

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 424 754

51 Int. Cl.:

A61K 9/00 (2006.01) A61K 9/12 (2006.01) A61K 9/14 (2006.01) A61K 31/40 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 28.06.2007 E 07764925 (9)
(97) Fecha y número de publicación de la concesión europea: 15.05.2013 EP 2037879

(54) Título: Composiciones de sal de glicopirronio para inhalación

(30) Prioridad:

30.06.2006 GB 0613161

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **08.10.2013**

(73) Titular/es:

NOVARTIS AG (100.0%) LICHTSTRASSE 35 4056 BASEL, CH

(72) Inventor/es:

HAEBERLIN, BARBARA; STOWASSER, FRANK; WIRTH, WOLFGANG; BAUMBERGER, ANTON; ABEL, STEPHAN; KAERGER, SEBASTIAN y KIECKBUSCH, THOMAS

(74) Agente/Representante:

CARVAJAL Y URQUIJO, Isabel

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Composiciones de sal de glicopirronio para inhalación

20

25

45

- 5 Esta invención se refiere a compuestos orgánicos y a su uso como productos farmacéuticos, o más específicamente, a un procedimiento para la preparación de polvos secos de sales de glicopirronio
- El bromuro de glicopirronio, es decir, bromuro de 3-[(ciclopentil-hidroxi-fenil-acetil)-oxi]-1,1-dimetil-pirrolidinio, también conocido como glicopirrolato, es un agente antimuscarínico que se administra actualmente mediante inyección para reducir las secreciones durante la anestesia y/o que se toma oralmente para tratar úlceras gástricas. Tiene la siguiente estructura química:

- 15 y puede prepararse usando el procedimiento descrito en la patente estadounidense US 2956062.
 - Schroeckenstein *et al* J. Allergy Clin. Immunol. 1998; 82(1): 115-119 da a conocer el uso del glicopirrolato en una formulación en aerosol para el tratamiento de asma, en donde una sola administración de una dosis medida logra la broncodilatación durante hasta 12 horas.
 - Se sabe que los compuestos de amonio cuaternario con actividad antimuscarínica tienden a aglomerarse durante el almacenamiento. Por ejemplo, Ticehurst *et al, International Journal of Pharmaceutics* 193 (2000) páginas 247-259, observan esto en el bromhidrato de revatopato micronizado. Este problema afecta a la estabilidad física y química de la sustancia farmacológica y a su desempeño en las formulaciones.
 - La solicitud de patente internacional WO 2005/105043 da a conocer composiciones en polvo seco que muestran estabilidad mejorada a lo largo del tiempo y métodos para prepararlas.
- La solicitud de patente internacional WO 2001/76575 da a conocer que el glicopirrolato puede formularse como un polvo seco para su administración pulmonar en una formulación de liberación controlada. En el ejemplo, el glicopirrolato micronizado se mezcla con estearato de magnesio en una razón de 75:25 en masa y esta mezcla se muele en molino de bolas y se seca para dar un polvo seco.
- La solicitud de patente internacional WO 2005/25536 da a conocer un método para la elaboración de partículas activas compuestas, para su uso en una composición farmacéutica para inhalación pulmonar, que implica moler en molino de chorro partículas activas con ciertos materiales aditivos para mejorar la fracción de las partículas finas y la dosis de las partículas finas.
- Ahora se ha encontrado, sorprendentemente, que es ventajoso micronizar una sal de glicopirronio junto con un agente antiadherente, y luego mezclar partículas portadoras, debido a que esto reduce la tendencia de la sustancia de fármaco resultante a aglomerarse, y por tanto, mejora la estabilidad de la sustancia de fármaco resultante.
 - Por tanto en términos amplios la presente invención proporciona un procedimiento para preparar una formulación en polvo seco de una sal de glicopirronio que comprende las etapas de (a) mezclar una sal de glicopirronio y un agente antiadherente para dar como resultado una combinación homogénea; (b) micronizar la combinación; y (c) mezclar partículas portadoras para formar una formulación en polvo seco, potenciando el procedimiento la estabilidad de la sal de glicopirronio.
- El procesamiento de la sal de glicopirronio de esta manera reduce la tendencia a que la sustancia de fármaco resultante se aglomere, un comportamiento comúnmente conocido de los compuestos de amonio cuaternario micronizados, en particular cuando se almacenan en condiciones húmedas o se exponen de otra manera a la humedad.
 - Preferiblemente la sal de glicopirronio es el glicopirrolato.
 - Preferiblemente el agente antiadherente es uno o más estearatos de metales, uno o más azúcares cristalinos, o una

mezcla de los mismos. Los estearatos de metales especialmente preferidos incluyen estearato de magnesio y estearato de calcio. Los azúcares cristalinos especialmente preferidos incluyen lactosa, más especialmente lactosa monohidratada y lactosa anhidra.

- 5 Cuando el agente antiadherente es un estearato de metal, la sal de glicopirronio se microniza adecuadamente con desde el 1 hasta el 20 por ciento en masa del agente antiadherente, más preferiblemente desde el 2 hasta el 10 por ciento en masa del agente antiadherente, pero lo más preferiblemente desde el 3 hasta el 5 por ciento en masa del agente antiadherente.
- Cuando el agente antiadherente es un azúcar cristalino, el azúcar cristalino se microniza adecuadamente con la sal de glicopirronio en una proporción de desde 0.5:1 hasta 10:1 en masa, más preferiblemente desde 1:1 hasta 5:1 en masa, pero lo más preferiblemente desde 2:1 hasta 3:1 en masa. Preferiblemente, las partículas portadoras se mezclan con la sal de glicopirronio micronizado y el agente antiadherente en una proporción de desde 2000:1 hasta 5:1 en masa, especialmente desde 200:1 hasta 20:1 en masa. Las partículas portadoras son preferiblemente azúcares cristalinos, por ejemplo lactosa monohidratada o lactosa anhidra.

La sal de glicopirronio y el agente antiadherente se micronizan opcionalmente junto con uno, dos, tres o más principios activos adicionales. Alternativamente, se micronizan la sal de glicopirronio, el agente antiadherente y uno o más principios activos adicionales, y se mezcla el producto resultante con uno o más principios activos adicionales que ya se hayan micronizado. En cada caso, el o cada principio activo adicional se selecciona adecuadamente del grupo que consiste en sustancias farmacológicas antiinflamatorias, broncodilatadoras, antihistamínicas, descongestivas y antitusivas.

Los términos usados en la memoria descriptiva tienen los siguientes significados:

20

25

30

45

50

55

60

"Sal de glicopirronio", tal como se usa en el presente documento, pretende abarcar cualquier forma de sal o contraión de glicopirronio, incluyendo, pero sin limitarse a, bromuro de glicopirronio (glicopirrolato), cloruro de glicopirronio o yoduro de glicopirronio, así como cualquiera y todos los estereoisómeros aislados y mezclas de estereoisómeros de los mismos. También se abarcan derivados de sales de glicopirronio. Contraiones adecuados son contraiones farmacéuticamente aceptables, incluyendo, por ejemplo, fluoruro, cloruro, bromuro, yoduro, nitrato, sulfato, fosfato, formato, acetato, trifluoroacetato, propionato, butirato, lactato, citrato, tartrato, malato, maleato, succinato, benzoato, p-clorobenzoato, difenil-acetato o trifenilacetato, o-hidroxi-benzoato, p-hidroxi-benzoato, 1-hidroxi-naftaleno-2-carboxilato, metanosulfonato y benceno-sulfonato.

"Agente antiadherente", tal como se usa en el presente documento, significa un material que reduce la cohesión entre las partículas e impide que las partículas finas lleguen a adherirse a las superficies internas de un dispositivo inhalador, o una mezcla de tales materiales. Los agentes antiadherentes también incluyen agentes contra la fricción o deslizantes, los cuales dan a la formulación en polvo mejores propiedades de flujo en el inhalador. Normalmente conducen a una mejor reproducibilidad de la dosis y a fracciones de partículas finas más altas. Los agentes antiadherentes típicos incluyen aminoácidos, tales como leucina, fosfolípidos, tales como lecitina o derivados de ácidos grasos, tales como estearato de magnesio o estearato de calcio.

"Dosis medida" o "MD" de una formulación en polvo seco, tal como se usa en el presente documento, es la masa total de agente activo presente en la forma medida presentada por el dispositivo inhalador en cuestión. Por ejemplo, la dosis medida podría ser la masa de la sal de glicopirronio presente en una cápsula para un inhalador de polvo seco particular, o en un blíster en lámina para utilizarse en un dispositivo inhalador de polvo seco particular.

"Dosis emitida" o "ED", tal como se usa en el presente documento, es la masa total del agente activo emitida desde el dispositivo tras su accionamiento. No incluye el material que queda dentro o sobre las superficies del dispositivo. La ED se mide recolectando la masa emitida total desde el dispositivo en un aparato denominado frecuentemente como aparato de muestreo de uniformidad de dosis (DUSA), y se recupera mediante un ensayo químico húmedo cuantitativo validado.

"Dosis de partículas finas" o "FPD", tal como se usa en el presente documento, es la masa total del agente activo que se emite desde el dispositivo detrás el accionamiento, que está presente en un tamaño de partícula aerodinámico más pequeño que un límite definido. Este límite se toma que es generalmente de 5 µm, si no se indica expresamente que haya un límite alternativo, tal como 1 µm o 3 µm, etc. La FPD se mide utilizando un impactador o señalador, tal como un señalador de fase gemela (TSI), un impactador de líquido de fase múltiple (MSLI), un Impactador de Cascada de Andersen (ACI) o un Impactador de siguiente generación (NGI). Cada impactador o señalador tiene un punto de corte de recolección de tamaños de partículas aerodinámicos determinado previamente para cada fase. El valor de FPD se obtiene mediante la interpretación de la recuperación del agente activo fase por fase cuantificado mediante un ensayo químico húmedo cuantitativo validado, en el que se usa un corte de fase simple para determinar la FPD, o se usa una interpolación matemática más compleja de la deposición fase por fase.

65 "Fracción de partículas finas" o "FPF", tal como se usa en el presente documento, se define normalmente como la FPD dividida entre la ED, y se expresa como un porcentaje. En el presente documento, la fracción de partículas

finas de la dosis emitida se denomina FPF (ED), y se calcula como FPF(ED) = (FPD/ED) x 100%. "Fracción de partículas finas" también puede definirse como la FPD dividida entre la MD y se expresa como un porcentaje. En el presente documento, la fracción de partículas finas de la dosis medida se denomina FPF(MD), y se calcula como FPF(MD) = (FPD/MD) x 100%.

5

En la totalidad de esta memoria descriptiva y en las siguientes reivindicaciones, a menos que el contexto lo requiera de otra manera, la palabra "comprenden", o variaciones tales como "comprende" o "comprendiendo", se entenderán que implican la inclusión de un número entero o etapa o grupo de números enteros o etapas mencionadas, pero no la exclusión de cualquier otro número entero o etapa o grupo de números enteros o etapas.

10

La presente invención proporciona un procedimiento para la preparación de formulaciones en polvo seco de una sal de glicopirronio.

15

Las formulaciones en polvo seco para inhalación en el tratamiento de enfermedades respiratorias se formulan generalmente mezclando un componente farmacéutico activo micronizado con partículas portadoras gruesas, para dar una mezcla ordenada. Las partículas portadoras hacen que el componente farmacéutico activo sea menos cohesivo y mejoran su fluidez. Esto hace que el polvo sea más fácil de manejar durante el procedimiento de fabricación. Las partículas activas micronizadas tienden a adherirse a la superficie de las partículas portadoras cuando se almacenan en un dispositivo inhalador de polvo seco, pero se dispersan desde las superficies de las partículas portadoras en la inhalación hacia el tracto respiratorio para dar un aerosol fino. Las partículas portadoras más grandes se depositan en su mayor parte en la cavidad bucofaríngea.

20

25

En los últimos años, se han incluido ciertos compuestos químicos, tales como estearato de magnesio (que a veces se denomina "agente de control de fuerza") en las formulaciones en polvo seco para inhalación. Por ejemplo, la patente estadounidense US 6645466 da a conocer el uso de estearato de magnesio en formulaciones en polvo seco para inhalación, con el fin de mejorar la resistencia a la humedad y la estabilidad de almacenamiento. Y la patente estadounidense US 6528096 da a conocer el uso de un lubricante, tal como estearato de magnesio, en formulaciones en polvo seco para inhalación, con el fin de proporcionar mezclas estables ordenadas sin segregación de las partículas activas durante el manejo y antes del uso. Estas formulaciones en polvo seco para inhalación se preparan comúnmente mediante la mezcla de partículas portadoras y estearato de magnesio, para dar una mezcla o combinación preliminar de partículas portadoras recubiertas con estearato de magnesio, mezclando entonces las partículas activas para dar la formulación deseada.

30

A diferencia de lo que se ha encontrado ahora, sorprendentemente, que es ventajoso micronizar una sal de glicopirronio junto con un agente antiadherente, por ejemplo estearato de magnesio o lactosa monohidratada, y luego mezclar partículas portadoras. Esto reduce la tendencia a que se aglomere la sal de glicopirronio micronizada resultante, que es un problema que se observa comúnmente en los derivados de amonio cuaternario micronizados. El procedimiento de la invención minimiza los problemas de dosificación y administración asociados con la aglomeración. También potencia la estabilidad de la sal de glicopirronio micronizada, lo que hace mucho más fácil el manejo de la sustancia farmacológica, y potencia de manera significativa la estabilidad de almacenamiento bajo diferentes condiciones de almacenamiento (por ejemplo, 25°C/humedad relativa del 60% (RH), 30°C/RH del 75%).

40

35

La presente invención proporciona un procedimiento para la preparación de formulaciones en polvo seco de una sal de glicopirronio para inhalación, que comprende las etapas de: (a) micronizar una sal de glicopirronio junto con un agente antiadherente, y (b) mezclar partículas portadoras para formar la formulación en polvo seco.

45

En la primera etapa (a) se mezcla la sal de glicopirronio con el agente antiadherente para dar una combinación homogénea antes de micronizarse conjuntamente.

50

En la segunda etapa (b) se microniza la combinación, es decir, se "micronizan conjuntamente" la sal de glicopirronio y el agente antiadherente. En términos generales, esto proporciona la pulverización de la sal de glicopirronio y agente antiadherente, usando medios mecánicos, de tal manera que al menos el 90%, pero preferiblemente al menos el 95% del material particulado resultante, tiene un tamaño de partícula promedio que es menor de aproximadamente 7 micrómetros de diámetro.

55

El glicopirrolato está disponible comercialmente, o puede prepararse empleando el método descrito en la patente estadounidense 2956062. Preferiblemente es cristalino y contiene partes amorfas mínimas.

60

65

El glicopirrolato tiene dos centros estereogénicos, y por tanto, existe en cuatro formas isoméricas, concretamente, bromuro de (3R,2'R)-, (3S,2'R)-, (3R,2'S)- y (3S,2'S)-3-[(ciclopentil-hidroxi-fenil-acetil)-oxi]-1,1-dimetil-pirrolidinio, tal como se describe en las memorias descriptivas de las patentes estadounidenses US 6307060 y US 6.613.795. El contenido de estas memorias descriptivas de patente se incorpora en el presente documento a modo de referencia. La presente invención abarca el uso de una o más de estas formas isoméricas, especialmente el isómero 3S,2'R, el isómero 3R,2'R o el isómero 2S,3'R, incluyendo por tanto enantiómeros individuales, mezclas de diaestereómeros o racematos, especialmente el bromuro de (3S,2'R/3R,2'S)-3-[(ciclopentil-hidroxi-fenil-acetil)-oxi]-1,1-dimetil-pirrolidinio.

ES 2 424 754 T3

El agente antiadherente reduce la cohesión entre las partículas y estabiliza las superficies activadas del glicopirrolato, impidiendo de esta manera que se lleguen a aglomerar las partículas finas. Proporciona una estabilización general de la distribución de tamaño de partículas de los materiales micronizados, y por tanto, mejora la estabilidad de las combinaciones en polvo seco finales con el agente portador.

Además, mejora la estabilidad del material micronizado después del manejo y el almacenamiento de una manera significativa.

Los agentes antiadherentes adecuados incluyen derivados de ácidos grasos, incluyendo estearatos de metales, tales como estearato de calcio y estearato de magnesio; azúcares cristalinos, incluyendo monosacáridos, disacáridos, polisacáridos y alcoholes de azúcar, tales como arabinosa, glucosa, fructosa, ribosa, manosa, sacarosa, trehalosa, lactosa, maltosa, almidones, dextrano, manitol o sorbitol, especialmente lactosa, pero particularmente lactosa monohidratada o lactosa anhidra; aminoácidos, tales como leucina; fosfolípidos, tales como lecitina; estearilfumarato de sodio; estearilflactilato de sodio; fosfatidilcolinas, fosfatidilgliceroles, y otros ejemplos de tensioactivos pulmonares naturales y sintéticos; formulaciones liposomales; ácido láurico y sus sales, por ejemplo laurilsulfato de sodio, laurilsulfato de magnesio; triglicéridos, tales como Dynsan 118 y Cutina HR; ésteres de azúcar en general; o una mezcla de cualquiera de estos compuestos. Preferiblemente, el agente antiadherente es estearato de magnesio, estearato de calcio, lactosa monohidratada, lactosa anhidra, o una mezcla de los mismos. El agente antiadherente es lo más preferiblemente estearato de magnesio.

El agente antiadherente está preferiblemente en forma particulada.

Cuando sea necesario o útil, la sal de glicopirronio y/o el agente antiadherente se tamizan antes de la micronización conjunta.

La sal de glicopirronio se microniza adecuadamente con desde el 1 hasta el 20% en masa del agente antiadherente, más preferiblemente desde el 2 hasta el 10% en masa del agente antiadherente, pero lo más preferiblemente desde el 3 hasta el 5% en masa del agente antiadherente.

La micronización reduce el tamaño de partícula de la sal de glicopirronio hasta un tamaño que es adecuado para la administración mediante inhalación. La mediana del diámetro aerodinámico de la masa (MMAD) de estas partículas preferiblemente es menor a 10 micrómetros (pm). Es probable que las partículas que tienen diámetros aerodinámicos mayores de aproximadamente 10 μ m, impacten en las paredes de la garganta y generalmente no alcancen el pulmón. Las partículas que tienen diámetros aerodinámicos en el intervalo de aproximadamente 2 μ m a aproximadamente 5 μ m, generalmente se depositarán en los bronquiolos respiratorios, mientras que las partículas más pequeñas que tienen diámetros aerodinámicos en el intervalo de aproximadamente 0,05 μ m a aproximadamente 2 μ m, tienen probabilidades de depositarse en los alvéolos y de ser absorbidos en el torrente sanguíneo.

La micronización conjunta de una sal de glicopirronio con un agente antiadherente, especialmente estearato de magnesio o lactosa monohidratada, reduce de una manera significativa los agregados/aglomerados formados por la sustancia farmacológica micronizada. Las partículas del agente antiadherente forman una capa de partículas de sal de glicopirronio que refuerza los efectos deseados del agente antiadherente, por ejemplo, reduciendo la tendencia de las partículas a aglomerarse, en particular cuando se exponen a condiciones húmedas. El agente antiadherente, por tanto, aumenta la estabilidad física de las partículas de sal de glicopirronio micronizadas. Esto supera o al menos mejora el problema de obtener una fracción de partículas finas (FPF) adecuada y estable, que se ve comúnmente cuando se formulan los agentes antimuscarínicos. La superación de este problema mejora la estabilidad durante el manejo de la sustancia farmacológica micronizada (por ejemplo, durante la preparación de la combinación en polvo seco), mejora la estabilidad de almacenamiento de la sustancia farmacológica micronizada, mejora los tiempos de almacenamiento (vida de anaquel) de la sal de glicopirronio y mejora la eficiencia de dosificación de las formulaciones en polvo seco administradas mediante inhalación pulmonar, mediante la estabilización de las propiedades fisicoquímicas (es decir, distribución de tamaños de partícula de la sustancia farmacológica).

En la técnica se conoce bien el equipo de micronización, e incluye una variedad de maquinaria de triturado y molienda, por ejemplo molinos de tipo de compresión, tales como molinos de mecanofusión, molinos de impacto tales como molinos de bolas, homogeneizadores y microfluidizadores, y molinos de chorro. En una realización preferida, la sal de glicopirronio cristalina se muele en molino de chorro, en un molino de chorro opuesto al lecho fluido Alpine® 100 AFG de Hosokawa. Otros equipos de molino de chorro adecuados incluyen los molinos de chorro Alpine® AFG140, AFG200, AFG280 y AFG400 de Hosokawa.

El equipo de mezclado adecuado para cualquier combinación inicial del agente antiadherente y la sal de glicopirronio incluye mezcladoras de baja cizalladura, tales como una mezcladora de polvo Turbula® y mezcladoras de alta cizalladura, tal como una mezcladora de polvo MiPro®..

65

25

30

35

40

45

ES 2 424 754 T3

En la tercera etapa (c) del procedimiento de la presente invención se mezclan las partículas portadoras con la sal de glicopirronio y el agente antiadherente micronizados conjuntamente para formar la formulación en polvo seco.

Preferiblemente, las partículas portadoras se mezclan con la sal de glicopirronio y el agente antiadherente micronizados en una razón de desde 2000:1 hasta 5:1 en masa, especialmente desde 200:1 hasta 20:1 en masa.

5

10

15

25

30

35

40

60

65

Las partículas portadoras pueden componerse de cualquier material farmacológicamente inerte o combinación de materiales que sea aceptable para inhalación. Adecuadamente se componen de uno o más azúcares cristalinos, incluyendo monosacáridos, disacáridos, polisacáridos y alcoholes de azúcar, tales como arabinosa, glucosa, fructosa, ribosa, manosa, sacarosa, trehalosa, lactosa, maltosa, almidones, dextrano, manitol o sorbitol. Un portador especialmente preferido es lactosa, por ejemplo lactosa monohidratada o lactosa anhidra.

Preferiblemente, sustancialmente todas (en peso) las partículas portadoras tienen un diámetro de 20 a 1000 μm, más preferiblemente de 50 a 500 μm, pero en especial de 20 a 250 μm. El diámetro de sustancialmente todas (en peso) las partículas portadoras adecuadamente es menor de 355 μm. Esto proporciona buenas características de flujo y de entrada, y una liberación mejorada de las partículas activas en las vías respiratorias para aumentar la deposición de las partículas activas en la parte inferior del pulmón. Se entenderá que, a través de toda la descripción, el diámetro de las partículas referido es el diámetro aerodinámico de las partículas.

Cuando sea necesario o útil, el polvo seco obtenido en la etapa (b) se somete a una reducción de tamaño final, de modo que el polvo seco cumpla las propiedades físicas deseadas.

En un aspecto alternativo de la presente invención, la sal de glicopirronio y el agente antiadherente se micronizan junto con al menos un (de preferencia uno, dos o tres) principio activo adicional, para dar una combinación de dosis fija. El o cada principio activo adicional se selecciona preferiblemente a partir del grupo que consiste en sustancias farmacológicas antiinflamatorias, broncodilatadoras, antihistamínicas, descongestivas y antitusivas, que son adecuadas para su administración por inhalación, por ejemplo para el tratamiento de una enfermedad respiratoria. El o cada principio activo adicional se selecciona lo más preferiblemente a partir del grupo que consiste en agonistas de receptores adrenérgicos β₂, agentes antimuscarínicos, esteroides, inhibidores de PDE4, agonistas de A_{2a} y bloqueantes de calcio.

Los agonistas de receptores adrenérgicos β_2 adecuados incluyen albuterol (salbutamol), metaproterenol, terbutalina, salmeterol, fenoterol, indacaterol, procaterol y especialmente, formoterol, carmoterol, TA-2005, GSK159797 y las sales farmacéuticamente aceptables del mismo, y también los compuestos de las los documentos EP 1440966, EP 1460064, EP 1477167, JP 05025045, US 2002/0055651, US 2004/0242622, US 2004/0229904, US 2005/0133417, US 2005/5159448, WO 93/18007, WO 99/64035, WO 00/75114, WO 01/42193, WO 01/83462, WO 02/66422, WO 02/70490, WO 02/76933, WO 03/24439, WO 03/42160, WO 03/42164, WO 03/72539, WO 03/91204, WO 03/99764, WO 04/16578, WO 04/16601, WO 04/22547, WO 04/32921, WO 04/33412, WO 04/37768, WO 04/37773, WO 04/37807, WO 04/39762, WO 04/39766, WO 04/45618 WO 04/46083, WO 04/80964, WO 04/087142, WO 04/089892, WO 04/108675, WO 04/108676, WO 05/033121, WO 05/040103, WO 05/044787, WO 05/058867, WO 05/065650, WO 05/066140, WO 05/07908, WO 05/74924, WO 05/77361, WO 05/90288, WO 05/92880, WO 05/92887, WO 05/90287, WO 05/95328, WO 05/102350, WO 06/56471, WO 06/74897 y WO 06/08173.

Los fármacos broncodilatadores adecuados incluyen agentes anticolinérgicos o antimuscarínicos, en particular bromuro de ipratropio, bromuro de oxitropio, sales de tiotropio, CHF 4226 (Chiesi) y SVT-40776, pero también los que se describen en los documentos EP 424021, US 3714357, US 5171744, US 2005/171147, US 2005/182091, WO 01/04118, WO 02/00652, WO 02/51841, WO 02/53564, WO 03/00840, WO 03/33495, WO 03/53966, WO 03/87094, WO 04/018422, WO 04/05285, WO 05/077361 y WO 06/48225.

50 Los fármacos antiinflamatorios y broncodilatadores dobles adecuados incluyen los agonistas de receptores adrenérgicos $β_2$ /antagonistas muscarínicos dobles, tales como aquéllos dados a conocer en los documentos US 2004/0167167, US 2004/0242622, US 2005/182092, US 2005/256114, US 2006/35933, WO 04/74246, WO 04/74812, WO 04/89892 y WO 06/23475.

Los esteroides adecuados incluyen glucocorticosteroides, tales como budesonida, beclametasona, fluticasona, ciclesonida o mometasona, o aquéllos descritos en los documentos WO 02/88167, WO 02/12266, WO 02/100879 o WO 02/00679, en especial aquéllos de los ejemplos 3, 11, 14, 17, 19, 26, 34, 37, 39, 51, 60, 67, 72, 73, 90, 99 y 101, y los agonistas de esteroides no esteroideos, tales como aquéllos descritos en los documentos WO 00/00531, WO 02/10143, WO 03/082280, WO 03/082787, WO 03/104195 y WO 04/005229.

Los inhibidores de PDE4 adecuados incluyen cilomilast (Ariflo® GlaxoSmithKline), Roflumilast (Byk Gulden), V-11294A (Napp), BAY19-8004 (Bayer), SCH-351591 (Schering-Plough), Arofilina (Almirall Prodesfarma), PD189659/PD168787 (Parke-Davis), AWD-12-281 (Asta Medica), CDC-801 (Celgene), KW-4490 (Kyowa Hakko Kogyo), VM554/UM565 (Vernalis), T-440 (Tanabe), KW-4490 (Kyowa Hakko Kogyo) y GRC 3886 (Oglemilast, Glenmark), pero también aquéllos descritos en los documentos WO 92/19594, WO 93/19749, WO 93/19750, WO 93/19751, WO 98/18796, WO 99/16766, WO 01/13953, WO 03/39544, WO 03/104204, WO 03/104205, WO

04/000814, WO 04/00839 y WO 04/005258, WO 04/018450, WO 04/018451, WO 04/018457, WO 04/018465, WO 04/018431, WO 04/018449, WO 04/018450, WO 04/018451, WO 04/018457, WO 04/018465, WO 04/019944, WO 04/019945, WO 04/045607, WO 04/037805, WO 04/063197, WO 04/103998, WO 04/111044, WO 05/012252, WO 05/012253, WO 05/013995, WO 05/030212, WO 05/030725, WO 05/087744, WO 05/087745, WO 05/087749 y WO 05/090345.

Los agonistas de A2a adecuados incluyen aquéllos descritos en los documentos EP 409595A2, EP 1052264, EP 1241176, WO 94/17090, WO 96/02543, WO 96/02553, WO 98/28319, WO 99/24449, WO 99/24450, WO 99/24451, WO 99/38877, WO 99/41267, WO 99/67263, WO 99/67264, WO 99/67265, WO 99/67266, WO 00/23457, WO 00/77018, WO 00/78774, WO 01/23399, WO 01/27130, WO 01/27131, WO 01/60835, WO 01/94368, WO 02/00676, WO 02/22630, WO 02/96462, WO 03/086408, WO 04/039762, WO 04/039766, WO 04/045618 y WO 04/046083.

Los bloqueantes de canales de calcio adecuados incluyen diltiazem, verapamilo, amlodipino, felodipino, isradipino, lacidipino, nicardipino, nifedipino, nimodipino y nisoldipino.

En una modalidad preferida, el o cada principio activo adicional es salmeterol, indacaterol o mometasona.

Las combinaciones triples preferidas contienen bromuro de glicopirronio, salmeterol y mometasona; bromuro de glicopirronio, indacaterol y mometasona; bromuro de glicopirronio, salmeterol y ciclesonida; bromuro de glicopirronio, indacaterol y ciclesonida; bromuro de glicopirronio, salmeterol y (6S,9R,10S,11S,13S,16R,17R)-9-cloro-6-fluoro-11-hidroxi-17-metoxi-carbonil-10,13,16-trimetil-3-oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodeca-hidro-3H-ciclopenta-[a]-fenantren-17-il-éster del ácido 3-metil-tiofen-2-carboxílico; o bromuro de glicopirronio, indacaterol y (6S,9R,10S,11S,13S,16R,17R)-9-cloro-6-fluoro-11-hidroxi-17-metoxi-carbonil-10,13,16-trimetil-3-oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodeca-hidro-3H-ciclopenta-[a]-fenantren-17-il-éster del ácido 3-metil-tiofen-2-carboxílico.

El polvo seco de la presente invención puede estar contenido como dosis unitarias en cápsulas de, por ejemplo, gelatina o de hidroxipropilmetilcelulosa (HPMC) o en blísteres (por ejemplo, de aluminio o de plástico), para su uso en un dispositivo para inhalación de polvo seco, el cual puede ser un dispositivo de una sola dosis o de múltiples dosis. Preferiblemente, el peso total del polvo por cápsula o de la unidad previamente medida es de desde 2 mg hasta 50 mg. Alternativamente, el polvo seco puede estar contenido en un depósito en un dispositivo para inhalación de polvo seco de múltiples dosis (MDDPI), adaptado para administrar, por ejemplo, 3-25 mg de polvo seco por accionamiento. Un dispositivo adecuado para la administración de polvo seco en forma encapsulada se describe en el documento US 3.991.761 (incluyendo el dispositivo AEROLIZERTM), o en el documento WO 05/113042, mientras que los dispositivos MDDPI adecuados incluyen aquéllos descritos en los documentos WO 97/20589 (incluyendo el dispositivo CERTIHALERTM), WO 97/30743 (incluyendo el dispositivo TWISTHALERTM) y WO 05/37353 (incluyendo el dispositivo GYROHALERTM).

La invención se ilustra mediante los siguientes ejemplos.

Ejemplos

10

15

20

25

30

35

40

Ejemplo 1

- 45 Se mezclan 37 g de estearato de magnesio con 1 kg de bromuro de glicopirronio cristalino en una mezcladora Turbula® durante 5 horas. Se microniza la mezcla resultante usando un molino de chorro opuesto al lecho fluido Alpine® 100 AFG de Hosokawa con los siguientes parámetros: velocidad del clasificador, 13000 revoluciones por minuto; presión de gas de molienda, 3,5 bar. El molino está equipado con 3 boquillas de 1,9 milímetros de diámetro.
- La mezcla resultante tiene una mediana del tamaño de partícula de aproximadamente 3 micrómetros (x90 = 7 micrómetros, x50 = 3 micrómetros, x10 = 1 micrómetro). El estearato de magnesio se distribuye bien sobre la superficie de la sustancia farmacológica micronizada.
- Se mezclan las partículas portadoras de lactosa (99,7% p/p de la composición final) para dar un polvo seco inhalable.

Ejemplo 2

- Sustancia farmacológica 1: 50 g de estearato de magnesio con 1 kg de bromuro de glicopirronio cristalino en una mezcladora Turbula® durante 5 horas. Se microniza la mezcla resultante usando un molino de chorro opuesto al lecho fluido Alpine® 100 AFG de Hosokawa (equipado con tres boquillas de 1,9 milímetros de diámetro), con los siguientes parámetros: velocidad del clasificador, 13000 revoluciones por minuto; presión de gas de molienda, 3,5 bar, para dar partículas que tienen un tamaño de partícula promedio de menos de 5 micrómetros.
- 65 Sustancia farmacológica 2: se microniza 1 kg de bromuro de glicopirronio cristalino usando un molino de chorro opuesto al lecho fluido Alpine® 100 AFG de Hosokawa (equipado con tres boquillas de 1,9 milímetros de diámetro),

ES 2 424 754 T3

con los siguientes parámetros: velocidad del clasificador, 13000 revoluciones por minuto; presión del gas de molienda, 3,5 bar, para dar partículas que tienen un tamaño de partícula promedio de menos de 5 micrómetros.

Estas sustancias farmacológicas se utilizan para preparar las siguientes formulaciones:

- Formulación 1: se mezclan las partículas portadoras de lactosa (99% p/p de la composición final) con la sustancia farmacológica 2, para dar un polvo seco inhalable.
- Formulación 2: se mezclan las partículas portadoras de lactosa (98,8% p/p de la composición final) y el estearato de magnesio (0,15%) se mezclan con la sustancia farmacológica 2, para dar un polvo seco inhalable.
 - Formulación 3: se mezclan las partículas portadoras de lactosa (98,8% p/p de la composición final) y el estearato de magnesio (0,15%) con la sustancia farmacológica 2, para dar un polvo seco inhalable.
- 15 Se rellenan los polvos resultantes en alícuotas de 25 mg en cápsulas de hidroxipropilmetilcelulosa (HPMC) de tamaño 3. Se someten a prueba las cápsulas resultantes para determinar la distribución del tamaño de partícula aerodinámico (fracción de partículas finas), o bien inmediatamente después de la fabricación, o bien después del almacenamiento en diferentes condiciones, como se ilustra en la tabla 1 a continuación.
- Se miden la fracción de partículas finas (FPF) y la dosis emitida (ED) del polvo en cada cápsula utilizando el impactador de cascada de clasificación de partículas Next Generation Impactor (NGI)-(impactador de siguiente generación), a una velocidad de flujo de 85 Umin. La fracción de partículas finas en relación con la dosis emitida FPF(ED) de las diversas muestras, se muestra en la siguiente tabla 1. El cambio relativo en FPF(ED), en comparación con el inicial, también se muestra en esta tabla.

Muestra	Formulación	Punto del tiempo de prueba y condición de sustancia de fármaco	FPF(ED) [%]	Cambio desde el inicial [%]
1	Formulación 1	Prueba inicial (sustancia farmacológica 2)	51,5	
		6 semanas, 30°C/65% RH	46,3	-10,1
		6 semanas, 40°C/75% RH	32,2	-37,5
2	Formulación	Prueba inicial (sustancia 2)	50,5	
	2	6 semanas, 30°C/65% RH	43,7	-13,5
		6 semanas, 40°C/75% RH	38,4	-24,0
3	Formulación 3	Prueba inicial (sustancia farmacológica 1)	60,5	
		6 semanas, 30°C/65% RH	57,4	-5,0
		6 semanas, 40°C/75% RH	46.5	-23,1

Estos datos muestran que la micronización conjunta del bromuro de glicopirronio con un agente antiadherente, mejora la estabilidad de la sustancia de fármaco resultante, tal como se muestra por una disminución menos notoria en la FPF durante el período de almacenamiento. La micronización conjunta con el agente antiadherente estabiliza la FPF durante el almacenamiento, en comparación con las mezclas sin agente antiadherente y con las mezclas que tienen el estearato de magnesio añadido durante la combinación.

25

30

REIVINDICACIONES

- Procedimiento para la preparación de una formulación en polvo seco de una sal de glicopirronio para inhalación, que comprende las etapas de: (a) mezclar una sal de glicopirronio y un agente antiadherente para dar como resultado una combinación homogénea; (b) micronizar la combinación; y (c) mezclar partículas portadoras para formar una formulación en polvo seco, potenciando el procedimiento la estabilidad de la sal de glicopirronio.
- 2. Procedimiento según la reivindicación 1, en el que el agente antiadherente es un estearato de metal, un azúcar cristalino o una mezcla de los mismos.
 - 3. Procedimiento según la reivindicación 2, en el que el agente antiadherente es un estearato de metal.
- 4. Procedimiento según la reivindicación 3, en el que el estearato de metal es estearato de magnesio o estearato de calcio.
 - 5. Procedimiento según la reivindicación 3, en el que la sal de glicopirronio se microniza con desde el 1 hasta el 20% en masa del estearato de metal.
- 20 6. Procedimiento según la reivindicación 5, en el que la sal de glicopirronio se microniza con desde el 2 hasta el 10% en masa del estearato de metal.
- 7. Procedimiento según cualquier reivindicación anterior, en el que las partículas portadoras se mezclan con la combinación micronizada de sal de glicopirronio y agente antiadherente en una razón de de 2000:1 a 5:1 en masa.
 - 8. Procedimiento según la reivindicación 7, en el que las partículas portadoras se mezclan con la combinación micronizada de sal de glicopirronio y agente antiadherente en una razón de desde 200:1 hasta 20:1 en masa.
 - 9. Procedimiento según cualquier reivindicación anterior, en el que las partículas portadoras son azúcares cristalinos.
- 10. Procedimiento según cualquier reivindicación anterior, en el que la sal de glicopirronio es bromuro de glicopirronio, cloruro de glicopirronio o yoduro de glicopirronio.

30

- 11. Procedimiento según la reivindicación 10, en el que la sal de glicopirronio es bromuro de glicopirronio.
- 12. Procedimiento según cualquier reivindicación anterior, en el que la combinación de sal de glicopirronio y agente antiadherente se microniza junto con uno, dos, tres o más principios activos adicionales.
 - 13. Procedimiento según la reivindicación 12, en el que el o cada principio activo adicional se selecciona del grupo que consiste en sustancias farmacológicas antiinflamatorias, broncodilatadoras, antihistamínicas, descongestivas y antitusivas.
 - 14. Procedimiento según la reivindicación 13, en el que el o cada principio activo adicional se selecciona del grupo que consiste en agonistas de receptores adrenérgicos beta 2, agentes antimuscarínicos, esteroides, inhibidores de PDE4 y bloqueantes de canales de calcio.
- 50 15. Procedimiento según la reivindicación 14, en el que el o cada principio activo adicional se selecciona del grupo que consiste en salmeterol, indacaterol y mometasona.