

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 422 407

61 Int. Cl.:

E21B 27/00 (2006.01) E21B 37/02 (2006.01) B08B 9/051 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 20.08.2010 E 10747845 (5)
 (97) Fecha y número de publicación de la concesión europea: 03.07.2013 EP 2467564

54 Título: Cabezal de herramienta de fondo de pozo para la liberación de sólidos precipitados

(30) Prioridad:

21.08.2009 EP 09168401

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.09.2013

(73) Titular/es:

WELLTEC A/S (100.0%) Gydevang 25 3450 Allerød, DK

(72) Inventor/es:

HALLUNDBÆK, JØRGEN y JENSEN, SVEN KARSTEN

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Cabezal de herramienta de fondo de pozo para la liberación de sólidos precipitados

Campo técnico

La presente invención se refiere a un cabezal de la herramienta de fondo de pozo para su montaje en una herramienta de fondo de pozo para liberar sólidos precipitados, tales como hielo, incrustaciones o similares en un fluido de cavidad, en una tubería, un tubo de encamisado, un pozo o cualquier otra cavidad.

Antecedentes

- Se utilizan tuberías para el transporte de petróleo, gas y similares,por ejemplo, desde las plataformas petroleras a la costa. Un fluido de petróleo de este tipo contiene constituyentes de agua, y puesto que las tuberías se extienden en el lecho marino cubierto por agua, la temperatura ambiente puede producir un enfriamiento del fluido de petróleo hasta un punto en el que los componentes del agua precipitan en forma de hielo en la pared interior de la tubería. El hielo precipitado puede bloquear, al menos en parte, el flujo en las tuberías, disminuyendo de este modo la velocidad del fluido de petróleo.
- Además, los tubos de encamisado de fondo de pozo pueden ser bloqueados, al menos en parte, por incrustaciones debido al hecho de que los componentes del agua en el petróleo pueden comprender cationes alcalinotérreos y aniones, y las incrustaciones insolubles en agua se forman cuando cationes y aniones se encuentran presentes en una cierta concentración.
- Cuando los sólidos precipitados, tales como el hielo y las incrustaciones, se sueltan, algunos sólidos son de un ta-20 maño que los hace incapaces de pasar por las herramientas de liberación conocidas, haciendo que la herramienta se atasque.
 - Además, cuando se perfora un fondo de pozo, las piezas de formación se liberan de la formación, y tales piezas también pueden ser de un tamaño tal que las piezas no pueden pasar por la herramienta.
 - Un cabezal de la herramienta de acuerdo con el preámbulo de la reivindicación 1 se desvela en el documento US 4-084636.

Descripción de la invención

25

30

35

Un aspecto de la presente invención consiste en, al menos en parte, superar las desventajas que se han mencionado más arriba, proporcionando una herramienta de fondo de pozo mejorada que puede aplastar, agrietar, y / o triturar sólidos tales como hielo, incrustaciones o piezas de formación para evitar que las mismas obstaculicen el funcionamiento de la herramienta.

Este aspecto y las ventajas que se harán más evidentes por la descripción que sigue, se obtienen por medio de un cabezal de la herramienta de fondo de pozo para su montaje en una herramienta de fondo de pozo para perforar en una formación de fondo de pozo o para liberar los sólidos precipitados, tales como hielo, incrustaciones o similares, en un fluido de cavidad en una tubería, un tubo de encamisado, un pozo o de cualquier otra cavidad de fondo de pozo, que comprende:

- un cuerpo cilíndrico hueco con una pared circunferencial que se extiende desde una porción de base del cuerpo, teniendo la pared circunferencial un reborde circunferencial en su extremo opuesto a la porción de base.
- en el que el reborde circunferencial comprende una pluralidad de filos para cortar, triturar, taladrar y / o molturar, y 40 en el que la porción de base tiene una pluralidad de orificios pasantes para permitir que el fluido de cavidad que comprende sólidos precipitados, pase por los orificios.

De acuerdo con la invención, los orificios tienen un filo de corte para cortar los sólidos precipitados liberados de la cavidad y para dividir los sólidos precipitados en varias piezas.

La porción de base que se ha mencionada más arriba del cabezal de la herramienta de fondo de pozo puede tener un área de la porción de base, y los orificios en la porción de base pueden constituir más del 20% del área de la porción de base, preferiblemente más del 30% del área de la porción de base, más preferiblemente más del 40% del área de la porción de base, e incluso más preferiblemente, más del 50% del área de la porción de base.

Por otra parte, al menos uno de los orificios se puede extender desde la porción de base y a lo largo de la pared circunferencial.

ES 2 422 407 T3

Cada orificio en la porción de base puede tener una anchura que constituye más del 1% del área de la porción de base, preferiblemente más del 3% del área de la porción de base, más preferiblemente, más del 5% del área de la porción de base, e incluso más preferiblemente, más del 8% del área de la porción de base.

Por otra parte, el filo de corte (12) del orificio tiene un radio de curvatura entre 0,0 mm y 1,0 mm, preferiblemente entre 0,0 mm y 0,5 mm, y más preferiblemente, entre 0,0 mm y 0,2 mm

La pared circunferencial puede tener una pluralidad de orificios.

5

10

20

35

40

Además, la pared circunferencial puede tener un área de la pared circunferencial, y los orificios en la pared circunferencial puede constituir más del 20% del área de la pared circunferencial, preferiblemente más del 30% del área de la pared circunferencial, más preferiblemente, más del 40% del área de la pared circunferencial, y aún más preferiblemente, más del 50% del área de la pared circunferencial.

Por otra parte, cada orificio en la pared circunferencial puede tener una anchura que constituye más del 1% del área de la pared circunferencial, preferiblemente más del 3% del área de la pared circunferencial, más preferiblemente más del 5% del área de la pared circunferencial, y aún más preferiblemente, más del 8% del área de la pared circunferencial.

Además, el reborde circunferencial puede tener al menos tres filos distribuidos a lo largo del reborde, preferiblemente al menos cuatro filos, más preferiblemente al menos seis filos, e incluso más preferiblemente, al menos ocho filos.

Los filos pueden constituir más del un 5% del reborde circunferencial, preferiblemente más del 10% del reborde circunferencial, y más preferiblemente, el 25% del reborde circunferencial.

Por otra parte, una sección transversal de al menos uno de los orificios puede ser redonda, cuadrada o en forma de estrella.

En una realización, un elemento puede estar dispuesto entre la herramienta de fondo de pozo y el cabezal de la herramienta de fondo de pozo, comprendiendo el elemento canales que se extienden desde una cara del elemento orientada a la porción de base del cabezal de la herramienta de fondo de pozo y terminando en un lado del elemento para permitir que el fluido de cavidad salga a través del lado.

Al menos una abertura del canal se puede superponer a un orificio en la porción de base, mientras que el cabezal de la herramienta de fondo de pozo rota alrededor de un eje longitudinal de la herramienta.

Además, la cara de elemento del elemento puede estar dispuesta a una distancia desde la porción de base menor que la anchura de un orificio en la porción de base del cabezal de la herramienta de fondo de pozo.

La invención también se refiere a un uso del cabezal de la herramienta de fondo de pozo con una herramienta para la liberación de los sólidos precipitados, tales como hielo, incrustaciones o similares, en un fluido de cavidad en una tubería, un tubo de encamisado, un pozo o cualquier otra cavidad.

Por otra parte, la invención se refiere a una herramienta de fondo de pozo para perforar en una formación de fondo de pozo o similar, que comprende:

- el cabezal de la herramienta de fondo de pozo que se ha mencionado más arriba, y
- una unidad de accionamiento para hacer rotar el cabezal de la herramienta de fondo de pozo,

en el que el cabezal de la herramienta de fondo de pozo puede ser proporcionado en un árbol conectado a la unidad de accionamiento.

Por último, la invención se refiere a un sistema de fondo de pozo para la realización de operaciones de fondo de pozo, que comprende:

- la herramienta de fondo de pozo que se ha mencionado más arriba, y
- una herramienta de accionamiento, tal como un tractor de fondo de pozo, para mover la herramienta de fondo de pozo en el pozo.

Breve descripción de los dibujos

La invención se explica en detalle a continuación con referencia a los dibujos, en los cuales

la figura1A muestra una vista en sección transversal de un cabezal de la herramienta de fondo de pozo de acuerdo con la invención,

la figura 1B muestra el cabezal de la herramienta de fondo de pozo de la figura 1A vista desde arriba,

la figura 2A muestra una vista en sección transversal de otra realización de un cabezal de la herramienta de fondo de pozo,

la figura 2B muestra el cabezal de la herramienta de fondo de pozo de la figura 2A vista desde arriba.

la figura 3A muestra una vista en sección transversal de otra realización del cabezal de la herramienta de fondo de pozo,

la figura 3B muestra el cabezal de la herramienta de fondo de pozo de la figura 3A vista desde arriba,

la figura 4 muestra una vista en sección transversal del cabezal de la herramienta de fondo de pozo montado en una herramienta de fondo de pozo,

la figura 5A muestra un sólido precipitado liberado, tal como una escama, que choca contra un filo del orificio del cabezal de la herramienta de fondo de pozo,

la figura 5B muestra el sólido de la figura 5A dividido en tres partes,

la figura5C muestra las tres partes de la figura 5B entrando en el orificio del cabezal de la herramienta de fondo de pozo y

la figura 6 muestra una vista en sección transversal de todavía otra realización del cabezal de la herramienta de fondo de pozo.

Los dibujos son meramente esquemáticos y se muestran con una finalidad ilustrativa.

Descripción detallada de la invención

5

10

15

30

35

40

En las figuras 1A y 1B se muestra un cabezal 1 de la herramienta de fondo de pozo de acuerdo con la invención. El cabezal 1 de la herramienta de fondo de pozo tiene un cuerpo cilíndrico 4 que es hueco y que está constituido por una pared circunferencial 5 y una porción de base 7. En la figura 1A, la porción de base es la misma que la porción inferior del cabezal de la herramienta de fondo de pozo. El cabezal 1 de la herramienta de fondo de pozo se utiliza para perforar en una formación de fondo de pozo o para liberar sólidos precipitados 2, tales como hielo, incrustaciones o similares, en un fluido de cavidad en una tubería, un tubo de encamisado 3, un pozo o cualquier otra cavidad de fondo de pozo.

La pared circunferencial 5 tiene un reborde circunferencial 6 que comprende una pluralidad de filos 8 para cortar, triturar, perforar y / o molturar. Estos filos pueden constituir, por ejemplo, parte de dientes, puntas, muelas o inserciones, tales como inserciones de carburo de tungsteno (TCI).

Una tubería se utiliza para transportar un fluido, tal como petróleo, una mezcla de petróleo con agua, gas, etc., desde una plataforma petrolífera a las refinerías en la costa. En muchas operaciones de perforación, el fluido de petróleo se mezcla con filtrado u otros aditivos con el fin de mejorar el proceso de perforación. Además, el líquido puede contener otros elementos, tales como recortes, virutas, arena, lubricante de tubería, restos de una explotación anterior, óxido del tubo de encamisado en el pozo, o desprendimientos arrancados del pozo, del tubo de encamisado o de la formación. En lo que sigue, la invención se explicará con referencia a un tubo de encamisado 3 u otra cavidad de fondo de pozo en una formación con un fluido de petróleo aunque el fluido también puede ser un gas, etc.

Por lo tanto, el cabezal 1 de la herramienta de fondo de pozo se encuentra rodeado por el fluido de petróleo que transporta los sólidos o piezas de formación liberados.

Cuando se perfora en la formación de fondo de pozo, las piezas de formación son arrancadas de la formación, y puesto que el cabezal 1 de la herramienta de fondo de pozo es hueco, las piezas de formación se recogen en el cuerpo cilíndrico hueco 4 y se ven obligadas a pasar por los orificios 9 en la porción de base 7, que es el fondo del cuerpo. Cuando las piezas de formación chocan contra los filos de corte 12 del orificio, las piezas de formación son aplastadas en alguna medida con lo que partes de las piezas son cortadas. De esta manera, las piezas de formación se reducen en tamaño de manera que pueden pasar fácilmente en el espacio entre la pared interior de la formación y la pared exterior de la herramienta de fondo de pozo.

Cuando el cabezal 1 de la herramienta de fondo de pozo se utiliza para la liberación de los sólidos precipitados 2 en la pared interior de una tubería o de un tubo de encamisado 3, los sólidos liberados son igualmente forzados a entrar en los orificios 9 en la porción inferior 7 del cuerpo cilíndrico 4 debido a la forma del cabezal 1 de la herramienta de fondo de pozo. Por lo tanto, el fluido de petróleo fuerza a los sólidos hacia los orificios 9, y cuando los sólidos chocan contra los filos de corte 12 del orificio, partes de los sólidos son cortados de igual manera.

De esta manera, el cabezal 1 de la herramienta de fondo de pozo es capaz de reducir el tamaño tanto de los sólidos precipitados liberados 2 como las piezas de formación a un cierto tamaño, de manera que los sólidos o piezas reducidos puedan pasar por la herramienta, lo que garantiza que la herramienta de fondo de pozo no se quede atascada durante una operación.

5 Los filos de corte 12 de los orificios del cabezal de la herramienta de fondo de pozo tienen un radio de curvatura entre 0,0 mm y 1,0 mm, preferiblemente entre 0,0 mm y 0,5 mm, y más preferiblemente entre 0,0 mm y 0,2 mm.

10

30

35

Como se muestra en la figura 1A, la porción de base 7 tiene seis orificios pasantes 9, todos los cuales tienen una sección transversal redonda (véase la figura1B). Cada orificio 9 en la porción de base 7 tiene una anchura que constituye más del 1% del área de la porción de base 14, en esta realización alrededor del 3% del área de la porción de base 14.

En otra realización, cada orificio 9 en la porción de base 7 tiene una anchura que constituye más del 3% del área de la porción de base 14, preferiblemente más del 5% del área de la porción de base 14, e incluso más preferiblemente, más del 8% del área de la porción de base 14.

- El tamaño de los orificios en la porción de base 7 depende del tamaño de las piezas de formación o de los sólidos precipitados 2 puesto que los orificios son capaces de cortar un cierto porcentaje de las piezas o de los sólidos. De esta manera, el cabezal de la herramienta de fondo de pozo no tritura completamente las piezas o los sólidos, sino que también afloja piezas más grandes. Estas piezas son como máximo el 2 20% más grande que un orificio en la porción de base, preferiblemente como máximo 5 10% mayores que el orificio. La distancia entre la herramienta de fondo de pozo y la formación puede por lo tanto ser ajustada en consecuencia.
- Si esto no es posible, el tamaño de los orificios 9 se ajusta para que corresponda a la distancia entre la pared exterior de la herramienta de fondo de pozo y la pared interior de la formación, el tubo de encamisado 3 o la tubería, ya que es importante que los orificios no sean más anchos que la distancia entre la herramienta de fondo de pozo y la formación, si las piezas recortadas o los sólidos pueden pasar por la herramienta de fondo de pozo sin que la herramienta se quede atascada.
- El número de orificios 9 depende del caudal del fluido de petróleo, ya que se debe evitar que las piezas o sólidos bloqueen todos los orificios completamente, pero deben dejar una cantidad suficiente de paso de fluido de petróleo de manera que la herramienta no quede impedida de avanzar en el tubo de encamisado 3 o formación.
 - Si las piezas de formación o los sólidos liberados no pueden entrar a través de los orificios 9, se acumularán en el cuerpo cilíndrico hueco 4. El fluido de petróleo forzará a las piezas o los sólidos para que choquen contra los filos de corte 12 del orificio hasta que un porcentaje suficiente de las piezas o sólidos haya sido arrancado de las piezas o sólidos para que puedan pasar por los orificios 9 y sean liberados en el fluido de cavidad.

De esta manera, se asegura que sólo sólidos o trozos de un tamaño predeterminado podrán pasar por los orificios 9 en el cabezal 1 de la herramienta de fondo de pozo, siendo predeterminado el tamaño por el ancho de la separación entre la herramienta de fondo de pozo y la formación o tubo de encamisado 3 para garantizar que los sólidos o piezas puedan pasar a través de esta separación.

En las figuras 2A y 2B, el cabezal 1 de la herramienta de fondo de pozo tiene cuatro orificios 9, todos los cuales tienen una sección transversal cuadrada. Como se puede ver en la figura 2A, cada orificio 9 se extiende todo el recorrido a través de la porción de base 7 del cabezal de la herramienta 1, mientras que también se extiende a lo largo de parte de la pared cilíndrica 5 del cuerpo cilíndrico 4 y a través de la pared 5.

- 40 En las figuras 3A y 3B, el cabezal 1 de la herramienta de fondo de pozo tiene seis orificios 9, todos los cuales tienen una sección transversal en forma de estrella. Por lo tanto, cada orificio 9 está provisto de un filo de corte más largo 12 formado con seis puntas, aumentando el efecto de corte en comparación con un orificio redondo de aproximadamente el mismo tamaño interno, mientras que, al mismo tiempo, el orificio en forma de estrella no permite que piezas de formación o sólidos sustancialmente más grandes pasen a través.
- Un sistema de fondo de pozo con una herramienta de fondo de pozo que tiene un cabezal 1 de la herramienta de fondo de pozo montado en la herramienta se muestra en la figura 4. La herramienta de fondo de pozo es accionada por la herramienta de accionamiento 16, tal como un tractor de fondo de pozo, para mover la herramienta de fondo de pozo en el pozo. El cabezal 1 de la herramienta de fondo de pozo se hace rotar por una unidad de accionamiento 15. Como se puede ver, la anchura de los orificios 9 en el cabezal 1 de la herramienta de fondo de pozo es sustancialmente la misma que la distancia entre la pared exterior del sistema de fondo de pozo y la pared interior del tubo de encamisado 3.

En las figuras 5A - B se muestra como el filo de corte 12 del orificio es capaz de cortar una parte del sólido precipitado liberado 2 o de la pieza de formación. En la figura 5A, el sólido 2 o la pieza ha chocado contra el filo del orificio 9, lo que ha producido una grieta en el sólido 2 o en la pieza. Cuando la grieta se ha extendido a través de todo el sólido 2 o de la pieza, el sólido 2 o la pieza es dividido en tres partes, como se muestra en la figura 5B. De esta manera, la pieza o sólido 2 se reduce a una parte principal, que puede pasar entonces por el orificio 9, como se muestra en las figuras 5B - 5C, y un número (en el presente caso, dos) de partes más pequeñas que posteriormente también pasan a través del orificio,.

- Si la pieza principal o sólido 2 de la figura 5A no se reduce sustancialmente, el fluido de petróleo obligará a la pieza reducida o sólido 2 a continuar chocando contra el filo 12 del orificio 9. Cuando la herramienta de fondo de pozo se mueve hacia delante en el tubo de encamisado 3 o en la formación de fondo de pozo, el cabezal 1 de la herramienta de fondo de pozo es empujado con el fluido de petróleo, y de esta manera el fluido de petróleo puede forzar las piezas o sólidos 2 hacia los orificios 9 en el cabezal 1 de la herramienta de fondo de pozo.
- En el caso de que la velocidad de la herramienta de fondo de pozo no sea lo suficientemente alta como para que los sólidos 2 choquen contra los filos de los orificios 9 en la porción de base del cabezal 1 de la herramienta de fondo de pozo, un elemento de trituración 18 puedan estar dispuesto entre el cabezal de la herramienta y la herramienta de fondo de pozo, formando un conjunto 100 de cabezal de la herramienta de fondo de pozo, como se muestra en la figura 6. El elemento de trituración 18 del conjunto 100 de cabezal de la herramienta de fondo de pozo comprende al menos un canal 19 con una abertura en una cara del elemento orientada a la porción de base del cabezal 1 de la herramienta. El elemento 18 está dispuesto a una pequeña distancia de la porción de base con el fin de poder triturar los sólidos 2 que sobresalen en parte a través de los orificios 9 en la porción de base. De esta manera, los sólidos 2 se trituran en pedazos más pequeños, lo que les permite salir del cabezal 1 de la herramienta de fondo de pozo a través de los orificios 9 en la porción de base. Por lo tanto, los sólidos 2 ya no ocupan el espacio interior del cabezal 1 de la herramienta de fondo de pozo.

El cabezal 1 de la herramienta de fondo de pozo está conectado a la herramienta de fondo de pozo por medio de un árbol, y el elemento 18 está dispuesto alrededor del mismo árbol y fijado a la herramienta de fondo de pozo. El elemento 18 es por lo tanto estacionario mientras que el cabezal 1 de la herramienta de fondo de pozo puede rotar alrededor del árbol longitudinal de la herramienta de fondo de pozo, forzando a que los sólidos 2 que se proyectan parcialmente a través de los orificios 9 en la porción de base del cabezal de la herramienta a que choquen contra la abertura en el elemento cuando el cabezal de la herramienta rota. Posteriormente, los sólidos triturados 2 escapan a través del canal 19 y salen a la cavidad que rodea la herramienta de fondo de pozo.

25

45

- En la figura 6, el elemento de trituración 18 se muestra comprendiendo dos canales 19; sin embargo, el elemento puede comprender más canales con el fin de asegurarse de que una abertura de un canal está siempre alineada al menos parcialmente con los orificios 9 en la porción de base del cabezal 1 de la herramienta. Una solución óptima es tener al menos parte de la abertura del canal superpuesta a un orificio 9 en la porción de base; sin embargo, el elemento 18 puede triturar los sólidos 2, incluso si los orificios no siempre se superponen a las aberturas durante la rotación del cabezal 1 de la herramienta en relación con el elemento.
- 35 Con el fin de obtener un efecto de trituración, la cara de elemento del elemento 18 debe estar situada a una distancia desde la porción de base, que sea menor que la anchura de un orificio 9 en la porción de base del cabezal 1 de la herramienta. Si los orificios no son circulares y por lo tanto de anchura diferente, la anchura más pequeña del orificio se debe utilizar como base.
- La distancia entre la cara del elemento 18 y la porción de base del cabezal 1 de la herramienta puede ser preferiblemente menor que 50 mm, más preferiblemente menor que 25 mm, e incluso más preferiblemente menor que 10 mm.

En la figura 6, la anchura de la abertura del canal 19 es mayor que la anchura de los orificios 9 en la porción de base; sin embargo, la anchura de la abertura también puede ser igual a la anchura de los orificios. El elemento 18 se muestra teniendo el mismo diámetro que el cabezal 1 de la herramienta, pero en otra realización, el diámetro del elemento puede ser menor o mayor que el diámetro del cabezal de la herramienta.

Los canales 19 de la figura 6 tienen la misma anchura que las aberturas de los canales, y después de que los sólidos 2 hayan entrado en la abertura del canal, son guiados a través de un conducto sustancialmente recto y hacia fuera a través de una abertura en el lado del elemento y por lo tanto de la herramienta de fondo de pozo. Los canales 19 pueden tener cualquier forma de sección transversal adecuada.

La figura7A muestra la vista D - D que se muestra en la figura 6 del elemento de trituración 18. El elemento de trituración 18 tiene cuatro aberturas 19 y un árbol central 11 que conecta el elemento de trituración y el cabezal de la herramienta de fondo de pozo. En las figuras 7B y 7C, se muestran otras realizaciones del elemento de trituración 18, visto en la misma dirección de vista que la de la figura 7A. En la figura 7A, los orificios son circulares, pero en otra realización, los orificios pueden tener una forma más orgánica. En las figuras 7B y 7C, las aberturas 19 se extienden desde la cara superior del elemento de trituración y a lo largo del lado del elemento de trituración, de manera que los filos del elemento funcionen como los filos de corte 12 cuando el elemento pasa por los orificios del cabezal

ES 2 422 407 T3

de la herramienta de fondo de pozo. En la figura 7B, el elemento tiene tres aberturas, y en la figura 7C, el elemento tiene cuatro aberturas. En la figura 7C, el elemento tiene inserciones de corte con un filo de corte 12 de manera que el material del elemento puede ser diferente del material del filo de corte. Al tener inserciones de corte, la capacidad de corte del elemento de trituración se puede mejorar fácilmente o restablecerse mediante el cambio de las inserciones.

En el caso de que la herramienta de fondo de pozo no sea sumergible totalmente en el tubo de encamisado 3, un tractor de fondo de pozo puede ser utilizado para empujar la herramienta de fondo de pozo hasta el fondo en posición en el tubo de encamisado. Un tractor de fondo de pozo es cualquier tipo de herramienta capaz de empujar o tirar de la herramientas de fondo de pozo en un pozo, tal como un tractor Well Tractor®.

10

5

REIVINDICACIONES

- 1. Cabezal (1) de la herramienta de fondo de pozo para su montaje en una herramienta (10) de fondo de pozo para liberar sólidos precipitados (2), tales como hielo, incrustaciones o similares, en un fluido de cavidad en una tubería, un tubo de encamisado (3), un pozo o cualquier otra cavidad de fondo de pozo, que comprende:
 - un cuerpo cilíndrico hueco (4) con una pared circunferencial (5) que se extiende desde una porción de base
 (7) del cuerpo, teniendo la pared circunferencial un filo circunferencial (6) en un extremo opuesto a la porción de base,

en el que el reborde circunferencial (6) comprende una pluralidad de filos (8) para el corte, trituración, perforación y / o molturación,

en el que la porción de base (7) tiene una pluralidad de orificios pasantes (9) para dejar que el fluido de cavidad que comprende sólidos precipitados pase por los orificios, el cabezal de la herramienta **se caracteriza porque** los orificios (9) tienen un filo de corte (12) para cortar los sólidos precipitados (2) liberados de la cavidad, que son más grandes que el orificio, y para dividir los sólidos precipitados (2) en varias piezas:

5

40

45

- Cabezal (1) de la herramienta de fondo de pozo de acuerdo con la reivindicación 1, en el que la porción de base (7) tiene un área (14) de la porción de base y los orificios (9) en la porción de base (7) constituyen más del 20% del área de la porción de base, preferiblemente más del 30% del área de la porción de base, más preferiblemente, más del 40% del área de la porción de base, e incluso más preferiblemente, más del 50% del área de la porción de base.
- 3. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con la reivindicación 1 o 2, en el que al menos uno de los orificios se extiende desde la porción de base (7) y a lo largo de la pared circunferencial (5).
 - 4. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones precedentes, en el que cada orificio (9) en la porción de base (7) tiene una anchura que constituye más del 1% del área de la porción de base, preferiblemente más del 3% del área de la porción de base, más preferiblemente, más del 5% del área de la porción de base, e incluso más preferiblemente, más del 8% del área de la porción de base.
- 5. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones precedentes, en el que el filo de corte (12) del orificio tiene un radio de curvatura entre 0,0 mm y 1,0 mm, preferiblemente entre 0,0 mm y 0,5 mm, y más preferiblemente, entre 0,0 mm y 0,2 mm.
 - 6. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones precedentes, en el que la pared circunferencial tiene una pluralidad de orificios γ un área de pared circunferencial.
- 30 7. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con la reivindicación 6, en el que los orificios en la pared circunferencial constituyen más del 20% del área de la pared circunferencial, preferiblemente más del 30% del área de la pared circunferencial, más preferiblemente, más del 40% de la pared circunferencial área, e incluso más preferiblemente, más del 50% del área de la pared circunferencial.
- 8. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con la reivindicación 6 o 7, en el que cada orificio en la pared circunferencial tiene una anchura que constituye más del 1% del área de la pared circunferencial, preferiblemente más del 3% del área de la pared circunferencial, más preferiblemente, más del 5% del área de la pared circunferencial, y aún más preferiblemente, más del 8% del área de la pared circunferencial.
 - 9. Cabezal (1) de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones precedentes, en el que los filos constituyen más del 5% del reborde circunferencial, preferiblemente más del 10% del reborde circunferencial, y más preferiblemente, el 25% del reborde circunferencial.
 - 10. Conjunto (100) de cabezal de la herramienta de fondo de pozo que comprende un cabezal de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones anteriores y un elemento (18) dispuesto entre la herramienta de fondo de pozo y el cabezal de la herramienta de fondo de pozo, comprendiendo el elemento aberturas y una cara del elemento que está dispuesta a una distancia desde la porción de base inferior a la anchura de un orificio en la porción de base del cabezal de la herramienta de fondo de pozo.
 - 11. Conjunto (100) de cabezal de la herramienta de fondo de pozo de acuerdo con la reivindicación 10, en el que el elemento comprende canales (19) que se extienden desde las aberturas de la cara del elemento y que terminan en un lado del elemento para dejar salir fluido de cavidad a través del lado.
- 12. Conjunto (100) de cabezal de la herramienta de fondo de pozo de acuerdo con la reivindicación 10 o 11, en el que al menos una abertura del canal se superpone a un orificio en la porción de base, mientras que el cabezal de la herramienta de fondo de pozo rota alrededor de un árbol longitudinal de la herramienta.

ES 2 422 407 T3

- 13. El uso del cabezal de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones 1 12 para liberar los sólidos precipitados (2), tales como hielo, incrustaciones o similares, en un fluido de cavidad en una tubería, un tubo de encamisado (3), un pozo, o cualquier otra cavidad o para perforar en una formación de un fondo de pozo.
- 5 14. Herramienta (10) de fondo de pozo, que comprende:
 - un cabezal (1) de la herramienta de fondo de pozo de acuerdo con cualquiera de las reivindicaciones 1 12, y
 - una unidad de accionamiento (15) para hacer rotar el cabezal (1) de la herramienta de fondo de pozo,
- en el que el cabezal de la herramienta de fondo de pozo está provisto en un árbol (11) en conexión con la unidad de accionamiento (15).
 - 15. Sistema (20)de fondo de pozo para realizar operaciones de fondo de pozo, que comprende:
 - una herramienta de fondo de pozo de acuerdo con la reivindicación 14, y
 - una herramienta de accionamiento, tal como un tractor de fondo de pozo, para mover la herramienta de fondo de pozo en el pozo.

15

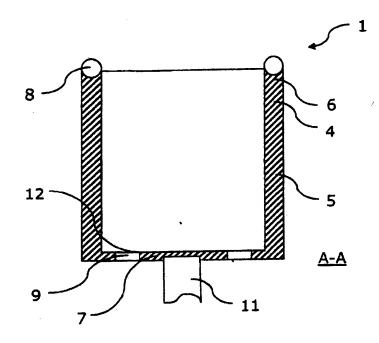


Fig. 1A

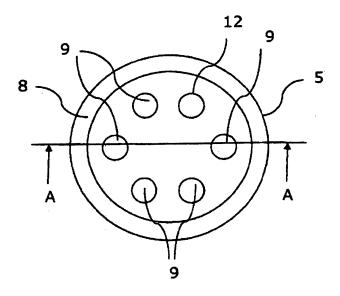


Fig. 1B

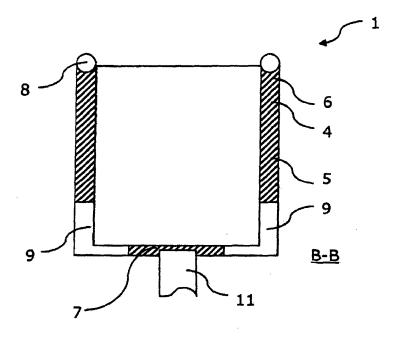


Fig. 2A

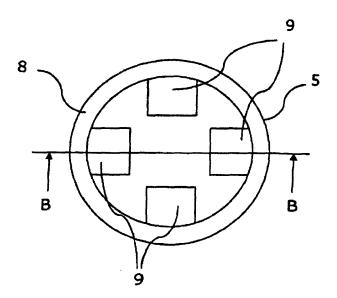
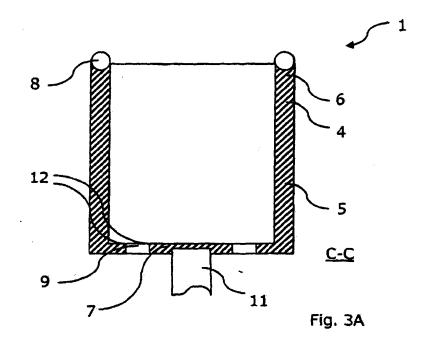



Fig. 2B

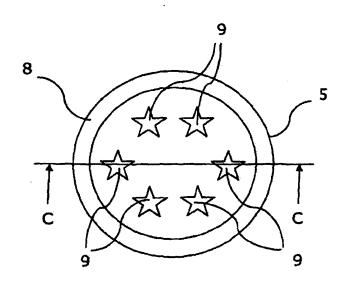


Fig. 3B

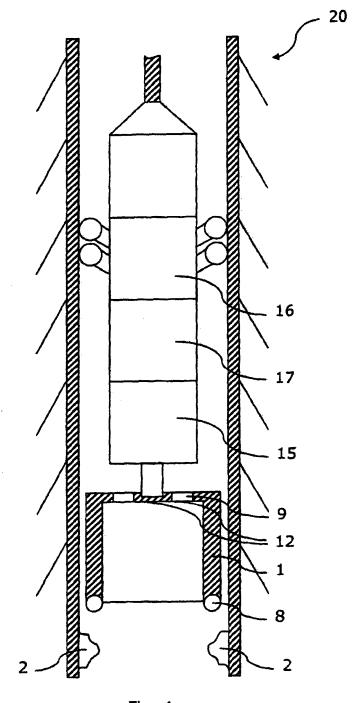
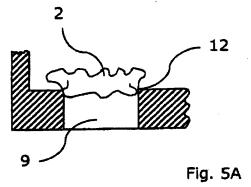
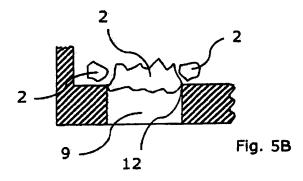




Fig. 4

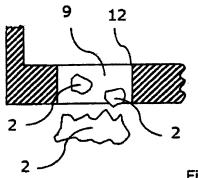
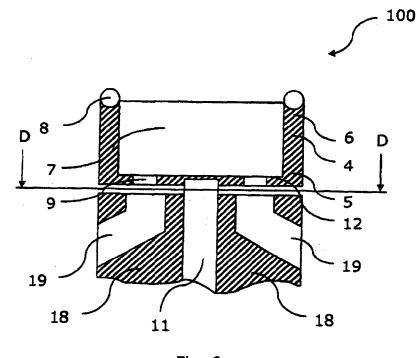
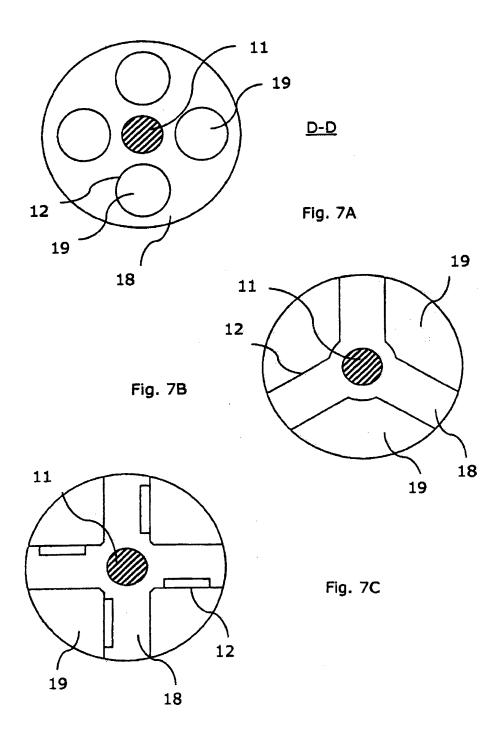




Fig. 5C

