durante 3 horas. La Dkk-1 murina activada con maleimida se separó del MICA no tratado por medio de una columna de 8 mm x 125 mm cargada con Sephadex G-25. Se incubó 1 mg de la Dkk-1 murina activada con maleimida con 0,5 mg de péptido PADRE (AKFVAAWTLKAAAC; SEC ID NO: 13) y 0,5 mg de un segundo péptido PADRE (CAKXVAAWTLKAAA (X = ciclohexil-alanina); SEC ID NO: 14) a temperatura ambiente durante 1 hora y después se sometió a diálisis frente a PBS.

Se inmunizaron ratones Balb/c y ratones C57BL/6 (Jackson Laboratories), así como ratones AGP3 transgénicos (Khare et al, *PNAS* 97: 3.370-3375, 2000) eligiendo como diana los ganglios linfáticos de drenaje periféricos o el bazo como se describe a continuación. Se inmunizaron ratas Lewis eligiendo como diana solo el bazo.

Para dirigirse a los ganglios linfáticos, se administraron inyecciones 5 veces en 12 puntos por vía subcutánea (6 dorsal, 6 ventral) a lo largo de 10-13 días utilizando una proporción 1:1 de Dkk-1:coadyuvante. El adyuvante utilizado fue o bien mezcla de adyuvante de Freund completo/incompleto (Pierce) o bien RIBI (Corixa). De uno a tres días después de la última inyección, los ganglios linfáticos periféricos de cada ratón inyectado se cosecharon y se fusionaron con células de mieloma SP2/0.Ag14 murinas (Núm. ATCC CRL 1581) utilizando fusión celular dielectroforética, como se describe a continuación. Para las ratas inyectadas, se extirparon los ganglios linfáticos 13 días después de la última inyección de antígeno y los linfocitos se fusionaron con células compañeras de fusión Y3 Ag 1.2.3 (Núm. ATCC CRL 1631), que derivan de rata.

Para dirigirse al bazo, los ratones se inyectaron por vía subcutánea en 2-4 sitios utilizando una proporción 1:1 o bien de muDkk-1:coadyuvante completo de Freud. Se administró una segunda inmunización 2 semanas después utilizando la proporción 1:1 de muDkk:coadyuvante RIBI o muDkk-PADRE:coadyuvante RIBI en 2 sitios subcutáneos y 1 sitio intraperitoneal. Se tomaron muestras de sangre 10 días después para analizarlas para determinar la respuesta de anticuerpos anti-mDkk-1. Los mejores respondedores se reforzaron mediante inyección intraperitoneal con mDkk-1 en PBS. Cinco días más tarde, los bazos se extrajeron para la preparación de linfocitos que se iban a fusionar con las células de mieloma SP2/0.Ag14 murinas.

B. Protocolo fusión de linfocitos

Se fusionaron linfocitos aislados de los ganglios linfáticos o el bazo de animales inmunizados con células SP2/0.Ag14 murinas o Y3 Ag 1.2.3 de rata utilizando el siguiente protocolo optimizado.

Se prepararon suspensiones de células individuales a partir de células de bazo o células de ganglios linfáticos periféricos (PLN), y se filtraron a través de un filtro de células de 100 µm en un tubo de 50 ml, utilizando 30-40 ml de medio sin suero. Los tubos se centrifugaron a 2000 rpm durante 5 minutos para recoger las células. Para lisar los glóbulos rojos (cuando estuvieran presentes), las células se resuspendieron en 10 ml de tampón de lisis RBC (8,3 g/L de cloruro de amonio en Tris/HCl 0,01 M, pH 7,2), y se añadió tampón de lisis adicional hasta un total de 30 ml. Las células se dejaron reposar durante 2-5 minutos, después se centrifugaron a 2000 rpm durante 5 minutos. Este procedimiento de lisis se repitió si persistió un color rojo en el sedimento. Después de la etapa de lisis, las células se resuspendieron en un medio SF, se retiró una alícuota para el recuento, a continuación, las células se lavaron en un total de 50 ml de medio SF.

Antes de ser utilizadas para la fusión, estas células se sometieron a dos rondas del siguiente procedimiento de "selección". Esta selección se realizó con el fin de seleccionar las células que eran resistentes a estas manipulaciones y se repitió dos veces de la siguiente manera. La selección consistió en someter las células a varias etapas del protocolo de fusión, a saber, centrifugación, incubación en tampón de fusión ECF (Cytopulse Sciences Cytofusion Medium C, Núm. de catálogo CPS-LCM) y exposición a la fase de alineamiento actual del proceso de fusión. Las células de mieloma SP2/0.AG 14 que se habían sometido a esta selección se denominaron células "SP2/0-ECF-F" y las células Y3.AG 1.2.3 habían experimentado esta selección se denominaron células "ECF-Y3-F".

Se llevó a cabo una etapa de enriquecimiento de células B solo para ratones, excepto que no se llevó a cabo cuando se utilizaron ratones AGP3. En resumen, esta etapa consistió en suspender 10⁷ células de bazo o de los ganglios linfáticos en SF, añadir 10 µl de cuentas magnéticas CD 90⁺ (Miltenyi Biotec Núm. de Cat. 130-049-101) que se habían lavado previamente con medio SF, mezclar suavemente e incubar a 4-12°C durante 15 minutos. A continuación, las células se diluyeron 1:3 con medio y se filtraron a través de un filtro de 40 micras. Se cargaron hasta 2 x 10⁸ células totales (10⁸ células positivas) en una Columna LS+ (Miltenyi Biotec Núm. de Cat 130-042-401) y se recogió el eluyente como la fracción CD 90°.

20

25

30

35

40

Antes de llevar a cabo la fusión, las cámaras de fusión se esterilizaron con etanol del 70%, después se secaron al aire en una campana estéril. Si se había realizado el enriquecimiento de células B, se combinaron 1:1 mieloma y células CD 90 y se mezclaron bien en un tubo de 50 ml. Cuando no se había realizado el enriquecimiento de células B, se combinaron mieloma y esplenocitos o PMN en una proporción 1:2,5. Se añadió medio sin suero hasta 40 ml y las células se centrifugaron a 2000 rpm durante 5 minutos. Los sedimentos celulares se lavaron dos veces en 25 ml de tampón de fusión isoosmolar (ECF). Las células se resuspendieron en un volumen de ECF para dar una concentración final de 2x10⁶ a 1x10⁷ por ml. Se transfirieron 2 ml de las células suspendidas a la cámara de fusión de 2 ml, y se conectaron los cables. Se aplicaron 60 V de CA durante 30 segundos, seguido de 3 pulsos sucesivos separados 1 segundo de 1500 V de CC durante 30 microsegundos, seguido de 60 V de CA durante 3 segundos. Durante este procedimiento la exposición de las células al tampón de fusión isoosmolar; incluyendo lavados, se mantuvo durante 3 horas o menos. Después de la fusión, siempre se permitió que las células se asentaran sin interrupciones en la cámara de fusión a temperatura ambiente durante 15-45 minutos antes de continuar.

Las células fusionadas se retiraron de la cámara de fusión y se resuspendieron a 1-5x10 5 células/ml en medio de BD Quantum Yield (Becton Dickinson) que contenía FBS con bajo contenido de IgG al 15% (Gibco), 1x PSG (Gibco), 55 μ m de β -mercaptoetanol (Gibco), 1x OPI (Sigma) y factor de clonación Origen al 5% (Igen International). En experimentos que involucraban el compañero de fusión Y3Ag1.2.3, se sustituyó el factor de clonación Origen por 1 ng/ml de IL-6. Los pocillos individuales de placas de cultivo de 96 pocillos (Falcon) se sembraron con 100 μ l de las células y se incubaron a 37°C en CO₂ al 6,5%. Al día siguiente, se añadieron 100 μ l del mismo medio que contenía 1xHAT (Sigma) a cada pocillo y las placas se incubaron durante 7 días más, después de lo cual el medio se retiró y se reemplazó por 200 μ l del mismo medio. El escrutinio de ELISA se realizó después de un total de 10-14 días de incubación.

Todas las fusiones se realizaron en Cytopulse Sciences Cytofusion Medium C Cell (Núm. de Cat. CPS-LCM). La fusión celular con las células de mieloma se llevó a cabo como sigue, utilizando ECM 2001 y Enhancer 400 Pulse Monitor. Las condiciones utilizadas se muestran a continuación en la Tabla 5.

Tabla 5

Condición	Ratón (SP2/0-ECF-F)	Rata (Y3-ECF-F)
Alineamiento:	60v, 30 seg	60v, 30 seg
Rotura de la membrana:	1500V, 30µs, 3X	2000V, 30µs, 3X
Pulso post-fusión:	60V, 3 seg	60V, 3 seg

Generalmente, los linfocitos fusionados se congelaron directamente después de la fusión para su posterior análisis.

Para la congelación, se sembraron matraces t-150 con híbridos recién fusionados a una densidad de células de mieloma de entre 1-3x10⁵/ml en medio de fusión, a continuación, se incubaron durante la noche a 37°C. Al día siguiente, las células se cosecharon y se congelaron en un FBS al 90% que contenía DMSO al 10%.

Ejemplo 2

10

15

25

30

35

40

Aislamiento de hibridomas que producen anticuerpos neutralizadores contra Dkk-1

Los hibridomas descritos en el Ejemplo 1 se escrutaron en primer lugar utilizando un análisis ELISA. Se prepararon placas para el ELISA mediante la adición de 50 µl de una muDkk-1 recombinante de 1-5 µg/ml en disolución salina tamponada con fosfato (PBS; GIBCO) a cada pocillo de una placa de ELISA de alta unión (COSTAR®) durante 1 hora. A continuación, los pocillos se incubaron durante 1 hora con 200 µl de PBS que contenía albúmina de suero bovino al 1% (BSA) y de suero de cabra al 1% (GIBCO) para bloquear la unión no específica de los sobrenadantes de los hibridomas. Las placas se lavaron con PBS, se añadieron 40 µl de sobrenadante de hibridoma a cada pocillo, a continuación, se incubaron las placas durante una hora. Después de otro lavado con PBS, se añadieron 50 µl de una dilución 1:10.000 de anti-mulgG de cabra (específico de Fc) que se había conjugado con HRP (Pierce) o anti-IgG H + L de rata de cabra conjugado con HRP (Zymed) a cada pocillo y las placas se incubaron durante 1 hora a temperatura ambiente. Las placas se lavaron de nuevo en PBS, después de lo cual se añadieron 50 µl de sustrato ABTS (2,2'-azino-bis(ácido 3-etilbenzotiazolino-6-sulfónico; KPL) por pocillo. Este sustrato produce un producto de color verde soluble en agua tras la reacción con HRP. La densidad óptica se leyó usando un lector de placas Spectramax (Molecular Devices) y los datos se interpretaron utilizando el programa Softmax pro (Molecular Devices). La siguiente Tabla 6 muestra el número de clones positivos para el ELISA obtenidos a partir de cada categoría de animales inmunizados. Todos los hibridomas reactivos con el antígeno se expandieron en cultivo celular para la producción y el ensayo adicional de los anticuerpos.

Tabla 6

Anticuerpo	Antígeno	Fuente de linfocitos	Animales	Positivo para el ELISA	Positivo para el análisis de luciferasa
mDkk-1 de ratón	mDkk-1	Ganglios linfáticos periféricos	2 x ratones transgénicos AGP3, 2 x Balb/C	9	3
mDkk-1 de rata	mDkk-1	Ganglios linfáticos periféricos	2 x ratas Lewis	48	7
mDkk-1 de ratón	mDkk-1 conjugada con PADRE	Bazo	2 x C57BL/6	78	0
mDkk-1 de ratón	mDkk-1 conjugada con PADRE	Ganglios linfáticos periféricos	3 x C57BL/6	593	0

20 A. Análisis TCF/lef-luciferasa

Se sometieron a ensayo varios cientos de los hibridomas obtenidos como se ha descrito en el Ejemplo 1 utilizando un constructo informador TCF/lef-luciferasa en el que la expresión de luciferasa está bajo el control de Wnt. Cuando las células transfectadas con este constructo se exponen a Wnt biológicamente activa, se induce la actividad luciferasa. La actividad luciferasa inducida por Wnt se puede suprimir mediante la adición de proteína Dkk-1 recombinante a las células que contienen este constructo. Para los presentes experimentos, se añadieron primero tanto Wnt3a como Dkk-1 a las células en cantidades optimizadas para suprimir aproximadamente el 80% de la expresión de la luciferasa dependiente de Wnt. Se espera que la nueva adición de un anticuerpo anti-Dkk-1 a estas mismas células restaure la actividad Wnt, lo que da como resultado de este modo un aumento de la expresión de luciferasa. Los sobrenadantes de los hibridomas se sometieron de este modo a ensayo para determinar si eran capaces de restaurar la expresión de luciferasa en las células transfectadas con el constructo Wnt/luciferasa. La actividad luciferasa se cuantificó como se describe a continuación.

El día cero, se cultivaron en placa células 293T recién tripsinizadas a 2,5x10⁴ células/pocillo en placas de 96 pocillos recubiertas con fibronectina. A continuación las células se co-transfectaron con ADN que codificaba luciferasa de luciérnaga y ADN que codificaba luciferasa de Renilla. El día 1, para cada pocillo, se mezclaron 10 ng de ADN de TCF/lef-luciferasa (TOPflash de Upstate, Núm. 21-170) y 1 ng de ADN de luciferasa de Renilla (pRL-TK; Promega Núm. E2241) en 30 µl de DMEM (menos antibiótico) con 20 µl de reactivo de transfección Polyfect[®] 1:10 (Qiagen 301107) y se incubaron durante 10 minutos a temperatura ambiente para permitir la formación de un complejo Polyfect-ADN. Después de esta incubación, se añadieron 100 µl de medio de crecimiento al complejo. A continuación, se retiró el medio de cultivo de cada pocillo y se añadió al pocillo el complejo en medio de crecimiento. El medio de crecimiento de los pocillos se retiró tres horas más tarde y se reemplazó por medio acondicionado.

Después de tres días, las células se lavaron una vez con PBS, y se añadieron a cada pocillo 40 µl del tampón de lisis pasiva recién elaborado incluido en el kit Dual Luciferase (Promega Núm. PAE1960). El tampón de lisis pasiva también se encuentra disponible por separado de Promega (Núm. E1941). Las placas se sacudieron durante 20 minutos a temperatura ambiente para inducir la lisis. Se utilizaron 10 µl de producto lisado por análisis para llevar a cabo el análisis Dual Luciferase en placas de 96 pocillos de color blanco (VWR 62402-980), utilizando Promega Núm. PAE1960 de acuerdo con el protocolo del fabricante. Utilizando Lmax de Molecular Devices (luminómetro con inyectores duales), se registraron las señales luminiscentes de las luciferasas tanto de luciérnaga como de Renilla y se utilizó la proporción de esas señales para determinar la CE50 y para trazar curvas de dosis-respuesta. En primer lugar, el sustrato de la luciferasa de luciérnaga se inyectó en un pocillo con producto lisado celular y se registró la señal luminiscente; a continuación se inyectó el sustrato de luciferasa de Renilla en el mismo pocillo y se registró la segunda señal luminiscente resultante. La Tabla 2 anterior informa sobre los números de hibridomas que indujeron un resultado positivo en este análisis, indicando de ese modo que los anticuerpos monoclonales que producían eran capaces de neutralizar Wnt.

Escrutinio de hibridoma utilizando un análisis de células ST2

5

10

25

30

35

40

45

50

Se utilizó la línea celular de estroma ST2 (RIKEN, Cell RCB0224), derivada de la médula ósea de ratón, para el escrutinio adicional de los hibridomas que dieron positivo en el análisis de luciferasa. En respuesta a la señalización Wnt3a, células ST2 se diferencian en osteoblastos que expresan proteína marcadora de osteoblastos fosfatasa alcalina (ALP). La inducción de ALP por Wnt3a en estas células se puede bloquear mediante la adición del inhibidor de Wnt Dkk-1 al medio de cultivo. La expresión de ALP media se puede restaurar en estas condiciones exponiendo las células a un agente capaz de neutralizar la actividad de Dkk-1, tal como un anticuerpo neutralizador anti-Dkk-1. Por consiguiente, los hibridomas se escrutaron para determinar su capacidad para restaurar la actividad de ALP en células ST2 en presencia de Wnt3a.

En la preparación para el análisis, las células ST2 se cultivaron en MEM- α , que contenía suero bovino fetal al 10%, 1 x penicilina/estreptomicina/glutamina y 1 x piruvato de sodio (todos estos reactivos se obtuvieron de GIBCO). Las células se cultivaron en placa a 1 x 10^4 células/pocillo en placas de 96 pocillos con 22 μ l de medio de cultivo por pocillo. Las células se incubaron durante la noche durante un máximo de 24 horas a 37°C en una incubadora humidificada con CO_2 al 5%.

En el día cero del análisis, se añadieron a cada pocillo 200 ng de Dkk-1 murina o humana recombinante a 20 μl de tampón más 20 μl de medio acondicionado con Wnt3a derivado de una línea celular estable L-Wnt3a murina. El medio condicionado proporcionó una fuente de Wnt3a. Estas cantidades de estos dos reactivos (es decir, Dkk-1 y Wnt3a) se ajustaron entre sí para permitir aproximadamente 10% de todo el intervalo dinámico de la expresión de ALP en estas células. A continuación, cada anticuerpo que se iba a someter a ensayo se tituló en DMEM a intervalos 1:2 para determinar su capacidad para restaurar la actividad de ALP. En el extremo superior del intervalo de prueba, cada pocillo recibió 100 μg de anticuerpo por ml. El anticuerpo policlonal anti-Dkk-1 humana de cabra (R & D Systems, Núm. de Cat: AF1096) sirvió como control positivo. Se utilizó como control negativo cualquier medio acondicionado transfectado de manera simulada o el medio de cultivo ST2 descrito anteriormente. Después de la adición de anticuerpo o medio de control, las placas se incubaron a 37° durante 72 horas.

El día 3, los medios se retiraron y las células se enjuagaron con Tris 0,1 M (pH 7,4). A continuación, se añadieron por pocillo 150 μl de Igepal CA-630 al 0,1% (Sigma: Núm. de Cat. I-3021) en tampón de glicina, después de lo cual las placas se congelaron a -80°C y después se descongelaron. Una vez descongeladas, se transfirieron 100 μl de cada producto lisado celular a nuevas placas de 96 pocillos que iban a analizar para determinar la ALP. Como sustrato, se añadieron 100 μl de p-nitrofenol fosfato disódico de 4 mg/ml (Sigma: Núm. de Cat. 104-40) en tampón de glicina (glicina 0,1 M, MgCl₂ 1 mM, pH 10,5) por pocillo a una concentración de sustrato final de 2 mg/ml. Tras la hidrólisis por ALP, este sustrato produce p-nitrofenol, que tiene un color amarillo. Las placas se incubaron a continuación durante 30 minutos a 37C para permitir la hidrólisis del sustrato por ALP. Después de esta incubación, las reacciones se detuvieron mediante la adición de 50 μl de NaOH 0,5 N por pocillo. Las placas se leyeron a 405-410 nM. El análisis de ALP se normalizó utilizando BCA Protein Assay, realizado de acuerdo con las instrucciones del fabricante (Pierce Núm. de Cat 23223, 23224). La normalización (nmoles PNP /mg de proteína) se llevó a cabo para compensar la variación del número de células encontrada en cada pocillo que podría interferir en la determinación de la inducción de la fosfatasa alcalina real.

Los resultados del análisis de ALP se compararon con los controles positivos y negativos y los resultados se refirieron en la Tabla 7. Los datos de la Tabla 7 indican que del gran número de clones sometidos a ensayo, los dos que expresaban la actividad de neutralización más potente fueron 1F11-2 y 11H10, ambos derivados de rata.

Tabla 7

Fuente de anticuerpos	Dkk-1 de ratón	Dkk-1 humana
	CE50 (nM)	CE50 (nM)
Monoclonal de Ratón		
5H6-1	2068	479
7D6-1	490	1465
7D6-3	770	533
10A7-1	272	1032
10A7-3	276	63
Monoclonal de rata		
1F11-1	18,3	33,8
1F11-2	24,0	25,5
4A3	1113	1128
6d8	5908	8852
7H52	2706	481
8D11	604	1567
8D12	1346	537
13F41	190	1027
13F42	2549	2183
11H10	6,1	3,5
Policional de Cabra		
R&D	57,9	14,1

En resumen, se escrutaron un total de 19.250 hibridomas en el análisis ELISA. De estos, 728 se unieron a Dkk-1 en los análisis de ELISA y 10 fueron positivos en uno o ambos análisis de neutralización (análisis de informador TCR/lef o análisis de células ST2). Los datos de la Tabla 7 indican que de los clones positivos, el clon 11H10 tuvo la mejor actividad. Por ejemplo, el clon 11H10 tuvo una CE_{50} de 3,5 nM frente a Dkk-1 humana 8 nm y una CE_{50} de 6,1 nM frente a Dkk-1 murina 8 nm.

Ejemplo 3

5

10

Unión de afinidad de anticuerpos monoclonales contra Dkk-1

Como se observó anteriormente, los hibridomas que mostraban la mejor actividad neutralizadora de Dkk-1 en los análisis basados en células fueron 11H10 y 1F11 derivados de rata (véase el Ejemplo 2). El anticuerpo 11H10 es del isotipo IgG₁. Este ejemplo ilustra que estos dos anticuerpos se unen ambos con alta afinidad a Dkk-1 murina, de rata y humana. En consonancia con su mejor actividad neutralizadora, el clon 11H10 también tuvo una afinidad superior por Dkk-1 en estos análisis que 1F11.

Se realizaron análisis cinéticos para estudiar la unión de los anticuerpos 11H10 y 1F11 a Dkk-1 utilizando BiaCore 2000 (BIACORE, Uppsala, Suecia). Se inmovilizaron Dkk-1 de rata (260 µg/ml), Dkk-1 murina (690 µg/ml) y Dkk-1 humana (900 µg/ml) sobre la superficie de un chip CM5, y se inyectaron diversas concentraciones (de 0,78 nM a aproximadamente 100 nM) de los anticuerpos sobre las superficies con Dkk-1 inmovilizadas. Los sensogramas de unión se analizaron utilizando BIAevaluation 3.2. Los datos se resumen en las Tablas 8 y 9 a continuación.

Tabla 8. Cinética de unión de 1F11 determinada mediante BiaCore

	Dkk-1 de rata	Dkk-1 de ratón	Dkk-1 humana
k _a (1/Ms)	1,4 x 10 ⁵	1,2 x 10 ⁵	1,2 x 10 ⁵
k _d (1/s)	3,1 x 10 ⁻⁴	3,6 x 10 ⁻⁴	3,3 x 10 ⁻⁴
Kd (M)	2,2 x 10 ⁻⁹	2,9 x 10 ⁻⁹	2,8 x 10 ⁻⁹

Tabla 9. Cinética de unión de 11H10 determinado mediante BiaCore

	Dkk-1 de rata	Dkk-1 de ratón	Dkk-1 humana
k _a (1/Ms)	5,4 x 10 ⁴	5,4 x 10 ⁴	5,2 x 10 ⁴
k _d (1/s)	1,54 x 10 ⁻⁵	<5 x 10 ⁻⁵	<5 x 10 ⁻⁵
K _d (pM)	290	<100	<100

Resultó evidente a partir de los resultados de BiaCore que 11H10 tenía la mayor afinidad por Dkk-1, y que su afinidad por la diana excedió los límites de sensibilidad del análisis BiaCore. Por consiguiente, se evaluó adicionalmente la afinidad de unión de 11H10 a Dkk-1 mediante un análisis de unión en equilibrio utilizando el KinExA® 3000 más sensible (Sapidyne Instruments Inc., Boise, ID). Para estas mediciones, se recubrieron previamente cuentas Reacti-Gel 6X (Pierce, Rockford, IL) con Dkk-1 de ratón, de rata o humana y se bloquearon con BSA. Se mezclaron 100 pM, 300 pM, o 1000 pM del anticuerpo 11H10 con diversas concentraciones de Dkk-1 humana, de ratón o de rata, con una concentración que oscilaba de 1 pM a 50 nM, y se equilibraron a temperatura ambiente durante 8 horas. A continuación las mezclas se hicieron pasar sobre las cuentas recubiertas con Dkk-1. Se cuantificó la cantidad de anticuerpo anti-Dkk-1 unido a las cuentas utilizando un anticuerpo anti-IgG de rata de cabra marcado con una etiqueta fluorescente (Cy5; Jackson Immuno Research, West Grove, PA). La cantidad de señal fluorescente medida fue proporcional a la concentración de anticuerpo anti-Dkk-1 libre en cada mezcla de reacción en equilibrio. La constante de disociación en equilibrio (K_d) se obtuvo a partir de la regresión no lineal de las curvas de competición utilizando un modelo de unión homogénea de curva dual de un sitio usando el programa KinExA. Los resultados de los análisis RinExA para 11H10 indicaron que la K_d para la Dkk-1 humana fue de 1,3 x 10⁻¹⁰ M, y para la Dkk-1 de ratón y de rata fue de 1,65 x 10⁻¹⁰ M y 5,4 x 10⁻¹⁰ M, respectivamente.

Los estudios cinéticos de unión se llevaron a cabo con varias combinaciones diferentes de las cadenas ligeras y las cadenas pesadas (pares idénticos de cada cadena) enumeradas en la Tabla 1 anterior. En general, estos anticuerpos tienen valores de k_a entre 10^4 y 10^6 /Mxsegundos, y unos valores k_{off} (k_d) de entre 10^{-4} y 10^{-5} s⁻¹.

Eiemplo 4

5

10

15

20

25

30

35

40

Ensayo in vivo de hibridoma 11H10

Se llevaron a cabo experimentos para determinar si la neutralización de Dkk-1 en un modelo animal de ratón joven causaría un aumento en la densidad mineral ósea (DMO) y en la osteocalcina en suero, un marcador de formación ósea.

Para estos experimentos, el anticuerpo 11H10 se purificó a partir del medio de células de hibridoma 11H10 cultivadas. El medio de cultivo recogido se concentró 12 veces utilizando un dispositivo de ultrafiltración Pellicon (Amicon) equipado con un casete de pantalla de canal MWCO de 50 kD (Millipore). El medio concentrado se filtró a través de un filtro de poro de 0,2 µm, después se unió a Protein G Sepharose (Pharmacia). Después de lavar la Protein G Sepharose con al menos cuatro volúmenes de PBS, el anticuerpo se hizo eluir con tampón de elución de IgG (Pierce), después, se tamponó a pH neutro mediante la adición de Tris-HCl 1M al 5% v/v. A continuación, el anticuerpo se dializó frente a PBS. El producto dializado se filtró a través de un filtro de 0,2 µm y se sometió a ensayo para determinar la endotoxina con viales de 0,06 UE/ml Pyrotell LAL (Associates of Cape Cod). La concentración de proteína en el anticuerpo purificado se determinó mediante absorbancia a 280 nm utilizando un coeficiente de extinción de 1,35.

A ratones BDF-1 macho de cuatro semanas de edad (APR 233.757, Charles River) se les inyectó subcutáneamente a lo largo de un periodo de tres semanas una de tres dosis del anticuerpo monoclonal 11H10 purificado (5, 10 ó 20 mg/kg), como se indica en la tabla 10. Se utilizaron cinco ratones por grupo. A los ratones de control negativo se les inyectó vehículo (PBS), y los ratones de control positivo se les inyectó hormona paratiroidea (aminoácidos 1-34), que es conocida por estimular el aumento de densidad ósea en estos ratones (Dempster et al., Endocrine Reviews 14 (6): 690-709 (1993)). Se utilizaron 100 μg/kg de PTH (1-34) en HCl 0,001 N, NaCl 0,15 M, BSA al 2%, pH 8,0 por inyección. Este experimento se repitió una segunda vez exactamente como se muestra en la Tabla 10, pero con un

grupo adicional de ratones de control negativo que recibieron 20 mg de IgG de rata. Además, estos experimentos se han repetido con 11H10 expresado recombinantemente.

Tabla 10

Grupo	Dosis	Programa	N
Vehículo	1xPBS	3x/semana MWF	5
Control de PTH	PTH B.	5x/semana MF	5
PTH	100 μg/kg	5x/semana MF	5
11-H-10	5 mg/kg	3x/semana MWF	5
11-H-10	10 mg/kg	3x/semana MWF	5
11-H-10	20 mg/kg	3x/semana MWF	5

Se recogió sangre al inicio del estudio (día 0) y los días 3, 5, 7, 14 (retro-orbital), y el día 21 (punción cardíaca terminal) para los análisis de osteocalcina y paneles de química clínica.

Los niveles de osteocalcina en suero se determinaron utilizando un análisis kit de inmunorradiométrico (IRMA) específico para la osteocalcina de ratón (Immunotopics, Inc. San Clemente, CA). Las muestras de suero antes del análisis se equilibraron a temperatura ambiente y todos los análisis se realizaron por duplicado. Los análisis emplearon dos anticuerpos diferentes para osteocalcina de ratón. El primero fue un anticuerpo de cabra policional purificado por afinidad que reconoce la región media del extremo C-terminal de la molécula de osteocalcina; este anticuerpo se inmovilizó sobre cuentas de plástico para ser utilizado como reactivo de captura. El otro anticuerpo fue un anticuerpo policional purificado por afinidad que reconoce el extremo amino terminal de la molécula de osteocalcina, este anticuerpo se marcó radiactivamente para su uso en la detección de la osteocalcina. Las muestras de suero de ratón se incubaron con una cuenta recubierta de anticuerpo y el anticuerpo marcado con temperatura ambiente durante 18 a 24 horas para permitir que la osteocalcina se uniera al anticuerpo inmovilizado y el anticuerpo radiomarcado formara un "sándwich" unido a las cuentas marcadas. Después de la incubación, las cuentas se lavaron dos veces para eliminar el anticuerpo marcado no unido, se contaron en un contador gamma, y las cuentas se corrigieron para el fondo. En estos análisis, la reactividad del compleio de anticuerpo fue directamente proporcional a la cantidad de osteocalcina de ratón en el suero. Las concentraciones de osteocalcina de ratón en las muestras se determinaron directamente a partir de una curva patrón generada a partir de la osteocalcina de control proporcionada para este propósito en el kit.

Al rededor del día 3 y a partir de entonces, todas las dosis de 11H10 habían inducido un aumento de la osteocalcina en comparación con los ratones tratados con vehículo. La magnitud del aumento era dependiente de la dosis. Para las dosis de 10 mg/kg y de 20 mg/kg, la magnitud del aumento fue estadísticamente significativa frente al vehículo el día 5, y para la dosis de 20 mg/kg, se mantuvo estadísticamente significativa el día 7. Para todas las dosis administradas, se observó una inducción de osteocalcina tan pronto como tres días después de que hubiera comenzado el tratamiento con 11H10 y las magnitudes de los aumentos globales observados fueron similares a o mayores que la observada en los animales tratados con PTH.

Para el análisis de la DMO, se tomaron radiografías de ratón completo al final de la primera, segunda y tercera semanas a 56 kVp durante 49 segundos utilizando un sistema de rayos X Faxitron Núm. 43855A (Buffalo Grove, IL) y Película Kodak X-OMAT TL (Rochester, NY). Las películas de rayos X resultantes se inspeccionaron visualmente para determinar el aumento de densidad ósea en 10 huesos diferentes. No se observaron aumentos en los grupos tratados con vehículo o tampón de PTH. Sin embargo, los grupos tratados con PTH (1-34) o 11H10 mostraron un incremento de la densidad en cinco o más huesos en una semana, y en la mayoría de los diez huesos al final de la semana tres.

Al final del periodo de inyección de tres semanas, se llevó a cabo el análisis DMO pQCT en la metáfisis proximal de la tibia y se midió para determinar la densidad total, trabecular y cortical. La DMO total medida mediante pQTC mostró una respuesta positiva a la dosis más alta de 11H10, en su mayor parte debida a un aumento de la DMO trabecular. La Tabla 11 presenta las mediciones de la DMO obtenidas en uno de los dos experimentos que se habían llevado a cabo. Se obtuvieron resultados similares en ambos experimentos. Los números de la Tabla 11 representan el porcentaje de cambio en comparación con el control de vehículo. Los asteriscos de la Tabla 11 indican que hubo una diferencia estadísticamente significativa entre el grupo con 11H10 y el grupo de control (ANOVA p <0.05). En general, la cantidad de aumento de DMO inducida por 11H10 fue comparable a la cantidad de aumento inducida por el control positivo de PTH (1-34).

10

15

20

25

30

35

40

Tabla 11. Densidad mineral ósea en los ratones tratados con 11H10

% de Camb	io en Comparación con Raton	nes a los que se Había Inyecta	do Vehículo
Dosis de 11H10	Densidad total (metáfisis tibial proximal)	Densidad trabecular (metáfisis tibial proximal)	Densidad cortical (metáfisis tibial proximal)
5 mg/kg	4,1	9,8	-0,49
10 mg/kg	10,2	16,8 *	0.59
20 mg/kg	12,2 *	19,5 *	4,3
PTH-(1-34) 100 μg/kg	10,6	16,7	7,9
Control con Tampón PTH	-2,2	2,0	-5,3

Ejemplo 5

5

10

15

30

35

Ensayo in vivo de diferentes anticuerpos

Para facilitar aún más la capacidad de neutralizar Dkk1 para aumentar la masa ósea se trataron ratones tanto jóvenes (6 semanas de edad) como viejos (8,5 meses de edad) con 11H10 de rata como se ha descrito anteriormente en el Ejemplo 4. Los ratones se analizaron para determinar los cambios de DMO mediante pQCT y microCT (μCT). Para μCT, se examinaron arquitectura trabecular y la geometría cortical en los fémures de ratón utilizando un eXplore Locus SP Micro-CT System (GE Healthcare, Waukesha, Wisconsin, USA). Los fémures se colocaron en crio-tubos de 2 ml con un fantasma de densidad ósea, cargados con PBS, y se estabilizaron con una gasa. Los fémures completos se escanearon a rotaciones 0,5° durante 200° (80 kVp, 80 uA) calibrados con el fantasma de densidad y se reconstruyeron para producir imágenes con un tamaño de voxel de 18 x 18 x 18 μm.

Las regiones de interés se analizaron para determinar los parámetros morfométricos y de densidad corticales y trabeculares (programa GEHC MicroView). El 10% central (en longitud) de la diáfisis del fémur se analizó para determinar los perímetros medios del endostio y el periostio, así como de la zona cortical y la DMO volumétrica (umbral = 640 mg/cc). Las regiones de hueso trabecular del fémur distal se aislaron y se analizaron para determinar la DMO y los parámetros de estereología, incluyendo la fracción volumétrica del hueso (BV/TV), el espesor trabecular (Tb.Th), el número trabecular (Tb.N), y la DMO volumétrica (umbral = 320 mg/cc). Estas regiones se seleccionaron basándose en la longitud del fémur (10% de la longitud) y se situaron próximas a la esponjosa de la placa de crecimiento.

Tanto pQCT como μCT mostraron cambios significativos en la DMO en ratones jóvenes y viejos tratados con 11H10 de rata. Además, μCT permitió demostrar que la actividad neutralizadora de Dkk1 con 11H10 rata conducía a aumentos significativos en el número trabecular en ratones tanto jóvenes como viejos (Figura 2). La dosis más alta de 11H10 de rata en los ratones viejos dio como resultado en una disminución en el perímetro del endostio, lo que indica que 11H10 de rata también afectaba positivamente al crecimiento del hueso cortical, además del hueso esponjoso.

Para determinar si la neutralización de Dkk1 podía ayudar a restaurar la pérdida de hueso debida a la falta de estrógenos, se trataron ratones oviarectomizados (OVX) con 11H10 de rata (3, 10, 30 mg/kg dos veces por semana mediante inyección subcutánea). En el experimento se trataron ratones CDF-1 de 7 meses de edad, 5 meses después de la OVX, con 11H10 de rata, PTH (100 mg/kg) o vehículo. La DMO se analizó mediante pQCT en el período inicial, el día 7, 14, 21 y 28. Los datos del día 28 se muestran a continuación como el porcentaje de cambio desde el momento inicial para la tibia y las vértebras lumbares (Figura 3).

En un experimento separado, se determinó la eficacia del isotipo h11H10 RT IgG1 y el isotipo h11H10 RT IgG2 (véanse las Tablas 1 y 2 para las secuencias de las cadenas ligeras y pesadas y las regiones variables) en ratones jóvenes utilizando un protocolo similar al descrito anteriormente con la modificación de que se compararon el isotipo h11H10 RT IgG1 y el isotipo h11H10 RT IgG2 con 11H10 de rata y PTH (Figura 4). Los datos indican que estos dos anticuerpos también aumentaron la DMO, según se determinó mediante análisis DEXA, en ratones.

Los resultados de los experimentos descritos anteriormente indican que la neutralización de la actividad de Dkk-1 con algunos de los anticuerpos descritos en la presente memoria tiene un efecto anabólico sobre la formación de hueso.

40 Ejemplo 6

Caracterización de epítopos de Dkk-1 humana que se unen al anticuerpo 11H10

La Dkk-1 humana contiene dos dominios ricos en disulfuro situados cerca del extremo N y cerca del final del extremo C, referidos aquí como dominios disulfuro N- y C-terminales. El dominio disulfuro N-terminal (referido más adelante "dominio disulfuro 1") contiene 55 residuos de aminoácidos (aminoácidos 85-139 del SEC ID NO: 2) y tiene 10 cisteínas que forman enlaces 5 disulfuro intramoleculares. El dominio disulfuro C-terminal (referido más adelante "dominio disulfuro 2") contiene aproximadamente 75 aminoácidos (aminoácidos 189 a 263 del SEC ID NO: 2) y contiene 10 cisteínas que forman 5 puentes disulfuro intramoleculares, que dan como resultado la formación de siete bucles en la proteína completamente plegada (véase la Figura 1). Se ha propuesto que el dominio disulfuro 2 de Dkk-1 tiene una estructura molecular similar al plegamiento de la colipasa canónica, cuya estructura cristalina ha sido determinada utilizando colipasa porcina (Aravind, A. y Koonin, E.V., *Current Biology* 8: R477-479 (1998)). Los siete bucles del dominio disulfuro 2 de la Dkk-1 humana consisten de los aminoácidos 190-194, 196-199, 202-209, 211-219, 221-236, 240-244 y 246-262 del SEC ID NO: 2.

El tratamiento con un agente reductor anuló la capacidad de Dkk-1 para unirse a 11H10, lo que indica que el epítopo elegido como diana por este anticuerpo era conformacional y requería el mantenimiento de al menos algunos de los enlaces disulfuro de esta proteína. Para caracterizar este epítopo conformacional, se aplicó una estrategia que implicaba fragmentar Dkk-1 humana con bromuro de cianógeno (CNBr) y varias proteasas diferentes, a continuación, sometiendo a ensayo después los fragmentos resultantes para ver si todavía se podían unir al anticuerpo 11H10. Los datos resultantes permitieron determinar la localización del epítopo. En resumen, se incubaron los productos digeridos del péptido con o sin el anticuerpo, se hicieron pasar a través de una membrana de corte 10 K para atrapar cualquiera de los péptidos que se habían unido al anticuerpo (~ 150.000 Da), después se sometió a mapeo de péptidos mediante HPLC. Una reducción de la altura de un pico de la HPLC en una muestra expuesta a anticuerpo indicó que los péptidos de ese pico se habían unido al anticuerpo y por lo tanto formaban parte del epítopo. Se recogieron los picos de la HPLC individuales y los péptidos se identificaron y mapearon mediante secuenciación N-terminal. Para determinar si los péptidos se podrían unir a 11H10, se sometieron a análisis de interacción bioespecífica en tiempo real con una estación de trabajo BiaCore, utilizando anticuerpo anti-Dkk-1 atrapado con Proteína A como biosensor para la unión.

Todos los análisis de HPLC para estos estudios se llevaron a cabo utilizando una columna C5 de fase inversa (1 mm d.i. x 10 cm de longitud). El mapeo del péptidos por HPLC se realizó con un gradiente lineal de ácido trifluoroacético al 0,05% (fase móvil A) a acetonitrilo al 90% en ácido trifluoroacético al 0,05%. Las columnas se desarrollaron durante 70 minutos a una velocidad de flujo de 0,15 ml/min.

30 Digestión CNBr

10

15

20

25

35

40

45

50

55

La escisión con CNBr de hDkk-1 generó dos fragmentos grandes, CNBr1 y CNBr2. Estos representaron, respectivamente, el dominio disulfuro 2 y el dominio disulfuro 1. CNBr1 consistió en dos péptidos (aminoácidos 179-206 del SEC ID NO: 2 y aminoácidos 207 a 266 del SEC ID NO: 2) mantenidos unidos mediante enlaces disulfuro. CNBr2 consistió de un modo similar en dos péptidos (aminoácidos 32-122 del SEC ID NO: 2 y aminoácidos 127 a 178 del SEC ID NO: 2), también mantenidos unidas mediante enlaces disulfuro. Los resultados del análisis BiaCore indicaron que 11H10 era capaz de unirse de manera significativa a CNBr1, pero no se unía en absoluto a CNBr2. De este modo, se concluyó que 11H10 se une a un epítopo localizado en el dominio disulfuro 2 de Dkk-1.

Digestión con tripsina

La Dkk-1 humana se digirió a continuación con tripsina, que escinde después de Arg y Lys. Se incubaron aproximadamente 200 μg de Dkk-1 a 0,5-1,0 mg/ml en PBS (pH 7,2) durante 20 horas a 37°C con 8 μg de una u otra de estas proteasas para lograr una digestión completa de la Dkk-1.

La cromatografía HPLC de los productos digeridos con tripsina produjo múltiples picos. Para determinar cual, si lo hubiera, de los fragmentos trípticos conservaba la capacidad de unirse al anticuerpo, el producto de la digestión se incubó con el anticuerpo 11H10 a una razón molar 1:2 a 0°C durante 2 horas. El anticuerpos y cualquiera de los péptidos unidos a él se capturaron sobre una membrana Microcon (peso molecular de corte 30000). Los péptidos en el flujo directo del filtro Microcon se analizaron mediante HPLC para determinar qué picos se reducían o eliminaban debido a haberse unido al anticuerpo. Los resultados de la HPLC para las muestras expuestas a anticuerpo se compararon con productos digeridos de control que se habían sometido a los mismos procedimientos sin 11H10. Como se comenta más abajo, ninguno de los fragmentos generados mediante la digestión con tripsina conservó la capacidad de unirse 11H10.

El análisis de la secuencia se llevó a cabo para identificar y mapear los péptidos en los picos recuperados de la HPLC después de la digestión con tripsina. Se confirmó que dos picos, Tryp40.5 (tiempo de retención 40,5 minutos) (~ 6-7 kDa) y Tryp45 (~8 kDa), contenían secuencias que mapeaban, respectivamente, el dominio disulfuro 2 y el dominio disulfuro 1. Ni Tryp40.5 ni Tryp45 se unieron a 11H10 cuando se sometieron a ensayo mediante la captura con la membrana Microcon o mediante experimentos de unión BiaCore. Tryp40.5 consistió en siete péptidos pequeños (6 a 12 aminoácidos de longitud) mantenidos juntos por los cinco enlaces de disulfuro de dominio disulfuro 2. Tres segmentos pequeños de la secuencia del dominio disulfuro 2 faltaban de Tryp40.5. Estas secuencias perdidas fueron los aminoácidos 204-208, 223-226 y 247-249 del SEC ID NO: 2). Puesto que Tryp40.5 no se puede

unir a 11H10, parece que uno o más de estos tres péptidos perdidos deben formar una parte esencial del epítopo al que se une este anticuerpo.

Digestión con Endo Lys C

10

15

20

25

30

35

45

50

55

La digestión de Dkk-1 humana con Endo LysC (escinde solo después de lys) también generó varios picos cuando se sometió a HPLC como se ha descrito anteriormente. Solo una fracción de HPLC, LysC48.7, mostró una reducción en la altura del pico cuando el producto de digestión se incubó con el anticuerpo antes del análisis mediante HPLC. LysC48.7 consistió en tres fragmentos peptídicos mantenidos juntos por los cinco enlaces disulfuro del dominio disulfuro 2. El análisis de la secuencia indicó que estos tres péptidos consistían en los aminoácidos 183-222, 227-249, y 250-266 del SEC ID NO: 2. El análisis de la secuencia reveló que LysC48.7 carecían solo de un segmento del dominio disulfuro 2, a saber, un péptido localizado en los aminoácidos 223-226 del SEC ID NO: 2. De este modo, LysC48.7 estaba estructuralmente más intacto que Tryp40.8, que carecía de los tres segmentos del dominio disulfuro 2.

La capacidad de 11H10 para unir las fracciones LysC se determinó usando el análisis de unión BIAcore. Solo la fracción LysC48.7 mostró alguna actividad de unión. La fracción LysC48.7 mostró una fuerte tasa de asociación de unión al anticuerpo. Sin embargo, la tasa de disociación fue muy rápida disminuyendo rápidamente la unión a los niveles de fondo. Estos datos indican que el epítopo diana para 11H10 no conservará la unión al anticuerpo cuando los aminoácidos 223-226 del SEC ID NO: 2 se recorten del dominio disulfuro 2. Por lo tanto, se concluyó que los residuos 223 a 226 pueden entrar en contacto directo con 11H10 cuando éste se une a Dkk-1 o que estos residuos son esenciales para mantener la estructura tridimensional que permite que el anticuerpo entre en contacto eficazmente otros residuos de aminoácidos en la inmediatas proximidades de los aminoácidos 223-226 de la proteína plegada.

Digestión con ASPN

Para definir con mayor precisión el epítopo de unión a 11H10, se digirió hDkk-1 con la proteasa ASPN y los fragmentos resultantes se analizaron como se ha descrito anteriormente. De los principales picos de la HPLC generados mediante digestión con ASPN, tres se redujeron en altura si el producto digerido se había expuesto previamente a 11H10, lo que indica que estos péptidos se habían unido al anticuerpo. Los picos que se unieron al anticuerpos fueron AspN48.7, AspN49.6 y AspN52. El análisis de secuencia indicó que estos tres picos reactivos con el anticuerpo derivaban del dominio disulfuro 2. AspN48.7 y AspN49.6 tenían una secuencia de aminoácidos idéntica y cada uno de ellos consistía en dos péptidos mantenidos juntos por los cinco enlaces disulfuro en el dominio disulfuro 2. La diferencia en la migración en la HPLC de estos dos picos se debió probablemente a la heterogeneidad de los radicales carbohidrato anclados a Asn₂₅₆. Estos dos péptidos consistían en los aminoácidos 166 a 231 y 232 a 266 del SEC ID NO: 2. AspN52 contenía solo un único péptido, correspondiente a los aminoácidos 166-266 del SEC ID NO: 2. De este modo, AspN52 es evidentemente un producto de digestión parcial cuya secuencia se solapa en gran medida con AspN48.7 y 49.6, aunque los dos últimos recibieron un recorte adicional entre Leu₂₃₁ y Glu₂₃₂ con respecto a AspN52. Este recorte se produce en el bucle que se encuentra entre los aminoácidos 221 y 236 del SEC ID NO: 2. Estos tres picos mostraron una unión significativa a 11H10 en los experimentos de captura Microcon y en el análisis de unión de Biacore. Estos datos indican que la interrupción del enlace peptídico entre los aminoácidos 231 y 232 de hDkk-1 (SEC ID NO: 2) no afecta a la capacidad de 11H10 para reconocer su epítopo diana.

40 Análisis de los resultados de la digestión

Los resultados anteriores indican que 11H10 se une a un epítopo no lineal de Dkk-1 humana localizado en el dominio disulfuro 2 de la proteína, y que el epítopo reside en los dos bucles grandes formados por enlaces disulfuro Cvs₂₂₀-Cvs₂₄₅, Cvs₂₃₀-Cvs₂₆₃ v Cvs₂₀₀-Cvs₂₃₇ del SEC ID NO: 2 (véase la Figura 1), Como se ilustra en la Figura 1. los dos bucles que forman el epítopo se encuentran entre Cys₂₂₀ y Cys₂₃₇ y entre Cys₂₄₅ y Cys₂₆₃, comprendiendo el cuerpo de los dos bucles por lo tanto los aminoácidos 221-236 y 246-262 del SEC ID NO: 2. La digestión con tripsina de Dkk-1 abrió los bucles Cys₂₂₀/Cys₂₃₇ y Cys₂₄₅/Cys₂₆₃ mediante la eliminación de los aminoácidos 223-226 y 247-249. Con estos dos péptidos eliminados, los productos de la digestión con tripsina no se pudieron unir a 11H10. Un tercer péptido (aminoácidos 204-208 del SEC ID NO: 2) también fue suprimido mediante la digestión con tripsina, pero se consideró que se encontraba fuera del epítopo porque las otras proteasas fueron capaces de reducir la unión del anticuerpo sin cortar el bucle en el que residen estos aminoácidos. La digestión con LysC, que redujo drásticamente la unión al anticuerpo, también abrió el bucle Cys₂₂₀/Cys₂₃₇ mediante la eliminación de los aminoácidos 223-226 del SEC ID NO: 2 y el bucle Cys₂₄₅/Cys₂₆₃ mediante la escisión de un solo enlace peptídico en Lys₂₄₉ (SEC ID NO: 2). De este modo, los resultados de la digestión con LysC implicaron de nuevo los bucles Cys₂₂₀/Cys₂₃₇ y Cys₂₄₅/Cys₂₆₃ en la unión a 11H10. La digestión AspN cortó en Glu₂₃₂ (SEC ID NO: 2) en el bucle Cys220/Cys237 sin reducir la unión del anticuerpo, lo que sugiere que la conservación de la conformación adecuada del epítopo no requería este bucle de estar absolutamente intacta. Sin embargo, este bucle es claramente importante porque, como se muestra arriba, la eliminación de los aminoácidos 223-226 del SEC ID NO: 2 por LysC de este mismo bucle destruyó la unión del anticuerpo.

De acuerdo con estos análisis, el epítopo que se une a 11H10 está localizado en las proximidades de los bucles Cys₂₂₀/Cys₂₃₇ y Cys₂₄₅/Cys₂₆₃ en el dominio disulfuro 2, por lo tanto, los aminoácidos 220-237 y los aminoácidos 245-263 del SEC ID NO: 2 son muy importantes para la unión del anticuerpo. Los bucles formados por los otros enlaces disulfuro de este agrupamiento de disulfuros en el dominio C-terminal no parecían estar implicados en el reconocimiento por este anticuerpo. Los resultados muestran también que los enlaces disulfuro de este dominio deben estar intactos para mantener el epítopo en una configuración que permita la unión del anticuerpo. Dentro del epítopo, las porciones mínimas que parecerían necesarias para conservar la unión incluirían los aminoácidos 221-229 del SEC ID NO: 2 (esto deriva del hecho de que la escisión en Glu₂₃₂ no tuvo ningún efecto sobre la unión) y los aminoácidos 246-253 del SEC ID NO: 2, como consideraciones estructurales indican que Asn₂₅₆ está conectada a grupos carbohidrato voluminosos que pueden ocultar los otros aminoácidos de este bucle de cara a la unión a 11H10.

Ejemplo 7

5

10

15

20

25

30

35

El anticuerpo 1F11 compite con 11H10 por la unión a Dkk-1

Se llevaron a cabo experimentos para determinar si el anticuerpo monoclonal 1F11 se podría unir al mismo epítopo en Dkk-1 que 11H10. Este asunto tenía interés debido a que estos anticuerpos monoclonales neutralizan la actividad biológica de Dkk-1. Como se muestra en la Tabla 12 a continuación, 1F11 neutraliza la actividad Dkk-1 de ratón, rata y humana en el análisis TCF-lef, aunque no tan bien como 11H10.

	CE50 (nM	M)	
Anticuerpo (200 ng/ml)	Dkk-1 de ratón	Dkk-1 de rata	Dkk-1 humana
11H10	11,5	5,0	4,0
1F11	62,6	21,2	19,5

Tabla 12

Los experimentos de competición entre 11H10 y 1F11 se llevaron a cabo utilizando BIAcore 2000, como se describió anteriormente. Se utilizaron chips BIAcore sobre los cuales se habían inmovilizado 11H10 o 1F11 para capturar Dkk-1 humana. Después de la etapa de captura, se inyectaron 1F11 o 11H10 sobre las superficies de los chips para ver si se podía lograr una unión adicional a Dkk-1. En estos experimentos, ninguno de los anticuerpos inyectado sobre los chips fue capaz de unirse a la Dkk-1 humana capturada, es decir, 11H10 no fue capaz de unirse a Dkk-1 humano que había sido capturada por 1F11, ni 1F11 pudo unirse a Dkk-1 humana que había sido capturada por 11H10. Estos datos indican claramente que estos dos anticuerpos se unen al mismo epítopo en Dkk-1 humana, lo que sugiere que la elección como diana de este epítopo concreto es un método particularmente eficaz para neutralizar la actividad de Dkk-1.

Se llevaron a cabo otros experimentos para determinar si algunos de los otros anticuerpos, que incluían las cadenas pesadas y ligeras que figuran en la Tabla 1 (pares idénticos de cadenas pesadas y ligeras) podían competir por el mismo epítopo reconocido por 11H10 y 1F11 de rata y se encontró que lo hacían.

Ejemplo 8

11h10 bloquea la unión de Dkk-1 a LRP6

Para determinar si 11H10 estaba ejerciendo su efecto biológico al interferir con la interacción de Dkk-1 y LRP6, y por inferencia LRP5, se estableció un análisis de unión de Dkk-1 a LRP6 utilizando citometría de flujo. Este análisis utiliza una proteína de fusión LRP6-Fc obtenida comercialmente (R & D Systems, Núm. 1505-LR) y una Dkk-1 humana etiquetada con biotina amino-terminal. El constructo de fusión de Dkk-1 etiquetada con biotina se generó mediante clonación de ADN que codificaba hDkk-1, de modo que fuera expresada fusionada al extremo C de la biotina en un constructo de expresión de mamífero. Este constructo se transfectó de transitoriamente a células 293T y el medio acondicionado se recogió 48 horas después de la transfección.

Para determinar si 11H10 era capaz de interferir en la unión de Dkk-1 a LRP6, se añadió LRP6 al medio acondicionado con y sin 11H10. Después se añadieron cuentas de estreptavidina a esta preparación, lo que permitió la unión de la proteína de fusión de biotina Dkk1 a las cuentas. La unión de LRP6 a Dkk-1 se determinó mediante el uso de un anticuerpo conjugado con FITC específico para la porción Fc del constructo de fusión LRP6-Fc. La unión de LRP6 a Dkk-1 se detectó mediante el uso de citometría de flujo. Se detectó una señal de unión específica (la unión específica es igual a la señal total observada menos la señal observada en ausencia de Dkk-1) de 6,46 con LRP6 y Dkk-1. La incubación de Dkk-1 con 11H10 antes de la adición de LRP6 redujo esta señal a 2,66, que fue inferior al 50% de la unión específica observada sin el anticuerpo, lo que indica que 11H10 interfiere en la unión de Dkk-1 a LRP6.

Ejemplo 9

Clonación de los ADNc de la cadena pesada y ligera de 11h10

20

25

30

35

55

60

El ARN total se aisló de células de hibridoma de rata 11H10 con reactivo TRIzol[®] (Invitrogen) de acuerdo con las instrucciones del fabricante, después se purificó adicionalmente usando una columna Qiagen RNeasy[®]. Se ligó un oligonucleótido 5' RACE (del inglés "Rapid Amplification of CDNA Ends" amplificación rápida de extremos de ADNc) (5'-CGA CUG GAG CAC GAG GAC ACU GAC AUG GAC UGA AGG AGU AGA AA-3', SEC ID NO: 15) al ARN utilizando los componentes y de protocolo del kit GeneRacer™ (Invitrogen). Este oligonucleótido proporciona dos sitios de cebado únicos en los extremos 5' de las moléculas de ARNm. El ADNc de la primera cadena se sintetizó a partir de este ARN modificado utilizando un cebador al azar con un adaptador de extensión (5'-GGC CGG ATA GGC CTC ACN NNN NNT-3'; SEC ID NO: 16).

Tomando ventaja de las secuencias conservadas en los genes de anticuerpos de rata, se llevaron a cabo reacciones de PCR con 5' RACE para amplificar los ADNc que codificaban el anticuerpo anti-muDkk-1. Para clonar la cadena ligera completa de 11H10, se realizó una PCR con RACE usando el cebador 5' GeneRacer™ (5' CGA CTG GAG CAC GAG GAC ACT GA-3', SEC ID NO: 17) como cebador directo, y utilizando 5'-GCA ACA GTG GTA GGT CGC TTG TGG-3' (SEC ID NO: 18) como cebador inverso. Este cebador inverso corresponde a los nucleótidos 74-98 en la región no traducida 3' de la cadena kappa de la rata. Este producto de PCR se utilizó después como molde para una PCR anidada utilizando el cebador anidado 5' GeneRacer™ (5' GGA CAC TGA CAT GGA CTG AAG GAG TA-3' (SEC ID NO: 19)) como cebador directo y el mismo cebador inverso (SEC ID NO: 18).

La PCR RACE para la región variable de las cadenas pesadas utilizó el cebador GeneRacer™ como cebador directo y como cebador inverso utilizó 5'-AGG AGC CAG TGG ATA GAC AGA-3' (SEC ID NO: 20) que corresponde a los nucleótidos diecinueve a treinta y nueve de la región constante de IgG de rata. Este producto de PCR se utilizó después como molde para una PCR anidada utilizando el cebador anidado 5' GeneRacer™ como cebador directo y el mismo cebador inverso 5'-AGG AGC CAG TGG ATA GAC AGA-3' (SEC ID NO: 20).

Los productos de la PCR RACE se clonaron después en el vector de clonación pCR4-TOPO TA (Invitrogen). Las secuencias de ADN de estos clones se determinaron utilizando cebadores del vector pCR4 que flanqueaban el sitio de clonación, nucleótidos marcados con colorante y secuenciadores de ADN ABI. Secuencias consenso para las regiones variables de la cadena ligera y la cadena pesada 11H10 se ensamblaron y se utilizaron para diseñar cebadores de PCR 5' dirigidos a los extremos amino terminales de las secuencias codificantes. Estos cebadores también contenían un sitio de restricción Sall para la clonación y una secuencia Kozak. El cebador de PCR 5' diseñado para la cadena ligera tenía la siguiente secuencia de nucleótidos: 5'-AAG CTC GAG GTC GAC TAG ACC ACC ATG GGT GTG CCT ACT CTC-3' (SEC ID NO: 21); para la cadena pesada, 5'-AAG CTC GAG GTC GAC TAG ACC ACC ATG GAC ATC AGG CTC AGC TTG G 3' (SEC ID NO: 22). Estos cebadores 5' se utilizaron después con los cebadores 3' dirigidos a los extremos carboxi terminales de las secuencias codificantes y que contenían un sitio de restricción Notl para la clonación. El cebador 3' para la cadena ligera tenía la siguiente secuencia de nucleótidos: 5'-AAC CGT TTA AAC GCG GCC GCC TAA CAC TCA TTC CTG TTG A-3' (SEC ID NO: 23), y el cebador 3' para la cadena pesada, 5'-AAC CGT TTA AAC GCG GCC GCT CAT TTA CCC GGA GAG TGG GAG-3' (SEC ID NO: 24). Estos cebadores se usaron en reacciones de PCR para amplificar las regiones codificantes completas de los genes de la cadena pesada y ligera del anticuerpo 11H10. Las secuencias clonadas se expresaron en células CHO como describen Bianchi y McGrew, 2003.

Las secuencias de nucleótidos que codifican las cadenas ligera y pesada completas de 11H10 se muestran en los SEC ID NOS: 9 y 11, respectivamente, y los SEC ID NOS: 10 y 12 representan las secuencias de aminoácidos. La cadena ligera de 11H10 tiene una secuencia líder que consiste en los aminoácidos 1-20 (codificados por los nucleótidos 1-60 del SEC ID NO: 9), de este modo la proteína madura comienza en el aminoácido 21 del SEC ID NO: 10. La región variable de la cadena ligera de 11H10 está codificada por los nucleótidos 61-381 del SEC ID NO: 9 (véase también el SEC ID NO: 83), que corresponde a los aminoácidos 21-127 del SEC ID NO: 10 (véase, también el SEC ID NO: 9 (véase también el SEC ID NO: 85), que codifica los aminoácidos 44-54 del SEC ID NO: 10 (véase también el SEC ID NO: 9 (véase también el SEC ID NO: 86), que codifica los aminoácidos 70-76 del SEC ID NO: 10 (véase también el SEC ID NO: 72); y la CDR2 de la codificada por los nucleótidos 325-351 del SEC ID NO: 9 (véase también el SEC ID NO: 74).

La cadena pesada 11H10 tiene una secuencia líder que consiste en los aminoácidos 1-19 (codificada por los nucleótidos 1-57 del SEC ID NO: 11), de este modo la proteína madura comienza en el residuo 20 del SEC ID NO: 12 y está codificada por los nucleótidos 58-1395. La región variable de la cadena pesada está codificada por los nucleótidos 58-417 del SEC ID NO: 11 (véase también el SEC ID NO: 90), que codifica los aminoácidos 20-139 del SEC ID NO: 12 (véase también el SEC ID NO: 91). La CDR1 de la cadena pesada está codificada por los nucleótidos 148-162 del SEC ID NO: 11 (véase también el SEC ID NO: 92), que codifica los aminoácidos 50-54 del SEC ID NO: 12 (véase también SEC ID NO: 76); la CDR2 de la cadena pesada 11H10 está codifica por los nucleótidos 205-255 del SEC ID NO: 11 (véase también el SEC ID NO: 93), que codifica los aminoácidos 69-85 del SEC ID NO: 11 (véase también el SEC ID NO: 78); y la CDR3 de la cadena pesada de 11H10 está codifica por los nucleótidos 352-384 del SEC ID NO: 11 (véase también el SEC ID NO: 94), que codifica los aminoácidos 118-128 del SEC ID NO: 12 (véase también el SEC ID NO: 80).

LISTADO DE SECUENCIAS

5	<110> LI, Ji LU, Hs SHEN RICH/	sieng I, Wer	Sen nyan														
	<120>	• An	ticuer	oos pa	ıra Dk	(K-1.											
	<130>	- A-9	941(W	O)													
10	<140> <141>			_	nado												
	<150> <151>																
	<160>	94															
	<170>	Pa	tentIn	versić	n 3.3												
15	<210><211><211><212><213>	• 80 • AD	N	piens													
20	<220> <221> <222>	CD	_)													
	<400>	• 1															
	-	-	_	ctg Leu					-			-		_		_	48
				gct Ala 20													96
				gtt Val													144
				gct Ala													192
			_	tac Tyr	_				_		_			_			240
				ccg Pro													288
				ccc Pro 100													336
	gcc	tgc	agg	aag	cgc	cga	aaa	cgc	tgc	atg	cgt	cac	gct	atg	tgc	tgc	384

Ala	Cys	Arg 115	Lys	Arg	Arg	Lys	Arg 120	Cys	Met	Arg	His	Ala 125	Met	Cys	Cys		
													gat Asp				432
													ttt Phe	Gly		,	480
													ttg Leu				528
													ctc Leu 190				576
		_	-				_		_	-			tgg Trp		-		624
	_			_	_		_			_	_	,	aag Lys				672
													tac Tyr				720
													gcc Ala				768
		~ ~			act Thr	_		_		taa							801
<210: <211: <212: <213:	> 26 > PF	RT	apien	s													
<400	> 2																
Met 1	Met	Ala	Leu	Gly 5	Ala	Ala	Gly	Ala	Thr 10	Arg	Val	Phe	· Val	. Ala 15	Met		
Val	Ala	Ala	Ala 20	Leu	Gly	Gly	His	Pro 25	Leu	Leu	Gly	Val	Ser 30	` Ala	Thr		
Leu	Asn	Ser 35	Val	Leu	Asn	Ser	Asn 40	Ala	Ile	Lys	Asn	Leu 45	Pro	Pro	Pro		
Leu	Gly 50	Gly	Ala	Ala	Gly	His 55	Pro	Gly	Ser	Ala	Val	Ser	· Ala	Ala	Pro		

Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr 70 Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu 105 Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys 120 Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser 170 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser 180 185 Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys 200 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg 210 215 220 Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 225 230 235 Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn 250 255 Ser Ser Arg Leu His Thr Cys Gln Arg His <210> 3 <211> 819 <212> ADN <213> Ratón <220> <221> CDS <222> (1)..(819) <400> 3

	atg Met																48
	. atg Met																96
	aac Asn																144
	ctg Leu 50						_				-	_	-				192
_	gga Gly	_			_				_		_			_			240
	cag Gln				_	_	-	_			_			-			288
	tgc Cys																336
	tgt Cys																384
	tgc Cys 130																432
	cac His																480
	ctt Leu																528
_	acc Thr		-											-	_		576
	gtc Val																624
_	cac His 210				-		_			-			-		_		672
gto	tgc	acc	aag	cac	aaa	cgg	aaa	ggc	tcc	cac	ggg	ctg	gag	ata	ttc	,	720

Val 225	Cys	Thr	Lys	His	Lys 230	Arg	Lys	Gly	Ser	His 235	Gly	Leu (Glu :	Ile	Phe 240	
cag Gln	cgc Arg	tgt Cys	tac Tyr	tgc Cys 245	ggg Gly	gaa Glu	ggc Gly	ctg Leu	gct Ala 250	tgc Cys	agg Arg	ata (Ile (Gln 1	aaa Lys 255	gat Asp	768
												tgc (Cys (816
taa																819
<210: <211: <212: <213:	> 27 > PF															
<400>	> 4															
Met 1	Met	Va1	Val	Cys 5	Ala	Pro	Ala	Ala	a Val	l Arg	g Phe	e Leu	Ala	15	l Ph	е
Thr	Met	Met	Ala 20	Leu	Cys	Ser	Leu	Pro 25	Let	ı Leı	ı Gly	⁄ Ala	Ser 30	Ala	a Th	r
Leu	Asn	Ser 35	Val	Leu	Ile	Asn	Ser 40	Asr	n Ala	a Ile	e Lys	Asn 45	Leu	ı Pro	o Pro	0
Pro	Leu 50	Gly	Gly	Ala	Gly	Gly 55	Gln	. Pro	Gl3	z Sei	c Ala	ı Val	Ser	Va.	l Ala	a
Pro 65	Gly	Val	Leu	Tyr	Glu 70	Gly	Gly	Asr	Lys	75 75	c Glr	Thr	Leu	ı Ası	e Ası 80	
Tyr	Gln	Pro	Tyr		_		Glu				ı Cys	: Gly	Ser	As ₁	o Gli	u
Tyr	Cys	Ser	Ser 100	Pro	Ser	Arg	Gly	Ala 105		a Gly	/ Val	. Gly	Gly		l Glı	n
Ile	Суз	Leu 115	Ala	Cys	Arg	Lys	Arg 120		l Lys	arç	g Cys	Met 125		His	s Ala	a
Met	Cys 130	Cys	Pro	Gly	Asn	Tyr 135	_	Lys	: Asr	ı Gly	7 Ile 140	Cys	Met	Pro	s Sei	r
Asp 145	His	Ser	His	Phe	Pro 150	Arg	Gly	Glu	ı Ile	Glu 155		Ser	Ile	: Ile	e Gli 160	

165 170 175	g
Arg Thr Thr Leu Thr Ser Lys Ile Tyr His Thr Lys Gly Gln Glu Gl 180 185 190	₹
Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ala Gly Leu Cys Cys Ala 195 200 205	à
Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gl 210 215 220	1
Val Cys Thr Lys His Lys Arg Lys Gly Ser His Gly Leu Glu Ile Pho 225 230 235 240	
Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ala Cys Arg Ile Gln Lys Asg 245 250 255	>
His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr Cys Gln Arg His	;
<210> 5 <211> 4848 <212> ADN <213> Homo sapiens	
<220> <221> CDS <222> (1)(4848)	
<221> CDS	
<221> CDS <222> (1)(4848)	48
<221> CDS <222> (1)(4848) <400> 5 atg gag gca gcg ccg ccc ggg ccg ccg tgg ccg ctg ctg	48 96
<pre><221> CDS <222> (1)(4848) <400> 5 atg gag gca gcg ccg ccc ggg ccg ccg tgg ccg ctg ctg</pre>	
<pre><221> CDS <222> (1)(4848) <400> 5 atg gag gca gcg ccg ccc ggg ccg ccg tgg ccg ctg ctg</pre>	96
<pre><221> CDS <222> (1)(4848) <400> 5 atg gag gca gcg ccg ccc ggg ccg ccg tgg ccg ctg ctg</pre>	96 144

A	sp	Val	Ser	Glu	Glu 85	Ala	Ile	Lys	Gln	Thr 90	Tyr	Leu	Asn	Gln	Thr 95	Gly	
g A	cc la	gcc Ala	gtg Val	cag Gln 100	aac Asn	gtg Val	gtc Val	atc Ile	tcc Ser 105	ggc Gly	ctg Leu	gtc Val	tct Ser	ccc Pro 110	gac Asp	ggc Gly	336
C†	t <i>c</i> eu	gcc Ala	tgc Cys 115	gac Asp	tgg Trp	gtg Val	ggc Gly	aag Lys 120	aag Lys	ctg Leu	tac Tyr	tgg Trp	acg Thr 125	gac Asp	tca Ser	gag Glu	384
							gcc Ala 135										432
L				_			gac Asp	_	_		_		-	_	-		480
							tgg Trp										528
	_		_		_	_	ggc Gly	-			-				-	_	576
							gga Gly										624
							aag Lys 215										672
A							aag Lys										720
							Gly aaa										768
							tgc Cys										816
							tac Tyr										864
							ttc Phe 295										912
G.							ctg Leu										960
t	gc	gcc	tgc	ccc	acg	ggt	gtg	cag	ctg	cag	gac	aac	ggc	agg	acg	tgt	1008

Cys	Ala	Cys	Pro	Thr 325	Gly	Val	Gln	Leu	Gln 330	Asp	Asn	Gly	Arg	Thr 335	Cys	
	gca Ala															1056
	agg Arg															1104
	gac Asp 370															1152
	tat Tyr															1200
	ctg Leu	_			_		_	-	_	_						1248
-	ccc Pro	_				-	_				_					1296
	gac Asp															1344
	cgc Arg 450	_		-				_	_					-		1392
-	ctg Leu				_			-				-	_		-	1440
	cct Pro				_	_		_	_		_			_		1488
	gtc Val															1536
_	gag Glu		_					-	_	_		-	_			1584
	atc Ile 530		-	_		_	_					_	_	_	-	1632
	ccg Pro						_	_			_					1680
act	gac	tgg	cag	cgc	cgc	agc	atc	gag	cgg	gtg	cac	aag	gtc	aag	gcc	1728

Thr	Asp	Trp	Gln	Arg 565	Arg	Ser	Ile	Glu	Arg 570	Val	His	Lys	Val	Lys 575	Ala	
agc Ser	cgg Arg	gac Asp	gtc Val 580	atc Ile	att Ile	gac Asp	cag Gln	ctg Leu 585	ccc Pro	gac Asp	ctg Leu	atg Met	ggg Gly 590	ctc Leu	aaa Lys	1776
						gtc Val										1824
						ctg Leu 615										1872
						ctg Leu										1920
				-		ttg Leu	_			_	_	_	-			1968
				_		aat Asn			_		_		_		_	2016
						gcc Ala										2064
				_	-	agc Ser 695		_			_	_	_		_	2112
						cac His										2160
		_	_	-	-	tgg Trp	-		_					_	_	2208
						gaa Glu										2256
						gac Asp										2304
_			_			atc Ile 775								_	-	2352
				_		atg Met	_				_	-	-	_		2400
gac	aag	gtg	ggc	cgg	gcc	aac	gac	ctc	acc	att	gac	tac	gct	gac	cag	2448

As	p Lys	Val	Gly	Arg 805	Ala	Asn	Asp	Leu	Thr 810	Ile	Asp	Tyr	Ala	Asp 815	Gln	
cg Ar	c ctc g Leu	tac Tyr	tgg Trp 820	acc Thr	gac Asp	ctg Leu	gac Asp	acc Thr 825	aac Asn	atg Met	atc Ile	gag Glu	tcg Ser 830	tcc Ser	aac Asn	2496
at Me	g ctg t Leu	ggt Gly 835	cag Gln	gag Glu	cgg Arg	gtc Val	gtg Val 840	att Ile	gcc Ala	gac Asp	gat Asp	ctc Leu 845	ccg Pro	cac His	ccg Pro	2544
	c ggt e Gly 850															2592
	g cac u His 5															2640
	c atc u Ile															2688
	c tcc r Ser	-	_	_				_	_	_					_	2736
	t ggg s Gly	_	_	_		_						-	_	_		2784
_	c tca a Ser 930				_	_		_	_			_	-	_		2832
	c acc r Thr 5		_	_		-	_			_		-				2880
	g gac o Asp	_	_		_		-			_		_		-	_	2928
_	g aac g Asn	_		-		_										2976
	g gtg p Val							Lys) As		g acc y Thr	3024
	g ccc n Pro 1010	Phe	t gtt e Val				: Le				y Gl					3069
_	g cag g Gln 1029	Pro	c cac	_		_	: I1				ac ag yr Se 10		gg a rg I		-	3114
tt	c tgg	acg	g tgo	gag	g gcd	acc	: aa	at ac	c at	c aa	ac gt	c c	ac a	igg c	tg	3159

Phe	Trp 1040	Thr	Cys	Glu	Ala	Thr 1045	Asn	Thr	Ile	Asn	Val 1050	His	Arg	Leu	
	ggg Gly 1055	gaa Glu	gcc Ala	atg Met	Gly aaa	gtg Val 1060	gtg Val	ctg Leu	cgt Arg	ggg Gly	gac Asp 1065	cgc Arg	gac Asp	aag Lys	3204
						aac Asn 1075									3249
						gca Ala 1090									3294
						gtc Val 1105									3339
						gac Asp 1120									3384
						cgc Arg 1135									3429
						gag Glu 1150							cct Pro		3474
						aag Lys 1165									3519
_						gtg Val 1180									3564 [\]
_	cgc Arg 1190					gtc Val 1195							cat His		3609
						gag Glu 1210									3654
						tcc Ser 1225									3699
						tgc Cys 1240									3744
						gag Glu 1255									3789
ttt	gca	tgt	gcc	aca	ggg	gag	atc	gac	tgt	atc	ccc	ggg	gcc	tgg	3834

Phe	Ala 1265	Cys	Ala	Thr	Gly	Glu 1270	Ile	Asp	Cys	Ile	Pro 1275	_	Ala	Trp	
	tgt Cys 1280	gac Asp	ggc Gly	ttt Phe	ccc Pro	gag Glu 1285	tgc Cys	gat Asp	gac Asp	cag Gln	agc Ser 1290	gac Asp	gag Glu	gag Glu	3879
	tgc Cys 1295					gcc Ala 1300									3924
_	tgt Cys 1310					ctg Leu 1315									3969
_	gac Asp 1325	_		_			_	_	_	_		_	_		4014
	cag Gln 1340			_		agc Ser 1345		_	-	_				_	4059
_	tgc Cys 1355	-				_	-		_			-			4104
_	tgt Cys 1370	_			_	ccg Pro 1375			_	-	_	_	gcc Ala		4149
_	agt Ser 1385					gtc Val 1390									4194
_	atg Met 1400					ttt Phe 1405									4239
_	tat Tyr 1415					ggg Gly 1420									4284
	acc Thr 1430	_								_	_				4329
_	cat His 1445							_							4374
_	tcc Ser 1460		_	_	_										4419
-	cgg Arg 1475			_			-				_	-		_	4464
acg	aag	gcc	acg	ctg	tac	ccg	ccg	atc	ctg	aac	ccg	ccg	ccc	tcc	4509

	Lys 1490		Thr	Leu	Tyr	Pro 1495) Ile	e Leu	ı Asn	Pro 1500		Pro	Ser	
	gcc Ala 1505						Туз				atg Met 1515	Phe			4554
	aac Asn 1520						Arc				ccc Pro 1530	Tyr			4599
cga Arg	gga Gly 1535	atg Met	gcg Ala	ccc Pro	ccg Pro	acg Thr 1540	Thr	r Pro	tgc Cys	agc Ser	acc Thr 1545	Asp	gtg Val	tgt Cys	4644
							Arc				agc Ser 1560	Lys			4689
							Asp				ccc Pro 1575				4734
	cac His 1580	_			_	_	Ala		_		tgc Cys 1590	Pro			4779
							Phe				ccg Pro 1605	Pro			4824
	ccc Pro 1610	_		-				L							4848
-210	> 6														
<211	> 16° > PR > Ho	Т	apiens	;											
<211:	> PR > Ho	Т	apiens	;											
<211: <212: <213: <400:	> PR > Ho > 6	T mo sa	Ala		Pro	Gly :	Pro		Trp 10	Pro I	Leu Le	eu Le	eu Le 15	eu Leu	
<211: <212: <213: <400: Met 1	> PR > Ho > 6 Glu	T mo sa Ala Leu	Ala	Pro 5			Gly (10				15 .a Al		
<211: <212: <213: <400: Met 1	> PR > Ho > 6 Glu Leu	T mo sa Ala Leu	Ala Leu 20	Pro 5 Ala	Leu	Cys ·	Gly	Cys 25	10 Pro	Ala I	Pro Al	la Al .30	15 .a Al	5	
<211: <212: <213: <400: Met 1 Leu	> PR > Ho > 6 Glu Leu	T mo sa Ala Leu Leu 35	Ala Leu 20	Pro 5 Ala Phe	Leu Ala	Cys (Gly Arg	Cys 25 Arg	10 Pro Asp	Ala I Val <i>I</i>	?ro A. Arg Le 4!	la Al .30 eu Va	15 .a Al)	a Ser	

Asp	Val	Ser	Glu	Glu 85	Ala	Ile	Lys	Gln	Thr 90	Tyr	Leu	Asn	Gln	Thr 95	Gly
Ala	Ala	Val	Gln 100	Asn	Val	Val	Ile	Ser 105	Gly	Leu	Val	Ser	Pro 110	Asp	Gly
Leu	Ala	Cys 115	Asp	Trp	Val	Gly	Lys 120	Lys	Leu	Tyr	Trp	Thr 125	Asp	Ser	Glu
Thr	Asn 130	Arg	Ile	Glu	Val	Ala 135	Asn	Leu	Asn	Gly	Thr 140	Ser	Arg	Lys	Val
Leu 145	Phe	Trp	Gln	Asp	Leu 150	Asp	Gln	Pro	Arg	Ala 155	Ile	Ala	Leu	Asp	Pro 160
Ala	His	Gly	Tyr	Met 165	Tyr	Trp	Thr		Trp 170	Gly	Glu	Thr	Pro	Arg 175	Ile
Glu	Arg	Ala	Gly 180	Met	Asp	Gly	Ser	Thr 185	Arg	Lys	Ile	Ile	Val 190	Asp	Ser
Asp	Ile	Tyr 195	Trp	Pro	Asn	Gly	Leu 200	Thr	Ile	Asp	Leu	Glu 205	Glu	Gln	Lys
Leu	Туг 210	Trp	Ala	Asp	Ala	Lys 215	Leu	Ser	Phe	Ile	His 220	Arg	Ala	Asn ;	Leu
Asp 225	Gly	Ser	Phe	Arg	Gln 230	Lys	Val	Val	Glu	Gly 235	Ser	Leu	Thr	His	Pro 240
Phe	Ala	Leu	Thr	Leu 245	Ser	Gly	Asp	Thr	Leu 250	Tyr	Trp	Thr	Asp	Trp 255	Gln
Thr	Arg	Ser	Ile 260	His	Ala	Cys	Asn	Lys 265	Arg	Thr	Gly	Gly	Lys 270	Arg	Lys
Glu	Ile	Leu 275	Ser	Ala	Leu	Tyr	Ser 280	Pro	Met	Asp	Ile	Gln 285	Val	Leu	Ser
Gln	Glu 290	Arg	Gln	Pro	Phe	Phe 295	His	Thr	Arg	Cys	Glu 300	Glu	Asp	Asn	Gly
Gly 305	Cys	Ser	His	Leu	Cys 310	Leu	Leu	Ser	Pro	Ser 315	Glu	Pro	Phe	Tyr	Thr 320

Cys	Ala	Cys	Pro	Thr 325	Gly	Val	Gln	Leu	Gln 330	Asp	Asn	Gly	Arg	Thr 335	Cys
Lys	Ala	Gly	Ala 340	Glu	Glu	Val	Leu	Leu 345	Leu	Ala	Arg	Arg	Thr 350	Asp	Leu
Arg	Arg	Ile 355	Ser	Leu	Asp	Thr	Pro 360	Asp	Phe	Thr	Asp	Ile 365	Val	Leu	Gln
Val	Asp 370	Asp	Ile	Arg	His	Ala 375	Ile	Ala	Ile	Asp	Tyr 380	Asp	Pro	Leu	Glu
Gly 385	Tyr	Val	Tyr	Trp	Thr 390	Asp	Asp	Glu	Val	Arg 395	Ala	Ile	Arg	Arg	Ala 400
Tyr	Leu	Asp	Gly	Ser 405	Gly	Ala	Gln	Thr	Leu 410	Val	Asn	Thr	Glu	Ile 415	Asn
Asp	Pro	Asp	Gly 420	Ile	Ala	Val	Asp	Trp 425	Val	Ala	Arg	Asn	Leu 430	Tyr	Trp
Thr	Asp	Thr 435	Gly	Thr	Asp	Arg	Ile 440	Glu	Val	Thr	Arg	Leu 445	Asn	Gly	Thr
Ser	Arg 450	Lys	Ile	Leu	Val	Ser 455	Glu	Asp	Leu	Asp	Glu 460	Pro	Arg	Ala	Ile
Ala 465	Leu	His	Pro	Val	Met 470	Gly	Leu	Met	Tyr	Trp 475	Thr	Asp	Trp	Gly	Glu 480
Asn	Pro	Lys	Ile	Glu 485	Cys	Ala	Asn	Leu	Asp 490	Gly	Gln	Glu	Arg	Arg 495	Val
Leu	Val	Asn	Ala 500	Ser	Leu	Gly	Trp	Pro 505	Asn	Gly	Leu	Ala	Leu 510	Asp	Leu
Gln	Glu	Gly 515	Lys	Leu	Tyr	Trp	Gly 520	Asp	Ala	Lys	Thr	Asp 525	Lys	Ile	Glu
Val	Ile 530	Asn	Val	Asp	Gly	Thr 535	Lys	Arg	Arg	Thr	Leu 540	Leu	Glu	Asp	Lys
Leu 545	Pro	His	Ile	Phe	Gly 550	Phe	Thr	Leu	Leu	Gly 555	Asp	Phe	Ile	Tyr	Trp 560

Thr	Asp	Trp	Gln	Arg 565	Arg	Ser	Ile	Glu	Arg 570	Val	His	Lys	Val	Lys 575	Ala
Ser	Arg	Asp	Val 580	Ile	Ile	Asp	Gln	Leu 585	Pro	Asp	Leu	Met	Gly 590	Leu	Lys
Ala	Val	Asn 595	Val	Ala	Lys	Val	Val 600	Gly	Thr	Asn	Pro	Cys 605	Ala	Asp	Arg
Asn	Gly 610	Gly	Cys	Ser	His	Leu 615	Cys	Phe	Phe	Thr	Pro 620	His	Ala	Thr	Arg
Cys 625	Gly	Cys	Pro	Ile	Gly 630	Leu	Glu	Leu	Leu	Ser 635	Asp	Met	Lys	Thr	Cys 640
Ile	Val	Pro	Glu	Ala 645	Phe	Leu	Val	Phe	Thr 650	Ser	Arg	Ala	Ala	Ile 655	His
Arg	Ile	Ser	Leu 660	Glu	Thr	Asn	Asn	Asn 665	Asp	Val	Ala	Ile	Pro 670	Leu	Thr
Gly	Val	Lys 675	Glu	Ala	Ser	Ala	Leu 680	Asp	Phe	Asp	Val	Ser 685	Asn	Asn `	His
Ile	Туr 690	Trp	Thr	Asp	Val	Ser 695	Leu	Lys	Thr	Ile	Ser 700	Arg	Ala	Phe	Met
Asn 705	Gly	Ser	Ser	Val	Glu 710	His	Val	Val	Glu	Phe 715	Gly	Leu	Asp	Tyr	Pro 720
Glu	G1y	Met	Ala	Val 725		Trp	Met	Gly	Lys 730		Leu	Tyr	Trp	Ala 735	
Thr	Gly	Thr	Asn 740	Arg	Ile	Glu	Val	Ala 745	Arg	Leu	Asp	Gly	Gln 750	Phe	Arg
Gln	Val	Leu 755	Val	Trp	Arg	Asp	Leu 760	Asp	Asn	Pro	Arg	Ser 765	Leu	Ala	Leu
Asp	Pro 770	Thr	Lys	Gly	Tyr	Ile 775	Tyr	Trp	Thr	Glu	Trp 780	Gly	Gly	Lys	Pro
Arg 785	Ile	Val	Arg	Ala	Phe 790	Met	Asp	Gly	Thr	Asn 795	Cys	Met	Thr	Leu	Val 800

Asp	Lys	Val	Gly	Arg 805	Ala	Asn	Asp	Leu	Thr 810	Ile	Asp	Tyr	Ala	Asp 815	Gln
Arg	Leu	Tyr	Trp 820	Thr	Asp	Leu	Asp	Thr 825	Asn	Met	Ile	Glu	Ser 830	Ser	Asn
Met	Leu	Gly 835	Gln	Glu	Arg	Val	Val 840	Ile	Ala	Asp	Asp	Leu 845	Pro	His	Pro
Phe	Gly 850	Leu	Thr	Gln	Tyr	Ser 855	Asp	Tyr	Ile	Tyr	Trp 860	Thr	Asp	Trp	Asn
Leu 865	His	Ser	Ile	Glu	Arg 870	Ala	Asp	Lys	Thr	Ser 875	Gly	Arg	Asn	Arg	Thr 880
Leu	Ile	Gln	Gly	His 885	Leu	Asp	Phe	Val	Met 890	Asp	Ile	Leu	Val	Phe 895	His
Ser	Ser	Arg	Gln 900	Asp	Gly	Leu	Asn	Asp 905	Cys	Met	His	Asn	Asn 910	Gly	Gln
Cys	Gly	Gln 915	Leu	Cys	Leu	Ala	Ile 920	Pro	Gly	Gly	His	Arg 925	Cys	СļУ	Cys
Ala	Ser 930	His	Tyr	Thr	Leu	Asp 935	Pro	Ser	Ser	Arg	Asn 940	Cys	Ser	Pro	Pro
Thr 945	Thr	Phe	Leu	Leu	Phe 950	Ser	Gln	Lys	Ser	Ala 955	Ile	Ser	Arg	Met	Ile 960
Pro	Asp	Asp	Gln	His 965	Ser	Pro	Asp	Leu	Ile 970	Leu	Pro	Leu	His	Gly 975	Leu
Arg	Asn	Val	Lys 980	Ala	Ile	Asp	Tyr	Asp 985	Pro	Leu	Asp	Lys	Phe 990	Ile	Tyr
Trp	Val	Asp 995	Gly	Arg	Gln	Asn	Ile 1000	_	s Arg	y Ala	a Lys	Asr 100		sp G]	Ly Thr
Gln	Pro 1010		e Val	. Leu	ı Thr	Sei 101		eu Se	er Gl	ln Gl		.n # 020	Asn I	ro F	Asp
Arg	Gln 1025) His	s Asp) Lev	Ser 103		le As	sp Il	le Ty		er <i>P</i>)35	Arg 1	hr I	∟eu

Phe	Trp 1040	Thr	Cys	Glu	Ala	Thr 1045		Thr	Ile	Asn	Val 1050		Arg	Leu
Ser	Gly 1055	Glu	Ala	Met	Gly	Val 1060	Val	Leu	Arg	Gly	Asp 1065	_	Asp	Lys
Pro	Arg 1070		Ile	Val	Val	Asn 1075	Ala	Glu	Arg	Gly	Tyr 1080		Tyr	Phe
Thr	Asn 1085	Met	Gln	Asp	Arg	Ala 1090	Ala	Lys	Ile	Glu	Arg 1095		Ala	Leu
Asp	Gly 1100	Thr	Glu	Arg	Glu	Val 1105	Leu	Phe	Thr	Thr	Gly 1110		Ile	Arg
Pro	Val 1115	Ala	Leu	Val	Val	Asp 1120	Asn	Thr	Leu	Gly	Lys 1125	Leu	Phe	Trp
Val	Asp 1130		Asp	Leu	Lys	Arg 1135	Ile	Glu	Ser	Cys	Asp 1140	Leu	Ser	Gly
Ala	Asn 1145	Arg	Leu	Thr	Leu	Glu 1150	Asp	Ala	Asn	Ile	Val 1155	Gln	Pro	Leu
Gly	Leu 1160	Thr	Ile	Leu	Gly	Lys 1165	His	Leu	Tyr	Trp	Ile 1170	Asp	Arg	Gln
Gln	Gln 1175	Met	Ile	Glu	Arg	Val 1180	Glu	Lys	Thr	Thr	Gly 1185	Asp	Lys	Arg
Thr	Arg 1190	Ile	Gln	Gly	: Arg	Val 1195	Ala	His	Leu	Thr	Gly 1200	Ile	His	Ala
Val	Glu 1205	Glu	Val	Ser	Leu	Glu 1210	Glu	Phe	Ser	Ala	His 1215	Pro	Cys	Ala
Arg	Asp 1220	Asn	Gly	Gly	Cys	Ser 1225	His	Ile	Cys	Ile	Ala 1230	Lys	Gly	Asp
Gly	Thr 1235	Pro	Arg	Cys	Ser	Cys 1240	Pro	Val	His	Leu	Val 1245	Leu	Leu	Gln
Asn	Leu 1250	Leu	Thr	Суѕ	Gly	Glu 1255	Pro	Pro	Thr	Cys	Ser 1260	Pro	Asp	Gln

Phe	Ala 1265	Cys	Ala	Thr	Gly	Glu 1270		Asp	Cys	Ile	Pro 1275		Ala	Trp
Arg	Cys 1280		Gly	Phe	Pro	Glu 1285		Asp	Asp	Gln	Ser 1290	Asp	Glu	Glu
Gly	Cys 1295		Val	Суз	Ser	Ala 1300	Ala	Gln	Phe	Pro	Cys 1305	Ala	Arg	Gly
Gln	Cys 1310		Asp	Leu	Arg	Leu 1315	Arg	Cys	Asp	Gly	Glu 1320	Ala	Asp	Cys
Gln	Asp 1325	Arg	Ser	Asp	Glu	Ala 1330		Cys	Asp	Ala	Ile 1335	Cys	Leu	Pro
Asn	Gln 1340	Phe	Arg	Cys	Ala	Ser 1345	Gly	Gln	Cys	Val	Leu 1350	Ile	Lys	Gln
Gln	Cys 1355	Asp	Ser	Phe	Pro	Asp 1360	Cys	Ile	Asp	Gly	Ser 1365	Asp	Glu	Leu
Met	Cys 1370	Glu	Ile	Thr	Lys	Pro 1375	Pro	Ser	Asp	Asp	Ser 1380	Pro	Ala	His
Ser	Ser 1385	Ala	Ile	Gly	Pro	Val 1390	Ile	Gly	Ile	Ile	Leu 1395	Ser	Leu	Phe
Val	Met 1400	Gly	Gly	Val	Tyr	Phe 1405		Cys	Gln	Arg	Val 1410	Val	Cys	Gln
Arg	Tyr 1415	Ala	Gly	Ala	Asn	Gly 1420	Pro	Phe	Pro	His	Glu 1425	Tyr	Val	Ser
Gly	Thr 1430	Pro	His	Val	Pro	Leu 1435	Asn	Phe	Ile	Ala	Pro 1440	Gly	Gly	Ser
Gln	His 1445	Gly	Pro	Phe	Thr	Gly 1450	Ile	Ala	Cys	Gly	Lys 1455	Ser	Met	Met
Ser	Ser 1460	Val	Ser	Leu	Met	Gly 1465	Gly	Arg	Gly	Gly	Val 1470	Pro	Leu	Tyr
Asp	Arg 1475	Asn	His	Val	Thr	Gly 1480	Ala	Ser	Ser	Ser	Ser 1485	Ser	Ser	Ser

Thr	Lys 1490	Ala	Thr	Leu	Tyr	Pro 1495	Pro	Ile	Leu	Asn	Pro 1500		Pro	Ser	
Pro	Ala 1505	Thr	Asp	Pro	Ser	Leu 1510	Tyr	Asn	Met	Asp	Met 1515		Tyr	Ser	
Ser	Asn 1520	Ile	Pro	Ala	Thr	Val 1525	Arg	Pro	Tyr	Arg	Pro 1530		Ile	Ile	
Arg	Gly 1535	Met	Ala	Pro	Pro	Thr 1540	Thr	Pro	Cys	Ser	Thr 1545	Asp	Val	Cys	
Asp	Ser 1550		Tyr	Ser	Ala	Ser 1555	Arg	Trp	Lys	Ala	Ser 1560	Lys	Tyr	Tyr	
Leu	Asp 1565	Leu	Asn	Ser	Asp	Ser 1570	Asp	Pro	Tyr	Pro	Pro 1575	Pro	Pro	Thr	
Pro	His 1580	Ser	Gln	Tyr	Leu	Ser 1585	Ala	Glu	Asp	Ser	Cys 1590	Pro	Pro	Ser	
Pro	Ala 1595	Thr	Glu	Arg	Ser	Tyr 1600	Phe	His	Leu	Phe	Pro 1605	Pro	Pro	Pro	
Ser	Pro 1610	Cys	Thr	Asp	Ser	Ser 1615									
<212	> 7 > 484 > ADN > Hon	٧	oiens												
	> > CDS > (1)		!)												
<400	> 7														
				eu A		gc ct er Le									48
		Ala A				tg ct eu Le									96
	Val A					gc aa ly Ly 40	s Gl								144
ggc	ttg g	gag g	rat g	ıca g	ct g	cg gt	g ga	c tt	t gtg	ttt	: agt	cat	ggc	ttg	192

Gly	Leu 50	Glu	Asp	Ala	Ala	Ala 55	Val	Asp	Phe	Val	Phe 60	Ser	His	Gly	Leu	
		tgg Trp														240
		act Thr		-		_		-	_	_				-		288
	_	GJÀ aaa	_	_	_	_				_		_				336
-		gaa Glu 115					_	_				-				384
-		gtt Val						_	_			_	_		_	432
	_	cct Pro		_			_				_			-		480
		ata Ile														528
		agt Ser														576
		aag Lys 195														624
		ctg Leu														672
		cct Pro														720
_		agc Ser					_	_								768
	_	cgt Arg	_				_					_	-			816
-		agc Ser 275							-				-	-		864
gac	aat	ggg	ggt	tgt	tcc	cat	ttg	tgt	ttg	atg	tct	cca	gtc	aag	cct	912

Asp	Asn 290	Gly	Gly	Cys	Ser	His 295	Leu	Cys	Leu	Met	Ser 300	Pro	Val	Lys	Pro	
ttt Phe 305	tat Tyr	cag Gln	tgt Cys	gct Ala	tgc Cys 310	ccc Pro	act Thr	Gly ggg	gtc Val	aaa Lys 315	ctc Leu	ctg Leu	gag Glu	aat Asn	gga Gly 320	960
						gcc Ala										1008
						tct Ser										1056
						atc Ile	_		_		-		-		_	1104
		_				tac Tyr 375			-	_	_			_		1152
						gga Gly										1200
		-			-	ggt Gly		_		_		_	-	-		1248
				_		ggc Gly		_	_							1296
			_		_	atc Ile	_							-		1344
	-				_	ccc Pro 455	_	-			_					1392
		_		_		att Ile		_	_	_	_	-			_	1440
						act Thr										1488
_	-		_	-		aaa Lys					-					1536
_		_	-	_		act Thr	_				_	_	_			1584
gaa	gac	aaa	att	cct	cac	ata	ttt	gga	ttt	act	ttg	ttg	ggt	gac	tat	1632

Glu	Asp 530	Lys	Ile	Pro	His	Ile 535	Phe	Gly	Phe	Thr	Leu 540	Leu	Gly	Asp	Tyr	
		tgg Trp														1680
		gca Ala													_	1728
		aag Lys														1776
		gaa Glu 595														1824
		cgc Arg	_	_	_					_			-	-	_	1872
_		tgc Cys		-			-			_					-	1920
		aga Arg														1968
		act Thr														2016
-		cga Arg 675					_									2064
		atg Met														2112
		cca Pro														2160
		gac Asp														2208
		cga Arg														2256
	_	ttg Leu 755	_		_	_										2304
gga	aaa	cct	aag	ata	gac	aga	gct	gca	atg	gat	gga	agt	gaa	cgt	act	2352

	Gly	Lys 770	Pro	Lys	Ile	Asp	Arg 775	Ala	Ala	Met	Asp	Gly 780	Ser	Glu	Arg	Thr	
													act Thr				2400
										_			aac Asn			-	2448
				_					_	-	_		gca Ala	_	_		2496
								_			-		atc Ile 845			_	2544
	_	7 -	-	_	_	_			_	-			acc Thr	_			2592
		_				_			_	-		_	atg Met	_			2640
·)	_					-	_					_	tgt Cys	_			2688
				_				-	-		_		gtt Val				2736
	_	_		_		-						-	gac Asp 925				2784
													aag Lys				2832
		_	_			-			_	-			atc Ile	_			2880
													gac Asp				2928
							_		_			-	atc Ile				2976
		-	_		-	_			Thr		_		ago Ser 100	: S∈	_	t ccg 1 Pro	3024
	agt	cag	aac	ctg	gaa	ata	a caa	ı co	c ta	at ga	ıc ct	c ag	ic e	itt g	at a	itt	3069

Ser	Gln 1010	Asn	Leu	Glu	Ile	Gln 1015	Pro	Tyr	Asp	Leu	Ser 1020		Asp	Ile	
tac Tyr	agc Ser 1025	cgc Arg	tac Tyr	atc Ile	tac Tyr	tgg Trp 1030	act Thr	tgt Cys	gag Glu	gct Ala	acc Thr 1035	aat Asn	gtc Val	att Ile	3114
	gtg Val 1040	aca Thr	aga Arg	tta Leu	gat Asp	ggg Gly 1045	aga Arg	tca Ser	gtt Val	gga Gly	gtg Val 1050	gtg Val	ctg Leu	aaa Lys	3159
	gag Glu 1055					cga Arg 1060									3204
	tat Tyr 1070	-						_	-					att Ile	3249
	cgg Arg 1085														3294
_	ggc Gly 1100		_	,			-		-		_	-		_	3339
	aag Lys 1115				-			-					gaa Glu	-	3384
	gat Asp 1130														3429
	ttg Leu 1145														3474
	att Ile 1160	_		~	_		_		_		,	_	_	aca Thr	3519
	cga Arg 1175													ctt Leu	3564
	gac Asp 1190													aga Arg	3609
_	cac His 1205		_	_	_	_			_	_				_	3654
	gta Val 1220														3699
ctg	gtt	cta	ctt	caa	gat	gag	cta	tca	tgt	gga	gaa	cct	cca	aca	3744

Leu	Val 1235	Leu	Leu	Gln	Asp	Glu 1240	Leu	Ser	Сув	Gly	Glu 1245	Pro	Pro	Thr	
											gaa Glu 1260				3789
	cct Pro 1265										gaa Glu 1275				3834
	agt Ser 1280					tgt Cys 1285					gag Glu 1290	tcc Ser	_		3879
											ctc Leu 1305				3924
											aag Lys 1320				3969
											aat Asn 1335				4014
											gat Asp 1350				4059
_											gaa Glu 1365				4104
_	gcc Ala 1370										gta Val 1380		gtc Val		4149
	ttt Phe 1385					_				_	cag Gln 1395		_	_	4194
											act Thr 1410				4239
											tat Tyr 1425				4284
	-		_								tct Ser 1440				4329
	atg Met 1445		_			-		-			agc Ser 1455	-			4374
ccc	tat	gac	cga	gcc	cat	gtt	aca	gga	gca	tca	tca	agt	agt	tct	4419

Pro	Туг 1460	Asp	Arg	Alä	His	Val 1465	Thr	Gly	Ala	Ser	Ser 1470	Ser	Ser	Ser	
						tac Tyr 1480									4464
						cga Arg 1495									4509
						tcc Ser 1510									4554
						ttt Phe 1525							-	_	4599
	_	-	_	_	_	gac Asp 1540		_		-		_	-		4644
	gtg Val 1550				_	ggc Gly 1555			_	_	_			-	4689
						cct Pro 1570					-			_	4734
	gca Ala 1580					gaa Glu 1585	_	_							4779
	agg Arg 1595	-				cac His 1600				-	cca Pro 1605				4824
_	aca Thr 1610	_	tcc Ser		tga										4842
<211: <212: <213:	> 161 > PR		oiens												
<400	> 8														
Met 1	Gly :	Ala '		Leu 5	Arg	Ser L	eu L		la C .0	ys S	Ger Ph	re C7	's Va 15	al Leu 5	
Leu	Arg :		Ala 20	Pro	Leu	Leu L	_	yr A 5	la A	sn A	arg Ar	g As 30	_	eu Arg	
Leu		Asp 3	Ala	Thr	Asn	_	ys G O	lu A	sn A	la T	hr II 45		ıl Va	al Gly	

Gly	Leu 50	Glu	Asp	Ala	Ala	Ala 55	Val	Asp	Phe	Val	Phe 60	Ser	His	Gly	Leu
Ile 65	Tyr	Trp	Ser	Asp	Val 70	Ser	Glu	Glu	Ala	Ile 75	Lys	Arg	Thr	Glu	Phe 80
Asn	Lys	Thr	Glu	Ser 85	Val	Gln	Asn	Val	Val 90	Val	Ser	Gly	Leu	Leu 95	Ser
Pro	Asp	Gly	Leu 100	Ala	Cys	Asp	Trp	Leu 105	Gly	Glu	Lys	Leu	Tyr 110	Trp	Thr
Asp	Ser	Glu 115	Thr	Asn	Arg	Ile	Glu 120	Val	Ser	Asn	Leu	Asp 125	Gly	Ser	Leu
Arg	Lys 130	Val	Leu	Phe	Trp	Gln 135	Glu	Leu	Asp	Gln	Pro 140	Arg	Ala	Ile	Ala
Leu 145	Asp	Pro	Ser	Ser	Gly 150	Phe	Met	Tyr	Trp	Thr 155	Asp	Trp	Gly	Glu	Val 160
Pro	Lys	Ile	Glu	Arg 165	Ala	Gly	Met	Asp	Gly 170	Ser	Ser	Arg	Phe	Ile 175	Ile
Ile	Asn	Ser	Glu 180	Ile	Tyr	Trp	Pro	Asn 185	Gly	Leu	Thr	Leu	Asp 190	Tyr	Glu
Glu	Gln	Lys 195	Leu	туг	Trp	Ala	Asp 200	Ala	Lys	Leu	Asn	Phe 205	Ile	His	Lys
Ser	Asn 210	Leu	Asp	Gly	Thr	Asn 215	Arg	Gln	Ala	Val	Val 220	Lys	Gly	Ser	Leu
Pro 225	His	Pro	Phe	Ala	Leu 230	Thr	Leu	Phe	Glu	Asp 235	Ile	Leu	Tyr	Trp	Thr 240
Asp	Trp	Ser	Thr	His 245	Ser	Ile	Leu	Ala	Cys 250	Asn	Lys	Tyr	Thr	Gly 255	Glu
Gly	Leu	Arg	Glu 260	Ile	His	Ser	Asp	Ile 265	Phe	Ser	Pro	Met	Asp 270	Ile	His
Ala	Phe	Ser 275	Gln	Gln	Arg	Gln	Pro 280	Asn	Ala	Thr	Asn	Pro 285	Cys	Gly	Ile

Asp	Asn 290	Gly	Gly	Cys	Ser	His 295	Leu	Cys	Leu	Met	Ser 300	Pro	Val	Lys	Pro
Phe 305	Tyr	Gln	Cys	Ala	Cys 310	Pro	Thr	Gly	Val	Lys 315	Leu	Leu	Glu	Asn	Gly 320
Lys	Thr	Cys	Lys	Asp 325	Gly	Ala	Thr	Glu	Leu 330	Leu	Leu	Leu	Ala	Arg 335	Arg
Thr	Asp	Leu	Arg 340	Arg	Ile	Ser	Leu	Asp 345	Thr	Pro	Asp	Phe	Thr 350	Asp	Ile
Val	Leu	Gln 355	Leu	Glu	Asp	Ile	Arg 360	His	Ala	Ile	Ala	Ile 365	Asp	Tyr	Asp
Pro	Val 370	Glu	Gly	Tyr	Ile	Tyr 375	Trp	Thr	Asp	Asp	Glu 380	Val	Arg	Ala	Ile
Arg 385	Arg	Ser	Phe	Ile	Asp 390	Gly	Ser	Gly	Ser	Gln 395	Phe	Val	Val	Thr	Ala 400
Gln	Ile	Ala	His	Pro 405	Asp	Gly	Ile	Ala	Val 410	Asp	Trp	Val	Ala	Arg 415	Asn
Leu	Tyr		Thr 420	Asp	Thr	Gly	Thr	Asp 425	Arg	Ile	Glu	Val	Thr 430	Arg	Leu
Asn	Gly	Thr 435	Met	Arg	Lys	Ile	Leu 440	Ile	Ser	Glu	Asp	Leu 445	Glu	Glu	Pro
Arg	Ala 450	Ile	Val	Leu	Asp	Pro 455	Met	Val	Gly	Tyr	Met 460	Tyr	Trp	Thr	Asp
Trp 465	Gly	Glu	Ile	Pro	Lys 470	Ile	Glu	Arg	Ala	Ala 475	Leu	Asp	Gly	Ser	Asp 480
Arg	Val	Val	Leu	Val 485	Asn	Thr	Ser	Leu	Gly 490	Trp	Pro	Asn	Gly	Leu 495	Ala
Leu	Asp	Tyr	Asp 500	Glu	Gly	Lys	Ile	Туг 505	Trp	Gly	Asp	Ala	Lys 510	Thr	Asp
Lys	Ile	Glu 515	Val	Met	Asn	Thr	Asp 520	Gly	Thr	Gly	Arg	Arg 525	Val	Leu	Val

Glu Asp Lys Ile Pro His Ile Phe Gly Phe Thr Leu Leu Gly Asp Tyr

Val Tyr Trp Thr Asp Trp Gln Arg Arg Ser Ile Glu Arg Val His Lys Arg Ser Ala Glu Arg Glu Val Ile Ile Asp Gln Leu Pro Asp Leu Met Gly Leu Lys Ala Thr Asn Val His Arg Val Ile Gly Ser Asn Pro Cys Ala Glu Glu Asn Gly Gly Cys Ser His Leu Cys Leu Tyr Arg Pro Gln Gly Leu Arg Cys Ala Cys Pro Ile Gly Phe Glu Leu Ile Ser Asp Met Lys Thr Cys Ile Val Pro Glu Ala Phe Leu Leu Phe Ser Arg Arg Ala Asp Ile Arg Arg Ile Ser Leu Glu Thr Asn Asn Asn Asn Val Ala Ile Pro Leu Thr Gly Val Lys Glu Ala Ser Ala Leu Asp Phe Asp Val Thr Asp Asn Arg Ile Tyr Trp Thr Asp Ile Ser Leu Lys Thr Ile Ser Arg Ala Phe Met Asn Gly Ser Ala Leu Glu His Val Val Glu Phe Gly Leu Asp Tyr Pro Glu Gly Met Ala Val Asp Trp Leu Gly Lys Asn Leu Tyr Trp Ala Asp Thr Gly Thr Asn Arg Ile Glu Val Ser Lys Leu Asp Gly Gln His Arg Gln Val Leu Val Trp Lys Asp Leu Asp Ser Pro Arg Ala Leu Ala Leu Asp Pro Ala Glu Gly Phe Met Tyr Trp Thr Glu Trp Gly

Gly	Lys 770	Pro	Lys	Ile	Asp	Arg 775	Ala	Ala	Met	Asp	Gly 780	Ser	Glu	Arg	Thr
Thr 785	Leu	Val	Pro	Asn	Val 790	Gly	Arg	Ala	Asn	Gly 795	Leu	Thr	Ile	Asp	Tyr 800
Ala	Lys	Arg	Arg	Leu 805	Tyr	Trp	Thr	Asp	Leu 810	Asp	Thr	Asn	Leu	Ile 815	Glu
Ser	Ser	Asn	Met 820	Leu	Gly	Leu	Asn	Arg 825	Glu	Val	Ile	Ala	Asp 830	Asp	Leu
Pro	His	Pro 835	Phe	Gly	Leu	Thr	Gln 840	Tyr	Gln	Asp	Tyr	Ile 845	Tyr	Trp	Thr
Asp	Trp 850	Ser	Arg	Arg	Ser	Ile 855	Glu	Arg	Ala	Asn	Lys 860	Thr	Ser	Gly	Gln
Asn 865	Arg	Thr	Ile	Ile	Gln 870	Gly	His	Leu	Asp	Tyr 875	Val	Met	Asp	Ile	Leu 880
Val	Phe	His	Ser	Ser 885	Arg	Gln	Ser	Gly	Trp 890	Asn	Glu	Cys	Ala	Ser 895	Ser
Asn	Gly	His	Cys 900	Ser	His	Leu	Cys	Leu 905	Ala	Val	Pro	Val	Gly 910	Gly	Phe
Val	Cys	Gly 915	Суз	Pro	Ala	His	Tyr 920	Ser	Leu	Asn	Ala	Asp 925	Asn	Arg	Thr
Cys	Ser 930	Ala	Pro	Thr	Thr	Phe 935	Leu	Leu	Phe	Ser	Gln 940	Lys	Ser	Ala	Ile
Asn 945	Arg	Met	Val	Ile	Asp 950	Glu	Gln	Gl n	Ser	Pro 955	Asp	Ile	Ile	Leu	Pro 960
Ile	His	Ser	Leu	Arg 965	Asn	Val	Arg	Ala	Ile 970	Asp	Туr	Asp	Pro	Leu 975	Asp
Lys	Gln	Leu	Туr 980	Trp	Ile	Asp	Ser	Arg 985	Gln	Asn	Met	Ile	Arg 990	Lys	Ala
Gln	Glu	Asp 995	Gly	Ser	Gln	Gly	Phe		val	. Val	. Val	. Ser		er Va	ıl Pro

Ser	Gln 1010		Leu	Glu	Ile	Gln 1015		Tyr	Asp	Leu	Ser 1020		Asp	Ile
Tyr	Ser 1025	Arg	Tyr	Ile	Tyr	Trp 1030		Cys	Glu	Ala	Thr 1035	Asn	Val	Ile
Asn	Val 1040	Thr	Arg	Leu	Asp	Gly 1045	Arg	Ser	Val	Gly	Val 1050	Val	Leu	Lys
Gly	Glu 1055	Gln	Asp	Arg	Pro	Arg 1060	Ala	Ile	Val	Val	Asn 1065	Pro	Glu	Lys
Gly	Tyr 1070	Met	Tyr	Phe	Thr	Asn 1075	Leu	Gln	Glu	Arg	Ser 1080	Pro	Lys	Ile
Glu	Arg 1085	Ala	Ala	Leu	Asp	Gly 1090	Thr	Glu	Arg	Glu	Val 1095	Leu	Phe	Phe
Ser	Gly 1100	Leu	Ser	ГЛЗ	Pro	Ile 1105	Ala	Leu	Ala	Leu	Asp 1110	Ser	Arg	Leu
Gly	Lys 1115	Leu	Phe	Trp	Ala	Asp 1120	Ser	Asp	Leu	Arg	Arg 1125	Ile	Glu	Ser
Ser	Asp 1130	Leu ,	Ser	Gly	Ala	Asn 1135	Arg	Ile	Val	Leu	Glu 1140	Asp	Ser	Asn
Ile	Leu 1145	Gln	Pro	Val	Gly	Leu 1150	Thr	Val	Phe	Glu	Asn 1155	Trp	Leu	Tyr
Trp	Ile 1160	Asp	Lys	Gln	Gln	Gln 1165	Met	Ile	Glu	Lys	Ile 1170	Asp	Met,	Thr
Gly	Arg 1175	Glu	Gly	Arg	Thr	Lys 1180	Val	Gln	Ala	Arg	Ile 1185	Ala	Gln	Leu
Ser	Asp 1190	Ile	His	Ala	Val	Lys 1195	Glu	Leu	Asn	Leu	Gln 1200	Glu	Tyr	Arg
Gln	His 1205	Pro	Cys	Ala	Gln	Asp 1210	Asn	Gly	Gly	Cys	Ser 1215	His	Ile	Сув
Leu	Val 1220	Lys	Gly	Asp	Gly	Thr 1225	Thr	Arg	Cys	Ser	Cys 1230	Pro	Met	His

Leu	Val 1235	Leu	Leu	Gln	Asp	Glu 1240	Leu	Ser	Cys	Gly	Glu 12 4 5		Pro	Thr
Cys	Ser 1250		Gln	Gln	Phe	Thr 1255		Phe	Thr	Gly	Glu 1260		Asp	Cys
Ile	Pro 1265	Val	Ala	Trp	Arg	Cys 1270	Asp	Gly	Phe	Thr	Glu 1275	Cys	Glu	Asp
His	Ser 1280	Asp	Glu	Leu	Asn	Cys 1285	Pro	Val	Cys	Ser	Glu 1290		Gln	Phe
Gln	Cys 1295		Ser	Gly	Gln	Cys 1300	Ile	Asp	Gly	Ala	Leu 1305	_	Cys	Asn
Gly	Asp 1310	Ala	Asn	Cys	Gln	Asp 1315	Lys	Ser	Asp	Glu	Lys 1320	Asn	Cys	Glu
Val	Leu 1325	Cys	Leu	Ile	Asp	Gln 1330	Phe	Arg	Cys	Ala	Asn 1335	Gly	Gln	Cys
Ile	Gly 1340	_	His	Lys	Lys	Cys 1345	Asp	His	Asn	Val	Asp 1350	Cys	Ser	Asp
Lys	Ser 1355	Asp	Glu	Leu	Asp	Cys 1360	Tyr	Pro	Thr	Glu	Glu 1365	Pro	Ala	Pro
Gln	Ala 1370	Thr	Asn	Thr	Val	Gly 1375	Ser	Val	Ile	Gly	Val 1380	Ile	Val	Thr
Ile	Phe 1385	Val	Ser	Gly	Thr	Val 1390	Tyr	Phe	Ile	Cys	Gln 1395	Arg	Met	Leu
Cys	Pro 1400	Arg	Met	Lys	Gly	Asp 1405	Gly	Glu	Thr	Met	Thr 1410	Asn	Asp	Tyr
Val	Val 1415	His	Gly	Pro	Ala	Ser 1420	Val	Pro	Leu	Gly	Tyr 1425	Val	Pro	His
Pro	Ser 1430	Ser	Leu	Ser	Gly	Ser 1435	Leu	Pro	Gly	Met	Ser 1440	Arg	Gly	Lys
Ser	Met 1445	Ile	Ser	Ser	Leu	Ser 1450	Ile	Met	Gly	Gly	Ser 1455	Ser	Gly	Pro

Pro Tyr Asp Arg Ala His Val Thr Gly Ala Ser Ser Ser Ser 1460 1465 1470	
Ser Ser Thr Lys Gly Thr Tyr Phe Pro Ala Ile Leu Asn Pro Pro 1475 1480 1485	
Pro Ser Pro Ala Thr Glu Arg Ser His Tyr Thr Met Glu Phe Gly 1490 1495 1500	
Tyr Ser Ser Asn Ser Pro Ser Thr His Arg Ser Tyr Ser Tyr Arg 1505 1510 1515	
Pro Tyr Ser Tyr Arg His Phe Ala Pro Pro Thr Thr Pro Cys Ser 1520 1525 1530	
Thr Asp Val Cys Asp Ser Asp Tyr Ala Pro Ser Arg Arg Met Thr 1535 1540 1545	
Ser Val Ala Thr Ala Lys Gly Tyr Thr Ser Asp Leu Asn Tyr Asp 1550 1560	
Ser Glu Pro Val Pro Pro Pro Pro Thr Pro Arg Ser Gln Tyr Leu 1565 1570 1575	
Ser Ala Glu Glu Asn Tyr Glu Ser Cys Pro Pro Ser Pro Tyr Thr 1580 1585 1590	
Glu Arg Ser Tyr Ser His His Leu Tyr Pro Pro Pro Pro Ser Pro 1595 1600 1605	
Cys Thr Asp Ser Ser 1610	
<210> 9 <211> 702 <212> ADN <213> Rata	
<220> <221> CDS <222> (1)(702)	
<400> 9	
atg ggt gtg cct act cat ctc ctg ggt ttg ttg ctg ctc tgg att aca Met Gly Val Pro Thr His Leu Leu Gly Leu Leu Leu Trp Ile Thr 1 5 10 15	48
cat gcc ata tgt gat atc cgg atg aca cag tct cca gct tcc ctg tct	96

His A	Ala	Ile	Cys 20	Asp	Ile	Arg	Met	Thr 25	Gln	Ser	Pro	Ala	Ser 30	Leu	Ser	
gca (Ala (tct Ser	ctg Leu 35	gga Gly	gaa Glu	act Thr	gtc Val	aac Asn 40	atc Ile	gaa Glu	tgt Cys	cta Leu	gca Ala 45	agt Ser	gag Glu	gac Asp	144
att i Ile :																192
cag o Gln I 65																240
cgg t Arg 1																288
agc o Ser I				_	_	_					_					336
aat t Asn 1			_	_						_	_	_	_			384
gct g Ala <i>A</i>		_	_			-							_	-	-	432
tta g Leu <i>l</i> 145					-		-									480
ccc a																528
gat g Asp G	_															576
tac a Tyr S	_	_	_	_			_	_		-	_	-			-	624
cat a His A					-		_									672
gtc g Val V 225																702
<210> <211> <212> <213>	23 PF	34														
<400>	10)														

Met 1	GTÀ	Val	Pro	Thr 5	His	Leu	Leu	GIÀ	Leu 10	Leu	Leu	Leu	Trp	Ile 15	Thr
His	Ala	Ile	Cys 20	Asp	Ile	Arg	Met	Thr 25	Gln	Ser	Pro	Ala	Ser 30	Leu	Ser
Ala	Ser	Leu 35	Gly	Glu	Thr	Val	Asn 40	Ile	Glu	Cys	Leu	Ala 45	Ser	Glu	Asp
Ile	Туг 50	Ser	Asp	Leu	Ala	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Gly	Lys	Ser	Pro
Gln 65	Leu	Leu	Ile	Tyr	Asn 70	Ala	Asn	Ser	Leu	Gln 75	Asn	Gly	Val	Pro	Ser 80
Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Thr	Gln 90	Tyr	Ser	Leu	Lys	Ile 95	Asn
Ser	Leu	Gln	Ser 100	Glu	Asp	Val	Ala	Thr 105	Tyr	Phe	Cys	Gln	Gln 110	Tyr	Asn
Asn	Tyr	Pro 115	Pro	Thr	Phe	Gly	Gly 120	Gly	Thr	Lys	Leu	Glu 125	Leu	Lys	Arg
Ala	Asp 130	Ala	Ala	Pro	Thr	Val 135	Ser	Ile	Phe	Pro	Pro 140	Ser	Thr	Glu	Gln
Leu 145	Ala	Thr	Gly	Gly	Ala 150	Ser	Val	Val	Cys	Leu 155	Met	Asn	Asn	Phe	Туr 160
Pro	Arg	Asp	Ile	Ser 165	Val	Lys	Trp	Lys	Ile 170	Asp	Gly	Thr	Glu	Arg 175	Arg
Asp	Gly	Val	Leu 180	Asp	Ser	Val	Thr	Asp 185	Gln	Asp	Ser	Lys	Asp 190	Ser	Thr
Tyr	Ser	Met 195	Ser	Ser	Thr	Leu	Ser 200	Leu	Thr	Lys	Ala	Asp 205	Tyr	Glu	Ser
His	Asn 210	Leu	Tyr	Thr	Cys	Glu 215	Val	Val	His	Lys	Thr 220	Ser	Ser	Ser	Pro
Val 225	Val	Lys	Ser	Phe	Asn 230	Arg	Asn	Glu	Cys						
<210><211><211><212>	• 139 • AD	N													

<220: <221: <222:	> CI	DS)(139	95)														
<400	> 11																
_	_				_	_	•			_				aaa Lys 15			48
_	_	-		_	_	_							_	gta Val	_		96
														act Thr			144
_	-		_	_	_		_	_	_			-	_	ggt Gly	_		192
		-	_					_		-				tat Tyr	_	:	240
_					_					-				aaa Lys 95		:	288
			_		-	_	-	_				_	-	gcc Ala			336
								Ile						gat Asp		;	384
														aca Thr			432
														aac Asn		•	480
														cca Pro 175		į	528
														acc Thr		ţ	576
cca	gct	gtc	ctg	cag	tct	ggg	ctc	tac	act	ctc	acc	agc	tca	gtg	act	(624

Pro	Ala	Val 195	Leu	Gln	Ser	Gly	Leu 200	Tyr	Thr	Leu	Thr	Ser 205	Ser	Val	Thr	
gta Val	ccc Pro 210	tcc Ser	agc Ser	acc Thr	tgg Trp	ccc Pro 215	agc Ser	cag Gln	acc Thr	gtc Val	acc Thr 220	tgc Cys	aac Asn	gta Val	gcc Ala	672
						aag Lys										720
						cct Pro										768
						cca Pro										816
						tgt Cys										864
						tgg Trp 295										912
						gag Glu										960
_	-	_				ctg Leu		_	_						_	1008
						agt Ser										1056
					-	ggc Gly	_			-	_					1104
_				_	_	gag Glu 375	_					_	-			1152
-	_	_				tat Tyr			_						_	1200
_			_		_	gaa Glu								_	_	1248
				-		ttc Phe			_					-	-	1296
gaa	aaa	tgg	cag	cag	gga	aac	acg	ttc	acg	tgt	tct	gtg	ctg	cat	gaa	1344

Glu Lys Trp Gln Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu 435 ggc ctg cac aac cac cat act gag aag agt ctc tcc cac tct ccg ggt Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly 455 aaa 1395 Lys 465 <210> 12 <211> 465 <212> PRT <213> Rata <400> 12 Met Asp Ile Arg Leu Ser Leu Ala Phe Leu Val Leu Phe Ile Lys Gly 5 10 Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Ala Asn Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 Ser Asp Tyr Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu , 55 50 Glu Trp Val Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser 85 90 Thr Leu Tyr Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr 100 105 Tyr Tyr Cys Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln Gly Val Leu Val Thr Val Ser Ser Ala Glu Thr Thr Ala 135 140 Pro Ser Val Tyr Pro Leu Ala Pro Gly Thr Ala Leu Lys Ser Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val 165 170

Thr	Val	Thr	Trp 180	Asn	Ser	Gly	Ala	Leu 185	Ser	Ser	Gly	Val	His 190	Thr	Phe
Pro	Ala	Val 195	Leu	Gln	Ser	Gly	Leu 200	Tyr	Thr	Leu	Thr	Ser 205	Ser	Val	Thr
Val	Pro 210	Ser	Ser	Thr	Trp	Pro 215	Ser	Gln	Thr	Val	Thr 220	Cys	Asn	Val	Ala
His 225	Pro	Ala	Ser	Ser	Thr 230	Lys	Val	Asp	Lys	Lys 235	Ile	Val	Pro	Arg	Asn 240
Cys	Gly	Gly	Asp	Cys 245	Lys	Pro	Cys	Ile	Cys 250	Thr	Gly	Ser	Glu	Val 255	Ser
Ser	Val	Phe	Ile 260	Phe	Pro	Pro	Lys	Pro 265	Lys	Asp	Val	Leu	Thr 270	Ile	Thr
Leu	Thr	Pro 275	Lys	Val	Thr	Cys	Val 280	Val	Val	Asp	Ile	Ser 285	Gln	Asp	Asp
Pro	Glu 290	Val	His	Phe	Ser	Trp 295	Phe	Val	Asp	Asp	Val 300	Glu	Val	His	Thr
Ala 305	Gln	Thr	Arg	Pro	Pro 310	Glu	Glu	Gln	Phe	Asn 315	Ser	Thr	Phe	Arg	Ser 320
Val	Ser	Glu	Leu	Pro 325	Ile	Leu	His	Gln	Asp 330	Trp	Leu	Asn	Gly	Arg 335	Thr.
Phe	Arg	-	Lys 340	Val			Ala			Pro	Ser	Pro	Ile 350	Glu	Lys
Thr	Ile	Ser 355	Lys	Pro	Glu	Gly	Arg 360	Thr	Gln	Val	Pro	His 365	Val	Tyr	Thr
Met	Ser 370	Pro	Thr	Lys	Glu	G1u 375	Met	Thr	Gln	Asn	Glu 380	Val	Ser	Ile	Thr
Суз 385	Met	Val	Lys	Gly	Phe 390	Tyr	Pro	Pro	Asp	Ile 395	Tyr	Val	Glu	Trp	Gln 400
Met	Asn	Gly	Gln	Pro 405	Gln	Glu	Asn	Tyr	Lys 410	Asn	Thr	Pro	Pro	Thr 415	Met

```
Asp Thr Asp Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Asn Val Lys Lys
                   420
                                         425
     Glu Lys Trp Gln Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu
               435
                                    440
                                                           445
     Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly
          450
                                455
     Lys
     465
     <210> 13
     <211> 14
     <212> PRT
     <213> Artificial
     <220>
     <223> péptido PADRE
     <400> 13
     Ala Lys Phe Val Ala Ala Trp Thr Leu Lys Ala Ala Ala Cys
                                              10
10
     <210> 14
     <211> 14
     <212> PRT
     <213> Artificial
     <220>
15
     <223> péptido PADRE
     <220>
     <221> CARACTERÍSTICAS_MISCELÁNEA
     <222> (4)..(4)
     <223> X = ciclohexil-alanina
     <400> 14
20
     Cys Ala Lys Xaa Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
     <210> 15
     <211> 44
     <212> ARN
     <213> Artificial
25
     <220>
     <223> oligonucleótido RACE
     cgacuggagc acgaggacac ugacauggac ugaaggagua gaaa
                                                         44
     <210> 16
30
     <211>
            24
     <212> ADN
     <213> Artificial
     <220>
35
     <223>
            oligonucleótido RACE
     <220>
     <221> característica_miscelánea
```

		(18)(23) N = cualquier nucleótido		
	<400>	16		
	ggccgg	atag gcctcacnnn nnnt	24	
5	<210> <211> <212> <213>	23		
10	<220> <223>	Cebador de PCR		
	<400>	17		
	cgactgg	agc acgaggacac tga	23	
15	<210> <211> <212> <213>	24		
	<220> <223>	Cebador de PCR		
	<400>	18		
20	gcaaca	gtgg taggtcgctt gtgg	24	
	<210> <211> <212> <213>	26		
25	<220> <223>	Cebador de PCR		
	<400>	19		
	ggacact	tgac atggactgaa ggagta	26	
30	<210> <211> <212> <213>			
	<220> <223>	Cebador de PCR		
35	<400>	20		
	aggagc	cagt ggatagacag a	21	
40	<210> <211> <212> <213>			
	<220> <223>	Cebador de PCR		
	<400>	21		
	aagctcg	gagg tcgactagac caccatggg	t gtgcctactc atctc	45
45	<210> <211> <212>	46		

	<213>	Artificial	
	<220> <223>	Cebador de PCR	
	<400>	22	
5	aagctcg	gagg tegactagac caccatggac atcaggetca gettgg	46
	<212>	23 40 ADN Artificial	
10	<220> <223>	Cebador de PCR	
	<400>	23	
	aaccgtt	taa acgcggccgc ctaacactca ttcctgttga	40
15	<210> <211> <212> <213>	42	
	<220> <223>	Cebador de PCR	
20	<400>	24	
	aaccgtt	taa acgcggccgc tcatttaccc ggagagtggg ag	42
25	<210> <211> <212> <213>	642 ADN	
	<220> <223>	Quimera	
30	<220> <221> <222>	CDS (1)(642)	
	<400>	25	

												tcc Ser					48
												gac Asp					96
	ctt Leu	gca Ala	tgg Trp 35	tat Tyr	caa Gln	caa Gln	aaa Lys	ccc Pro 40	gcc Ala	aaa Lys	gct Ala	ccc Pro	aaa Lys 45	ctt Leu	ttc Phe	atc Ile	144
												tcc Ser 60					192
						_						tca Ser		_			240
		-		-								aat Asn					288
												cgt Arg					336
												cag Gln					384
												tat Tyr 140					432
		-	_		-				_			tcg Ser					480
									Lys			acc Thr					528
												aaa Lys					576
		-	_	_			_		_	_	_	ccc Pro	_		_	_	624
			agg Arg														642
5	<210: <211: <212: <213:	> 21 > Pl	4	cia Ar	tificial												
	<220: <223:		onstru	cto Si	ntétic	0											
	<400	> 26	6														

Ala Ile Arg Met Thr Gln Ser Pro Phe Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Leu Ala Ser Glu Asp Ile Tyr Ser Asp Leu Ala Trp Tyr Gln Gln Lys Pro Ala Lys Ala Pro Lys Leu Phe Ile 35 40 Tyr Asn Ala Asn Ser Leu Gln Asn Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Pro 85 90 Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 150 155 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 Phe Asn Arg Gly Glu Cys <210> 27 <211> 321 <212> ADN <213> Secuencia Artificial <220> <223> Quimera <220> <221> CDS

<222> (1)..(321)

<400	> 27															
_		~	_								tcc Ser	_				48
_	_	-				-	_	-		-	gac Asp			-	gac Asp	96
	-							_		_	ccc Pro					144
		_		_		-			_		tcc Ser 60	_				192
					_						tca Ser		_			240
•	_		~				_				aat Asn					288
					act Thr		_	_								321
	_	7 RT	cia Ar	tificia	I											
<220: <223:	_	nstru	cto Si	intétic	:0											
<400	> 28															
Ala 1	Ile	Arg	Met	Th: 5	r Gl	n Se	er Pr	o Pł	ne Se 10		eu Se	r Al	a Sei	7 Val	l Gly	
Asp	Arg	Va1	Thi 20	: Il	e Th	r Cy	⁄s Le	eu Al 25		er Gl	u As	p Il	е Туз 30	r Sei	Asp	
Leu	Ala	Trp 35	Туг	Gl:	n Gl	n Ly	s Pr 40		.a Ly	/s Al	a Pr	o Ly:	s Lei	ı Phe	e Ile	
Tyr	Asn 50	Ala	. Asr	ı Se	r Le	u G1 55		sn Gl	y Vá	al Pr	o Se 60		g Phe	e Sei	: Gly	
Ser 65	Gly	Ser	Gl ^y	7 Th	r As 70		r Th	ır Le	eu Th	nr Il 75		r Se	r Lei	ı Glr	n Pro 80	
Glu	Asp	Phe	Ala	a Th	r _; Ty	г Ту	r Cy	rs Gl	.n G] 90		r As	n Ası	n Tyi	r Pro	Pro	
Thr	Phe	Gly	· Gl <u>\</u>		y Th	r Ly	rs Va	il Gl 10	_	le Ly	rs					

	<210><211><211><212><213>	AD	N	ia Arti	ficial												
5	<220> <223>	Qu	imera														
	<220> <221> <222>	CD (1).	_)													
10	<400>	29															
	gat a Asp I 1																48
	gat o Asp A	_	_				_	-	-		_				_	-	96
	ctt g Leu A	•							_		-						144
	tat a	aac	gcc	aat	agc	ctc	cag	aac	ggt	gtt	cca	tcc	aga	ttt	agc	ggc	192

Tyr	Asn 50	Ala	Asn	Ser	Leu	Gln 55	Asn	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly		
												tca Ser				2	40
												aac Asn				28	88
												acg Thr				3:	36
		-				_			_		_	ttg Leu 125				31	84
												ccc Pro				43	32
	_	_		_		_		-			_	ggt Gly			_	48	80
												tac Tyr				52	28
_		_	_	_	_		_	_				cac His				57	76
gcc Ala	tgc Cys	gaa Glu 195	gtc Val	acc Thr	cat His	cag Gln	ggc Gly 200	ctg Leu	agc Ser	tcg Ser	ccc Pro	gtc Val 205	aca Thr	aag Lys	agc Ser	62	24
			gga Gly													64	42
<210 <211 <212 <213	> 21 > PI	I4 RT	cia Aı	tificia	I												
<220 <223		onstru	ıcto S	intétic	ю.												
<400	> 30)															
Asp 1	Ile	Arg	Met	Thr 5	Gln	. Ser	Pro	Phe	Ser 10	: Le	ı Se:	r Ala	a Se	r Va 15	1 Gly		
Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Leu	Ala 25	a Sei	r Glu	ı Ası	, Il	е Ту: 30	r Se	r Asp		

Leu Ala Trp Tyr Gln Gln Lys Pro Ala Lys Ala Pro Lys Leu Phe Ile 40 Tyr Asn Ala Asn Ser Leu Gln Asn Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70 75 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Pro Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala , 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 150 145 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 185 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200 Phe Asn Arg Gly Glu Cys 210 <210> 31 <211> 321 <212> ADN <213> Secuencia Artificial <220> <223> Quimera <220> <221> CDS <222> (1)..(321)

10

<400> 31

											tcc Ser					48
											gac Asp					96
											ccc Pro					144
											tcc Ser 60					192
					-						tca Ser		_			240
											aat Asn					288
					act Thr		_	_								321
	> 10 > PF	7 RT														
\Z 13.	- 50	ecuen	cıa Ar	tificial												
<220: <223:	>			ntétic												
<220:	> > Co	onstru														
<220: <223: <400:	> > Co > 32	onstru !	cto Si	ntétic	0	Ser	Pro	Phe	s Ser	Leu	ı Ser	· Ala	ı Sei	r Val	l Gly	
<220: <223: <400: Asp 1	> > Co > 32	onstru ! Arg	cto Si	ntétic Thr 5	o Gln				10					15	Gly Asp	
<220: <223: <400: Asp 1	> Co > 32 Ile	Arg Val	Met Thr	ntétic Thr 5	O Gln Thr	Cys	Leu	Ala 25	10 Ser	Glu	ı Asp) Ile	• Туз 30	15 Sei		
<220: <223: <400: Asp 1 Asp	> Co > 32 Ile Arg	Arg Val Trp 35	cto Si Met Thr 20	ntétic Thr 5 Ile Gln	O Gln Thr Gln	Cys	Leu Pro 40	Ala 25	10 Ser	Glu Ala	ı Asp	Lys 45	e Tyr 30	15 Ser	Asp	
<220: <223: <400: Asp 1 Asp Leu	> Co > 32 Ile Arg Ala Asn 50	Arg Val Trp 35	cto Si Met Thr 20 Tyr	ntétic Thr 5 Ile Gln Ser	Gln Thr Gln Leu	Cys Lys Gln 55	Leu Pro 40	Ala 25 Ala Gly	10 Ser Lys	Glu Ala	Asp Pro Ser 60	Lys 45	e Tyr 30 : Leu	15 Ser Ser	Asp	
<220: <223: <400: Asp 1 Asp Leu Tyr	Arg Ala Asn 50 Gly	Arg Val Trp 35 Ala	cto Si Met Thr 20 Tyr Asn	ntétic Thr 5 Ile Gln Ser	Gln Thr Gln Leu Asp 70	Cys Lys Gln 55	Pro 40 Asn	Ala 25 Ala Gly	10 Ser Lys Val	Glu Ala Pro Tle 75	Asp Pro Ser 60	Lys 45 Arg	Tyn 30 Leu Phe	15 Ser Phe	Asp	

5

10

<210> 33

<2113 <2123 <2133	> AE	N	cia Ar	tificial										
<220: <223:		uimera	a											
<220; <221; <222;	> CE	DS)(135	50)											
<400	> 33	1												
					gaa Glu									48
		-			tgc Cys	_	-	_				-		96
_	_	_		_	cga Arg		_			 _	_		_	144
					gat Asp									192
		_			atc Ile 70		_	-						240
					ctg Leu									288
					att Ile									336
					gtc Val									384
					tcc Ser									432
					aag Lys 150									480

tgg Trp	aac Asn	tca Ser	ggc Gly	gcc Ala 165	ctg Leu	acc Thr	agc Ser	ggc Gly	gtg Val 170	cac His	acc Thr	ttc Phe	ccg Pro	gct Ala 175	gtc Val	528
														gtg Val		576
														cac His		624
														tgt Cys		672
				_		-	_		-		-		_	GJÀ âãâ		720
_		_								-	-			atg Met 255		768
														cac His		816
														gtg Val		864
	-	-		_	_				_			_		tac Tyr		912
	_	-	-			_	_		_	_				ggc ggc		960
		_		_	_				_					atc Ile 335		1008
					-			_		_	-		_	gtg Val		1056
														agc Ser		1104
														gag Glu		1152
														ccc Pro		1200

ctg gac tcc gac ggc tcc ttc ttc ctc tat agc aag ctc acc gtg gac Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415	1248
aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430	1296
gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg tct ccg Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445	1344
ggt aaa Gly Lys 450	1350
<210> 34 <211> 450 <212> PRT <213> Secuencia Artificial <220>	
<223> Constructo Sintético <400> 34	
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15	
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	
Ala Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val	
Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 55 60	
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80	
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 110	
Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125	
Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140	

Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	·Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Lys	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg
Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Ala 330	Leu	Pro	Ala	Pro	Ile 335	Glu
Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
Thr	Leu	Pro 355	Pro	Ser	Arg	Asp	Glu 360	Leu	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
Thr	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp

	Glu Ser A 385	sn Gly	Gln Pro		Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400	
	Leu Asp S	Ser Asp	Gly Ser 405	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	_	
	Lys Ser A	arg Trp 420	Gln Gln	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430		His	
	Glu Ala L 4	eu His	Asn His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro	
	Gly Lys 450													
5	<210> 35 <211> 360 <212> ADN <213> Secu	1	tificial											
	<220> <223> Quin	mera												
10	<220> <221> CDS <222> (1)	S (360)												
	<400> 35													
	gaa gta c Glu Val G 1													48
	tca ctt a Ser Leu A				Ala									96
	gcc atg g Ala Met A 3		Val Arg		Ala			Lys		Leu				144
	gca aca a Ala Thr I 50									_				192
	aaa gga c Lys Gly A 65	-			_	_			_					240
	ctt caa a Leu Gln M													288
	gca acc g Ala Thr (Gly Il						-	Tyr				336
	gga aca t Gly Thr I													360

```
<210> 36
     <211> 120
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Constructo Sintético
     <400> 36
     Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
                                            10
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
                   20
                                        25
     Ala Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
     Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val
          50
                                55
                                                    60
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                                                75
                           70
     Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                       85
     Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln
                   100
                                        105
     Gly Thr Leu Val Thr Val Ser Ser
                                   120
              115
     <210> 37
10
     <211> 1350
<212> ADN
     <213> Secuencia Artificial
     <220>
     <223> Chimera
15
     <220>
     <221> CDS
     <222> (1)..(1350)
     <400> 37
```

gaa Glu 1	gta Val	cag Gln	ttg Leu	gtc Val 5	gaa Glu	agt Ser	ggg Gly	Gly	gga Gly 10	gtt Val	gta Val	caa Gln	cct Pro	gga Gly 15	cga Arg		48
												ttt Phe					96
												ttg Leu 45				1	44
					_							cgc Arg	_		-	1	92
												aat Asn				2	40
		_			_	-	-	_	-	_	-	aca Thr			_	2	88
_								_			_	tat Tyr			_	3	36
		_	_		_		-	-			_	ggc Gly 125			_	3	84
												ggc Gly				4:	32
												gtg Val				4	80
												ttc Phe				5:	28
	_								_	_		gtg Val				5'	76
												gtg Val 205				62	24
												aaa Lys				6'	72
aaa	act	cac	aca	tgc	cca	ccg	tgc	cca	gca	cct	gaa	ctc	ctg	ggg	gga	72	20

Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240	
ccg Pro	tca Ser	gtc Val	ttc Phe	ctc Leu 245	ttc Phe	ccc Pro	cca Pro	aaa Lys	ccc Pro 250	aag Lys	gac Asp	acc Thr	ctc Leu	atg Met 255	atc Ile	768
tcc Ser	cgg Arg	acc Thr	cct Pro 260	gag Glu	gtc Val	aca Thr	tgc Cys	gtg Val 265	gtg Val	gtg Val	gac Asp	gtg Val	agc Ser 270	cac His	gaa Glu	816
					ttc Phe											864
					ccg Pro											912
					acc Thr 310											960
			_	_	gtc Val				-			_				1008
					gcc Ala			_		_	-		_			1056
	_				cgg Arg	_		_		_		_	_	_	_	1104
					ggc Gly											1152
					ccg Pro 390											1200
					tcc Ser											1248
					cag Gln											1296
	-	_			cac His		_	-		-			_		_	1344
ggt Gly			,													1350
<210><211><211><212><213>	45PR	0 ?T	cia Arti	ficial												
<220>	•															

<223>	- Co	nstrut	o Sint	ético											
<400>	> 38														
Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Tyr
Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Va1
Ala	Thr 50	Ile	Ile	Tyr	qzA	Gly 55	Ser	Ser	Thr	Tyr	Tyr 60	Arg	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Thr	Tyr	Tyr 95	Cys
Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Va1	Pro
Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys

Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Lys	Val	Glu	Pro 220	Lys	Ser	Сув	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gļy	Val 285	Glu	Val	His
Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg
Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
Glu	Tyr	Lys	Суз	Lys 325	Val	Ser	Asn	Lys	Ala 330	Leu	Pro	Ala	Pro	Ile 335	Glu
Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
Thr	Leu	Pro 355	Pro	Ser	Arg	Asp	Glu 360	Leu	Thr	Lys	Asn	G1n 365	Val	Ser	Leu
Thr	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
Glu 385	Ser	Asn	Gly	Gl'n	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
Leu	Asp	Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp
Lys	Ser	Arg	Trp 420	Gln	Gln	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
Glu	Ala	Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro
Gly	Lys 450														
<210>	> 39 > 36														

	<212> <213>	_	N cuenc	ia Arti	ificial												
	<220> <223>	Qu	imera														
5	<220> <221> <222>		S .(360)													
	<400>	39															
	_	_	_	_	_	_	_				_	-			gga Gly 15	_	48
			_			_	_	_							gat Asp		96
															tgg Trp		144
															tct Ser		. 192
															ctt Leu		240
	ctt Leu	caa Gln	atg Met	aat Asn	tca Ser 85	ctg Leu	aga Arg	gca Ala	gaa Glu	gat Asp 90	acg Thr	gct Ala	aca Thr	tat Tyr	tat Tyr 95	tgt Cys	288
	-											-			ggc		336
			-	_	acc Thr	-											360
10	<210> <211> <212> <213>	40 120 PR Sec		ia Arti	ificial												
15	<220> <223>	Co	nstruc	to Sir	ntético	,											

<400> 40

Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	/ Gly	7 Gl	y Va	l Va	1 G1	n Pi	ro G 1		Arg	
Ser	Leu	Arg	Leu 20	Ser	Cys ,	Ala	Ala	Sei 25	r Gl	y Ph	e Th	r Ph	e Se 30		sp :	Tyr	
Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	o Gl	y Ly	s Gl	y Le 45		.u T	rp (/al	
Ala	Thr 50	Ile	Ile	Tyr	Asp	Gly 55	Ser	Ser	Th:	r Ty:	r Ty:	r Ar	g As	sp Se	er I	/al	
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	r Asr) Ası	n Ala 75	а Ly	s As	n Th	ır Le		Tyr 30	
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	1 Asj 90	o Th	r Ala	a Th	т Ту	r Ty 95		Cys	
Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105		r Pho	e As	р Ту	r Tr 11		ly G	ln	
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120										
<210> <211> <212> <213>	> 13 > AD	N	cia Arti	ficial													
<220> <223>		imera															
<220> <221> <222>	CE	s															
<400>		`	,														
						agt Ser											48
						gct Ala											96
						caa Gln											144
					qaA	gga Gly 55											192

											acc Thr			240
											tat Tyr			288
											tgg Trp 110			336
											cca Pro			384
										_	aca Thr		_	432
								_	_		acg Thr		_	480
											cca Pro			528
											acc Thr 190			576
_								_			gat Asp		_	624
_			_		-	_	-		_		tgt Cys	-	_	672
 _		_	-		_			-		-	tca Ser	_		720
					_	_		_			cgg Arg			768
 -	_	-	_	-		_	 _		-		ccc Pro 270		_	816
											gcc Ala			864
											gtc Val			912

ctc acc gtt gtg cac cag gac tgg ctg aac ggc aag gag tac aag tgc Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 305 310 315 320	960
aag gtc tcc aac aaa ggc ctc cca gcc ccc atc gag aaa acc atc tcc Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335	1008
aaa acc aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc cca Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 350	1056
tcc cgg gag gag atg acc aag aac cag gtc agc ctg acc tgc ctg gtc Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 355 360 365	1104
aaa ggc ttc tac ccc agc gac atc gcc gtg gag tgg gag agc aat ggg Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380	1152
cag ccg gag aac aac tac aag acc aca cct ccc atg ctg gac tcc gac Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp 385 390 395 400	1200
ggc tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc agg tgg Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415	1248
cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430	1296
aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt aaa Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445	1338
<210> 42 <211> 446 <212> PRT <213> Secuencia Artificial	
<220> <223> Constructo Sintético	
<400> 42	
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15	
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	
Ala Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 55 60	

Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Туг 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn 195	Phe	Gly	Thr	Gln	Thr 200	Tyr	Thr	Cys	Asn	Val 205	Asp	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	i Lys	Cys	Cys	Val
Glu 225	Cys	Pro	Pro	Cys	Pro 230	Ala	Pro	Pro	Val	Ala 235	Gly	Pro	Ser	Val	Phe 240
Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	His	Glu	Asp	Pro 270	Glu	Val
Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr
Гуs	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Phe	Arg 300	Val	Val	Ser	Val

Leu Thr Val Val His Gin Asp Trp Leu Ash Gly Lys Glu Tyr Lys Cy 305 310 315 32	
Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Se 325 330 335	r
Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pr 340 345 350	0
Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Va 355 360 365	1
Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gl 370 375 380	У
Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser As 385 390 395 40	
Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Tr 405 410 415	p
Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu Hi 420 425 430	S
Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445	
<210> 43 <211> 360 <212> ADN <213> Secuencia Artificial	
<220> <223> Quimera	
<220> <221> CDS <222> (1)(360)	
<400> 43	
gaa gta cag ttg gtc gaa agt ggg ggg gga gtt gta caa cct gga cga Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15	48
tca ctt aga ctt tct tgc gct gca agc gga ttt aca ttt tca gat tac Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	96
gcc atg gca tgg gtt cga caa gct cct ggg aaa gga ttg gaa tgg gta	144

	Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val		
		aca Thr 50																192
		gga Gly															:	240
		caa Gln	-			_		_	-	-	_	-	_			-	:	288
	_	acc Thr							-			_				-	;	336
		aca Thr	_	_		_		_									:	360
j	<210><211><211><212><213>	> 12 > PR	0 !T	ia Arti	ficial													
	<220> <223>		netruc	to Sir	ıtático													
	<400>		nsuuc	710 OII	itetico													
	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	. Val	. Glr	n Pro	613 15	y Arg		
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Sei 30	Ası	y Tyr		
	Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	. Lys	Gly	7 Let 45	ı Glu	ı Tr <u>ı</u>	o Val		
	Ala	Thr 50	Ile	Ile	Tyr	Asp	Gly 55	Ser	. Ser	Thr	Tyr	Туг 60	Arg	ı Asr	Sei	c Val		
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	. Lys	: Asr	Thr	: Lei	Tyr 80		
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	· Ala	ı Val	. Туг	туі 95	Cys		
	Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp		Phe	a Asr	туг	Trp		/ Gln		
)	Gly	Thr	Leu 115	Val	Thr	Val		Ser 120										
	<210> <211> <212>	> 13	38															

<213	> Se	ecuen	cia Ar	tificial												
<220: <223:		uimera	a													
<220: <221: <222:	> C[DS)(133	38)													
<400	> 45	i														
											gta Val					48
											aca Thr					96
											gga Gly					144
											tat Tyr 60					192
											aag Lys					240
											gct Ala					288
											gat Asp					336
											aag Lys					384
											gag Glu 140					432
			ctg								ccg Pro					480
tgg	aac	tca	ggc	gct	ctg	acc	agc	ggc	gtg	cac	acc	ttc	cca	gct	gtc	528

Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val	
			tca Ser 180													576
	_		ttc Phe			-				-		_	_		~	624
	_		acc Thr	_	-				-		-		-	-	_	672
	-		ccg Pro	-					_	_	_	_				720
			cca Pro			_	_			_						768
			tgc Cys 260													816
_			tgg Trp			_		-					-	_		864
_		_	gag Glu	_												912
			gtg Val													960
_	_		aac Asn					_								1008
			ggg Glу 340													1056
			gag Glu													1104
			tac Tyr													1152
			aac Asn													1200
ggc	tee	ttc	ttc	ctc	tac	agc	aag	ctc	acc	gtg	gac	aag	agc	agg	tgg	1248

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 415 cag cag ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac 1296 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 aac cac tac acg cag aag agc ctc tcc ctg tct ccg ggt aaa 1338 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 440 <210> 46 <211> 446 <212> PRT <213> Secuencia Artificial <223> Constructo Sintético <400> 46 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 10 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr Ala Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 . 75 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 120 125 115 Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 155

Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn 195	Phe	Gly	Thr	Gln	Thr 200	Tyr	Thr	Cys	Asn	Val 205	Asp	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	Lys	Cys	Cys	Val
Glu 225	Cys	Pro	Pro	Cys	Pro 230	Ala	Pro	Pro	Val	Ala 235	Gly	Pro	Ser	Val	Phe 240
Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	His	Glu	Asp	Pro 270	Glu	Val
Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Gl u	Val	His	Asn 285	Ala	Lys	Thr
Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Phe	Arg 300	Val	Val	Ser	Val
Leu 305	Thr	Val	Val	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Суs 320
Lys	Val	Ser	Asn	Lys 325	_	Leu			Pro 330		Glu	Lys	Thr	Ile 335	
Lys	Thr	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
Ser	Arg	Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val
Lys	Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
Gln 385	Pro	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Met	Leu	Asp	Ser	Asp 400

	Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 415	
	Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430	
	Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445	
5	<210> 47 <211> 360 <212> ADN <213> Secuencia Artificial	
	<220> <223> Quimera	
10	<220> <221> CDS <222> (1)(360)	
	<400> 47	
	gaa gta cag ttg gtc gaa agt ggg ggg gga gtt gta caa cct gga cga Glu Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15	48
	tca ctt aga ctt tct tgc gct gca agc gga ttt aca ttt tca gat tac Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	96
	gcc atg gca tgg gtt cga caa gct cct ggg aaa gga ttg gaa tgg ctg Ala Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45	144
	gca aca att att tac gat gga tct tca aca tat tat cgc gac tct gtc Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 55 60	192
	aaa gga cga ttt aca atc tca cga gat aac tct aag aat acc ctt tac Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80	240
	ctt caa atg aat tca ctg aga gca gaa gat acg gct gtt tat tat tgt Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	288
	gca acc gga ctt gga att gcg act gat tat ttt gat tat tgg ggc cag Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 110	336
	gga aca ttg gta acc gtc tct agt Gly Thr Leu Val Thr Val Ser Ser 115 120	360
15	<210> 48 <211> 120 <212> PRT <213> Secuencia Artificial	
	<220> <223> Constructo Sintético	
	<400> 48	

	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	val	l Val	. Glı	n Pr	o G 1		Arg	
	Ser	Leu	Arg	Leu 20	Ser	Сув	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	e Se 30		sp	Tyr	
	Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	' Lys	Gly	Let 45	ı G1	u T	rp	Leu	
	Ala	Thr 50	Ile	Ile	Tyr	Asp	Gly 55	Ser	Ser	Thr	Туг	туг 60	Arg	g As	g S	er	Val	
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asr	ı Th	r L	eu	Tyr 80	
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	: Ala	. Val	ι ту	r Tj 9	_	Cys	
	Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105		Phe	e Asp	Туз	Tr 11		ly	Gln	
	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120										
5	<210><211><211><212><213>	> 130 > AD	N	ia Arti	ficial													
	<220> <223>		imera															
10	<220> <221> <222>	> CD)S (133	8)														
	<400>	4 9																
				Leu		gaa a Glu :			Gly (?ro				48
			Arg			tgc (Cys)	_	Ala	_				he S		_			96

gcc Ala	atg Met	gca Ala 35	tgg Trp	gtt Val	cga Arg	caa Gln	tct Ser 40	cct Pro	aag Lys	aaa Lys	gga Gly	ttg Leu 45	gaa Glu	tgg Trp	ctg Leu	144
														tct Ser		192
aaa Lys 65	gga Gly	cga Arg	ttt Phe	aca Thr	atc Ile 70	tca Ser	cga Arg	gat Asp	aac Asn	tct Ser 75	aag Lys	aat Asn	acc Thr	ctt Leu	tac Tyr 80	240
										_	-	-		tat Tyr 95	_	288
-		_						_			_			ggc Gly	_	336
			-				_	_			_			tcg Ser	_	384
														gcg Ala		432
														gtg Val		480
														gct Ala 175		528
	_								_	_		_		gtg Val		576
	_					_				_		-	_	cac His	-	624
ccc Pro	agc Ser 210	aac Asn	acc Thr	aag Lys	gtg Val	gac Asp 215	aag Lys	aca Thr	gtt Val	gag Glu	cgc Arg 220	aaa Lys	tgt [†] Cys	tgt Cys	gtc Val	672
														gtc Val		720
						-	-							acc Thr 255		768
														gag Glu		816

cag Gln	ttc Phe	aac Asn 275	tgg Trp	tac Tyr	gtg Val	gac Asp	ggc Gly 280	gtg Val	gag Glu	gtg Val	cat His	aat Asn 285	gcc Ala	aag Lys	aca Thr	864
Lys						ttc Phe 295										912
ctc Leu 305	acc Thr	gtt Val	gtg Val	cac His	cag Gln 310	gac Asp	tgg Trp	ctg Leu	aac Asn	ggc Gly 315	aag Lys	gag Glu	tac Tyr	aag Lys	tgc Cys 320	960
						ctc Leu										1008
						cga Arg										1056
						aag Lys										1104
Lys					_	gac Asp 375		_	-				_			1152
						aag Lys										1200
						agc Ser										1248
cag Gln						tca Ser										1296
aac Asn																1338
<210><211><211><212><213>	44 PF	6 RT	cia Art	ificial												
<220> <223>		nstru	cto Si	ntético)											
<400>	50															
Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	' Arg	
Ser	Leu	Arg	Leu 20	Ser	Суѕ	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Tyr	

Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ser 40	Pro	Lys	Lys	Gly	Leu 45	Glu	Trp	Leu
Ala	Thr 50	Ile	Ile	Tyr	Asp	Gly 55	Ser	Ser	Thr	Tyr	Туr 60	Arg	Asp	Ser	Val
Lys 65	G1y	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn 195	Phe	Gly	Thr	Gln	Thr 200	_	Thr	Cys	Asn	Val 205		His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	Lys	Cys	Cys	Val
Glu 225	Cys	Pro	Pro	Cýs	Pro 230	Ala	Pro	Pro	Val	Ala 235	Gly	Pro	Ser	Val	Phe 240
Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	His	Glu	Asp	Pro 270	Glu	Va1

Gin	rne	275	rrp	туг	Val	Asp	G1y 280	vaı	GIU	Val	HIS	285	Ala	гÀг	Thr
Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Phe	Arg 300	Val	Val	Ser	Val
Leu 305	Thr	Val	Val	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Cys 320
Lys	Val	Ser	Asn	Lys 325	Gly	Leu	Pro	Ala	Pro 330	Ile	Glu	Lys	Thr	Ile 335	Ser
Lys	Thr	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
Ser	Arg	Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val
Lys	Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
Gln 385	Pro	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Met	Leu	Asp	Ser	Asp 400
Gly	Ser	Phe	Phe	Leu 405	Tyr	Ser	Lys	Leu ,	Thr 410	Val	Asp	Lys	Ser	Arg 415	Trp
Gln	Gln	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430	Leu	His
Asn	His	Tyr 435	Thr	Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Pro	Gly 445	Lys		
<210><211><211><212><213>	> 36 > AE	N	cia Artí	ificial											
<220> <223>		ıimera	1												
<220> <221> <222>	> CE)S (360))												
<400>	> 51														
gaa	gta	cag	ttg	gtc	gaa	agt (ggg (ggg g	gga g	gtt g	sta c	aa c	ct g	ga c	ga.

Giu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg	
	ctt Leu															96
	atg Met														-	144
-	aca Thr 50				_							_	-		_	192
	gga Gly															240
	caa Gln	_			_	_	-	_	-	_	-	_			_	288
_	acc Thr					-		_			-				-	336
	aca Thr															360
<210><211><211><212><213>	120 PR		a Antil													
<220>			a Artii	iciai												
<223>		nstruc														
<223>	Cor															
<400>	• Coi	nstruc	to Sin	tético Val				-			. Val			o Gl ₃ 15	⁄ Arg	
<400> Glu 1	· Cor · 52 Val	nstruc Gln	to Sin Leu	tético Val 5				-	10					15	, Arg	
<400> Glu 1	Cor 52 Val Leu	Gln Arg	Leu Leu 20	val 5 Ser	Cys	Ala	Ala	Ser 25	10 Gly	Phe	: Thr	. Phe	Ser 30	15 Asp		
<400> Glu 1 Ser	Cor 52 Val Leu	Gln Arg Ala 35	Leu Leu 20	val 5 Ser Val	Cys	Ala Gln	Ala Ser 40	Ser 25 Pro	10 Gly Lys	Phe Lys	Thr Gly	Phe Leu 45	Ser 30	15 Asp	o Tyr	

	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 110	
	Gly Thr Leu Val Thr Val Ser Ser 115 120	
5	<210> 53 <211> 1338 <212> ADN <213> Secuencia Artificial	
	<220> <223> Quimera	
10	<220> <221> CDS <222> (1)(1338)	
	<400> 53	
	gaa gta cag ttg gtc gaa agt ggg ggg gga ctt gta caa cct gca cga Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Ala Arg 1 5 10 15	48
	tca ctt aga ctt tct tgc gct gca agc gga ttt aca ttt tca gat tac Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	96
	gcc atg gca tgg gtt cga caa tct cct aag aaa gga ttg gaa tgg tta Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Leu 35 40 45	L44
	gca aca att att tac gat gga tct tca aca tat tat cgc gac tct gtc Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 60	192
	aaa gga cga ttt aca atc tca cga gat aac gtt aag aat acc ctt tac Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Val Lys Asn Thr Leu Tyr 65 70 75 80	240
	ctt caa atg gac tca ctg aga tcc gaa gat acg gct aca tat tat tgt Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95	88
	gca aca gga ctt gga att gcg act gat tat ttt gat tat tgg ggc cag Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 110	336
	gga aca ttg gta acc gtc tct agt gcc tcc acc aag ggc cca tcg gtc Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125	884
	ttc ccc ctg gcg ccc tgc tcc agg agc acc tcc gag agc aca gcg gcc 4	32

Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala	
		tgc Cys														480
		tca Ser														528
	_	tcc Ser							_	_						576
		aac Asn 195														624
	-	aac Asn		_		_	_		_		-		_	-	-	672
-		cca Pro							-	_						720
		ccc Pro				_	_			-						768
	_	acg Thr	_				-	-	_		-	-			_	816
		aac Asn 275														864
		cgg Arg														912
		gtt Val														960
_	-	tcc Ser						-								1008
		aaa Lys		-		_	_		_							1056
		gag Glu 355														1104
aaa	ggc	ttc	tac	ccc	agc	gac	atc	gcc	gtg	gag	tgg	gag	agc	aat	a aa	1152

Lys	Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	ı Va	1 G]		Trp 380	Glu	Ser	Asn	Gly		
											o I				tcc Ser			1200
			Phe							r Va					agg Arg 415			1248
									· Va						ctg Leu			1296
			acg Thr	_	_	-				_		_						1338
<210: <211: <212: <213:	> 44 > PF	6 RT	cia Ar	tificia	I													
<220: <223:		onstru	icto Si	intétic	ю													
<400	> 54	ļ																
Glu 1	Val	Gln	Leu	Va] 5	l Gl	u Se	r G	ly G	Sly	Gly 10	L€	eu T	/al	Gln	Pro	Ala 15	Arg	
Ser	Leu	Árg	Leu 20	Sei	Cy:	s Al	a A		Ser 25	Gly	Ph	ne S	Thr		Ser 30	Asp	Tyr	
Ala	Met	Ala 35	Trp	Va]	l Ar	g Gl	n Se 40		?ro	Lys	Ly	/s (Leu 45	Glu	Trp	Leu	
Ala	Thr 50	Ile	Ile	Туз	As)	o Gl 55		er S	Ser	Thr	ТУ		Tyr . 50	Arg	Asp	Ser	Val	
Lys 65	Gly	Arg	Phe	Thi	70	e Se	r Ai	rg P	\sp	Asn	Va 75		ùys .	Asn	Thr	Leu	Tyr 80	
Leu	Gln	Met	Asp	Sei 85	. Le	u Ar	g Se	er (3lu	Asp 90	Th	ır /	Ala '	Thr	Tyr	Туr 95	Cys	
Ala	Thr	Gly	Leu 100	_	, Il	e Al	a Tl	_	Asp 105	Tyr	Ph	ne A	łsp ′		Trp 110	Gly	Gln	
Gly	Thr	Leu 115		Thi	r Vai	l Se		er P 20	Ala	Ser	Th	ır I	_	Gly 125	Pro	Ser	Val	

Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr		Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn 195	Phe	Gly	Thr	Gln	Thr 200	Tyr	Thr	Сув	Asn	Val 205	Asp	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	Lys	Cys	Cys	Val
Glu 225	Cys	Pro	Pro	Cys	Pro 230	Ala	Pro	Pro	Val	Ala 235	Gly	Pro	Ser	Val	Phe 240
Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	His	Glu	Asp	Pro 270	Glu	Val
Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr
Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Phe	Arg 300	Val	Val	Ser	Val
Leu 305	Thr	Val	Val	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Cys 320
Lys	Val	Ser	Asn	Lys 325	Gly	Leu	Pro	Ala	Pro 330	Ile	Glu	Lys	Thr	Ile 335	Ser
Lys	Thr	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
Ser	Arg	Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val

	Lys Gly 370		Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380		ser	Asr	n Gly	
	Gln Pro 385	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395		Leu	ı Asp	Sei	400	
	Gly Ser	Phe	Phe	Leu 405	Tyr	Ser	Lys	Leu	Thr 410		Asp	Lys	: Ser	415	_	
	Gln Gln	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425		Met	His	Glu	Ala 430		n His	
	Asn His	Tyr 435	Thr	Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Pro	Gly 445		}		
5	<210> 5 <211> 3 <212> A <213> S	60 .DN	cia Ar	tificial												
	<220> <223> C	uimer	а													
10	<220> <221> C <222> (1	:DS I)(36	0)													
	<400> 5	5														
	gaa gta Glu Val 1															48
	tca ctt Ser Leu															96
	gcc atg Ala Met															144
	gca aca Ala Thr 50				_							_	-		_	192
	aaa gga Lys Gly 65	_					_	_		-	_					240
	ctt caa Leu Gln	-	_		_	_			_	_	_				_	288
	gca aca Ala Thr							-			_				_	336
	gga aca Gly Thr							<u>:</u>								360
	<210> 5	6														

```
<211> 120
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Constructo Sintético
     <400> 56
     Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Ala Arg
     Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
     Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Leu
     Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val
     Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Val Lys Asn Thr Leu Tyr
     Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys
     Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln
     Gly Thr Leu Val Thr Val Ser Ser
             115
                                   120
     <210> 57
     <211> 1338
10
     <212> ADN
     <213> Secuencia Artificial
     <220>
     <223> Quimera
     <220>
     <221> CDS
15
     <222> (1)..(1338)
     <400> 57
```

-			_		-	-					-	caa Gln		_	aac Asn		48
					-	-		_				ttt Phe		_			96
_	_	_			_				_			ttg Leu 45	_				144
_					-							cgc Arg	_		_		192
		_					_	_		_	_	aat Asn					240
		_	_		_	_		_	_	-	_	aca Thr			_		288
-								_			_	tat Tyr	-	Gly	_		336
	-	_	_		_		-	_			_	ggc Gly 125		_	_		384
					-							agc Ser					432
												gtg Val					480
				-	-		_					ttc Phe		-	_	ř	528
	_								_	_		gtg Val					576
	_					_						gta Val 205			_		624
	-			-		_	_		-		_	aaa Lys	-	_	-		672
	-		_			-				-		ccg Pro		_			720

						aag Lys				-						768
						gtg Val										816
cag Gln	ttc Phe	aac Asn 275	tgg Trp	tac Tyr	gtg Val	gac Asp	ggc Gly 280	gtg Val	gag Glu	gtg Val	cat His	aat Asn 285	gcc Ala	aag Lys	aca Thr	864
					_	ttc Phe 295		_	-		_		_	_	-	912
						gac Asp										960
						ctc Leu										1008
						cga Arg										1056
				_		aag Lys			_	-			_			1104
					_	gac Asp 375		-				-	_			1152
_	_					aag Lys										1200
			Phe	Leu	Tyr	agc Ser	Lys	Leu	Thr	Val						1248
						tca Ser										1296 ⁻
			_	_	-	agc Ser					_					1338
<210: <211: <212: <213:	> 44 > PF	6 RT		tificial												
<220: <223:		nstru	cto Si	ntético)											
<400	> 58															

Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Trp	Gly 10	Leu	Val	Gln	Pro	Ala 15	Asn
Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Tyr
Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ser 40	Pro	Lys	Lys	Gly	Leu 45	Glu	Trp	Leu
Ala	Thr 50	Ile	Ile	Tyr	Asp	Gly 55	Ser	Ser	Thr	Tyr	Tyr 60	Arg	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Val 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asp	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Thr	Tyr	Tyr 95	Cys
Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Val	Leu 1 15	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn 195	Phe	Gly	Thr	Gln	Thr 200	Tyr	Thr	Cys	Asn	Val 205	Asp	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	Lys	Cys	Cys	Val
Glu 225	Cys	Pro	Pro	Суз	Pro 230	Ala	Pro	Pro	Val	Ala 235	Gly	Pro	Ser	Val	Phe 240

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 245 250 Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 265 Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 280 Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 295 Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 305 310 315 Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser 330 Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 345 Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp 385 390 395 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 <210> 59 <211> 360 <212> ADN <213> Secuencia Artificial <220> <223> Chimera <220> <221> CDS <222> (1)..(360) <400> 59

gaa gta cag ttg gtc gaa agt ggg tgg gga ctt gta caa cct gca aac Glu Val Gln Leu Val Glu Ser Gly Trp Gly Leu Val Gln Pro Ala Asn 1 5 10 15	48
tca ctt aaa ctt tct tgc gct gca agc gga ttt aca ttt tca gat tac Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	96
gcc atg gca tgg gtt cga caa tct cct aag aaa gga ttg gaa tgg tta Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Leu 35 40 45	144
gca aca att att tac gat gga tct tca aca tat tat cgc gac tct gtc Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 55 60	192
aaa gga cga ttt aca atc tca cga gat aac gtt aag aat acc ctt tac Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Val Lys Asn Thr Leu Tyr 65 70 75 80	240
ctt caa atg gac tca ctg aga tcc gaa gat acg gct aca tat tat tgt Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95	288
gca aca gga ctt gga att gcg act gat tat ttt gat tat tgg ggc cag Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 110	336
gga gtt ttg gta acc gtc tct agt Gly Val Leu Val Thr Val Ser Ser 115 120	360
<210> 60 <211> 120 <212> PRT <213> Secuencia Artificial	
<220> <223> Constructo Sintético	
<400> 60	
Glu Val Gln Leu Val Glu Ser Gly Trp Gly Leu Val Gln Pro Ala Asn 1 5 10 15	
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30	
Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Leu 35 40 45	

	Ala Thr Ile 50	Ile Tyr	Asp Gly 55	Ser Sei	Thr Tyr	Tyr Arg	g Asp Se	r Val
	Lys Gly Arg 65	Phe Thr	Ile Ser 70	Arg Ası	Asn Val 75	. Lys Asr	Thr Le	1 Tyr 80
	Leu Gln Met	Asp Ser 85	Leu Arg	Ser Glu	Asp Thr	Ala Thr	Туг Туг 95	r Cys
	Ala Thr Gly	Leu Gly 100	Ile Ala	Thr Asr		Asp Tyr	Trp Gly	/ Gln
	Gly Val Leu 115	Val Thr	Val Ser	Ser 120				
5	<210> 61 <211> 1338 <212> ADN <213> Secuent	cia Artificial						
	<220> <223> Chimera	a						
10	<220> <221> CDS <222> (1)(133	38)						
	<400> 61							
	gaa _i gta cag Glu Val Gln 1							
	tca ctt aga Ser Leu Arg			-				
	gcc atg gca Ala Met Ala 35							
	gca aca att Ala Thr Ile 50							
	Ala Thr Ile	Ile Tyr	Asp Gly 55 atc tca	Ser Ser	Thr Tyr	Tyr Arg 60 aag agc	Asp Ser	Val tac 240
	Ala Thr Ile 50 aaa gga cga Lys Gly Arg	Ile Tyr ttt aca Phe Thr gac tca	Asp Gly 55 atc tca 11e Ser 70 ctg aga	Ser Ser cga gat Arg Asp gca gaa	Thr Tyr aac gct Asn Ala 75 gat acg	Tyr Arg 60 aag agc Lys Ser . gct gtt	Asp Ser acc ctt Thr Leu tat tat	Val tac 240 Tyr 80 tgt 288

	gta Val											384
	gcg Ala											432
	ctg Leu											480
	ggc Gly									_	_	528
	tca Ser 180											576
	tt <i>c</i> Phe											624
	acc Thr											672
_	ccg Pro					-	-		_	_		720
	cca Pro											768
	tgc Cys 260											816
	tgg Trp	Val	Asp	Gly	Val	Glu	Val	His				864
	gag Glu											912
	gtg Val											960
	aac Asn											1008
	ggg Gly 340											1056

				-		_		cag Gln	_	_	-		_	_	-	1104
								gcc Ala								1152
_	_					_		aca Thr			_	_			_	1200
								ctc Leu								1248
								tcc Ser 425								1296
					_	_		tcc Ser								1338
<210: <211: <212: <213:	> 44 > Pl	i6 RT	cia Ar	tificial												
<220: <223:	_	onstru	icto Si	intátic	0											
<400	> 62	2	.0.0	iritetie	O											
						Ser	Gly	. Gly	Gly 10	' Lei	ı Val	l Glı	n Pro	o Al 15	a Asn	
Glu 1	Val	Gln	Leu	Val 5	Glu				10					15		
Glu 1 Ser	Val Leu	Gln	Leu Leu 20	Val 5	Glu Cys	Ala	Ala	Ser 25	10 Gly	r Phe	e Thi	r Phe	e Se: 30	15 r As	1	
Glu 1 Ser	Val Leu Met	Gln Arg Ala 35	Leu 20 Trp	Val 5 Ser Val	Glu Cys Arg	Ala	Ala Ser 40	Ser 25	10 Gly	Phe Lys	e Thi	r Pho 7 Let 45	e Se: 30	15 r As u Tr	p Tyr	
Glu 1 Ser Ala	Val Leu Met Thr	Gln Arg Ala 35	Leu Leu 20 Trp	Val 5 Ser Val	Glu Cys Arg	Ala Gln Gly 55	Ser 40	Ser 25 Pro	10 Gly Lys	Phe Lys	F Tyr	Pho Lev 45	e Se: 30 1.Gl	15 r As u Tr	p Tyr p Val	,
Glu 1 Ser Ala Ala Lys 65	Val Leu Met Thr 50	Gln Arg Ala 35 Ile	Leu 20 Trp Ile	Val Ser Val Tyr	Glu Cys Arg Asp	Ala Gln Gly 55	Ala Ser 40 Ser	Ser 25 Pro	10 Gly Lys	Phe Lys Tyr Ala 75	F Thi	Pho Let 45 Arg	e Se: 30 1.Gl	15 r As u Tr o Se	p Tyr p Val r Val u Tyr	,

Gly	Val	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn 195	Phe	Gly	Thr	Gln	Thr 200	Tyr	Thr	Cys	Asn	Val 205	Asp	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	Lys	Cys	Суз	Val
Glu 225	Cys	Pro	Pro	Cys	Pro 230	Ala	Pro	Pro	Val	Ala 235	Gly	Pro	Ser	Val	Phe 240
Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	His	Glu	Asp	Pro 270	Glu	Val
Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr
Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Phe	Arg 300	Val	Val	Ser	Val
Leu 305	Thr	Val	Val	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Сув 320
Lys	Val	Ser	Asn	Lys 325	Gly	Leu	Pro	Ala	Pro 330	Ile	Glu	Lys	Thr	Ile 335	Ser
Lys	Thr	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro

	Ser Arg	Glu 355	Glu	Met	Thr	Lys	Asn 360		Val	Ser	Leu	Thr 365		: Le	ı Val	
	Lys Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asr	ı Gly	
	Gln Pro 385	Glu	Asn	Asn	Туr 390	Lys	Thr	Thr	Pro	Pro 395		Leu	Asp	Ser	Asp 400	
	Gly Ser	Phe	Phe	Leu 405		Ser	Lys	Leu	Thr 410		Asp	Lys	Ser	Arg 415	•	
	Gln Gln	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430		ı His	
	Asn His	Tyr 435	Thr	Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Pro	Gly 445	Lys			
5	<210> 63 <211> 36 <212> AI <213> Se	SO ON	cia Ar	tificial												
	<220> <223> Cl	nimera	a													
10	<220> <221> CI <222> (1	DS)(360))													
	<400> 63	3														
	gaa gta Glu Val 1															48
	tca ctt Ser Leu															96
	gcc atg Ala Met	_		_	_				_			_	-		_	144
	gca aca Ala Thr 50															192
	aaa gga Lys Gly 65	-					_	_		_	_	_				240

Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 gca aca gga ctt gga att gcg act gat tat ttt gat tat tgg ggc cag 336 Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln gga gtt ttg gta acc gtc tct agt 360 Gly Val Leu Val Thr Val Ser Ser 120 115 <210> 64 <211> 120 <212> PRT <213> Secuencia Artificial <220> <223> Constructo Sintético <400> 64 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Ala Asn Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Val Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser Thr Leu Tyr 70 Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 105 Gly Val Leu Val Thr Val Ser Ser <210> 65 10 <211> 1338 <212> ADN <213> Secuencia Artificial <220> 15 <223> Chimera <220> <221> CDS <222> (1)..(1338) <400> 65

														gga Gly 15		48
							-	_						gat Asp		96
														tgg Trp		144
														tct Ser		192
	_									_				ctt Leu		240
														tat Tyr 95		288
-								_			-			ggc Gly	_	336
	-	_	_		_		_	_			_			tcg Ser	_	384
														gcg Ala		432
														gtg Val		480
		Ser		Ala	Leu	Thr	Ser	Gly		His				gct Ala 175		528
														gtg Val		576
														cac His		624
ccc	agc	aac	acc	aag	gtg	gac	aag	aca	gtt	gag	cgc	aaa	tgt	tgt	gtc	672

Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Thr	Val	Glu	Arg 220	Lys	Cys	Cys	Val	
						-	cca Pro		_	_						720
							gac Asp									768
							gac Asp	_	-						_	816
							ggc Gly 280									864
							aac Asn									912
		_			_	_	tgg Trp	_			-			-	_	960
_	_						cca Pro	_								1008
				-		_	gaa Glu		_				_			1056
				_		-	aac Asn 360	-	_	_	_		_	_	_	1104
						_	atc Ile	_					-			1152
_	_						acc Thr				_	_	_		-	1200
							aag Lys									1248
_	_			_			tgc Cys			_			_	_		1296
			_	_			ctc Leu 440		_		_					1338
	> 66 > 44 > PF	6														

<220>

<212> PRT

<213> Secuencia Artificial

<223>	Co	nstruc	to Sir	ıtético											
<400>	66														
Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Arg
Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Tyr
Ala	Met	Ala 35	Trp	Val	Arg	Gln	Ser 40	Pro	Lys	Lys	Gly	Leu 45	Lys	Trp	Val
Ala	Thr 50	Ile	Ile	Tyr	Asp	Gly 55	Ser	Ser	Thr	Tyr	Tyr 60	Arg	Asp	Ser	Val
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asn	Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Thr	Gly	Leu 100	Gly	Ile	Ala	Thr	Asp 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Val	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Cys	Ser 135	Arg	Ser	Thr	Ser	Glu 140	Ser	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu		Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Asn	Phe	Gly	Thr	Gln	Thr	Туr	Thr	Cys	Asn	Val	Asp	His	Lys

Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val 210 215 Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe 225 230 235 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr 280 Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val 295 Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 310 315 Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 340 345 Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val 360 355 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly 370 375 380 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp 385 390 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp 405 410 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 425 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 440 <210> 67 <211> 360 <212> ADN <213> Secuencia Artificial

<220>

	<223>	- Ch	imera															
	<220> <221> <222>	> CD)S (360)														
5	<400>	> 67																
		gta Val																48
		ctt Leu																96
	_	atg Met	_		-					_			_			-		144
		aca Thr 50																192
		gga Gly	_					_			_	_						240
		caa Gln																288
		aca Thr																336
		gtt Val	_	_		-		_										360
10	<210><211><211><212><213>	> 120 > PR	0	ia Art	ificial													
	<220> <223>		nstrud	cto Sir	ntético)												
	<400>	6 8																
	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	ı Val	Glr	n Pro	0 Gl ₃ 15	y Arg	ī	

```
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
                   20
                                        25
       Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Lys Trp Val
                                    40
       Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val
                               55
       Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Ala Lys Asn Thr Leu Tyr
       Leu Gln Met Asn Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
                                            90
       Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln
                   100
                                   105
       Gly Val Leu Val Thr Val Ser Ser
     <210> 69
     <211> 33
<212> ADN
     <213> Rattus sp.
     <220>
     <221> CDS
     <222> (1)..(33)
     <400> 69
     ctg gca tca gaa gac att tac agc gac ctt gca
                                                                               33
     Leu Ala Ser Glu Asp Ile Tyr Ser Asp Leu Ala
10
     <210> 70
     <211> 11
     <212> PRT
     <213> Rattus sp.
     <400> 70
15
     Leu Ala Ser Glu Asp Ile Tyr Ser Asp Leu Ala
     <210> 71
     <211> 21
<212> ADN
     <213> Rattus sp.
20
     <220>
     <221> CDS
     <222> (1)..(21)
     <400> 71
     aac gcc aat agc ctc cag aac
                                                                               21
     Asn Ala Asn Ser Leu Gln Asn
25
     <210> 72
```

```
<211> 7
     <212> PRT
     <213> Rattus sp.
     <400> 72
     Asn Ala Asn Ser Leu Gln Asn
                         5
 5
     <210> 73
     <211> 27
<212> ADN
     <213> Rattus sp.
     <220>
10
     <221> CDS
     <222> (1)..(27)
     <400> 73
     caa caa tac aat aac tac ccc ccc aca
                                                                                  27
     Gln Gln Tyr Asn Asn Tyr Pro Pro Thr
                       5
     <210> 74
15
     <211> 9
     <212> PRT
     <213> Rattus sp.
     <400> 74
     Gln Gln Tyr Asn Asn Tyr Pro Pro Thr
20
     <210> 75
     <211> 15
     <212> ADN
     <213> Rattus sp.
     <220>
25
     <221> CDS
     <222> (1)..(15)
     <400> 75
     gat tac gcc atg gca
                                                                                  15
     Asp Tyr Ala Met Ala
30
     <210> 76
     <211> 5
<212> PRT
     <213> Rattus sp.
     <400> 76
35
     Asp Tyr Ala Met Ala
      1
                        5
     <210> 77
     <211> 51
     <212> ADN
40
     <213> Rattus sp.
     <220>
     <221> CDS
     <222> (1)..(51)
     <400> 77
```

```
aca att att tac gat gga tct tca aca tat tat cgc gac tct gtc aaa
                                                                                 48
     Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
                                           10
                                                                                 51
     gga
     Gly
     <210> 78
     <211> 17
<212> PRT
     <213> Rattus sp.
     <400> 78
     Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
                                             10
     Gly
     <210> 79
     <211> 33
     <212> ADN
10
     <213> Rattus sp.
     <220>
     <221> CDS
     <222> (1)..(33)
     <400> 79
15
     gga ctt gga att gcg act gat tat ttt gat tat
                                                                                 33
     Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr
     <210> 80
     <211> 11
<212> PRT
20
     <213> Rattus sp.
     <400> 80
     Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr
                       5
                                              10
     1
     <210> 81
     <211> 642
     <212> ADN
25
     <213> Rattus sp.
     <220>
     <221> CDS
     <222> (1)..(642)
     <400> 81
30
```

gat ato Asp Ile															48
gaa act Glu Thi	_			-					_	_			_		96
tta gca Leu Ala			_	_	-	-					_		_		144
tat aat Tyr Ası 50	-		_	-				_					_		192
agt gga Ser Gly 65				_							_	_			240
gaa gat Glu Ası	_					_								_	288
acg tto Thr Phe			-			-	-	Leu			-	-	-	-	336
cca act							Ser	_	_	_		_			384
ggt gcc Gly Ala 130	Ser														432
agt gto Ser Val	-				_			-	_	_	_		_	_	480
gac agt Asp Sei															528
agc acc Ser Thi															576
acc tgt Thr Cys					Lys										624
ttc aad Phe Asr 210	Arg			_											642
<210> 8<211> 2<212> F<213> F	14	sp.													
<400> 8	2														

Asp Ile Arg Met Thr Gln Ser Pro Ala Ser Leu Ser Ala Ser Leu Gly Glu Thr Val Asn Ile Glu Cys Leu Ala Ser Glu Asp Ile Tyr Ser Asp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ser Pro Gln Leu Leu Ile 40 Tyr Asn Ala Asn Ser Leu Gln Asn Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn Ser Leu Gln Ser Glu Asp Val Ala Thr Tyr Phe Cys Gln Gln Tyr Asn Asn Tyr Pro Pro 90 Thr Phe Gly Gly Thr Lys Leu Glu Leu Lys Arg Ala Asp Ala Ala 105 Pro Thr Val Ser Ile Phe Pro Pro Ser Thr Glu Gln Leu Ala Thr Gly 120 Gly Ala Ser Val Val Cys Leu Met Asn Asn Phe Tyr Pro Arg Asp Ile 135 Ser Val Lys Trp Lys Ile Asp Gly Thr Glu Arg Arg Asp Gly Val Leu 145 Asp Ser Val Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 Ser Thr Leu Ser Leu Thr Lys Ala Asp Tyr Glu Ser His Asn Leu Tyr 180 185 Thr Cys Glu Val Val His Lys Thr Ser Ser Ser Pro Val Val Lys Ser 200 Phe Asn Arg Asn Glu Cys 210 <210> 83 <211> 321 <212> ADN <213> Rattus sp. <220> <221> CDS <222> (1)..(321)

<400> 83

_			_		_			_	tcc Ser 10	_		-				48
									agt Ser							96
	_			-					aaa Lys							144
									gtc Val						ggc Gly	192
_	~ ~				_				aaa Lys			_	_			240
_	_	_					_		caa Gln 90						_	288
						_	Leu (-	ttg a Leu I							321
<210: <211: <212: <213:	> 10 > PF	7	p.													
<400	> 84	•														
			Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Ala	Ser	Leu 15	Gly	
Asp 1	Ile	Arg		5					10					15	Gly Asp	
Asp 1 Glu	Ile	Arg Val	Asn 20	5 Ile	Glu	Cys	Leu	Ala 25	10 Ser	Glu	Asp	Ile	Tyr 30	15 Ser	_	
Asp 1 Glu Leu	Ile Thr	Arg Val Trp 35	Asn 20 Tyr	5 Ile Gln	Glu Gln	Cys Lys	Leu Pro 40	Ala 25 Gly	10 Ser Lys	Glu Ser	Asp Pro	Ile Gln 45	Tyr 30 Leu	15 Ser Leu	Asp	
Asp 1 Glu Leu	Thr Ala Asn 50	Arg Val Trp 35	Asn 20 Tyr Asn	5 Ile Gln Ser	Glu Gln Leu	Cys Lys Gln 55	Leu Pro 40 Asn	Ala 25 Gly Gly	10 Ser Lys Val	Glu Ser Pro	Asp Pro Ser 60	Ile Gln 45 Arg	Tyr 30 Leu Phe	Ser Leu Ser	Asp	
Asp 1 Glu Leu Tyr Ser 65	Thr Ala Asn 50	Arg Val Trp 35 Ala	Asn 20 Tyr Asn Gly	5 Ile Gln Ser	Glu Gln Leu Gln 70	Cys Lys Gln 55	Leu Pro 40 Asn Ser	Ala 25 Gly Gly Leu	10 Ser Lys Val	Glu Ser Pro Ile 75	Asp Pro Ser 60	Ile Gln 45 Arg	Tyr 30 Leu Phe	Ser Leu Ser	Asp Ile Gly Ser	
Asp 1 Glu Leu Tyr Ser 65	Thr Ala Asn 50 Gly Asp	Arg Val Trp 35 Ala Ser Val	Asn 20 Tyr Asn Gly	5 Ile Gln Ser Thr	Glu Gln Leu Gln 70	Cys Lys Gln 55 Tyr	Leu Pro 40 Asn Ser	Ala 25 Gly Gly Leu	10 Ser Lys Val Lys	Glu Ser Pro Ile 75	Asp Pro Ser 60	Ile Gln 45 Arg	Tyr 30 Leu Phe	Ser Leu Ser Gln	Asp Ile Gly Ser 80	

	<213>	Rattus sp.		
	<400>	85		
	ctagcaa	ngtg aggacattta cagtgattta gca		33
5	<212>	21		
	<400>	86		
	aatgcaa	aata gcttgcaaaa t	21	
10	<210> <211> <212> <213>	27		
	<400>	87		
15	caacaa	tata acaattatcc tccgacg		27
	<210> <211> <212> <213>	1338		
20	<220> <221> <222>	CDS (1)(1338)		
	<400>	88		

					tct Ser										48
					gca Ala										96
					cag Gln										144
-				-	ggt Gly 55	_	_				-	_			192
					tcc Ser		-		_		_				240
-		_	_	_	agg Arg			_	_	-			_		288
_		_			gct Ala	_	_			-					336
					tcc Ser										384
	_	-			act Thr 135	_			_			-			432
					ggc Gly										480
					tcc Ser									!	528

	cag Gln															576
	acc Thr															624
	agc Ser 210															672
_	tgc Cys	_		_		_				-	-			_		720
	ttc Phe			_			_						-			768
	gtc Val															816
	ttc Phe	- 1			-	-	_		_	_			-	-		864
	cca Pro 290															912
	ccc Pro		_		_											960
	gtc Val															1008
	ccc Pro	Glu					Val		${\tt His}$							1056
	aag Lys															1104
	ggc Gly 370					_						-	_			1152
	cca Pro															1200
	agt Ser										_	_	-			1248
cag	cag	gga	aac	acg	ttc	acg	tgt	tct	gtg	ctg	cat	gaa	ggc	ctg	cac	1296

Gln Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His 425 aac cac cat act gag aag agt ctc tcc cac tct ccg ggt aaa 1338 Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 440 <210> 89 <211> 446 <212> PRT <213> Rattus sp. <400> 89 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Ala Asn 1 5 10 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 3.0 Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Val 35 40 Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 55 50 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser Thr Leu Tyr 70 Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 105 Gly Val Leu Val Thr Val Ser Ser Ala Glu Thr Thr Ala Pro Ser Val 120 125 Tyr Pro Leu Ala Pro Gly Thr Ala Leu Lys Ser Asn Ser Met Val Thr 135 Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr 150 155 Trp Asn Ser Gly Ala Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Gly Leu Tyr Thr Leu Thr Ser Ser Val Thr Val Pro Ser 185

Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asn Cys Gly 210 Cys Lys Pro Cys Ile Cys Thr Gly Ser Glu Val Ser Ser Val 225 Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr 255 Lys Val Thr Cys Val Val Val Val Asp Ile Ser Gln Asp Asp Pro Glu 270 Cys Fro Lys Pro 245 Pro 245 Pro 255 Pro 265 Pro 265 Pro 265 Pro 265 Pro 266 Pro 265 Pro 265 Pro 266 Pro 265 Pro 266 Pro 265 Pro 266 Pro 26	Ala
230 235 Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr 255 Lys Val Thr Cys Val Val Val Asp Ile Ser Gln Asp Asp Pro Glu 265 His Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln	Gly
Lys Val Thr Cys Val Val Val Asp Ile Ser Gln Asp Asp Pro Glu 260 265 270 His Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln	Phe 240
260 265 270 His Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln	
	Val
	Thr
Arg Pro Pro Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser 290 295 300	Glu
Leu Pro Ile Leu His Gln Asp Trp Leu Asn Gly Arg Thr Phe Arg 305 310 315	Cys 320
Lys Val Thr Ser Ala Ala Phe Pro Ser Pro Ile Glu Lys Thr Ile 325 330 335	Ser
Lys Pro Glu Gly Arg Thr Gln Val Pro His Val Tyr Thr Met Ser 340 345 350	Pro
Thr Lys Glu Glu Met Thr Gln Asn Glu Val Ser Ile Thr Cys Met 355 360 365	Val
Lys Gly Phe Tyr Pro Pro Asp Ile Tyr Val Glu Trp Gln Met Asn 370 375 380	Gly
Gln Pro Gln Glu Asn Tyr Lys Asn Thr Pro Pro Thr Met Asp Thr 385 390 395	Asp 400
Gly Ser Tyr Phe Leu Tyr Ser Lys Leu Asn Val Lys Lys Glu Lys 405 410 415	Trp
Gln Gln Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu 420 425 430	His
Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 445	

```
<211> 360
<212> ADN
<213> Rattus sp.
<220>
<221> CDS
<222> (1)..(360)
<400> 90
gag gta cag ctg gtg gag tct ggc gga gga ttg gta cag cct gca aac
                                                                        48
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Ala Asn
tcc ctg aaa ctc tcc tgt gca gcc tca gga ttc act ttc agt gac tat
                                                                        96
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
gcc atg gcc tgg gtc cgc cag tct cca aag aag ggt ctg gag tgg gtc
                                                                       144
Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Val
gca acc att att tat gat ggt agt agc act tac tat cga gac tcc gtg
                                                                       192
Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val
                        55
aag ggc cga ttc act atc tcc aga gat aat gca aaa agc acc cta tac
                                                                       240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser Thr Leu Tyr
                    70
                                      75
ctg caa atg gac agt ctg agg tct gag gac acg gcc act tat tac tgt
                                                                       288
Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys
                85
gca aca ggt ctg ggt ata gct acg gac tac ttt gat tac tgg ggc caa
                                                                       336
Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln
            100
                                 105
                                                      110
                                                                       360
gga gtc ctg gtc aca gtc tcc tca
Gly Val Leu Val Thr Val Ser Ser
<210> 91
<211> 120
<212> PRT
<213> Rattus sp.
<400> 91
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Ala Asn
                                      10
```

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr

20 25 Ala Met Ala Trp Val Arg Gln Ser Pro Lys Lys Gly Leu Glu Trp Val Ala Thr Ile Ile Tyr Asp Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val 55 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser Thr Leu Tyr Leu Gln Met Asp Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys Ala Thr Gly Leu Gly Ile Ala Thr Asp Tyr Phe Asp Tyr Trp Gly Gln 100 105 110 Gly Val Leu Val Thr Val Ser Ser <210> 92 <211> 15 <212> ADN <213> Rattus sp. <400> 92 gactatgcca tggcc 15 <210> 93 <211> 51 <212> ADN 10 <213> Rattus sp. <400> 93 accattattt atgatggtag tagcacttac tatcgagact ccgtgaaggg c 51 <210> 94 <211> 33 15 <212> ADN <213> Rattus sp. <400> 94 ggtctgggta tagctacgga ctactttgat tac 33 20

REIVINDICACIONES

- 1. Un anticuerpo aislado o un fragmento inmunológicamente funcional del mismo que se une específicamente a una proteína Dkk-1 humana madura, que consiste en los aminoácidos 32-266 del SEQ ID NO: 2, en donde dicho anticuerpo se une a un epítopo que comprende dos bucles, estando formados dichos bucles por enlaces disulfuro y encontrándose dichos bucles entre 220 y 237 del SEQ ID NO: 2 y entre los residuos de cisteína 245 y 263 del SEQ ID NO: 2.
- 2. El anticuerpo aislado o fragmento inmunológicamente funcional de la reivindicación 1, en donde el anticuerpo o fragmento inmunológicamente funcional se une a dos regiones separadas localizadas entre los aminoácidos 221-262 del SEQ ID NO: 2.
- 3. El anticuerpo aislado o fragmento inmunológicamente funcional del mismo de la reivindicación 1, en donde el anticuerpo o fragmento inmunológicamente funcional se une a dos regiones separadas, en donde una región consiste en los aminoácidos 221-236 del SEQ ID NO: 2 y la segunda región consiste los aminoácidos 246-262 del SEQ ID NO: 2.
- El anticuerpo aislado o fragmento inmunológicamente funcional de la reivindicación 2, en donde una región consiste en los aminoácidos 221-229 del SEQ ID NO: 2 y la segunda región consiste en los aminoácidos 246-253 del SEQ ID NO: 2.
 - 5. El anticuerpo aislado o fragmento inmunológicamente funcional del mismo de acuerdo con una cualquiera de las reivindicaciones 1-4, que comprende:

(a)

20

25

40

5

- (i) una CDR1 de LC con la secuencia de aminoácidos expuesta en el SEQ ID NO: 70; y
- (ii) una CDR2 de LC con la secuencia de aminoácidos expuesta en el SEQ ID NO: 72; y
- (iii) una CDR3 de LC con la secuencia de aminoácidos expuesta en el SEQ ID NO: 74; y

(b)

- (i) una CDR1 de HC con la secuencia de aminoácidos expuesta en el SEQ ID NO: 76; y
- (ii) una CDR2 de HC con la secuencia de aminoácidos expuesta en el SEQ ID NO: 78; y
- (iii) una CDR3 de HC la secuencia de aminoácidos expuesta en el SEQ ID NO: 80.
- 6. El anticuerpo aislado o fragmento inmunológicamente funcional de una cualquiera de las reivindicaciones 1 a 4, que consiste en dos VH idénticas y dos VL idénticas.
- 7. El anticuerpo aislado o fragmento inmunológicamente funcional de una cualquiera de las reivindicaciones 1 a 4, que consiste en dos VH idénticas y dos VL idénticas, en donde

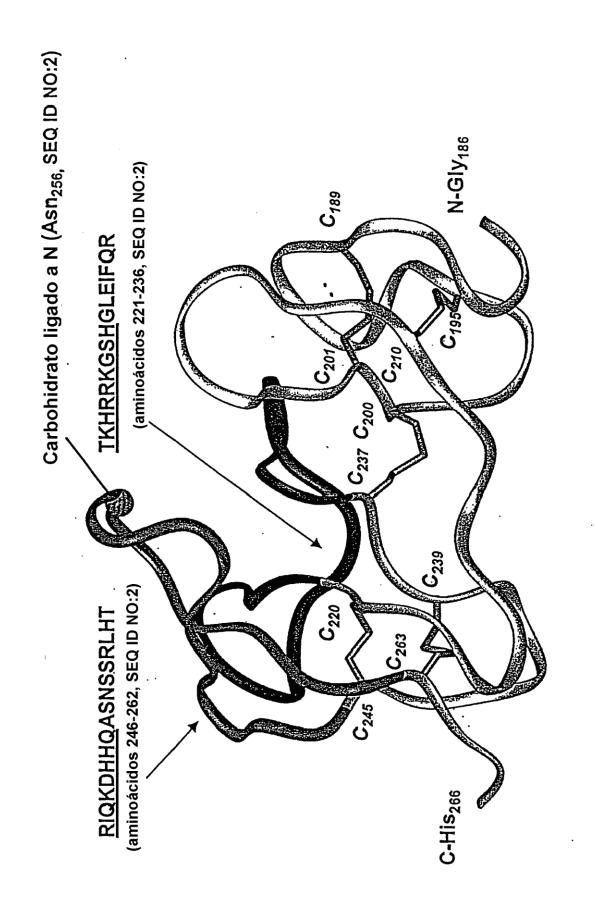
la VL tiene la secuencia de aminoácidos del SEQ ID NO: 84; y

la VH la secuencia de aminoácidos del SEQ ID NIO: 91.

- 8. El anticuerpo aislado o fragmento inmunológicamente funcional de la reivindicación 7, que comprende
 - una cadena ligera que comprende la secuencia de aminoácidos del SEQ ID NO: 82; y
- una cadena pesada que comprende la secuencia de aminoácidos del SEQ ID NO: 89.
 - 9. Un anticuerpo o un fragmento inmunológicamente funcional del mismo que compite con un anticuerpo de una cualquiera de las reivindicaciones 5 a 8, por la unión específica a un polipéptido Dkk-1.
 - 10. El anticuerpo aislado o fragmento inmunológicamente funcional de la reivindicación 9, que compite con un anticuerpo que consiste en dos cadenas pesadas idénticas y dos cadenas ligeras idénticas, en el que dichas cadenas pesadas consisten en los aminoácidos 20-465 del SEQ ID NO: 12 y dichas cadenas ligeras consisten en los aminoácidos 21-234 del SEQ ID NO: 10.
 - 11. El anticuerpo aislado o fragmento inmunológicamente funcional de la reivindicación 10, que se disocia del polipéptido Dkk-1 con una k_d de 5 x 10^{-4} s⁻¹ o menos.
- 12. El anticuerpo aislado o fragmento inmunológicamente funcional de acuerdo con una cualquiera de las reivindicaciones 1 a 11, que es un anticuerpo monoclonal.

- 13. El anticuerpo aislado o fragmento inmunológicamente funcional de acuerdo con una cualquiera de las reivindicaciones 1 a 11, que es un scFv, un Fab, un Fab' o un (Fab')₂.
- 14. El anticuerpo aislado o fragmento inmunológicamente funcional de acuerdo con una cualquiera de las reivindicaciones 1 a 4, que es un anticuerpo humanizado.
- 5 15. Un ácido nucleico que codifica

20


- (A) una CDR de la cadena ligera con la secuencia de aminoácidos expuesta en el SEQ ID NO: 70, 72 y/o 74, y/o
- (B) una CDR de la cadena pesada con la secuencia de aminoácidos expuesta en el SEQ ID NO: 76, 78 y/o 80,
- en donde el ácido nucleico codifica un anticuerpo de cualquiera de las reivindicaciones 1 a 5.
- 16. Un ácido nucleico que comprende una secuencia que codifica la VH, la VL o tanto la VH como la VL del anticuerpo o fragmento inmunológicamente activo de una cualquiera de las reivindicaciones 1 a 4.
 - 17. Un ácido nucleico que comprende un segmento de ácido nucleico que codifica la VH, la VL o tanto la VH como la VL del anticuerpo o fragmento inmunológicamente activo de la reivindicación 7.
 - 18. Un vector de expresión que comprende el ácido nucleico de la reivindicación 16.
 - 19. Una célula aislada que comprende el vector de expresión de la reivindicación 18.
- 15 20. Un método de producción de un anticuerpo o un fragmento inmunológicamente activo del mismo, que comprende la etapa de cultivar una célula de acuerdo con la realización 19.
 - 21. Una composición farmacéutica que comprende un anticuerpo o fragmento inmunológicamente funcional del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 11 y un componente seleccionado del grupo que consiste de un tampón, un diluyente farmacéuticamente aceptable, un portador, un solubilizante, un emulsionante y un conservante.
 - 22. Una composición farmacéutica que comprende un anticuerpo o un fragmento inmunológicamente activo del mismo de acuerdo con una cualquiera de las reivindicaciones 1-14, para su uso en un método para reparar hueso o para tratar una enfermedad, en donde la enfermedad se selecciona del grupo que consiste en artritis, un trastorno óseo y un cáncer que aumenta la actividad de los osteoclastos e induce la resorción ósea.
- 23. La composición farmacéutica para su uso de acuerdo con la reivindicación 22, en donde la enfermedad se selecciona entre artritis reumatoide, artritis soriásica, y osteoartritis.
 - 24. La composición farmacéutica para su uso de acuerdo con la reivindicación 22, en donde la enfermedad se selecciona del grupo que consiste en osteopenia, osteoporosis, enfermedad de Paget, espondilitis anquilosante, periodontitis, reparación de hueso, pérdida de hueso debida a inmovilización o metástasis óseas líticas.
- 30 25. La composición farmacéutica para su uso de acuerdo con la reivindicación 22, en donde la reparación de hueso es el tratamiento de una fractura ósea.
 - 26. La composición farmacéutica para su uso de acuerdo con la reivindicación 22, en donde el anticuerpo estimula la actividad de los osteoblastos y aumenta la densidad mineral ósea o la masa ósea.
- 27. La composición farmacéutica para su uso de acuerdo con la reivindicación 22, en donde el tratamiento es una terapia combinada que comprende la administración del anticuerpo o fragmento inmunológicamente activo del mismo combinado con un agente promotor del crecimiento óseo o un agente anti-resorción ósea.
 - 28. La composición farmacéutica para su uso de acuerdo con la reivindicación 27, en donde el agente promotor del crecimiento óseo o agente anti-resorción ósea se selecciona del grupo que consiste en factor morfogénico óseo BMP-1 a BMP-12, factor de crecimiento transformante β , factores de crecimiento de fibroblastos FGF-1 a FGF-10, un inhibidor de interleucina 1, un inhibidor de TNF α , un inhibidor de ligando RANK, hormona paratiroidea, una prostaglandina de la serie E, un bisfosfonato, un mineral potenciador de hueso, y un agente anabólico.
 - 29. La composición farmacéutica para su uso de acuerdo con la reivindicación 28, en donde
 - (a) el inhibidor de interceucina 1 es IL-1ra, un anticuerpo para IL-1 o un anticuerpo para receptores de IL-1,
 - (b) el inhibidor de TNFα es etanercept, adalibumab o infliximab;
- (c) el inhibidor del ligando RANK es RANK soluble, osteoprotegerina o un anticuerpo antagónico que se une específicamente a RANK o ligando de RANK;
 - (d) el mineral potenciador de hueso es fluoruro o calcio.

- 30. Una composición farmacéutica que comprende un anticuerpo o un fragmento inmunológicamente activo del mismo de acuerdo con una cualquiera de las reivindicaciones 1-14, para su uso en un método para tratar a un paciente con cáncer que experimenta terapia de radiación o quimioterapia.
- 31. La composición farmacéutica para su uso de acuerdo con la reivindicación 30, en donde el anticuerpo o fragmento inmunológicamente activo del mismo se administra combinado con una antraciclina, taxol, tamoxifeno, doxorrubicina, 5-fluorouracilo, oxaloplatino, o ácido [(1R)-3-metil-1-[[(2S)-1-oxo-3-fenil-2-[(pirazinilcarbonil)amino]propil]amino]butil]borónico).

5

10

- 32. La composición farmacéutica para su uso de acuerdo con la reivindicación 30 o 31, en donde el anticuerpo o fragmento inmunológicamente activo del mismo se administra combinado con un inhibidor de aromatasa y un agente quimioterapéutico para pacientes con cáncer de mama.
- 33. La composición farmacéutica para su uso de acuerdo con una cualquiera de las reivindicaciones 30 a 32, en donde el anticuerpo o fragmento inmunológicamente activo del mismo se administra combinado con un anticuerpo que se une a células tumorales e induce un efecto citotóxico y/o citostático sobre el crecimiento del tumor.
- 34. La composición farmacéutica para su uso de acuerdo con la reivindicación 33, en donde el anticuerpo que induce un efecto citotóxico y/o citostático sobre el crecimiento del tumor es un anticuerpo que se une a proteínas de la superficie celular HER2, CDC20, CDC33, glicoproteína de tipo mucina o receptor del factor de crecimiento epidérmico.
 - 35. La composición farmacéutica para su uso de acuerdo con la reivindicación 30, en donde el anticuerpo o fragmento inmunológicamente activo del mismo se administra combinado con un polipéptido que induce selectivamente la apoptosis en células tumorales.
 - 36. La composición farmacéutica para su uso de acuerdo con la reivindicación 35, en donde el polipéptido es TRAIL.
 - 37. La composición farmacéutica de acuerdo con una cualquiera de las reivindicaciones 22 y 30, y la composición farmacéutica para su uso de acuerdo con cualquiera de las reivindicaciones 23-29 y 31-36, en donde la terapia combinada incluye tratamientos que se administran simultáneamente o sucesivamente.
- 38. La composición farmacéutica de una cantidad eficaz del anticuerpo o fragmento inmunológicamente activo del mismo de acuerdo con una cualquiera de las reivindicaciones 1-14, para la preparación de una composición farmacéutica para tratar el mieloma múltiple.

FTG. 1

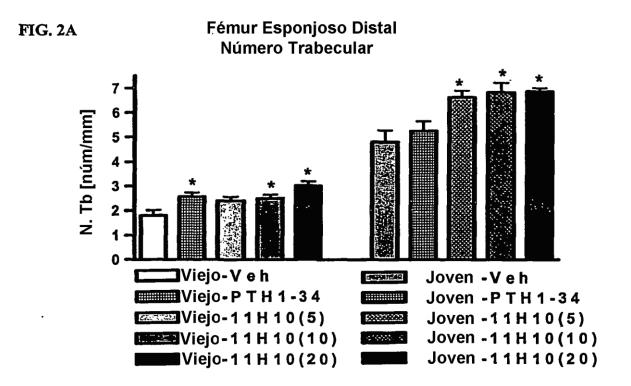


FIG. 2B

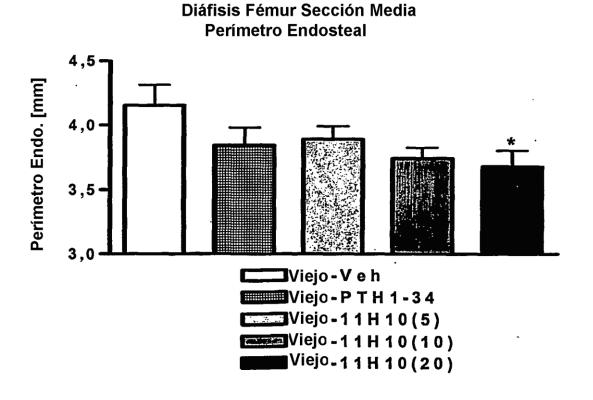
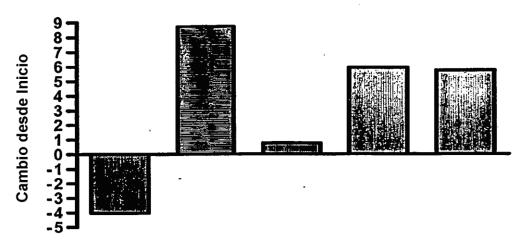



FIG. 3A

FIG. 3B

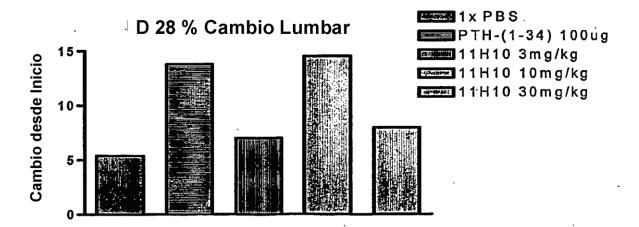
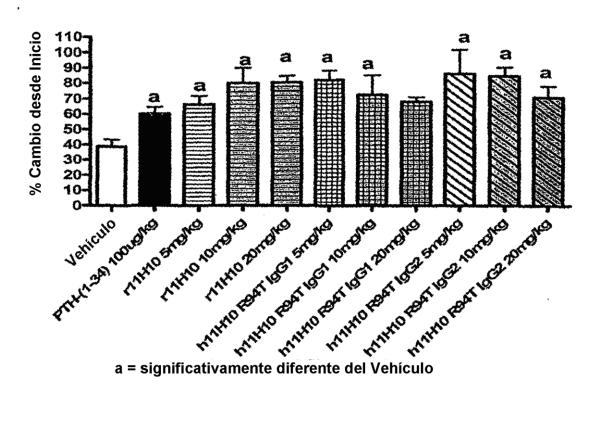



FIG. 4: Porcentaje de Cambio en DMO en ratones tratados con h11H10 R94T Semana 3 % Cambio en Tibia

