

ESPAÑA

① Número de publicación: 2 421 527

51 Int. Cl.:

A61K 31/4168 (2006.01) C07D 403/10 (2006.01) A61K 31/4178 (2006.01) C07D 403/14 (2006.01) (2006.01) **C07D 405/06** C07D 233/88 (2006.01) C07D 239/22 (2006.01) **C07D 405/14** (2006.01) C07D 271/06 (2006.01) **CO7D 407/14** (2006.01) C07D 401/04 C07D 401/10 (2006.01) C07D 401/12 (2006.01) C07D 401/14 (2006.01) C07D 403/06 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 13.12.2004 E 04813947 (1)
 97 Fecha y número de publicación de la concesión europea: 08.05.2013 EP 1699455
- (54) Título: Inhibidores de aspartilproteasa heterocíclica
- (30) Prioridad:

15.12.2003 US 529535 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 03.09.2013

(73) Titular/es:

MERCK SHARP & DOHME CORP. (50.0%) 126 East Lincoln Avenue Rahway, NJ 07065-0907, US y PHARMACOPEIA, LLC (50.0%)

(72) Inventor/es:

ZHU, ZHAONING; MCKITTRICK, BRIAN; SUN, ZHONG-YUE; YE, YUANZAN, C.; STRICKLAND, COREY: SMITH, ELIZABETH, M.; STAMFORD, ANDREW; GREENLEE, WILLIAM, J.; WU, YUSHENG; ISERLOH, ULRICH; **MAZZOLA, ROBERT:** CALDWELL, JOHN; **CUMMING, JARED;** WANG, LINGYAN; GUO, TAO; LE, THUY, X. H.; SAIONZ, KURT, W.; BABU, SURESH, D.; VOIGT, JOHANNES H. y **HUNTER, RACHAEL C.**

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

S 2 421 527 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Inhibidores de aspartilproteasa heterocíclica

CAMPO DE LA INVENCIÓN

Esta divulgación se refiere a inhibidores de aspartilproteasa heterocíclica, composiciones farmacéuticas que comprenden dichos compuestos, su uso en el tratamiento de enfermedades cardiovasculares, enfermedades cognitivas y neurodegenerativas, y su uso como inhibidores del virus de la inmunodeficiencia humana, plasmepsinas, catepsina D y enzimas protozoicas.

ANTECEDENTES

5

15

20

25

30

50

Hasta la fecha se conocen ocho proteasas aspárticas humanas de la familia A1 (similar a pepsina): pepsina A y C, renina, BACE, BACE 2, napsina A, catepsina D en afecciones patológicas.

Se ha establecido bien el papel del sistema renina-angiotensina (RAS) en la regulación de la tensión arterial y electrolito en fluido (Oparil, S y col. N Engl J Med 1974; 291:381-401/446-57). El octapéptido angiotensina-II, un potente vasoconstrictor y estimulador para la liberación de aldosterona adrenal, se procesó a partir del decapéptido precursor angiotensina-I, que a su vez se procesó a partir de angiotensinógeno por la enzima renina. También se encontró que la angiotensina-II desempeñaba funciones en el crecimiento celular de músculo liso vascular, inflamación, generación de especies de oxígeno reactivas y trombosis, influencia de aterogénesis y lesión vascular. Clínicamente, el beneficio de la interrupción de la generación de angiotensina-II mediante el antagonismo de la conversión de angiotensina-I es muy conocido y hay varios fármacos inhibidores de ACE en el mercado. Se espera que el bloqueo de la anterior conversión de angiotensinógeno en angiotensina-I, es decir, la inhibición de la enzima renina, tenga efectos similares, pero no idénticos. Como la renina es una aspartilproteasa cuyo único sustrato natural es el angiotensinógeno, se cree que habría menos efectos adversos frecuentes para controlar la hipertensión arterial y síntomas relacionados regulados por angiotensina-II mediante su inhibición.

Otra proteasa, catepsina-D, participa en biogénesis lisosómica y elección de proteínas como diana, y también puede participar en el procesamiento y presentación de antígeno de fragmentos de péptido. Se ha ligado a numerosas enfermedades que incluyen enfermedad de Alzheimer, enfermedad de tejido conjuntivo, distrofia muscular y cáncer de mama

La enfermedad de Alzheimer (EA) es una enfermedad neurodegenerativa progresiva que finalmente es mortal. La progresión de la enfermedad está asociada a pérdida gradual de la función cognitiva relacionada con memoria, razonamiento, orientación y juicio. Los cambios de comportamiento que incluyen confusión, depresión y agresividad también se manifiestan a medida que progresa la enfermedad. Se cree que la disfunción cognitiva y de comportamiento resulta de función neuronal alterada y pérdida neuronal en el hipocampo y la corteza cerebral. Los tratamientos para la EA actualmente disponibles son paliativos, y aunque mejoran los trastornos cognitivos y de comportamiento, no previenen la progresión de la enfermedad. Por tanto, hay una necesidad médica sin satisfacer para tratamiento de EA que detiene la progresión de la enfermedad.

Los distintivos patológicos de EA son la deposición de placas β-amiloides (Aβ) extracelulares y ovillos neurofibrilares intracelulares compuestos de proteína tau anormalmente fosforilada. Los individuos con EA presentan depósitos de Aβ característicos en regiones del cerebro conocidas por ser importantes para la memoria y cognición. Se cree que Aβ es el agente causante fundamental de la pérdida de células neuronales y disfunción que está asociada con empeoramiento cognitivo y de comportamiento. Las placas amiloides consisten predominantemente en péptidos Aβ compuestos de 40 - 42 residuos de aminoácidos, que se derivan del procesamiento de proteína precursora de amiloide (APP). La APP se procesa por múltiples actividades de proteasa distintas. Los péptidos Aβ resultan de la escisión de APP por β-secretasa en la posición correspondiente al extremo N de Aβ, y en el extremo C por actividad de γ-secretasa. La APP también se escinde por actividad de α-secretasa produciendo el fragmento no amiloidogénico secretado conocido como APP soluble.

45 Se ha identificado una aspartilproteasa conocida como BACE-1 como actividad de β-secretasa responsable de la escisión de APP en la posición correspondiente al extremo N de péptidos Aβ.

Las pruebas bioquímicas y genéticas acumuladas respaldan una función central de $A\beta$ en la etiología de EA. Por ejemplo, se ha mostrado que $A\beta$ es tóxico para células neuronales *in vitro* y cuando se inyecta en cerebros de roedor. Además, se conocen formas heredadas de EA de aparición temprana en las que están presentes mutaciones bien definidas de APP o las presenilinas. Estas mutaciones potencian la producción de $A\beta$ y se consideran causantes de EA.

Como los péptidos $A\beta$ se forman como resultado de actividad de β -secretasa, la inhibición de BACE-1 debe inhibir la formación de péptidos $A\beta$. Así, la inhibición de BACE-1 es un enfoque terapéutico al tratamiento de EA y otras

enfermedades cognitivas y neurodegenerativas producidas por deposición de placas de Aβ.

El virus de la inmunodeficiencia humana (VIH) es el agente causante del síndrome de la inmunodeficiencia adquirida (SIDA). Se ha demostrado clínicamente que compuestos tales como indinavir, ritonavir y saquinavir, que son inhibidores de la aspartilproteasa del VIH, producen reducción de la carga viral. Como tales, se esperaría que los compuestos descritos en el presente documento fueran útiles para el tratamiento del SIDA. Tradicionalmente, una diana importante para los investigadores ha sido la proteasa del VIH-1, una aspartilproteasa relacionada con renina.

Además, el virus de la leucemia de linfocitos T humana tipo I (HTLV-I) es un retrovirus humano que se ha asociado clínicamente a leucemia de linfocitos T del adulto que se ha asociado clínicamente a leucemia de linfocitos T del adulto y otras enfermedades crónicas. Al igual que otros retrovirus, HTLV-I requiere una aspartilproteasa para procesar proteínas precursoras virales que producen viriones maduros. Esto hace que la proteasa sea una diana atractiva para el diseño de inhibidores. Moore y col. Purification of HTLV-I Protease and Synthesis of Inhibitors for the treatment of HTLV-I Infection 55th Southeast Regional Meeting of the American Chemical Society, Atlanta, GA, EE.UU., 16-19 de noviembre de 2003 (2003), 1073. CODEN; 69EUCH Conference, AN 2004:137641 CAPLUS.

Las plasmepsinas son enzimas aspartilproteasas esenciales del parásito de la malaria. Los compuestos para la inhibición de aspartilproteasas plasmepsinas, particularmente I, II, IV y HAP, están en desarrollo para el tratamiento de malaria. Freire y col. documento WO 2002074719. Na Byoung-Kuk y col. Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates Korean Journal of Parasitology (junio de 2004), 42(2) 61-6. Código de revista: 9435800 Además, se han usado compuestos usados para las aspartilproteasas diana plasmepsinas (por ejemplo I, II, IV y HAP), para destruir parásitos de la malaria, tratando así pacientes así aquejados. Ciertos compuestos también presentaron actividad inhibidora contra catepsina D.

RESUMEN DE LA INVENCIÓN

5

10

15

20

25

35

40

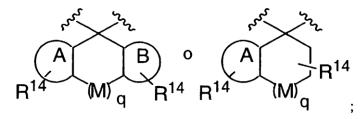
45

La presente divulgación se refiere a compuestos que tienen la fórmula estructural I

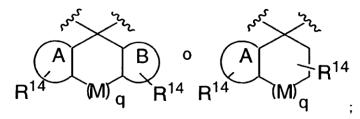
o un estereoisómero, tautómero, o sal farmacéuticamente aceptable o solvato de los mismos, en la que

W es un enlace, -C(=S)-, -S(O)-, -S(O)2-, -C(=O)-, -O-, $-C(R^6(R^7)$ -, $-N(R^5)$ - o $-C(=N(R^5))$ -;

 $X \text{ es -O-, -N}(R^5)$ - o -C($R^6(R^7)$ -; a condición de que si X es -O-, U no sea -O-, -S(O)-, -S(O)₂-, -C(=O)- o -C(=N R^5)-;


U es un enlace, -S(O)-, -S(O)2-, -C(O)-, -O-, $-P(O)(OR^{15})$ -, $-C(=NR^5)$ -, $-(C(R^6(R^7))_b$ - o $-N(R^5)$ -; en la que b es 1 ó 2; a condición de que si W es -S(O)-, -S(O)2-, -O-, o $-N(R^5)$ -, U no sea -S(O)-, -S(O)2-, -O- o $-N(R^5)$ -; a condición de que si X es $-N(R^5)$ - y W es -S(O)-, -S(O)2-, -O- o $-N(R^5)$ -, entonces U no sea un enlace;

30 R^1 , R^2 y R^5 están seleccionados independientemente del grupo constituido por H, alquilo, alquenilo, cicloalquilo, cicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, arilcicloalquilo, $-OR^{15}$, -CN, $-C(O)R^8$, $-C(O)OR^9$, $-S(O)_2R^{10}$, $-C(O)N(R^{11})(R^{12})$, $-S(O)N(R^{11})(R^{12})$, $-S(O)_2N(R^{11})(R^{12})$, $-NO_2$, $-N=C(R^8)_2$ y $-N(R^8)_2$; a condición de que R^1 y R^5 no se seleccionen ambos de $-NO_2$, $-N=C(R^8)_2$ y $-N(R^8)_2$;


 $R^3,\ R^4,\ R^6\ y\ R^7$ están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, $-CH_2\text{-O-Si}(R^9)(R^{10})(R^{19}),\ -SH,\ -CN,\ -OR^9,\ -C(O)R^8,\ -C(O)OR^9,\ -C(O)N(R^{11})(R^{12}),\ -SR^{19},\ -S(O)N(R^{11})(R^{12}),\ -S(O)_2N(R^{11})(R^{12}),\ -N(A^{11})(R^{12}),\ -N(R^{11})C(O)R^8,\ -N(A^{11})S(O)R^{10},\ -N(R^{11})C(O)N(R^{12})(R^{13}),\ -N(R^{11})C(O)OR^9\ y\ -C(=NOH)R^8;\ a\ condición de que si U\ es\ -O-\ o\ -N(R^5)-,\ entonces\ R^3,\ R^4,\ R^6\ y\ R^7\ no\ sean\ halógeno,\ -SH,\ -OR^9,\ -SR^{19},\ -S(O)N(R^{11})(R^{12}),\ -S(O)_2N(R^{11})(R^{12}),\ -N(R^{11})(R^{12}),\ -N(R^{11})C(O)R^8,\ -N(R^{11})S(O)R^{10},\ -N(R^{11})C(O)N(R^{12})(R^{13}),\ o\ -N(R^{11})C(O)OR^9;\ y\ a\ condición\ de\ que\ si\ W\ es\ -O-\ o\ -N(R^5)-,\ entonces\ R^3\ y\ R^4\ no\ sean\ halógeno,\ -SH,\ -OR^9,\ -S(O)N(R^{11})(R^{12}),\ -N(R^{11})(R^{12}),\ -N(R^{11})C(O)R^8,\ -N(R^{11})S(O)R^{10},\ -N(R^{11})C(O)N(R^{12})(R^{13}),\ o\ -N(R^{11})C(O)OR^9;\ y\ a\ condición\ de\ que\ si\ X\ es\ -N(R^5)-,\ W\ es\ -C(O)-\ y\ U\ es\ un\ enlace,\ R^3,\ R^4,\ R^6\ y\ R^7\ no\ sean\ halógeno,\ -CN,\ -SH,\ -OR^9,\ -SR^{19},\ -S(O)N(R^{11})(R^{12})\ o\ -S(O)_2N(R^{11})(R^{12}),\ o\ -S(O)_2N(R^{11})(R^{12})$

sustituido con R¹⁴ o un cicloalquiléter de 3-7 miembros opcionalmente sustituido con R¹⁴;

o R³ y R⁴ o R⁶ y R⁷, junto con el carbono al que están unidos, se combinan para formar grupos multicíclicos tales como

en la que M es -CH₂-, S, -N(R¹⁹)- o O, A y B son independientemente arilo o heteroarilo y q es 0, 1 ó 2, a condición de que si q es 2, un M deba ser un átomo de carbono y si q es 2, M sea opcionalmente un doble enlace; y con la condición de que si R³, R⁴, R⁶ y R⁷ forman dichos grupos multicíclicos

entonces los grupos R³ y R⁴ o R⁶ y R⁷ adyacentes no puedan combinarse para formar dichos grupos multicíclicos;

 R^8 está seleccionado independientemente del grupo constituido por H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, -OR 15 , -N(R 15)(R), -N(R 15)C(O)R 16 , -N(R 15)S(O)R 16 , -N(R 15)S(O)R 16 , -N(R 15)S(O)N(R 16)(R), -N(R 15)C(O)N(R 16)(R), -N(R 15)C(O)OR 16 ;

R⁹ está seleccionado independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo y heteroarilalquilo;

 R^{10} está seleccionado independientemente del grupo constituido por H, alquilo, alquenilo, cicloalquilo, cicloalquilo, beterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo y -N(R^{15})(R^{16});

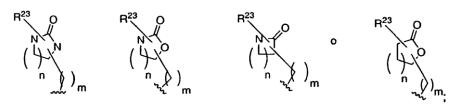
 R^{11} , R^{12} y R^{13} están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, - $C(O)R^8$, - $C(O)OR^9$, - $S(O)_2R^{10}$, - $S(O)_2R^{10}$, - $C(O)N(R^{15})(R^{16})$, - $S(O)_2N(R^{15})(R^{16})$ y -CN;

 R^{14} es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquenilo, alquinilo, cicloalquilo, cicloalquilalquilo, cicloalquilalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -C(O)N(R 15)(R 16), -S(O)2N(R 15)(R 16), -C(=NOR 15)R 16 , -P(O)(OR 15)(OR 16), -N(R 15)C(O)R 16 , -N(R 15)C(O)R 16 , -N(R 15)S(O)2N(R 16), -N(R 15)S(O)2N(R 16), -N(R 15)S(O)2N(R 16), -N(R 15)C(O)N(R 16), -N(R 15)C(O)N(R 16), -N(R 15)C(O)OR 16 , -N(R 15)C(O)OR 16 , -N(R 15)C(O)OR 16)

R¹⁵, R¹⁶ y R¹⁷ están seleccionados independientemente del grupo constituido por H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, arilocicloalquilo, arilheterocicloalquilo, R¹⁸-alquilo, R¹⁸-cicloalquilo, R¹⁸-cicloalquilo, R¹⁸-heteroarilalquilo, R¹⁸-heteroarilalquilo; o

R¹⁵, R¹⁶ y R¹⁷ son

5


10

15

20

25

30

en las que R²³ numera 0 a 5 sustituyentes, m es 0 a 6 y n es 1 a 5;

5

10

15

20

25

30

35

40

45

50

 R^{18} es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, alquenilo, arilo, arilalquilo, arilalquinilo, -NO2, halógeno, heteroarilo, HO-alquiloxialquilo, -CF3, -CN, alquil-CN, -C(O)R^{19}, -C(O)OR^{19}, -C(O)NHR^{20}, -C(O)NH2, -C(O)NH2-C(O)N(alquilo)2, -C(O)N(alquil)(arilo), -C(O)N(alquil)(heteroarilo), -SR^{19}, -S(O)2R^{20}, -S(O)NH2, -S(O)NH(alquilo), -S(O)N(alquil)(alquilo), -S(O)NH(arilo), -S(O)2NH2, -S(O)2NHR^{19}, -S(O)2NH(heterocicloalquilo), -S(O)2N(alquilo)2, -S(O)2N(alquil)(arilo), -OCF3, -OH, -OR^{20}, -O-heterocicloalquilo, -O-cicloalquilalquilo, -O-heterocicloalquilalquilo, -NH2, -NHR^{20}, -N(alquilo)2, -N(arilalquilo)2, -N(arilalquilo)4, -NHC(O)NH2, -NHC(O)NH(alquilo), -NHC(O)N(alquil)(alquilo), -N(alquil)(CO)NH(alquilo), -N(alquil)(CO)N(alquil)(alquilo), -NHS(O)2N(alquil)(alquilo), -NHS(O)2N(alquil)(alquilo), -N(alquil)S(O)2NH(alquilo) y -N(alquil)S(O)2N(alquil)(alquilo);

o dos restos R¹⁸ sobre carbonos advacentes pueden ligarse juntos para formar

R¹⁹ es alquilo, cicloalquilo, arilo, arilalquilo o heteroarilalquilo;

R²⁰ es alquilo, cicloalquilo, arilo, haloarilo sustituido, arilalquilo, heteroarilo o heteroarilalquilo;

y en los que cada uno de los grupos alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en $R^1,\,R^2,\,R^3,\,R^4,\,R^5,\,R^6,\,R^7,\,R^8,\,R^9,\,R^{10},\,R^{11},\,R^{12},\,R^{13}\,y\,R^{14}$ están independientemente sin sustituir o sustituidos con 1 a 5 grupos R^{21} independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR^{15}, -C(O)R^{15}, -C(O)R^{15}, -C(O)N(R^{15})(R^{16}), -SR^{15}, -S(O)N(R^{15})(R^{16}), -CH_2^{15})(R^{16}), -C(-10,0)^{15}, -

o dos restos R²¹ o dos R⁷ sobre carbonos adyacentes pueden ligarse juntos para formar

y si R^{21} o R^{22} están seleccionados del grupo constituido por $-C(=NOR^{15})R^{16}$, $-N(R^{15})C(O)R^{16}$, $-CH_2-N(R^{15})C(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-CH_2-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})C(O)R^{16}$, -N(R

 R^{23} es 1 a 5 grupos independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR^{24}, -C(O)R^{24}, -C(O)CR^{24}, -C(O)R(R^{24})(R^{25}), -SR^{24}, -S(O)N(R^{24})(R^{25}), -S(O)_2N(R^{24})(R^{25}), -G(=NOR^{24})R^{25}, -P(O)(OR^{24})(OR^{25}), -N(R^{24})(R^{25}), -alquil-N(R^{24})(R^{25}), -N(R^{24})C(O)R^{25}, -CH_2-N(R^{24})C(O)R^{25}, -N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25})(R^{26}), -N(R^{25})C(O)N(R^{25})(R^{26}), -CH_2-N(R^{24})C(O)N(R^{25})(R^{26}), -N(R^{24})C(O)CR^{25}, -CH_2-N(R^{24})C(O)CR^{25}, -S(O)R^{24}, y -S(O)_2R^{24}; y en los que cada uno de los grupos alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en R^{23} están independientemente sin sustituir o sustituidos con 1 a 5

```
grupos R^{27} independientemente seleccionados del grupo constituido por alquilo, cicloalquilo, heterocicloalquilo, arilo, heteroarilo, halógeno, -CF_3, -CN, -OR^{24}, -C(O)R^{24}, -C(O)OR^{24}, alquil-C(O)OR^{24}, C(O)N(R^{24})(R^{25}), -SR^{24}, -S(O)N(R^{24})(R^{25}), -S(O)_2N(R^{24})(R^{25}), -C(=NOR^{24})R^{25}, -P(O)(OR^{24})(OR^{25}), -N(R^{24})(R^{25}), -alquil-N(R^{24}) (R^{25}), -N(R^{24})C(O)R^{25}, -CH_2-N(R^{24})C(O)R^{25}, -N(R^{24})S(O)_2R^{25}, -R(R^{24})S(O)_2R^{25}, -R(R^{24})S
```

 R^{24} , R^{25} y R^{26} están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, arilo, arilo, arilaquilo, heteroarilo, heteroarilalquilo, arilcicloalquilo, R^{27} -alquilo, R^{27} -cicloalquilo, R^{27} -cicloalquilo, R^{27} -heterocicloalquilo, R^{27} -heterocicloalquilo, R^{27} -heteroarilo, R^{27} -heteroarilo

R²⁷ es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, arilo, arilalquilo, -NO₂, halógeno, -CF₃, -CN, alquil-CN, -C(O)R²⁸, -C(O)OH, -C(O)OR²⁸, -C(O)NHR²⁹, -C(O)N(alquilo)₂, -C(O)N(alquil)(arilo), -C(O)N(alquil)(heteroarilo), -SR²⁸, -S(O)₂R²⁹, -S(O)NH₂, -S(O)NH(alquilo), -S(O)NH(arilo), -S(O)₂NH₂, -S(O)₂NHR²⁸, -S(O)₂NH(arilo), -S(O)₂NH(heterocicloalquilo), --OH, -OR²⁹, -O-heterocicloalquilo, -O-cicloalquilalquilo, -O-S(O)₂N(alquilo)₂, -S(O)₂N(alquil)(arilo), heterocicloalquilalquilo, -NH₂, -NHR²⁹, -N(alquilo)₂, -N(arilalquilo)₂, -N(arilalquil)(heteroarilalquilo), -NHC(O)R²⁹ -NHC(O)NH(alquilo), -N(alquil)C(O)NH(alquilo), NHC(O)NH₂, -NHC(O)N(alquil)(alquilo), -NHS(O)₂R²⁹, N(alquil)C(O)N(alquil)(alquilo), -NHS(O)₂NH(alquilo), -NHS(O)₂N(alquil)(alquilo), N(alquil)S(O)₂NH(alquilo) y -N(alquil)S(O)₂N(alquil)(alquilo);

R²⁸ es alquilo, cicloalquilo, arilalquilo o heteroarilalquilo; y

5

10

15

20

25

30

35

40

45

R²⁹ es alquilo, cicloalquilo, arilo, arilalquilo, heteroarilo o heteroarilalquilo;

a condición de que si W es-C(O)- y U es un enlace, R^1 no sea fenilo opcionalmente sustituido, y que si U es - C(O)- y W es un enlace, R^5 no sea fenilo opcionalmente sustituido;

a condición de que ni R^1 ni R^5 sea -C(O)-alquil-azetidinona o alquilo di-sustituido con (-COOR 15 o -C(O)N(R 15)(R 16)) y (-N(R 15)(R 16), -N(R 15)C(O)R 16 , -N(R 15)S(O)R 16 , -N(R 15)S(O) $_2$ R 16 -N(R 15)S(O) $_2$ N(R 16)(R 17), -N(R 15)C(O)N(R 16)(R 17), -N(R 15)C(O)N(R 16)(R 17) o -N(R 15)C(O)OR 16);

a condición de que si R^1 es metilo, X sea -N(R^5)-, R^2 sea H, W sea -C(O)- y U sea un enlace, (R^3 , R^4) no sea (H, H), (fenilo, fenilo), (H, fenilo), (bencilo, H), (bencilo, fenilo), (i-butilo, H), (i-butilo, fenilo), (OH-fenilo, fenilo), (halofenilo, fenilo) o (CH₃O-fenilo, NO₂-fenilo); y si W es un enlace y U es -C(O)-, (R^3 , R^4) no sea (H, H), (fenilo, fenilo), (H, fenilo), (bencilo, H), (bencilo, fenilo), (i-butilo, H), (i-butilo, fenilo), (OH-fenilo, fenilo), (halo-fenilo, fenilo) o (CH₃O-fenilo, NO₂-fenilo);

a condición de que si X es -N(\mathbb{R}^5)-, \mathbb{R}^1 y \mathbb{R}^5 sean cada uno H, W sea -C(O)- y U sea un enlace, (\mathbb{R}^3 , \mathbb{R}^4) no sean (fenilo opcionalmente sustituido, bencilo opcionalmente sustituido), (fenilo opcionalmente sustituido, heteroarilalguilo) o (heteroarilalguilo);

a condición de que si U es un enlace, W sea -C(O)-, y R³ y R⁴ formen un anillo con el carbono al que están unidos, R¹ no sea 2-CF₃-3-CN-fenilo;

a condición de que si X es -N(\mathbb{R}^5)-, U sea -O- y W sea un enlace o -C(\mathbb{R}^6)(\mathbb{R}^7)-, (\mathbb{R}^3 , \mathbb{R}^4) no sea (H, -NHC(O)-alquil-heteroarilo) o (H, alquil-NHC(O)-alquil-heteroarilo); y

a condición de que si X es $-N(R^5)$ -, R^1 y R^5 no sean -alquilaril-aril- SO_2 - $N(R^{15})(R^{16})$ en la que R^{15} es H y R^{16} es heteroarilo:

a condición de que si R^1 es R^{21} -arilo o R^{21} -arilalquilo, en las que R^{21} es -OCF $_3$, -S(O)₂CF $_3$, -S(O)₂CF $_3$, -OCP $_2$ CF $_3$, -OCF $_3$, -OCH $_2$ CF $_3$, -OCH $_3$, -S(O)₂RR $_3$ -S(O)₂RR $_3$ -OCF $_3$ 0, -OCH $_3$ 0, -S(O)₂RR $_3$ 0, -S(O)₂RR $_3$ 0, -OCF $_3$ 0, -OCH $_3$ 0, -S(O)₂RR $_3$ 0, -S(O)₂RR $_3$ 0, -OCF $_3$ 0, -OCH $_3$ 0, -OCH $_3$ 0, -OCH $_3$ 0, -S(O)₂RR $_3$ 0, -OCH $_3$ 0, -OCH

en la que R^{15} y R^{16} están seleccionados independientemente del grupo constituido por H, alquilo, alquenilo, cicloalquilo, heterocicloalquilo, arilo y heteroarilo, R^{18} -alquilo, R^{18} -cicloalquilo, R^{18} -heterocicloalquilo, R^{18} -arilo y R^{18} -heteroarilo; U es un enlace o -CH₂; v X es -N(R^{5})-; entonces R^{5} es H:

a condición de que si U es un enlace,

R³ v R⁴ sean alquilo,

si R^{21} es halógeno, -CN, alquilo, alcoxi, haloalquilo o haloalcoxi, o R^3 y R^4 , junto con el carbono al que están unidos, forman un grupo cicloalquilo de 3-7 miembros,

y R¹ es

$$N-R^{21a}$$
 $N-R^{21a}$
 $N-R^{21a}$
 $N-R^{21a}$
 $N-R^{21a}$

si a es 0 a 6 y R^{22} es alquilo, alcoxi, halógeno, -CN, -OH, -NO $_2$ o haloalquilo;

entonces R^{21a} no es H, $-C(O)_2R^{15}$, en la que R^{15} está seleccionado del grupo constituido por alquilo, cicloalquilo y alquilo sustituido con fenilo, alquilo o alquil $-R^{22}$, en la que R^{22} está seleccionado del grupo constituido por

10 fenilo,

fenilo sustituido con alquilo,

у

en la que R²² está seleccionado del grupo constituido por H, metoxi, nitro, oxo, -OH, halo y alquilo,

5

15

Según la presente invención se proporcionan compuestos de fórmula IB como se define en las reivindicaciones adjuntas, y estereoisómeros, tautómeros y sales o solvatos farmacéuticamente aceptables de los mismos.

En el presente documento también se desvela una composición farmacéutica que comprende al menos un compuesto de fórmula I y un vehículo farmacéuticamente aceptable.

En el presente documento también se desvela un procedimiento para inhibir aspartilproteasa que comprende administrar al menos un compuesto de fórmula I a un paciente en necesidad de tales tratamientos.

Más específicamente, en el presente documento se desvela: un procedimiento para tratar una enfermedad cardiovascular tal como hipertensión, insuficiencia renal o una enfermedad modulada por la inhibición de renina; un procedimiento para tratar virus de la inmunodeficiencia humana; un procedimiento para tratar una enfermedad cognitiva o neurodegenerativa tal como enfermedad de Alzheimer; un procedimiento para inhibir plasmepsinas I y II para el tratamiento de malaria; un procedimiento para inhibir catepsina D para el tratamiento de enfermedad de Alzheimer, cáncer de mama y cáncer de ovario; y un procedimiento para inhibir enzimas protozoicas, por ejemplo, inhibición de *Plasmodium falciparum*, para el tratamiento de infecciones fúngicas. Dichos procedimientos de tratamiento comprenden administrar al menos un compuesto de fórmula I a un paciente en necesidad de tal tratamiento. En particular se desvela un procedimiento para tratar enfermedad de Alzheimer que comprende administrar al menos un compuesto de fórmula I a un paciente en necesidad de tal tratamiento.

En el presente documento también se desvela un procedimiento para tratar enfermedad de Alzheimer que comprende administrar a un paciente en necesidad de tal tratamiento una combinación de al menos un compuesto de fórmula I y un inhibidor de colinesterasa o un antagonista muscarínico.

En el presente documento también se desvela un kit que comprende en recipientes separados en un único envase composiciones farmacéuticas para su uso en combinación, en el que un recipiente comprende un compuesto de fórmula I en un vehículo farmacéuticamente aceptable y un segundo recipiente comprende un inhibidor de colinesterasa o un antagonista muscarínico en un vehículo farmacéuticamente aceptable, siendo las cantidades combinadas una cantidad eficaz para tratar una enfermedad cognitiva o enfermedad neurodegenerativa tal como enfermedad de Alzheimer.

DESCRIPCIÓN DETALLADA:

5

10

15

20

25

30

Compuestos de fórmula I en la que X, W y U son como se han definido anteriormente incluyen las siguientes estructuras independientemente preferidas:

En compuestos de fórmulas IA a IF, U es preferentemente un enlace o $-C(R^6)(R^7)$ -. En compuestos de fórmula IG e IH, U es preferentemente -C(O)-.

8

Se entenderá que como la definición de R^1 es la misma que la definición de R^5 , si X es -N(R^5)-, compuestos de fórmula I en la que W es un enlace y U es un enlace, -S(O)-, -S(O)₂-, -C(O)-, -O-, -C(R^6)(R^7)- o -N(R^5)- son equivalentes a compuestos de fórmula I en la que U es un enlace y W es un enlace, -S(O)-, -S(O)₂-, -C(O)-, -O-, -C(R^6)(R^7)- o -N(R^5)-.

Compuestos más preferidos son aquellos de fórmula IB en la que U es un enlace o aquellos de fórmula IB en la que U es $-C(R^6)(R^7)$ -.

Otro grupo de compuestos preferidos de fórmula I es aquel en el que R² es H.

 $R^3,\,R^4,\,R^6$ y R^7 están seleccionados preferentemente del grupo constituido por alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CH2-O-Si(R^9)(R^{10})(R^{19}), -SH, -CN, -OR^9, -C(O)R^8, -C(O)OR^9, -C(O)N(R^{11})(R^{12}), -SR^{19}, -S(O)N(R^{11})(R^{12}), -S(O)_2N(R^{11})(R^{12}), -N(R^{11})(R^{12}), -N(R^{11})(R^{12}), -N(R^{11})(R

R³, R⁴, R⁶ y R⁷ están seleccionados preferentemente del grupo constituido por arilo, heteroarilo, heteroarilalquilo, arilalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, alquilo y cicloalquilalquilo.

En un grupo de compuestos preferidos

U es un enlace o -C(O)-;

15 W es un enlace o -C(O)-;

5

10

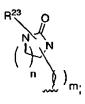
25

 $X es -N(R^5)$ -;

 R^1 es H, alquilo, R^{21} -alquilo, arilalquilo, R^{21} -arilalquilo, cicloalquilalquilo, R^{21} -cicloalquilalquilo, heterocicloalquilalquilo o R^{21} -heterocicloalquilalquilo,

R² es H;

20 R³ es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R²¹-alquilo, R²¹-cicloalquilalquilo, R²¹-cicloalquilalquilo, R²¹-arilo o R²¹-arilalquilo;


 R^4 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -cicloalquilalquilo, R^{21} -arilo o R^{21} -arilalquilo;

R⁵ es H, alquilo, R²¹-alquilo, arilalquilo, R²¹-arilalquilo, cicloalquilalquilo, R²¹-cicloalquilalquilo, heterocicloalquilalquilo o R²¹-heterocicloalquilalquilo;

 R^6 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -cicloalquilo, R^{21} -arilalquilo;

 R^7 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -cicloalquilalquilo, R^{21} -arilo o R^{21} -arilalquilo;

30 R¹⁵, R¹⁶ v R¹⁷ es H, R¹⁸-alquilo, alquilo o

 R^{21} es alquilo, arilo, halógeno, $-OR^{15}$, $-NO_2$, $-C(O)R^{15}$, $-CH_2-N(R^{15})C(O)N(R^{16})(R^{17})$ o $-CH(R^{15})(R^{16})$;

n es 1;

m es 1;

35 R¹⁸ es -OR²⁰

R²⁰ es arilo:

У

R²³ es alquilo.

En un grupo de compuestos preferidos

 R^3 , R^4 , R^6 y R^7 son

У

5

R¹ v R⁵ es H, CH₃,

0

En un grupo adicional de compuestos preferidos;

10 U es un enlace o -C(O)-;

W es un enlace o -C(O)-;

 $X \text{ es -N}(\mathbb{R}^5)$ -;

 R^1 es H, alquilo, R^{21} -alquilo, arilalquilo, R^{21} -arilalquilo, cicloalquilalquilo, R^{21} -cicloalquilalquilo, heterocicloalquilalquilo o R^{21} -heterocicloalquilalquilo,

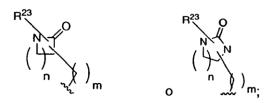
15 R^2 es H;

20

25

30

 R^3 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -cicloalquilalquilo, R^{21} -arilalquilo, heteroarilalquilo, heteroarilo, heteroarilo, heteroarilalquilo, R^{21} -heteroarilalquilo, R^{21} -heteroaril


 R^4 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -arilalquilo, heteroarilalquilo, heteroarilo, heteroarilo, heteroarilalquilo, heteroarilalquilo, R^{21} -heteroarilalquilo, R^{21} -heteroarilalquilo,

 R^5 es H, alquilo, R^{21} -alquilo, arilalquilo, R^{21} -arilalquilo, cicloalquilalquilo, R^{21} -cicloalquilalquilo, heterocicloalquilalquilo o R^{21} -heterocicloalquilalquilo;

 R^6 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -cicloalquilo, R^{21} -arilalquilo, heteroarilalquilo, heteroarilalquilo, heteroarilalquilo, R^{21} -heteroarilalquilo, $R^{$

 R^7 es alquilo, cicloalquilalquilo, cicloalquilo, arilo, arilalquilo, R^{21} -alquilo, R^{21} -cicloalquilalquilo, R^{21} -cicloalquilo, R^{21} -arilalquilo, heteroarilalquilo, heteroarilo, heteroarilo, heteroarilalquilo, heteroarilalquilo, R^{21} -heteroarilalquilo, R^{21

R¹⁵, R¹⁶ y R¹⁷ es H, cicloalquilo, cicloalquilalquilo, R¹⁸-alquilo, alquilo, arilo, R¹⁸-arilo, R¹⁸-arilalquilo, arilalquilo,

n es 1 ó 2;

m es 0 ó 1;

R¹⁸ es -OR²⁰ o halo;

R²⁰ es arilo o haloarilo sustituido;

 $R^{21} \ es \ alquilo, \ arilo, \ heteroarilo, \ R^{22} - alquilo, \ R^{22} - arilo, \ R^{22} - heteroarilo, \ halógeno, \ heterocicloalquilo, \ -N(R^{15})(R^{16}), \ -OR^{15}, \ -NO_2, \ -C(O)R^{15}, \ -N(R^{15})C(O)R^{16}, \ -N(R^{15})S(O)_2R^{16}, \ -CH_2 - N(R^{16})C(O)N(R^{16})(R^{17}), \ -N(R^{15})C(O)N(R^{16})(R^{17}), \ -N(R^{15})C(O)N(R^{16})(R^{17}), \ -CH_2 - N(R^{15})(R^{16})(R^{17}), \ -N(R^{15})C(O)N(R^{16})(R^{17}), \ -N(R^{15})C(O)N(R^{16})(R^{17})(R^{15})(R^{17})(R^{17}), \ -N(R^{15})C(O)N(R^{15})(R^{17$

R²² es -OR¹⁵ o halo

У

5

25

30

35

40

R²³ es H o alquilo.

10 Como se usa anteriormente, y en toda la memoria descriptiva, debe entenderse que los siguientes términos, a menos que se indique lo contrario, tienen los siguientes significados:

"Paciente" incluye tanto seres humanos como animales.

"Mamífero" significa seres humanos y otros animales mamíferos.

"Alquilo" significa un grupo de hidrocarburo alifático que puede ser lineal o ramificado y que comprende aproximadamente 1 a aproximadamente 20 átomos de carbono en la cadena. Grupos alquilo preferidos contienen aproximadamente 1 a aproximadamente 12 átomos de carbono en la cadena. Grupos alquilo más preferidos contienen aproximadamente 1 a aproximadamente 6 átomos de carbono en la cadena. Ramificado significa que uno o más grupos alquilo inferior tales como metilo, etilo o propilo están unidos a una cadena de alquilo lineal. "Alquilo inferior" significa un grupo que tiene aproximadamente 1 a aproximadamente 6 átomos de carbono en la cadena que puede ser lineal o ramificada. Ejemplos no limitantes de grupos alquilo adecuados incluyen metilo, etilo, n-propilo, isopropilo, n-butilo, t-butilo, n-pentilo, heptilo, nonilo y decilo. Grupos alquilo sustituidos con R³² incluyen fluorometilo, trifluorometilo y ciclopropilmetilo.

"Alquenilo" significa un grupo de hidrocarburo alifático que contiene al menos un doble enlace carbono-carbono y que puede ser lineal o ramificado y que comprende aproximadamente 2 a aproximadamente 15 átomos de carbono en la cadena. Grupos alquenilo preferidos tienen aproximadamente 2 a aproximadamente 12 átomos de carbono en la cadena; y más preferentemente aproximadamente 2 a aproximadamente 6 átomos de carbono en la cadena. Ramificado significa que uno o más grupos alquilo inferior tales como metilo, etilo o propilo están unidos a una cadena de alquenilo lineal. "Alquenilo inferior" significa aproximadamente 2 a aproximadamente 6 átomos de carbono en la cadena que puede ser lineal o ramificada. Ejemplos no limitantes de grupos alquenilo adecuados incluyen etenilo, propenilo, n-butenilo, 3-metilbut-2-enilo, n-pentenilo, octenilo y decenilo.

"Alquinilo" significa un grupo de hidrocarburo alifático que contiene al menos un triple enlace carbono-carbono y que puede ser lineal o ramificado y que comprende aproximadamente 2 a aproximadamente 15 átomos de carbono en la cadena. Grupos alquinilo preferidos tienen aproximadamente 2 a aproximadamente 12 átomos de carbono en la cadena; y más preferentemente aproximadamente 2 a aproximadamente 4 átomos de carbono en la cadena. Ramificado significa que uno o más grupos alquilo inferior tales como metilo, etilo o propilo están unidos a una cadena de alquinilo lineal. "Alquinilo inferior" significa aproximadamente 2 a aproximadamente 6 átomos de carbono en la cadena que puede ser lineal o ramificada. Ejemplos no limitantes de grupos alquinilo adecuados incluyen etinilo, propinilo, 2-butinilo, 3-metilbutinilo, n-pentinilo y decinilo.

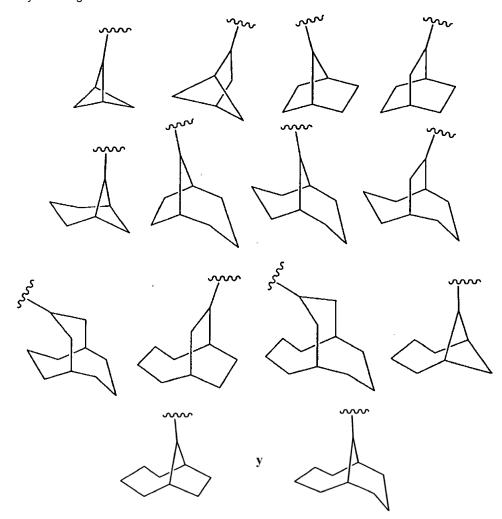
"Arilo" significa un sistema de anillo monocíclico o multicíclico aromático que comprende aproximadamente 6 a aproximadamente 14 átomos de carbono, preferentemente aproximadamente 6 a aproximadamente 10 átomos de carbono. El grupo arilo puede estar opcionalmente sustituido con uno o más sustituyentes (por ejemplo, R¹⁸, R²¹, R²², etc.) que pueden ser iguales o diferentes, y son como se definen en el presente documento, o dos sustituyentes sobre carbonos adyacentes pueden ligarse juntos para formar

45 Ejemplos no limitantes de grupos arilo adecuados incluyen fenilo y naftilo.

"Heteroarilo" significa un sistema de anillo monocíclico o multicíclico aromático que comprende aproximadamente 5 a aproximadamente 14 átomos de anillo, preferentemente aproximadamente 5 a aproximadamente 10 átomos de anillo, en el que uno a cuatro de los átomos del anillo es un elemento distinto de carbono, por ejemplo, nitrógeno, oxígeno o

azufre, solos o en combinación. Heteroarilos preferidos contienen aproximadamente 5 a aproximadamente 6 átomos de anillo. El "heteroarilo" puede estar opcionalmente sustituido con uno o más sustituyentes R²¹ que pueden ser iguales o diferentes, y son como se definen en el presente documento. El prefijo aza, oxa o tia antes del nombre raíz heteroarilo significa que al menos un átomo de nitrógeno, oxígeno o azufre, respectivamente, está presente como un átomo de anillo. Un átomo de nitrógeno de un heteroarilo puede oxidarse opcionalmente al N-óxido correspondiente. Ejemplos no limitantes de heteroarilos adecuados incluyen piridilo, pirazinilo, furanilo, tienilo, pirimidinilo, isoxazolilo, isotiazolilo, oxazolilo, tiazolilo, pirazolilo, pirazolilo, pirazolilo, pirazolilo, pirazolilo, pirazolilo, pirazinilo, pirazolilo, pirazolilo, pirazinilo, pirazolilo, pirazolilo, benzofurazanilo, indolilo, azaindolilo, bencimidazolilo, benzotienilo, quinolinilo, imidazolilo, tienopiridilo, quinazolinilo, tienopirimidilo, pirrolopiridilo, imidazopiridilo, isoquinolinilo, benzoazaindolilo, 1,2,4-triazinilo, benzotiazolilo y similares.

5


10

15

20

25

"Cicloalquilo" significa un sistema de anillo mono- o multicíclico no aromático que comprende aproximadamente 3 a aproximadamente 10 átomos de carbono, preferentemente aproximadamente 5 a aproximadamente 10 átomos de carbono. Anillos de cicloalquilo preferidos contienen aproximadamente 5 a aproximadamente 7 átomos de anillo. El cicloalquilo puede estar opcionalmente sustituido con uno o más sustituyentes R²¹ que pueden ser iguales o diferentes, y son como se han definido anteriormente. Ejemplos no limitantes de cicloalquilos monocíclicos adecuados incluyen ciclopropilo, ciclohexilo, ciclohexilo, cicloheptilo y similares. Ejemplos no limitantes de cicloalquilos multicíclicos adecuados incluyen 1-decalina, norbornilo, adamantilo y similares. Adicionalmente, ejemplos no limitantes de cicloalquilo incluyen los siguientes

"Cicloalquiléter" significa un anillo no aromático de 3 a 7 miembros que comprende un átomo de oxígeno y 2 a 7 átomos de carbono. Los átomos de carbono del anillo pueden estar sustituidos, a condición de que sustituyentes adyacentes al oxígeno del anillo no incluyan halo o sustituyentes unidos al anillo mediante un átomo de oxígeno, nitrógeno o azufre.

"Cicloalquenilo" significa un sistema de anillo mono o multicíclico no aromático que comprende aproximadamente 3 a aproximadamente 10 átomos de carbono, preferentemente aproximadamente 5 a aproximadamente 10 átomos de carbono, que contiene al menos un doble enlace carbono-carbono. El anillo de cicloalquenilo puede estar

opcionalmente sustituido con uno o más sustituyentes R²¹ que pueden ser iguales o diferentes, y son como se han definido anteriormente. Anillos de cicloalquenilo preferidos contienen aproximadamente 5 a aproximadamente 7 átomos de anillo. Ejemplos no limitantes de cicloalquenilos monocíclicos adecuados incluyen ciclopentenilo, ciclohexenilo, ciclohexenilo, vicilohexenilo, vicil

5

10

15

20

25

30

35

40

45

50

"Heterociclonilo" significa un sistema de anillo mono o multicíclico no aromático que comprende aproximadamente 3 a aproximadamente 10 átomos de anillo, preferentemente aproximadamente 5 a aproximadamente 10 átomos de anillo, en el que uno o más de los átomos en el sistema de anillo es un elemento distinto de carbono, por ejemplo, átomo de nitrógeno, oxígeno o azufre, solo o en combinación, y que contiene al menos un doble enlace carbono-carbono o doble enlace carbono-nitrógeno. No hay átomos de oxígeno y/o azufre adyacentes presentes en el sistema de anillo. Anillos de heterociclonilo preferidos contienen aproximadamente 5 a aproximadamente 6 átomos de anillo. El prefijo aza, oxa o tia antes del nombre raíz heterociclonilo significa que al menos un átomo de nitrógeno, oxígeno o azufre está respectivamente presente como un átomo de anillo. El heterociclonilo puede estar opcionalmente sustituido con uno o más sustituyentes del sistema de anillo, en el que "sustituyente del sistema de anillo" es como se ha definido anteriormente. El nitrógeno o átomo de azufre del heterociclonilo puede oxidarse opcionalmente al N-óxido, S-óxido o S,S-dióxido correspondiente. Ejemplos no limitantes de grupos azaheterociclonilo monocíclicos adecuados incluyen 1,2,3,4- tetrahidropiridina, 1,2-dihidropiridilo, 1,4-dihidropiridilo, 1,2,3,6-tetrahidropiridina, 1,4,5,6-tetrahidropirimidina, 2pirrolinilo, 3-pirrolinilo, 2-imidazolinilo, 2-pirazolinilo y similares. Ejemplos no limitantes de grupos oxaheterociclonilo adecuados incluyen 3,4-dihidro-2H-pirano, dihidrofuranilo, fluorodihidrofuranilo y similares. Un ejemplo no limitante de un grupo oxaheterociclonilo multicíclico adecuado es 7-oxabiciclo[2.2.1]heptenilo. Ejemplos no limitantes de anillos tiaheterociclonilo monocíclicos adecuados incluyen dihidrotiofenilo, dihidrotiopiranilo y similares.

"Halo" significa grupos flúor, cloro, bromo o yodo. Se prefieren flúor, cloro o bromo, y más preferidos son flúor y cloro.

"Haloalquilo" significa un alquilo como se ha definido anteriormente en el que uno o más átomos de hidrógeno sobre el alquilo están sustituidos por un grupo halo anteriormente definido.

"Heterociclilo" (o heterocicloalquilo) significa un sistema de anillo monocíclico o multicíclico saturado no aromático que comprende aproximadamente 3 a aproximadamente 10 átomos de anillo, preferentemente aproximadamente 5 a aproximadamente 10 átomos de anillo, en el que 1-3, preferentemente 1 ó 2 de los átomos en el sistema de anillo es un elemento distinto de carbono, por ejemplo, nitrógeno, oxígeno o azufre, solos o en combinación. No hay átomos de oxígeno y/o azufre adyacentes presentes en el sistema de anillo. Heterociclilos preferidos contienen aproximadamente 5 a aproximadamente 6 átomos de anillo. El prefijo aza, oxa o tia antes del nombre de raíz heterociclilo significa que al menos un átomo de nitrógeno, oxígeno o azufre, respectivamente, está presente como un átomo de anillo. El heterociclilo puede estar opcionalmente sustituido con uno o más sustituyentes R²¹ que pueden ser iguales o diferentes, y son como se definen en el presente documento. El átomo de nitrógeno o azufre del heterociclilo puede oxidarse opcionalmente al N-óxido, S-óxido o S,S-dióxido correspondiente . Ejemplos no limitantes de anillos de heterociclilo monocíclicos adecuados incluyen piperidilo, pirrolidinilo, piperazinilo, morfolinilo, tiomorfolinilo, tiazolidinilo, 1,3-dioxolanilo, 1,4-dioxanilo, tetrahidrofuranilo, tetrahidrotiofenilo, tetrahidrotiopiranilo y similares.

"Arilalquilo" significa un grupo aril-alquilo en el que el arilo y alquilo son como se describen previamente. Aralquilos preferidos comprenden un grupo alquilo inferior. Ejemplos no limitantes de grupos aralquilo adecuados incluyen bencilo, 2-fenetilo y naftalenilmetilo. El enlace al resto parental es mediante el alquilo.

"Arilcicloalquilo" significa un grupo derivado de un arilo y cicloalquilo condensado como se define en el presente documento. Arilcicloalquilos preferidos son aquellos en los que arilo es fenilo y cicloalquilo consiste en aproximadamente 5 a aproximadamente 6 átomos de anillo. El arilcicloalquilo puede estar opcionalmente sustituido con 1-5 sustituyentes R²¹. Ejemplos no limitantes de arilcicloalquilos adecuados incluyen indanilo y 1,2,3,4-tetrahidronaftilo y similares. El enlace al resto parental es mediante un átomo de carbono no aromático.

"Arilheterocicloalquilo" significa un grupo un grupo derivado de un arilo y heterocicloalquilo condensado como se define en el presente documento. Arilcicloalquilos preferidos son aquellos en los que arilo es fenilo y heterocicloalquilo consiste en aproximadamente 5 a aproximadamente 6 átomos de anillo. El arilheterocicloalquilo puede estar opcionalmente sustituido con 1-5 sustituyentes R²¹. Ejemplos no limitantes de arilheterocicloalquilos adecuados incluyen

El enlace al resto parental es mediante un átomo de carbono no aromático.

Similarmente, "heteroarilalquilo", "cicloalquilalquilo" y "heterocicloalquilalquilo" significan un grupo heteroaril-, cicloalquil- o heterocicloalquil-alquil- en el que el heteroarilo, cicloalquilo, heterocicloalquilo y alquilo son como se han descrito previamente. Grupos preferidos contienen un grupo alquilo inferior. El enlace al resto parental es mediante el alquilo.

"Acilo" significa un grupo H-C(O)-, alquil-C(O)-, alquenil-C(O)-, alquinil-C(O)- o cicloalquil-C(O)- en el que los diversos grupos son como se han descrito previamente. El enlace al resto parental es mediante el carbonilo. Acilos preferidos contienen un alquilo inferior. Ejemplos no limitantes de grupos acilo adecuados incluyen formilo, acetilo, propanoílo, 2-metilpropanoílo, butanoílo y ciclohexanoílo

"Alcoxi" significa un grupo alquil-O- en el que el grupo alquilo es como se ha descrito previamente. Ejemplos no limitantes de grupos alcoxi adecuados incluyen metoxi, etoxi, n-propoxi, isopropoxi, n-butoxi y heptoxi. El enlace al resto parental es mediante el oxígeno del éter.

"Alquiloxialquilo" significa un grupo derivado de un alcoxi y alquilo como se define en el presente documento. El enlace al resto parental es mediante el alquilo.

"Arilalquenilo" significa un grupo derivado de un arilo y alquenilo como se define en el presente documento. Arilalquenilos preferidos son aquellos en los que arilo es fenilo y el alquenilo consiste en aproximadamente 3 a aproximadamente 6 átomos. El arilalquenilo puede estar opcionalmente sustituido con uno o más sustituyentes R²⁷. El enlace al resto parental es mediante un átomo de carbono no aromático.

"Arilalquinilo" significa un grupo derivado de un arilo y alquenilo como se define en el presente documento. Arilalquinilos preferidos son aquellos en los que arilo es fenilo y el alquinilo consiste en aproximadamente 3 a aproximadamente 6 átomos. El arilalquinilo puede estar opcionalmente sustituido con uno o más sustituyentes R²⁷. El enlace al resto parental es mediante un átomo de carbono no aromático.

El sufijo "eno" sobre alquilo, arilo, heterocicloalquilo, etc., indica un resto divalente, por ejemplo, -CH₂CH₂- es etileno, y

es para-fenileno.

10

15

20

30

35

El término "opcionalmente sustituido" significa sustitución opcional con los grupos, radicales o restos especificados, en posición o posiciones disponibles.

Sustitución sobre un resto cicloalquilalquilo, heterocicloalquilalquilo, arilalquilo o heteroarilalquilo incluye sustitución sobre la porción de anillo y/o sobre la porción de alquilo del grupo.

Si una variable aparece más de una vez en un grupo, por ejemplo, R⁸ en -N(R⁸)₂, o una variable aparece más de una vez en la estructura de fórmula I, por ejemplo, R¹⁵ puede aparecer en tanto R¹ como R³, las variables pueden ser iguales o diferentes.

Con referencia al número de restos (por ejemplo, sustituyentes, grupos o anillos) en un compuesto, a menos que se defina de otro modo, los términos "uno o más" y "al menos uno" significan que puede haber tantos restos como se permita químicamente, y la determinación del número máximo de tales restos está perfectamente dentro del conocimiento de aquellos expertos en la materia. Con respecto a las composiciones y procedimientos que comprenden el uso de "al menos un compuesto de fórmula I", uno a tres compuestos de fórmula I pueden administrarse al mismo tiempo, preferentemente uno.

Como se usa en el presente documento, el término "composición" pretende englobar un producto que comprende los componentes especificados en las cantidades especificadas, además de cualquier producto que resulte, directamente o indirectamente, de la combinación de los componentes especificados en las cantidades especificadas.

40 La línea ondulada

ኅለለለ.

como enlace indica generalmente una mezcla de, o cualquier de, los posibles isómeros, por ejemplo, que contienen estereoguímica (R) y (S). Por ejemplo,

45 significa que contiene tanto

Las líneas que se meten en los sistemas de anillo, tales como, por ejemplo:

5 indican que la línea (enlace) indicada puede unirse a cualquiera de los átomos de carbono del anillo sustituibles.

Como es muy conocido en la técnica, un enlace dibujado de un átomo particular en el que ningún resto se representa en el extremo terminal del enlace indica un grupo metilo unido mediante ese enlace al átomo, a menos que se establezca de otro modo. Por ejemplo:

10 representa

25

Debe también observarse que cualquier heteroátomo con valencias libres en los siguientes esquemas, ejemplos, fórmulas estructurales y cualquier tabla en el presente documento se supone que tiene el átomo o átomos de hidrógeno para satisfacer las valencias.

Aquellos expertos en la materia reconocerán que ciertos compuestos de fórmula I son tautómeros, y todas aquellas formas tautómeras se contemplan en el presente documento como parte de la presente divulgación. Por ejemplo, un compuesto en el que X es -N(R⁵)- y R¹ y R⁵ son cada uno H puede representarse por cualquiera de las siguientes estructuras:

20 Si R²¹ y R²² son, por ejemplo, -N(R¹⁵)C(O)N(R¹⁶(R¹⁷) y R¹⁵ y R¹⁶ forman un anillo, el resto formado es, por ejemplo,

Profármacos y solvatos de los compuestos de la divulgación también se contemplan en el presente documento. El término "profármaco", como se emplea en el presente documento, indica un compuesto que es un precursor de fármaco que, tras la administración a un sujeto, experimenta conversión química por procedimientos metabólicos o químicos dando un compuesto de fórmula I o una sal y/o solvato del mismo. Una discusión de profármacos se proporciona en T. Higuchi y V. Stella, Pro-drugs as Novel Delivery Systems (1987) volumen 14 de A.C.S. Symposium

ES 2 421 527 T3

Series, y en Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press.

"Solvato" significa una asociación física de un compuesto de esta divulgación con una o más moléculas de disolvente. Esta asociación física implica grados variables de enlace iónico y covalente, que incluyen enlaces de hidrógeno. En ciertos casos, el solvato podrá aislarse, por ejemplo, cuando una o más moléculas de disolvente se incorporen en la red cristalina del sólido cristalino. "Solvato" engloba tanto solvatos en fase de solución como aislables. Ejemplos no limitantes de solvatos adecuados incluyen etanolatos, metanolatos y similares. "Hidrato" es un solvato en el que la molécula de disolvente es H₂O.

5

15

20

25

30

35

40

45

50

55

"Cantidad eficaz" o "cantidad terapéuticamente eficaz" se indica para describir una cantidad de compuesto o una composición de la presente divulgación eficaz en inhibir aspartilproteasa y/o inhibir BACE-1 y así producir el efecto terapéutico deseado en un paciente adecuado.

Los compuestos de fórmula I forman sales que también están dentro del alcance de la presente divulgación. Referencia a un compuesto de fórmula I en el presente documento se entiende que incluye referencia a sales de los mismos, a menos que se indique lo contrario. El término "sal(es)", como se emplea en el presente documento, indica sales de ácido formadas con ácidos inorgánicos y/u orgánicos, además de sales básicas formadas con bases inorgánicas y/u orgánicas. Además, cuando un compuesto de fórmula I contiene tanto un resto básico, tal como, pero no se limita a, una piridina o imidazol, y un resto ácido, tal como, pero no se limita a, un ácido carboxílico, pueden formarse iones bipolares ("sales internas") y están incluidos dentro del término "sal(es)" como se usa en el presente documento. Se prefieren sales farmacéuticamente aceptables (es decir, fisiológicamente aceptables no tóxicas), aunque otras sales también son útiles. Sales de los compuestos de fórmula I pueden formarse, por ejemplo, haciendo reaccionar un compuesto de fórmula I con una cantidad de ácido o base, tal como una cantidad equivalente, en un medio tal como uno en el que la sal precipita o en un medio acuoso seguido de liofilización. Ácidos (y bases) que se consideran generalmente adecuados para la formación de sales farmacéuticamente útiles de compuestos farmacéuticos básicos (o ácidos) se tratan, por ejemplo, por S. Berge y col., Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson y col., The Practice of Medicinal Chemistry (1996), Academic Press, Nueva York; en The Orange Book (Food & Drug Administration, Washington, D.C. en su página web); y P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (2002) Int'l. Union of Pure and Applied Chemistry, pág. 330-331.

Sales de adición de ácido a modo de ejemplo incluyen acetatos, adipatos, alginatos, ascorbatos, aspartatos, benzoatos, bencenosulfonatos, bisulfatos, boratos, butiratos, citratos, canforatos, canforaulfonatos, ciclopentanopropionatos, digluconatos, dodecilsulfatos, etanosulfonatos, fumaratos, glucoheptanoatos, glicerofosfatos, hemisulfatos, heptanoatos, hexanoatos, clorhidratos, bromhidratos, yodhidratos, 2-hidroxietanosulfonatos, lactatos, maleatos, metanosulfonatos, metilsulfatos, 2-naftalenosulfonatos, nicotinatos, oxalatos, pamoatos, persulfatos, 3-fenilpropionatos, fosfatos, picratos, pivalatos, propionatos, salicilatos, succinatos, sulfatos, sulfonatos (tales como aquellos mencionados en el presente documento), tartratos, tiocianatos, toluenosulfonatos (también conocidos como tosilatos), undecanoatos y similares.

Sales básicas a modo de ejemplo incluyen sales de amonio, sales de metales alcalinos tales como sales de sodio, litio y potasio, sales de metales alcalinotérreos tales como sales de calcio y magnesio, sales de aluminio, sales de cinc, sales con bases orgánicas (por ejemplo, aminas orgánicas) tales como benzatinas, dietilamina, diciclohexilaminas, hidrabaminas (formadas con N,N-bis(deshidroabietil)etilendiamina), N-metil-D-glucaminas, N-metil-D-glucamidas, t-butilaminas, piperazina, fenilciclohexilamina, colina, trometamina, y sales con aminoácidos tales como arginina, lisina y similares. Grupos que contienen nitrógeno básico pueden cuaternizarse con agentes tales como haluros de alquilo inferior (por ejemplo, cloruros, bromuros y yoduros de metilo, etilo, propilo y butilo), sulfatos de dialquilo (por ejemplo, sulfatos de dimetilo, dietilo, dibutilo y diamilo), haluros de cadena larga (por ejemplo, cloruros, bromuros y yoduros de decilo, laurilo, miristilo y estearilo), haluros de aralquilo (por ejemplo, bromuros de bencilo y fenetilo), y otros.

Todas aquellas sales de ácido y sales de base pretenden ser sales farmacéuticamente aceptables dentro del alcance de la divulgación y todas las sales de ácido y de base se consideran equivalentes a las formas libres de los compuestos correspondientes para los fines de la divulgación.

Dentro del alcance de esta divulgación se contemplan todos los estereoisómeros (por ejemplo, isómeros geométricos, isómeros ópticos y similares) de los presentes compuestos (incluyendo aquellos de las sales, solvatos y profármacos de los compuestos, además de las sales y solvatos de los profármacos), tales como aquellos que pueden existir debido a carbonos asimétricos sobre diversos sustituyentes, que incluyen formas enantioméricas (que pueden existir incluso en ausencia de carbonos asimétricos), formas rotámeras, atropisómeros y formas diaestereoméricas. Estereoisómeros individuales de los compuestos de la divulgación pueden estar, por ejemplo, sustancialmente libres de otros isómeros, o pueden mezclarse, por ejemplo, como racematos o con todos los otros estereoisómeros, u otros estereoisómeros seleccionados. Los centros quirales de los presentes compuestos pueden tener la configuración S o R como se define por las Recomendaciones de la *IUPAC* 1974. El uso de los términos "sal", "solvato" "profármaco" y similares pretende

ES 2 421 527 T3

aplicarse igualmente a la sal, solvato y profármaco de enantiómeros, estereoisómeros, rotámeros, tautómeros, racematos o profármacos de los presentes compuestos.

Formas polimórficas de los compuestos de fórmula I, y de las sales, solvatos y profármacos de los compuestos de fórmula I, pretenden incluirse en la presente divulgación.

Los compuestos de fórmula I pueden prepararse usando procedimientos conocidos en la técnica. Procedimientos preparativos para preparar materiales de partida y compuestos de fórmula I se muestran más adelante como esquemas de reacción generales (Procedimiento A, Procedimiento B, etc.) seguido de procedimientos específicos, pero aquellos expertos en la materia reconocerán que también pueden ser adecuados otros procedimientos. En los esquemas y en los siguientes ejemplos se usan las siguientes abreviaturas:

metilo: Me; etilo: Et; propilo: Pr; butilo: Bu; bencilo: Bn; butiloxicarbonilo terciario: Boc o BOC

cromatografía líquida de alta presión: HPLC

espectroscopía de masas-cromatografía de líquidos: EM-CL

temperatura ambiente: TA o ta

día: d; hora: h; minuto: min

15 tiempo de retención: R_t

10

25

35

microondas: µW

saturado: sat.; anhidro: anh.

1-hidroxibenzotriazol: HOBt

clorhidrato de 1-(3-dimetilaminopropil)-3-etilcarbodiimida: EDCI

20 acetato de etilo: EtOAc

Benciloxicarbonilo: CBZ

[1-(clorometil)-4-fluoro-1,4-diazoniabiciclo[2.2.2]octano-bis(tetrafluoroborato)]: Selectfluor

1,8-diazabiciclo[5,4,0]undec-7-eno: DBU

tetrahidrofurano: THF; N,N-dimetilformamida: DMF; metanol: MeOH; éter dietílico: Et₂O; ácido acético: AcOH; acetonitrilo: MeCN; ácido trifluoroacético: TFA; diclorometano: DCM; dimetoxietano: DME; difenilfosfinoferroceno (dppf);

n-butillitio: n-BuLi; diisopropilamida de litio: LDA

1-hidroxi-7-azabenzotriazol: HOAt

4-N,N-dimetilaminopiridina: DMAP; diisopropiletilamina: DIEA; N-metilmorfolina: NMM

30 resina de ácido toluenosulfónico microporoso (resina de MP-TsOH)

tris-(2-aminoetil)aminometilpoliestireno (PS-trisamina)

metilisocianato-poliestireno (PS-NCO)

Saturado (sat.); anhidro (anh.); temperatura ambiente (ta); hora (h);

Minutos (Min), tiempo de retención (R_t); peso molecular (MW); mililitro (mI); gramo (g), miligramo (mg); equivalente (eq); día (d); microondas (μ W); microlitro (μ I);

Todos los datos de RMN se recogieron en espectrómetros de RMN a 400 MHz, a menos que se indique lo contrario. La espectroscopía de masas por electropulverización-CL con una columna C-18 y 5 % al 95 % de MeCN en agua como fase móvil se usó para determinar la masa molecular y el tiempo de retención. Las tablas contienen los compuestos con tiempo de retención/MW observado y/o datos de RMN.

Para coherencia interna en los esquemas de reacción mostrados en los Procedimientos A a AA, el producto de cada procedimiento se muestra como estructura A4, B4, C3, etc., en los que ciertas variables son como se definen para ese

procedimiento, pero será evidente que, por ejemplo, A4 tiene la misma estructura que C3. Es decir, pueden usarse procedimientos diferentes para preparar compuestos similares.

Los compuestos de la presente divulgación pueden producirse mediante procedimientos conocidos para aquellos expertos en la materia y como se muestra en los siguientes esquemas de reacción y en las preparaciones y ejemplos descritos más adelante. De los compuestos desvelados en los siguientes ejemplos sintéticos, los números de compuesto 189-200, 460 y 461 son de la presente invención. Los restantes compuestos son compuestos de referencia. La Tabla I contiene los compuestos con valores de m/e observados de datos de espectroscopía de masas y/o RMN. Estos compuestos pueden obtenerse con procedimientos sintéticos similares a aquellos enumerados en la última columna usando reactivos apropiados.

Procedimiento A

5

10

15

20

25

30

Procedimiento A, Etapa 1:

A una solución de **A1** ($R^3 = CH_3$ y $R^4 = CH_2CH(CH_3)_2$) (10 mmoles, 1 eq) en 30 ml de CH_2Cl_2 anh. se añadió tiocarbonildipiridona (1,2 eq). Después de agitar durante la noche la solución se diluyó con CH_2Cl_2 , se lavó con HCl 1 N, H_2O (2x) y una solución acuosa saturada de NaCl (2x). La solución orgánica se secó sobre Na_2SO_4 , se filtró y se concentró. El material en bruto se purificó por cromatografía ultrarrápida proporcionando **A2** ($R^3 = CH_3$ y $R^4 = CH_2CH(CH_3)_2$).

Procedimiento A, Etapa 2:

Una solución de 3,5-difluorobencilamina (0,15 mmoles, 1,5 eq) en THF (0,15 ml) se añadió a una solución de A2 ($R^3 = CH_3$ y $R^4 = CH_2CH(CH_3)_2$) (0,1 mmoles, 1 eq) en CH_2CI_2 anhidro (1 ml). La mezcla de reacción se sometió a reflujo durante la noche. La solución de reacción se añadió a resina de MP-TsOH (2-3 eq) y se diluyó con CH_3CN . La suspensión se agitó durante la noche. La mezcla se filtró y el filtrado se concentró proporcionando A3 ($R^1 = 3,5$ -difluorobencilo, $R^3 = CH_3$ y $R^4 = CH_2CH(CH_3)_2$).

Procedimiento A, Etapa 3:

A una solución de **A3** (R¹ = 3,5-difluorobencilo, R³ = CH₃ y R⁴ = CH₂CH(CH₃)₂) (10 mg) en CH₃OH (1 ml) se añadió NH₄OH (0,44 ml) e hidroperóxido de *t*-butilo (0,1 ml) y la mezcla de reacción se agitó durante 2 d. La solución se concentró, el residuo resultante se disolvió en CH₃OH (1,2 ml) y se trató con resina de ácido sulfónico. La suspensión se agitó durante la noche y la resina se lavó con CH₃OH (4 x 10 min) antes de tratarse con NH₃ 2 N en CH₃OH durante 1 h. La suspensión se filtró y el filtrado se concentró dando el material en bruto que se purificó por HPLC preparativa/EM-CL eluyendo con un gradiente de CH₃CN/H₂O proporcionando **A4** (R¹ = 3,5-difluorobencilo, R² = H, R³ = CH₃ y R⁴ = CH₂CH(CH₃)₂). RMN (CD₃OD): δ 6,9, m, 3H; δ 4,8-4,9, m; δ 1,75, d, 2H; δ 1,5, m, 1H; δ 1,42, s, 3H; δ 0,85, d, 3H; δ 0,65, d, 3H. ES EM-CL (m/e) 296,1.

Los siguientes compuestos se sintetizaron usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.	
1	O NH NH NH	223	224	94	HN=NO	363	364	_

35

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
2	O NH NH	223	224	95	HONNO	363	364
3	O NH	225	226	96	Q Q Q Q N NH NH	369	370
4	O NH NH	225	226	97	HN NH ON NH	374	375
5	HO NH NH	227	228	98	HN=NO	375	376
6	O NH NH	237	238	99	HN=\N\O	375	376
7	NH NH	239	240	100	HN=N+O	377	378

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
8	O=\NH NH	239	240	101	HO HN N	377	378
9	O NH	239	240	102	HO	377	378
10	O NH	240	241	103	ON NH	381	382
11	O NH NH	241	242	104	N NH NH	382	383
12	HO NH	241	242	105	O NH	385	386
13	O NH NH	251	252	106	HN=N+O	385	386

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
14	O NH	253	254	107	O N NH O NH	386	387
15	O= NH NH	254	255	108	HN N N N N N N N N N N N N N N N N N N	389	390
16	O NH NH	255	256	109	OH NH	391	392
17	HO NH NH	255	256	110	HN	391	392
18	THN N OH	255	256	111	HN	391	392
19	O NH	260	261	112	HN=NO	391	392

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
20	O NH NH NH	260	261	113	HN	393	394
21	NH NH	265	266	114	HN=(N)O	393	394
22	O NH NH	265	266	115	O NH NH	400	401
23	O NH NH	265	266	116	HN	401	402
24	O= NH NH NH	267	268	117	HN	401	402
25	O=\NH	268	269	118	HN	401	402
26	O NH	268	269	119	HN=NO NNO NNO	401	402

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
27	O NH NH	269	270	120	HONO	403	404
28	O NH NH	273	274	121	HO NO HO	403	404
29	O NH NH NH	273	274	122	HQ N N N	403	404
30	N NH NH NH	274	275	123	HN	405	406
31	N NH NH	274	275	124	HN=N-O	405	406

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
32	O NH NH	274	275	125	HN	409	410
33	O=\NH NH NH	277	278	126	HN=NO	409	410
34	S NH	279	280	127	HN=N+O	409	410
35	O=\NH	280	281	128	HN	409	410
36	O NH NH	280	281	129	O N N N N N N N N N N N N N N N N N N N	411	412
37	ما	280	281	130		413	414

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
38	O NH	280	281	131	HIN NO	413	414
39	O NH NH	281	282	132	O N NH NH	414	415
40	O NH NH	282	283	133		415	416
41	O= NH NH	282	283	134	HN	415	416
42	O= NH	282	283	135	HN	415	416
43	O NH	283	284	136	OH N N N N N N	417	418

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
44	O NET	285	286	137		419	420
45	N NH	287	288	138	HN=NO	421	422
46	O NH NH NH	287	288	139	HN=N+O	423	424
47	N-NH N-NH	289	290	140	HN	425	426
48	N-NH O-NH	293	294	141	HO N O	425	426
49	N NH NH	294	295	142	HN 2 H	425	426

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
50	O= NH NH NH	294	295	143	HN=N+O	427	428
51	O=\NH	295	296	144	HN=NO	429	430
52	O NH NH	296	297	145	O= NH NH	430	431
53	O NH NH NH	301		146	HN=N-O	430	431
54	O NH NH	303	304	147	O= NH	431	432
55	0-N-NH	304	305	148	O O NH	433	434

			(00)	110110001011	,		
Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
56	O N±O NH O+ NH	304	305	149	HNN	437	438
57	O NH	305	306	150	HO HO HN=N O	439	440
58	O=\NH\NH	307	308	151	O'N' CHAPTER OF THE PARTY OF TH	440	441
59	O NH NH NH	307	308	152	O=NOO	440	441
60	O NH	308	309	153	O NH NH O	441	442

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
61	O NH NH NH	310	311	154	HN	441	442
62	O= N-NH	317	318	155		442	443
63	O=NH NH	319	320	156	F-CONTO	447	448
64	O NH	322	323	157	O N NH	449	450
65	O N NH	324	325	158	O NH	455	456
66	F F NH NH	327	328	159	a-Chine	463	464

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
67	F F NH	327	328	160	O HN= HN=	463	464
68	Q N NH NH	327	328	161	HN-N-O	471	472
69	O NH	327	328	162	HN= N	473	474
70	O NH NH NH	328	329	163	THE NOTE OF THE PARTY OF THE PA	481	482
71	O NH	330	331	164	ON NH	481	482
72	N NH NH	331	332	165	Br N O	487	488

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
73	NH NH	331	332	166	H,N-S=0	488	489
74	O NH NH NH	335	336	167	HINNING	499	500
75	NH NH	335	336	168	N N N N N N N N N N N N N N N N N N N	504	505
76	O=S O=N+NH	337	338	169	WH NAME OF THE PARTY OF THE PAR	523	524
77	Br O NH	337	338	170	HN H NH NH	525	526
78	N NH NH NH	342	343	171	O NH O NH	525	526

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
79	HNNNO	345	346	172	NH Br	527	528
80	HN=N-O	345	346	173	NH NH Br	528	529
81	O NH NH	349	350	174		535	536
82	HN	349	350	175		535	536
83	O NHH	351	352	176	THE CANALITY OF THE PARTY OF TH	535	536
84	Br NH	351	352	177	NH NH NH	535	536
85	HN=NO	351	352	178	C STORY OF THE	550	551

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
86	O= NH NH	359	360	179	HN O	554	555
87	HNENDO	361	362	180	NH N	556	557
88	HN	361	362	181		569	570
89	HN=N	361	362	182	N NH	581	582
90	O=\NH NH	363	364	183	NH NH NH	374	NA

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
91	HO	363	364	184	NH NH NH NH	388	NA
92	HN	363	364	185	O NH NH	337	RMN
93	HO H	363	364	186	O NH NH	351	RMN

Procedimiento B

Se usó un procedimiento bibliográfico modificado (Ugi, I. Angew. Chem. 1962, 74 9-22).

Procedimiento B, Etapa 1:

5

A una solución de **B1** (sal de HCl, R^1 = 3-clorofenetilo) (1,1 g, 5,73 mmoles) en CH₃OH anhidro (15 ml) se añadió tiocianato de potasio (0,56 g, 5,73 mmoles). La mezcla de reacción se calentó a 60 °C durante 1 h. La suspensión se filtró y el filtrado se añadió a **B5** (R^3 =Me, R^4 = i Bu) (0,72 ml, 5,73 mmoles) e isocianuro de bencilo (0,77 ml, 6,3 mmoles). La mezcla se agitó durante la noche antes de concentrar la solución y el residuo se purificó por cromatografía ultrarrápida eluyendo con acetato de etilo en hexano dando 0,28 g de **B2** (R^3 = CH₃, R^4 = CH₂CH(CH₃)₂ y R^1 = 3-clorofenetilo).

Procedimiento B, Etapa 2:

Una solución de 40 % de HCl concentrado en CH₃CH₂OH se añadió a **B2** (R³ = CH₃, R⁴ = CH₂CH(CH₃)₂, y R¹ = 3-clorofenetilo) y la solución se calentó en un microondas a 160 °C durante 30 min. La solución se concentró y se purificó mediante HPLC preparativa de fase inversa eluyendo con un gradiente de CH₃CN/H₂O (con 0,1 % de ácido fórmico) proporcionando **B3** (R³ = CH₃, R⁴ = CH₂CH(CH₃)₂ y R¹ = 3-clorofenetilo).

Procedimiento B, Etapa 3:

El compuesto **B4** (R^2 = H, R^3 = CH₃, R^4 = CH₂CH(CH₃)₂ y R^1 =3-clorofenetilo) se preparó a partir de **B3** (R^3 = CH₃, R^4 = CH₂CH(CH₃)₂ y R^1 =3-clorofenetilo) siguiendo un procedimiento similar al Procedimiento A, Etapa 3. RMN (CD₃OD): δ 8,1, a, 1H; δ 7,35, s, 1H; δ 7,25, m, 3H; δ 3,6, m, 1H; δ 3,4, m, 1H; δ 3,0, m, 1H; δ 2,8, m, 1H; δ 1,75, m, 1H; δ 1,6, m, 1H; δ 1,35, m, 1H; δ 1,2 s, 3H; δ 0,8, m, 6H. ES_EM-CL (m/e): 308,1

Los siguientes compuestos se prepararon usando procedimientos similares

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
545	o=NNH a	251	252	549	o NH a	371	372
546	O= NH NH O	293	294	550		413	
547	O NH O	307	308	551	O NH O	265	
548	a NH a	357	358				

Procedimiento C

Procedimiento C, Etapa 1:

5

10

Una solución de C1 ($R^3 = R^4 = CH_2CH_2CH_3$) (50 mg, 0,25 mmoles) y C4 (R^1 =3-clorofenilo) (38 μ l, 0,26 mmoles) se sometió a reflujo durante la noche. Se añadió resina de trisamina (2 eq) y resina de poliestireno-isocianato (2 eq) y la mezcla se agitó. Después de 3 h, la suspensión se filtró y la resina se lavó con CH_2CI_2 (3x) y CH_3OH (3x). El filtrado se concentró proporcionando C2 ($R^1 = 3-CI-C_6H_4$, $R^3 = R^4 = CH_2CH_2CH_3$) (60 mg, 68 %).

Procedimiento C, Etapa 2:

El compuesto **C3** (R¹ = 3-Cl-C₆H₄, R² = H, R³ = R⁴ = CH₂CH₂CH₂CH₃) se preparó a partir de **C2** (R¹ = 3-Cl-C₆H₄, R³ = R⁴ = CH₂CH₂CH₂CH₃) siguiendo un procedimiento similar al Procedimiento A, Etapa 3. RMN (CDCl₃): δ 7,4, m, 2H; δ 7,2, m, 2H; δ 5,0, s, 2H; δ 1,7, m, 4H; δ 1,1, m, 8H; δ 0,7; m, 6H. ES_EM-CL (m/e): 336,1.

Los siguientes compuestos se prepararon usando un procedimiento similar.

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
641	NH NH	209	210	655	NH OH	329	330
642	NH NH	211	212	656	HO O NH	329	330
643	NH NH O	215	216	657	O N NH	335	336
644	NH N NH	225	226	658	HN NH HO	335	336

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
645	NH OH	239	240	659	NH NH OH	335	336
646	NH NH	245	246	660	NH NH OH	335	336
647	NH NH NH	246	247	661	HN NH NH	335	336
648	NH NH	251	252	662	NH NH O	352	353
649	O NH NH HO	267	268	663	NH N	352	353
650	O NH O NH O O	309	310	664	NH NH Br	377	378

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
651	O NH ONH ONH	317	318	665	O NH	385	386
652	N-NH N-NH	319	320	666	O NH	391	392
653	N-NH NH Br	323	324	667	NH NH NH NH	420	421
654	NH Br	324	325	668	N N N N N N N N N N N N N N N N N N N	420	421

Procedimiento D

5 **Procedimiento D, Etapa 1:**

Una mezcla de **D1** ($R^3 = R^4 = CH_2C_6H_5$) (20 g), cianuro de potasio (40 g) y carbonato de amonio (15 g) en etanol (100 ml) y H_2O (200 ml) se calentó en un matraz cerrado a 130 °C durante la noche dando 25 g de **D2** ($R^3 = R^4 = CH_2C_6H_5$) después de la filtración, seguido de lavado con agua.

Procedimiento D, Etapa 2:

Una solución de KOH 2 N (3 eq) se añadió a **D2** ($R^3 = R^4 = CH_2C_6H_5$) (1 eq) y se irradió mediante microondas a 185 °C durante 3 h, seguido de la adición de HCl concentrado a la solución hasta que se obtuvo un pH = 2-3. El sólido se filtró y se lavó con agua proporcionando **D3** ($R^3 = R^4 = CH_2C_6H_5$).

Procedimiento D, Etapa 3:

Una solución de trimetilsilildiazometano en hexano (2 N) (2 eq) se añadió gota a gota a una solución de **D3** ($R^3 = R^4 = CH_2C_6H_5$) (1 eq) en CH_3OH anhidro (30 ml). Después de 1 h se añadieron 2 eq adicionales de trimetilsilildiazometano

en hexano (2 N) y la reacción se agitó durante 20 minutos antes de concentrarse. El residuo se disolvió en una solución de HCl 0,2 N (25 ml) y se lavó con éter (3x). Se añadió una solución saturada de Na_2CO_3 a la fase acuosa hasta que el pH de la solución fue básico. La solución se extrajo con acetato de etilo (3x). Los extractos orgánicos se combinaron, se secaron sobre Na_2SO_4 y se concentraron proporcionando D4 ($R^3 = R^4 = CH_2C_6H_5$).

5 Los siguientes aminoésteres se prepararon usando un procedimiento similar.

$$H_{2}N$$
 $H_{2}N$
 H

Procedimiento E

CBZ
$$\stackrel{\text{H}}{\longrightarrow}$$
 OH $\stackrel{\text{C}}{\longrightarrow}$ OH $\stackrel{\text{C}}{$

Procedimiento E, Etapa 1:

10

15

20

Se añadió gota a gota cloruro de tionilo (0,47, 6,38 mmoles) a una solución de **E1** ($\mathbb{R}^3 = \mathrm{CH_2CH_2C_6H_5}$) (2 g, 6,38 mmoles) y dimetilacetal de benzaldehído (0,96 ml, 6,38 mmoles) en THF anhidro a 0 °C bajo N₂. Después de 5 min se añadió ZnCl₂ (0,87 g, 6,38 mmoles) y la mezcla de reacción se agitó a 0 °C. Después de 3 h se añadieron una cantidad adicional de ZnCl₂ (0,18 g, 1,28 mmoles) y cloruro de tionilo (0,1 ml, 1,28 mmoles) y se agitó durante 1 h a 0 °C. La mezcla de reacción se vertió en una suspensión con agitación de hielo/H₂O. La mezcla se agitó ocasionalmente hasta que el hielo se fundió. La solución acuosa se extrajo con éter (3x). Los extractos orgánicos combinados se lavaron con H₂O (3x), una solución acuosa sat. de NaHCO₃ (1x) y H₂O (2x). La solución orgánica se secó sobre Na₂SO₄, se filtró y se concentró. El material en bruto se purificó por cromatografía ultrarrápida eluyendo con acetato de etilo en hexano dando el compuesto **E2** ($\mathbb{R}^3 = \mathrm{CH_2CH_2C_6H_5}$).

Procedimiento E, Etapa 2:

Una solución de hexametildisilazida de litio en hexano (1,0 M, 1,65 ml, 1,64 mmoles) se añadió gota a gota a una solución de **E2** (R³ = CH₂CH₂C₆H₅) (600 mg, 1,49 mmoles) y HMPA (0,85 ml) en THF (6,5 ml) enfriada a -78 °C bajo N₂.

Después de 15 min se añadió gota a gota yoduro de isobutilo (0,52 ml, 4,48 mmoles) y la mezcla de reacción se agitó a -78 °C durante 3 h. La reacción se calentó hasta -65 °C, se agitó durante 2 h y se calentó hasta ta durante la noche. La solución de reacción se vertió en una mezcla de NaHCO₃ sat. (ac)/éter/hielo. La fase acuosa se extrajo con éter (3x). Los extractos orgánicos se combinaron y se lavaron con salmuera (2x). La solución orgánica se secó sobre Na₂SO₄, se filtró y se concentró. El material en bruto se purificó por cromatografía ultrarrápida eluyendo con acetato de etilo en hexano dando el compuesto **E3** $(R^3 = CH_2CH_2C_6H_5, R^4 = CH_2CH(CH_3)_2)$.

Procedimiento E, Etapa 3:

5

10

15

20

Una solución de metóxido de litio (1 N en CH_3OH) (0,36 ml, 0,36 mmoles) se añadió al compuesto **E3** ($R^3 = CH_2CH_2C_6H_5$, $R^4 = CH_2CH(CH_3)_2$). La mezcla de reacción se agitó a ta durante 50 min. Se añadieron 0,55 eq adicionales de metóxido de litio. Después de 2,5 h se añadió una solución acuosa sat. de NaHSO₃ (0,75 ml) y acetato de etilo (3 ml) a la mezcla de reacción y se agitó durante 15 min. La suspensión se filtró. El sólido blanco resultante se lavó con una solución acuosa sat. de NaHSO₃ (1 x) y acetato de etilo (1 x). La fase acuosa del filtrado se separó y se extrajo con acetato de etilo (2x). Los extractos orgánicos se combinaron y se lavaron con una solución acuosa sat. de NaHSO₃ (8x). La solución orgánica se secó sobre Na₂SO₄, se filtró y se concentró proporcionando **E4** ($R^3 = CH_2CH_2C_6H_5$, $R^4 = CH_2CH(CH_3)_2$) (109 mg, 87 %).

Procedimiento E, Etapa 4:

A una solución de **E4** (R^3 = $CH_2CH_2C_6H_5$, R^4 = $CH_2CH(CH_3)_2$) (109 mg, 0,28 mmoles) en CH_3OH (4 ml) se añadió HCl 1 N (0,28 ml, 0,28 mmoles) y 20 % de hidróxido de paladio sobre carbono (22 mg). La mezcla de reacción se hidrogenó a 40 psi. Después de 2,5 h, la reacción se filtró y el catalizador se lavó con CH_3OH (3x). El filtrado se concentró proporcionando **E5** (R^3 = $CH_2CH_2C_6H_5$, R^4 = $CH_2CH(CH_3)_2$) (78 mg, 96 %).

Los siguientes aminoésteres se prepararon usando un procedimiento similar.

25

Procedimiento F

5

$$\begin{array}{c|c}
 & O \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Una solución de 500 ml de metanol de 20 g de **D5** (R³ = bencilo, n = 1) con 1,5 eq de HCl se hidrogenó con 1 g de Rh/C (5 % peso/peso) y 2 g de Pt/C (5 % peso/peso) a 60 psi durante 2 días. El sólido se filtró y se lavó con metanol en exceso. La solución combinada se evaporó dando 20 g de **F1** (R³ = ciclohexilmetilo, n = 1) como sal de HCl.

Los siguientes aminoésteres fueron ejemplos preparados usando un procedimiento similar.

$$H_{2}N$$
 $H_{2}N$
 H

Procedimiento G

Procedimiento G, Etapa 1:

10

15

A una solución de **G1** ($R^1 = CH_2(3-CIC_6H_4)$ y $R^3 = CH_3$) (400 mg, 1,23 mmoles, generada siguiendo un procedimiento similar al Procedimiento C, Etapa 1) en etanol (5 ml) se añadió hidróxido de litio monohidratado (100 mg, 2,45 mmoles) en H_2O (0,5 ml). Después de 2,5 h se añadió otra porción de hidróxido de litio monohidratado (100 mg, 2,45 mmoles). Después de 5,5 h, la mezcla de reacción se diluyó con H_2O (15 ml) y se extrajo con éter (2x). Se añadió una solución al 30 % de HCl a la fase acuosa hasta que su pH = 1 a 2. La solución se saturó con NaCl y se extrajo con acetato de etilo (3x). La solución orgánica se secó sobre Na_2SO_4 , se filtró y se concentró proporcionando G2 ($R^1 = CH_2(3-CIC_6H_4)$ y $R^3 = CH_3$) (357 mg, 93 %).

Procedimiento G, Etapa 2:

Una solución de bencilamina (1,2 eq) se añadió a $\mathbf{G2}$ (R¹ = $CH_2(3\text{-}CIC_6H_4)$ y R³ = CH_3) (1 eq), HOBT (1,5 eq) y resina de poliestireno-EDC (94 mg, 1,53 mmoles/g, 3 eq) en 1:1 de THF:CH₃CN (1 ml). La mezcla de reacción se agitó durante la noche a ta. Se añadió resina de trisamina (85 mg, 3,38 mmoles/g, 6 eq) y resina de isocianato (100 mg, 1,47 mmoles/g, 3 eq). Después de 6 h, la suspensión se filtró y el filtrado se concentró proporcionando $\mathbf{G3}$ (R¹ = $CH_2(3\text{-}CIC_6H_4)$, R³= CH_3 , R¹⁵ = $CH_2C_6H_5$ y R¹⁶ = H).

Procedimiento G, Etapa 3:

5

El compuesto **G4** (R¹ = $CH_2(3-CIC_6H_4)$, R² = H, R³ = CH_3 , R¹⁵ = $CH_2C_6H_5$ y R¹⁵ = H) se preparó a partir de **G3** (R¹ = $CH_2(3-CIC_6H_4)$, R³ = CH_3 , R¹⁵ = $CH_2C_6H_5$ y R¹⁶ = H) siguiendo un procedimiento similar al Procedimiento A, Etapa 3.

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
669	Q NNH ONH NH	322	323	682	O NHO NHO NHO NHO NHO NHO NHO NHO NHO NH	412	413
670	a o NHO NHO NHO	334	335	683	O NHO	414	415
671	O NHO	336	337	684	O NINHO NHO NHO NHO NHO NHO NHO NHO NHO NHO	414	415
672	O NHO	348	349	685	O NIHO NIHO NIHO NIHO NIHO NIHO NIHO NIH	414	415
673	a o NHO	364	365	686	O NHO NHO NHO NHO	421	422

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
674	Q NHO NHO NH	364	365	687	O NH O NH	428	429
675	O NHO NHO	376	377	688	a NH NH O	434	435
676	a NHO NHO NHO NHO	384	385	689	Q O N NH NHO NHO	442	443
677	a NHO NHO NHO NHO	390	391	690	A CN-O	449	450
678	a O NHO NHO NHO	393	394	691	O NHO	461	462

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
679	O NHO	398	399	692	STATE OF THE PARTY	511	512
680	a NH NH NHO	398	399	693	O NH O NH O NH O NH	511	512
681	Q NHO NHO	406	407				

Procedimiento H

5 Procedimiento H, Etapa 1:

10

A una solución de **H1** (R^3 = CH₃) (5 g, 39 mmoles) en una mezcla 1:1 de NaHCO₃ 0,5 M:CH₃CH₂OH se añadió R^1 -NCS (R^1 =3-clorobencilo) (11,5 ml, 78 mmoles). La mezcla de reacción se calentó a 50 °C durante la noche. La reacción se enfrió y se diluyó con agua. La fase acuosa se extrajo con acetato de etilo (5x). Los extractos orgánicos se combinaron, se lavaron con agua (2x) y se secaron sobre Na₂SO₄. La solución se filtró y el disolvente se eliminó dando un pequeño volumen de solución. Se añadió hexano y la suspensión resultante se filtró dando 6,8 g de un sólido **H2** (R^3 = CH₃, R^1 = CH₂(3-ClC₆H₄)) (61 %).

Procedimiento H, Etapa 2:

El compuesto **H3** ($R^3 = CH_3$, $R^1 = CH_2(3-CIC_6H_4)$) se sintetizó a partir de **H2** ($R^3 = CH_3$, $R^1 = CH_2(3-CIC_6H_4)$) siguiendo un procedimiento similar al Procedimiento A, Etapa 3.

Procedimiento H, Etapa 3:

A una solución de **H3** en bruto (R³ = CH₃, R¹ = CH₂(3-CIC₆H₄)) (14 mmoles) en una mezcla 1:3 de CH₃OH:THF se añadió NaHCO₃ 0,5 M en H₂O (28 ml, 14 mmoles) y dicarbonato de di-terc-butilo (3,69 g, 16,9 mmoles). La reacción se agitó a ta durante 2,5 h y luego se guardó a -10 °C durante la noche. La reacción se diluyó con salmuera y se extrajo con acetato de etilo (4x). Los extractos orgánicos se combinaron y se lavaron con salmuera (1x). La solución orgánica se secó sobre Na₂SO₄, se filtró y se concentró. El material en bruto se purificó por cromatografía ultrarrápida eluyendo con acetato de etilo en hexano proporcionando 1,5 g de **H4** (R¹ = CH₂(3-CIC₆H₄) y R³ = CH₃).

Procedimiento H, Etapa 4:

Una solución de anhídrido tríflico (128 μ l, 0,76 mmoles) en CH₂CI₂ (5 ml) se añadió gota a gota a una solución de **H4** (R¹ = CH₂(3-CIC₆H₄) y R³ = CH₃) (200 mg, 0,55 mmoles) y 2,6-lutidina (176 μ l, 2,18 mmoles) a -30 °C. La mezcla de reacción se agitó durante 1,5 h. Se añadió agua (10 ml) a -20°C y el baño de hielo se retiró. La reacción se agitó hasta que alcanzó 0 °C. La fase orgánica se separó, se secó sobre Na₂SO₄, se filtró y se concentró proporcionando 310 mg de **H5** (R¹ = CH₂(3-CIC₆H₄) y R³ = CH₃).

Procedimiento H, Etapa 5:

15

20

25

Una solución de **H5** en bruto ($R^1 = CH_2(3-CIC_6H_4)$ y $R^3 = CH_3$) (0,11 mmoles) y amoniaco 7 N en metanol (R^{21} -H = NH₂-H) (10 eq) se agitó durante la noche a ta. La solución de reacción se concentró. El material en bruto se purificó usando HPLC preparativa de fase inversa eluyendo con un gradiente de CH_3CN/H_2O con 0,1 % de ácido fórmico dando **H6** ($R^1 = CH_2(3-CIC_6H_4)$, $R^3 = CH_3$, $R^{21} = NH_2$).

Procedimiento H, Etapa 6:

Una solución de ácido trifluoroacético al 50 % en CH_2Cl_2 (2 ml) se añadió a **H6** (R¹ = $CH_2(3\text{-}CIC_6H_4)$, R³ = CH_3 , R²¹ = NH_2). Después de 40 min el disolvente se evaporó y el residuo se purificó por HPLC preparativa/EM-CL eluyendo con un gradiente de CH_3CN/H_2O proporcionando **H7** (R¹ = $CH_2(3\text{-}CIC_6H_4)$, R³ = CH_3 , R²¹ = NH_2). RMN (CDCl₃), δ 7,45, m, 3H; δ 7,35, m, 1H; δ 4,9, m, 2H; δ 3,5, m, 2H; δ 1,65, s, 3H. ES EM-CL (m/e) 267,07.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
694	HN H NH ₂	238	239	702	HN H	320	321
695	NH NH	248	249	703	HN H	328	329
696	HN H C	257	258	704	NH I	334	335

	(continuación)								
Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.		
697	NH NH N N N N	264	265	705	NH N	342	343		
698	O NH NH H ₂ N	266	267	706	NH NH N	354	355		
699	HN H	292	293	707	O NH NH NH	372	373		
700	NH NO	308	309	708	NH NHN	418	419		
701	NH NH	314	315	709	O NH NH NH NO	483	484		

Procedimiento I

Procedimiento I, Etapa 1:

5

10

15

Se añadió resina de dietilaminometilpoliestireno (5 eq) a una solución de la sal de formiato de I1 ($R^1 = CH_2(3-CIC_6H_4)$, $R^3 = CH_3$ y $R^{16}=H$) en CH_2CI_2 y la suspensión se agitó. Después de 15 min, la mezcla se filtró y la resina se lavó con CH_2CI_2 (4x). El filtrado se concentró proporcionando la base libre I1 ($R^1 = CH_2(3-CIC_6H_4)$, $R^3 = CH_3$ y $R^{16}=H$).

Una solución de ${\bf R}^{15}{\bf COOH}$ (${\bf R}^{15}{\bf =}$ fenetilo) (1,3 eq) se añadió a una mezcla de resina de EDC (41 mg, 1,53 mmoles/g, 3eq), HOBT (1,5 eq) y la base libre de ${\bf I1}$ (${\bf R}^1$ = ${\bf CH}_2(3{\text{-CIC}}_6{\bf H}_4)$, ${\bf R}^3$ = ${\bf CH}_3$ y ${\bf R}^{16}{\bf =}{\bf H}$) (0,021 mmoles) en 1:1 de ${\bf CH}_3{\bf CN}{:}{\bf THF}$. La suspensión se agitó durante la noche. Se añadió resina de poliestireno-isocianato (45 mg, 3 eq), resina de poliestireno-trisamina (40 mg, 6 eq) y una mezcla 1:1 de ${\bf CH}_3{\bf CN}{:}{\bf THF}$ (0,5 ml). La mezcla se agitó durante 6 h. La suspensión se filtró y el filtrado se concentró proporcionando ${\bf I2}$ (${\bf R}^1$ = ${\bf CH}_2(3{\text{-CIC}}_6{\bf H}_4)$, ${\bf R}^3$ = ${\bf CH}_3$, ${\bf R}^{16}{\bf =}{\bf H}$ y ${\bf R}^{15}$ = ${\bf CH}_2{\bf CH}_2{\bf C}_6{\bf H}_5$).

Procedimiento I, Etapa 2:

Se preparó **I3** (R¹ = CH₂(3-CIC₆H₄), R³ = CH₃, R¹⁶=H y R¹⁵ = CH₂CH₂C₆H₅) a partir de **I2** (R¹ = CH₂(3-CIC₆H₄), R³ = CH₃, R¹⁶=H y R¹⁵ = CH₂CH₂C₆H₅) usando un procedimiento similar al Procedimiento H Etapa 6.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
710	NH HN O	280	281	718	O NH NH	398	399
711	O NH	308	309	719	CI NH NH F	406	407
712	NH H	308	309	720	O NH H	410	11

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
713	O NH	334	335	721	O NH	410	11
714	ZE ZE LE	342	343	722		414	15
715	NH H	362	363	723	Q NH	420	21
716	H N N N N N N N N N N N N N N N N N N N	372	373	724	ANH NH NH NH	428	29
717	NH O	376	377	725	O NH HN O NH O NH O NH O NH O NH O NH O	511	12

Procedimiento J

5 Procedimiento J, Etapa 1:

Se añadió resina de dietilaminometilpoliestireno (5 eq) a una solución de $\mathbf{J1}$ (sal de TFA, R^1 = $CH_2(3-CIC_6H_4)$ y R^3 =

CH₃) en CH₂Cl₂ y la suspensión se agitó. Después de 15 min, la mezcla se filtró y la resina se lavó con CH₂Cl₂ (4x). El filtrado se concentró proporcionando la base libre. Una solución de $\mathbf{R}^{15}\mathbf{NCO}$ (\mathbf{R}^{15} = butilo) (2 eq) en CH₂Cl₂ se añadió a la base libre de $\mathbf{J1}$ (\mathbf{R}^1 = CH₂(3-ClC₆H₄) y \mathbf{R}^3 = CH₃) (0,021 mmoles) en 1:1 de CH₃CN:THF. La suspensión se agitó durante la noche. Se añadió resina de poliestireno-isocianato (45 mg, 3 eq), resina de poliestireno-trisamina (40 mg, 6 eq) y una mezcla 1:1 de CH₃CN:THF (0,5 ml). La mezcla se agitó durante 6 h. La suspensión se filtró y el filtrado se concentró proporcionando $\mathbf{J2}$ (\mathbf{R}^1 = CH₂(3-ClC₆H₄), \mathbf{R}^3 = CH₃ y \mathbf{R}^{15} = CH₂CH₂CH₂CH₃).

Procedimiento J, Etapa 2:

5

El compuesto $\mathbf{J3}$ (R¹ = CH₂(3-ClC₆H₄), R³ = CH₃ y R¹⁵ = CH₂CH₂CH₂CH₃) se preparó a partir de $\mathbf{J2}$ (R¹ = CH₂(3-ClC₆H₄), R³ = CH₃ y R¹⁵ = CH₂CH₂CH₂CH₃) siguiendo el procedimiento descrito en el Procedimiento H, Etapa 2.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
726	NH H	323	324	731	O NH IZ	377	378
727	THE PERSON NAMED IN COLUMN TO THE PE	337	338	732	NH N	413	414
728	a o NH IN O		352	733	NAME OF THE PERSON OF THE PERS	417	418
729	NH NH NH		358	734	Q NH NH	421	422
730	A PART IN THE PART	365	366	735	NH NH	425	426

Procedimiento K

Procedimiento K, Etapa 1:

Una solución de propil $R^{15}SO_2CI$ ($R^{15}=propilo$) (1,5 eq) se añadió a una suspensión de resina de poliestireno-diisopropiletilamina (18 mg, 3,45 mmoles/g, 3 eq) y la base libre de **K1** preparada usando el Procedimiento **H** ($R^1 = CH_2(3-CIC_6H_4)$) y $R^3 = CH_3$) (0,021 mmoles) en 1:1 de $CH_3CN:THF$. La suspensión se agitó durante la noche. Se añadió resina de poliestireno-isocianato (45 mg, 3 eq), resina de poliestireno-trisamina (40 mg, 6 eq) y una mezcla 1:1 de $CH_3CN:THF$ (0,5 ml). La mezcla se agitó durante 6 h. La suspensión se filtró y el filtrado se concentró proporcionando **K2** ($R^1 = CH_2(3-CIC_6H_4)$), $R^3 = CH_3$ y $R^{15} = CH_2CH_2CH_3$).

10 Procedimiento K, Etapa 2:

5

El compuesto **K3** (R¹ = CH₂(3-ClC₆H₄), R³ = CH₃ y R¹⁵ = CH₂CH₂CH₃) se preparó a partir de **K2** (R¹ = CH₂(3⁻ClC₆H₄), R³ = CH₃ y R¹⁵ = CH₂CH₂CH₃) siguiendo el procedimiento descrito en el Procedimiento H, Etapa 6.

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
736	NH N	316	317	740	OF SO F	442	443
737	NH NH NH NH NH NH NH NH NH NH NH NH NH N	344	345	741	A O NH O'S'S O	454	455
738	O NH NH OF SO O	372	373	742	ON NH HN SO OSO	492	493

Procedimiento L

(En el esquema, -Z-NH-C(O)R¹⁶- es equivalente a R¹ sustituido con R²¹, o R¹ sustituido con alquil-R²², en la que R²¹ y R²² son -N(R¹⁵)C(O)R¹⁶ y R¹⁵ es H, y en la que Z es alquilen-arileneno, alquilen-arileneno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heterocicloalquileno, alquilen-heterocicloalquileno, alquilen-heterocicloalquileno, o heterocicloalquileno o heterocicloalquileno opcionalmente sustituido)

10 **Procedimiento L, Etapa 1:**

15

20

Una solución de **L1** (R^3 = CH₃ y R^4 = CH₂CH(CH₃)₂) (1 eq) y Z = -para-metilen-bencilo) (1,05 eq) en CH₂Cl₂ se agitó a ta. La solución de reacción se concentró y se purificó por cromatografía ultrarrápida. El material se trató con 50 % de ácido trifluoroacético en CH₂Cl₂ durante 30 min. La solución se concentró. El residuo se disolvió en HCl 1 N (10 ml) y se lavó con éter (2x). Se añadió una solución saturada de Na₂CO₃ en H₂O a la fase acuosa hasta que la solución se volvió básica. La solución se extrajo con CH₂Cl₂ (3x). Los extractos de CH₂Cl₂ se combinaron, se secaron sobre Na₂SO₄, se filtraron y se concentraron dando **L2** (R^3 = CH₃, R^4 = CH₂CH(CH₃)₂, Z = para-(CH₂)C₆H₄(CH₂)-).

Procedimiento L, Etapa 2:

El compuesto L3 ($R^3 = CH_3$, $R^4 = CH_2CH(CH_3)_2$, $Z = para-(CH_2)C_6H_4(CH_2)$ -, $R^{16} = CH_2CH_2CH_2CH_3$) se preparó a partir de L2 ($R^3 = CH_3$, $R^4 = CH_2CH(CH_3)_2$, $Z = para-(CH_2)C_6H_4(CH_2)$ -) siguiendo el procedimiento descrito en el Procedimiento I, Etapa 1.

Procedimiento L, Etapa 3:

El compuesto **L4** (R^3 = CH₃, R^4 = CH₂CH(CH₃)₂, Z = para-(CH₂)C₆H₄(CH₂)-, R^1 = CH₂CH₂CH₂CH₃) se preparó a partir de (R^3 = CH₃, R^4 = CH₂CH(CH₃)₂, Z = para-(CH₂)C₆H₄(CH₂)-, R^{16} = CH₂CH₂CH₂CH₃) siguiendo el procedimiento descrito en el Procedimiento A, Etapa 3.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
743	O NH NH NH	316	317	761	NH ON NH	450	451
744	O N NH	316	317	762	NH NH	450	451
745	NH NH	330	331	763		450	451
746	NH ON NH	330	331	764	SAN NH	450	451
747	O N NH	344	345	765	AND SHAPE	464	465
748	O NH NH NH	344	345	766		464	465
749	O N N N N N N N N N N N N N N N N N N N	358	359	767	C NH	470	471

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
750	SH O NH	358	359	768	NH C=\NH	478	479
751	THE NEW YORK THE N	386	387	769		478	479
752	NAM	386	387	770	C. SHOW SHIP	484	485
753	O NH NH NH	386	387	771	O NH O NH O NH	484	485
754	THE STANK	400	401	772	DE TONNE NOT	492	493
755	O NH	400	401	773		492	493
755	O NH	400	401	773		492	493

			(,			
Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
756	O NINH	420	421	774	NH NH NH	519	520
757	ON NO WHA	434	435	775	ON NH ON NH	519	520
758	HANN OF THE PARTY	434	435	776	O N N N N N N N N N N N N N N N N N N N	533	534
759	NH ON NH	436	437	777	NOW NOW	533	534
760	O NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	436	437				

Procedimiento M

(En el esquema, -Z-NH-C(O)-NHR¹⁵- es equivalente a R¹ sustituido con R²¹, o R¹ sustituido con alquil-R²², en la que R²¹ y R²² son -N(R¹⁶)-C(O)-NHR¹⁵ y R¹⁶ es H, y en la que Z es alquilen-arileneno, alquilen-arilen-alquileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-alquileno, alquilen-heterocicloalquileno, alquilen-heterocicloalquileno, alquilen-alquileno, arileno, heteroarileno, cicloalquileno o heterocicloalquileno opcionalmente sustituido)

Procedimiento M, Etapa 1:

El compuesto **M2** ($R^3 = CH_3$, $R^4 = CH_2CH(CH_3)_2$, $Z = para-(CH_2)C_6H_4(CH_2)$ -, $R^{15} = 3,4$ -difluorofenilo) se preparó a partir de **M1** ($R^3 = CH_3$, $R^4 = CH_2CH(CH_3)_2$, $Z = para-(CH_2)C_6H_4(CH_2)$ -) siguiendo el procedimiento descrito en el Procedimiento J, Etapa 1.

5 Procedimiento M, Etapa 2:

El compuesto **M3** (R³ = CH₃, R⁴ = CH₂CH(CH₃)₂, Z = para-(CH₂)C₀H₄(CH₂)-, R¹⁵ = 3,4-difluorofenilo) se preparó a partir de **M2** (R³ = CH₃, R⁴ = CH₂CH(CH₃)₂, Z = para-(CH₂)C₀H₄(CH₂)-, R¹⁵ = 3,4-difluorofenilo) siguiendo el procedimiento descrito en el Procedimiento A, Etapa 3. RMN (CD₃OD) δ 7,45, m, 1H; δ 7,26, m, 4H; 7,24, m, 1H; δ 6,96, m, 1H; δ 4,8, m; δ 4,3, s, 2H; δ 1,69, m, 2H; δ 1,44, m, 1H; δ 1,37, s, 3H; δ 0,8, m, 3H; δ 0,63, m, 3H. ES_EM-CL (m/e) 430,27

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
778	H ₂ N HN O= NH NH	331	332	870	a D H NAH	461	462
779	O NH NH	359	360	871	O THE	461	462
780	THE BOOK NAME OF THE PARTY OF T	359	360	872	O NH	461	462
781	H NH NH	373	374	873	O NH NH NH NH	461	462
782	THE DESCRIPTION OF NAME OF NAM	373	374	874	O-N-NH N-NH N-NH N-NH	463	464

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
783	NH NH NH	373	374	875	N N N N N N N N N N N N N N N N N N N	466	467
784	NH ON NH	373	374	876		466	467
785	NA STATE OF THE ST	387	388	877	HN O NH NH NH	467	468
786	O NH	387	388	878	NH NH NH	469	470
787	NH NH	387	388	879	PH SHI	469	470

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
788	O NH NH NH	387	388	880	A HY O HY NH	471	472
789	N N N N N N N N N N N N N N N N N N N	401	402	881	O NH	471	472
790	THE STAN	401	402	882		472	473
791	THE STATE OF THE PARTY OF THE P	405	406	883	AND THE PROPERTY OF THE PROPER	472	473
792	O NH NH	407	408	884	O NHH NH NH	475	476
793	O HAD NH	407	408	885	HIN O	475	476

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
794	HN O NH ON NH	407	408	886	O THE STATE OF THE	475	476
795	O NH HN O	413	414	887	DH H CHAN	475	476
796	O NH	413	414	888	of the series	475	476
797	ME CHI HAM	418	419	889	O NH	475	476
798	HN-OONNH NH	418	419	890	Str. H. O. Maria	475	476

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
799	HN ON NH ON NH	421	422	891	F H H H N N N N N N N N N N N N N N N N	475	476
800	THE STATE OF THE S	421	422	892		475	476
801	Ch the comment	421	422	893	AN ON NH NH	475	476
802	O S NH	421	422	894	HN Q HN O NH NH	475	476

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
803	O THE	421	422	895		475	476
804	HN O NH NH	421	422	896	HZ H	477	478
805	HN O NH NH	421	422	897	THE STATE OF THE S	477	478
806	A H ANN NH	421	422	898	HN O	479	480

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
807	THE PART OF THE PA	423	424	899	O HE O NH	479	480
808	O N N N N N N N N N N N N N N N N N N N	423	424	900	N N N N N N N N N N N N N N N N N N N	480	481
809	Ship white	423	424	901	NA PROPERTY OF THE PROPERTY OF	483	484
810	NH NH	423	424	902	DATE OF WH	483	484
811	HN F HN O NH	425	426	903	HN O Br	485	486

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
812	HN O HN NH O NH	425	426	904	HN O HN O NH O NH	485	486
813	NH NH	427	428	905	HN O NH	485	486
814	HN HN O	429	430	906	TH NH NH	485	486
815	F NH	429	430	907		485	486
816	F O NH	429	430	908	O NH	489	490

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
817		432	433	909		489	490
818	N N N N N N N N N N N N N N N N N N N	432	433	910	A A A A A A A A A A A A A A A A A A A	489	490
819	HN O NH	432	433	911	HZ O HZ D HZ D HZ D HZ D F	491	492
820	O NH NH NH	433	434	912	F F F F F N N N N N N N N N N N N N N N	493	494

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
821	NH NH NH NH	433	434	913	F F F HN F HN SH	493	494
822		435	436	914	NH NH	493	494
823	HN O O NH	435	436	915	ANN	493	494
824		435	436	916	ME O PH O CHAN	496	497
825	HN O NH ON N	435	436	917	NH NH NH	496	497

,	., .
(continu	acion)
	acioni

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
826	HN O NH ON NH	435	436	918	THE STATE OF THE PART OF THE P	497	498
827	HN O NH	435	436	919	HN O NH ON NH	497	498
828	THE SHAPE	435	436	920	A H S NAH	499	500
829	NH NH NH	437	438	921	NH HAN SHA	501	502
830	STATE OF THE STATE	437	438	922	O HAH	501	502

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
831	O THE NAME OF THE PART OF THE	437	438	923	Z Z Z Z F F F F F F F F F F F F F F F F	502	503
832	, of the often	437	438	924	HN O NH NH F	502	503
833	D NH NH NH	437	438	925	N N N N N N N N N N N N N N N N N N N	502	503
834	NH NH NH	437	438	926	HN O HN O NH O NH	502	503

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
835	HN O HN O NH O NH	437	438	927	B A H NH	503	504
836	HN O NH NH NH	439	440	928	HN O NH ON N	505	506
837	F HN O	439	440	929	HN O	507	508
838	H C C C C C C C C C C C C C C C C C C C	439	440	930	F F F NOH	507	508

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
839	HZ O	441	442	931	O NH NH NH	507	508
840	HN O NH	441	442	932	WH THE THE THE THE THE THE THE THE THE TH	509	510
841	HN O NH O NH O	441	442	933	HIN HON NH NH NH	509	510
842	HN O NH ON NH	441	442	934	OF HE WH	509	510
843	LO NH OCHH	443	444	935	-O-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-	510	511

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
844	F F NH NH	443	444	936		511	512
845	HN N N N N N N N N N N N N N N N N N N	443	444	937	HZ H	511	512
846		447	448	938	NH NH NH	514	515
847	HN O NH	447	448	939	a the thirty of	515	516

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
848	TO HE CHINA	449	450	940	O HANNA MAN	515	516
849		450	451	941	O NH NH	519	520
850	N P H S NA	450	451	942	BY THE SAME	519	520
851	N H N N N N N N N N N N N N N N N N N N	450	451	943	HN NH ON NH	522	523
852	O TANK	451	452	944	ON THE STATE OF TH	523	524

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
853	DH NH	451	452	945	OF HAT OF WH	523	524
854	NH OF NH	451	452	946	HZ H	525	526
855	HN O NH OH	452	453	947	NH NH NH	527	528
856	No.	453	454	948	STATE OF THE STATE	529	530

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
857	THE SAME	453	454	949		533	534
858	NH NH NH	455	456	950	ON HONNING	537	538
859	THE STATE OF THE S	455	456	951	C NH	539	540
860	- O H	455	456	952	F NH	543	544
861	HN O	457	458	953	CHANGE OF THE PROPERTY OF THE	545	546

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
862	HN O HN O NH NH	457	458	954	A A A NH	545	546
863	HN O NH	457	458	955	OH NH OH NH	547	548
864	O THE NEW YORK THE	458	459	956	BH CHI CHAM	549	550
865	O HUH O	458	459	957	NH OF NH	553	554

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
866	THE RICHARD	460	461	958	HN O NH O	555	556
867		461	462	959	F OF PANH	559	560
868	HAN NH	461	462	960	HN O N N N N N N N N N N N N N N N N N N	559	560
869	O NH	461	462	961	F F F O N NH	387	

Procedimiento N

(En el esquema, -Z-NH-S(O)₂R¹⁶- es equivalente a R¹ sustituido con R²¹, o R¹ sustituido con alquil-R²², en la que R²¹ y R²² son -N(R¹6)-C(O)-NHR¹5 y R¹6 es H, y en la que Z es alquilen-arileneno, alquilen-arileneno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heterocicloalquileno, arileno, heteroarileno, cicloalquileno o heterocicloalquileno opcionalmente sustituido)

Procedimiento N, Etapa 1:

5

15

El compuesto **N2** (R³ = CH₃, R⁴ = CH₂CH(CH₃)₂, Z = para-(CH₂)C₆H₄(CH₂)-, R¹⁶ = CH₂CH(CH₃)₂) se preparó a partir de **N1** (R³ = CH₃, R⁴ = CH₂CH(CH₃)₂, Z = para-(CH₂)C₆H₄(CH₂)-) siguiendo el procedimiento descrito en el Procedimiento K, Etapa 1.

Procedimiento N, Etapa 2:

El compuesto **N3** ($R^3 = CH_3$, $R^4 = CH_2CH(CH_3)_2$, $Z = para-(CH_2)C_6H_4(CH_2)$ -, $R^{16} = CH_2CH(CH_3)_2$) se preparó a partir de **N2** ($R^3 = CH_3$, $R^4 = CH_2CH(CH_3)_2$, $Z = para-(CH_2)C_6H_4(CH_2)$ -, $R^{16} = CH_2CH(CH_3)_2$) siguiendo el procedimiento descrito en el Procedimiento A, Etapa 3.

Los siguientes compuestos se prepararon usando un procedimiento similar.

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
962	O=S-N NH NH	380	381	967	S.O HN.O N.NH	484	485
963	S: O N NH	380	381	968	NA NAT	484	485
964	O NH NH NH	394	395	969		498	499
965	OSS-N OSS-N OSS-N N-NH	394	395	970	O-S-N-NH	498	499

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.	
966	N, O HN S, O NH NH	451	452					_

Procedimiento O

Procedimiento O, Etapa 1:

Una solución de indol-6-metanol (400 mg, 2,72 mmoles), cloruro de terc-butildimetilsililo (816 mg, 5,41 mmoles) e imidazol (740 mg, 10,9 mmoles) en CH_2Cl_2 se agitó a ta durante la noche antes de evaporar el disolvente y someter el residuo a cromatografía usando acetato de etilo/hexano dando el producto $\mathbf{O2}$.

5 **Procedimiento O, Etapa 2:**

10

15

A una solución de **O2** (200 mg, 0,77 mmoles) en THF (10 ml) a -78 °C se añadió butil-litio (1,2 eq). La solución se agitó a -78 °C durante 5 min y luego se calentó a ta. La mezcla de reacción se enfrió a -78 °C y se añadió cloruro de *p*-toluenosulfonilo. La solución se calentó a ta y se agitó durante la noche. La reacción se inactivó con una solución acuosa saturada de K₂CO₃, se extrajo con acetato de etilo y CH₂Cl₂. El material en bruto se purificó por cromatografía ultrarrápida usando acetato de etilo/hexano proporcionando 360 mg de **O3**.

Procedimiento O, Etapa 3:

Una solución de butil-litio (1,2 eq) se añadió a una solución de **O3** (340 mg, 0,829 mmoles) en THF (20 ml). La mezcla de reacción se agitó durante 15 min a -78 °C, luego se burbujeó dióxido de azufre por la solución durante 15 min. Se añadió hexano (100 ml) a la mezcla de reacción. La mezcla de reacción se evaporó proporcionando **O4** que se usó en la siguiente etapa sin más purificación.

Procedimiento O, Etapa 4:

A una solución de $\mathbf{O4}$ (0,829 mmoles) en $\mathrm{CH_2Cl_2}$ enfriado a 0 °C se añadió N-clorosuccinimida (220 mg, 1,66 mmoles). Después de 2 h de agitación, la solución se filtró a través de un tapón de Celite. El filtrado se concentró proporcionando $\mathbf{O5}$.

20 Procedimiento O, Etapa 5:

A una solución de ${\bf O5}$ en piridina anhidra (3 ml) se añadió butilamina (100 μ l). La reacción se agitó a ta durante 4 d. La mezcla de reacción se repartió entre HCl 1 N y CH₂Cl₂. La fase orgánica se separó y se lavó con HCl 1 N (3x). La solución orgánica se secó sobre Na₂SO₄, se filtró y se concentró. El material en bruto se purificó por cromatografía ultrarrápida usando acetato de etilo/hexano dando ${\bf O6}$.

25 Procedimiento O, Etapa 6:

A una solución de **O6** (70 mg) en THF se añadió TBAF. La reacción se agitó a ta antes de purificar la mezcla de reacción por cromatografía usando acetato de etilo/hexano proporcionando 50 mg de **O7** (95 %).

Procedimiento O, Etapa 7:

A una solución de **07** (50 mg) en CH₂Cl₂ (5 ml) se añadió cloruro de tionilo (1 ml). La reacción se agitó durante 5 min y luego se evaporó proporcionando **08**.

Procedimiento O, Etapa 8:

A una solución de **O8** en CH₃OH (5 ml) se añadió azida de sodio (50 mg). La solución se agitó a ta durante la noche y el disolvente se evaporó. El residuo se purificó por cromatografía usando acetato de etilo/hexano proporcionando **O9** después de la purificación.

35 Procedimiento O, Etapa 9:

A una suspensión de **O9** (70 mg) en CH₃OH se añadió 1 eq de HCl (ac) y paladio sobre carbono. La mezcla de reacción se hidrogenó a 1 atm durante 20 min dando 90 mg del producto en bruto **O10**.

Procedimiento O, Etapa 10:

Una solución de hidróxido de litio (30 mg) en H₂O se añadió a una solución de **O10** (40 mg) en CH₃OH (3 ml). La reacción se agitó a ta durante 2 h y se añadió una porción adicional de LiOH (40 mg) y la solución se agitó durante 2 horas más. El disolvente se evaporó y el residuo se cromatografió usando acetato de etilo/hexano proporcionando **O11**.

Procedimiento P

Procedimiento P, Etapa 1:

5

10

15

25

Una solución de 300 ml de THF de 100 g de **P1** (R^{23} =n-Pr) se añadió a una suspensión de 38 g de LAH en 2 l de THF anhidro a 0 C. La mezcla de reacción se agitó a t.a. durante 1 h antes de añadir 30 ml de H₂O, 90 ml de NaOH al 15 % a 0 °C. La mezcla se agitó a t.a. durante una hora antes de añadir Na₂SO₄ (anh), la mezcla se filtró y la solución se evaporó dando un producto que se secó bajo vacío durante la noche. Este producto se disolvió en 600 ml de DCM y la solución se añadió en una solución de cloruro de oxalilo (37,3 ml) y DMSO (60,8 ml) en 1,4 l de DCM a -78 °C durante 40 min antes de añadir diisopropiletilamina (299 ml) a -78 °C. Se dejó que la reacción alcanzara -10 °C. La reacción se inactivó con 1 l de H₂O a -10 °C y la mezcla se extrajo con DCM. Después de eliminar de disolvente se obtuvo **P2** (R^{23} =Pr, 106 g). El material en bruto se usó para la siguiente etapa sin purificación.

Procedimiento P, Etapa 2:

A una solución de 1,5 I de DCM de **P2** (R^{23} =Pr, 106 g) se añadió p-Boc-aminometilbencilamina (1,1 eq) y triacetoxiborohidruro de sodio (1,1 eq) y la reacción se agitó a t.a. durante la noche. La reacción se inactivó con H_2O y el contenido se extrajo con DCM. Después de eliminar los disolventes el residuo se purificó por cromatografía usando una columna de gel de sílice eluida con 3 % de MeOH en DCM dando 42,5 g de **P3** (R^{23} =Pr).

Procedimiento P, Etapa 3:

Una solución de 10 ml de MeOH de **P3** (R²³=Pr, 110 mg) se hidrogenó usando Pd/C (5 %, 11 mg) a 1 atm de hidrógeno dando el producto **P4** (R²³=Pr) después de eliminar el disolvente y el catalizador.

20 Procedimiento P, Etapa 4:

A una solución de 10 ml de DCM de **P4** a 0 °C (R^{23} =Pr) se añadió trifosgeno (1,2 eq) y trietilamina (2,4 eq) y la solución se agitó a 0 °C durante 2 h antes de extraer la reacción con DCM/H₂O. Después de eliminar del disolvente, el residuo se purificó por cromatografía usando una columna de gel de sílice eluida con EtOAc/hexano dando un sólido blanco que se trató con HCl 2 N en dioxano durante 2 h. Después de eliminar del disolvente, el compuesto **P5** (R^{23} =Pr) se obtuvo como un sólido blanco (80 mg).

Los siguientes compuestos se sintetizaron usando procedimientos similares:

Procedimiento Q

Procedimiento Q, Etapa 1

A temperatura ambiente, **Q1** (R³=Me; R⁴= iBu) (1,00 g) y **Q8** (n=1, p=2, m=1) (1,24 g) en diclorometano (30 ml) se agitaron durante 42 h. Esta mezcla se concentró a vacío dando un aceite ámbar que se purificó sobre una columna de gel de sílice (200 ml) eluida con acetato de etilo/hexano dando **Q2** (n=1, p=2, m=1, R³=Me; R⁴= iBu), un aceite incoloro (1,59 g).

Procedimiento Q. Etapa 2

El compuesto **Q3** (n=1, p=2, m=1, R²=H, R³=Me; R⁴= iBu) se preparó a partir de **Q2** (n=1, p=2, m=1, R³=Me; R⁴= iBu) usando procedimiento similar al Procedimiento A Etapa 3.

Procedimiento Q, Etapa 3

15

25

El compuesto **Q3** (n=1, p=2, m=1, R²=H, R³=Me; R⁴= iBu) (1,37 g) en diclorometano anhidro (25 ml) se trató con dicarbonato de di-terc-butilo (0,68 g, 1,1 equiv.) y diisopropiletilamina (0,66 ml, 1,1.equiv.). La solución resultante se agitó a temperatura ambiente durante 20 h antes de diluirla con diclorometano y se lavó con ácido clorhídrico 1 N. La solución de diclorometano secada se concentró a vacío dando una película incolora (1,32 g) que se purificó sobre una columna de gel de sílice (125 ml) y se eluyó con hexano: acetato de etilo dando el compuesto **Q4** (n=1, p=2, m=1, R²=H, R³=Me; R⁴= i-Bu) como una espuma blanca (0,74 g).

Procedimiento Q, Etapa 4

El compuesto **Q4** (n=1, p=2, m=1, R²=H, R³=Me; R⁴= ⁱBu) (0,540 g) en EtOH absoluto (20 ml) se hidrogenó con 10 % de Pd/C (0,400 g) a 1 atm durante 2 h. La mezcla de reacción se filtró y el filtrado se concentró a vacío dando **Q5** (n=1, p=2, m=1, R²=H, R³=Me; R⁴=ⁱBu) como un aceite incoloro (0,35 g).

Procedimiento Q, Etapa 5

El compuesto **Q5** (n=1, p=2, m=1, R²=H, R³=Me; R⁴= iBu) (0,012 g) y HOBt (0,005 g) disuelto en acetonitrilo (0,8 ml) y tetrahidrofurano (0,25 ml) se trató con resina de EDC (0,080 g, 3 eq., 1,53 mmoles/g) en un pocillo de placa de microtitulación, seguido de la adición de una solución de dicloroetano 1 M (40 ul, 1,25 eq.). Después de tapar el pocillo y agitar durante 18 h, la mezcla se filtró y la resina se lavó con acetonitrilo (0,5 ml). La solución combinada se trató con resina de trisamina (0,050 g, 6 eq., 4,23 mmoles/g) y resina de isocianato (0,067 g, 3 eq., 1,53 mmoles/g) durante 18 h antes de filtrar la solución y el disolvente se eliminó a vacío dando **Q6** (n=1, p=2, m=1, R²=H, R³=Me; R⁴= iBu, R¹5 =

Me).

5

Procedimiento Q, Etapa 6.

Se mezcló una solución de diclorometano (1,0 ml) de $\bf Q6$ (n=1, p=2, m=1, R²=H, R³=Me; R⁴= $^{\rm i}$ Bu, R¹6 = Me) con ácido trifluoroacético (1,0 ml) y la solución se agitó durante 2 h antes de concentrarse. Se añadió éter dietílico (0,5 ml) y luego se concentró a vacío dando un residuo, que se purificó sobre una unidad de EM-CL prep dando $\bf Q7$ (=1, p=2, m=1, R2=H, R₃=Me; R₄= $^{\rm i}$ Bu, R₁5 = Me). RMN (CDCl₃): $^{\rm i}$ S 8,38, a, 2H; $^{\rm i}$ S 4,56, m, 1H; $^{\rm i}$ S 3,79, m, 1H; $^{\rm i}$ S 3,57, m, 2H; $^{\rm i}$ S 2,99, m, 1H; $^{\rm i}$ S 2,48, m, 1H; $^{\rm i}$ S 2,04, s, 3H; $^{\rm i}$ S 1,95, m, 1H; $^{\rm i}$ S 1,5-1,8, m, 5H; $^{\rm i}$ S 1,5, s, 3H; 1,25, m, 2H; $^{\rm i}$ S 0,95, m, 3H; $^{\rm i}$ S 0,85, m, 3H. ES_EM-CL (m/e) 309,17.

Los siguientes compuestos se prepararon usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
971	O N NH	308	309	1074	O N N N N N N N N N N N N N N N N N N N	428	429
972	O N NH	308	309	1075	N-NH O-NH	428	429
973	HN NH	310	311	1076	ON ON NH	428	429
974	O N NH NH NH	322	323	1077	CA NOT	128	429

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
975	O NH NH NH	324	325	1078	O N N N N N N N N N N N N N N N N N N N	428	429
976	O= NH NH NH	334	335	1079	O N NH O NH	430	431
977	O=\N-NH O-NH	336	337	1080	NH NH NH	430	431
978	O N NH O NH	348	349	1081	O NH NH O NH	430	431
979	O N NH	348	349	1082	S NH NH NH NH	432	433

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
980	O N NH	0	351	1083	ON HATH	432	433
981	ot not the state of the state o	350	351	1084		432	433
982	O N NH	350	351	1085	O A B A B A B A B A B A B A B A B A B A	432	433
983	O NH NH	360	361	1086	S NO NAH	432	433
984	O NH NH NH NH	360	361	1087	O N NH	432	433
985	O N NH	362	363	1088		438	439

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
986	O N NH	362	363	1089	O N NH NH	438	439
987	O N NH	364	365	1090	a O NH	438	439
988	O= NH	364	365	1091	FF ON NH	438	439
989	O N NH	364	365	1092	O NH NH	438	439
990	O N NH O NH	370	371	1093	O NH NH NH NH	440	441
991	O NAMA	370	371	1094		440	441

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
992	N NH	376	377	1095	C) N N N H H	440	441
993	S O NH	376	377	1096	O NH	440	441
994	S O NH	376	377	1097	O NH NH NH	442	443
995	O N NH O NH	378	379	1098	O N NH NH	442	443
996	O N NH O NH NH	378	379	1099	O NH	442	443

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
997	O NH	378	379	1100		442	443
998	S HN ON NH	378	379	1101	N NH NH	442	443
999	N N NH	379	380	1102	O NH NH NH	444	445
1000	O N NH NH NH	384	385	1103	S S S NH	444	445
1001	O NH NH NH	384	385	1104	NH NH	444	445

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1002	O P NO NINH	384	385	1105	O D MAN HAY	446	447
1003	O NH NH	386	387	1106	NH NH	446	447
1004	O NH NH NH	388	389	1107	O N N N N N N N N N N N N N N N N N N N	446	447
1005	N N N N N N N N N N N N N N N N N N N	389	390	1108	O NH O NH O NH	449	450
1006	O NH NH	390	391	1109	NO N	451	452
1007	S NH NH NH	390	391	1110	O=N-NH O=NH	452	453

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1008	O N N N N N N N N N N N N N N N N N N N	390	391	1111	O=\NH NH NH	452	453
1009	O NH	390	391	1112	O=\NH NH	452	453
1010		390	391	1113	O N NH	456	457
1011	S N N NH	390	391	1114		456	457
1012	S NH O= NH	390	391	1115	NH NH	456	457
1013	O NH O NH O NH	390	391	1116	S N HN H	458	459

	,		., .
•	con	tinii	1010n
	COL	ıııı ıuc	ación)

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1014	O NH NH	390	391	1117	O NH NH NH	460	461
1015	O=NH N-NH N-NH	392	393	1118	O NHANH	460	461
1016	O N NH	392	393	1119		460	461
1017	O NH NH NH	392	393	1120	O N NH	460	461
1018	HA H	394	395	1121	O NH NH NH	462	463

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1019	O NH ON NH ON NH	398	399	1122	O NH	462	463
1020	O NH NH	398	399	1123	N N NH	462	463
1021	O N N N N N N N N N N N N N N N N N N N	398	399	1124	O NH	462	463
1022	CH NOW NH	398	399	1125	O-SNH NH	462	463

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1023	O=ZNH NH NH	398	399	1126	O NH NH NH	464	465
1024	O N NH NH NH	400	401	1127	HAN	466	467
1025	O N NH NH NH	400	401	1128	O N NH NH NH NH	466	467
1026		400	401	1129		470	471

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1027	O= NH NH NH O NH	400	401	1130	O N N N N N N N N N N N N N N N N N N N	472	473
1028	O=NH N-NH N-NH	400	401	1131	O N N N N N N N N N N N N N N N N N N N	474	475
1029	O NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	400	401	1132	NH NH	474	475
1030	O NH	400	401	1133	O O N NH O NH O NH	476	477
1031	O NH	400	401	1134	O NH NH NH	476	477

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1032	O NH NH NH	402	403	1135	O NH NH NH	478	479
1033		402	403	1136	O NIH	482	483
1034	O N NH O NH	404	405	1137	N NH	482	483
1035	S N N N N N N N N N N N N N N N N N N N	404	405	1138		482	483

	,	., \
- 1	continι	Iacion)
١	COLITI	addidii)

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1036	S NH NH	404	405	1139	O NH O NH O NH	488	489
1037	O NH NH	404	405	1140	NH NH	490	491
1038	O NH	404	405	1141	OHO CHOOF	500	501
1039	NH NH	404	405	1142		502	503
1040	O NH	404	405	1143	O=NH NHN NHN NHN NHN NHN NHN NHN NHN NHN	502	503
1041	O NHNH	404	405	1144		504	505

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1042	H O NH	409	410	1145		504	505
1043	O N N H N N N N N N N N N N N N N N N N	410	411	1146	O N NH	504	505
1044	O NH	0	411	1147	O=NH	511	512
1045	O= NH NH NH	410	411	1148	O NAME OF THE PART	512	513
1046	O NH NH	412	413	1149	O NH NH O NH	512	513

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1047	O N N N N N N N N N N N N N N N N N N N	412	413	1150	C) NH	520	521
1048	N N N N N N N N N N N N N N N N N N N	412	413	1151		520	521
1049	O NH NH NH NH	414	415	1152	O NH NH	520	521
1050		414	415	1153	NH NH NH	520	521
1051	O N NH	414	415	1154	John Man	522	523

	,	., \
- 1	continι	Iacion)
١	COLITI	addidii)

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1052	O NH	414	415	1155	N NH NH	522	523
1053	O NH NH NH	414	415	1156	HAN AND AND AND AND AND AND AND AND AND A	536	537
1054	NH NH NH NH	414	415	1157		536	537
1055	NH NH NH	414	415	1158	O N NH O NH NH	536	537

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1056	O NH NH NH	416	417	1159	S J N NH	538	539
1057	O NAME OF NAME	416	417	1160	S S S S S S S S S S S S S S S S S S S	538	539
1058	F N N N N N N N N N N N N N N N N N N N	417	418	1161	O O O O O O O O O O O O O O O O O O O	540	541
1059	S O=NH N=NH O=NH	418	419	1162	NH NH Br	541	542

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1060	O NH ONH	418	419	1163		542	543
1061	O NH NH	418	419	1164	N N N N N N N N N N N N N N N N N N N	546	547
1062	6 m + m + m + m + m + m + m + m + m + m	418	419	1165	N NH NH	546	547
1063	0-()-N-N-N-H	418	419	1166	O NH O NH O NH	550	551
1064		420	421	1167	O N N N N N N N N N N N N N N N N N N N	550	551

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1065	O NH NH	423	424	1168		569	570
1066	O NH NH	424	425	1169	O N N NH O N NH	582	583
1067	AN OF MAN	424	425	1170	O NH NH NH	582	583
1068	O=NH N-NH N-NH	426	427	1171	ON COO	584	585

	, ,,	., \
- 1	continι	Iacion)
١	COLITI	addidii)

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1069	O N N N N N N N N N N N N N N N N N N N	426	427	1172	N NH NH	584	585
1070	N NH	126	427	1173	No N	594	595
1071		426	427	1174	S-10-10-10-10-10-10-10-10-10-10-10-10-10-	596	597
1072		426	427	1175		596	597
1073	O N N N N N N N N N N N N N N N N N N N	427	428				

Procedimiento R

Procedimiento R, Etapa 1.

Una solución de **R**¹ (n=1, p=2, m=1, R²=H, R³=Me; R⁴=ⁱBu) (0,010 g) en acetonitrilo (0,85 ml) y dicloroetano (0,15 ml) se dispuso en un pocillo de placa de microtitulación, seguido de la adición de 0,12 ml de solución de fenilisocianato 0,5 M en dicloroetano. El pocillo se cerró y la placa se agitó durante 20 h antes de filtrar la mezcla y el sólido se lavó con acetonitrilo (0,5 ml). La solución combinada se trató con resina de trisamina (0,050 g, 6 eq., 4,23 mmoles/g) y resina de isocianato (0,067 g, 3 eq., 1,53 mmoles/g) y la mezcla se agitó durante 18 h. La mezcla se filtró y la solución se evaporó dando **R2** (n=1, p=2, m=1, R²=H, R³=Me; R⁴=ⁱBu y R¹⁵=Ph).

10 Procedimiento R, Etapa 2.

5

Procedimiento similar al Procedimiento Q, la Etapa 6 se usó para la transformación de **R2** (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 = i Bu y R^{15} =Ph) en **R3** (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 = i Bu y R^{15} =Ph).

Los siguientes compuestos se prepararon usando procedimientos similares:

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1176	O NH ₂	309	310	1215	C C C NAH	419	420
1177	O NH NH	309	310	1216	O NH	419	420
1178	H ₂ N H ₃ N NH	311	312	1217	F NH ON NH	421	422
1179	H,N-O	325	326	1218	E THOUSE WH	421	422

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1180	HN NH NH	337	338	1219	NH ON NH	425	426
1181	OF THE PROPERTY OF THE PROPERT	346	347	1220	Ph N NH	427	428
1182	NH ₂ HN H	351	352	1221	YON'N SHA	427	428
1183	TH ON WHA	351	352	1222		429	430
1184	HZN NH	351	352	1223	PHAN CALL	429	430
1185	O NH NH NH NH	365	366	1224	H ^I N NH	431	432
1186	The of the NH	365	366	1225	H ₂ N O NH O NH	431	432

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1187	NH ON WH	365	366	1226	STILL OF WH	433	434
1188	HN HN NH	367	368	1227	SH ON NH	435	436
1189	O= NH NH NH	377	378	1228		441	442
1190	HI HI WH	381	382	1229	O NH NH	441	442
1191	O-H NONH	385	386	1230	O NH	441	442
1192	O= NH NH NH	391	392	1231	O NH	445	446
1193	N-N-N-H	393	394	1232	O THE NAME OF THE	449	450
1194		395	396	1233	F F NH	453	454

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1195	O NH NH NH	399	400	1234	F F O NH	453	454
1196	O NH NH NH NH	399	400	1235	FF OF NO NEW NH	453	454
1197	O NH	399	400	1236	a N N N N N N N N N N N N N N N N N N N	453	454
1198	O NH	399	400	1237	a NH NH NH	453	454
1199	O N N N N N N N N N N N N N N N N N N N	399	400	1238		455	456
1200	DI HN NH	401	402	1239	HN ONO	455	456
1201	O NH	403	404	1240	NA N	457	458
1202	F-C-N-NH	403	404	1241	O NH	461	462
1203		407	408	1242	D N N NH	463	464

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1204	NH NH NH	407	408	1243	a NH NH	467	468
1205	O H N NH	410	411	1244	of the state of th	467	468
1206	NE CHANGE OF WHA	410	411	1245	F P N N N N N N N N N N N N N N N N N N	471	472
1207	O N N N N N N N N N N N N N N N N N N N	413	414	1246	A NO	475	476
1208	ON HOW WH	413	414	1247	HN HN HN H	477	478
1209	O NH NH NH NH NH	415	416	1248	S H N NH NH	477	478

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1210	D N N NH	415	416	1249	Not the state of t	487	488
1211	O NAME OF STREET	415	416	1250	HN PO NH NH NH	487	488
1212	O HANDON NAME	415	416	1251	O-CH O-NH	487	488
1213	F NH NH	417	418	1252	O NH O NH	491	492
1214	O NH NH	419	420				

Procedimiento S

5 Procedimiento S, Etapa 1.

10

Una solución de $\bf S1$ (n=1, p=2, m=1, R²=H, R³=Me; R⁴= iBu) (0,010 g) en acetonitrilo (0,85 ml) y dicloroetano (0,15 ml) se dispuso en una placa de microtitulación, seguido de la adición de resina de DIPEA-MP (0,030 g, 4 eq) y cloruro de fenilsulfonilo en dioxano (1 M, 45 μ l, 0,045 mmoles). El pocillo se tapó y se agitó durante 18 h antes de filtrarse y el residuo se lavó con acetonitrilo (0,5 ml). La solución combinada se trató con resina de trisamina (0,040 g, 6 eq., 4,23 mmoles/g) y resina de isocianato (0,060 g, 3 equiv., 1,53 mmoles/g) y se agitó durante 18 h antes de filtrar la mezcla y el disolvente se eliminó dando $\bf S2$ (n=1, p=2, m=1, R²=H, R³=Me; R⁴= iBu y R¹5=Ph).

Procedimiento S, Etapa 2.

Procedimiento similar al Procedimiento Q, la Etapa 6 se usó para la transformación de **S2** a **S3** (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 =iBu y R^{15} =Ph).

Los siguientes compuestos se prepararon usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1253	O NH ONH	344	345	1293	0.5-N 0-N-NH NH	448	449
1254	O-S-N-NH	344	345	1294	0-5-N-NH	454	455
1255	O N N NH	358	359	1295	0= \$-N NH NH	456	457
1256	Oz Š-N NH	358	359	1296	0=S-N NH	456	457
1257	O=S-NH ONNH NH	360	361	1297		458	459

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1258	ON NH	372	373	1298	F 0-5-N NH	458	459
1259	O-S-N-NH	372	373	1299	a O-S-N	458	459
1260	O, S, N, HY, H,	386	387	1300	OZŠ-NONH NH NH	462	463
1261	O NH NH NH	406	407	1301	O O E S - N O NH	464	465
1262	HN NH NH	406	407	1302	O S NH	466	467

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1263	O.S. N. NH	406	407	1303	SS-20 NH NH NH	466	467
1264	S O NH	412	413	1304	-0 O-5-N	466	467
1265	O N NH NH	416	417	1305	O-S-N N-NH	466	467
1266	O S N N N N N N N N N N N N N N N N N N	420	421	1306	O S S N NH	470	471
1267	O NH O NH	420	421	1307	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	474	475
1268	O S N NH	420	421	1308	FOES-NO NH	474	475

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1269	OzS-N O=NH NH	420	421	1309	O-S-N-NH F O-NH	474	475
1270	O-S-N NH	420	421	1310	OzŠ-N N NH F F	474	475
1271	O NH ONNH	420	421	1311	Q O S N NH	474	475
1272	F O-S-N NH	424	425	1312	a O-S-N	474	475
1273	F-NH NH	424	425	1313	a O: S-N NH a O= NH	474	475
1274	O-S-N-NH P NH	424	425	1314	a Ossan NH	474	475
1275	~~~ <i>#</i> ~0		432	1315	O-S-N-NH	474	475
1276	O-S-N-NH O-NH	432	433	1316		474	475

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1277	O NH O NH	434	435	1317	O.S.S.N.N.N.H.	476	477
1278	O-S-N O=NH NH	434	435	1318	a O.SNO NH	480	481
1279	O-S-N-NH NH	436	437	1319	O. S. N. NH	482	483
1280	O N NH O NH	436	437	1320	O-S-N NH Br	484	485
1281	O.SN O-NH NH	438	439	1321	Br Oz S - N NH	484	485
1282	O NH	440	441	1322	a o o o o o o o o o o o o o o o o o o o	488	489
1283	0.5.N 0=NH NH	440	441	1323	Oz S-N-NH F NH	490	491

,	., .
/ contin	IIOCION\
	uación)
(

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1284	O-S-N O-NH	440	441	1324	F F O NH	490	491
1285	F O.S. NONH	442	443	1325	O-S-N-NH NH NH	492	493
1286	F Ozsi-NH	442	443	1326	O-S-N-NH O-NH	498	499
1287	F O NH	442	443	1327	a a NH	508	509
1288	F NH NH	442	443	1328	OZŠ-N NH NH	508	509
1289	P O N NH	442	443	1329		508	509
1290	OZ-Š-N	446	447	1330	a 0= 5-N NH a 0= NH	508	509
1291	0; S-N-NH 0= NH	448	449	1331	F F O NH	542	543

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1292	O.S.N.	448	449	1332	F F O S S S S S S S S S S S S S S S S S	557	558

Procedimiento T

5 Procedimiento T, Etapa 1.

10

15

A un pocillo de placa de microtitulación que contenía 1 ml de solución de $\mathbf{T1}$ (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 = iBu) en DCM (0,010 g) y R^{15} C(O) R^{16} (5 equiv, R^{15} =H, R^{16} =Ph) se añadió cianoborohidruro de sodio en dicloroetano (14,3 mg / ml, 2 equiv.). El pocillo se tapó y se agitó durante 20 h antes de añadir resina de MP-TsOH (100 mg, 1,29 mmoles/g) al pocillo, seguido de resina de MP-TsOH adicional (50 mg) después de 2 h. Después de agitar la mezcla durante otra 1 h, la mezcla se filtró y la resina se lavó con dicloroetano (1 ml) (3 X), luego MeOH (1 ml) (2 X). La resina se trató con amoniaco 7 N en MeOH (1 ml) durante 30 min (2X), seguido de filtración y evaporación del disolvente dando $\mathbf{T2}$ (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 = iBu y R^{15} =Ph y R^{16} =H).

Procedimiento T, Etapa 2.

Procedimiento similar al Procedimiento Q, la Etapa 6 se usó para la transformación de **T2** (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 = iBu y R^{15} =Ph y R^{16} =H) en **T3** (n=1, p=2, m=1, R^2 =H, R^3 =Me; R^4 = iBu y R^{15} =Ph y R^{16} =H).

Los siguientes compuestos se prepararon usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1333	O=N-NH NHNH	348	349	1339	O=\NH	384	385
1334	O= NH NH	350	351	1340	O NH NH NH NH	384	385
1335	NH NH	350	351	1341	O NH NH NH	400	401

	(continuación)											
Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.					
1336	O NH NH NH	356	357	1342	O NH NH	446	447					
1337	O= NH NH NH	362	363	1343	N NH NH NH	448	449					
1338	O NH	370	371									

Procedimiento U

- En un vial de microondas se cargó **U1** (R²= H; R³= i-Bu, R⁴ = Me) (0,025 g) en tolueno (4 ml), se dispusieron carbonato de potasio (0,035 g), Pd(dppf)Cl₂ (0,020 g), agua (0,02 ml) y R²¹B(OH)₂ (R²¹ = m-metoxifenilo) (3 eq.). El vial se dispuso en microondas durante 10 min a 150 °C. La mezcla de reacción se diluyó con diclorometano y se extrajo con NaOH 2,5 N. La solución de diclorometano secada (MgSO₄) se concentró a vacío dando un residuo marrón que se purificó mediante un sistema de EM-CL prep en RP dando el producto **U2** (R²= H; R³= iBu: R⁴= Me; R²¹= m-metoxifenilo).
- 10 Los siguientes compuestos se prepararon usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1344	N-NH O-NH	279	280	1381	O= NH NH	365	366
1345	NH NH S NH	285	286	1382	O=\NH O=\NH	365	366

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1346	O NH O NH	293	294	1383	O=N+NH O=NH	366	367
1347	NH S	299	300	1384	NH HN N	371	372
1348	NH S	299	300	1385	F NH NH	371	372
1349	NH NH	304	305	1386	F O= NH	371	372
1350	NH NH	309	310	1387	HN VO	372	373
1351	NH NH	313	314	1388	HN NH	372	373
1352	NH NH	318	319	1389	NH NH NY O	375	376

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1353	NH NH O	323	324	1390	O N NH	377	378
1354	NH O	323	324	1391	O NH NH NH	377	378
1355	N O NH NH NH	323	324	1392	O=\NH O=\NH	377	378
1356	N-NH O-NH	329	330	1393	O N N N N N N N N N N N N N N N N N N N	377	378
1357	NH NH S	335	336	1394	O NH NH NH	379	380
1358	NH S	335	336	1395	O N NH	379	380

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1359	O NH	337	338	1396	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	380	381
1360		343	344	1397	SH N N N N N N N N N N N N N N N N N N N	381	382
1361	N-NH FF	347	348	1398	NH NO	383	384
1362	O NH O O	347	348	1399	H ₂ N NH	384	385
1363	NH Q	347	348	1400	HN NH	385	386
1364	NH Q	347	348	1401	HN NH	385	386
1365	NH NH O O O	347	348	1402	O NH NH	386	387

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1366	O NH NH NH	349	350	1403	NH NH NO	387	388
1367	O=\NH	349	350	1404	O=NH NH	389	390
1368	O= NH NH2	350	351	1405	NH NH NH	389	390
1369	O NH O	351	352	1406	O NH O NH	392	393
1370	NH NH	352	353	1407	O=\NH\O	395	396
1371	O NH NH O S.O	357	358	1408	F F NH NH	403	404
1372	NH NH N	359	360	1409	F F O= N-NH	403	404

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1373	N O= NH	360	361	1410	NA O THE NAME OF T	405	406
1374	N-NH N-NH NH	360	361	1411	O= NH N+NH N+NH	406	407
1375	N NH NH	360	361	1412	N. H.	413	414
1376	O NH NH NH	360	361	1413	HN N	419	420
1377	N O NH	360	361	1414	0-7-5-0	497	498
1378	N N NH NH	360	361	1415	AN A	398	TBD
1379	NH NH NH	365	366	1416	-of the NH	399	TBD

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1380	O N NH	365	366				

Procedimiento V

5 Procedimiento V, Etapa 1:

10

15

20

El compuesto **V1** (R³ = R⁴ = Me) (14,76 mmoles), EDCI (14,76 mmoles), HOAt (14,76 mmoles) y DIEA (14,76 mmoles) se mezclaron con 36 ml de DCM. Esta mezcla se agitó a TA durante 15 min antes de añadir 3-clorobencilamina. Después de agitar la solución de reacción a TA durante la noche, se lavó con carbonato sódico (3X), agua, HCl 1 N (4 X) y bicarbonato sódico ac y se secó sobre sulfato de sodio anhidro. El disolvente se evaporó y el residuo se purificó sobre columna ultrarrápida dando el producto de amida **V2** (R¹ = 3-clorobencilo; R³=R⁴ = Me).

Procedimiento V, Etapa 2

El compuesto $\mathbf{V2}$ (\mathbf{R}^1 = 3-clorobencilo; \mathbf{R}^3 = \mathbf{R}^4 = Me) (8,33 mmoles) se disolvió en 35 ml de DCM anhidro y se enfrió a 0-5 °C. Se añadió gota a gota tiofosgeno (9,16 mmoles) en 10 ml de DCM bajo \mathbf{N}_2 , seguido de la adición de DIEA (11,96 mmoles). La solución se agitó en baño de hielo durante 0,5 h antes de lavar la mezcla de reacción con bicarbonato sódico saturado (3 X), salmuera y secarse sobre sulfato de sodio anhidro. El disolvente se evaporó y el residuo se purificó sobre columna ultrarrápida usando acetato de etilo/hexano dando la tiohidantoína $\mathbf{V3}$ (\mathbf{R}^1 = 3-clorobencilo; \mathbf{R}^3 = \mathbf{R}^4 =Me).

Procedimiento V, Etapa 3:

La tiohidantoína **V3** ($R^1 = 3$ -clorobencilo; $R^3 = R^4 = Me$) se trató con hidroperóxido de t-butilo e hidróxido de amonio en MeOH a TA durante 48 h dando el compuesto **V4** ($R^1 = 3$ -clorobencilo; $R^2 = H$; $R^3 = R^4 = Me$).

Los siguientes compuestos se prepararon usando un procedimiento similar.

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1417	O NH NH	251	252	1420	Q NH NH	307	308

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1418	Q N NH O NH	265	266	1421	O NH	357	358
1419	O NH NH	293	294	1422	a NH NH	371	372

Procedimiento W

El compuesto **W1** obtenido usando el Procedimiento A (n=1, R²=m-Cl-Bn, R³=Me) se hidrolizó a **W2** (n=1, R²=m-Cl-Bn, R³=Me) usando dos equivalentes de LiOH en MeOH.

Los siguientes compuestos se sintetizaron de modo similar:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1423	O NH O OH	295	296	1426	HOL NAM	411	412
1424	HN NH	311	312	1427	HO THE	425	426
1425	HOW	325	326				

Procedimiento X

5

10

15

20

(En el esquema, -Z-NH-C(O)-N(R^{16})(R^{17})- es equivalente a R^1 sustituido con R^{21} , o R^1 sustituido con alquil- R^{22} , en la que R^{21} y R^{22} son -NH-C(O)-N(R^{16})(R^{17}) y R^{15} es H, y en la que Z es alquilen-arileneno, alquilen-arilenealquileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heterocicloalquileno, alquilen-heterocicloalquileno, arileno, heteroarileno, cicloalquileno o heterocicloalquileno opcionalmente sustituido)

Procedimiento X, Etapa 1:

A una mezcla de la amina **X1** obtenida usando el Procedimiento L ($R^3 = Me$; $R^4 = {}^i$ -Bu; $Z = para-(CH_2)C_6H_4(CH_2)-$) (10 mg) en DCM y NaHCO₃ sat. (1:1 en volumen) se añadió trifosgeno (0,33 eq) a t.a. La solución se agitó vigorosamente durante 40 minutos antes de separar la fase orgánica y se secó sobre Na₂SO₄ anhidro. La solución orgánica se evaporó dando el compuesto **X2** ($R^3 = Me$; $R^4 = i$ -Bu; $Z = para-(CH_2)C_6H_4(CH_2)-$).

Procedimiento X, Etapa 2:

El compuesto **X3** (R^{15} =H; R^{16} = ciclopropilmetilo; R^3 =Me; R^4 = i Bu; Z= para-(CH_2) C_6H_4 (CH_2)-) se preparó a partir de **X2** (R^3 = Me; R^4 = i-Bu; Z = para-(CH_2) C_6H_4 (CH_2)-) usando un procedimiento similar al Procedimiento M, Etapa 1.

Procedimiento X, Etapa 3:

El compuesto **X4** (R¹⁶ = H; R¹⁷ = ciclopropilmetilo; R² = H; R³ = Me; R⁴ = i Bu; Z= para-(CH₂)C₆H₄(CH₂)-) se preparó a partir de **X3** (R¹⁶ = H; R¹⁷ = ciclopropilmetilo; R² = H; R³ = Me; R⁴ = i Bu; Z = para-(CH₂)C₆H₄(CH₂)-) usando un procedimiento similar al Procedimiento A Etapa 3. RMN (CD₃OD) δ 7,25, s, 4H; δ 4,8, m, 2H; δ 4,25, s, 2H; δ 2,9, m, 2H; δ 1,68, m, 2H; δ 1,44, m, 1H; δ 1,36, s, 3H; δ 0,9, m, 1H; δ 0,82, m, 3H; δ 0,66, m, 3H; δ 0,4, m, 2H; δ 0,12, m, 2H. ES EM-CL (m/e) 386,1.

Los siguientes compuestos se prepararon usando un procedimiento similar.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1428	NH ON NH	385	386	1443	O HAM HAM	518	519
1429	N H N N N N N N N N N N N N N N N N N N	401	402	1444	S NHH NHH NHH NHH NHH NHH	518	519

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1430	O HA	401	402	1445	Start	524	525
1431	HN O NH	415	416	1446	S S S S S S S S S S S S S S S S S S S	524	525
1432	HIN TH NAME OF STATE	427	428	1447	SHAP NO	526	527
1433	O H NH NH	435	436	1448	O=NH NH NH NH NH NH	532	533
1434	HN HN NH NH	435	436	1449	NAME OF THE PARTY	533	534
1435	O NH	443	444	1450	ON THE STATE OF TH	537	538

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1436	O NH	449	450	1451	SHAPP OF THE PROPERTY OF THE P	537	538
1437	HIN THE PARTY OF T	463	464	1452		545	546
1438	HO THE PART OF THE	471	472	1453	O NAME OF THE PROPERTY OF THE	559	560
1439	CH H CHAPTER CONTRACTOR CONTRACTO	485	486	1454		570	571
1440	O N N N N N N N N N N N N N N N N N N N	496	497	1455	SHANN NO	572	573
1441	O HAH	504	505	1456	Story Carlo	598	599
1442		513	514				

Procedimiento Y

(En el esquema,

$$0 \stackrel{\mathsf{H}}{\underset{\mathsf{Z}}{\bigvee}} \stackrel{\mathsf{R}^{23}}{\underset{\mathsf{Z}}{\bigvee}} \\ \mathsf{R}^{23}$$

- es equivalente a R¹ sustituido con R²¹, o R¹ sustituido con alquil-R²², en la que R²¹ y R²² son -N(R¹⁵)-C(O)-N(R¹⁶)(R¹⁷) y R¹⁶ forman un anillo como se ha definido anteriormente, y en la que Z es alquilen-arileneno, alquilen-arileneno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-cicloalquileno, alquilen-cicloalquileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-heteroarileno, arileno, heteroarileno, cicloalquileno o heterocicloalquileno opcionalmente sustituido)

10 **Procedimiento Y, Etapa 1:**

15

20

La mezcla de reacción del compuesto $\mathbf{Y1}$ obtenida del Procedimiento L (\mathbf{R}^3 = Me; \mathbf{R}^4 = i-Bu; \mathbf{Z} = para-(\mathbf{CH}_2)C₆H₄(\mathbf{CH}_2)-) (0,1639 mmoles), $\mathbf{Y2}$ (\mathbf{R}^{23} = H; \mathbf{R}^{23} = Pr) (0,1967 mmoles), resina de PS-EDC (0,4917 mmoles) y HOBT (0,2459 mmoles) en 3,5 ml de mezcla de THF, MeCN y DMF (1:1:0,3) se agitó durante la noche a TA antes de añadir 6 eq de resina de PS-trisamina, 3 eq de resina de PS-isocianato. Después de 6 h, la mezcla de reacción se filtró y la resina se lavó con THF, DCM y MeOH. El filtrado combinado se evaporó y el producto en bruto se trató con 40 % de TFA en DCM durante 40 min antes de evaporar el disolvente y el residuo se purificó sobre sistema de RP-HPLC dando el producto $\mathbf{Y3}$ (\mathbf{R}^3 = Me; \mathbf{R}^4 = i-Bu; \mathbf{Z} = para-(\mathbf{CH}_2)C₆H₄(\mathbf{CH}_2)-, \mathbf{R}^{23} = H; \mathbf{R}^{23} = Pr).

Procedimiento Y, Etapa 2:

La solución de reacción de **Y3** (R^3 = Me; R^4 = i-Bu; Z = para-(CH_2) C_6H_4 (CH_2)-, R^{23} = H; R^{23} = Pr) (0,030 mmoles), carbonildiimidazol (0,032 mmoles) y DIEA (0,09 mmoles) en 0,5 ml de DCM se agitó durante el fin de semana a TA. Entonces, el bruto se purificó sobre columna inversa dando el producto de tiohidantoína que se convirtió en **Y4** (R^2 = H; R^3 = Me; R^4 = 1Bu ; Z = para-(CH_2) C_6H_4 (CH_2)-, R^{23} = H; R^{23} = Pr).

Los siguientes compuestos se prepararon usando un procedimiento similar.

Nº	Estructura	M W	m/e obs.	Nº	Estructura	MW	m/e obs.
1457	HN NH NH	413	414	1459	HN O NH NH	427	428

			(continuacion)				
N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1458	HN NH NH	413	414				

Procedimiento Z

(En el esquema, -Z-NH-C(O)-N(R¹⁶)(R¹⁷)- es equivalente a R¹ sustituido con R²¹, o R¹ sustituido con alquil-R²², en la que R²¹ y R²² son -N(R¹⁵)-C(O)-N(R¹⁶)(R¹⁷) y R¹⁵ es H, y en la que Z es alquilen-arileneno, alquilen-arilenenalquileno, alquilen-heteroarileno, alquilen-heteroarileno, alquilen-alquileno, alquilen-cicloalquileno, alquilen-alquileno, alquilen-beterocicloalquileno, alquilen-heterocicloalquileno, arileno, heteroarileno, cicloalquileno o heterocicloalquileno opcionalmente sustituido)

10 Procedimiento Z, Etapa 1:

A la solución de la resina PhoximeTM (1,23 mmoles/g) en DCM se añadió la amina **Z1** obtenida del Procedimiento L (R^3 = Me; R^4 = iBu ; Z = para-(CH_2) C_6H_4 (CH_2)-) (2 eq). La mezcla se agitó durante la noche antes de filtrar la resina y se lavó con DCM, MeOH, THF (3 ciclos), luego DCM (x2), se secó a vacío para conseguir la resina **Z2** (R^3 = Me; R^4 = iBu ; Z = para-(CH_2) C_6H_4 (CH_2)-).

15 **Procedimiento Z, Etapa 2:**

20

A la resina **Z2** (R^3 = Me; R^4 = iBu ; Z = para-(CH_2) C_6H_4 (CH_2)-), hinchada en DCM, en tolueno se añadió N-metilbencilamina (4 eq). La mezcla se calentó a 80-90 $^{\circ}C$ durante la noche antes de añadir resina de MP-TSOH (1,3 mmoles/g, 12 eq). La mezcla se agitó durante 1,5 horas, la solución se filtró y la resina se lavó con DCM y MeOH. La solución combinada orgánica se concentró a vacío para obtener **Z3** (R^3 = Me; R^4 = iBu ; Z = para-(CH_2) C_6H_4 (CH_2)-; R^{16} = Me; R^{17} = Bn).

Procedimiento Z, Etapa 3:

El compuesto **Z4** (R^3 = Me; R^4 = iBu ; Z = para-(CH_2) C_6H_4 (CH_2)-; R^{16} = Me; R^{17} = Bn) se generó a partir de **Z3** (R^3 = Me; R^4 = iBu ; Z = para-(CH_2) C_6H_4 (CH_2)-; R^{16} = Me; R^{17} = Bn) usando un procedimiento similar al Procedimiento A Etapa 3.

Los siguientes compuestos se prepararon usando un procedimiento similar.

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
1460	O HANH	457	458	1474	SAN	531	532
1461	NH NH	469	470	1475	SHAPPEN THE STATE OF THE STATE	533	534
1462	O NAME OF THE PROPERTY OF THE	471	472	1476	THE HOLD OH	533	534
1463	S NH	471	472	1477		538	539
1464	O N N N N N N N N N N N N N N N N N N N	483	484	1478		545	546
1465	OH HANDON	485	486	1479	OH NH OH	547	548
1466	O N NH	485	486	1480	O NI	547	548

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1467	O N NH NH NH NH NH NH NH NH NH NH NH NH NH N	495	496	1481	O H H H	547	548
1468	ON THE STATE OF TH	499	500	1482		551	552
1469	O NH II	501	502	1483	O NH NH	568	569
1470	A HANDER OF THE PROPERTY OF TH	507	508	1484	SAN	571	572
1471	HN O	509	510	1485	O NH	593	594

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
1472		517	518	1486		596	597
1473		517	518	1487		607	608
1488	N HN O	364	365				
1489	NH HN N	377	377				
1490	o. Tho	513	514				

Procedimiento AA

5

10

Se hizo reaccionar 8,11-dicloro-6,11-dihidro-5H-benzo[5,6]ciclohepta[1,2-b]piridina (AA2) (18 mg) con AA1, obtenido del Procedimiento Q, y diisopropiletilamina (14 ul) en acetonitrilo (2,5 ml). La mezcla resultante se calentó a 65 °C durante 18 h. La mezcla de reacción se colocó sobre una placa de gel de sílice preparativa y se eluyó con hexano: acetato de etilo 3:1 dando el producto deseado que se trató con 40 % de TFA. La evaporación del disolvente seguido de purificación proporcionó el compuesto AA3.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	Obs m/e
187	Q N NH	491	492	188	a No	493	494

Los siguientes compuestos se prepararon usando un procedimiento similar.

Procedimiento AB

Procedimiento AB, Etapa 1:

5

10

15

20

25

30

A una solución de (R)-(+)-2-metil-2-propanosulfonamida (1,0 g, 8,3 mmoles, 1 eq) y **AB1** (R³=Ph, R⁴= n-Bu) (3 ml, 9,1 mmoles, 1,1 eq) en THF anhidro (30 ml) a temperatura ambiente se añadió Ti(OEt)₄ (7 ml, 17 mmoles, 2 eq). La mezcla se calentó a 70 °C durante 24 h. Después de enfriarse hasta temperatura ambiente, la mezcla se vertió en 30 ml de salmuera bajo agitación vigorosa. La suspensión resultante se filtró a través de una almohadilla de Celite y el sólido se lavó con EtOAc (2 x 20 ml). El filtrado se lavó con salmuera (30 ml), se secó (Na₂SO₄) y se concentró a vacío. El residuo se purificó por cromatografía sobre sílice eluyendo con hexano/Et₂O (5:1) dando 1,9 g (85 %) de (R)-2-metil-N-(1-fenilpentiliden)propano-2-sulfinamida. RMN 1 H (CDCl₃, 300 MHz): $\bar{\delta}$ 7,91 (m, 2H), 7,52-7,37 (m, 3H), 3,27 (m, 1H), 3,15 (m, 1H), 1,73-1,61 (m, 2H), 1,47-1,38 (m, 2H), 1,31 (s, 9H), 0,95 (m, 3H). EM (ESI): MH $^+$ = 265,9. HPLC t_R =7,24, 7,58 min (E/Z = 5,5:1).

A una solución de acetato de metilo (0,6 ml, 6,9 mmoles, 2 eq) en THF (5 ml) se añadió gota a gota LDA (2 M en heptano/THF, 3,4 ml, 6,9 mmoles, 2 eq) mediante una jeringuilla a -78 °C. Después de agitar a -78 °C durante 30 min se añadió gota a gota una solución de CITi(Oi-Pr)₃ (1,8 ml, 7,6 mmoles, 2,2 eq) en THF (5 ml). Después de agitar durante otros 30 min se añadió gota a gota una solución de (R)-2-metil-N-(1-fenilpentiliden)propano-2-sulfinamida (0,9 g, 3,4 mmoles, 1 eq) en THF (2 ml) mediante una jeringuilla. La mezcla se agitó a -78 °C durante 3 h y la CCF mostró que no quedaba material de partida. Se añadió una solución acuosa saturada de NH₄Cl (10 eq) y la suspensión se calentó hasta temperatura ambiente. La mezcla se diluyó con H_2O (50 ml) y se agitó durante 10 min. La mezcla se repartió entonces entre H_2O (50 ml) y EtOAc (50 ml). La fase orgánica se separó y la fase acuosa se extrajo con EtOAc (3 x 50 ml). Las fases orgánicas combinadas se lavaron con salmuera, se secaron (MgSO₄) y se concentraron dando 1,1 g de un aceite marrón. La cromatografía sobre gel de sílice usando 50 % de EtOAc/hexanos como eluyente dio 0,8 g (76 %) de 3-((R)-2-metilpropan-2-ilsulfinamido)-3-fenilheptanoato de metilo como un aceite amarillo. RMN 1 H (CDCl₃, 300 MHz): δ 7,15-7,07 (m, 5H), 3,35 (s, 1H), 3,19 (dd, J=16, 5,6Hz, 1H), 3,01 (dd, J=15,8, 5,5Hz, 1H), 2,07 (m, 2H), 1,71 (m, 2H), 1,35-1,26 (m, 4H), 1,17 (s, 9H), 0,89 (m, 3H). EM (ESI): MH $^+$ = 339,9. HPLC t_R = 7,50, 7,6 min (E/Z = 1,5:1)

A una solución de 3-((R)-2-metilpropan-2-ilsulfinamido)-3-fenilheptanoato de metilo (0,4 g, 1,1 mmoles) en 12 ml de MeOH se añadieron 16 ml de HCl 4 N/dioxano. Después de agitar durante 30 min, los volátiles se eliminaron a vacío. El residuo se redisolvió en MeOH (6 ml), se agitó durante 5 min y se evaporó de nuevo proporcionando 0,30 g (97 %) de **AB2** (R³=Ph, R⁴= n-Bu) como un sólido amarillo. RMN ¹H (CDCl₃, 300 MHz): δ 9,01 (s a, 2H), 7,37-7,12 (m, 5H), 3,64 (m, 1H), 3,54 (s, 3H), 3,31 (m, 1H), 2,09 (m, 2H), 1,8 (m, 2H), 1,1 (m,4H), 1,07 (s, 9H), 0,7 (m, 3H). EM (ESI): MH⁺=

235,9. HPLC $t_R = 4,72 \text{ min.}$

5

Procedimiento AB, Etapa 2:

El tratamiento del compuesto **AB2** (R³=Ph, R⁴=n-butilo) con tiofosgeno en CH_2Cl_2 en presencia de NaHCO $_3$ acuoso a 0 °C genera isotiocianato **AB3** (R³=Ph, R⁴=n-butilo) que se convirtió en el producto final usando un procedimiento similar al Procedimiento A Etapa 2 y Procedimiento A Etapa 3 dando el producto **AB5** (R³=Ph, R⁴=n-butilo, R¹=Me). RMN ¹H (CDCl $_3$, 300 MHz): δ 10,4 (s a, 1H), 7,25-7,11 (m, 5H), 3,23 (dd, J = 16, 5,6 Hz, 1H), 3,03 (s, 3H), 2,8 (dd, J = 15,8, 5,5 Hz, 1H), 2,49 (s, 1H), 1,78 (m, 2H), 1,1-1,0 (m, 4H), 0,99 (m, 3H). EM (ESI): MH¹ = 260,2. HPLC t_R = 5,09 min.

Los siguientes compuestos se sintetizaron usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	Obs m/e
189	NH HN N	239	240	195	O NH	443	444
190	NH HN N	253	254	196	NH NH	463	464
191	HN NO	259	260	197	NH NO ONT	537	538
192	HN N	333	334	198	NH NH	537	538
193	HN NH	333	334	199	HN N O	295	296

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	Obs m/e
194	HN NH a	349	350	200	HN H	295	296

Procedimiento AC

La síntesis se adaptó de un procedimiento de Hull, R. y col., J. Chem. Soc. 1963, 6028-6033. Así, a una solución de AC2 (R¹=bencilo) (0,72 g, 5,9 mmoles) en AC1 (R⁴=Me, R³=Me) (1,4 ml) se añadió una solución acuosa al 50 % de cianamida (0,31 ml, 8,0 mmoles). La reacción se calentó con agitación a reflujo (-40 °C) durante 0,5 h, luego se enfrió a 25 °C y se agitó durante 16 h adicionales. Los volátiles se eliminaron a vacío y el residuo se repartió entre éter y H₂O. La fase orgánica se secó sobre Na₂SO₄, se filtró y los volátiles se eliminaron a vacío. El residuo se purificó por cromatografía en columna usando 5-10 % de CH₃OH/CH₂Cl₂ como eluyente seguido de HPLC preparativa de fase inversa dando 0,15 g (8,0 %) de AC3 (R¹=bencilo, R⁴=Me y R³=Me) como un sólido blanco. RMN ¹H (CH₃OH, 300 MHz): δ 7,35-7,33 (m, 5H), 4,71 (s, 2H), 1,46 (s, 6H); RMN ¹³C (CDCl₃, 75 MHz) δ 157,8, 135,6, 129,1, 128,5, 127,9, 104,2, 59,6, 28,8. EM (ESI) m/e 206,1 (M+H)⁺.

N°	Estructura	MW	m/e obs.	
201	HN N-O	205	206	

15 Procedimiento AD

Procedimiento AD, Etapa 1:

Se preparó AD₂ (R³=Ph, R⁴=tbutilo) a partir de AD1 usando un procedimiento similar al Procedimiento AB, Etapa 2.

Procedimiento AD, Etapa 2:

La síntesis se adaptó de un procedimiento de Hussein, A. Q. y col., Chem. Ber. 1979, 112, 1948-1955. Así, a una mezcla de AD2 (R³=Ph, R⁴=terc-butilo) (0,56 g, 2,7 mmoles) y perlas en ebullición en CCl₄ (25 ml) se añadió *N*-bromosuccinimida (0,49 g, 2,7 mmoles). La mezcla se irradió con una fuente de luz de 200 vatios durante 1 h. La reacción se enfrió, el sólido se separó por filtración y los volátiles se eliminaron a vacío. La cromatografía sobre gel de sílice eluyendo con 5 % de EtOAc/hexano dio 0,57 g (73 %) de 1-(1-bromo-1-isotiocianato-2,2-dimetilpropil)benceno como un polvo beis. RMN ¹H (CDCl₃, 300 MHz): ō 7,63-7,61 (m, 2H), 7,37-7,26 (m, 3H), 1,17 (s, 9H); RMN ¹³C (CDCl₃, 75 MHz): ō 139,1, 129,0, 128,9, 128,6, 127,5, 91,2, 45,6, 26,6. EM (ESI) *m/e* 284,9 (M+H)[†].

A una solución de 1-(1-bromo-1-isotiocianato-2,2-dimetilpropil)benceno (0,13 g, 0,47 mmoles) y la sal de clorhidrato de *N*-metilhidroxilamina (0,047 g, 0,57 mmoles) en THF (3 ml) se añadió trietilamina (0,18 ml, 1,32 mmoles). La mezcla se agitó a 25 °C durante 16 h, se filtró y los volátiles se eliminaron a vacío. El residuo se purificó por cromatografía en columna usando CH₃OH/CH₂Cl₂ como eluyente dando 0,050 g (42 %) de **AD3** (R³=Ph, R⁴=terc-butilo) como un sólido vítreo. RMN ¹H (CDCl₃, 300 MHz): δ 7,35-7,26 (m, 5H), 3,38 (s, 3H), 1,0 (s, 9H); EM (ESI) *m/e* 251,1 (M+H)[†].

Procedimiento AD, Etapa 2:

5

10

15

20

A una solución de **AD3** (R³=Ph, R⁴=terc-butilo) (0,065 g, 0,26 mmoles) en CH₃OH (5 ml) a 0 °C se añadió una solución de amoniaco acuoso (2 ml), seguido de una solución acuosa al 70 % de hidroperóxido de t-butilo (2 ml). La reacción se dejó calentar a 25 °C y se agitó durante 16 h. Los volátiles se eliminaron y el residuo se purificó por HPLC de fase inversa dando 2,0 mg (2,2 %) de **AD4** (R³=Ph, R⁴=terc-butilo) como un aceite incoloro. RMN 1 H (CDCl₃, 300 MHz) 5 7,47-7,43 (m, 2H), 7,39-7,35 (m, 3H), 3,23 (s, 3H), 1,0 (s, 9H); EM (ESI) m/e 234,2 (M+H) $^{+}$.

Los siguientes compuestos se sintetizaron usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
202	-N NH	213	214	204	O NH	309	310
203	N NH NH	233	234				

Procedimiento AE

Procedimiento AE, Etapa 1:

Se añadieron TBDMS-CI (5,3 g, 35,19 mmoles) e imidazol (2,4 g, 35,19 mmoles) a una suspensión de **H2** (R^1 =Me, R^3 =ciclohexilmetilo) (8,2 g, 31,99 mmoles) en 220 ml de DCM. La mezcla de reacción se agitó a temperatura ambiente durante la noche. La mezcla de reacción se filtró, y el filtrado se diluyó con 1200 ml de EtOAc. La fase orgánica se lavó con NaHCO₃ saturado 3X y salmuera 3X, y se secó sobre Na₂SO₄ anhidro dando 12 g de **AE2** (R^1 =Me, R^3 =ciclohexilmetilo), que se usó para la siguiente etapa sin más purificación.

Procedimiento AE, Etapa 2:

Se convirtió **AE2** (R¹=Me, R³=ciclohexilmetilo; 12 gramos en bruto) en iminohidantoína usando condiciones similares al Procedimiento A Etapa 3, que se trató posteriormente con 75 % de TFA en DCM a temperatura ambiente durante 24 h. El disolvente se evaporó a vacío dando 13,6 g de un producto que se hizo reaccionar con anhídrido de Boc dando 5,8 g de **AE3** (R¹=Me, R³=ciclohexilmetilo) después de purificación en columna.

Procedimiento AE, Etapa 3:

5

10

15

Se obtuvo **AE4** (R¹=Me, R³=ciclohexilmetilo) (8,2 g) a partir de **AE3** (5,8 g) según la Etapa 4 del Procedimiento H.

Procedimiento AE, Etapa 4:

A una solución de **AE4** (R^1 =Me, R^3 =ciclohexilmetilo) (3,95 g, 8,38 mmoles) en THF anhidro (98 ml) se añadió diisopropiletilamina (7 ml, 40 mmoles). La reacción se agitó bajo N_2 (gas) a temperatura ambiente. Después de 5,5 h, la reacción se concentró y el material en bruto se purificó por cromatografía ultrarrápida eluyendo con un gradiente de 0 al 75 % de acetato de etilo en hexano proporcionando **AE5** (R^1 =Me, R^3 =ciclohexilmetilo) (2,48 g, 92 %).

Procedimiento AE, Etapa 4:

A una solución de R^{15} OH (R^{15} =ciclobutilo) (10 µl) y HBF₄ (1 equiv) en cloruro de metileno anhidro (0,5 ml) se añadió una solución de **AE5** (R^{1} =Me, R^{3} =ciclohexilmetilo) (20 mg, 0,062 mmoles) en cloruro de metileno (0,5 ml). La reacción se agitó durante la noche a ta. Se añadió ácido trifluoroacético (1 ml) a la mezcla de reacción y la solución se agitó durante 1 h a ta. La reacción se concentró y el material en bruto se purificó mediante HPLC preparativa en fase inversa/EM eluyendo con un gradiente de 7 min del 5 al 95 % de CH₃CN en H₂O con 0,1 % de ácido fórmico proporcionando **AE5** (R^{1} =Me, R^{3} =ciclohexilmetilo, R^{15} = ciclobutilo).

20 Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
205	NH O	267	268	226	HN O	335	336
206	HN NO	293	294	227	HN NO	335	336
207	NH NH O NH	295	296	228	O NH	335	336
208	HN N Cheral	295	296	229	HN	335	336
209	HN N HN O	295	296	230	HN	335	336

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
210	HN CHEST	295	296	231	NH NHO	335	336
211	HN	305	306	232	HN O	335	336
212	O NH NH O NH	307	308	233	OHN ON O	337	338
213	HN N	307	308	234	HO HN O	337	338
214	HN Consu	309	310	235	HN N	349	350
215	HN N O	309	310	236	O HN N-	349	350
216	HN NO	309	310	237	HN	349	350

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
217	HN O	309	310	238	HN N HN O	349	350
218	HN N HN O	321	322	239	NH NH SI-	353	354
219	HN N HN O	321	322	240	NH NH NH	361	362
220	NH NH	321	322	241	HN N HN O	363	364
221	NH NH NH	322	323	242	N-NH NH O-NH	363	364
222	NH O S	329	330	243	d HN NO	363	364

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
223	O N NH	333	334	244	HN N HN O	389	390
224	HN NO	335	336	245	HN NO	321	NA
225	HN NO	335	336				

Procedimiento AF

A una solución de ^tBuOK (9,5 mg, 0,0848 mmoles) en 0,5 ml de THF anhidro se añadió ArOH (Ar=m-clorofenilo) (13 µl, 0,1273 mmoles) en 0,5 ml de THF anhidro seguido de la adición de **AE4** (R¹=Me, R³=ciclohexilmetilo) (20 mg, 0,0424 mmoles) en 0,5 ml de THF anhidro. La mezcla de reacción se agitó a temperatura ambiente durante 2 días antes de diluirse con 1 ml de MeCN, tratarse con 100 mg de resina de MP-TsOH y 100 mg de resina Amberlyst A26. La resina se eliminó por filtración y el filtrado se evaporó dando un producto que se trató con 50 % de TFA durante 1 h. Después de la evaporación de TFA a vacío, el residuo se disolvió en 2 ml de MeCN y se trató con 100 mg de resina de MP-TsOH. La resina se lavó minuciosamente con THF, MeCN y MeOH, y luego se trató con NH₃ 2 M en MeOH dando **AF2** (R¹=Me, R³=ciclohexilmetilo y R¹⁵=3-clorofenilo).

Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
246	NH NH NH	316	317	309	NH NH O O O	365	366

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
247	NH NH N	316	317	310	NH OCC	365	366
248	NH NH N	316	317	311	NH NH O O N	366	367
249	O N N N N N N N N N N N N N N N N N N N	329	330	312	NH NH NH	366	367
250	O N NH	329	330	313	NH NH NH NH	366	367
251	O N N N N N N N N N N N N N N N N N N N	329	330	314	NH NH N	366	367
252	NH H ₂ N	330	331	315	NH NHO-N	366	367
253	NH O OH	331	332	316	NHO NHO	366	367

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
254	NH O O O O O O O O O O O O O O O O O O O	331	332	317	NH NH NH N	366	367
255	NH O O F	333	334	318	O N NH NH NH	367	368
256	NH NH F	333	334	319	O N NH O NH O NH	367	368
257	O N NH NH	333	334	320	O NH NH	367	368
258	O N NH	333	334	321	HN H	369	370
259	NH NH O F	333	334	322	ON NH	371	372
260	O N NH	340	341	323	O N N N N N N N N N N N N N N N N N N N	371	372

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
261	O N NH	340	341	324	O N NH	371	372
262	O N NH	340	341	325	NH O HO	372	373
263	NH NH O	343	344	326	O NH O NH NH NH NH NH NH	372	373
264	O N N N N N N N N N N N N N N N N N N N	343	344	327	NH NH	372	373
265	O N N N N N N N N N N N N N N N N N N N	343	344	328	O NH NH	372	373
266	O N N N N N N N N N N N N N N N N N N N	343	344	329	O NH NH	373	374
267	NH HN	344	345	330	O NH NH	373	374

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
268	NH O NH	344	345	331	NH NH	375	376
269	NH NH O O O O	345	346	332	O N NH	375	376
270	HO NH NH	345	346	333	O N NH	375	376
271	O NH NH	345	346	334	O N NH	377	378
272	O N NH	345	346	335	O N NH ON NH	377	378
273	O N N N N N N N N N N N N N N N N N N N	347	348	336	O N NH	377	378
274	O N NH F NH	347	348	337	NH a	383	384

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
275	NH NH O O	349	350	338	a a a	383	384
276	NH O O	349	350	339	O N NH O NH F F F	383	384
277	NH NH O O O	349	350	340	O N N N N N N N N N N N N N N N N N N N	383	384
278	NH O O	349	350	341	a O NH	383	384
279	NH NH F	351	352	342	O N NH NH FFF	383	384
280	NH NH F	351	352	343	O N NH	383	384
281	O N NH	351	352	344	O N NH NH O NH	383	384

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
282	O N NH	351	352	345	a NHNH	383	384
283	O N NH NH NH	351	352	346	O N N N N N N N N N N N N N N N N N N N	383	384
284	F NH	351	352	347	O NI NIH	385	386
285	O N NH NH F	351	352	348	HN H	385	386
286	O N NH NH F	351	352	349	NH NH	386	387
287	O N N N N N N N N N N N N N N N N N N N	355	356	350	NH N S	387	388
288	NH NHO	355	356	351	NH NH	387	388

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
289	O N N N N N N N N N N N N N N N N N N N	357	358	352	O N NH NH Br	393	394
290	O N NH	357	358	353	D N NH	393	394
291	O N N N N N N N N N N N N N N N N N N N	357	358	354	O N NH	393	394
292	NH NHO	357	358	355	O N NH Br NH	393	394
293	NH NH O	358	359	356	P P P P P P P P P P P P P P P P P P P	399	400
294	NH NH	358	359	357	F O NH NH	399	400
295	HIN O NH	358	359	358	NH NH NH NH	400	401

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
296	O NH NH	358	359	359	NH NH N	400	401
297	O N NH	359	360	360	HN O NH	400	401
298	O NH NH	359	360	361	O N NH F F F	401	402
299	O N N N N N N N N N N N N N N N N N N N	359	360	362	N NH NH F F	401	402
300	O N N N N N N N N N N N N N N N N N N N	359	360	363	O N NH NH F F F	401	402
301	O N NH	359	360	364	O N NH	405	406
302	O=N-NH O=N-O-	360	361	365	Br NH	411	412

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
303	O N NH	360	361	366	N NH NH NH	414	415
304	O.N. NH	360	361	367	O NH NH FFF	417	418
305	O N NH	363	364	368	O NH NH O NH O NH	417	418
306	O N NH	363	364	369	O NH	421	422
307	O N NH	363	364	370	O N N N N N N N N N N N N N N N N N N N	434	435
308	O N NH NH	363	364	371	F F F	451	452

Procedimiento AG

Procedimiento AG, Etapa 1:

Se trató R²¹-H (R²¹ =PhS-) (33 μl, 0,318 mmoles) con NaH (10,2 mg, 60 % en aceite mineral) en 0,5 ml de THF anhidro. Se añadió una solución de **AE4** (R¹=Me, R³=ciclohexilmetilo) (20 mg, 0,0424 mmoles) en 0,5 ml de THF anhidro. La mezcla de reacción se agitó a temperatura ambiente durante la noche antes de repartirse entre éter y solución acuosa saturada de NaHCO₃. La fase acuosa se extrajo con éter 2 veces. La fase orgánica combinada se lavó con salmuera 2 veces y se secó sobre NaSO₄ anhidro. El bruto se purificó sobre columna ultrarrápida con EtOAc / hexano dando 9 mg de **AG1** (R²¹=PhS-, R¹=Me, R³=ciclohexilmetilo) (rendimiento del 49,2 %).

10 Procedimiento AG, Etapa 2:

5

Se trató **AG1** (R²¹=PhS-, R¹=Me, R³=ciclohexilmetilo) con 50 % de TFA según la Etapa 6 del Procedimiento H dando **AG2** (R²¹=PhS-, R¹=Me, R³=ciclohexilmetilo).

Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
372	NH NH O O O	315	316	374	NH NH s	337	338
373	NH NH S	331	332				

15 Procedimiento AH

20

25

Procedimiento AH, Etapa 1:

Se añadió benzofenonaimina (3,27 g, 18,04 mmoles) a una suspensión de **AH1** (R^3 =ciclohexilmetilo) (4 g, 18,04 mmoles) en 65 ml de DCM. La mezcla de reacción se agitó a temperatura ambiente durante la noche bajo N_2 antes de filtrar el sólido, y el disolvente se evaporó. El residuo se disolvió en 100 ml de éter, se lavó con agua 2X y se secó sobre MgSO₄ anhidro. El bruto se purificó sobre columna ultrarrápida dando 5,08 g (rendimiento del 80,57 %) de **AH2** (R^3 =ciclohexilmetilo).

Procedimiento AH, Etapa 2:

Una solución de **AH2** (R³=ciclohexilmetilo) (1 g, 2,86 mmoles) en 12 ml de THF anhidro se añadió a una suspensión de 18-corona-6 (0,76 g, 2,86 mmoles) y 30 % de KH en aceite mineral (1,16 g, 8,58 mmoles) en 4 ml de THF anhidro bajo

 N_2 . La mezcla se enfrió en baño de hielo y luego se añadió R^4 Br (R^4 =3-piridilmetilo, como una sal de bromhidrato). La mezcla de reacción se agitó en baño de hielo durante 30 min y a temperatura ambiente durante 2 h más antes de inactivar la reacción con 2 ml de $HOAc/THF/H_2O$ (0,25:0,75:1). La mezcla se diluyó con 40 ml de $ETOAc/H_2O$ (1:1). La fase acuosa se extrajo con ETOAc 3 veces. La fase orgánica combinada se lavó con salmuera 3 veces y se secó sobre ETOAC 4 ml de ETOAC 4 ml de ETOAC 6 ml de ETOAC 7 ml de ETOAC 8 ml de ETOAC 8 ml de ETOAC 9 ml de ET

Procedimiento Al

5

10

15

A una solución del compuesto **Al1** (R¹=Me, R³=n-Bu) (34 mg, 0,105 mmoles) en metanol (1 ml) se añadió 10 % de Pd/C (5 mg). La mezcla se mantuvo bajo un balón de H_2 durante 1 h. Después de la filtración del catalizador, el filtrado se concentró para obtener producto en bruto. Este residuo se purificó por RP-HPLC para obtener el compuesto **Al2** (R¹=Me, R³=n-Bu) (25 mg, 100 %). MW observado (M+H) 246,1; masa exacta 245,15. RMN ¹H (400 MHz, CD₃OD): δ = 7,59 (m, 2H), 7,36 (m, 3H), 3,17 (s, 3H), 2,17 (m, 2H), 1,27 (m, 4H), 0,86 (t, 3H, J=7,2Hz).

Los siguientes compuestos se sintetizaron usando un procedimiento similar:

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
375	NH NH	283	284	380		463	464
376	O NH NH NH	285	286	381		487	488
377	O NH NH	299	300	382		489	490

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
378		450	451	383	NH N	503	504
379	O N NH NH	462	463	384		516	517

Procedimiento AJ

A una mezcla de compuesto **AJ1** (R¹=Me, R³=n-Bu) (70 mg, 0,165 mmoles) y bromuro de butilcinc (1,32 ml), 0,6 mmoles) se añadió Pd(dppf)Cl₂. La mezcla se desgasificó, se cerró herméticamente y se calentó a 55 °C durante 1 día. La mezcla se diluyó con CH₂Cl₂ y NH₃/H₂O. La fase orgánica se separó, se secó, se concentró y se purificó por RP-HPLC para obtener el producto que luego se trató con HCl 4 N/dioxano durante 30 min dando el compuesto **AJ2** (R¹=Me, R³=n-Bu) (12 mg, 25 %). MW observado (M+H) 302,1; RMN ¹H (400 MHz, CD₃OD): δ = 7,32 (m, 3H), 7,22 (m, 1H), 3,19 (s, 3H), 2,65 (m, 2H), 2,20 (m, 2H), 1,60 (m, 2H), 1,38 (m, 4H), 1,24 (m, 2H), 0,92 (m, 6H).

El siguiente compuesto se sintetizó de un modo similar:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
386	H Z Z	518	519	385	NH NH NH	301	302

Procedimiento AK

A una solución de **AK1** (R¹=Me, R³=n-butilo, R²¹=n-Bu) (9 mg, 0,03 mmoles) en metanol (1ml) se añadió 5 % de Pt/C (5 mg), Rh/C (5 mg) y HCl conc. (0,05 ml). La mezcla se mantuvo bajo H_2 (50 psi) durante 2 días. Después de la filtración del catalizador, el filtrado se concentró para obtener el compuesto **AK2** (R¹=Me, R³=n-butilo, R²¹=n-Bu). MW observado (M+H) 308,1. RMN 1 H (CD₃OD): δ = 3,16 (s, 3H), 1,80 (m, 6H), 1,26 (m, 16H), 0,88 (m, 6H).

Los siguientes compuestos se sintetizaron usando un procedimiento similar:

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
387	NH NH	277	278	391	O-CHN NH	391	392
388	NH NH NH	291	292	392	O HN NH	391	392

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
389	O NH NH	305	306	393	E E E	468	469
390	O NH	307	308				

Procedimiento AL

5 **Procedimiento AL, Etapa 1:**

A una solución del compuesto **AL1** (R^3 =n-Bu) (418 mg, 1,39 mmoles) en metanol (8 ml) se añadió PtO₂ (40 mg) y HCl conc. (0,4 ml). La mezcla se hidrogenó (50 psi) durante 1 día. Después de la filtración del catalizador, el filtrado se concentró. El residuo en bruto se basificó a pH=11-12 mediante NaOH 1 N. Esta mezcla se extrajo con acetato de etilo. La fase orgánica se separó, se secó y se concentró para obtener el compuesto **AL2** (R^3 =n-Bu) (316 mg, 100 %).

10 Procedimiento AL, Etapa 2:

A una solución del compuesto **AL2** (R^3 =n-Bu) (300 mg, 1,32 mmoles) en diclorometano (6 ml) se añadió (BOC)₂O (316 mg, 1,45 mmoles). La mezcla se agitó a TA durante 1,5 h. Se diluyó con agua y diclorometano. La fase orgánica se separó, se secó y se concentró para obtener el compuesto **AL3** (R^3 =n-Bu) (464 mg, 100 %).

Procedimiento AM

15

Procedimiento AM, Etapa 1:

El compuesto **AM1** (R¹=Me, R³=n-butilo) se trató con HCl 4 N en dioxano durante 2 h. La mezcla se concentró para obtener el compuesto **AM2** como una sal de HCl (R¹=Me, R³=n-butilo). MW observado (M+H) 470,1; RMN ¹H (CD₃OD): δ = 7,28 (m, 2H), 6,96 (m, 3H), 4,80 (m, 2H), 4,56 (m, 1H), 4,00 (m, 1H), 3,64 (m, 4H), 3,37 (m, 2H), 3,12 (m, 1H), 3,00

(m, 1H), 2,90 (m, 1H), 2,72 (m, 1H), 2,38 (m, 1H), 2,12-1,62 (m, 8H), 1,35 (m, 6H), 1,12 (m, 1H), 0,91 (m, 3H).

Procedimiento AM, Etapa 2:

A una solución del compuesto **AM2** (R'=Me, R³=n-butilo) (32 mg, 0,068 mmoles) en diclorometano (1 ml) se añadió cloruro de acetilo (5 ul, 0,072 mmoles). La mezcla se agitó durante 2 h. Luego se diluyó con CH_2Cl_2 y agua. La fase orgánica se separó, se secó, se concentró y se purificó por RP-HPLC para obtener el compuesto **AM3** (R'=Me, R³=n-Butilo y R¹⁵=Me). MW observado (M+H) 512,3; RMN ¹H (400 MHz, CDCl₃): δ = 7,27 (m, 2H), 6,98 (m, 1H), 6,92 (m, 2H), 4,65 (s, 2H), 4,50 (m, 2H), 3,98 (m, 1H), 3,70 (m, 1H), 3,41 (m, 2H), 2,98 (m, 2H), 2,62 (m, 1H), 2,50 (m, 1H), 2,47 (m, 1H), 2,02 (m, 5H), 1,75 (m, 6H), 1,26 (m, 7H), 0,84 (m, 3H).

Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
394	NH NH NH NH NH	252	253	397	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	469	470
395	NH NH ZH	252	253	398	NET NET NO	498	499
396		456	457	399	NH NH NO	511	512

Procedimiento AN

5

10

A una solución del compuesto **AN2** (R¹=4-N-(α -fenoxiacetil)piperidinilmetilo, R³=n-butilo) (28 mg, 0,06 mmoles) en dicloroetano (2 ml) se añadió butiraldehído (5,3 ul, 0,06 mmoles), trietilamina (8,4 ul, 0,06 mmoles) y NaBH(OAc)₃ (18 mg, 0,084 mmoles). La mezcla se agitó durante la noche. Luego se diluyó con diclorometano y agua. La fase orgánica se separó, se secó, se concentró y se purificó por RP-HPLC para obtener **AN2** (R¹=4-N-(a-fenoxiacetil)piperidinilmetilo, R³=n-butilo, R¹5=propilo y R¹6=H) (5,4 mg, 17 %). MW observado (M+H) 526,1; masa exacta 525,37. RMN ¹H (CD₃OD): δ = 7,28 (m, 2H), 6,96 (m, 3H), 4,76 (m, 2H), 4,55 (m, 1H), 4,05 (m, 1H), 3,77 (m, 1H), 3,61 (m, 3H), 3,50 (m, 1H), 3,11 (m, 4H), 2,85 (m, 1H), 2,68 (m, 1H), 2,38 (m, 1H), 2,05 (m, 2H), 1,95 (m, 2H), 1,73 (m, 5H), 1,39 (m, 8H), 1,10 (m, 1H), 0,99 (m, 3H), 0,92 (m, 3H).

El siguiente compuesto se sintetizó usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
400	O NH NH N-NH	308	309	402	NA PHANT NA PARAMETER NA PARAME	525	526
401	O NH NH NH	308	309				

Procedimiento AO

Una mezcla de cloruro de cobre (2,06 g, 20,8 mmoles) y cloruro de litio (1,76 g, 41,6 mmoles) en 100 ml de THF se enfrió hasta -78 °C. A esta mezcla se añadió gradualmente una solución 2,0 M de **AO1** (R³=n-butilo) (10 ml), 20 mmoles). La reacción se calentó hasta -60 °C y se inyectó **AO2** (R⁴=m-Br-Ph) (2,9 ml, 22 mmoles). La mezcla se agitó a -60 °C durante 15 minutos y luego se calentó rápidamente a TA eliminando el baño de hielo seco. La reacción se inactivó con agua y NaHCO₃ sat. Después de la adición de éter dietílico se formó y se filtró un lote de precipitado. Del triflato bifásico, la fase orgánica se separó, se secó, se concentró y se purificó por cromatografía en gel de sílice (10 % de EtOAc/hexano) para obtener la cetona **AO3** (R⁴=m-BrPh, R³=n-Bu) (3,93 g, 82 %). MW observado (M+H) 241,1; masa exacta 240,01. RMN ¹H (400 MHz, CDCl₃): ō = 8,07 (m, 1H), 7,88 (m, 1H), 7,64 (m, 1H), 7,34 (m, 1H), 2,94 (t, 3H, *J*=7,2Hz), 1,71 (m, 2H), 1,40 (m, 2H), 0,95 (t, 3H, *J*=7,6Hz).

Se prepararon las siguientes cetonas según el Procedimiento 9:

25

15

20

Estructura	MW observado (M+H)	Masa exacta		
Br N	242,1	241,01		

Procedimiento AP

Procedimiento AP, Etapa 1:

A una solución de AP1 (R⁴=3-bromofenilo) (5 g, 25 mmoles) en diclorometano (10 ml) se añadieron clorhidrato de N,O-dimetilhidroxilamina (2,56 g, 26,25 mmoles) y 4-metilmorfolina (2,95 ml, 26,25 mmoles). Luego se añadió EDCI (5,04 g, 26,25 mmoles) en porciones. La mezcla de reacción se agitó a TA durante la noche y luego se inactivó con HCl 1 N (60 ml). La mezcla se extrajo con diclorometano. La fase orgánica se lavó con HCl 1 N y salmuera, se secó sobre Na₂SO₄ y se concentraron dando la amida de Weinreb AP2 (R⁴=m-bromofenilo) (5,96 g, 98 %). MW observado (M+H) 244,1;
 masa exacta 243,99. RMN ¹H (CDCl₃): δ = 7,78 (m, 1H), 7,58 (m, 2H), 7,24 (m, 1H), 3,51 (s, 3H), 3,32 (s, 3H). Este material se usó en la siguiente etapa sin purificación.

Procedimiento AP, Etapa 2:

A una suspensión de virutas de magnesio (1,19 g, 48,8 mmoles) en 30 ml de THF se añadió gota a gota una solución de R³Br (R³=ciclohexiletilo) (5,73 ml, 36,6 mmoles) en 24 ml de THF. Después de la adición de la mitad de la solución de bromuro se añadieron varios cristales de yodo para iniciar la reacción. La mezcla se volvió turbia y se desprendió calor. El resto de la solución de bromuro se añadió gota a gota. La mezcla se agitó a TA durante 30 minutos y luego se enfrió a 0 °C, y se añadió **AP2** (R⁴=m-bromofenilo) (5,96 g, 24,4 mmoles). La mezcla se agitó a TA durante 3 h y luego se extinguió con HCl 1 N hasta que no quedó Mg(O) residual. Las fases se separaron y la fase acuosa se extrajo con éter. Las fases orgánicas combinadas se lavaron con salmuera, se secaron y se concentraron. El bruto se purificó por cromatografía en sílice (15 % de EtOAc/hexano) para obtener la cetona **AP3** (R⁴=m-bromofenilo, R³=ciclohexiletilo) (8,06 g, 100 %). MW observado (M+H) 295,2; masa exacta 294,06. RMN 1 H (400 MHz, CDCl₃): δ = 8,18 (m, 1H), 7,85 (m, 1H), 7,64 (m, 1H), 7,33 (m, 1H), 2,94 (t, 3H, J=7,2Hz), 1,70 (m, 9H), 1,63 (m, 4H).

Procedimiento AQ

15

20

$$R^4_{CN} + R^3_{Li} \longrightarrow R^3_{N}$$
AQ1 AQ3 AQ4

A una solución a -78 °C de **AQ1** (R⁴ = ciclopropilo) (2,55 g, 38,0 mmoles) en éter dietílico (100 ml) se añadió **AQ2** (R³=*n*-BuLi) (38 ml, 1,5 M en hexanos, 57 mmoles). Después de 45 min, el baño de refrigeración se retiró. Después de 3 h a TA, la reacción se inactivó mediante la adición de agua y luego se diluyó adicionalmente con EtOAc y agua. Las fases se separaron y la fase acuosa se extrajo con EtOAc (2X). Las porciones orgánicas se combinaron, se lavaron con salmuera, se secaron sobre MgSO₄ y se concentraron. Este residuo en bruto se sometió a cromatografía en columna (gel de sílice, 0 %→100 % de CH₂Cl₂/hexanos) proporcionando la cetona deseada **AQ4** (R⁴=ciclopropilo, R³=n-butilo) (2,57 g, 20,4 mmoles, 54 %). RMN ¹H (CDCl₃) δ 2,52 (t, *J* = 7,2 Hz, 2 H), 1,90 (m, 1H), 1,57 (m, 2 H), 1,30 (m, 2 H), 0,98 (m, 2 H), 0,89 (t, *J* = 7,6 Hz, 3 H), 0,83 (m, 2 H).

Procedimiento AR

Procedimiento AR:

5

El compuesto **B2** (R¹=m-Cl-fenetilo, R³=Me, R⁴=i-butilo y R⁵=bencilo) se convirtió en el **AR2** (R¹=m-Cl-fenetilo, R³=Me, R⁴=i-butilo y R⁵=bencilo) usando el Procedimiento A Etapa 3.

Los siguientes compuestos se sintetizaron usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
403	O NH NH	396	397	407	a NH NH	340	NA
404	NH NH	354	NA	408	a NH NH	382	NA
405	N-N-NH	477	NA	409		446	NA
406	O C N N N N N N N N N N N N N N N N N N	460	NA				

Procedimiento AS

Procedimiento AS, Etapa 1:

A una mezcla de **AS1** (R^3 =Ph) (3,94 g) en tolueno (10 ml) se añadió cloruro de tionilo (1,61 ml) y la mezcla resultante se calentó a reflujo durante 6 h (hasta que cesó el desprendimiento de HCl). La mezcla de reacción se mantuvo durante la noche a ta antes de concentrarse a vacío. Se añadió tolueno (10 ml) y la mezcla se concentró de nuevo a vacío. La mezcla de reacción se disolvió en CH_2Cl_2 , se añadió bicarbonato sódico sólido, se filtró y luego la solución de CH_2Cl_2 se concentró a vacío dando **AS2** (R^3 =Ph).

Procedimiento AS, Etapa 2:

10

15

20

A **AS2** (R³=Ph) (0,645 g) y **AS5** (R⁴=4-clorofenilo) (0,464 g) y yoduro de 1,3-dimetilimidazolio (0,225 g) en THF anhidro (20 ml) se añadió 60 % de hidruro de sodio en aceite (0,132 g). La mezcla resultante se agitó a ta durante 18 h. La mezcla de reacción se concentró y se repartió entre H₂O y Et₂O. La solución de Et₂O secada se concentró a vacío dando un residuo amarillo que se dispuso sobre placas de gel de sílice preparativas y se eluyó con CH₂Cl₂ dando **AS3** (R³=Ph, R⁴=p-ClPh). (Miyashita, A., Matsuda, H., Hiagaskino, T., Chem. Pharm. Bull., 1992, 40 (10), 2627-2631).

Procedimiento AS, Etapa 3:

Se añadió ácido clorhídrico (1 N, 1,5 ml) a **AS3** (R³=Ph, R⁴=p-ClPh) en THF (10 ml) y la solución resultante se agitó a ta durante 20 h. La mezcla de reacción se concentró a vacío y luego se repartió entre CH₂Cl₂ y H₂O. El CH₂Cl₂ secado se concentró a vacío dando un residuo que se dispuso sobre placas de gel de sílice preparativas y se eluyó con CH₂Cl₂:hexano 1:1 proporcionando **AS4** (R³=Ph, R⁴=p-ClPh).

Procedimiento AS, Etapa 4:

Se mezclaron **AS**₄ (R³=Ph, R⁴=p-ClPh) (0,12 g) y metilguanidina·HCl (**AS6**, R¹= Me) (0,055 g) en EtOH absoluto (5 ml) con trietilamina (0,2 ml) y luego se calentó a reflujo durante 20 h. La mezcla resultante se concentró y luego se repartió entre CH₂Cl₂ y H₂O. El CH₂Cl₂ secado se concentró a vacío dando un residuo que se dispuso sobre placas de gel de sílice preparativas y se eluyó con CH₂Cl₂:MeOH 9:1 proporcionando **AS5** (R³=Ph, R⁴=p-ClPh y R¹=Me).

Los siguientes compuestos se sintetizaron usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
				419	NH CI	299	300
411	NH	265	266	420	NH	309	310
412	HN	265	266	421	NH O	325	326
413	NH NH S	271	272	422	NH Br	343	344

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
414	NH NH S S	271	272	423	NH NH Br	343	344
415	NH NH	279	280	424	NH NH Br	421	422
416	NH O-	295	296	425	O o por la como de la	482	483
417	NH NH O	295	296	426	Qy, O, F,	512	513
418	NH NH Q	299	300	427	DAN CHOOL	560	561

Procedimiento AT

5

10

Procedimiento AT, Etapa1:

AT1, preparado usando un procedimiento similar al Procedimiento H, Etapa 1, 2 y 3, (n=4, $R^3=R^4=n-Bu$) (0,146 g) en MeOH (3 ml) y NaOH 1 N (0,727 ml) se agitó durante la noche a ta. La mezcla se concentró y luego se repartió en agua (pH -3, ajustado usando HCl conc.) y EtOAc. La fase de EtOAc secada se concentró a vacío proporcionando **AT2** (n=4, $R^3=R^4=n-Bu$).

Procedimiento AT, Etapa 2:

El compuesto **AT2** (n=4, $R^3=R^4=n$ -Bu) (0,012 g) en MeCN (1 ml) se trató con resina de EDC (0,12 g, 1,44 mmoles/g), HOBT (0,004 g) en THF (1 ml) y n-butilamina ($R^{15}=H$, $R^{16}=n$ -butilo) (0,007 ml). La reacción se llevó a cabo durante la

noche a ta antes de añadir resina de PS-NCO Argonaut (0,150 g), resina de PS-poliamina (0,120 g) y THF (2 ml) y agitar la mezcla durante 4 h. La mezcla de reacción se filtró y la resina se lavó con THF (2 ml). La fase orgánica combinada se concentró a vacío antes de tratar el residuo con HCl 1 N en MeOH (1 ml) durante 4 h, seguido de la evaporación del disolvente dando AT3 (n=4, $R^3=R^4=n$ -Bu, $R^{15}=H$ y $R^{16}=n$ -butilo).

5 Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
428	H Z Z H	324	325	436	Hy NH	400	401
429	-O HIN NH	325	326	437	Hay Not	406	07
430	The man has a second and the second	338	339	438		414	15
431	ON HAN H	339	340	439		414	15
432	A MAN	366	367	440		420	21
433	O THE NAME OF THE PARTY OF THE	368	369	441		428	29
434	The Man	380	381	442		444	45
435	-0-11-11-11-11-11-11-11-11-11-11-11-11-1	382	383	443		458	59

Procedimiento AU

$$R^{15}$$
 R^{16}
 R

Se adaptó un procedimiento publicado (Varga, I.; Nagy, T.; Kovesdi, I.; Benet-Buchholz, J.; Dormab, G.; Urge, L.; Darvas, F. Tetrahedron, 2003, (59) 655-662).

AU1 (R¹⁵=H, R¹⁶=H) (0,300 g), preparado según el procedimiento descrito por Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R., (Vogel's Textbook of Practical Organic Chemistry. 5ª ed. Longman: Nueva York, 1989; pág. 1034-1035), AU2 (sal de HCl, R¹=Me) (0,237 g), 50 % de KOH (0,305 ml), 30 % de H₂O₂ (0,115 ml) y EtOH (4,6 ml) se calentaron en un tubo cerrado durante 2 h. La mezcla de reacción se concentró y se extrajo con CH₂Cl₂. La solución orgánica secada se concentró a vacío dando un residuo que se dispuso sobre placas de gel de sílice preparativas eluyendo con CH₂Cl₂:MeOH 9:1 proporcionando AU3 (R¹⁵=H, R¹⁶=H, R¹= Me).

Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
444	THE	265	266	448	NH NH S	285	286
				449	NH NH O	309	310
446	NH NH N	280	281	450	NH NH NH	309	310
447	NH S	285	286				

Procedimiento AV

15

Procedimiento AV, Etapa 1:

En un tubo de microondas, **AV1** (R^3 =Me, R^4 =Bu-i) (0,0012 g) y **AV2** (R^{22} =OPh) (0,0059 ml) en isopropanol (2 ml) se dispusieron en un microondas a 125 °C durante 5 min. La mezcla de reacción se concentró a vacío dando **AV3** (R^3 =Me, R^4 =i-Bu, R^{22} =OPh).

5 Procedimiento AV, Etapa 2:

AV3 (R^3 =Me, R^4 =i-Bu, R^{22} =OPh) en CH_2CI_2 (1 ml) y TFA (1 ml) se agitó durante 2 h y se concentró a vacío y se purificó sobre EM-CL prep proporcionando **AV4** (R^3 =Me, R^4 =i-Bu, R^{22} =OPh).

Los siguientes compuestos se sintetizaron de un modo similar.

Nº	Estructura	M W	m/e obs.	N°	Estructura	M W	m/e obs.
451	OH OHNH	378	379	453	O-CH NH	416	417
452	WH ON WHAT	396	397				

10 Procedimiento AW

Se usó un procedimiento similar al Procedimiento **U** para esta transformación. Los siguientes compuestos se generaron usando procedimientos similares.

Los siguientes compuestos se sintetizaron de un modo similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
454	O O O O O O O O O O O O O O O O O O O	341	342	458	NH NN N	347	348
455	HN N	341	342	459	NH HN N	359	360

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
457	NH HN NH	342	343	461	HN N O	294	295

Procedimiento AX

5 Procedimiento AX, Etapa 1.

Se adaptó un procedimiento bibliográfico (J-Q Yu y E.J. Corey, Organic Letters, 2002, 4, 2727-2730).

A una solución de 400 ml de DCM de **AX1** (n=1, R⁴=fenetilo) (52 gramos) en un baño de hielo se añadieron 5 g de Pd/C (5 % peso/peso), 50 g de carbonato de potasio y 100 ml de t-BuOOH anhidro. La mezcla se agitó en aire durante la noche antes de diluirse con DCM y se lavó con agua. El residuo después de eliminar de disolvente orgánico y secar se purificó por cromatografía usando acetato de etilo/hexano dando 25 g de **AX2** (n=1, R⁴=fenetilo).

Procedimiento AX, Etapa 2.

10

15

Una solución de **AX2** (4,5 g, n=1, R^4 =fenetilo) en MeOH (50 ml) se trató con 0,4 g de borohidruro de sodio y la reacción se agitó durante 30 min antes de eliminar el disolvente y el residuo se sometió a cromatografía dando una mezcla de **AX3** (n=1, R^4 =fenetilo) y **AX4** (n=1, R^4 =fenetilo) que se separó usando una columna AS Chiralpak eluida con 8 % de IPA en hexano (0,05 % de DEA) dando 2,1 g de **AX3** (n=1, R^4 =fenetilo) como primera fracción y 2,2 g de **AX4** (n=1, R^4 =fenetilo) como segunda fracción.

Procedimiento AX, Etapa 3.

Una solución metanólica de 100 ml de **AX4** (n=1, R⁴=fenetilo) (2,2 g) y tetrafluoroborato de 1,1'-bis(di-*i*-propilfosfino)ferroceno(1,5-ciclooctadieno)rodio (I) (0,4 g, 0,57 mmoles) se hidrogenó a 55 psi durante la noche. La reacción se concentró, y el aceite marrón se purificó por cromatografía en gel de sílice dando **AX6** (n=1, R⁴=fenetilo) (1,7 g).

Los siguientes compuestos se generaron usando un procedimiento similar.

Procedimiento AY

10

5

Una solución de **AY1** (n = 1; 1,5 g, 3,4 mmoles), 5 % de Rh/C (1,5 g), 5 % de Pd/C (0,5 g) en AcOH (30 ml) se agitó en un aparato de Parr a 55 psi durante 18 horas. El recipiente se lavó con N₂, y la reacción se filtró a través de una almohadilla de Celite. Después de la concentración se obtuvo **AY2**, que continuó sin purificación. EM m/e: 312,0 (M+H).

AY3 se generó usando un procedimiento similar.

15

Procedimiento AZ

Procedimiento AZ, Etapa 1

A una solución de **AZ1** (n=1, R¹=Me, R³=2-ciclohexiletilo) (0,441 g, 1,01 mmoles), generado a partir de **AY2** usando el

Procedimiento C y el **Procedimiento H** Etapa 3, en DCM se añadió peryodinano de Dess-Martin (0,880 g, 2,07 mmoles). La reacción se agitó durante 3 horas a temperatura ambiente. La reacción se inactivó con H₂O y se diluyó con EtOAc. Después de eliminar la fase orgánica, la fase acuosa se extrajo con EtOAc (3x). Los extractos orgánicos combinados se secaron (Na₂SO₄), se filtraron y se concentraron. El residuo se purificó por cromatografía en gel de sílice (0-100 % de EtOAc/hexanos) dando **AZ2** (n=1, R¹=Me, R³=2-ciclohexiletilo) (0,408 g, 0,94 mmoles, rendimiento del 93 %). EM m/e: 434,1 (M+H).

Procedimiento AZ Etapa 2:

5

10

15

A una solución de **AZ2** (n=1, R¹=Me, R³=2-ciclohexiletilo) (0,011 g, 0,025 mmoles) y **AZ5** (R¹⁵=H y R¹⁶=m-piridilmetilo) (0,0067 ml, 0,066 mmoles) en DCE (1,8 ml) y MeOH (0,2 ml) se añadió AcOH (4 gotas) y resina de MP-cianoborohidruro (,095 g, 2,42 mmoles/g). La reacción se agitó durante 40 horas a temperatura ambiente. La reacción se trató con NH₃ 7 N /MeOH y la solución se filtró. Después de la concentración, el residuo se purificó por HPLC en gel de sílice (0-4 % [(5 % de NH₃ 7 N /MeOH)/MeOH]/(50 % de DCM/hexanos) proporcionando la fracción 1 y la fracción 2 que, después de eliminar de disolvente, se trataron con 20 % de TFA en DCM durante 3 h at t.a. dando **AZ4** (n=1, R¹=Me, R³=2-ciclohexiletilo, R¹⁵=H y R¹⁶=m-piridilmetilo) (0,005 g, 0,009 mmoles) y **AZ3** (n=1, R¹=Me, R³=2-ciclohexiletilo, R¹⁵=H y R¹⁶=m-piridilmetilo) (0,012 g, 0,022 mmoles) respectivamente.

Los siguientes compuestos se generaron usando procedimientos similares:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
462	O NH NH	333	334	504	HO THE NAME OF THE PARTY OF THE	406	407
463	NH NH	348	349	505	HW H	410	411
464	NH NH NH	374	375	506	N- NH	410	411
465	O NH NH NH NH NH	374	375	507	N. C. L.	410	411
466	N-NH N-NH	374	375	508	NH NH	411	412

467	O N NH	374	375	509	NH NH NH	411	412
-----	--------	-----	-----	-----	----------	-----	-----

			(contin	uación)	~		
Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
468	N- NH	376	377	510	N N N N N N N N N N N N N N N N N N N	411	412
469	MH NH	376	377	511	N-NH N-NH	416	417
470	O= NH	376	377	512	H. NH	416	417
471	NH NH	376	377	513	H H	416	417
472	H ² N O NH	377	378	514	N-NH N-NH	416	417
473	H ² N O NH	377	378	515	O NH	417	418
474	HO NH	378	379	516	HN OT NH	417	418

	N-FNH O=\NH				N-NH O-NH		
475	HO HO WIND	378	379	517		424	425

			(contin	uación)			
Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
476	NH NH	388	389	518	NH NH	424	425
477	O NH NH NH	388	389	519	M. H.	424	425
478	NH	388	389	520	H. H	424	425
479	O N NH	388	389	521	NH NH NH NH	425	426
480	N-NH N-NH	388	389	522	NH NH NH	425	426

			(conti	nuación)			
Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
482	NH NH	388	389	524	NH NH NH NH	425	426
483	NH NH	388	389	525	NH NH NH	425	426
484	N	390	391	526	NH NH NH	425	426
485	NH NH	390	391	527	N= N-	425	426

486	HN O NH	390	391	528	N N N N N N N N N N N N N N N N N N N	425	426
487	HN O NH	390	391	529	M- H. C. LH	425	426

(continuación) Nº Estructura MW Nº Estructura MWm/e obs. m/e obs.

493	HO NH	392	393	535	M O NH	439	440
494	NIII NH	392	393	536	D TH. SIM	439	440

			(contin	uación)			
Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
495	O N NH	392	393	537	NON MAH	442	443
496	N-NH N-NH	402	403	538	N NH	442	443
497	NH NH	402	403	539	N N N N N N N N N N N N N N N N N N N	442	443
498	NH NH	402	403	540	NEW H	442	443
499	O N NH	405	406	541	NH NH	444	445

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
502	NH NH	406	407	544	O N N N N N N N N N N N N N N N N N N N	459	460
503	HO THE STATE OF TH	406	407				

5 Procedimiento BA

10

15

Procedimiento BA, Etapa 1:

BA1, preparado según un procedimiento bibliográfico (Terao, Y; Kotaki, H; Imai, N y Achiwa K. Chemical and Pharmaceutical Bulletin, 33 (7), 1985, 2762-2766) se convirtió en **BA2** usando un procedimiento descrito por Coldham, I; Crapnell, K.M; Fernandez, J-C; Moseley J.D. y Rabot, R. (Journal of Organic Chemistry, 67 (17), 2002, 6185-6187).

RMN ¹H (CDCl₃) para **BA2:** 1,42 (s, 9H), 4,06 (d, 4H), 4,09 (s, 1H), 4,18 (s, 2H), 5,62 (d, 1H).

Procedimiento BA, Etapa 2:

BA3 se generó a partir de **BA2** usando un procedimiento bibliográfico descrito por Winkler J. D.; Axten J.; Hammach A. H.; Kwak, Y-S; Lengweiler, U.; Lucero, M. J.; Houk, K. N. (Tetrahedron, 54 1998, 7045-7056). Datos analíticos para el compuesto **BA3**: EM m/e: 262,1, 264,1 (M+H). RMN ¹H (CDCl₃) 1,43 (s, 9H), 3,98 (s, 2H), 4,11 (d, 4H), 5,78 (d, 1H).

Procedimiento BB

Procedimiento BB, Etapa 1;

5 El compuesto **BB1** (n=1, R¹=Me, R³=ciclohexiletilo) se convirtió en **BB2** (n=1, R¹=Me, R³=ciclohexiletilo) y **BB3** (n=1, R¹=Me, R³=ciclohexiletilo) que se separaron mediante una columna de gel de sílice eluida con EtOAc en hexano (0-15 %).

Procedimiento BB, Etapa 2;

El compuesto **BB4** (n=1, R¹=Me, R³=ciclohexiletilo) se generó a partir de **BB2** (n=1, R¹=Me, R³=ciclohexiletilo) usando 20 % de TFA en DCM.

Los siguientes compuestos se generaron usando un procedimiento similar:

Procedimiento BC

15 **Procedimiento BC, Etapa 1**;

El compuesto **BC2** (n=1, R^1 =Me, R^3 =ciclohexiletilo y R^{15} =m-piridilo) se obtuvo a partir de **BC1** (n=1, R^2 =Me, R^3 =ciclohexiletilo) usando el Procedimiento L Etapa 2.

Procedimiento BC, Etapa 2;

El compuesto **BC3** (n=1, R^1 =Me, R^3 =ciclohexiletilo y R^{15} =m-piridilo) se obtuvo a partir de **BC2** (n=1, R^1 =Me, R^3 =ciclohexiletilo y R^{15} =m-piridilo) usando el Procedimiento L Etapa 3.

Los siguientes compuestos se generaron usando un procedimiento similar:

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
552	HNZNYO	374	375	574	O N NH N	411	412
553	HN	388	389	575	HN	416	417
554	O NH	388	389	576	NH NH NH NH	416	417
555	HN N O	388	389	577	S'NO NO N	416	417
556	O NH O NH O NH	388	389	578	N-NH N-NH	416	417

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
557	HN	390	391	579	O NH ONNH	424	425
558	HN N O	390	391	580	O NH NH NH	424	425
559	HNYNO	402	403	581	NH NH NH NH	424	425
560	NH NH	402	403	582	NH NH NH NH	424	425
561	THAT HAVE	402	403	583	NH NH NH NH NH NH	425	426
562	O NH NH NH	402	403	584	NH NH NH	425	426

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
563	O N NH	404	405	585	NH NH NH NH	425	426
564	O Y NH	404	405	586	H N NH	425	426
565	NH NH NH	404	405	587	NH NH NH	425	426
566	NH NH NH	404	405	588	NH NH NH	425	426
567	O NH NH NH	410	411	589	O NH NH NH NH	425	426
568	NH NH HIII	410	411	590	O NH NH NH	430	431

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
569	NH NH	411	412	591	NH NH NH	430	431
570	NH NH NH	411	412	592	O NH	438	439
571	ON NH	411	412	593	O NH NH NH	438	439
572	O N NH H N N	411	412	594	N-NH N-NH	439	440
573	NH NH NH NH	411	412				

Procedimiento BD

Procedimiento BD, Etapa 1;

El compuesto **BD2** (n=1, R¹=Me, R³=ciclohexiletilo y R¹⁵=Ph) se obtuvo a partir de **BD1** (n=1, R²=Me, R³=ciclohexiletilo) usando el Procedimiento N, Etapa 1.

Procedimiento BD, Etapa 2;

5 El compuesto **BD3** (n=1, R¹=Me, R³=ciclohexiletilo y R¹⁵=Ph) se obtuvo a partir de **BD2** (n=1, R¹=Me, R³=ciclohexiletilo y R¹⁵=m-piridilo) usando el Procedimiento N, Etapa 2.

Los siguientes compuestos se generaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
595	0-\$-N	440	441	596	OF N NH	460	461

Procedimiento BE

10

15

Un procedimiento similar al Procedimiento M se adaptó para estas transformaciones. Los siguientes compuestos se generaron a partir de procedimientos similares.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
597	NH NH	405	406	598		439	440

Procedimiento BF

175

Procedimiento BF, Etapa 1:

Se usó un procedimiento similar al Procedimiento T, Etapa 1 para la síntesis de **BF2** (n =1, R^1 =Me y R^3 =fenetilo, R^{15} =H y R^{16} =n-propilo).

Procedimiento BF, Etapa 2:

5 Se adaptó un procedimiento similar al Procedimiento L Etapa 3 para esta transformación.

Los siguientes compuestos se generaron usando procedimientos similares.

N°	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
599	MN N O	376	377	604	NH N	397	398
600	ONNH	390	391	605	NH NH NH	397	398
601	O N NH	390	391	606	N NH N NH H N NH	397	398
602	N-NH N-NH	390	391	607	NH NH	411	412
603	NH NH NH	397	398				

Procedimiento BG

Procedimiento BG:

5

10

15

20

A una solución de **BG1** (n=1, R³=ciclohexiletilo) (0,136 g, 0,31 mmoles) en CH₂Cl₂ se añadió 2,6-lutidina, AgOTf y yoduro de butilo. La reacción se agitó a temperatura ambiente durante 96 horas. La reacción se filtró a través de una almohadilla de Celite, y la solución se concentró. El residuo se purificó por cromatografía en sílice (0-100 % de EtOAc/hexanos) proporcionando **BG2** (n=1, R³=ciclohexiletilo, R¹⁵=n-butilo) (0,124 g, 0,25 mmoles, rendimiento del 80 %). EM m/e: 426,1 (M-OBu).

Se preparó el siguiente compuesto usando un procedimiento similar:

Procedimiento BH

Procedimiento BH, Etapa 1.

El compuesto **BH1** (n=1, R³=ciclohexiletilo y R 15 =n-butilo) (0,060 g, 0,12 mmoles) y 5 % de Pd(OH)₂/C (0,040 g) en EtOAc (1 ml)/MeOH (0,2 ml) se agitó bajo una atmósfera de H₂ durante 20 horas a temperatura ambiente. La reacción se filtró a través de una almohadilla de Celite, y la solución se concentró. La mezcla de productos en bruto **BH2** (n=1, R³=ciclohexiletilo y R 15 =n-butilo) siguió a la siguiente etapa sin purificación.

Procedimiento BH, Etapa 2.

Una solución de **BH2** (n=1, R³=ciclohexiletilo y R¹5=n-butilo) se convirtió en una mezcla de productos de **BH4** y **BH3** usando un procedimiento similar al Procedimiento C Etapa 1. La mezcla se purificó por cromatografía en gel de sílice usando EtOAc/hexanos dando **BH4** (n=1, R²=Me, R³=ciclohexiletilo y R¹5=n-butilo) (0,032 g, 0,078 mmoles, rendimiento del 56 %) y **BH3** (n=1, R²=Me, R³=ciclohexiletilo y R¹5=n-butilo) (0,008 g, 0,020 mmoles, rendimiento del 14 %). Para **BH4** (n=1, R²=Me, R³=ciclohexiletilo y R¹5=n-butilo), EM m/e: 409,1 M+H). Para **BH3** (n=1, R²=Me, R³=ciclohexiletilo y R¹5=n-butilo), EM m/e: 409,1 (M+H).

Procedimiento BH, Etapa 3.

El compuesto **BH4** (n=1, R²=Me, R³=ciclohexiletilo y R¹⁵=n-butilo) (0,032 g, 0,078 mmoles) se convirtió en **BH5** (n=1, R²=Me, R³=ciclohexiletilo y R¹⁵=n-butilo) (0,016 g, 0,043 mmoles, rendimiento del 57 %) usando un procedimiento similar al Procedimiento A, Etapa 3. EM m/e: 392,1 (M+H).

5 El siguiente compuesto se generó usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
608	O NH NH	391	392	610	O	391	392
609		391	392				

Procedimiento BI

Una solución de **BI1** (0,020 g, 0,040 mmoles) en DCM (1 ml) se desgasificó usando un procedimiento de congelación/bombeo/descongelación (4x). Al final del cuarto ciclo se añadió catalizador de Crabtree y el sistema se evacuó. Mientras se descongelaba, el sistema se cargó con gas hidrógeno, y la reacción se agitó a temperatura ambiente durante 16 horas bajo una atmósfera de H₂. La reacción se concentró, y el aceite marrón se purificó por HPLC de fase inversa proporcionando **BI2** (0,011 g, 0,022 mmoles, rendimiento del 55 %). EM m/e: 368,2 (M+H).

Procedimiento BJ

10

15

Procedimiento BJ, Etapa 1

Una mezcla de 2 ml de solución de dioxano de BJ1 (R1=Me, R3=Me) (140 mg, 0,5 mmoles) generada usando el

178

Procedimiento BK Etapas 1 y 2, indol (1,2 eq), t-butóxido de potasio (1,4 eq), Pd₂(dba)₃ (0,02 eq) y 2-di-t-butilfosfinobifenilo (0,04 eq) en un tubo cerrado se irradió en un horno microondas a 120°C durante 10 min y la mezcla se separó mediante una columna de gel de sílice dando **BJ2** (R'=Me, R³=Me) (0,73 mg).

Procedimiento BJ, Etapa 2

5 **BJ2** (R'=Me, R³=Me) se convirtió en **BJ3** (R¹=Me, R³=Me) usando el Procedimiento BK, Etapas 3 y 4. Masa obs. para **BJ3** (R¹=Me, R³=Me): 319,2.

N°	Estructura	MW	m/e obs.	
614	O NH NH NH	318	319	

Procedimiento BK

10 Procedimiento BK, Etapa 1:

Se preparó hidantoína **BK2** (R^3 =N-bencil-3-piperidilo, R^4 =n-Bu) según el Procedimiento D, Etapa 1, a partir de la cetona **BK1** correspondiente (R^3 =N-bencil-3-piperidilo, R^4 =n-Bu). Datos analíticos para **BK2** (R^3 =N-bencil-3-piperidilo, R^4 =n-Bu): (M+H) = 330,1.

Procedimiento BK, Etapa 2:

A una suspensión de hidantoína **BK2** (R³=N-bencil-3-piperidilo, R⁴=n-Bu) (138 mg, 0,419 mmoles) en DMF (1,5 ml) se añadió dimetilformamida-dimetilacetal (0,11 ml, 0,84 mmoles). La mezcla resultante se calentó en un baño de aceite a 100 °C durante 16 h y luego se enfrió hasta ta y se concentró a vacío. Este residuo en bruto se purificó por cromatografía en columna (MeOH/DCM) dando el producto **BK3** (R³=N-bencil-3-piperidilo, R⁴=n-Bu) (140 mg, 0,408 mmoles, 97 %), (M+H) = 344,1.

20 Procedimiento BK, Etapa 3:

25

A una solución de una parte de **BK3** (R³=N-bencil-3-piperidilo, R⁴=n-Bu) (70 mg, 0,20 mmoles) en tolueno (1 ml) se añadió reactivo de Lawesson (107 mg, 0,26 mmoles). La mezcla resultante se dispuso en un baño de aceite a 60 °C durante 16 h y luego a 100 °C durante 24 h. Después de enfriarse hasta ta, la reacción se inactivó mediante la adición de varias gotas de HCl 1 N y luego se diluyó con EtOAc y KOH 1 N. Las fases se separaron y la fase acuosa se extrajo con EtOAc (2X). Las porciones orgánicas se combinaron, se lavaron con salmuera, se secaron sobre MgSO₄, se filtraron y se concentraron. Este residuo en bruto se purificó por CCF preparativa (1000 µm de sílice, 15 % de EtOAc/DCM) dando dos diaestereómeros separados **BK4** (R³=N-bencil-3-piperidilo, R⁴=n-Bu) (24 mg, 0,067 mmoles, 33 %, EM: (M+H) = 360,2) y **BK5** (R³=N-bencil-m-piperidilo, R⁴=n-Bu) (22 mg, 0,062 mmoles, 31 %, EM: (M+H) =

360,2).

5

10

15

Procedimiento BK, Etapa 4:

El diaestereómero **BK5** (R³=N-bencil-3-piperidilo, R⁴=n-Bu) se trató con NH₄OH (2 ml) e hidroperóxido de t-butilo (acuoso al 70 %, 2 ml) en MeOH (4 ml) durante 24 h. Después de la concentración, la muestra en bruto se purificó por CCF preparativa (sílice de 1000 mm, 7,5 % de NH₃ 7 N/MeOH en DCM). La muestra resultante se disolvió en DCM (1 ml), se trató con HCl 4 N en dioxano durante 5 min y finalmente se concentró dando productos diaestereoméricos **BK7** (R³=N-bencil-3-piperidilo, R⁴=n-Bu) (12 mg, 0,029 mmoles, 43 %). RMN ¹H (CD₃OD δ 7,60 (m, 2 H), 7,49 (m, 3 H), 4,39 (ABq, J_{AB} = 12,8 Hz, Δv_{AB} = 42,1 Hz, 2 H), 3,69 (m, 1H), 3,39 (d a, J = 13,6 Hz, 1H), 3,20 (s, 3 H), 2,96 (m, 2 H), 2,45 (m, 1H), 1,99 (m, 1H), 1,92-1,78 (m, 3 H), 1,68 (d a, J = 12,4 Hz, 1H), 1,50 (dq, J_{d} = 3,6 Hz, J_{q} = 12,8 Hz, 1H), 1,36-1,22 (m, 4 H), 1,03 (m, 1H), 0,90 (t, J = 7,2 Hz, 3 H). EM-CL: t_{R} (doblemente protonado) = 0,52 min (individualmente protonado) = 2,79 min; (M+H) para ambos picos = 343,2.

Los siguientes compuestos se sintetizaron usando procedimientos similares:

N°	Estructura	MW	m/e obs.	
615	NH NH OBr	281	282	

Procedimiento BL

A una solución metanólica de 2 ml de **BL1** (n=1, R^3 =ciclohexiletilo, R^1 =Me) (10 mg) se añadió **BL3** (sal de HCl, R^{15} =H, 2 eq) y NaOAc (2 eq) y la mezcla se calentó a 60 °C durante 16 h. Después de eliminar el disolvente, el residuo se trató con 20 % de TFA en DCM durante 30 min antes de evaporar el disolvente y el residuo se purificó usando una HPLC de fase inversa dando **BL2** (n=1, R^3 =ciclohexiletilo, R^1 = Me y R^{15} = H).

20 Los siguientes compuestos se sintetizaron usando procedimientos similares.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
616	HO N	348	349	617	NH NH	388	389

Procedimiento BM

Procedimiento BM, Etapa 1:

5

A una solución de tolueno (3 ml) de **BM1** (n=1, R³=ciclohexiletilo, R²=Me) (0,050 mg) se añadió 1,5 eq de difenilfosforilazida y 1,5 eq de DBU y la solución se agitó a t.a. durante la noche. La mezcla de reacción se diluyó con EtOAc y se lavó con 1 % de HOAc ac antes de secar la fase orgánica y evaporar el disolvente. El residuo se purificó por cromatografía usando EtOAc/Hex dando un producto que se trató con trifenilfosfina (2 eq) en THF (1 % de agua) durante la noche dando **BM2** (n=1, R³=ciclohexiletilo, R²=Me) después de purificación en fase inversa.

Procedimiento BM Etapa 2:

A una solución de DCM de **BM2** (n=1, R³=ciclohexiletilo, R²=Me) se añadió 1 eq de benciloxicarbonil-OSu y la reacción se agitó durante la noche antes de evaporar el disolvente y el residuo se cromatografió dando **BM3** (n=1, R³=ciclohexiletilo, R²=Me).

El compuesto **BM4** (n=1, R^3 =ciclohexiletilo, R^2 =Me) y **BM5** (n=1, R^3 =ciclohexiletilo, R^2 =Me) se generaron a partir de **BM2** (n=1, R^3 =ciclohexiletilo, R^2 =Me) y **BM3** (n=1, R^3 =ciclohexiletilo, R^2 =Me) mediante desprotección de Boc.

15 Los siguientes compuestos se sintetizaron usando un procedimiento similar:

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
618	HN NH	332	333	619	HN NH NH NH NH	468	469

Procedimiento BN

Una mezcla de $Pd(OAc)_2$ (9 mg), trietilamina (17 microlitros), trietilsilano (11 microlitros) y **BN1** (20 mg) en DCM se hidrogenó a 1 atm a ta durante 1,5 h antes de que la reacción se filtrara a través de una almohadilla de Celite dando **BN2** después de eliminar el disolvente.

Procedimiento BO

5

Los siguientes compuestos se generaron mediante desprotección de Boc del material de partida correspondiente usando 50 % de TFA en DCM, ta 30 min.

Nº	Estructura	MW	m/e obs.	N°	Estructura	MW	m/e obs.
620	HN ON NH	266	267	624	O NH	288	289
621	O NH NH	266	267	625	NH NH NH	320	321
622	H ₂ N NNH NH	274	275	626	NH NH	320	321
623	O NH NH	274	275				

Procedimiento BP

Procedimiento BP, Etapa 1

A una solución de **BP1** (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,012 g, 0,028 mmoles) en CH_2CI_2 (0,5 ml) se añadió 2,6-lutidina (0,010 ml, 0,086 mmoles), AgOTf (0,024 g, 0,093 mmoles) y bromuro de bencilo (0,010 ml, 0,084 mmoles). La reacción se agitó a temperatura ambiente durante 16 horas. El sólido se filtró, y después de la concentración, el residuo se purificó por HPLC de fase inversa dando **BP2** (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,010 g, 0,019 mmoles). EM m/e: 526,1 (M+H).

Procedimiento BP, Etapa 2

BP3 (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) se preparó a partir de BP2 (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) usando 30 % de TFA/DCM. EM m/e: 426,1 (M+H).

Nº	Estructura	MW	m/e obs.
627	ON NH	425	426

Procedimiento BQ

15 Procedimiento BQ Etapa 1:

20

25

BQ1 se preparó según el Procedimiento AZ.

A una solución de **BQ1** (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,004 g, 0,007 mmoles) en CH_2CI_2 (0,3 ml) se añadió DIEA (0,007 ml, 0,040 mmoles), ácido acético (0,001 ml, 0,017 mmoles), HOBt (0,003 g, 0,019 mmoles) y EDCI (0,003 g, 0,016 mmoles). La reacción se agitó a temperatura ambiente durante 16 horas. La reacción se concentró y se purificó por HPLC de fase inversa proporcionando **BQ2** (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,003 g, 0,005 mmoles). EM m/e: 627,1 (M+H).

Procedimiento BQ Etapa 2:

BQ2 (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,003 g, 0,005 mmoles) se trató con 20 % de TFA/CH₂Cl₂ (1 ml) en presencia de resina de PS-tiofenol (0,030 g, 1,42 mmoles/g) durante 3 horas. La solución se filtró y se concentró produciendo **BQ3** (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,002 g, 0,005 mmoles). EM m/e: 377,2 (M+H).

N°	Estructura	MW	m/e obs.
628	O N NH	376	377
	MeO BR1 MeO BR1 MeO BR2 BOC R1 N-R2 ON N N-R2 ON BR2 OMe BR2	Etapa 2 O=	R ¹ N N NH NH R ³ BR3

Procedimiento BR, Etapa 1:

5

A una solución de **BR1** (n=1, R¹=Me, R²=H, R³=ciclohexiletilo) (0,004 g, 0,007 mmoles) en piridina (0,2 ml) se añadió DMAP (algunos cristales) y cloruro de metilsulfonilo (3 gotas). La reacción se agitó a temperatura ambiente durante 6 días. La reacción se inactivó con agua y se diluyó con CH₂Cl₂. La fase orgánica se eliminó, y la fase acuosa se extrajo con CH₂Cl₂ (3x). Después de la concentración, el residuo marrón se purificó por HPLC de fase inversa dando **BR2** (n=1, R¹=Me, R²=H, R³=ciclohexiletilo) (0,003 g, 0,004 mmoles). EM m/e: 663,2 (M+H).

Procedimiento BR, Etapa 2:

BR3 (n=1, R'=Me, R²=H, R³=ciclohexiletilo) se preparó a partir de BR2 (n=1, R'=Me, R²=H, R³=ciclohexiletilo) siguiendo un procedimiento similar al Procedimiento BQ Etapa 2. EM m/e: 413,1 (M+H).

N°	Estructura	MW	m/e obs.
629	O'S'O NH	412	413

Procedimiento BS

15 Procedimiento BS Etapa 1:

A una solución de **BS1** (n=1, R^1 =Me, R^2 =H, R^3 = ciclohexiletilo) (0,003 g, 0,006 mmoles) en CH_2CI_2 (0,3 ml) se añadió isocianato de fenilo (2 gotas). La reacción se agitó a temperatura ambiente durante 16 horas. La reacción se concentró y se purificó por HPLC de fase inversa proporcionando **BS2** (n=1, R^1 =Me, R^2 =H, R^3 =ciclohexiletilo) (0,002 g, 0,002

mmoles). EM m/e: 823,5 (M+H).

Procedimiento BS Etapa 2:

5

El compuesto **BS2** (n=1, R¹=Me, R²=H, R³=ciclohexiletilo) se sometió a las mismas condiciones en el Procedimiento BQ Etapa 2. La mezcla en bruto preparada anteriormente se trató con LiOH (0,006 g, 0,25 mmoles) en MeOH (0,3 ml) durante 2 horas. La reacción se concentró, y el residuo se purificó por HPLC de fase inversa proporcionando **BS3** (n=1, R¹=Me, R²=H, R³=ciclohexiletilo) (0,0012 g, 0,002 mmoles). EM m/e: 454,1 (M+H).

N°	Estructura	MW	m/e obs.	
630	NH NH NH	453	454	

Procedimiento BT

10 **Procedimiento BT:**

A un matraz redondo se añadieron compuesto **BT1** (R^1 =Me, R^3 =Me) (100 mg, 0,29 mmoles), tolueno anhidro (2 ml), 3-aminopiridina (55 mg, 0,58 mmoles) y 2-(di-*terc*-butilfosfino)bifenilo (17 mg, 0,058). La solución se desgasificó entonces por N_2 durante 2 minutos antes de añadir NaO-*t*-Bu (61 mg, 0,638 mmoles) y Pd_2 (dba)₃ (27 mg, 0,029 mmoles). La reacción se agitó a 80 °C durante 22 horas. Después de enfriarse hasta temperatura ambiente, la reacción se vertió en agua fría y se extrajo por CH_2CI_2 . La fase orgánica combinada se secó entonces sobre Na_2SO_4 . Después de la filtración, el residuo concentrado se separó por CCF ($CH_3OH:CH_2CI_2$ =1:10) y HPLC de fase inversa (10 %-100 % de acetonitrilo en agua con 0,1 % de ácido fórmico) para producir el compuesto deseado **BT2** (R^1 =Me, R^3 =Me y R^2 1= m-piridilo) como una sal de formiato (23,6 mg, sólido blanco, 20 %). RMN R^1 H ($CDCI_3$) R^2 D-6,90 (m, 13H), 3,14 (s, 3H) EM m/e 358 (M+H).

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
631	O'N NH NH N	347	348	632	NH HN HN N	156	357
633	HA CONTRACTOR OF THE CONTRACTO	357	358	635	NA PART OF THE PAR	357	358

20

(continuación)

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
634	CN-HN-NN-NN-NN-NN-NN-NN-NN-NN-NN-NN-NN-NN	357	358	636	THE PART OF THE PA	358	359

Procedimiento BU

5 Procedimiento BU, Etapa 1,

10

25

A un matraz redondo que contiene **BU1** (m =1, n = 1, R'=Me, R^3 =ciclohexiletilo) (99 mg, 0,307 mmoles) de la sal de ácido trifluroacético de derivado de pirolidina en 5 ml de DCM se añadieron (86 µl, 0,614 mmoles) de trietilamina seguido de la adición de (76 mg, 0,307 mmoles) de N-(benciloxicarboniloxi)succinimida. Agitar a temperatura ambiente durante 18 h. Diluir la mezcla con DCM y extraer con solución de NaHCO₃ saturada, luego agua. Recoger la porción orgánica y secar sobre Na₂SO₄, filtrar y concentrar a vacío. Purificar por cromatografía en gel de sílice (eluyendo con 0 al 60 % de EtOAc/hexanos) dando **BU2** (m =1, n = 1, R^1 =Me, R^3 =ciclohexiletilo) (130 mg, 0,284 mmoles, rendimiento del 93 %). EM m/e: 458,1 (M+H).

Procedimiento BU, Etapa 2,

A una solución de **BU2** (m =1, n = 1, R¹=Me, R³=ciclohexiletilo) (130 mg) en 1 ml de MeOH en un vial de reacción se añadieron 0,5 ml de una solución de 70 % de tBuOOH en agua y 0,5 ml de NH₄OH. Cerrar el vial y agitar a temperatura ambiente durante 72 h. La mezcla se concentró a vacío. La mezcla se diluyó con 1 ml de MeOH y se añadió una mezcla de 30 mg de NaHCO₃ y Boc₂O (87 mg, 0,398 mmoles). La mezcla de solución se agitó a temperatura ambiente durante 18 h antes de concentrarse y el residuo se purificó por cromatografía en gel de sílice usando EtOAc/hexanos dando **BU3** (m =1, n = 1, R¹=Me, R³=ciclohexiletilo) (90 mg, 0,167 mmoles, rendimiento del 58 %). EM m/e: 541,1, 441,1 (M+H).

Procedimiento BU, Etapa 3.

Una solución de **BU3** (m =1, n = 1, R^1 =Me, R^3 =ciclohexiletilo) (90 mg, 0,167 mmoles) en 5 ml de MeOH se hidrogenó usando100 mg de Pd(OH)₂-C (20 % peso/peso) a 1 atm durante 1 h. La mezcla de reacción se filtró a través de una almohadilla de tierra de diatomeas y la almohadilla se lavó con MeOH. La concentración de las porciones orgánicas recogidas a vacío dio **BU4** (m =1, n = 1, R^1 =Me, R^3 =ciclohexiletilo) (47 mg 0,116 mmoles, rendimiento del 70 %). EM m/e: 407,1 (M+H).

Procedimiento BU, Etapa 4,

A un vial que contenía 10 mg de tamices moleculares de 4 Å en polvo se añadió ácido 3-metoxifenilborónico (60 mg, 0,395 mmoles), luego 3 ml de MeOH anhidro. A esta mezcla se añadió piridina (100 ml, 0,650 mmoles), Cu(OAc)₂ (7

mg, 0,038 mmoles) y **BU4** (m =1 , n = 1, R 1 =Me, R 3 =ciclohexiletilo) (7,83 mg, 0,019 mmoles) y la mezcla se agitó a temperatura ambiente durante 96 h antes de inactivarse con 0,25 ml de amoniaco 7 N en solución de metanol. La mezcla de reacción se extrajo con agua y DCM y las fases orgánicas se secaron y se concentraron a vacío. El residuo se purificó mediante una HPLC de fase inversa dando un producto que se trató con 5 ml de 40 % de TFA en DCM durante 5 h. Después de eliminar los volátiles, el residuo se purificó usando un sistema de HPLC de fase inversa proporcionando **BU5** (m =1, n = 1, R 1 =Me, R 3 =ciclohexiletilo y R 21 =m-MeOPh) como la sal de ácido fórmico (0,7 mg, 0,0015 mmoles, rendimiento del 30,1 %). EM m/e: 413,1 (M+H).

N°	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
637	O NH	258	359	638	NH NH	412	413

Procedimiento BV

5

10

15

25

30

$$R^{3}$$
.CHO + $S \longrightarrow S$ $R^{4} \longrightarrow R^{3} \longrightarrow R^{4} \longrightarrow R^{3} \longrightarrow R^{4} \longrightarrow R^{4}$

Procedimiento BV Etapa 1:

El procedimiento se adaptó de un procedimiento bibliográfico (Page y col., Tetrahedron 1992, 35, 7265-7274)

Una solución de hexano de nBuLi (4,4 ml, 11 mmoles) se añadió a una solución a -78 °C de **BV2** (R⁴ = fenilo) (2,0 g, 10 mmoles) en THF (47 ml). Después de 60 minutos a -78 °C se añadió una solución de **BV1** (R³ = 3-bromo-4-fluorofenilo) (2,24 g, 11 mmoles) y la reacción se calentó lentamente a ta durante 18 h. La mezcla de reacción se inactivó con solución saturada de cloruro de amonio y se extrajo con CH_2Cl_2 (2 x), se secó sobre MgSO₄ y se concentró a vacío. El aceite resultante se sometió a cromatografía en gel de sílice usando 4-10 % de EtOAc/hexanos dando un sólido blanco **BX3** (R³ = 3-bromo-4-fluorofenilo y R⁴ = fenilo) (1,69 g, 4,23 mmoles, 42 %). RMN 1H (CDCl₃) δ 7,61 (m, 2 H), 7,27 (m, 3 H), 6,94 (m, 1H), 6,92 (m, 1H), 6,68 (m, 1H), 3,15 (sa, 1 H), 2,57-2,73 (m, 4 H), 1,89 (m, 2 H).

20 Procedimiento BV Etapa 2:

Una solución de **BV3** (R^3 = 3-bromo-4-fluorofenilo y R^4 = fenilo) (1,69 g, 4,23 mmoles) en acetona (40 ml) se añadió lentamente mediante embudo de adición a una solución a 0 °C de N-bromosuccinimida (NBS, 11,3 g, 63,3 mmoles) en acetona (200 ml) y agua (7,5 ml). La mezcla se calentó lentamente a TA, y se extinguió después de 60 minutos con 10 % de Na_2SO_3 acuoso. Después de diluir con CH_2CI_2 , las fases se separaron, y la fase orgánica se lavó con agua (2x), salmuera (1x) y se secó sobre Na_2SO_3 . La concentración a vacío proporcionó un aceite que se sometió a cromatografía en gel de sílice usando 5 % de Na_2SO_3 0 de Na_2SO_3 1 de Na_2SO_3 2 de Na_2SO_3 3 de Na_2SO_3 3 de Na_2SO_3 4 mmoles, 53 %). Na_2SO_3 5 de Na_2SO_3 6 de Na_2SO_3 6 de Na_2SO_3 6 de Na_2SO_3 7 de Na_2SO_3 7 de Na_2SO_3 8 de Na_2SO_3 9 de Na_2SO_3 9

Procedimiento BX Etapa 3:

Se preparó **BV5** (R^3 = 3-bromo-4-fluorofenilo y R^4 = fenilo y R^1 =Me y R^2 = H) a partir de **BV4** (R^3 = 3-bromo-4-fluorofenilo y R^4 = fenilo) usando el Procedimiento AS, Etapa 4.

Nº	Estructura	MW	m/e obs.	Nº	Estructura	MW	m/e obs.
639	O= NH Br F	261	362	640	Br O NH	261	NA

Ensayo FRET de catepsina D humana.

Este ensayo puede ejecutarse tanto en forma continua como de punto final. La catepsina D es una proteasa aspártica que posee baja secuencia primaria todavía significativa para homología de sitio activo con la proteasa aspártica humana BACE1. BACE1 es una diana reductora de amiloide para enfermedad de Alzheimer. Los ratones con gen catepsina D inactivado mueren en el plazo de semanas después del nacimiento debido a múltiples defectos GI, inmunes y del CNS.

Se ha descrito el sustrato usado más adelante (Y. Yasuda y col., J. Biochem., 125, 1137 (1999)). Sustrato y enzima están comercialmente disponibles. Se determinó una Km de 4 uM en el laboratorio de los inventores para el sustrato de más adelante bajo las condiciones de ensayo descritas y es coherente con Yasuda y col.

El ensayo se ejecuta en un volumen final de 30 ul usando una placa negra Nunc de 384 pocillos. 8 concentraciones de compuesto se pre-incuban con enzima durante 30 min a 37 °C seguido de la adición de sustrato con incubación continuada a 37 °C durante 45 min. La tasa de aumento en la fluorescencia es lineal durante más de 1 h y se mide al final del periodo de incubación usando un lector de placas de Flex station de Molecular Devices. Las Ki se interpolan de las Cl₅₀ usando un valor de Km de 4 uM y la concentración de sustrato de 2,5 uM.

15 Reactivos

20

30

35

5

Acetato de Na pH 5

1 % de Brij-35 de solución concentrada al 10 % (Calbiochem)

DMSO

Catepsina D de hígado humano purificado (>95 %) (Nº de cat de Athens Research & Tecnology 16-12-030104)

Sustrato de péptido (Km=4 uM) Nº de cat de Bachem M-2455

Se usa pepstatina como inhibidor de control (Ki~0,5 nM) y está disponible de Sigma.

Placas negras de 384 pocillos Nunc 384

Condiciones de ensayo de tampón final

Acetato de Na 100 mM a pH 5,0

25 0,02 % de Brij-35

1 % de DMSO

El compuesto se diluye a 3x concentración final en tampón de ensayo que contiene 3 % de DMSO. Se añaden 10 ul de compuesto a 10 ul de enzima 2,25 nM (3x) diluida en tampón de ensayo sin DMSO, se mezclan brevemente, se centrifugan y se incuban a 37 °C durante 30 min. Se prepara 3x sustrato (7,5 uM) en 1x tampón de ensayo sin DMSO. Se añaden 10 ul de sustrato a cada pocillo, se mezclan y se centrifugan brevemente parar iniciar la reacción. Las placas de ensayo se incuban a 37 °C durante 45 min y se leen sobre lector de placas de fluorescencia compatible 384 usando una Ex de 328 nm y una Em de 393 nm.

Los compuestos de la presente divulgación presentan intervalos de datos de Ki de hCathD de aproximadamente 0,1 a aproximadamente 500 nM, preferentemente aproximadamente 0,1 a aproximadamente 100 nM, más preferentemente aproximadamente 0,1 a aproximadamente 75 nM.

Lo siguiente son ejemplos de compuestos que presentan datos de Ki de hCathD inferiores a 75 nM. El compuesto marcado con un asterisco (*) es un compuesto de la presente invención; los restantes compuestos son compuestos de referencia.

estructura estructura

(continuación)

El siguiente compuesto de referencia

5 tiene un valor de Ki de hCath D de 0,45 nM.

10

15

Clonación de BACE-1. Expresión y purificación de proteínas.

Una forma soluble predicha de BACE1 humano (sBACE1, correspondiente a los aminoácidos 1-454) se generó a partir de ADNc de BACE1 de longitud completa (ADNc de BACE1 humano de longitud completa en la construcción pCDNA4/mycHisA; Universidad de Toronto) por PCR usando el kit de PCR de ADNc advantage-GC (Clontech, Palo Alto, CA). Un fragmento HindIII/Pmel de pCDNA4-sBACE1 myc/His se hizo romo en los extremos usando Klenow y se subclonó en el sitio Stu I de pFASTBACI(A) (Invitrogen). Se generó un bácmido recombinante de sBACE1mycHis por transposición en células DH10Bac (GIBCO/BRL). Posteriormente, la construcción de bácmido de sBACE1 mycHis se transfectó en células Sf9 usando CellFectin (Invitrogen, San Diego, CA) con el fin de generar baculovirus recombinante. Células Sf9 se cultivaron en medio SF 900-II (Invitrogen) complementado con 3 % de SBF inactivado por calor y 0,5X solución de penicilina/estreptomicina (Invitrogen). Se usaron cinco mililitros de virus sBACEmyc/His purificado en placa de alto título para infectar 1 I de células Sf9 logarítmicamente en crecimiento durante 72 horas. Se sedimentaron células intactas por centrifugación a 3000 x g durante 15 minutos. El sobrenadante, que contiene sBACE1 secretado, se recogió y se diluyó al 50 % v/v con HEPES 100 mM, pH 8,0. El medio diluido se cargó sobre una columna Q-Sepharose. La columna Q-Sepharose se lavó con tampón A (HEPES 20 mM, pH 8,0, NaCl 50 mM).

Se eluyeron proteínas de la columna Q-Sepharose con tampón B (HEPES 20 mM, pH 8,0, NaCl 500 mM). Los picos de proteína de la columna Q-Sepharose se reunieron y se cargaron sobre una columna de agarosa Ni-NTA. Entonces, la columna Ni-NTA se lavó con tampón C (HEPES 20 mM, pH 8,0, NaCl 500 mM). Las proteínas unidas se eluyeron entonces con tampón D (tampón C + imidazol 250 mM). Las fracciones de proteína pico como se ha determinado por el ensayo de Bradford (Biorad, CA) se concentraron usando un concentrador Centricon 30 (Millipore). Se estimó que la

pureza de sBACE1 era de ~90 % como se evalúa por SDS-PAGE y tinción con azul de Coomassie. La secuenciación del extremo N indicó que más del 90 % de sBACE1 purificado contuvo el prodominio; de ahí que esta proteína se denomine sproBACE1.

Ensayo de hidrólisis de péptidos.

20

25

El inhibidor, sustrato APPsw marcado con EuK-biotina 25 nM (EuK-KTEEISEVNLDAEFRHDKC-biotina; CIS-Bio International, Francia), péptido APPsw sin marcar 5 μM (KTEEISEVNLDAEFRHDK; American Peptide Company, Sunnyvale, CA), sproBACE1 7 nM, PIPES 20 mM a pH 5,0, 0,1 % de Brij-35 (calidad de proteína, Calbiochem, San Diego, CA) y 10 % de glicerol se preincubaron durante 30 min a 30 °C. Las reacciones se iniciaron mediante la adición de sustrato en una alícuota de 5 μl produciendo un volumen total de 25 μl. Después de 3 h a 30 °C, las reacciones se terminaron mediante la adición de un volumen igual de 2x tampón de terminación que contenía Tris-HCl 50 mM a pH 8,0, KF 0,5 M, 0,001 % de Brij-35, 20 μg/ml de SA-XL665 (proteína de aloficocianina reticulada acoplada a estreptavidina; CIS-Bio International, Francia) (0,5 μg/pocillo). Las placas se agitaron brevemente y se centrifugaron a 1200xg durante 10 segundos para sedimentar todo el líquido al fondo de la placa antes de la incubación. Las mediciones de HTRF se hicieron sobre un lector de placas Packard Discovery® HTRF usando luz láser de 337 nm para excitar la muestra seguido de un retardo de 50 μs y mediciones simultáneas de emisiones tanto a 620 nm como a 665 nm durante 400 μs.

Las determinaciones de Cl_{50} para inhibidores, (*I*), se determinaron midiendo el porcentaje de cambio de la fluorescencia relativa a 665 nm dividido entre la fluorescencia relativa a 620 nm (relación 665/620) en presencia de concentraciones variables de *I* y una concentración fija de enzima y sustrato. Se realizó análisis de regresión no lineal de estos datos usando el software GraphPad Prism 3.0 seleccionando ecuación logística de cuatro parámetros, que permite una pendiente variable. Y= Pie + (Cima-Pie)/(1+10^((LogCE50-X)*Pendiente de la cima)); X es el logaritmo de la concentración de I, Y es el porcentaje de cambio en la relación e Y empieza en el pie y va hasta la cima con una forma sigmoide.

Los compuestos de la presente divulgación tienen un intervalo de Cl_{50} de aproximadamente 0,1 a aproximadamente 500 μ M, preferentemente aproximadamente 0,1 a aproximadamente 100 μ M, más preferentemente aproximadamente 0,1 a aproximadamente 20 μ M. El último compuesto en la Tabla M tiene un valor de Cl_{50} de 0,35 μ M.

Ejemplos de compuestos inferiores a 1 μM se enumeran a continuación. Los compuestos marcados con un asterisco (*) son compuestos de la presente invención; los restantes compuestos son compuestos de referencia.

Ensayo de enzima renina madura humana:

10

Se clonó renina humana de una biblioteca de ADNc de riñón humano y epítope del extremo C marcado con la secuencia de V5-6His en pCDNA3.1. pCDNA3.1-renina-V5-6His se expresó establemente en células HEK293 y se purificó a >80 % usando cromatografía de afinidad por Ni convencional. El prodominio de renina-V5-6His humana recombinante se eliminó por proteólisis limitada usando TPCK-tripsina inmovilizada dando renina humana madura. La actividad enzimática de renina se monitorizó usando un sustrato de péptido de transferencia de energía por resonancia de fluorescencia (FRET) comercialmente disponible, RS-1 (Molecular Probes, Eugene, OR) en Tris-HCl 50 mM a pH 8,0, NaCl 100 mM, 0,1 % de Brij-35 y 5 % de tampón DMSO durante 40 min a 30 grados Celsius en presencia o ausencia de diferentes concentraciones de compuestos de prueba. La renina humana madura estuvo presente a aproximadamente 200 nM. La actividad inhibidora se definió como el porcentaje de disminución en la fluorescencia inducida por renina al final de la incubación de 40 min en comparación con controles de vehículo y muestras que carecen de enzima.

Compuesto de referencia	$\%$ de I de reninah a 100 μM		
O NH	68,8		
H.C. C.	75,3		
HC NO	76,9		

- En casos de la presente divulgación referentes a una combinación de un compuesto de fórmula I con un inhibidor de colinesterasa pueden usarse inhibidores de acetil- y/o butirilcolinesterasa. Ejemplos de inhibidores de colinesterasa son tacrina, donepezilo, rivastigmina, galantamina, piridostigmina y neostigmina, prefiriéndose tacrina, donepezilo, rivastigmina y galantamina.
- En casos de la presente divulgación referentes a una combinación de un compuesto de fórmula I con un antagonista muscarínico pueden usarse antagonistas m₁ o m₂. Ejemplos de antagonistas m₁ se conocen en la técnica. Ejemplos de antagonistas m₂ también se conocen en la técnica; en particular, se desvelan antagonistas m₂ en las patentes de EE.UU. 5.883.096; 6.037.352; 5.889.006; 6.043.255; 5.952.349; 5.935.958; 6.066.636; 5.977.138; 6.294.554; 6.043.255; y 6.458.812; y en el documento WO 03/031412.

Para preparar composiciones farmacéuticas a partir de los compuestos descritos en el presente documento, vehículos

farmacéuticamente aceptables inertes pueden ser tanto sólidos como líquidos. Preparaciones en forma sólida incluyen polvos, comprimidos, gránulos dispersables, cápsulas, sellos y supositorios. Los polvos y comprimidos pueden comprender de aproximadamente el 5 a aproximadamente el 95 por ciento de principio activo. Vehículos sólidos adecuados se conocen en la técnica, por ejemplo, carbonato de magnesio, estearato de magnesio, talco, azúcar o lactosa. Pueden usarse comprimidos, polvos, sellos y cápsulas como formas de dosificación sólidas adecuadas para administración por vía oral. Ejemplos de vehículos farmacéuticamente aceptables y procedimientos de fabricación para diversas composiciones pueden encontrarse en A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18ª edición, (1990), Mack Publishing Co., Easton, Pensilvania.

Preparaciones en forma líquida incluyen disoluciones, suspensiones y emulsiones. Como ejemplo pueden mencionarse agua o disoluciones de agua-propilenglicol para inyección parenteral o adición de edulcorantes y opacificantes para disoluciones, suspensiones y emulsiones orales. Preparaciones en forma líquida también pueden incluir disoluciones para administración intranasal.

Preparaciones de aerosol adecuadas para inhalación pueden incluir disoluciones y sólidos en forma de polvo, que pueden ser en combinación con un vehículo farmacéuticamente aceptable, tal como un gas comprimido inerte, por ejemplo, nitrógeno.

También se incluyen preparaciones de forma sólida que están previstas para convertirse, poco antes de uso, en preparaciones en forma líquida para administración tanto oral como parenteral. Tales formas líquidas incluyen disoluciones, suspensiones y emulsiones.

Los compuestos de la presente divulgación también pueden ser administrables transdérmicamente. Las composiciones transdérmicas pueden tomar la forma de cremas, lociones, aerosoles y/o emulsiones y pueden incluirse en un parche transdérmico de la matriz o tipo depósito como son convencionales en la materia para este fin.

Preferentemente, el compuesto se administra por vía oral.

5

15

20

25

30

35

40

45

50

Preferentemente, la preparación farmacéutica está en una forma de dosificación unitaria. En tal forma, la preparación se subdivide en dosis unitarias adecuadamente normalizadas que contienen cantidades apropiadas del componente activo, por ejemplo, una cantidad eficaz para lograr el fin deseado.

La cantidad de compuesto activo en una dosis unitaria de preparación puede variarse o ajustarse de aproximadamente 1 mg a aproximadamente 100 mg, preferentemente de aproximadamente 1 mg a aproximadamente 50 mg, más preferentemente de aproximadamente 1 mg a aproximadamente 25 mg, según la aplicación particular.

La dosificación actual empleada puede variarse dependiendo de los requisitos del paciente y la gravedad de la afección que está tratándose. La determinación de la pauta de dosificación apropiada para una situación particular está dentro de la habilidad de la técnica. Por comodidad, la dosificación diaria total puede dividirse y administrase en porciones durante el día según se requiera.

La cantidad y frecuencia de administración de los compuestos de la presente divulgación y/o las sales farmacéuticamente aceptables de los mismos se regularán según el criterio del profesional clínico adjunto considerando factores tales como edad, afección y tamaño del paciente, además de la gravedad de los síntomas que están tratándose. Una pauta de dosificación diaria recomendada típica para administración por vía oral puede oscilar de aproximadamente 1 mg/día a aproximadamente 300 mg/día, preferentemente 1 mg/día a 50 mg/día, en dos a cuatro dosis divididas.

Si un compuesto de fórmula I se usa en combinación con un inhibidor de colinesterasa para tratar trastornos cognitivos, estos dos componentes activos pueden coadministrarse simultáneamente o secuencialmente, o puede administrarse una única composición farmacéutica que comprende un compuesto de fórmula I y un inhibidor de colinesterasa en un vehículo farmacéuticamente aceptable. Los componentes de la combinación pueden administrarse individualmente o juntos en cualquier forma de dosificación oral o parenteral convencional tal como cápsula, comprimido, polvo, sello, suspensión, solución, supositorio, espray nasal, etc. La dosificación del inhibidor de colinesterasa puede determinarse a partir de material publicado, y puede oscilar de 0,001 a 100 mg/kg de peso corporal.

Si van a administrarse composiciones farmacéuticas separadas de un compuesto de fórmula I y un inhibidor de colinesterasa, pueden proporcionarse en un kit que comprende en un único envase un recipiente que comprende un compuesto de fórmula I en un vehículo farmacéuticamente aceptable y un recipiente separado que comprende un inhibidor de colinesterasa en un vehículo farmacéuticamente aceptable, estando el compuesto de fórmula I y el inhibidor de colinesterasa presentes en cantidades de forma que la combinación sea terapéuticamente eficaz. Un kit es ventajoso para administrar una combinación cuando, por ejemplo, los componentes deben administrarse a diferentes intervalos de tiempo o cuando están en diferentes formas de dosificación.

REIVINDICACIONES

1. Un compuesto que tiene la fórmula estructural IB:

$$R^{5}$$
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}

o un estereoisómero, tautómero, o sal o solvato farmacéuticamente aceptables del mismo, en la que

5 U es $-C(R^6)(R^7)$ -:

10

15

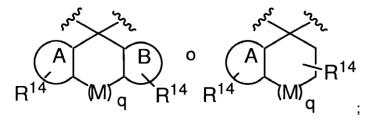
20

25

 $R^{1} \quad \text{est\'a} \quad \text{seleccionado} \quad \text{de} \quad H, \quad \text{alquilo}, \quad \text{alquenilo}, \quad \text{cicloalquilo}, \quad \text{cicloalquiloquilo}, \quad \text{heterocicloalquilo}, \quad \text{heterocicloalquilo}, \quad \text{heterocicloalquilo}, \quad \text{arilcicloalquilo}, \quad \text{-CN, -COR$}^{8}, \quad \text{-COOR$}^{9}, \quad \text{-SOOR$}^{10}, \quad \text{-SOOR$}^{10}, \quad \text{-CONR$}^{11}, \quad \text{-CONR$}^{11}, \quad \text{-CONR$}^{12}, \quad \text{-SOOR$}^{12}, \quad \text{-$

R² es H o alquilo;

 R^5 está seleccionado de H, alquilo, alquenilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilalquilo, arilcicloalquilo, $-OR^{15}$, -CN, $-C(O)R^8$, $-C(O)OR^9$, $-S(O)R^{10}$, $-S(O)_2R^{10}$, $-C(O)N(R^{11})(R^{12})$, $-S(O)N(R^{11})(R^{12})$, $-S(O)_2N(R^{11})(R^{12})$, $-NO_2$ $-N=C(R^8)_2$ y $-N(R^8)_2$;


a condición de que R¹ y R⁵ no se seleccionen ambos de -NO₂ -N=C(R⁸)₂ y -N(R⁸)₂;

 R^3 y R^4 están seleccionados independientemente de H, alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CH2-O-Si(R^9)(R^{10})(R^{19}), -SH, -CN, -OR 9 , -C(O)OR 8 , -C(O)OR 9 , -C(O)N(R^{11})(R^{12}), -SR 19 , -S(O)N(R^{11})(R^{12}), -S(O)2N(R^{11})(R^{12}), -N(R^{11})C(O)R 8 , -N(R^{11})S(O)R 10 , -N(R^{11})C(O)N(R^{12})(R 13), -N(R^{11})C(O)OR 9 y -C(=NOH)R 8 ;

 R^6 y R^7 están seleccionados independientemente de alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, hetero

o R³ y R⁴ o R⁶ y Rⁿ junto con el carbono al que están unidos se combinan para formar grupos multicíclicos de las siguientes fórmulas:

en las que M es -CH₂-, S, -N(R¹⁹)- o O, A y B son independientemente arilo o heteroarilo y q es 0, 1 ó 2 a condición de que si q es 2, un M deba ser un átomo de carbono y si q es 2, M sea opcionalmente un doble enlace; y con la condición de que si R³, R⁴, R⁶ y R⁷ forman dichos grupos multicíclicos

entonces los grupos R3 y R4 o R6 y R7 adyacentes no puedan combinarse para formar dichos grupos

multicíclicos:

5

10

15

20

25

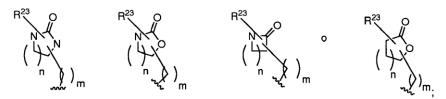
30

35

40

 R^8 está seleccionado independientemente de H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, - QR^{15} , -

R⁹ está seleccionado independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo y heteroarilalquilo;


 R^{10} está seleccionado independientemente del grupo constituido por H, alquilo, alquenilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo y -N(R^{15})(R^{16});

 R^{11} , R^{12} y R^{13} están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, - $C(O)R^8$, - $C(O)OR^9$, - $S(O)_2R^{10}$, - $C(O)N(R^{15})$, (R^{16}), - R^{16}), - R^{10} , - R^{10}), - R^{10} , - R^{10}), - R^{10} , - R^{10}

 R^{14} es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquenilo, cicloalquilo, cicloalquilo, cicloalquenilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -C(O)N(R 15) (R 16), -SR 15 , -S(O)N(R 15)(R 16), -S(O)2N(R 15)(R 16), -C(=NOR 15)R 16 , -P(O)(OR 15)(OR 16), -N(R 15)S(O)R 16 , -N(R 15)S(O)2R 16 , -N(R 15)S(O)2N(R 16)(R 17), -N(R 15)S(O)N(R 16), -N(R 15)C(O)N(R 16)(R 17), -N(R 15)C(O)N(R 16)(R) y -N(R 15)C(O)OR 16 ;

R¹⁵, R¹⁶ y R¹⁷ están seleccionados independientemente del grupo constituido por H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, arilocicloalquilo, arilheterocicloalquilo, R¹⁸-alquilo, R¹⁸-cicloalquilo, R¹⁸-cicloalquilo, R¹⁸-heteroarilalquilo, R¹⁸-heteroarilalquilo; o

R¹⁵, R¹⁶ y R¹⁷ son

en las que R²³ numera 0 a 5 sustituyentes, m es 0 a 6 y n es 1 a 5;

 R^{18} es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, alquenilo, arilo, arilalquilo, arilalquinilo, -NO2 halógeno, heteroarilo, HO-alquiloxialquilo, -CF3, -CN, alquil-CN, -C(O)R^{19}, -C(O)OH, -C(O)OR^{19}, -C(O)NHR^{20}, -C(O)NH_2, -C(O)NH_2-C(O)N(alquilo)_2, -C(O)N(alquil)(arilo), -C(O)N(alquil)(heteroarilo), -SR^{19}, -S(O)_2R^{20}, -S(O)NH_2, -S(O)NH(alquilo), -S(O)N(alquil)(alquilo), -S(O)NH(arilo), -S(O)_2NHR^{19}, -S(O)_2NH(heterocicloalquilo), -S(O)_2N(alquilo)_2, -S(O)_2N(alquil)(arilo), -OCF3, -OH, -OR^{20}, -O-heterocicloalquilo, -O-cicloalquilalquilo, -O-heterocicloalquilalquilo, -NH2, -NHR^{20}, -N(alquilo)_2, -N(arilalquilo), -N(alquil)(heteroarilalquilo), -NHC(O)NH2, -NHC(O)NH2, -NHC(O)NH(alquilo), -NHC(O)NH(alquilo), -NHS(O)_2R^{20}, -NHS(O)_2N(alquil)(alquilo), -NHS(O)_2N(alquil)(alquilo), -N(alquil)S(O)_2NH(alquilo), -N(alquil)S(O)_2N(alquil)(alquilo);

o dos restos R¹⁸ sobre carbonos advacentes pueden ligarse juntos para formar

R¹⁹ es alquilo, cicloalquilo, arilo, arilalquilo o heteroarilalquilo;

R²⁰ es alquilo, cicloalquilo, arilo, haloarilo sustituido, arilalquilo, heteroarilo o heteroarilalquilo;

y en donde cada uno de los grupos alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ y R¹⁴ están independientemente sin sustituir o sustituidos con 1 a 5 grupos R²¹

independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -C(O)N(R 15)(R 16), -SR 15 , -S(O)N(R 15)(R 16), -C(H(R 15)(R 16), -S(O)2N(R 15)(R 16), -C(=NOR 15)R 16 , -P(O)(OR 15) (OR 16), -N(R 15)(R 16), -alquil-N(R 15)(R 16), -N(R 15)C(O)R 16 , -CH2-N(R 15)C(O)N(R 16)(R), -CH2-N(R), -CH2-N(R), -CH2-N(R), -CH2-N(R), -N(R), -N(

y donde que cada uno de los grupos alquilo, cicloalquenilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en R^{21} están independientemente sin sustituir o sustituidos con 1 a 5 grupos R^{22} independientemente seleccionados del grupo constituido por alquilo, cicloalquilo, cicloalquenilo, heterocicloalquilo, arilo, heteroarilo, halógeno, -CF3, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -alquil-C(O)OR 15 , C(O)N(R 15)(R 16), -SR 15 , -S(O)N(R 15)(R 16), -S(O)2N(R 15)(R 16), -C(=NOR 15)R 16 , -P(O)(OR 15)(OR 16), -N(R 15)(R 16), -alquil-N(R 15)(R) 16), -N(R 15)C(O)R 16 , -CH2-N(R 15)C(O)R 16 , -N(R 15)S(O)2R 16 , -N(R 15)S(O)2R 16 , -N(R 15)S(O)2R 16 , -N(R 15)S(O)N(R 16), -N(R 15)C(O)N(R 16), -N(R 15)C(O)OR 16 , -N(R 15)C(O)OR 16 , -CH2-N(R 15)C(O)OR 16 , -N3, =NOR 15 , -NO2 -S(O)R 15 y -S(O)2R 15 ;

o dos restos R²¹ o dos restos R²² sobre carbonos adyacentes pueden ligarse juntos para formar

5

10

15

20

25

30

35

40

y si R^{21} o R^{22} están seleccionados del grupo constituido por $-C(=NOR^{15})R^{16}$, $-N(R^{15})C(O)R^{16}$, $-CH_2-N(R^{15})C(O)R^{16}$, $-N(R^{15})S(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-CH_2-N(R^{15})S(O)R^{16}$, $-N(R^{15})S(O)_2N(R^{16})(R^{17})$, $-N(R^{15})S(O)N(R^{16})(R^{17})$, $-N(R^{15})C(O)N(R^{16})(R^{17})$, $-CH_2-N(R^{15})C(O)N(R^{16})(R^{17})$, $-N(R^{15})C(O)OR^{16}$ y $-CH_2-N(R^{15})C(O)OR^{16}$, R^{15} y R^{16} juntos pueden ser una cadena C_2 a C_4 en la que, opcionalmente, uno, dos o tres carbonos del anillo pueden sustituirse con -C(O)- o -N(H)- y R^{15} y R^{16} , junto con los átomos a los que están unidos, forman un anillo de 5 a 7 miembros, opcionalmente sustituido con R^{23} ;

 R^{23} es 1 a 5 grupos independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR^{24}, -C(O)R^{24}, -C(O)CR^{24}, -C(O)N(R^{24})(R^{25}), -SR^{24}, -S(O)N(R^{24})(R^{25}), -S(O)_2N(R^{24})(R^{25}), -C(=NOR^{24})R^{25}, -P(O)(OR^{24})(OR^{25}), -N(R^{24})(R^{25}), -alquil-N(R^{24})(R^{25}), -N(R^{24})C(O)R^{25}, -CH_2-N(R^{24})C(O)R^{25}, -N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -S(O)_2R^{24}, y -S(O)_2R^{24}, y en los que cada uno de los grupos alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heteroarilaquilo, alquenilo y alquinilo en R^{23} están independientemente sin sustituir o sustituidos con 1 a 5 grupos R^{27} independientemente seleccionados del grupo constituido por alquilo, cicloalquilo, heterocicloalquilo, arilo, halógeno, -CF_3, -CN, -OR^{24}, -C(O)R^{24}, -C(O)OR^{24}, alquil-C(O)OR^{24}, C(O)N(R^{24})(R^{25}), -SR^{24}, -S(O)N(R^{24})(R^{25}), -S(O)_2N(R^{25}), -S(O)_2N(R^{25}), -C(=NOR^{24})R^{25}, -P(O)(OR^{24})(OR^{25}), -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -S(O)_2R^{24}, -S(O)_2R^{24}, -S(O)_2R^{24}, -S(O)_2R^{24}, -S(O)_2R^{24}, -S(O)_2R^{24}, -S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_

R²⁴, R²⁵ y R²⁶ están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, ariloicloalquilo, R²⁷-alquilo, R²⁷-cicloalquilo, R²⁷-cicloalquilalquilo, R²⁷-heterocicloalquilo, R²⁷-heterocicloalquilo, R²⁷-heteroarilalquilo;

R²⁷ es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, arilo, arilalquilo, - NO₂, halógeno, -CF₃, -CN, alquil-CN, -C(O)R²⁸, -C(O)OH, -C(O)OR^{2a}, -C(O)NHR²⁹, -C(O)N(alquilo)₂, - C(O)N(alquil)(heteroarilo), -SR²⁸, -S(O)₂R²⁹, -S(O)NH₂, -S(O)NH(alquilo), -S(O)NH(alquilo), -S(O)NH(arilo), -S(O)₂NH₂, -S(O)₂NHR²⁸, -S(O)₂NH(arilo), -S(O)₂NH(heterocicloalquilo), - S(O)₂N(alquilo)₂, -S(O)₂N(alquilo)₂, -O-heterocicloalquilo, -O-heterocicloalquilalquilo, -NH₂, -NHR²⁹, -N(alquilo)₂, -N(arilalquilo)₂, -N(arilalquilo)(heteroarilalquilo), -NHC(O)R²⁹, -NHC(O)NH₂, -NHC(O)NH(alquilo), -NHC(O)N(alquil)(alquilo), -N(alquil)C(O)NH(alquilo), -NHS(O)₂R²⁹, -NHS(O)₂NH(alquilo), -NHS(O)₂N(alquil)(alquilo), -NHS(O)₂N(alquil)(alquilo), -NHS(O)₂N(alquil)(alquilo);

R²⁸ es alquilo, cicloalquilo, arilalquilo o heteroarilalquilo; y

R²⁹ es alquilo, cicloalquilo, arilo, arilalquilo, heteroarilo o heteroarilalquilo;

a condición de que R^1 y R^5 no sean -alquilaril-aril- SO_2 - $N(R^{15})(R^{16})$ en la que R^{15} es H y R^{16} es heteroarilo; y

a condición de que el compuesto no sea: (i) 4,4-dimetil-2-amino-5-(4-clorofenil)-4,5-dihidro-6-hidroxipirimidina; o (ii) 4,4-dietil-2-amino-5-(4-clorofenil)-4,5-dihidro-6-hidroxipirimidina.

- 2. Un compuesto de la reivindicación 1 en el que R² es H.
- $3. \ Un \ compuesto \ de \ la \ reivindicación \ 1 \ en \ el \ que \ R^3, \ R^4, \ R^6 \ y \ R^7 \ están \ seleccionados \ independientemente \ del \ grupo \ constituido \ por \ alquilo, \ cicloalquilaquilo, \ heterocicloalquilo, \ heterocicloalquilaquilo, \ arilo, \ arilalquilo, \ heteroarilo, \ heteroarilalquilo, \ halógeno, \ -CH_2-O-Si(R^9)(R^{10})(R^{19}), \ -SH, \ -CN, \ -OR^9, \ -C(O)R^8, \ -C(O)OR^9, \ -C(O)N(R^{11})(R^{12}), \ -SR^{19}, \ -S(O)N(R^{11})(R^{12}), \ -N(R^{11})(R^{12}), \ -N(R^{11})C(O)R^8, \ -N(R^{11})S(O)R^{10}, \ -N(R^{11})C(O)N(R^{12})(R^{13}), \ -N(R^{11})C(O)OR^9 \ y \ -C(=NOH)R^8.$
- 4. Un compuesto de la reivindicación 1 en el que R³, R⁴, R⁶ y R⁷ están seleccionados del grupo constituido por arilo, heteroarilo, heteroarilalquilo, arilalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, alquilo y cicloalquilalquilo.
 - 5. Un compuesto de la reivindicación 1 en el que

R³, R⁴, R⁶ y R⁷ son independientemente

$$A^{2}$$
 , A^{2} , A^{2} , A^{2}

20 y

5

R¹ y R⁵ son independientemente H, CH₃,

0

25 6. Un compuesto de la reivindicación 1 seleccionado del grupo constituido por:

- 7. Una composición farmacéutica que comprende un compuesto de cualquier reivindicación precedente y un vehículo farmacéuticamente eficaz.
- 8. Un compuesto para su uso en un procedimiento para inhibir aspartilproteasa en un paciente, en donde el compuesto es un compuesto que tiene la fórmula estructural IB:

5

10

15

20

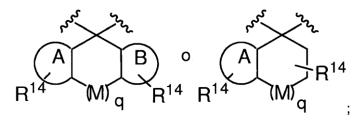
25

o un estereoisómero, tautómero, o sal o solvato farmacéuticamente aceptables del mismo, en la que

U es $-C(R^6)(R^7)$ -;

 $R^1 \quad \text{est\'a} \quad \text{seleccionado} \quad \text{de} \quad H, \quad \text{alquilo}, \quad \text{alquenilo}, \quad \text{cicloalquilo}, \quad \text{cicloalquiloquilo}, \quad \text{heterocicloalquilo}, \quad \text{heterocicloalquilo}, \quad \text{heterocicloalquilo}, \quad \text{heterocicloalquilo}, \quad \text{cop}_{15}, \quad \text{cop}_{$

 R^2 está seleccionado de H, alquilo, alquenilo, cicloalquilo, cicloalquilaquilo, heterocicloalquilalquilo, arilo, heteroarila, heteroarilalquilo, arilcicloalquilo, -OR 15 , -C(O)R 8 , -C(O)OR 9 , -S(O)R 10 , -S(O) $_2$ R 10 , -C(O)N(R 11)(R 12), -S(O)N(R 11)(R 12), -NO $_2$, -N=C(R 8) $_2$ y -N(R 8) $_2$;


 R^5 está seleccionado de H, alquilo, alquenilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilalquilo, arilo, arilo, arilalquilo, heteroarilalquilo, arilcicloalquilo, -OR 15 , -CN, -C(O)R 8 , -C(O)OR 9 , -S(O)R 10 , -S(O) $_2$ R 10 , -C(O)N(R 11)(R 12), -S(O) $_2$ N(R 11)(R 12), -NO $_2$, -N=C(R 8) $_2$ y -N(R 8) $_2$;

a condición de que R^1 y R^5 no se seleccionen ambos de -NO₂, -N=C(R^8)₂ y -N(R^8)₂;

 R^3 y R^4 están seleccionados independientemente de H, alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, heterocicloalquilo, heterocicloalquilo, heterocicloalquilo, heterocicloalquilo, halógeno, -CH_2-O-Si(R^9)(R^{10})(R^{19}), -SH, -CN, -OR 9 , -C(O)OR 9 , -C(O)O(R^{11})(R^{12}), -SR 19 , -S(O)N(R^{11})(R^{12}), -S(O) $_2$ N(R^{11})(R^{12}), -N(R^{11})C(O)R 8 , -N(R^{11})S(O)R 10 , -N(R^{11})C(O)N(R^{12})(R^{13}), -N(R^{11})C(O)OR 9 y -C(=NOH)R 8 ;

 R^6 y R^7 están seleccionados independientemente de alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CH2-O-Si(R9)(R10)(R19), -SH, -CN, -OR9, -C(O)R8, -C(O)OR9, -C(O)N(R11)(R12), -SR19, -S(O)N(R11)(R12), -S(O)2N(R11)(R12), -N(R11)(R12), -N(R112), -N(R

o R³ y R⁴ o R⁶ y R⁷ junto con el carbono al que están unidos se combinan para formar grupos multicíclicos de las siguientes fórmulas:

30

en las que M es - CH_{2^-} , S, - $N(R^{19})$ - o O, A y B son independientemente arilo o heteroarilo y q es 0, 1 ó 2 a condición de que si q es 2, un M deba ser un átomo de carbono y si q es 2, M sea opcionalmente un doble enlace; y con la condición de que si R^3 , R^4 , R^6 y R^7 forman dichos grupos multicíclicos

entonces los grupos R³ y R⁴ o R⁶ y R⁷ adyacentes no puedan combinarse para formar dichos grupos multicíclicos;

 R^8 está seleccionado independientemente de H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilalquilo, arilalquilo, heteroarilo, heteroarilalquilo, -OR 15 , -N(R 15)(R), -N(R 15)C(O)R 16 , -N(R 15)S(O)R 16 , -N(R 15)S(O)R 16 , -N(R 15)S(O)R 16), -N(R 15)S(O)R(R 16)(R 17), -N(R 15)C(O)N(R 16)(R 17) y -N(R 15)C(O)OR 16 ;

R⁹ está seleccionado independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo y heteroarilalquilo;

 R^{10} está seleccionado independientemente del grupo constituido por H, alquilo, alquenilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo y -N(R^{15})(R^{16});

 R^{11} , R^{12} y R^{13} están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, - $C(O)R^8$, - $C(O)OR^9$, - $S(O)_2R^{10}$, - $S(O)_2R^{10}$, - $C(O)N(R^{15})(R^{16})$, - $S(O)_2N(R^{15})(R^{16})$ y - $C(O)N(R^{15})(R^{16})$, - $C(O)N(R^{15})(R^{15})$, - $C(O)N(R^{15})(R^{15})$

 R^{14} es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -C(O)N(R 15)(R 16), -SR 15 , -S(O)N(R 15)(R 16), -S(O) $_2$ N(R 15)(R 16), -C(=NOR 15)R 16 , -P(O)(OR 15)(OR 16), -N(R 15)C(O)R 16 , -N(R 15)S(O) $_2$ R 16 , -N(R 15)S(O) $_2$ N(R 16), -N(R 15)S(O)N(R 16), -N(R 15)C(O)N(R 16), -N(R 15)C(O)N(R 16), -N(R 15)C(O)OR 16 ;

R¹⁵, R¹⁶ y R¹⁷ están seleccionados independientemente del grupo constituido por H, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, arilcicloalquilo, arilheterocicloalquilo, R¹⁸-alquilo, R¹⁸-cicloalquilo, R¹⁸-cicloalquilo, R¹⁸-heteroarilalquilo, R¹⁸-heteroarilalquilo; o

R¹⁵, R¹⁶ y R¹⁷ son

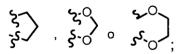
5

10

15

20

25


30

35

en las que R²³ numera 0 a 5 sustituyentes, m es 0 a 6 y n es 1 a 5;

R¹⁸ es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, alquenilo, arilo, arilalquilo, arilalquinilo, -NO₂, halógeno, heteroarilo, HO-alquiloxialquilo, -CF₃, -CN, alquil-CN, -C(O)R¹⁹, -C(O)OH, -C(O)OR¹⁹, -C(O)NHR²⁰, -C(O)NH₂, -C(O)NH₂-C(O)N(alquilo)₂, -C(O)N(alquil)(arilo), -C(O)N(alquil)(heteroarilo), -SR¹⁹, -S(O)₂R²⁰, -S(O)NH₂, -S(O)NH(alquilo), -S(O)N(alquil)(alquilo), -S(O)NH(arilo), -S(O)₂NH₂, -S(O)₂NHR¹⁹, -S(O)₂NH(heterocicloalquilo), -S(O)₂N(alquilo)₂, -S(O)₂N(alquil)(arilo), -O-F₃, -OH, -OR²⁰, -O-heterocicloalquilo, -O-cicloalquilalquilo, -O-heterocicloalquilalquilo, -NH₂, -NHR²⁰, -N(alquilo)₂, -N(alquilo)₂, -N(arilalquilo), -N(alquilo), -NHC(O)NH₂, -NHC(O)NH(alquilo), -NHC(O)NH(alquilo), -NHC(O)NH(alquilo), -NHS(O)₂R²⁰, -NHS(O)₂N(alquil)(alquilo), -N(alquil)(alquilo), -N(alquil)(alquilo), -N(alquil)(alquilo), -N(alquil)(alquilo), -N(alquilo)(alquilo), -N(alquilo)(alquilo)(alquilo), -N(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquilo)(alquil

o dos R¹⁸ restos sobre carbonos advacentes pueden ligarse juntos para formar

R¹⁹ es alquilo, cicloalquilo, arilo, arilalquilo o heteroarilalquilo;

5

10

15

20

25

30

35

40

45

R²⁰ es alguilo, cicloalguilo, arilo, haloarilo sustituido, arilalguilo, heteroarilo o heteroarilalguilo;

y en donde cada uno de los grupos alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en $R^1,\,R^2,\,R^3,\,R^4,\,R^5,\,R^6,\,R^7,\,R^8,\,R^9,\,R^{10},\,R^{11},\,R^{12},\,R^{13}\,y\,R^{14}$ están independientemente sin sustituir o sustituidos con 1 a 5 grupos R^{21} independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquilalquilo, cicloalquilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -C(O)N(R 15)(R 16), -SR 15 , -S(O)N(R 15)(R 16), -C(-ENOR 15), -P(O)(OR 15)(OR 16), -N(R 15)(R), -alquil-N(R 15)(R), -N(R 15)C(O)R 16 , -CH2-N(R 15)C(O)N(R 16), -CH2-R 15 ; -CH2-N(R 15)C(O)R(R 16), -N(R 15)S(O)2R 16 , -CH2-N(R 15)S(O)2R(R 16), -N(R 15)S(O)N(R 16), -N(R 15)C(O)N(R 16

y en donde cada uno de los grupos alquilo, cicloalquenilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en R^{21} están independientemente sin sustituir o sustituidos con 1 a 5 grupos R^{22} independientemente seleccionados del grupo constituido por alquilo, cicloalquilo, cicloalquenilo, heterocicloalquilo, arilo, heteroarilo, halógeno, -CF3, -CN, -OR 15 , -C(O)R 15 , -C(O)OR 15 , -alquil-C(O)OR 15 , C(O)N(R 15)(R 16), -SR 15 , -S(O)N(R 15)(R 16), -S(O)2N(R 15)(R 16), -C(=NOR 15)R 16 , -P(O)(OR 15)(OR 16), -N(R 15)(R 16), -alquil-N(R 15)(R 16), -N(R 15)C(O)R 16 , -CH2-N(R 15)C(O)R 16 , -N(R 15)S(O)2R 16 , -N(R 15)S(O)2N(R 16), -N(R 15)S(O)N(R 16), -N(R 15)C(O)N(R 16), -N(R 15)C(O)OR 16 , -N(R 15)

o dos restos R²¹ o dos R²² sobre carbonos adyacentes pueden ligarse juntos para formar

y si R^{21} o R^{22} están seleccionados del grupo constituido por $-C(=NOR^{15})R^{16}$, $-N(R^{15})C(O)R^{16}$, $-CH_2-N(R^{15})C(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-CH_2-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R(R^{16})(R^{17})$, $-N(R^{15})S(O)N(R^{16})(R^{17})$, $-N(R^{15})C(O)N(R^{16})(R^{17})$, $-CH_2-N(R^{15})C(O)N(R^{16})(R^{17})$, $-N(R^{15})C(O)OR^{16}$ y $-CH_2-N(R^{15})C(O)OR^{15}$, R^{15} y R^{16} juntos pueden ser una cadena R^{15} y R^{16} , junto con los átomos a los que están unidos, forman un anillo de 5 a 7 miembros, opcionalmente sustituido con R^{23} ;

 $R^{23} \text{ es 1 a 5 grupos independientemente seleccionados del grupo constituido por alquilo, alquenilo, alquenilo, cicloalquilo, cicloalquilo, cicloalquenilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CN, -OR^{24}, -C(O)R^{24}, -C(O)OR^{24}, -C(O)N(R^{24})(R^{25}), -SR^{24}, -S(O)N(R^{24})(R^{25}), -S(O)_2N(R^{24})(R^{25}), -C(=NOR^{24})R^{25}, -P(O)(OR^{24})(OR^{25}), -N(R^{24})(R^{25}), -alquil-N(R^{24})(R^{25}), -N(R^{24})C(O)R^{25}, -CH_2-N(R^{24})C(O)R^{25}, -N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)R^{25}, -S(O)R^{24}, -S(O)_2R^{24}, y en donde cada uno de los grupos alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, heteroarilo, heteroarilalquilo, alquenilo y alquinilo en R^{23} están independientemente sin sustituir o sustituidos con 1 a 5 grupos R^{27} independientemente seleccionados del grupo constituido por alquilo, cicloalquilo, heterocicloalquilo, arilo, halógeno, -CF_3, -CN, -OR^{24}, -C(O)R^{24}, -C(O)OR^{24}, alquil-C(O)OR^{24}, C(O)N(R^{24})(R^{25}), -SR^{24}, -S(O)N(R^{24})(R^{25}), -S(O)_2N(R^{24})(R^{25}), -C(=NOR^{24})R^{25}, -P(O)(OR^{24})(OR^{25}), -N(R^{24})(R^{25}), -alquil-N(R^{24})R^{25}), -N(R^{24})S(O)_2R^{25}, -CH_2-N(R^{24})S(O)_2R^{25}, -N(R^{24})S(O)_2R^{25}, -N(R^{2$

 R^{24} , R^{25} y R^{26} están seleccionados independientemente del grupo constituido por H, alquilo, cicloalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, arilcicloalquilo, R^{27} -alquilo, R^{27} -cicloalquilo, R^{27} -cicloalquilo, R^{27} -heterocicloalquilo, R^{27} -heterocicloalquilo, R^{27} -heteroarilo, R^{27} -heteroarilo, R^{27} -heteroarilalquilo, R^{27} -heteroarilalquilo;

 R^{27} es 1-5 sustituyentes independientemente seleccionados del grupo constituido por alquilo, arilo, arilalquilo, -NO2, halógeno, -CF3, -CN, alquil-CN, -C(O)R^{28}, -C(O)OH, -C(O)QR^{28}, -C(O)NHR^{29}, -C(O)N(alquilo)2, -C(O)N(alquil)(arilo), -C(O)N(alquil)(heteroarilo), -SR^{28}, -S(O)_2R^{29}, -S(O)NH2, -S(O)NH(alquilo), -S(O)NH(alquilo), -S(O)NH(arilo), -S(O)NH(arilo), -S(O)NH(arilo), -S(O)NH(arilo), -S(O)NH(alquilo)2, -S(O)NH(alquilo)3, -O-heterocicloalquilo, -O-heterocicloalquilalquilo, -NH2, -NHR^{29}, -N(alquilo)2, -N(arilalquilo)2, -N(arilalquil)(heteroarilalquilo), -NHC(O)R^{29}, -NHC(O)NH2, -NHC(O)NH(alquilo), -NHC(O)N(alquil)(alquilo), -N(alquil)C(O)N(alquil)(alquilo), -NHS(O)2R^{29}, -NHS(O)2NH(alquilo), -NHS(O)2N(alquil)(alquilo), -NHS(O)2N(alquilo), -NHS(O

10 R²⁸ es alguilo, cicloalguilo, arilalguilo o heteroarilalguilo; y

R²⁹ es alguilo, cicloalguilo, arilo, arilalguilo, heteroarilo o heteroarilalguilo;

a condición de que ni R^1 ni R^5 sean -C(O)-alquil-azetidinona o alquilo di-sustituido con (-COOR 15 o -C(O)N(R 15)(R 16)) y (-N(R 15)(R 16), -N(R 15)C(O)R 16 , -N(R 15)S(O)R 16 , -N(R 15)S(O)2R 16 , -N(R 15)S(O)2N(R 16)(R 17), -N(R 15)C(O)N(R 16)(R 17), -N(R 15)C(O)N(R 16)(R 17) o -N(R 15)C(O)OR 16); y

a condición de que R¹ y R⁵ no sean -alquilaril-aril-SO₂-N(R¹⁵)(R¹⁶) en la que R¹⁵ es H y R¹⁶ es heteroarilo.

9. El compuesto para su uso de la reivindicación 8, en el que R² es H.

10. El compuesto para su uso de la reivindicación 8, en el que $R^3,\,R^4,\,R^6$ y R^7 están seleccionados independientemente del grupo constituido por alquilo, cicloalquilo, cicloalquilalquilo, heterocicloalquilo, heterocicloalquilalquilo, arilo, arilalquilo, heteroarilo, heteroarilalquilo, halógeno, -CH2-O-Si(R^9)(R^{10})(R^{19}), -SH, -CN, -OR 9 , -C(O)R 8 , -C(O)OR 9 , -C(O)N(R^{11})(R^{12}), -S(O)N(R^{11})(R^{12}), -N(R^{11})C(O)R 8 , -N(R^{11})C(O)R 8 , -N(R^{11})C(O)OR 9 , -C(=NOH)R 8 .

11. El compuesto para su uso de la reivindicación 8, en el que R^3 , R^4 , R^6 y R^7 están seleccionados del grupo constituido por arilo, heteroarila, heteroarilalquilo, arilalquilo, cicloalquilo, heterocicloalquilo, heterocicloalquilalquilo, alquilo y cicloalquilalquilo.

12. El compuesto para su uso de la reivindicación 8, en donde

R³, R⁴, R⁶ v R⁷ son independientemente

$$A^{2}$$
, A^{2} , A

у

R¹ y R⁵ son independientemente H, CH₃,

$$A^{p^{2}}$$
 $A^{p^{2}}$
 $A^{p^{2}}$
 $A^{p^{2}}$
 $A^{p^{2}}$
 $A^{p^{2}}$
 $A^{p^{2}}$
 $A^{p^{2}}$

30

5

15

20

25

13. El compuesto para su uso de la reivindicación 8, en donde el compuesto está seleccionado del grupo constituido por:

14. Un compuesto para su uso en un procedimiento para tratar una enfermedad cardiovascular, una enfermedad cognitiva o una enfermedad neurodegenerativa en un paciente, o para su uso en un procedimiento para inhibir virus de la inmunodeficiencia humana, una plasmepsina, catepsina D o una enzima protozoica en un paciente, en donde el compuesto es un compuesto que tiene la fórmula estructural IB como se define en una cualquiera de las reivindicaciones 8 a 13, o un estereoisómero, tautómero, o sal o solvato farmacéuticamente aceptables de los mismos.

5

15

- 15. El compuesto para su uso de la reivindicación 14, en donde el compuesto es para su uso en el tratamiento de una enfermedad cognitiva o neurodegenerativa.
- 16. El compuesto para su uso de la reivindicación 15, en donde el compuesto es para su uso en el tratamiento de enfermedad de Alzheimer.
- 10 17. El compuesto para su uso de la reivindicación 15, en donde el compuesto se administra en combinación con un inhibidor de colinesterasa.
 - 18. Una composición farmacéutica que comprende un compuesto que tiene la fórmula estructural IB como se define en una cualquiera de las reivindicaciones 8 a 13, o un estereoisómero, tautómero, o sal o solvato farmacéuticamente aceptables de los mismos; y un inhibidor de colinesterasa o un agonista m_1 o antagonista m_2 muscarínicos en un vehículo farmacéuticamente eficaz.
 - 19. Uso de un compuesto para la fabricación de un medicamento para inhibir aspartilproteasa en un paciente, en el que el compuesto es un compuesto que tiene la fórmula estructural IB como se define en una cualquiera de las reivindicaciones 8 a 13, o un estereoisómero, tautómero, o sal o solvato farmacéuticamente aceptables de los mismos.
- 20. Uso de un compuesto para la fabricación de un medicamento para: tratar una enfermedad cardiovascular, una enfermedad cognitiva o una enfermedad neurodegenerativa en un paciente; o inhibir virus de la inmunodeficiencia humana, una plasmepsina, catepsina D o una enzima protozoica en un paciente; en el que el compuesto es un compuesto que tiene la fórmula estructural IB como se define en una cualquiera de las reivindicaciones 8 a 13, o un estereoisómero, tautómero, o sal o solvato farmacéuticamente aceptables de los mismos.