

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 425 792

51 Int. Cl.:

G01R 23/02 (2006.01) G01R 19/25 (2006.01) H02H 3/46 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 17.02.2010 E 10460004 (4)
 (97) Fecha y número de publicación de la concesión europea: 26.06.2013 EP 2357483
- (54) Título: Procedimiento de detección de resonancia subsíncrona
- (45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.10.2013

(73) Titular/es:

ABB RESEARCH LTD. (100.0%) Affolternstrasse 44 8050 Zürich, CH

(72) Inventor/es:

ORMAN, MACIEJ; BALCEREK, PRZEMYSLAW y ORKISZ, MICHAL

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Procedimiento de detección de resonancia subsíncrona

15

20

25

30

35

50

El objetivo de la invención es un procedimiento de detección de resonancia subsíncrona en sistemas de energía eléctrica con condensadores en serie.

- En general, el fenómeno de resonancia subsíncrona SSR (Resonancia SubSíncrona) se produce en sistemas de energía eléctrica como resultado de la interacción de una turbina-generador con una línea de transmisión compensada en serie de larga distancia. Hay una condición de un sistema de energía eléctrica donde las redes eléctricas intercambian energía con el sistema mecánico del generador a frecuencias inferiores a la frecuencia nominal de la línea de transmisión (50 ó 60 Hz).
- La resonancia subsíncrona se aborda en tres categorías, el efecto generador de inducción, la interacción torsional y la amplificación de torsión. Los dos primeros tipos son provocados por una alteración de estado estacionario, mientras que el tercero es excitado por perturbaciones transitorias.
 - Los condensadores en serie mejoran las capacidades de los sistemas de energía eléctrica mediante la compensación de la inductancia de la línea de transmisión, aumentando así la capacidad de las líneas y mejorando así el estado estacionario y los límites de estabilidad transitoria. Sin embargo, el uso de condensadores en serie aumenta el riesgo de aparición del fenómeno de resonancia subsíncrona. Normalmente, la frecuencia de resonancia subsíncrona tiene un valor en el intervalo del 15 % al 90 % de la frecuencia nominal de la línea de transmisión.
 - Los procedimientos conocidos de detección de resonancia subsíncrona SSR se basan en técnicas de filtrado o en un análisis de la vibración del árbol del generador. El documento US 2003/0160600 A describe un procedimiento de detección de corriente subsíncrona que utiliza una rectificación de la señal y una comparación del límite para la detección de corrientes subsíncronas. El procedimiento se puede implementar como un circuito analógico o también mediante el uso de circuitos de procesamiento de señales digitales. Otro procedimiento es conocido por la patente US 4.607.217. La resonancia subsíncrona se detecta en un sistema de alimentación eléctrica de CA mediante la determinación de los cambios en la longitud de sucesivos medios ciclos de forma de onda que son la base para la identificación de la resonancia subsíncrona. El cambio de parámetros medido es el periodo de la onda, y los cambios en la relación de la diferencia del período de positivo y el período de los ciclos de media negativos sobre la suma del período de los medios ciclos positivos y el período de los medios ciclos negativos están relacionados con la detección de la resonancia subsíncrona. La invención se basa en la observación de que la frecuencia subsíncrona en la línea actual crea un medio ciclo más largo y medio ciclos más cortos. La diferencia entre los períodos de los medios ciclos se mide sucesivamente para proporcionar un procedimiento para detectar la presencia de resonancia subsíncrona.

Un inconveniente de este procedimiento es la presencia de un retardo de tiempo entre la aparición del fenómeno de resonancia subsíncrona y su detección. Este retardo de tiempo puede ser demasiado largo para la detección de frecuencia de SSR, que puede resultar en daños en el árbol o el mal funcionamiento del relé de protección de la línea de transmisión. Este inconveniente se supera mediante el procedimiento de la invención tal como se define en la reivindicación 1, que permite la detección y la identificación de SSR más rápido en comparación con las técnicas conocidas y requiere el uso de una cantidad de muestra de los datos de entrada más pequeña que en las soluciones conocidas.

- La esencia del procedimiento de la invención de detección de resonancia subsíncrona en sistemas de energía eléctrica con condensadores en serie, en el que las señales de tensión se miden en la línea y mediante el uso de un procedimiento de búsqueda de puntos de cruce por cero de la señal discreta de la tensión medida, se calculan medios ciclos positivos y negativos de una forma de onda de la señal discreta de tensión se calculan en un dispositivo informático al que se suministran los parámetros constantes por parte del usuario, que incluye las siguientes acciones:
- crear una señal de tensión demodulada U_{Dem} mediante la adición de valor mínimo de medio ciclo negativo de la forma de onda de señal discreta procesada de la tensión U_x al valor máximo de medio ciclo positivo de la forma de onda de la señal discreta procesada de la tensión U_x durante intervalos de tiempo que tienen una longitud de señal T_L, donde T_L es un parámetro constante, suministrado por el usuario,
 - calcular un valor cuadrático medio RMS para la señal demodulada de la tensión U_{Dem} y compararlo con el valor de otro parámetro constante suministrado por el usuario como el nivel de valor cuadrático medio RMS_{Lev} y cuando el valor de (RMS) es menor que el valor de RMS_{Lev} indica que no hay resonancia subsíncrona, y cuando el valor de RMS es mayor que el valor de RMS_{Lev}, se identifica la presencia de resonancia subsíncrona mediante la determinación de la amplitud de la tensión A_{FSS} de resonancia subsíncrona y/o la frecuencia f_{FSS} de resonancia subsíncrona.
- Preferiblemente, durante la búsqueda de cruces por cero, se establecen dos histéresis para medios ciclos positivos y negativos de la forma de onda para la determinación de secuencias de intervalos de tiempo consecutivos T_{PozI}, T_{NegI}, ..., T_{PozN}, T_{NegN}, respectivamente, para una parte positiva U_{Poz} y negativa U_{Neg} de la señal discreta procesada U_X entre cruces por cero para crear el envolvente superior E_{sup} y la envolvente inferior E_{inf} sobre de la señal discreta

procesada U_x.

5

10

15

20

25

30

35

Preferiblemente, el valor absoluto de la histéresis para medios ciclos positivos y negativos de la forma de onda es igual al valor cuadrático medio del nivel RMS_{Lev}.

Preferiblemente, la longitud de la señal de tensión T_L tiene un valor de tiempo en el dominio de tiempo de 0,2 s mínimo.

Un programa informático para la detección de la resonancia subsíncrona en sistemas de energía eléctrica con condensadores en serie, el cual programa informático se puede cargar y es ejecutable en una unidad de procesamiento de datos de un dispositivo de ordenador (8), y el cual programa informático al ser ejecutado mediante la unidad de procesamiento de datos del ordenador realiza el procedimiento de acuerdo con las reivindicaciones 1 a 4

El procedimiento de acuerdo con la presente invención se explica sobre la base de una realización presentada en el dibujo, donde:

La figura 1 muestra esquemáticamente un sistema de energía eléctrica con condensadores en serie y con un generador, la figura 2 muestra una forma de onda de la tensión del sistema de energía con frecuencia de resonancia subsíncrona antes de una demodulación, la figura 3 muestra una forma de onda de la señal discreta procesada, la figura 4 muestra una forma de onda de la señal demodulada con una frecuencia de resonancia subsíncrona, la figura 5 muestra un diagrama de flujo de las operaciones realizadas mientras se detecta la resonancia subsíncrona de acuerdo con la invención.

El sistema de energía eléctrica para la implementación del procedimiento de la invención se presenta en la figura 1. El sistema de energía eléctrica comprende una turbina-generador 1, que forma una parte mecánica del sistema, y líneas de transmisión de CA trifásicas conectadas a la turbina-generador, que junto con un transformador de alta tensión 2, las impedancias 3 de las líneas, los condensadores en serie 4, y los consumidores finales 5 de los sistemas de energía forman una parte eléctrica del sistema de energía. En cada fase de las líneas de transmisión trifásicas, entre el transformador 2 y los condensadores en serie 4, está conectado un transformador de tensión del condensador CVT 6 para medir la tensión de las líneas U1, U2, U3. Cada uno de los transformadores CVT 6 está conectado a través de un enlace de comunicación 7 con un dispositivo 8 para detectar e identificar el fenómeno de resonancia subsíncrona en la parte eléctrica del sistema de energía. El dispositivo 8 es un ordenador con una unidad de procesador para la implementación del procedimiento de detección SSR y puede ser una parte de un relé de protección o puede ser un dispositivo informático instalado separado del sistema. El dispositivo 8 incluye un convertidor analógico-digital 9 para la conversión de la señal analógica medida en una señal digital, una unidad de detección 10 de resonancia subsíncrona para la detección de SSR en las líneas de transmisión, una unidad de cálculo 11 y una unidad de almacenamiento 12 para el cálculo y la recogida de los datos procesados durante la operación, y dispositivos periféricos externos 13 para la visualización de los resultados de la detección de SSR. El convertidor analógico-digital 9 para la conversión de la señal analógica medida en una señal digital puede instalarse en un transformador CVT 6 lugar de en el dispositivo 8, que no se muestra en el dibujo.

El procedimiento de acuerdo con la invención se realiza tal como se representa en la figura 5 en las siguientes etapas.

Etapa S1

Determinación de la señal discreta UD a partir de la señal en línea media U.

- La señal de tensión U1, U2, U3 de la línea de transmisión se mide mediante el transformador CVT 6 y se convierte en una señal discreta U_D en el convertidor analógico-digital 9. La señal discreta U_D consiste en el valor de la tensión *a_i* de i muestras consecutivas. Para el proceso de conversión, se suministran algunos parámetros constantes al convertidor analógico-digital 9, y el proceso de conversión es bien conocido en la técnica.
- El primer parámetro constante entregado al convertidor analógico-digital 9 es la frecuencia de muestreo Fs. Este parámetro define el número de muestras por segundo tomadas de la señal analógica U (la señal U se presenta en la figura 2 como la forma de onda). Usualmente, la frecuencia de muestreo se establece como 1 kHz mínimo, que es también una configuración por defecto para la invención presentada. La configuración de una frecuencia de muestreo inferior puede resultar en un cálculo erróneo.
- El segundo parámetro constante suministrado al convertidor analógico-digital 9 es la longitud T_L de la señal. Este parámetro presentado en la figura 2 define la longitud de una señal de tensión analógica U tomada para la conversión analógica-digital. Para producir resultados fiables de futuras etapas siguientes, el valor de la longitud de la señal T_L debe ser igual a un periodo de la frecuencia subsíncrona más baja que pueda aparecer en el sistema de energía eléctrica. En la realización de la invención, el valor fue establecido como mínimo T_L = 0,2 [s], que corresponde a 5 Hz de frecuencia subsíncrona de una línea de transmisión. La configuración de una longitud T_L de la señal más corta pueden resultar en un cálculo erróneo.

El tercer parámetro constante suministrado al convertidor analógico-digital 9 es un valor procuadrático medio RMS_{Lev} que define la magnitud estadística de la señal discreta U_D.

El valor RMS_{Lev} debe ser igual a la amplitud del nivel de ruido del transformador CVT 6, que es conocida para cada CVT específico. En futuras etapas a seguir, estos parámetros permiten distinguir el ruido de la señal discreta U_D .

5 Etapa S2

Cálculo de la señal discreta procesada U_x y determinación de los puntos de cruce por cero para calcular las secuencias T_{poz1} , T_{Neg1} , ..., T_{PozN} , T_{NegN} , de respectivos intervalos de tiempo para la parte positiva U_{poz} y negativa U_{Neg} de la señal discreta procesada U_x entre los puntos de cruce por cero.

En primer lugar, se calcula un valor de la media aritmética X_{media} de la señal discreta U_D para la longitud de la señal T_L - figura 2 de la siguiente manera:

$$X_{media} = \frac{a_1 + a_2 + \dots + a_n}{n} \tag{1}$$

donde a_i es el valor de la tensión de la muestra i y n es el número de todas las muestras en la señal discreta U_D . El número de muestras n es igual a la frecuencia de muestreo Fs multiplicada por la longitud de la señal T_L .

A continuación, se calcula la señal discreta procesada U_x restando del valor promedio de X_{media} del valor de la tensión a_i de cada punto de muestra de la señal discreta U_D . Si no hay una resonancia subsíncrona, la señal discreta procesada U_x asigna la frecuencia nominal dominante de la línea de transmisión. Si hay ocurrencia subsíncrona, la señal discreta procesada U_x consiste en la frecuencia nominal de la línea de transmisión y los componentes de frecuencia subsíncronos.

$$U_{x} = a_{i} - X_{media} \tag{2}$$

20 para i = 1 ... n.

15

25

30

35

A continuación, se identifican los puntos de cruces por cero mediante la detección de cambios en el signo (+) o (-) de la señal discreta procesada U_x , figura 3. Siempre hay dos tipos de cruces por cero. Uno de los mismos es cuando el valor de la señal aumenta - cruce por cero positivo, el otro cuando el valor de la señal disminuye - cruce por cero negativo. El cruce por cero positivo (flecha B) se detecta cuando una señal discreta procesada U_x cambia su valor a de menos a más y cuando su valor es mayor que el valor de histéresis positiva establecido como el valor del valor cuadrático medio RMS $_{Lev}$, que es conocido para cada CVT 6 específico, marcado en la figura 3 como D. El cruce por cero negativo (flecha C) se detecta cuando una señal discreta procesada U_x cambia su valor de más a menos y cuando su valor es menor que el valor de histéresis negativa establecido como un valor negativo del valor cuadrático medio RMS $_{Lev}$, que es conocido para cada CVT 6 específico, marcado en la figura 3 como E. Las histéresis D y E se establecen para evitar la mezcla de cruces por cero con el ruido que siempre aparece en las señales recogidas de los sistemas de energía eléctricos reales.

Después de encontrar el primer punto de cruce por cero, que puede ser positivo o negativo, se encuentra el siguiente punto de cruce por cero, que es negativo o positivo, respectivamente, determinándose el intervalo de tiempo T_{poz1} o T_{Neg1} entre estos puntos de cruce por cero como un intervalo para el cálculo de la parte positiva U_{poz} (marcada en la figura 3 como línea de trazos) o la parte negativa U_{Neg} (marcada en la figura 3 como línea continua) en relación con la señal discreta procesada U_x . Las secuencias de intervalos de tiempo consecutivos T_{poz1} , T_{Neg1} , ... T_{pozN} , T_{NegN} , respectivamente, para la parte positiva U_{poz} y la parte negativa U_{Neg} de la señal discreta procesada U_x entre cruces por cero son el resultado de esta etapa.

Etapa S3

40 Cálculo de una señal demodulada U_{Dem}

En primer lugar, para cada T_{poz1} , ..., T_{pozN} , de intervalos de tiempo, respectivamente, para U_{Poz} positiva a partir de la longitud de la señal igual al valor de T_L , se calculan los valores máximos de la señal discreta procesada U_x y a continuación, a partir de los valores de dichos máximos, se crea la envolvente superior E_{sup} de la señal discreta procesada U_x .

De manera similar, para cada T_{Neg1}, ... , T_{NegN} de intervalos de tiempo, respectivamente, para U_{Neg} negativo a partir de la longitud de la señal igual al valor de T_L, se calculan los valores mínimos de la señal discreta procesada U_x y a continuación, a partir de los valores de esos mínimos se crea la envolvente inferior E_{inf} de la señal discreta procesada U_x.

A continuación, se calcula la señal demodulada U_{Dem} sumando los valores de la envolvente inferior E_{inf} a los valores de la envolvente superior E_{sup} .

$$U_{Dem} = E_{sup} - E_{inf}$$
 (3)

A diferencia de la señal discreta procesada U_x , la señal demodulada U_{Dem} no contiene la frecuencia nominal de la línea de transmisión.

Si se produce el fenómeno de resonancia subsíncrona, la señal discreta de demodulación U_{Dem} contiene una frecuencia de resonancia subarmónica que aparece como la dominante. Antes de la aparición del fenómeno de resonancia subsíncrona, la señal demodulada U_{Dem} es menor que el valor RMS_{Lev}. En el momento en que aparece la resonancia subsíncrona, la señal demodulada U_{Dem} excede del valor RMS_{Lev}.

Etapa S4

Detección de la presencia de la frecuencia de resonancia subsíncrona en la señal demodulada U_{Dem}

10 comparando el valor cuadrático medio RMS de la señal demodulada U_{Dem} con el valor de RMS_{LeV}.

En primer lugar, se realiza el valor cuadrático medio RMS de la señal demodulada U_{Dem}. El valor RMS es la magnitud estadística de la señal discreta, los detalles de dicho cálculo son bien conocidos para los expertos en la técnica.

A continuación, el valor RMS se compara con el valor RMS_{Lev} que fue entregado como un parámetro en la primera etapa.

Si el valor RMS de U_{Dem} es menor que el valor RMS_{Lev}, eso significa que no se ha detectado ninguna frecuencia de resonancia subsíncrona en la señal demodulada U_{Dem} . En este caso, una amplitud de frecuencia de resonancia subsíncrona AFSS y la respectiva frecuencia f_{Fss} se considera igual a cero.

Si el valor RMS de la señal U_{Dem} es mayor o igual que el valor RMS_{Lev}, se realiza un análisis adicional en la etapa S5.

Etapa S5

20

30

35

Cálculo e identificación de la amplitud de tensión A_{Fss} y la frecuencia f_{Fss}, relacionadas con la resonancia subsíncrona

En primer lugar, se realiza el cálculo de la FFT (Transformada Rápida de Fourier) de la señal U_{Dem}. La operación de la FFT transforma la señal del dominio del tiempo en una señal en el dominio de la frecuencia; los detalles de dicho cálculo son bien conocidos para los expertos en la técnica.

A continuación, se calcula el valor más alto de una amplitud de tensión A_{FSS} en una banda de espectro entre el 10 % y el 90 % de la frecuencia nominal de la línea de transmisión y se compara con el valor RMS_{Lev}.

Si el valor más alto de una amplitud de la tensión A_{FSS} es menor que el valor de RMS_{Lev}, que significa que no se ha detectado ninguna frecuencia de resonancia subsíncrona ($A_{FSS} = 0$, $f_{FSS} = 0$).

Si el valor más alto de una amplitud de tensión A_{FSS} es mayor o igual que el valor de RMS_{Lev}, entonces el valor de la amplitud A_{FSS} y la respectiva frecuencia f_{Fss} se considera resonancia subsíncrona.

Etapa 6

Visualización de la amplitud de resonancia subsíncrona como el valor más alto de una amplitud de tensión A_{FSS} y/o la respectiva frecuencia f_{Fss}

En esta etapa, la amplitud de resonancia subsíncrona se muestra como el valor más alto de una amplitud de tensión A_{FSS} y/o también se muestra la respectiva frecuencia de resonancia f_{FSS}, utilizando medios bien conocidos para mostrar o imprimir los datos, conectados al dispositivo informático (8), que no se presenta en los dibujos.

REIVINDICACIONES

1. Un procedimiento de detección de resonancia subsíncrona en sistemas de energía eléctrica con condensadores en serie, donde señales de tensión de los sistemas de energía eléctrica se miden en línea y donde mediante la búsqueda de puntos de cruce por cero de la señal discreta (40) de la tensión medida, se calculan los medios ciclos positivos y negativos de la forma de onda de la señal discreta (40) de la tensión en un dispositivo informático al que se suministran parámetros constantes por parte del usuario, **caracterizado porque** comprende las siguientes acciones:

5

10

15

20

25

35

- crear una señal demodulada (U_{Dem}) de tensión mediante la adición del valor absoluto del valor mínimo del medio ciclo negativo de la forma de onda de una señal discreta procesada (U_X) de la tensión al valor máximo del medio ciclo positivo de la forma de onda de la señal discreta procesada (U_X) durante intervalos de tiempo que tienen una longitud de señal T_L, donde T_L es un parámetro constante, suministrado por el usuario, donde la señal discreta procesada (U_X) se calcula restando un valor medio (X_{medio}) del valor de la tensión (a_i) de cada punto de muestra de la señal discreta (U_D) y donde el valor medio (X_{medio}) es el valor de la media aritmética de la señal discreta (U_D) para la longitud de la señal T_L,
- calcular un valor cuadrático medio RMS para la señal demodulada de la tensión (U_{Dem}) y compararlo con el valor de otro parámetro constante suministrado por el usuario como el nivel del valor cuadrático medio RMS_{Lev} y cuando el valor de RMS es menor que el valor de RMS_{Lev}, indica que no hay resonancia subsíncrona, y cuando el valor de RMS es mayor que el valor de RMS_{Lev}, se identifica la presencia de resonancia subsíncrona mediante la determinación de la amplitud de la tensión (A_{FSS}) de una resonancia subsíncrona y/o la frecuencia (f_{FSS}) de una resonancia subsíncrona de la señal demodulada (U_{Dem}).
- 2. Un procedimiento de acuerdo con la reivindicación 1, **caracterizado porque** durante la búsqueda de puntos de cruce por cero, se establecen dos histéresis para los medios ciclos positivos y negativos de la forma de onda para una determinación de secuencias de intervalos de tiempo consecutivos (T_{Poz1} , T_{Neg1} , ... T_{PozN} , T_{NegN}), respectivamente, para la parte positiva (U_{Poz}) y negativa (U_{Neg}) de la señal discreta procesada (U_X) entre los puntos de cruce por cero para crear la envolvente superior (E_{sup}) y la envolvente inferior (E_{inf}) de la señal discreta procesada (U_X).
- 3. Un procedimiento de acuerdo con la reivindicación 2, **caracterizado porque** un valor absoluto de histéresis para los medios ciclos positivos y negativos de la forma de onda es igual al nivel del valor cuadrático medio RMS_{Lev}.
- 4. Un procedimiento de acuerdo con la reivindicación 1, **caracterizado porque** la longitud de la señal (T_L) tiene un valor de tiempo en el dominio de tiempo mínimo de 0,2 s.
 - 5. Un programa informático que comprende medios para la detección de resonancia subsíncrona en sistemas de energía eléctrica con condensadores en serie, el cual programa informático se puede cargar y se puede ejecutar en una unidad de procesamiento de datos de un dispositivo informático (8) y el cual programa informático, cuando se ejecuta mediante la unidad de procesamiento de datos del ordenador, realiza el procedimiento de acuerdo con las reivindicaciones 1 a 4.

6

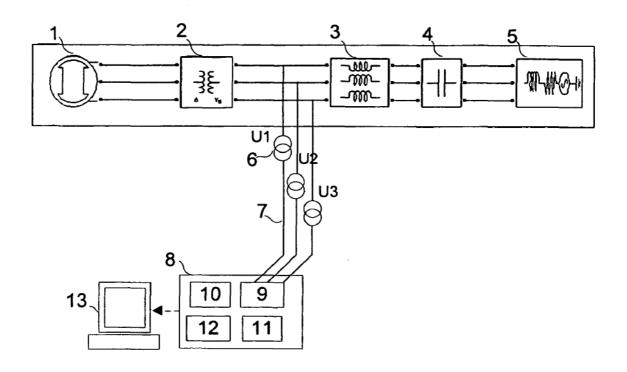


FIG 1

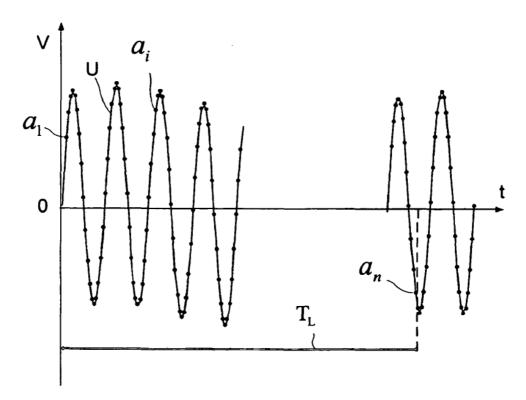


FIG 2

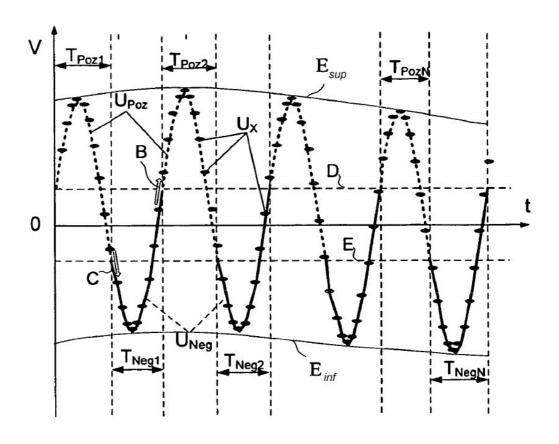


FIG 3

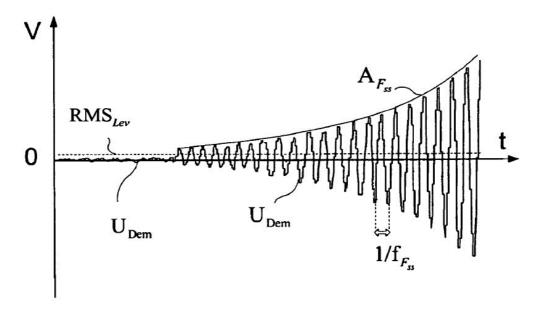


FIG 4

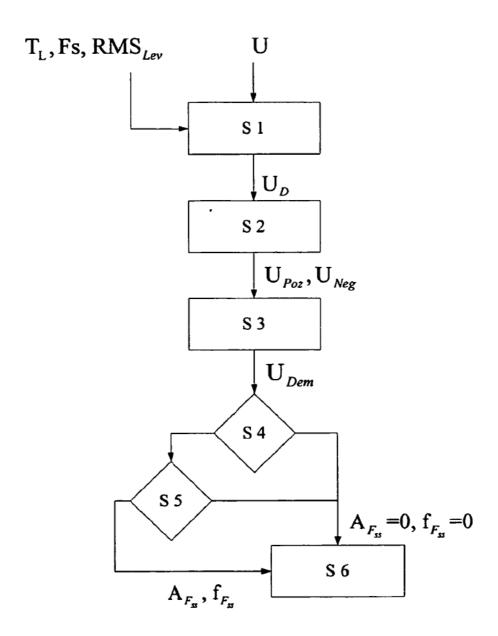


FIG 5