

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 419 054

61 Int. Cl.:

F16L 37/244 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 11.06.2010 E 10728407 (7)

(97) Fecha y número de publicación de la concesión europea: 03.04.2013 EP 2443377

(54) Título: Elemento tubular para un conducto bajante, conducto bajante montado a partir de dichos elementos, acoplamiento entre dos elementos tubulares de este tipo y procedimiento para el montaje del conducto bajante

(30) Prioridad:

15.06.2009 NL 2003026

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.08.2013

(73) Titular/es:

TIDEWAY B.V. (100.0%) Minervum 7442 4817 ZG Breda, NL

(72) Inventor/es:

GABRIËL, JAN

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Elemento tubular para un conducto bajante, conducto bajante montado a partir de dichos elementos, acoplamiento entre dos elementos tubulares de este tipo y procedimiento para el montaje del conducto bajante.

5

La presente invención se refiere a un elemento tubular de un conducto bajante utilizado con el objetivo de depositar materiales, en particular rocas, sobre un fondo o suelo sumergido en el agua. La invención se refiere también a un conducto bajante montado a partir de dichos elementos, a un acoplamiento entre dos de dichos elementos y a un procedimiento para el montaje del conducto bajante.

10

15

Es conocido el equipar barcos con disposiciones para montar y transportar un conducto bajante con el objetivo de depositar materiales, en particular rocas, en un fondo sumergido en el agua. Dichos conductos bajantes tienen que cumplir elevadas exigencias. Por ejemplo, debe ser posible almacenar parcialmente un conducto bajante a bordo del barco, y montarlo y desmontarlo con rapidez. Un conducto bajante adecuado es también suficientemente resistente mecánicamente para resistir las elevadas cargas que actúan sobre el mismo. El conducto bajante debe ser suficientemente rígido, especialmente en dirección axial, si bien una cierta flexibilidad es ventajosa para posibilitar el desplazamiento del extremo inferior del conducto bajante en el plano horizontal con una fuerza relativamente limitada. Además, el conducto bajante debe ser capaz de depositar una gran cantidad de material por unidad de tiempo siendo suficientemente estanco al agua.

20

Los tubos bajantes conocidos, tal como el tubo bajante conocido por el documento EP-A-0668211, se montan habitualmente a partir de una serie de elementos tubulares acoplados o apilados entre sí que están soportados por cables fijados al elemento más bajo. Por lo tanto, cada elemento se soporta sobre el elemento situado por debajo. La carga que resulta del peso muerto del tubo bajante y de las cargas externas, tales como las provocadas por la corriente momentánea por resonancia y similares y que pueden ser resistidas por los cables es limitada. Los tubos bajantes de tipo conocido pueden ser utilizados solamente para profundidades de agua relativamente limitadas. El montaje del conducto bajante conocido requiere también un tiempo muy prolongado, y el montaje requiere operaciones humanas, en las que la experiencia es importante.

25

30

El documento US 4209191 describe un elemento tubular para un conducto ascendente de un pozo de petróleo. Los elementos están acoplados entre sí formando una alineación de tubos, en particular, una alineación de tubos ascendentes para pozos de petróleo submarinos. Los elementos tubulares dados a conocer comprenden una parte de acoplamiento macho y una parte de acoplamiento hembra para el acoplamiento a otro elemento de la misma forma, cuyas partes de acoplamiento están dispuestas respectivamente en una periferia externa y una periferia interna con salientes de interconexión. Los salientes están dispuestos en dos series separadas entre sí en la dirección axial del elemento. Los salientes de cada serie están alineados en dirección axial con correspondientes salientes en la otra serie. Los documentos US 3442536A, US 2005/087985A1, US 3948545A, US 3922009A y US 6106024A describen elementos tubulares similiares.

35

40

Un objetivo de la presente invención consiste en dar a conocer un elemento tubular, con cuya utilización se puede montar un conducto bajante que puede ser utilizado para profundidades de agua relativamente grandes y que se puede montar más fácilmente que los conductos bajantes conocidos.

45

50

Este objetivo se consigue de acuerdo con la invención mediante un elemento tubular, según la reivindicación 1. Dicho elemento comprende una parte de acoplamiento macho y una parte de acoplamiento hembra para acoplamiento a otro elemento de la misma forma, cuyas partes de acoplamiento están dispuestas en su respectiva periferia externa y periferia interna con una valona anular dividida, en dirección periférica, en segmentos que tienen rebajes despejados intermedios, en el que a efectos de acoplamiento, los segmentos de un acoplamiento macho son colocados en rebajes de un acoplamiento hembra y son obligados a deslizar por rotación por debajo de segmentos de la parte de acoplamiento hembra. Por acoplamiento entre sí de una serie de elementos, según la invención, se obtiene un conducto bajante que no requiere cables para soportar el conducto bajante. Cada uno de los elementos del conducto bajante está suspendido del elemento situado por encima, de manera que se obtiene un conducto bajante autosoportante. Para la misma longitud, el conducto bajante, según la invención, puede tener, por lo tanto, una forma más ligera, y en particular una forma más rígida en dirección axial, que los conductos bajantes conocidos. Una mayor rigidez axial tiene como resultado una frecuencia natural más elevada para las ondas de esfuerzo axial, con lo que la resonancia en el conducto bajante provocada por movimientos del barco ocurrirá con menos frecuencia, o no ocurrirá en absoluto.

55

60

El montaje del conducto bajante, según la presente invención puede tener lugar, por lo tanto, de forma altamente motorizada y automática, con lo que se puede conseguir longitudes grandes y/o pueden ser elevadas con una velocidad relativamente grande de montaje o desmontaje. Dado que el acoplamiento de los elementos del conducto bajante puede tener una superficie de soporte de carga mayor en comparación con los conductos bajantes conocidos, se consigue un conducto bajante más resistente que, por lo tanto, es especialmente adecuado para

grandes profundidades de agua.

65

De acuerdo con la invención, se da a conocer un elemento tubular en el que las partes de acoplamiento están

dotadas, como mínimo, de dos valonas anulares que están dispuestas a una distancia axial entre sí y que están divididas en dirección periférica en segmentos que dejan rebajes despejados intermedios, de manera que los segmentos de una valona anular superior están dispuestos en separación con respecto a dos segmentos de una valona anular inferior. Dado que la presente realización comprende, como mínimo, dos valonas anulares, la superficie que soporta la carga del acoplamiento aumenta adicionalmente, lo cual incrementa de manera adicional la capacidad de soporte de carga y, por lo tanto, incrementa la longitud potencial del conducto bajante autosoportante. El momento de flexión permisible en el conducto bajante aumenta también considerablemente.

El elemento tubular, de acuerdo con la invención, es particularmente adecuado para el montaje de un conducto bajante. La invención da a conocer también un procedimiento para el montaje de dicho conducto bajante. El procedimiento, de acuerdo con la invención, comprende la disposición de una serie de elementos tubulares, según la invención, colocar los segmentos de una parte de acoplamiento macho de un primer elemento a través de rebajes de una parte de acoplamiento hembra de un segundo elemento y hacer girar el primer elemento con respecto al segundo elemento, esto de forma tal que los segmentos de la parte de acoplamiento macho son obligados a deslizar por debajo de segmentos de la parte de acoplamiento hembra. Dado que no se requieren medios adicionales de acoplamiento, tales como, por ejemplo, cables, un conducto bajante se monta de manera simple y con el tiempo de montaje más corto que un conducto bajante de tipo conocido. Esto es especialmente ventajoso dado que el conducto bajante, de acuerdo con la invención es especialmente adecuado para aplicación en grandes profundidades de agua. Esta aplicación requiere el acoplamiento de un gran número de elementos.

20

25

35

40

45

50

55

60

5

10

15

En el procedimiento para el montaje de un conducto bajante, según la invención, las partes de acoplamiento están dotadas, como mínimo, de dos valonas anulares que están dispuestas a una distancia axial entre sí y que están divididas en dirección periférica en segmentos que tienen rebajes despejados intermedios, y segmentos de una parte de acoplamiento macho de un primer elemento son colocados a través de rebajes de una parte de acoplamiento hembra de un segundo elemento, después de lo cual el primer elemento es obligado a girar con respecto al segundo elemento, esto de forma tal que los segmentos de la parte de acoplamiento macho son obligados a deslizar bajo segmentos de la parte de acoplamiento hembra y esta rotación se repite, por lo menos, dos veces.

30 El conducto bajante, según la invención, los segmentos de una parte de acoplamiento que se encuentran a una distancia axial entre sí, se extienden a una distancia mutua. La superficie de soporte de carga y, por lo tanto, la resistencia del acoplamiento de los elementos aumenta adicionalmente.

La realización descrita permite el acoplamiento y desacoplamiento de los elementos del conducto bajante para proceder de forma altamente motorizada y automática, lo cual posibilita una velocidad mantenida de montaje y desmontaje del conducto bajante. A efectos de desacoplar los elementos, el conducto bajante del barco está dotado preferentemente de un dispositivo que comprende, como mínimo, un dispositivo de sujeción para un conducto bajante, en cuyo dispositivo de sujeción un elemento puede quedar suspendido temporalmente. El dispositivo de sujeción es, además, rotativo alrededor del eje axial de un elemento suspendido en el mismo, estando dotado, por ejemplo, de una mesa giratoria. Para acoplar un elemento a un conducto bajante ya parcialmente montado, el elemento suspendido de su extremo superior en el dispositivo de sujeción y es descendido de manera controlada. El extremo inferior del elemento es acoplado en el extremo superior del conducto bajante ya parcialmente montado al colocar segmentos de una parte de acoplamiento macho del elemento a través de rebajes de una parte de acoplamiento hembra del elemento más elevado del conducto bajante ya parcialmente montado (o viceversa), y haciendo girar el elemento con respecto al conducto bajante ya parcialmente montado, ello de manera tal que los segmentos de la parte de acoplamiento macho son obligados a deslizar por debajo de los segmentos de la parte de acoplamiento hembra (o viceversa). El elemento tubular para acoplamiento puede ser obligado a girar en la parte superior, alrededor del eje en la suspensión, por medio de la mesa giratoria en la suspensión. El dispositivo de sujeción está dotado, asimismo, preferentemente, de un sistema de control con el cual se puede compensar la masa del elemento tubular de manera que se puede ejercer o bien una forma de tracción ligera (desacoplamiento) o una fuerza de compresión ligera (acoplamiento) sobre el elemento tubular preferente por el elemento para acoplamiento.

La medida en que los segmentos se prolongan sobre la periferia de la valona anular o valonas anulares, se puede variar dentro de amplios límites. Los segmentos de una valona anular se extienden, preferentemente, a más de 25% de la periferia del elemento, más preferentemente en más de 35% y de manera más preferente sobre sustancialmente el 50% de la periferia del elemento.

En una realización práctica, cada valona anular comprende cuatro segmentos distribuidos regularmente en dirección periférica. Esto tiene como resultado un compromiso satisfactorio entre un cierre satisfactorio y facilidad de utilización durante el montaje del conducto bajante.

Los segmentos pueden tener forma variable. Los segmentos comprenden, preferentemente, partes redondeadas, de manera que el acoplamiento de elementos queda adicionalmente simplificado. Las partes redondeadas se comprende también que significan partes achaflanadas.

65

En una realización ventajosa, los segmentos están posicionados y/o formados de manera que los elementos

acoplados entre sí se pueden desplazar uno con respecto a otro. El montaje del conducto bajante tiene lugar, por lo tanto, de manera más fácil, dado que pequeños movimientos relativos de las dos partes tubulares para desacoplamiento del conducto bajante y una parte para acoplamiento, son posibles entonces. Las cargas que tienen lugar probablemente durante la utilización del conducto bajante, por ejemplo, como resultado de las corrientes, impactos y montaje del conducto bajante quedan de esta manera absorbidas, por lo menos, parcialmente. Una cierta flexibilidad del conducto bajante (en los planos XZ e YZ) tiene además ciertas ventajas. La dirección Z corresponde a la dirección axial del conducto bajante, mientras que el plano (X,Y) se extiende perpendicularmente a la dirección 7.

5

45

50

55

60

65

- Las partes de acoplamiento y/o las valonas anulares pueden ser fabricadas a partir de diferentes materiales. Las partes de acoplamiento y/o las valonas anulares se fabrican preferentemente, sustancialmente, a partir de un acero aleado, aleación de aluminio y/o plástico reforzados por fibras. Estos materiales combinan una resistencia adecuada y capacidad de proceso con un peso reducido. La utilización de materiales con una elevada proporción resistencia/masa es particularmente apropiada cuando se trabaja a grandes profundidades, de manera que la carga en la instalación de la que está suspendido el conducto bajante no tiene que resultar excesivamente grande. Esto es también aplicable para la potencia a instalar, con el objetivo de subir el conducto bajante en un periodo de tiempo relativamente corto.
- Los plásticos reforzados con fibras comprenden fibras de refuerzo incorporadas en una matriz de un plástico. La matriz de plástico reforzado con fibras puede comprender un termoplástico o un termocurable. Las fibras de refuerzo comprenden, preferentemente, fibras de vidrio y/o fibras de carbono. En una realización preferente, el plástico a reforzar unas fibras comprende fibras de carbono en una matriz de epoxi. Este plástico reforzado con fibras combina una resistencia adecuada con un peso reducido.
- Una aleación de aluminio especialmente adecuada en la aleación 1980 T1. Esta aleación no posee una resistencia tal que se pueda conseguir un conducto bajante con una longitud relativamente grande, pero también combina una buena resistencia a la corrosión con buena capacidad de proceso y de soldadura.
- Una realización especialmente adecuada comprende un elemento tubular fabricado por medio de un proceso de extrusión y, por lo tanto, tiene características mecánicas muy elevadas y uniformes, particularmente en dirección axial y, por lo tanto, las partes de acoplamiento macho y hembra son fabricadas a partir de piezas forjadas, con lo que tienen características mecánicas fiables.
- Las partes de acoplamiento pueden ser conectadas de diferentes maneras a un elemento. De este modo es posible conectar, como mínimo, una parte de acoplamiento integralmente al elemento, por ejemplo, por moldeo integral del mismo con el elemento. Un elemento simple y resistente se consigue de esta manera, no siendo necesarios elementos de conexión adicionales. Se ha descubierto, además, que es ventajoso realizar la parte de acoplamiento separadamente y conectarla al elemento utilizando la llamada soldadura por fricción. Una conexión precisa y resistente de la parte de acoplamiento al elemento se obtiene haciendo uso de la soldadura por fricción. Se ha descubierto que la resistencia del material en la soldadura y en la zona afectada por el calor de la soldadura es escasamente menor que la del material principal.
 - Los elementos del conducto descendente se pueden desplazar, en particular girar, uno con respecto a otro, debido, por ejemplo, al depósito de material, a las corrientes y movimientos del barco o posible contacto del conducto descendente con el fondo, de manera que puede ocurrir el riesgo de desacoplar elementos adjuntos. En una realización preferente, el conducto descendente, según la invención, comprende, por lo tanto, un elemento de bloqueo o fijación para bloqueo mutuo de una parte de acoplamiento macho de un elemento y la parte de acoplamiento hembra de un elemento adjunto. Esto reduce el riesgo de que los segmentos adjuntos se puedan desplazar uno con respecto a otro, particularmente, durante la utilización, y de manera que se pueden desacoplar. El elemento de bloqueo comprende particularmente un anillo dotado de salientes que se extienden a una distancia entre sí y que se pueden colocar entre los segmentos de una valona anular. Este elemento de bloqueo es simple y fiable. En un procedimiento correspondiente para el montaje de un conducto bajante, el procedimiento se caracteriza por bloquear el primer y segundo elementos contra su rotación relativa, y de esta manera contra el desacoplamiento, después de acoplamiento de estos elementos entre sí.
 - En otra realización preferente, el elemento de bloqueo antes mencionado, u opcionalmente otro elemento, proporciona también el cierre en el lado externo de la separación situado entre los elementos de acoplamiento hembra/macho. Las partículas flotantes en el mar podrían depositarse en este espacio y, por lo tanto, bloquear el acoplamiento o bien podría tener lugar un flujo de agua del mar a través del acoplamiento en la zona de dentro del conducto bajante, lo cual no es deseable.
 - El elemento de estanqueidad es fabricado preferentemente sustancialmente a partir de un material flexible, tal como goma o una poliolefina, tal como polietileno. El elemento de estanqueización está particularmente realizado de forma integral con el elemento de bloqueo, lo que hace el conducto bajante simple y económico y también limita operaciones adicionales durante el montaje del conducto bajante.

En otra realización preferente, el elemento tubular comprende un elemento de estanqueidad para acoplamiento mutuo estanco a los líquidos de dos elementos adjuntos en la pared interna del conducto bajante. Esto mejora el funcionamiento del conducto bajante. La posible alimentación de agua dentro del conducto bajante debe tener lugar preferentemente de manera controlada.

5

En una realización preferente, el conducto bajante es dotado en su cara interna con un recubrimiento antidesgaste que protege la estructura portadora de carga. Este recubrimiento es preferentemente reparable y/o sustituible. Un material adecuado para el recubrimiento de desgaste comprende poliuretano (PU).

10

En otra realización preferente se utiliza el recubrimiento de desgaste mencionado para conseguir la estanqueidad mencionada sobre la pared interna del conducto bajante, por ejemplo, en forma de un cierre laberíntico terminando el recubrimiento a 45º en un lado del elemento tubular y en el correspondiente ángulo de 45º en el otro extremo, creando un solape y una forma simplificada de cierre laberíntico.

15 Si bien un conducto bajante puede ser montado de cualquier longitud utilizando el elemento según la invención, el elemento es particularmente adecuado para el montaje de un conducto bajante con una longitud superior a 1000 metros, más preferentemente más de 1250 metros y de modo más preferente más de 1500 metros. Estas longitudes que hasta el momento no se podían conseguir, permiten el depósito de material a mayores profundidades de agua, y ello con la precisión suficiente.

20

La invención se explicará a continuación de manera más detallada haciendo referencia a las figuras adjuntas, sin que exista limitación en las mismas. En las figuras:

25

La figura 1 es una vista en perspectiva de un elemento tubular, de acuerdo con la invención;

La figura 2a es una vista en perspectiva superior de un acoplamiento hembra del elemento de la figura 1;

La figura 2b es una vista en perspectiva superior de un acoplamiento macho del elemento de la figura 1;

30 La figura 3a es una vista superior en perspectiva de dos elementos de la figura 1 para acoplamiento;

La figura 3b es una vista en perspectiva lateral de dos elementos de la figura 1 para acoplamiento;

35

Las figuras 5a-5c muestran, respectivamente, una vista superior, una vista a lo largo de la sección BB y una vista a lo largo de la sección AA de un elemento de acoplamiento macho según la invención y, finalmente;

Las figuras 4a-4f muestran las diferentes etapas durante el acoplamiento de los dos elementos de la figura 1,

Las figuras 6a-6c muestran, respectivamente, una vista superior, una vista a lo largo de la sección BB y una vista a lo largo de la sección AA de un elemento de acoplamiento hembra, de acuerdo con la invención.

40

Haciendo referencia a la figura 1, se ha mostrado un elemento tubular 1, de acuerdo con la invención. El elemento tubular 1 comprende la parte tubular 2 que tiene un primer extremo externo 2a de la parte tubular 2, una parte de acoplamiento hembra 10 y un segundo extremo externo 2b de la parte tubular 2, una parte de acoplamiento macho 20. Ambas partes tubulares 2 y partes de acoplamiento (10, 20) están fabricadas mediante una aleación de aluminio. Las partes de acoplamiento (10, 20) están conectadas concéntricamente a la parte tubular 2 por medio de soldaduras por fricción.

45

Haciendo referencia a la figura 2a, se ha mostrado la parte de acoplamiento hembra 10 de elemento tubular 1 50 mostrado en la figura 1. La parte de acoplamiento hembra 10 está dotada en la periferia interna 11 de dos valonas anulares (12, 13) dispuestas a una distancia axial entre sí 14. Las valonas anulares (12, 13) están divididas en la dirección periférica de la parte de acoplamiento anular 10 en segmentos salientes dirigidos hacia dentro (12a, 13a) que dejan rebajes (12b, 13b) libres en posición intermedia. Los elementos 12a de la valona anular superior 12 están dispuestos de forma desplazada con respecto a los segmentos 13a de la valona anular inferior 13. Lo mismo es 55 aplicable a los rebajes 12b de la valona anular superior 12 y a los rebajes 13b de la valona anular inferior 13. Los segmentos salientes hacia dentro (12a, 13a) son redondeados.

60

65

Haciendo referencia a la figura 2b, se ha mostrado una parte de acoplamiento macho correspondiente 20 del elemento tubular 1 mostrado en la figura 1. La parte de acoplamiento macho 20 está dotada en la periferia externa 21 de dos valonas anulares (22, 23) que están dispuestas a una distancia axial entre sí 24. Las valonas anulares (22, 23) están divididas en la dirección periférica de la parte de acoplamiento anular 20 en los segmentos salientes hacia fuera (22a, 23a) que dejan rebajes (22b, 23b) libres en la zona intermedia. Los segmentos 22a de la valona anular inferior 22 están dispuestos desplazados con respecto a los segmentos 23a de la valona anular superior 23. Lo mismo es aplicable para el rebaje 22b de la valona anular inferior 22 y los rebajes 23b de la valona anular superior 23. Los segmentos salientes hacia fuera (22a, 23a) son redondeados.

Haciendo referencia a las figuras 3a y 3b, dos elementos tubulares 1a y 1b de acoplamiento se han mostrado salientes en dirección vertical. Los elementos tubulares (1a, 1b) están orientados, en este caso, de manera que la parte de acoplamiento hembra 10 del segmento 1b se extienden dirección hacia arriba, y la parte de acoplamiento macho 20 del segmento 1a se extiende en dirección hacia abajo. Esta es la posición de inicio para el acoplamiento entre sí de los elementos tubulares (1a, 1b). Será evidente que la posición relativa se puede invertir también, de manera que la parte de acoplamiento macho 20 del elemento 1a se extiende en dirección hacia arriba, y la parte de acoplamiento hembra 20 del elemento 1b se extiende en dirección hacia abajo.

5

10

15

20

25

30

35

40

Las figuras 5 y 6 muestran que en la posición acoplada, una parte de acoplamiento macho 20 se apoya con intermedio de un borde inferior 28 de la misma sobre un tope 18 de una parte de acoplamiento hembra 10.

A efectos de acoplar los elementos tubulares (1a, 1b) en una primera etapa, estos son colocados alineados entre sí, tal como se ha mostrado en la figura 4a. Los segmentos salientes hacia fuera 22a de la valona anular inferior 22 de la parte de acoplamiento macho 20 descansan en este caso de forma alineada con los rebaies 12b de la valona anular superior 12 de la parte 10 de acoplamiento hembra. Ambos elementos (1a, 1b) son desplazados uno hacia el otro en la dirección vertical indicada 100, de manera que los segmentos salientes hacia fuera 22a de la valona superior anular 12 de la parte 20 de acoplamiento macho son obligados a deslizar hacia dentro de los rebajes 12b de la valona anular superior 12 de la parte 10 de acoplamiento hembra (figura 4b) hasta que establecen contacto con los segmentos salientes hacia dentro 13a de la valona anular inferior 13 de la parte de acoplamiento hembra 10. El elemento 1a es obligado a continuación a girar en la dirección 101 con respecto al elemento 1b (figura 4c), de manera que los segmentos salientes hacia fuera 22a de la valona anular inferior 22 de la parte de acoplamiento macho 20 son obligados a deslizar por debajo de los segmentos salientes hacia dentro 12a de la valona anular superior 12 de la parte de acoplamiento hembra 10 en una posición en la que los segmentos salientes hacia fuera 23a de la valona anular superior 23 de la parte 20 de acoplamiento macho se encuentran en alineación con los rebajes 13b de la valona anular inferior 13 de la parte de acoplamiento hembra 10. Desde esta posición, ambos elementos (1a, 1b) son desplazados adicionalmente uno hacia el otro, en la dirección vertical indicada 100 (figura 4b), de manera que los segmentos salientes hacia fuera 23a de la valona anular superior 22 de la parte de acoplamiento macho 20 son obligados a deslizar hacia dentro de los rebajes 13b de la valona anular inferior 13 de la parte de acoplamiento hembra 10, hasta que el tope 25 de la parte de acoplamiento macho 10 descansa sobre el borde periférico superior 11 de la parte de acoplamiento hembra 10. Haciendo referencia a la figura 4e, el elemento superior 1a es obligado a girar en la dirección 102 con respecto al elemento 1b, de manera que los segmentos salientes hacia fuera 23a de la valona anular superior 22 de la parte de acoplamiento macho 20 son obligados a deslizar por debajo de los segmentos salientes hacia dentro 13a de la valona anular inferior 13 de la parte de acoplamiento hembra 10 hacia la posición de acoplamiento. El elemento, según la invención, es dotado además, de manera opcional, de un elemento de bloqueo, en forma de un anillo de bloqueo 26, que está dotado de salientes que se extienden a una cierta distancia entre sí y que pueden ser situados entre las valonas anulares de dos partes de acoplamiento. El anillo de bloqueo 26 está situado a efectos de completar el acoplamiento entre las valonas anulares de dos partes de acoplamiento, tal como se ha mostrado en la figura 4f. Finalmente, en caso deseado, elemento puede ser dotado de un anillo de soporte 27, por ejemplo, de plástico, con el objetivo de proteger el elemento macho, por ejemplo, durante el almacenamiento horizontal. Este anillo de soporte tiene preferentemente el mismo diámetro que el diámetro mayor del elemento hembra, de manera que los elementos tubulares son almacenados horizontalmente y paralelos entre sí.

Queda evidente que, las dimensiones y geometría de los segmentos y de los rebajes están adaptadas entre sí, de manera que los movimientos correspondientes anteriormente indicados se pueden llevar a cabo sin alteración apreciable en la propia obra. La invención no está limitada a las realizaciones mostradas en las figuras, y son posibles muchas variantes de la misma dentro del alcance de protección de las reivindicaciones adjuntas.

REIVINDICACIONES

1. Elemento tubular (1) de un conducto bajante, utilizado con el objetivo de depositar materiales debajo del agua desde una embarcación con conducto bajante, cuyo elemento (1) comprende una parte macho de acoplamiento (20) y una parte hembra de acoplamiento (10), para acoplamiento a otro elemento de la misma forma, cuyas partes de acoplamiento (10, 20) están dotadas, respectivamente, en una periferia externa (21) y una periferia interna (11) de las mismas, como mínimo, con dos valonas anulares (22, 23, 12, 13) que se encuentran a una distancia axial entre sí, y están divididas en dirección periférica en segmentos (22a, 23a, 12a, 13a) que dejan rebajes (22b, 23b, 12b, 13b) libres intermedios, caracterizado porque los segmentos (22a, 12a) de la valona anular superior (22, 12) están dispuestos desplazados con respecto a los segmentos (23a, 13a) de la valona anular inferior (23, 13), de manera que para efectos de acoplamiento, se colocan segmentos (22a, 23a) de la parte de acoplamiento macho (20) a través de lo rebajes (12b, 13b) de una parte de acoplamiento hembra (10), por lo menos, dos veces.

5

10

30

35

45

55

60

- 2. Elemento, según la reivindicación 1, caracterizado porque los segmentos de una valona anular se extienden a más de 25% de la periferia del elemento, más preferentemente, a más de 35%, y de modo más preferente, a sustancialmente al 50% de la periferia del elemento.
- 3. Elemento, según la reivindicación 1 ó 2, caracterizado porque cada una de las valonas anulares comprende cuatro segmentos.
 - 4. Elemento, según cualquiera de las reivindicaciones anteriores, caracterizado porque los segmentos comprenden partes redondeadas.
- 5. Elemento, según cualquiera de las reivindicaciones anteriores, caracterizado porque los segmentos están dispuestos y/o formados de manera que elementos acoplados entre sí pueden desplazarse uno con respecto a otro.
 - 6. Elemento, según cualquiera de las reivindicaciones anteriores, caracterizado porque las partes de acoplamiento y/o las valonas anulares de las mismas están fabricadas sustancialmente en una aleación de acero, una aleación de aluminio y/o plástico reforzado con fibras.
 - 7. Elemento, según cualquiera de las reivindicaciones anteriores, caracterizado porque las partes de acoplamiento y/o las valonas anulares de las mismas están fabricadas sustancialmente a partir de una aleación de aluminio de la serie 1000, en particular la aleación 1980 T1.
 - 8. Elemento, según cualquiera de las reivindicaciones anteriores, caracterizado porque, como mínimo, una parte de acoplamiento está conectada integralmente al elemento.
- Elemento, según cualquiera de las reivindicaciones anteriores, caracterizado porque el elemento comprende un
 elemento de estanqueización para acoplamiento entre sí estanco a los líquidos con respecto a otro elemento de la misma forma.
 - 10. Conducto bajante que comprende una serie de elementos acoplados, según cualquiera de las reivindicaciones anteriores.
 - 11. Conducto bajante, según la reivindicación 10, caracterizado porque el conducto bajante tiene una longitud de más de 1000 metros, más preferentemente más de 1250 metros, y de modo más preferente más de 1500 metros.
- 12. Conducto bajante, según la reivindicación 10 u 11, caracterizado porque el conducto bajante comprende un elemento de bloqueo para bloqueo entre sí de la parte de acoplamiento macho de un elemento y una parte de acoplamiento hembra de un elemento adjunto.
 - 13. Conducto bajante, según la reivindicación 12, caracterizado porque el elemento de bloqueo comprende un anillo dotado de salientes que se extienden a una cierta distancia entre sí y que pueden ser colocados entre las valonas anulares de dos partes de acoplamiento.
 - 14. Procedimiento para el montaje de un conducto bajante, que comprende la disposición de una serie de elementos tubulares, según cualquiera de las reivindicaciones 1-9, comprendiendo el procedimiento la colocación de segmentos de una parte de acoplamiento macho de un primer elemento a través de rebajes de una parte de acoplamiento hembra de un segundo elemento, y hacer girar el primer elemento con respecto al segundo elemento, en forma tal que los segmentos de la parte de acoplamiento macho son obligados a deslizar por debajo de los segmentos de la parte de acoplamiento hembra, como mínimo, dos veces.
- 15. Procedimiento, según la reivindicación 14, caracterizado porque el primer y el segundo elementos están bloqueados contra su rotación y desplazamiento relativos después del acoplamiento de estos elementos entre sí.

16. Procedimiento, segun la	ı reivindicacion 14	1015,	, caracterizado	porque	despues	del	acoplamiento	entre	SI	del
primer y segundo elementos	, este acoplamient	o es es	stanqueizado co	on respe	cto al me	dio.				

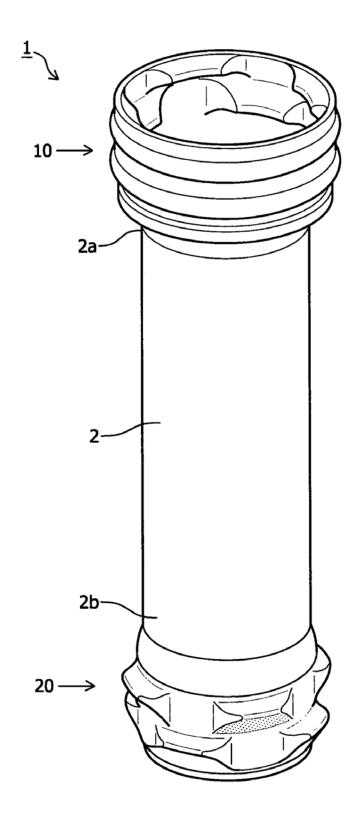


FIG. 1

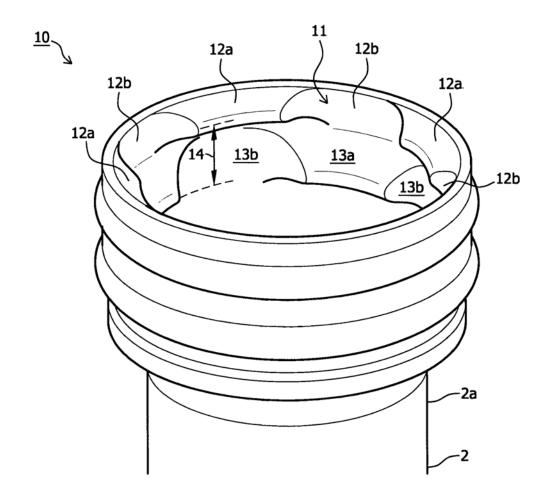


FIG. 2a

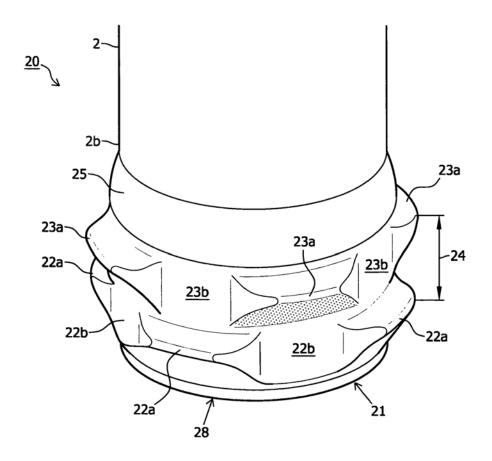
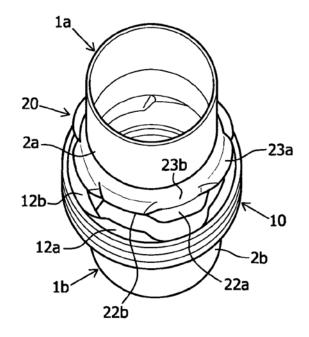
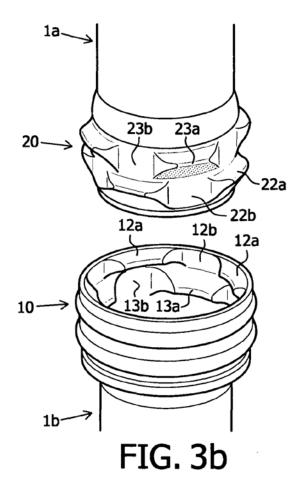
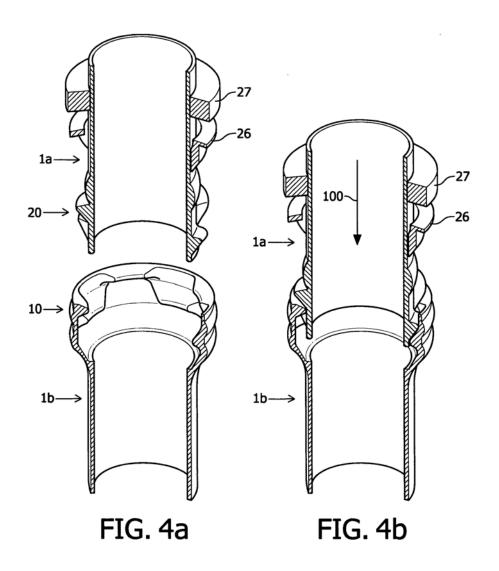
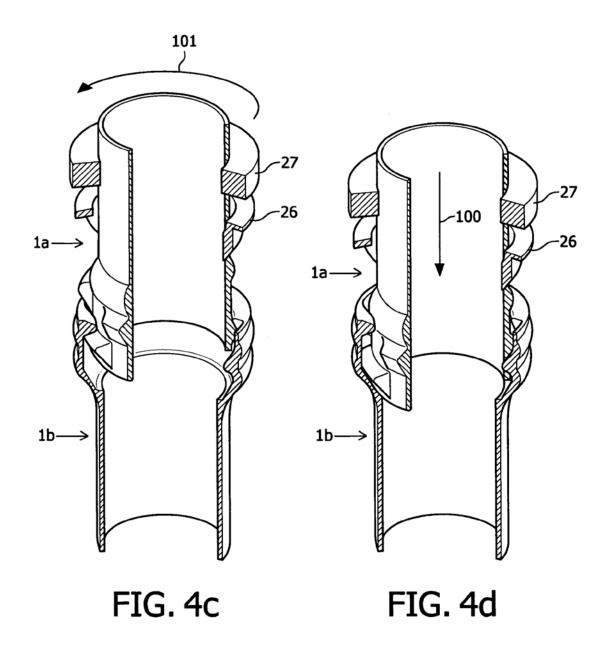
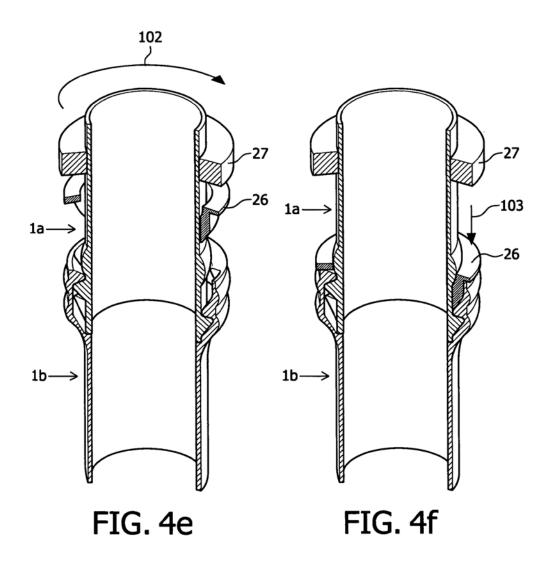
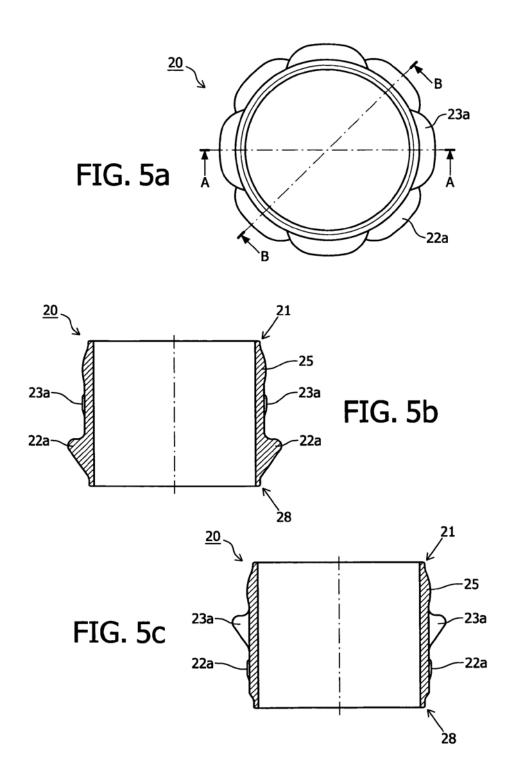


FIG. 2b


FIG. 3a

