

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 416 982

51 Int. Cl.:

C23C 18/16 (2006.01)
C23C 18/20 (2006.01)
C23C 18/30 (2006.01)
C25D 5/02 (2006.01)
C25D 5/20 (2006.01)
C25D 5/56 (2006.01)
H05K 3/18 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 12.02.2010 E 10001464 (6)
 Fecha y número de publicación de la concesión europea: 15.05.2013 EP 2360294
- (54) Título: Procedimiento para la metalización de objetos que presentan al menos dos plásticos
- Fecha de publicación y mención en BOPI de la traducción de la patente: **05.08.2013**

distintos sobre la superficie

73) Titular/es:

ATOTECH DEUTSCHLAND GMBH (100.0%) Erasmusstraße 20 10553 Berlin, DE

(72) Inventor/es:

PEREIRA, ARNALDO y EWALD, HEINZ

(74) Agente/Representante:

IZQUIERDO FACES, José

S 2 416 982 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Procedimiento para la metalización de objetos que presentan al menos dos plásticos distintos sobre la superficie

- La presente in vención se basa en un procedimiento de metalización convencional para o bjetos que presentan al menos dos plásticos distintos sobre la superficie. Según el procedimiento convencional, los objetos A) se graban con ácido con una disolución de grabado, B) se tratan con una disolución de un coloide o de un compuesto de un metal del grupo VIIIb del SPE y C) se metalizan electrolíticamente con una disolución de metalización.
- 10 Los objetos de plásticos pueden metalizarse con un procedimiento de metalización sin corriente o alternativamente con un procedimiento de galvanización directa. En ambos procedimientos, el objeto se limpia inicialmente y se graba con ácido, luego se trata con un metal noble y finalmente se metaliza. El grabado con ácido se realiza normalmente mediante ácido cromos ulfúrico. Altern ativamente, p ara determinados plásticos también de usa n disoluciones de grabado basadas en disolventes orgánicos o una disolución de permanganato alcalina o ácida. El grabado con ácido 15 sirve para hacer susceptible la superficie del objeto a la posterior metalización de manera que las superficies de los objetos se humecten b ien c on l as dis oluciones r espectivas en las posteriores etap as de tratami ento y el m etal depositado s e ad hiera fi nalmente s uficientemente fu ertemente s obre la su perficie. P ara el grabado con ácido, la superficie de copolímer o de acri lonitrilo-butadieno-estireno (co polímero de ABS) se corroe cromosulfúrico, de ma nera que su perficialmente se forman microcavernas en las que se deposita el meta ly a 20 continuación s e a dhiere al lí fuerteme nte. A conti nuación d el grabado con áci do, el pl ástico s e activa p ara la metalización sin corriente mediante un activador que contiene un metal noble y después se metaliza sin corriente. A continuación tambi én puede ap licarse electrolíticamente un a c apa d e meta I más gru esa. E n el c aso del procedimiento de galvanización directa, que prescinde de metalización sin corriente, la superficie grabada con ácido se trata normalmente con un a disolución de coloide de paladio y a continuación con una disolución alcalina que 25 contiene iones cobr e com plejados co n u n formador de c omplejos. A c ontinuación, el obj eto puede metaliz arse electrolíticamente directamente (documento EP 1 054 081 B1).
 - En una forma de realización alternativa para un procedimiento de galvanización directa según la patente de EE.UU. 4.590.115, se fabrica un objeto de plástico que en el polímero contiene pequeñas partículas de óxido eléctricamente no conductoras de un metal no no ble, por ejemplo, de cobre. Las partículas de metal expuestas sobre la superficie del objeto se reducen a metal con un agente reductor, por ejemplo, un borohidruro. Inmediatamente a continuación o en un momento posterior, el objeto puede entonces recubrirse electrolíticamente con metal. En este documento se especifica que un objeto que contiene óxido de cobre (I), para su limpieza, se limpia bajo la acción de ultrasonidos en un baño de agua. A continuación, el óxido de cobre (I) conte nido en el objeto se reduce a cobre mediante borohidruro de sodio, de manera que después puede de positarse electrolíticamente cobre so bre la superficie del objeto.

30

35

40

50

- La i nfluencia del ultrasonidos sobre la cin ética de la for mación, la est ructura y la dureza de capas de níquel depositadas sin corriente se especifica en M.Y. Abyaneh y col., "Effects of Ult rasonic Irradiation on the Kinetics of Formation, Structure and Hardness of Electroless Nickel Deposits", J. Electrochem. Soc., 154 (9), D467-D472 (2007). Después, la v elocidad de deposición del níquel sobre una chapa de acero en la aplicación de ultrasonidos podrá elevarse significativamente en el baño de deposición de níquel sin corriente.
- En W . Eberha rdt, M. Münch: "Verbu ndfestigkeit von Thermoplasten bei der Z wei- Komponenten-MID-Technik für miniaturisierte Mikrosystemgehäuse", Hahn-Schickard-Gesellschaft, Institut für Feinwerk- und Zeitmess technik, 7 de noviembre de 2001, se especifica un procedimiento para una metalización de poliamidas y mezclas de poliamidas que presenta las siguientes etapas de procedimiento: limpieza con una disolución acuosa de tensioactivo y dado el caso ultrasonidos, aclarado, acondicionado y activación, aclarado, reducción con DMAB, aclarado, recubrimiento con níquel químico.
 - Las piezas de plástico que van a metalizarse se fabrican en general en el proceso de moldeo por inyección. Si deben fabricarse p iezas d e plástico d e dos o más plásticos difer entes para cons eguir difer entes c aracterísticas superficiales, entonc es éstos pueden producirse en el II amado procedimiento d e mú Itiples in yecciones. En este procedimiento, un primer plástico se inyecta en un molde de moldeo por inyección, y luego un segundo plástico se inyecta en un molde de moldeo por inyección con forma alterada que contiene el objeto molde ado por inyección formado. Se procede correspondientemente en el caso de objetos constituidos por tres plásticos.
- En el doc umento W O 2007/035091 A1 s e descri be además un proc edimiento para la meta lización parci al de un producto que presenta un primer y un segundo material de polímero. Para esto, la superficie del primer material de polímero se hi drofiliza y la superficie de l s egundo materi al de polímero se hidrofo biza. En la intro ducción de l a descripción se especifica que no es posible seleccionar un plástico o modificar en un contexto tal, por ejem plo, mediante corrosión, irradi ación u ot ro tratamiento super ficial, de form a que generalmente no ten galugar la metalización en el proceso metalización. Pero se indica que eran alcanzables diferencias esenciales referentes a la adhesión de capas metálicas sobre diferentes plásticos. Sin emb argo, una el iminación mecánica de una capa de metal, por ejemplo, mediante ultrasonidos, se consideró difícil y no condujo al 100% de selectividad deseada.

Los requisitos al pretratamiento de plásticos en la galvanización decorativa de objetos constituidos por plástico o que contienen éstos aumentan generalmente continuamente. En la metaliz ación de plásticos se utiliza n ormalmente un activador coloidal bas ado en paladio. Con este activador, fallos en la superficie del o bjeto que se atribu yen a l procedimiento de mo Ideo p or in yección se cubr en concretamente y así se dis imulan. Sin embargo, ob jetos fabricados de esta forma pu eden fall ar en un poster ior procedimiento de ensayo de temperatura o también solo cuando el objeto ya se encuentre en la utilización definitiva y esté montado, por ejemplo, en un aparato, ya que dado el cas o resulta que las capas de metal aplicadas después de la activación no se adhirieron su ficientemente fuertemente sobre el sustrato.

5

25

40

45

55

60

- Además, existen requisitos especialmente altos en la metalización selectiva de plásticos en la que los objetos que van a tratarse está fabricados de al menos dos plásticos diferentes para alcanzar exclusivamente una metalización de una parte de la superficie del objeto, mientras que la otra parte de la superficie permanece sin metalizar.
- Por tanto, g eneralmente se utilizan activadores que están configurados especialmente en función de los requisitos respectivos, re ferentes a s u composición o referentes a los par ámetros de o peración en su utilización. C on los activadores de este tipo puede ajustarse una ocupación má xima de las su perficies del objeto c on paladio o alternativamente un a se lectividad ó ptima de diferentes re giones superficiales del objeto. Si se fa brican diferentes objetos en una planta de metalizado, entonces deben mantenerse en reserva varios recipientes para los diferentes activadores y dado el caso recipientes de aclarado adicionales, de manera que en conjunto se necesita una amplia tecnología de la planta y un complejo control de la planta y logística.
 - Lo mism o tam bién ri ge para la etapa de aceleración n ecesaria e n l a m etalización si n corrie nte c onvencional d e objetos de plástico que sirve además para preparar adecuadamente las superficies activadas de los objetos para la posterior metal ización sin cor riente. Es deci r, para la gal vanización de o bjetos que con tienen dos o tres plástic os también se utilizan parcialmente diferentes aceleradores, ya que éstos también deben ajustarse a la selectividad de la metal ización o altern ativamente tambi én a una oc upación d e pa ladio má xima so bre los sustrato s de pl ástico mediante una adaptación de su composición y de los parámetros de operación optimizados para su utilización. En este caso también se necesita una amplia tecnología de la planta y un complejo control de la planta y logística.
- A pesar de l as medidas mencionadas, ha resultado que el proceso de metalización no es estable, de maner a que constantemente se producen disminuciones con incrustaciones no deseadas de las superficies que selectivamente no van a rec ubrirse c on metal, mientras que a l mism o tiempo se proporciona que las superficies que van a metalizarse se recubran sin defectos y sin sitios sin cubrir. Con los procedimientos conocidos sería concretamente posible sin más evitar que el metal se depositara sobre las superficies que no van a metalizarse. Sin embargo, en este caso, sobre las superficies que van a metalizarse normalmente no puede depositarse metal con seguridad y sin defectos, es decir, comp letamente y sin sitios sin re cubrir. Los problemas previamente mencionados pueden producirse, por ejemplo, debido a insignificativas desviaciones de los parámetros de operación. De estos problemas resultan ento nces eventu almente altas tas as de des echos con un promedio de des echos del 30 50% de lo sobjetos.
 - Por tanto, el p roblema en e I que se b asa la presente in vención es qu e todavía no es posible conseguir con u na seguridad de proceso suficiente una metalización de bordes definidos selectiva de objetos sobre cuyas superficies estén e xpuestos respectivamente al menos dos pl ásticos diferentes par a co nseguir s obre u n pl ástico una metalización s in d efectos m ás seg ura y sobre el otro plástico un a superfici e co mpletamente l ibre d e meta l depositado. P or tanto, el objetivo c onsiste en q ue d ebe gara ntizarse que las zo nas de su perficie que no va n a metalizarse estén completamente libres de metal después de la realización de la etapa de metalización y las zonas de la superficie que van a metalizarse estén completamente cubiertas de metal.
- Este objetivo se alcanza con el procedimiento según la invención según la reivindicación 1. F ormas de realización preferidas están especificadas en las reivindicaciones dependientes.
 - En tanto que a continuación y en las reivindicaciones se mencionen respectivamente varios objetos que se tratan con el procedimiento s egún la invención, e ntonces c on e llo se indican o bi en varios objetos o a Iternativamente correspondientemente también respectivamente solo un único objeto.
 - El pr ocedimiento se gún l a invención se a plica a l a met alización de objetos q ue están c onstituidos al men os parcialmente y preferiblemente completamente por plástico para proveer especialmente al menos una segunda zona de la s uperficie del objeto completamente, es decir, total mente y s in sitios sin cu brir, de una capa de metal y no metalizar al menos una primera zona de la superficie, es decir, dejar en esta zona la superficie de plástico existente libre de metal. La selectividad de la metalización se hace posible por el hecho de que sobre la superficie del objeto hay al menos un primer plástico que no se recubre de metal y un segundo plástico que se recubre totalmente con el metal. El límite entre las dos zonas de superficie tiene un borde definido, es decir, la z ona de superficie recubierta con metal se extiende exactamente a lo largo de la lí nea límite de la su perficie entre la primera zona de superficie y la segunda zona de superficie.
 - Por ejemplo, el objeto puede estar constituido parcialmente por metal u otro material y parcialmente por al menos

dos tipos de plástic o. En u na forma de realiz ación es pecialmente preferida de l a invención, e l obj eto está completamente constitui do p or plástic o, estand o constituido, por ej emplo, princi palmente por un o o dad o el cas o varios segundos plásticos adhesivamente metalizables, y uno o dado el caso varios primeros plásticos que no son adhesivos o generalmente n o so n meta lizables. El objeto consiste preferiblemente e n u no o var ios segu ndos plásticos adhesivamente metalizables y uno o varios primeros plásticos que no es/son adhesivamente metalizable/s y está/n aplicado/s superficialmente sobre el o los segundo/s plástico/s adhesivamente metalizable/s.

Los o bjetos de este tipo pueden util izarse en el s ector sanitario, en la técnic a de l automóv il, co mo chap a de mobiliario o de cierre, para elementos de maniobra de aparatos electrónicos o electrónicos, joyas, gafas o similares. El recubrimiento de metal selectivo se utiliza para conseguir efectos decorativos debido a las diferentes calidades superficiales del objeto.

A diferencia de los procedimientos convencionales en los que los objetos

- A) se graban inicialmente con ácido con una disolución de grabado,
- B) luego se tra tan con una disolución de un coloide o de un compuesto, especialmente de u na sal, de un metal del grupo VIIIb del SPE y
- C) finalmente se metalizan electrolíticamente con una disolución de metalización,

se someten a un tratamient o con ultras onidos durante el tratamiento e n otra etapa de proc edimiento realiz ada 20 después de la realiz ación de la etapa de procedimiento B), pero no durante una deposición sin corriente de metal. De esta m anera se evita la metalización de al menos un primer plástico de policarbonato e xpuesto so bre la superficie de los objetos, mientras que se metaliza al menos un segundo plástico expuesto sobre la superficie de los objetos que se selecciona de un grupo que comprende un copolímero de ABS (copolímero de acrilonitrilo-butadieno-25 estireno), una poliamida y una mezcla de ABS con otro polímero.

Las etapas de procedimiento A), B) y C) anteriormente especificadas no se realizan necesariamente inmediatamente sucesivamente. Normalmente, entre estas etapas de procedimiento se realizan otras etapas de procedimiento, por ejemplo, etapa s de aclar ado y dad o el caso otras etap as de tratam ientos. El o bjeto s e trata a I me nos entre la s etapas de procedimiento B) y C) en al menos otra etapa de procedimiento y se aclara. Sin embargo, se mantiene el orden especificado de las etapas de procedimiento A), B) y C).

La acción del ultrasonidos sobre el obieto se realiza durante al menos una etapa de procedimiento aplicada después del tratamiento del objeto con la disolución colo idal de metal noble o la disolución de compuesto de metal noble según la etapa de procedimiento B), pero no durante una etapa de metalización sin corriente. Por ejemplo, para esto se consi deran etapas de aclarado que nor malmente se realizan entre las dos etapas de proce dimiento B) y C) especificadas.

El tratamiento con ultrasonidos según la invención consigue que sobre las primeras zonas de superficie del objeto no se de posite e n abs oluto un a cap a d e metal. De esta manera, las c ondiciones para la m etalización s obre las segundas zonas de superficie pueden a justarse de forma que la metalización tenga allí lugar correctamente y sin problemas, es decir, las c ondiciones de metalización no deben e legirse de forma q ue la metal ización sobr e l as segundas zonas de plástico tenga precisamente lugar para garantizar que sobre las primeras zonas de plástico no se deposita metal. Así se abre una ventana más amplia para una metalización satisfactoria sin que se deposite metal sobre las primeras zonas de superficie. De esta manera se garantiza una conducción del procedimiento más segura, de manera que ya no se producen objetos metalizados defectuosos. Esto también conduce además a que la Tínea límite entre el primer plástico, que forma la primera zona de superficie del objeto, y el segundo plástico, que forma la segunda zona de superficie del objeto, se reproduzca exactamente por el límite de metalización, de manera que se consigue una metalización selectiva con bordes definidos.

En una forma de realización preferida de la invención, un segundo plástico es una mezcla de ABS/PC.

Además, entre las etapas de procedimiento B) y C) se realizan las siguientes otras etapas de procedimiento:

- Ba1) Aclarado de los objetos en una disolución de aclarado.
- Bb1) Tratamiento de los objetos en una disolución de acelerador o una disolución de reductor,
- Bc1) Aclarado de los objetos en una disolución de aclarado,
- Bd1) Metalización sin corriente de los objetos en una disolución de metalización sin corriente y
- Be1) Aclarado de los objetos en una disolución de aclarado.

Después de la etapa de procedimiento C), en una forma de realización preferida de la invención puede realizarse la siguiente otra etapa de procedimiento:

Ca1) Aclarado de los objetos en una disolución de aclarado.

Estas otras etapas de procedimiento se aplican cuando los objetos de ban metalizarse con un procedimiento de

4

50

5

10

15

30

35

40

45

55

60

metalización si n corrie nte, e s decir, q ue deba aplicarse sobre los o bjetos una primera cap a de metal co n u n procedimiento sin corriente.

Las etapas de procedimiento Ba1), Bb1), Bc1), Bc1), Be1) se realizan en el orden especificado, no necesariamente pero inmediatamente sucesivas. Por ejemplo, pueden realizarse respectivamente varias etapas de aclarado en lugar de cada una de las etapas de aclarado individuales Ba1), Bc1), Be1). Esto también rige para la etapa de aclarado Ca1).

La disolución de acelerador sirve preferiblemente para la eliminación de constituyentes del coloide de la disolución coloidal según la etapa de procedimiento B), por ejemplo, de un coloide protector. En caso de que el coloi de de la disolución col oidal se gún la etapa de procedimiento B) sea un coloide de pal adio/estaño, como de isolución de acelerador se usa preferi blemente una disolución de un ácido, por ejemplo, ácido sulfúrico, ácido clorhídrico, ácido cítrico o también ácido tetrafluorobórico para eliminar el coloide protector (compuestos de estaño). La disolución de reductor se utiliza cuando en la etapa de procedimiento B) se utiliza una disolución de un compuesto de un metal noble, por ejemplo, una disolución clorhídrica de cloruro de paladio o una disolución ácida de una sal de plata. En este caso, la disolución de reductor también es clorhídrica y contiene, por ejemplo, cloruro de estaño (II), o contiene otro agente reductor como NaH₂PO₂ o también un borano o borohidruro como un borano alcalino o alcalinotérreo o dimetilaminoborano.

Además, los objetos se someten al tratamiento con ultrasonidos durante el tratamiento en al menos una de las etapas de procedimiento Ba1), Bb1), Bc1), pudiendo realizarse el tratamiento con ultrasonidos si en lugar de una etapa de aclarado se realizan varias etapas de aclarado en una, en algunas o en todas estas etapas de aclarado, es decir, los o bjetos se some ten a ultraso nidos en u na de las etapa as de procedimiento o var ias etapas de procedimiento, incluidas las etapas de aclarado, después del tratamiento en la disolución coloidal o en la disolución de reductor, por el contrario, no en la etapa de procedimiento en la que los objetos se metalizan sin corriente. Esto radica en que el baño de metalización sin corriente no sería estable a una acción de lultrasonidos. Los núc leos catalíticos depositados sobre la superficie de los objetos posiblemente estallarían por el tratamiento con ultrasonidos y entonces llegarían al baño de metalización sin corriente. Allí iniciarían entonces accidentalmente la deposición de metal sin corriente. Por lo de más, el tratamiento con ultrasonidos puede realizarse en cada etapa de procedimiento que sique al tratamiento coloidal o al tratamiento con la disolución de reductor.

Si, por el contrario, se prefiere un procedimiento en el que los objetos no se metalizan sin corriente sino directamente con un procedimiento de metalización electrolítico, entonces las siguientes otras etapas de procedimiento se realizan entre las etapas de procedimiento B) y C):

Ba2) Aclarado de los objetos en una disolución de aclarado,

5

10

15

35

40

45

60

Bb2) Tratamiento de los o bjetos en un a disolución de conversión, de ma nera que sobre la sup erficie de los objetos se forme una capa eléctricamente conductora suficiente para una metalización electrolítica directa y Bc2) Aclarado de los objetos en una disolución de aclarado.

Después de la etapa de procedimiento C), en una forma de realización preferida de la invención puede realizarse la siguiente otra etapa de procedimiento:

Ca2) Aclarado de los objetos en una disolución de aclarado.

Las etap as de procedim iento Ba2), Bb2) y Bc2) se r ealizan en el or den esp ecificado, no neces ariamente p ero inmediatamente sucesivamente. Por ejemplo, pueden realizarse respectivamente varias etapas de aclarado en lugar de cada una de las etapas de aclarado individuales Ba2) y Bc2). Esto también rige para la etapa de aclarado Ca2).

La disolución de conversión sirve preferiblemente para la generación de un a capa suficientemente eléctricamente conductora sobre la superficie de los objetos para hacer posible a continuación una metalización electrolítica directa sin que inicialmente se metalice sin corriente. En caso de que el coloide de la disolución coloidal según la etapa de procedimiento B) sea un coloi de de pa ladio/estaño, co mo disolución de dis olución de conversión se usa preferiblemente una disolución alcalina de iones cobre complejados con un formador de complejos. Por ejemplo, la disolución de conversión puede cont ener un forma dor de com plejos orgá nico c omo ácid o tart árico o ácido etilendiaminatetraacético y/o una sal del mismo, así como una sal de cobre, como sulfato de cobre.

Además, los objetos se someten al tratamiento con ultrasonidos durante el tratamiento en al menos una de las etapas de procedimiento Ba2), Bb2), Bc2), pud iendo realizarse el tratamiento con ultrasonidos si en lugar de una etapa de aclarado se realizan varias etapas de aclarado en una, en algunas o en todas estas etapas de aclarado, es decir, los o bjetos se some ten a ultraso nidos en u na de las etapas de procedimiento o var ias etapas de procedimiento, incluidas las etapas de aclarado, después del tratamiento en la disolución coloidal. El tratamiento con ultrasonidos puede realizarse en cada etapa de procedimiento realizada después del tratamiento coloidal.

Para el tratamiento de los objetos con ultra sonidos, en una forma de realización preferida de la invención para la realización de las eta pas de procedimiento, éstos se sum ergen en recipientes de trata miento que contienen las

disoluciones respectivas, encontrándose adicionalmente al menos un emisor de ultrasonidos para la exposición de los o bjetos a ultrasonidos e n la dis olución respectiva en el reci piente de tratam iento en el que se rea liza un tratamiento con ultrasonidos. Los emisores de ultrasonidos de este tipo están normalmente en forma de generadores y resonadores de ultrasonidos configurados en forma de placas planas. Para el eficaz tratamiento con ultrasonidos, estos generadores pueden disponerse en el recipiente de tratamiento en un plano que es paralelo a un plano en el que están dispuestos los objetos para el tratamiento o que están dispuestos paralelos a este plano. En caso de que los objetos se fijen, por ejemplo, a un repisa que presenta un plano principal, entonces el generador de ultrasonidos puede disponerse paralelo a este plano de la repisa en el recipiente. De esta manera se consigue un tratamiento lo más uniforme posible de todos los objetos fijados a la repisa, ya que la distancia del generador de ultrasonidos a los objetos es respectivamente igual.

En una forma de realización especialmente ventajosa de la invención, el emisor de ultrasonidos está dispuesto sobre un lado de los objetos. En el otro la do de los objetos puede entonces disponerse a dicionalmente un reflector de ultrasonidos u otro emisor de ultrasonidos. Tanto el primer emisor de ultrasonidos como también el segundo emisor de ultras onidos o también el reflector de ultrasonidos pueden pres entar respectivamente una forma pl ana. El reflector de ultrasonidos puede ser, por ejemplo, una placa metálica, por ejemplo, una placa de acero in oxidable (placa de reflexión).

En las a nteriores formas de r ealización de la invención, el emisor de ultrasonidos o los emisores de ultrasonidos están sumergidos para el tratamiento de los objetos en la disolución en la que se tratan. En este caso, la energía ultrasónica del o de los emisores de ultrasonidos se transmite por la disolución como medio a los objetos.

Alternativamente, un emisor de ultraso nidos también pu ede emitir ener gía ultrasónica a los obj etos mediante un soporte en el que los objetos están soportados, por ej emplo, un re pisa. Para esto, el emisor de ultrasonidos puede disponerse, por ejemplo, sobre un receptáculo para el soporte del repisa en el recipiente de tratamiento y fijarse para que la energía ultrasónica se transmita por este receptáculo y el soporte a los objetos.

Los líquidos de tratamiento descritos a continuación son preferiblemente acuosos.

10

15

25

45

En una forma de realización preferida de la invención, la disolución de grabado con ácido es una disolución de ácido cromosulfúrico. Las disoluciones de este tipo contienen normalmente 300 - 400 g/l de CrO₃ y 300 - 400 g/l de H₂SO₄ conc. en agua. Se prefiere especialmente una disolución que contenga CrO₃ en una concentración de 360 - 400 g/l y con es pecial preferencia de 375 - 385 g/l, así como H ₂SO₄ en un a concentración de 360 - 400 g/l y con es pecial preferencia de 375 - 38 5 g/l. El ácido cro mosulfúrico puede contener adici onalmente un fluorot ensioactivo p ara alcanzar una óptima humectación de las superficies. Además, el ácido cromosulfúrico puede contener iones paladio, por ejemplo, en forma de una sal, por ejemplo, cloruro de paladio. Los iones paladio pueden estar presentes en una concentración de, por ejemplo, 5 - 100 mg/l, con especial preferencia de 7 - 50 mg/l y lo más preferido de 10 - 30 mg/l, referido a Pd²⁺. El ácido cromosulfúrico opera preferiblemente a una temperatura por encima de la temperatura ambiente, por ejemplo a 30 - 90 °C, con especial preferencia 60 - 80 °C y lo más preferido 65 - 75 °C. El tiempo de tratamiento asciende preferiblemente a 5 - 30 min, con especial preferencia a 10 - 20 min.

A continuación del tratamiento de grabado con el ácido cromosulfúrico, preferiblemente después de una, varias, por ejemplo tres, etapas de aclarado, puede realizarse un tratamiento de reducción en una disolución de reducción en la que los iones cromo (VI) toda vía adheridos sobre la superficie de los objetos se reducen a iones cromo (III). Para esto se usa pr eferiblemente una disolución acuosa de sulfito de sodi o o una sal de hidroxilamonio, por ejemplo, el cloruro o su lfato. Esta dis olución tamb ién oper a pr eferiblemente por encim a de la temperatur a ambiente, por ejemplo, a 30 - 60 °C, con especial preferencia a 40 - 50 °C. El tiempo de tratamiento asciende preferiblemente a 0,5 - 5 min, con especial preferencia a 1 - 3 min y lo más preferido a 1,5 - 2,5 min.

50 Alternativamente al tratam iento de grabado en ácido cro mosulfúrico, ta mbién p uede r ealizarse un tratamiento de grabado en disolución de permanganato potásico o sódico. Esta disolución puede ser ácida o alcalina. En caso de que se a áci da pued e co ntener esp ecialmente áci do s ulfúrico, y e n c aso de que sea alc alina p uede co ntener especialmente hidró xido só dico. El perman ganato potás ico pue de estar contenido en una concentración de hasta aproximadamente 7 0 g/l y el perma nganato só dico en u na concentración de hasta a proximadamente 25 0 g/l. El 55 límite inferior de cada una de estas dos sales asci ende normalmente a 30 g/l. En caso de gu e la disolución sea alcalina conti ene, por ej emplo, 20-80 g/l, p referiblemente 30 - 60 g/l d e NaOH. Ade más, también puede estar contenido en este caso u n fluorotensioactivo para m ejorar la h umectabilidad de l as superficies de los obj etos. Además, como en el caso del ácido cromosulfúrico pueden estar contenidos iones paladio, por ejemplo, en forma de una sa I de pa ladio, especi almente clor uro de pa ladio, en una conc entración de, por ejem plo, 5 - 100 mg/l, co n especial preferencia de 7 - 50 mg/l y lo más prefer ido de 10 - 30 mg/l, referid o a Pd ²⁺. L a disolución de 60 permanganato opera preferiblemente a una temperatura por encima de la temperatura ambiente, por ejemplo, a 60 -95 °C, con especial preferencia a 80 - 90 °C. El tiemp o de tratamiento asciende preferiblemente a 5 - 30 min, con especial preferencia a 10 - 20 min.

A continuación del tratam iento con permanganato, los objetos se s ometen a un tratamiento de reducción en una disolución de reducción de spués de la clarado de la disolución de permanganato en exceso en una o varias,

preferiblemente tres, eta pas de aclarado para reducir a iones manganeso (II) el permanganato to davía adherido sobre las superficies de los objetos. Para esto se utiliza preferiblemente una disolución ácida de sulfato o cloruro de hidroxilamonio o también una disolución acida de peróxido de hidrógeno.

En una forma de realización preferida de la invención, la disolución del coloide del metal del grupo VIIIb del SPE es una disolución de activador con u n co loide de pa ladio/estaño. Esta d isolución c oloidal co ntiene preferiblemente cloruro de paladio, cloruro de estaño (II) y ácido clorhídrico o ácido sulfúrico. La concentración de cloruro de paladio asciende preferiblemente a 5 - 100 mg/l, co n especial preferencia a 20 - 5 0 mg/l, y lo más preferido a 30 - 45 mg/l, referido a Pd²+. La concentración de cloruro de estaño (II) asciende preferiblemente a 0,5 -10 g/l, preferiblemente a 1 - 5 g/l, y lo más preferido a 2 - 4 g/l, referido a Sn²+. La concentración de ácido clorhídrico asciende preferiblemente a 100 - 300 ml/l (37% en peso de HCl). Además, contiene una disolución coloidal de paladio/estaño, preferiblemente adicionalmente io nes estaño (IV), q ue se forman por la oxidación de io nes estaño (II). La tem peratura d e l a disolución coloidal asciende preferiblemente a 20 - 5 0 °C y con especial preferencia a 30 - 40 °C. L a duración del tratamiento asciende preferiblemente a 0,5-10 min, con especial preferencia a 2 - 5 min, y lo más preferido a 3,5 - 4,5 min.

Alternativamente, la dis olución coloid al también puede co ntener otro metal de I grupo VIIIb del SPE, por ejemplo, platino, iri dio, rodi o, oro o plata, o u na mezcla de estos metales. En principio es posible que el coloide no esté estabilizado con iones estaño como coloide protector, sino que se use otro coloide protector, por ejemplo, un coloide protector orgánico, por ejemplo, poli(alcohol vinílico).

20

25

30

35

40

45

50

55

60

En cas o de que en lugar de u na disolución c oloidal se utilic e una disolución de u n comp uesto de meta I n oble, preferiblemente se us a una disolución que contie ne u n á cido, es pecialmente ácido clorhídrico, y una sal de metal noble. La sal de metal nob le puede ser, por ejemplo, una sal de paladio, preferiblemente cloruro de paladio, sulfato de paladio o a cetato de paladio, o u na sal de plata, por ejemplo, acetato de plata. Alternativamente también puede utilizarse un complejo de metal noble, por ejemplo, una sal de complejo de paladio como una sal de un complejo de paladio-aminopiridina. El compuesto de metal noble se e ncuentra, por ejemplo, en una concentración de 40 mg/l a 80 mg/l, referido al metal noble, por ejem plo referido, a Pd²⁺. La disolución del compuesto de metal noble puede operarse a 25 °C o a una temperatura de 25 °C a 70 °C.

Antes de la p uesta en co ntacto de los o bjetos con la disolución col oidal, I os objetos se pone n pr eferiblemente inicialmente en contacto con u na disolución de pre-inmersión que tiene la misma composición que I a disolución coloidal, pero sin que estén contenidos el metal del coloide y su coloide protector, es decir, esta disolución contiene en el cas o de una disolución colo idal de paladio/estaño exclusivamente ácido clorhídrico, cua ndo la disolución coloidal también contiene ácido clorhídrico. Sin aclarar los objetos, éstos se pon en directamente en contacto con la disolución coloidal después del tratamiento en la disolución de pre-inmersión.

Después del tratamiento de los objetos con la disolución coloidal, normalmente éstos se aclaran y después se ponen en contacto con la disolución de acelerador para eliminar el coloide protector de la superficie de los objetos.

En caso de q ue los ob jetos se traten con una diso lución de un comp uesto de meta I noble en lu gar de con un a disolución coloidal, después del posterior a clarado se someten a un tratamiento reductor. Entonces, si la disolución del compuesto de meta I noble es u na disolución clorhídrica de cl oruro de paladio, la disolución de reductor usada para esto contiene ácido clorhídrico y cl oruro de est año (II). No obstante, preferiblemente se utiliza una disolución acuosa de NaH₂PO₂.

En una metalización sin corriente, los objetos pueden inicialmente aclararse después de la aceleración o tratamiento con la disolución de reductor y después niquelarse, por ejemplo, sin corriente. Para esto sirve, por ejemplo, un baño de níquel convencional que contiene, entre otros, sulfato de níquel, un hipofosfito, por ejemplo, hipofosfito de sodio, como agente reductor, así como formadores de complejos orgánicos y ajustadores del pH (por ejemplo, un tampón).

Alternativamente también pu ede utilizarse un bañ o de cobre sin corri ente que normalmente conti ene u na sal de cobre, por ejemplo, sulfato de cobre o hipofosfito de cobre, además de un agente reductor como formaldehído o una sal de hi pofosfito, por ejemplo, u na sal a lcalina o de amonio, o ácido hip ofosforoso, adem ás de un o o varios formadores de complejos, como ácido tartárico, así como un ajustador del pH, como hidróxido sódico.

Para la p osterior metaliz ación electro lítica pue den ut ilizarse bañ os de deposición de metal discrec ionales, por ejemplo, para la deposición de níquel, cobre, plata, oro, estaño, cinc, hierro, plomo o de sus aleaciones. Los baños de deposición de este ti po son habituales para el experto. Como baño de níquel brillante se utiliza normalmente un baño de níquel de W atts que contiene sulfato de níquel, cloruro de níquel y ácido bórico, así como sa carina como aditivo. Como baño de cobre brillante se us a, por ejemplo, una composición que contiene sulfato de cobre, ácido sulfúrico, cloruro sódico, así como compuestos de az ufre orgánicos en los que el azufre está presente en un bajo estado de oxidación, por ejemplo, sulfuro orgánico o disulfuros, como aditivos.

En caso de que se apli que un procedimiento de galv anización directa, es decir, una primera capa de metal no se aplica electrolíticamente sin corriente, sino después del tratamiento de los objetos con la disolución de conversión y

el posterior tratamiento de aclarado opcional, se utiliza un baño de metalización electrolítica, por ejemplo, un baño de níquel de ataque que está compuesto preferiblemente basado en un baño de níquel de Watts. Los baños de este tipo contienen, por ejemplo, sulfato de níquel, cloruro de níquel y ácido bórico, y sacarina como aditivo.

El tratamie nto de los objetos seg ún e I procedimiento segú n la i nvención se r ealiza pr eferiblemente e n un procedimiento de inmersión convencional sumergiendo los objetos sucesivamente en disoluciones en recipientes en los que tiene lugar el tratamiento respectivo. En este caso, los objetos pueden sumergirse en las disoluciones o bien fijados sobre r episas o car gados e n tambor es. Se prefi ere una fij ación s obre re pisas, ya que así es posib le una transferencia más específica de la energía ultrasónica a los objetos. Alternativamente, los objetos también pueden tratarse en la s llamad as pl antas cont inuas, encontrá ndose, por e jemplo, sobr e estantes y tr ansportándose continuamente por la planta en dirección horizontal.

Los ejemplos descritos a co ntinuación explicarán más detalladamente la invención. La figura especificada también sirve para ac larar la invención. Tanto los ej emplos como tambi én la figura no con ducen de ni nguna forma a un a limitación del alcance de la protección.

- Fig. 1: Muestra una representación esquemática de un recipiente de tratamiento con un objeto que va a tratarse y un emisor de ultrasonidos, así como un reflector de ultrasonidos.
- La Fig. 1 muestra un recipiente 1 de tratamiento que contiene una disolución 2 de tratamiento que en el recipiente 1 de tratamiento lle ga hasta un nivel 3 de lí quido. El líquido 2 de tratamiento puede ser, por e jemplo, un líquido de aclarado o la disolución coloidal o una disolución de ac eleración o tambi én otro líquido de tratamiento en el que se tratan con ultrasonidos los objetos según la invención. El recipiente 1 de tratamiento está configurado, dependiendo del tipo del líquido 2 de tratamiento, para cumplir las funciones necesarias para el tratamiento res pectivo en este líquido 2 de tratamiento. Por ejemplo, el recipiente 1 de tratamiento puede está equipado con una calefacción, un sistema de filtración, un s oplado de aire, un movimiento de mercancía, dispositivos de vibración para los objetos, bombas de recirculación y similares. El diseño adecuado para éste es respectivamente conocido para el experto y se selecciona convenientemente.
- En el borde 4 su perior de l recipiente 1 de tra tamiento se e ncuentran monturas p ara un a varilla 5 de s oporte de mercancía. Esta varilla 5 de s oporte de mercancía se extiende por encima del recipiente 1 de tratamiento. Sobre la varilla 5 de soporte de mercancía está colgada una repisa 10 sobre un colgador 6 al que se fijan varios objetos 7 que van a tratarse. La repisa 10 con los objetos 7 está dispuesta centrada y paralela a un plano vertical en el recipiente 1. También vertical y paralelo a este plano a una distancia a con respecto a los objetos se encuentra un emisor 8 de ultrasonidos, que está confi gurado en form a de un a placa. Éste está en el pres ente caso en el fon do y fijado a la s paredes laterales del recipiente 1 de tratamiento. También vertical y paralelo al plano y concretamente en el otro lado de la repisa y a una distancia b con respecto a los objetos está dispuesto un segundo emisor 9 de ultrasonidos en el recipiente. No obstante, en lugar del segundo emisor 9 de ultraso nidos también puede usarse una placa de acero que refle je las on das ultrasónicas e nviadas del prim er emisor 8 de ultras onidos. Las d istancias a y b s on preferiblemente iguales. Con esta disposición se consigue un tratamiento muy uniforme de los objetos 7 en la repisa

Los e jemplos representados a co ntinuación se r ealizaron respectivamente con una disposición de un emisor de ultrasonidos y de un r eceptor de ultras onidos configurado en forma de una placa de acero bajo las condiciones especificadas en el ejemplo respectivo.

Para la re alización de los ejemplos es pecificados a co ntinuación se usaro n difere ntes compon entes que s e obtuvieron e n un proce dimiento de mo Ideo por in yección d e dos i nyecciones a partir de ABS y de un a sobreinyección parcial del c uerpo básic o de ABS con policarbonato: un botón giratorio PQ, un pulsador de Inicio/parada, un soporte de tecla conmutado, así como una tapa con ranuras.

En tod os los e nsayos, las piezas es pecificadas se tratar on en el desarrollo de l procedimiento especificado en la Tabla 1, realizándose en los ejemplos individuales respectivamente modificaciones de las condiciones de tratamiento especificadas en comparación con las de la Tabla 1 y realizándose el tratamiento con ultrasonidos de diferente forma. Para la peritación de la selectividad de la metalización, es decir, la metalización sin defectos completa en las zonas que se metalizarán y la evitación completa de la metalización en la zonas que no se metalizarán, las piezas se trataron res pectivamente hasta la metalización con cobre brillante. Para determinar la a usencia de defectos se investigó si las piezas en las zonas que ib an a metalizarse presentaban sitios defectuosos, es decir, un a metalización deficiente (perforaciones por sobrecalentamiento, sitios sin cubrir), e incrustaciones en las zonas que no ib an a metalizarse, es decir, una metalización presente al menos en algunos sitios y, por tanto, un tratamien to defectuoso.

Ejemplo comparativo 1:

15

45

50

55

60

9 soportes de tecla conmutados y 10 botones giratorios PQ se fijaro n sobre una repisa (superficie: 6 dm²). Estas partes se trataron con el procedimiento según la Tabla 1, realizándose no obstante las siguientes modificaciones:

- 8) Activador: 2 x 1 min (1x H/S)
- 9) Aclarado de flujo (limpio): 1 min, IA
- 10) Aceleración: 50 °C, 4 min, IA
- 14) 2x aclarar después de níquel sin corriente: IA
- 17) Níq uel de agarre en l'ugar d'e cobr e de a garre (A dhemax IC-C opper): 1 min, 0 ,5 A/dm², hasta qu'e transcurren 5 min 1 A/dm²
- 18) Cupracid: 20 min, 3 A/dm²

En ninguna de las etapas de procedimiento se aplicó ultrasonidos.

Resultado: En los 9 soportes de tecla conmutados, así como en 8 de los 18 botones giratorios PQ, se e ncontraron incrustaciones en las z onas de policarbonato so bre los sitios que no i ban a m etalizarse. Por t anto, estas partes tuvieron que desecharse como desechos, de man era que el 100% de los soportes de tecla conmutado y el 44% de los botones giratorios PQ tuvieron que desecharse como desechos.

Ejemplo comparativo 2:

5

10

15

20

30

40

45

72 so portes d e tecla c onmutados (s uperficie 1 5 dm 2) fijad os so bre una r episa co mpleta s e trataron c on el procedimiento según la Tabla 1, realizándose no obstante las siguientes modificaciones:

- 8) Activador: 2 x 1 min (1 x H/S), composición: Pd²⁺: 17,4 mg/l, Sn²⁺: 1,00 g/l, HCl (37% en peso): 239 ml/l
- 9) Aclarado (limpio): 1 min, IA
- 10) Aceleración: 50 °C, 4 min, IA
- 13) Adhemax Ni LFS: 8 min, 35 °C
- 25 14) 2x aclarado: IA
 - 15) Aclarado con utilización al mismo tiempo de ultrasonidos: 4 min, 48 °C
 - 16) Decapado: 0,5 min
 - 17) Níq uel de agarre en l ugar de cobr e de a garre (A dhemax IC-C opper): 1 min, 0 ,5 A/dm², hasta qu e transcurren 5 min 1 A/dm²
 - 17a) Decapado: 0,5 min
 - 18) Cupracid: 20 min, 3 A/dm²

Por tanto, se aplicó ultrasonidos en este caso en el aclarado después de la deposición de níquel sin corriente.

A continuación se ac lararon las piezas, se activaron, se recubrieron con níquel brillante (10 min) y después con cromo (2 min).

Por tanto, se aplic ó ultras onidos e n un s egundo ac larado después d el niqu elado si n corriente. L a frecuenc ia d e ultrasonidos ascendió a 40 kHz.

Resultado: 71 de los soport es de tecla c onmutados no mostra ron in crustaciones e n las zonas q ue no ib an a metalizarse y ningún sitio abierto en las zonas que iban a metalizarse. Una ún ica pi eza mostró un a incrustación mínima d e u n tamaño de anchura d e 1 mm en u n n ervio. Por tant o, el 99, 5% d e todos l os p ulsadores d e Inicio/Parada se calificaron como sin defectos en cuanto a la selectividad de la metalización en las zonas que iban a metalizarse y la evitación de la metalización en las zonas que no iban a metalizarse.

Ejemplo comparativo 3:

En otro e nsayo se a plicó e I procedimiento según el Ejemplo comparativo 2 para el tratamiento de 72 so portes de tecla co nmutados fij ados en una r episa (superficie 1 5 dm²), sin emb argo c on u na compos ición de activ ador modificada (Pd²+: 18,9 mg/l, Sn²+; 1,40 g/l, HCl (37% en peso): 241 ml/l).

Por tanto, en este caso, en un segundo aclarado después del niquelado sin corriente también se aplicó ultrasonidos. La frecuencia de ultrasonidos ascendió de nuevo a 40 kHz.

Resultado: De los 72 soportes de tecla conmutados, 71 se fabricaron sin defectos, es decir, sin incrustaciones en las zonas que no iban a metalizarse y sin sitios abiertos en las zonas metalizadas, mientras que solo en 1 soporte de tecla conmutado se obs ervó una perfor ación por so brecalentamiento. Por tanto, el 9 8,5% de tod as las piezas n o tuvieron defectos.

Ejemplo comparativo 4:

162 botones giratorios PQ fijados en una rep isa com pleta (s uperficie 3 0 dm ²) se trataron bajo las mism as condiciones que los pulsadores de Inicio/Parada del Ejemplo comparativo 2.

Por tanto, en este caso, en un segundo aclarado después del niquelado sin corriente también se aplicó ultrasonidos.

9

55

60

La frecuencia de ultrasonidos ascendió de nuevo a 40 kHz.

Resultado: De un a muestra al eatoria de 60 piezas controladas, el 100 % no tu vieron de fectos en cu anto a la selectividad de la metalización.

5

10

Ejemplo comparativo 5:

En otro ensayo, para el tratamiento de 162 botones giratorios PQ fijados en una repisa (superficie 30 dm²) se aplicó el procedimiento según el Ejemplo comparativo 4, sin embargo con una composición de activador modificada (Pd²+: 18,9 mg/l, Sn²+: 1,40 g/l, HCl (37% en peso): 241 ml/l).

Por tanto, en este caso, en un segundo aclarado después del niquelado sin corriente también se aplicó ultrasonidos. La frecuencia de ultrasonidos ascendió de nuevo a 40 kHz.

Resultado: De una muestra aleatoria de 30 piezas controladas, 28 piezas, es decir, el 93,4%, no tuvier on defectos: En 2 b otones giratorios PQ s e comprobaron minúsculos sitios sin cubrir con forma de punto en la parte negra. Sin embargo, en estas piezas, todas las zonas que no iban a metalizarse estaban completamente libres de metal (sin incrustaciones). Las 28 piezas restantes no tuvieron defectos en tanto a lo referente a la ausencia de metal en las zonas que no iban a metalizarse como también en lo referente a la cubrición en las zonas metalizadas.

20

Ejemplo comparativo 6:

En otro ensayo, los cuatro artículos (botón giratorio PQ, pulsador de Inicio/Parada, soporte de tecla conmutado, tapa con ranuras) se fijaron sobre una repisa múltiple con una superficie de 10 dm².

25

30

Las condiciones de tratamie nto para las piezas fueron esencialmente las mismas que en el Ejemplo comparativo 2 con las siguientes modificaciones:

8) Activador: 2x 2 min

10) Aceleración: 3 min, 50 °C, IA

14) 2x aclarado: IA

15) Aclarado con ultrasonidos: 3 min

Las piezas no se metalizaron con níquel brillante y cromo.

35

Por tanto, en este caso, en un segundo aclarado después del niquelado sin corriente también se aplicó ultrasonidos. La frecuencia de ultrasonidos ascendió de nuevo a 40 kHz.

Resultado:

40

45

Botón giratorio PQ: 9 piezas no tuvier on d efectos, 4 piez as prese ntaron incrustaciones mínimas e n la s zonas que no iban a metalizarse: por tanto, el 70% de todas las piezas no tuvo defectos;

<u>Pulsador de Inicio/Parada:</u> 8 piezas no tuvieron defect os; en 2 piezas se mostr aron p erforaciones po r sobrecalentamiento, es decir, el 80% de todas las piezas no tuvo defectos;

Soporte de tecla conmutado: las 6 piezas, es decir, el 100% de todas las piezas no tuvo defectos;

Tapa con ranuras: las 10 piezas, es decir, el 100% de todas las piezas no tuvo defectos.

Ejemplos de la invención 7-18:

- Se rea lizaron más ens ayos con l as pi ezas mold eadas por inyección previ amente menci onadas, así como u n manguito, que también comprendía un cuerpo básico de ABS que se había sobreinyectado con policarbonato sobre un b orde d el manguito en un pr ocedimiento d e mol deo por in yección de dos in yecciones. El desarrollo d el procedimiento aplicado a esto se específica en la Tabla 2.
- En la T abla 3 se es pecifican I as co ndiciones resp ectivamente s ubyacentes para los e nsayos ind ividuales, enumerándose por sep arado modificac iones corresp ondientes de las co ndiciones q ue están es pecificadas en I a Tabla 2.

Los resultados de las metalizaciones selectivas obtenidas con estos ensayos estás especificados en la Tabla 4.

Tabla 1: Desarrollo del procedimiento para la metalización de plásticos

	Tabla 1. L		niento para la metalización de pla-	311003
	Operación de trabajo	Temperatura [°C]	Duración del tratamiento [min]	Movimiento del líquido
	1) Limpi eza pr evia Un iClean	55 2		Recirculación
_	151			
5	2) Aclarado		0,5	
	3) Ataqu e c on ác ido de	68	1, después de 1x H/S *) (10	IA, MM**)
	ÁBS ¹)		s), otros 11	, ,
	4) Aclarado		0.5	IA **)
10	5) Neutra lizador de Cr ²)	30	0,5, después de 1x H/S*) (10	IA **)
10	Adhemax ®		s), otros 0,5	,
	6) Aclarado		0,5	IA**)
	7) Dis olución d e pr e-	25 0,5		IA **)
	inmersión ³)	20 0,0		"' '
15	8) Activador SF ⁴) Adhemax ®	30	0,5-4, parcialmente H/S*)	MM**)
15	9) Aclarado		0,5	IA**)
	10) Ac elerador SF ⁵)	45-55	2-5	IA o US **)
	Adhermax®	10 00	2 0	"(000)
	11) Aclarado			IA **)
20	12) Aclara do opcio nal co n	20-50	3	agua desmineralizada **)
20	US **)	20 00		agua acommeranzada)
	13) Adhemax ® Ni LFS ⁶) ***) 3	5	10	
	14) Aclarado	0	0,5	
	15) Aclara do opcio nal co n	20-50	3	agua desmineralizada **)
25	US **)	20-30	3	agua desiriirieralizada)
	16) Decapado H ₂ SO ₄ 50 g/l	25	1	
	17) Ad hemax ® IC-Copper	30	1 ó 2	
	****)	00	102	
	18) C obre ác ido C upracid ®	25 20		
30	5000 ****)	20 20		
	19) 2x Aclarado de flujo		0,5	
	20) Decapado	25	1	
	21) Aclarado		0,5	
	22) Níq uel br illante U niBrite	55 10	0,0	
35	2002 ****)	33 10		
	23) Aclarado		20 s	
	24) Activación con cromo	25	1	
	25) Crom o bri llante Cr 84 3	40 2	I	
	******\	40 2		
40	26) Aclarado		0,5	
	27) Ne utralizador d e Cr ²)	45 1	0,0	
	Adhemax ®	4 0 I		
	28) Aclarado		0,5	
4.5	29) Secado		10	
45		o crómico (CrO-) 200	l α/l de H₂SΩ₄ 1 ml/l de humectai	ote 12 mg/l de P d ²⁺ (como
			TUNTUE TIPOTOA. TITUM DE HUMBECIAI	ne 12 111071 DEFO (COMO) L

 1) composición: 380 g/l de ácido crómico (CrO₃), 380 g/l de H₂SO₄, 1 ml/l de humectante, 12 mg/l de P d $^{2+}$ (como PdCl₂); (adicionalmente aproximadamente 20 g/l de Cr $^{3+}$) 2) composició n: compuesto de hidr oxilamina, alter nativamente tambié n posi ble compu esto d e sulfuro ,

3) composición: 300 ml/l de HCl (37% en peso)

® marcas registradas de Atotech Deutschland GmbH

***) baño de níquel sin corriente, pH 9,1

11

55

50

60

alternativamente también junto con mezclas de ácidos minerales (ácido clorhídrico o ácido sulfúrico)

⁴⁾ composición: Pd²⁺, Sn (Sn²⁺ + Sn⁴⁺), HCl (respectivamente especificado en los ejemplos)
5) composición: 20 - 70 ml/l de áci do sulfúrico al 9 6% en peso, 4 0 - 100 g/l de áci do oxálico, compuestos de nitrato 6) composic ión: que conti ene Ni 2+, a gentes reduct ores, fo rmadores de complejos, estabilizadores orgánicos e

inorgánicos, compuestos de amonio

^{*)} las piezas que van a procesarse se metieron y se sacaron varias veces en la misma posición del baño en el recipiente de trabajo para conseguir un movimiento mecánico adicional en el proceso de procesado (mejora de la acción del aclarado debido al líquido que circula varias veces)

^{**)} IA: in yección de air e; MM, movimi ento de la mercancía; ID : inu ndación; US: ultras onidos; DM: desmineralizada

^{****)} baño de cobre electrolítico (cobre brillante, baño de cobre ácido)

^{*****)} baño de níquel electrolítico (baño de níquel de Watts)

^{******)} baño de cobre electrolítico

Tabla 2: Desarrollo del procedimiento para la metalización de plásticos

Operación de trabajo	Temperatura [Densidad de corriente	Duración del tratamiento	Movimiento del
	°C]	[A/dm ²]	[min]	líquido
Grabado con ácido1) 68			15	IA *)
Neutralizador Adhemax ®	45		2	IA *)
Disolución de pre- inmersión ²)	30		0,5	IA *)
Activador SF Adhemax ®	35		4	MM *)
Aclarado			0,5	MM *)
Tratamiento con	25, 45, 50		2-6	MM *)
ultrasonidos ³)				
Acelerador 1 Adhemax ®	45		5	IA *)
Adhemax ® Ni LFS **)	40		8	ID *)
Guflex ® 337 ***)	TA *)	2,2	8	IA *)
Cupracid ® 5000 ***)	TA *)	3	25	MM/IA *)
UniBrite 2002 ****)	55	4	15	MM/IA *)
Cr 843 *****)	40	10		•

[®] marca registrada de Atotech Deutschland GmbH

1) 380 g/l de CrO₃, 380 g/l de H₂SO₄ conc., 2 ml/l de fluorotensioactivo, 12 mg/l de Pd²⁺

2) 300 ml/l de HCl (37% en peso)

3) agua desmineralizada, tratamiento con 40 kHz,13 W/L

^{*)} IA: inyección de aire; MM, movimiento de la mercancía; TA: temperatura ambiente; ID: inundación

^{**)} baño de níquel sin corriente
***) baño de cobre electrolítico (cobre brillante, baño de cobre ácido)

^{***)} baño de níquel electrolítico (baño de níquel de Watts)
*****) baño de cobre electrolítico

		-		_											1
5		Ejemplo de la invención 12	+	+	+	+) _z	+	$4)^{3})^{6}$	+	+	+		+	+	
10		Ejemplo de la invención 11	+	+	+	+) _z (+	+	4) ³⁾⁶	+	+	+	o 60	36		
20	10 g	Ejemplo de la invención 10	+	+	+	(+	+	2) ³) ⁵	+	+	+		8 8		
25	30	Ejemplo de la invención 9	+	+	+	$2)^{3}$.1.	2) ³) ⁴	+	+	+	+	+	+	
30		Ejemplo de la invención 8	+	+	+	+)(+	.1.	2) ³) ⁴	+	+	+	+			vo; 12 mg/l de Pc e ácido) uel de Watts) 21 (37% en peso) 37% en peso)
35	33	Ejemplo de la invención 7	+	+	+	+)_(+	.1.	2) ³) ⁴	+	+	+	+	00 0		and GmbH c.; 2 ml/l de fluorotensioactivo; 12 mg 9,3 obre brillante, baño de cobre ácido) iquel brillante, baño de níquel de Wa yml de Sn ²⁺ ; 260 ml/l de HCl (37% er il de Sn ²⁺ ; 261 ml/l de HCl (37% er rasonidos: 4: 25 °C, 5: 45 °C; 6: 50°C
40					6 G	20 50	H	.	8 8	- 3		6 O	50 50		mbH nl/l de rillan brillan brillan brillan dos:
45	los Ejemplos 7 - ′							a desmineralizada							h Deutschland G H ₂ SO ₄ conc.; 2 n SsO) e; pH 8,8 – 9,3 (baño de cobre b (baño de níquel caño de níquel d ²⁺ ; 2,9 mg/ml de S d ²⁺ ; 2 mg/ml de S ó 4 min
50	ento para				(_{**} L			os en agua							de Atotec 380 g/l de 37% en pe in corrient ectrolítico lectrolítico con l'mg/l de F mg/l de F mg/l de F el tratamie
55	 Condiciones de procedimiento para los Ejemplos 7 - 18 	Operación de trabajo	Grabado con ácido *)	Neutralizador Adhemax ®	Disolución de pre-inmersión **)	Activador SF Adhemax ®		Tratamiento con ultrasonidos en agua desminer	Acelerador 1 Adhemax ®	Adhemax ® Ni LFS ***)	337 ****)	Cupracid ® 5000 ****)	UniBrite 2002 *****)	(****	marca registrada de Atotech Deutschland GmbH 380 g/l de CrO ₃ , 380 g/l de H ₂ SO ₄ conc.; 2 ml/l de fluorotensioactivo; 12 mg/l de Pd ²⁺ 300 ml/l de HCl (37% en peso) baño de níquel sin corriente; pH 8, 8 – 9,3 baño de cobre electrolítico (baño de cobre brillante, baño de cobre ácido) baño de cobre electrolítico (baño de níquel brillante, baño de níquel de Watts) baño de cobre electrolítico con níquel brillante, baño de níquel de Watts) baño de cobre electrolítico Composición: 4,1 mg/l de Pd ²⁺ ; 2,9 mg/ml de Sn ²⁺ ; 260 ml/l de HCl (37% en peso) Composición: 30 mg/l de Pd ²⁺ ; 2 mg/ml de Sn ²⁺ ; 261 ml/l de HCl (37% en peso) Duración del tratamiento: 2 ó 4 min
60	3: Condicio	Operación	Grabado (Neutraliza	Disoluciór	Activador	Aclarado	Tratamier	Acelerado	Adhemax	Guflex ® 337 ****)	Cupracid	UniBrite 2	Cr 843 *****)	@ C () () () () () () () () () (

continuación
18
-18
Ejemplos
para los
procedimiento
de
Condiciones
Ė
Fabla

Operación de trabajo	Ejemplo de la invención 13	Ejemplo de la invención 14	Ejemplo de la invención 15	Ejemplo de la invención 16	Ejemplo de la invención 17	Ejemplo de la invención 18
Grabado con ácido *)	+	+	+	+	+	+
Neutralizador Adhemax ®	+	+	+	+	+	+
Disolución de pre-inmersión **)	+	+	+	+	+	+
Activador SF Adhemax ®	$2)^{3})^{1}$	$(2)^{3})^{1}$	(+	$2)^{3}$	2)3)1	+)1
Aclarado	+	· 1·	. 1.	.1.	+	+
Tratamiento con ultrasonidos en agua desmineralizada	4)3)6	1.	-f	- f -	$\cdot f$. f .
Acelerador 1 Adhemax ®	+	g(+) (+	+)	+)و	6) ₃) ₆
Adhemax ® Ni LFS ***)	+	+	+	+	+	+
Guflex ® 337 ****)		+	+	+	+	+
Cupracid ® 5000 ****)		1.	1.	1.	+	+
UniBrite 2002 *****)	- J*	1.	· 1·	.1.	+	+
Cr 843 ******)		.1.	.1.	.1.	+	+

marca registrada de Atotech Deutschland GmbH 380 g/l de CrO $_3$; 380 g/l de H $_2$ SO $_4$ conc.; 2 ml/l de fluorotensioactivo; 12 mg/l de Pd 2 300 ml/l de HCl (37% en peso) baño de níquel sin corriente; pH 8,8 – 9,3 baño de cobre electrolítico (baño de cobre brillante, baño de cobre ácido) baño de níquel electrolítico (baño de níquel brillante, baño de níquel de Watts)

baño de cobre electrolítico

Composición: 4,1 mg/l de Pd^{2+} ; 2,9 mg/ml de Sn^{2+} ; 260 ml/l de HCl (37% en peso) Composición: 30 mg/l de Pd^{2+} ; 2 mg/ml de Sn^{2+} ; 261 ml/l de HCl (37% en peso) Duración del tratamiento: 2 ó 4 min Temperatura en el tratamiento con ultrasonidos: 4: 25 °C, 5: 45 °C; 6: 50°C

Tabla 4: Resultados de los Ejemplos de la invención 7-18

Ejemplo de la invención	Resultado
7	metalización sin defectos, sin incrustaciones
8	metalización sin defectos, sin incrustaciones
9	metalización sin defectos, li geras incrustaciones en los sitos de contacto en el borde
	que no iba a metalizarse del manguito
10	metalización sin defectos, li geras incrustaciones en los sitos de contacto en el borde
	que no iba a metalizarse del manguito
11	metalización sin defectos, sin incrustaciones
12	metalización sin defectos, sin incrustaciones
13	metalización sin defectos, li geras incrustaciones en los sitos de contacto en el borde
	que no iba a metalizarse del manguito
14	metalización sin defectos, sin incrustaciones
15	metalización sin defectos, sin incrustaciones
16	metalización sin defectos, sin incrustaciones
17	metalización sin defectos, sin incrustaciones
18	metalización sin defectos, sin incrustaciones

REIVINDICACIONES

- 1. Procedimiento para la meta lización de objetos que presentan al menos dos plásticos distintos sobre la superficie, siendo un primer plástico un policarbonato y sel eccionándose un se gundo plástico de un grupo que comprende un copolímero de ABS (copolím ero de ac rilonitrilo-butadieno-estireno), una poliamida y una mezc la de ABS con al menos otro polímero, que comprende las etapas de procedimiento:
 - A) Grabado con ácido los objetos con una disolución de grabado con ácido,
 - B) Tratamiento de los objetos con una disolución de un coloide o de un compuesto de un metal del grupo VIIIb del SPE.
 - C) Metalizado electrolítico de los objetos con una disolución de metalización, presentando el procedimiento además las siguientes otras etapas de procedimiento entre las etapas de procedimiento B) y C):
 - Ba1) Aclarado de los objetos en una disolución de aclarado.
 - Bb1) Tratamiento de los objetos en una disolución de acelerador o disolución de reductor,
 - Bc1) Aclarado de los objetos en una disolución de aclarado.
 - Bd1) Metalización sin corriente de los objetos en una disolución de metalización y
 - Be1) Aclarado de los objetos en una disolución de aclarado o
- 20 en el que el procedimiento presenta además las siguientes otras etapas de procedimiento entre las etapas de procedimiento B) y C):
 - Ba2) Aclarado de los objetos en una disolución de aclarado,
 - Bb2) T ratamiento d e los ob jetos e n u na disolución de convers ión, de manera que sobre la superficie de los ob jetos se forme una c apa e léctricamente con ductora suficie nte para un a metalización electrolítica directa, y
 - Bc2) Aclarado de los objetos en una disolución de aclarado,
- caracterizado porque los objetos se someten a un tratamiento con ultrasonidos durante el tratamiento en otra etapa de procedimiento realizada después de la realización de la etapa de procedimiento B), pero no en una deposición sin corriente de metal, para evitar la metal ización de I pri mer plástico e xpuesto s obre la sup erficie de los objetos, mientras que se metaliza el segundo plástico expuesto sobre la superficie de los objetos, y sometiéndose los objetos al tratamiento con ultrasonidos durante un tratamiento en al menos una de las etapas de procedimiento Ba1), Bb1), Bc1) o en al menos una de las etapas de procedimiento Ba2), Bb2), Bc2).
 - 2. Procedimiento según la reivindicación 1, caracterizado porque el al menos otro polímero es policarbonato.
 - 3. Procedim iento seg ún u na de l as reivi ndicaciones pr ecedentes, caracterizado porque los obj etos par a l a realización de las eta pas de procedimiento se sum ergen e n rec ipientes de trat amiento que contie nen las disoluciones respectivas y porque en la disolución respectiva en el recipiente de tratamiento en el que se realiza un tratamiento con ultrasonidos se encuentra adicionalmente al menos un emisor de ultrasonidos para la exposición de los objetos a ultrasonidos.
- Procedimiento según la reivindicación 3, caracterizado porque el emisor de ultrasonidos está dispuesto a un lado de los o bjetos y porque en el otro lado d e los objetos está dispuesto un receptor de u Itrasonidos u ot ro emisor d e ultrasonidos.
 - 5. Proce dimiento seg ún un a de las reivindicaciones precedentes, **caracterizado porque** la disolución de gra bado con ácido es una disolución de ácido cromosulfúrico.
 - 6. Procedimiento según una de las reivindicaciones precedentes, **caracterizado porque** la disolución del coloide del metal del grupo VIIIb del SPE es una disolución de activador con un coloide de paladio/estaño.

55

50

5

10

15

25

35

40

60

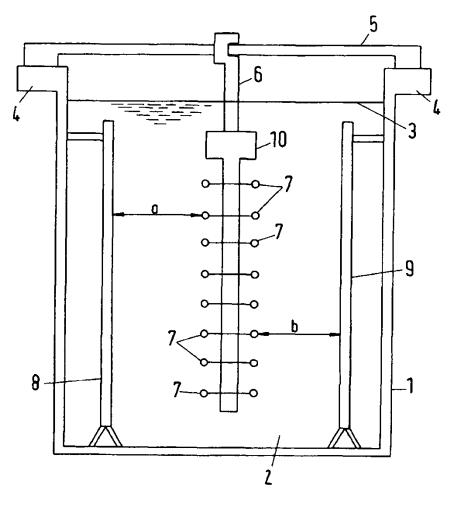


Fig.1