

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 425 798

51 Int. Cl.:

A23G 1/20 (2006.01) **A23G 9/28** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 25.01.2011 E 11151949 (2)
 (97) Fecha y número de publicación de la concesión europea: 29.05.2013 EP 2478773
- (54) Título: Válvula de máquina de colada
- 45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.10.2013

(73) Titular/es:

BÜHLER AG (100.0%) Gupfenstrasse 5 9240 Uzwil, CH

(72) Inventor/es:

BAUER, BERNHARD y BÜHLER, LEO

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Válvula de máquina de colada.

10

15

25

35

40

45

50

La invención se refiere a una válvula, especialmente para una máquina de colada, según la reivindicación 1, a un sistema de válvula según la reivindicación 4, especialmente para su incorporación en una máquina de colada para colar una masa fluyente, y a una máquina de colada para colar una masa fluyente, especialmente una masa líquida con partículas sólidas suspendidas, como, por ejemplo, chocolate. Además, la invención se refiere a una máquina de colada según la reivindicación 7, a un procedimiento para formar un sistema de válvula según la reivindicación 8, a un procedimiento para adaptar un sistema de válvula de máquina de colada según la reivindicación 9, a un procedimiento para formar un sistema de válvula de máquina de colada según la reivindicación 10 y a un procedimiento para cambiar el equipamiento de una máquina de colada según la reivindicación 11.

Las máquinas de colada conocidas para colar chocolate contienen, por ejemplo, un recipiente de masa para recibir la masa fluyente y al menos una válvula que está en comunicación de fluido con el recinto interior del recipiente de masa, estando la válvula en un estado abierto cuando esté presente un gradiente de presión a lo largo de la dirección de paso de dicha válvula y estando ésta en un estado abierto cuando no esté presente este gradiente de presión a lo largo de la dirección de paso de dicha válvula; así como un medio de generación de presión para generar un gradiente de presión a lo largo de la dirección de paso de la válvula.

Masas fluyentes son en este contexto masas que pueden ya fluir a consecuencia de la propia fuerza de la gravedad y/o que pueden ser transportadas por medio de una bomba.

La presión puede generarse, por ejemplo, a través de un dispositivo de pistón con el cual se introducen o impulsan porciones de volumen de la masa hacia dentro de cámaras de dosificación y se prensan o cuelan dichos volúmenes desde estas cámaras, por medio de toberas, sobre una base de apoyo o en moldes huecos.

En algunas formas de construcción especiales de tales máquinas de colada la función de válvula está acoplada con la función de pistón. A este fin, el pistón está configurado, por ejemplo, como un pistón sustancialmente cilíndrico de movimiento alternativo y/o giratorio, pudiendo realizarse un ciclo de colada completo (aspiración y expulsión) por medio de una secuencia de movimientos alternativos y/o giratorios del respectivo pistón en una primera dirección y en una segunda dirección opuesta.

En la mayoría de las aplicaciones en las que se cuela una masa de chocolate, la colada se efectúa a temperaturas tan altas que la masa de chocolate se presenta en conjunto en un estado bastante fluido y se puede producir un flujo adicional en las toberas.

Por tanto, se ha visto que es ventajoso emplear compuertas de tobera que estén articuladas en el cuerpo de válvula y estén expuestas a un pretensado elástico que presione la compuerta de válvula contra la abertura de válvula y selle esta última.

Se pueden emplear también válvulas con compuertas de válvula elásticas. Por ejemplo, se conocen válvulas cuyas compuertas de válvula están conformadas por las zonas comprendidas entre aberturas a manera de hendiduras de un cuerpo de válvula.

Se conoce por el documento WO2009/032647, por ejemplo, una tobera de descarga para una bolsa de pasta destinada a suministrar guarniciones refrigeradas a bebidas o postres, que presenta compuertas de tobera elásticas y flexibles que se pueden abrir bajo presión y cerrar cuando se retira la presión. La disposición de válvula presenta compuertas de válvula del mismo tipo que poseen todas ellas un refuerzo de material que imparte un dibujo a la masa saliente.

En el documento DE 10 2008 043604 se muestra una válvula que presenta compuertas de válvula del mismo tipo que tienen una zona de cuello y una zona de compuerta y están unidas una con otra en la zona de cuello.

No obstante, al cortar las hendiduras se puede dañar la estructura de la válvula de una manera indefinida, con lo que puede resultar perjudicada la función de las superficies de sellado. Los bordes de las hendiduras tienen tendencia a la formación de fisuras bajo esfuerzos, con lo que se reduce la vida útil, en el presente caso el número de ciclos de cierre posibles.

Además, se ha visto en la práctica que es difícil solicitar las compuertas de válvula con un pretensado definido en un cuerpo de válvula hendido.

Por tanto, tales válvulas no satisfacen frecuentemente los requisitos relativos a una dosificación precisa, especialmente a altas frecuencias de ciclo y pequeñas cantidades de dosificación.

La invención se basa en el problema de proporcionar una compuerta de válvula para una válvula, un sistema de válvula y una máquina de colada para fabricar un producto de consumo a base de una masa colable, en

particular a base de una masa grasa tal como, por ejemplo, chocolate, en los que puedan evitarse o al menos reducirse los inconvenientes y deficiencias expuestos durante la colada. Al mismo tiempo, la válvula de máquina de colada y la máquina de colada deberán tener una estructura sencilla y poco propensa a averías.

Este problema se resuelve con una válvula según la reivindicación 1. La válvula comprende preferiblemente una compuerta de válvula y al menos otra compuerta de válvula preferiblemente del mismo tipo, más preferiblemente fabricada por separado. La compuerta de válvula está configurada de tal manera que se puede formar una válvula con al menos un elemento de válvula adicional. El elemento de válvula puede consistir en un elemento del mismo tipo y/o un elemento complementario de la compuerta de válvula. Mientras que la compuerta de válvula es en general un elemento de válvula al menos parcialmente móvil, el elemento de válvula adicional es un elemento estático que ofrece, por ejemplo, una superficie de tope o un asiento para la compuerta de válvula. Sin embargo, según la invención se trata de un elemento de válvula adicional, preferiblemente del mismo tipo.

Preferiblemente, varias compuertas de válvula, especialmente tres o cuatro compuertas de válvula, pueden ensamblarse para formar una válvula.

En la válvula las compuertas de válvula o la compuerta de válvula y el elemento de válvula están dispuestos preferiblemente de modo que bloqueen la abertura de la válvula en una posición de compuerta, preferiblemente en una posición de reposo en la que no se ejerce presión sobre las compuertas. Tan pronto como se ejerce una presión sobre una compuerta, la compuerta abandona la posición de reposo y la válvula ofrece un paso. Si disminuye nuevamente la presión, se vuelven a cerrar entonces las compuertas de válvula.

La compuerta de válvula está configurada preferiblemente de modo que se puedan ensamblar cuatro compuertas de válvula para formar una válvula con una abertura de entrada de flujo preferiblemente de forma circular.

20

40

45

50

Las compuertas de válvula que se presentan y/o se fabrican individualmente ofrecen la posibilidad de una configuración libre. Pueden fabricarse, por ejemplo colarse, prensarse, espumarse o vulcanizarse, en, por ejemplo, moldes separados, de modo que no tiene que prestarse atención alguna durante la conformación a la demanda de espacio de elementos de válvula contiguos.

- Las compuertas de válvula pueden fabricarse también en forma de compuertas unidas una a otra. Pueden ser separadas después de la conformación y/o pueden ser conformadas como unidas una a otra de tal manera que se puedan ensamblar también, quedando unidas una a otra, para formar una válvula. Las compuertas de válvula según la invención se pueden fabricar, al menos en la zona de la abertura de válvula, con independencia de la zona de la abertura de otra compuerta de válvula.
- La compuerta de la válvula según la invención está constituida preferiblemente por un material elastómero o al menos lo contiene. La compuerta de válvula puede variar entonces su forma bajo presión y liberar con ello la abertura de la válvula. Por tanto, para la apertura y el cierre de la válvula no es necesario movimiento alguno de un elemento de válvula completo o de toda la compuerta de válvula, sino solamente una deformación. El proceso de apertura y cierre puede desarrollarse de una manera correspondientemente rápida.
- Una compuerta de válvula comprende al menos una zona de compuerta. La zona de compuerta define la abertura de la válvula.

Una compuerta de válvula comprende preferiblemente, además, una zona de cuello. Ventajosamente, la zona de cuello es de configuración más bien rígida y la zona de compuerta es más bien flexible. A este fin, el espesor del material de la compuerta de válvula puede ser mayor en la zona de cuello que en la zona de compuerta. La zona de cuello puede reforzarse también con otro componente de la válvula. A este fin, la zona de cuello puede estar configurada de modo que coopere con el componente adicional, ofreciendo, por ejemplo, una superficie de contacto. La zona de cuello puede estar realizada de modo que las zonas de cuello de compuertas de válvula formen en el estado formado una brida a través de la cual se pueda unir la válvula con un adaptador. El cuello puede estar realizado también en forma acortada, con lo que éste consiste únicamente en un elemento de unión con el adaptador; por ejemplo, la zona de cuello forma en el estado montado una ranura anular.

En una primera ejecución según la invención la compuerta de válvula está geométricamente sobredeterminada, especialmente en la zona de compuerta.

Sobredeterminación geométrica quiere decir en el presente caso que la compuerta de válvula, especialmente la zona de compuerta, cubre en el estado no montado un segmento mayor de la superficie en corte transversal de la válvula que en el estado montado, o bien que, en una válvula a base de elementos de válvula del mismo tipo, la suma de las superficies que cubren las compuertas de válvula, especialmente las zonas de compuerta de compuertas de válvula individuales no montadas, es mayor que la superficie del corte transversal o de la abertura de la válvula. En compuertas de válvula con cuello y zona de compuerta la zona de compuerta en el estado montado puede cubrir una superficie mayor que la que encierra la zona de cuello.

Esto puede conducir a que las zonas de compuerta de las compuertas de válvula en estado montado se solapen mutuamente por arriba o por abajo. Sin embargo, cuando los cantos de las compuertas de válvula en la zona de compuerta están realizados en forma roma, las compuertas chocan entonces una con otra en estado montado cuando está cerrada la válvula y ejercen presión una contra otra. Los cantos están configurados preferiblemente de modo que formen un cierre de sellado con el canto de una compuerta de válvula dispuesta en posición contigua.

5

10

15

20

25

Preferiblemente, la zona de compuerta está diseñada de modo que la zona de compuerta cubra en estado no montado una superficie por la cual corre el eje central de la válvula prefijado por la zona de cuello. En una válvula formada por compuertas de válvula del mismo tipo las compuertas de válvula chocan una contra otra en este eje en el estado cerrado. Las compuertas de válvula ensambladas para obtener un cierre de válvula presentan un pretensado en estado montado cuando está cerrada la válvula.

El pretensado proporciona una apertura y/o cierre definidos de las compuertas de válvula y hace también que las superficies de sellado en los cantos de las compuertas de válvula sean presionadas una sobre otra. Por tanto, se consigue también un cierre de válvula estanco para masas muy fluidas o incluso gaseosas.

En otra realización de la invención la compuerta de válvula presenta al menos un labio de corte, preferiblemente en la zona de compuerta, que en estado montado, estando cerrada la válvula, solapa por arriba o por abajo a un elemento de válvula contiguo, preferiblemente una compuerta de válvula adicional.

El labio de corte está configurado preferiblemente de modo que se reduzca el espesor del material al crecer la distancia con respecto a la zona de compuerta de la compuerta de válvula, es decir, hacia fuera. Esto cuida de que el labio de corte forme una arista de corte con la cual se interrumpa de manera definida la corriente de material de la masa que sale de la válvula cuando se cierran las compuertas de válvula.

Además, en el estado montado de la compuerta de válvula el labio de corte se desliza más fácilmente sobre o debajo del elemento de válvula contiguo al producirse un movimiento de las zonas de compuerta. Por tanto, el cierre de sellado de las compuertas de válvula es dificultado por los labios de corte.

Con ayuda de un labio de corte se corta la corriente del material a colar durante el cierre y todavía antes de un cierre definitivo de las compuertas de válvula, con lo que se produce un arranque de hilos.

Se puede fabricar primeramente una compuerta de válvula, por ejemplo por un procedimiento de fundición inyectada, y a continuación se puede aplicar, por ejemplo pegar, un labio de corte. Sin embargo, el labio de corte y la compuerta de válvula están realizados en una sola pieza, es decir que la compuerta de válvula se fabrica directamente con el labio de corte.

- 30 En otra forma de realización preferida de la invención la compuerta de válvula está construida en las zonas del borde de modo que dicha compuerta se ajuste herméticamente en estado montado a compuertas de válvula contiguas y en particular se ajuste en la zona de cuello estableciendo un acoplamiento de conjunción de forma en y/o sobre compuertas de válvula contiguas.
- La compuerta de válvula puede presentar para ello unas prolongaciones y/o unas aberturas que, en el estado montado, encajen en prolongaciones y/o aberturas correspondientes de elementos de válvula contiguos, especialmente otras compuertas de válvula. Un ajuste de sellado mutuo entre las compuertas de válvula, especialmente en la zona de cuello, impide que la masa a colar salga en la zona del borde de las compuertas de válvula y cuida de que dichas compuertas de válvula se abran únicamente en la zona de compuerta.
- En otra realización ventajosa de la invención la compuerta de válvula está construida de modo que la fuerza de flexión al abrir las compuertas sea constante y/o que la compuerta de válvula se abra bajo presión en toda su anchura. A este fin, los cantos de la compuerta de válvula orientados hacia fuera, especialmente en la zona de compuerta, están preferiblemente reforzados o bien está centralmente reforzada la zona de compuerta. El refuerzo se efectúa preferiblemente por medio de un agrandamiento del espesor del material, por ejemplo por medio de un nervio que esté dispuesto, por ejemplo, en el lado exterior de la zona de compuerta de la compuerta de válvula.
- La compuerta de válvula se abre entonces bajo presión de manera uniforme e irreversible, es decir que la superficie de la abertura de la válvula crece continua y uniformemente, esto es, sin saltos repentinos. En caso de que se reduzca la presión, la compuerta de válvula retorna nuevamente a su posición de partida y en estado montado la compuerta de válvula vuelve a cerrar entonces también la válvula de manera espontánea, es decir sin la aplicación de una fuerza exterior.
- Además, en una variante preferida las zonas de compuerta deberán realizar durante la apertura y el cierre un movimiento tal que la masa que circula por la válvula sea guiada de una manera determinada. La masa no deberá llegar, por ejemplo, al lado exterior de la válvula. Esto podría conducir, en ciertas circunstancias, a un ensuciamiento de la válvula, a un goteo posterior y/o a faltas de estanqueidad.

La compuerta de válvula puede estar construida de modo que la masa saliente escape de la tobera en forma de un

chorro liso.

5

10

30

35

50

Sin embargo, la compuerta de válvula puede estar construida también de tal manera que una masa que circule por la compuerta de válvula montada experimente un movimiento de vórtice. Por ejemplo, la compuerta puede realizar durante la apertura y el cierre un movimiento de giro y/o un movimiento de retorcimiento, con lo que se produce una torsión de la masa saliente. Esto puede ser originado por la presencia de un espesor diferente del material y/o unas propiedades diferentes del material (por ejemplo, módulo de elasticidad) dentro de la compuerta de válvula.

En particular, los cantos de la compuerta de válvula pueden estar configurados de tal manera y/o el recorrido del contorno de la compuerta de válvula puede estar configurado de tal manera que la masa saliente experimente un movimiento de vórtice al circular por la válvula. A este fin, por ejemplo, los cantos y/o los lados interiores de las compuertas de válvula (por ejemplo, estrías u hojas de guía dispuestas en forma de espiral o de hélice) pueden estar conformados de tal manera que la masa entre en rotación durante su circulación.

Particularmente para masas de alta viscosidad puede ser favorable que éstas experimenten un movimiento de vórtice para que se distribuyan rápida y uniformemente en el molde después de aparecer en el molde.

El recorrido del contorno de la compuerta de válvula contribuye también a una apertura y cierre uniformes de las compuertas de válvula. Preferiblemente, el recorrido, especialmente en la zona de compuerta, está configurado de tal manera que la fuerza de flexión al abrir la compuerta sea constante. Se deberá impedir una repentina sacudida de la zona de compuerta que, en ciertas circunstancias, pudiera conducir a que ya no se cierren las compuertas de válvula sin una contrapresión.

El cierre de válvula en una válvula según la invención está formado por elementos de válvula que se fabrican independientemente uno de otro al menos en la zona de compuerta y que presentan una geometría que produce un cierre de válvula fiable.

Las distintas compuertas de válvula pueden fabricarse al mismo tiempo y/o en forma de compuertas unidas una a otra. Para formar la válvula se utilizan preferiblemente elementos de válvula separados que, durante el montaje, se ponen en una relación espacial de uno con otro y se inmovilizan. La inmovilización puede ser soltable o permanente.

La organización de elementos de válvula separados permite mayores grados de libertad en la disposición. Los elementos de válvula, especialmente compuertas de válvula, pueden, por ejemplo, solaparse por abajo o por arriba y/o ponerse en una posición de pretensados uno respecto de otro.

El problema se resuelve, además, por medio de un sistema de válvula con una válvula como la descrita anteriormente, que presenta un adaptador y un elemento de fijación. El adaptador sirve para establecer la unión entre la máquina de colada y la válvula de dicha máquina y presenta un elemento de unión para establecer dicha unión, por ejemplo una rosca.

El elemento de fijación sirve para inmovilizar los elementos de válvula uno contra otro y/o contra el adaptador. El elemento de fijación puede consistir en una unión de pegadura, una unión de contracción o una unión de soldadura. Preferiblemente, el elemento de fijación consiste en una tuerca de capuchón, un elemento de unión por engatillado, un elemento de encastre o un elemento de apriete.

El sistema de válvula puede estar construido de modo que solo se le pueda montar o desmontar en estado ensamblado. A este fin, puede estar prevista, por ejemplo solamente en el adaptador o solamente en el elemento de fijación, una zona de ataque para una herramienta correspondiente, con cuya ayuda se pueda aplicar, retirar, fijar o soltar correctamente el sistema de válvula ensamblado, es decir, sin riesgo de daños.

El elemento de fijación y el adaptador pueden estar equipados con un seguro antigiro, por ejemplo con ranuras y nervios que encajan uno dentro de otro en estado montado y que discurren preferiblemente en la dirección axial o dirección de paso de la válvula. Éstos impiden que entre el elemento de fijación y el adaptador tenga lugar un movimiento de giro tan pronto como el elemento de fijación esté instalado sobre el adaptador. Por tanto, las fuerzas de giro aplicadas sobre el elemento de fijación se pueden transmitir al adaptador, sin que tenga lugar una torsión de los elementos de válvula.

Por consiguiente, un sistema de válvula ensamblado puede atornillarse en una máquina de colada, por ejemplo por medio de una herramienta que ataque en el elemento de fijación.

En una forma de realización ventajosa las compuertas de válvula se mantienen unidas por medio de un anillo intermedio, especialmente un anillo deslizante, que está dispuesto especialmente entre las compuertas de válvula y el elemento de fijación. El anillo intermedio aumenta la estabilidad de la estructura de la válvula y facilita el montaje. El anillo intermedio mejora, además, el sellado, de modo que sobre todo en la zona de cuello de las compuertas de válvula no se produce ninguna salida o entrada de material. El anillo intermedio puede estar equipado con una junta adicional y/o puede presentar al menos una ranura para recibir al menos un anillo de sellado.

El anillo consiste preferiblemente en un material en el que se origina poco rozamiento de deslizamiento entre el elemento de fijación y el anillo. Por tanto, al instalar el elemento de fijación no se transmiten fuerzas al anillo deslizante ni tampoco a las compuertas de válvula y no se produce especialmente ninguna torsión de las compuertas de válvula. Por tanto, la disposición de las compuertas de válvula no se modifica durante la inmovilización.

El anillo intermedio puede estar construido de modo que optimice el pretensado entre los elementos de válvula. Puede presentar, por ejemplo, una superficie interior cónica que se estreche contra la zona de compuerta de las compuertas de válvula, ejerza una presión concéntrica sobre las compuertas y, por tanto, incremente la presión de apriete de los cantos de las compuertas uno sobre otro.

Cuanto más se enchufe el anillo intermedio sobre las compuertas de válvula tanto más estrecho será el anillo intermedio en la zona de compuerta y tanto más alto será el efecto sobre el pretensado. Por tanto, éste puede incrementarse enchufando el anillo intermedio en mayor medida sobre las compuertas de válvula.

Por tanto, el pretensado puede ser ajustado por medio del asiento del anillo intermedio.

El anillo intermedio o anillo deslizante puede estar configurado como un anillo de apoyo que abrace a las compuertas de válvula y limite el movimiento de las zonas de compuerta y, por ejemplo, impida un sobreabatimiento.

El anillo intermedio puede configurarse en una sola pieza con el elemento de fijación, por ejemplo fabricando el elemento de fijación y el anillo intermedio por un procedimiento de fundición de varios componentes.

El adaptador puede presentar al menos un zócalo de material termoconductor en torno al cual se disponen las compuertas de válvula, especialmente en la zona de cuello.

20 El material a colar puede ser así atemperado hasta poco antes de la salida de la válvula. Por tanto, conserva una consistencia uniforme y permanente, así como unas propiedades de fluencia constantes.

El adaptador tiene preferiblemente una abertura central cilíndrica que termina en un zócalo cilíndrico. Las compuertas de válvula tienen zonas de cuello con superficies de apoyo en forma de segmentos cilíndricos, de modo que las compuertas de válvula pueden disponerse alrededor del zócalo y/o dentro del mismo y aplicarse a éste.

25 El adaptador puede presentar al menos una superficie de asiento para recibir un anillo de sellado.

El adaptador puede estar fijado de manera indisoluble en la máquina de colada, pudiendo, por ejemplo, estar soldado o fabricado en una pieza con una parte de la máquina de colada, tal como, por ejemplo, un pistón de colada. Sin embargo, es preferible que dicho adaptador pueda fijarse de manera recambiable. A este fin, el adaptador presenta un elemento de inmovilización, por ejemplo una brida o un elemento de abrochado automático, en el extremo que, en estado montado, queda yuelto hacia la máquina de colada.

El adaptador presenta preferiblemente una primera rosca para su fijación a la máquina de colada o a un componente asociado a la máquina de colada.

En otra realización preferida el adaptador presenta una segunda rosca para la fijación del elemento de fijación. Como alternativa, el adaptador puede presentar otros elementos de inmovilización que puedan actuar como una contrapieza y/o servir de acoplamiento para elementos de encastre o de apriete del elemento de fijación. El adaptador puede presentar también una superficie para una unión de pegadura o de soldadura con el elemento de fijación.

En otra realización preferida el adaptador presenta una primera rosca para su fijación a una máquina de colada o a un componente asociado a la máquina de colada y una segunda rosca para la fijación del elemento de fijación.

40 El adaptador se fabrica preferiblemente en aluminio.

5

30

35

45

El problema se resuelve también por medio de una máquina de colada con una válvula como la descrita anteriormente.

Los sistemas de válvula según la invención son adecuados especialmente para uso en un dispositivo de dosificación con volumen variable que presenta al menos una válvula de entrada y una válvula de salida. Las válvulas que cierran y abren de manera fiable aumentan la precisión de la dosificación.

El problema se resuelve también por medio de un procedimiento para formar un sistema de válvula como el anteriormente descrito, comprendiendo el procedimiento los pasos siguientes:

(i) disponer al menos una válvula como la anteriormente descrita en un adaptador, especialmente una compuerta de válvula como la anteriormente descrita, y otro elemento de válvula, especialmente al menos otra compuerta de

válvula, preferiblemente del mismo tipo en un adaptador; (ii) inmovilizar la disposición con un elemento de fijación.

Como paso adicional del procedimiento puede enchufarse un anillo intermedio sobre las compuertas de válvula ante de la inmovilización de la disposición con un elemento de fijación.

Como alternativa, se pueden unir primeramente el elemento de fijación y el anillo intermedio uno con otro, con lo que éstos se pueden inmovilizar como una unidad.

Las compuertas de válvula pueden unirse también primeramente con el anillo intermedio y solamente después con el elemento de fijación. El elemento de fijación y los elementos de válvula o compuertas de válvula forman entonces una unidad que se puede inmovilizar en el adaptador, por ejemplo atornillar sobre el adaptador.

El problema se resuelve también por medio de un procedimiento para adaptar una válvula a una masa a colar, que comprende los pasos de (i) seleccionar compuertas de válvula adecuadas y (ii) formar una válvula o un sistema de válvula como los anteriormente descritos.

Como pasos adicionales del procedimiento se pueden realizar previamente una suelta del elemento de fijación y/o una retirada de las compuertas de válvula.

Con el procedimiento según la invención se pueden, por un lado, reacondicionar válvulas gastadas y, por otro lado, adaptar válvulas a un nuevo uso de una máquina de colada. Una máquina de colada puede emplearse, por ejemplo, para una masa con otras propiedades de fluencia, de modo que se necesitan válvulas con otras propiedades de cierre, cuyas compuertas, por ejemplo, sean más fáciles de mover o sean más pesadas en su funcionamiento o bien aguanten una mayor presión estática de peso antes de que se supere el pretensado de las compuertas y se abran estas compuertas.

20 El problema se resuelve también por medio de un kit de construcción para formar un sistema de válvula que comprende un adaptador, un elemento de fijación y un gran número de compuertas de válvula diferentes como las descritas anteriormente, de modo que se pueda seleccionar en las compuertas de válvula un grupo de válvula que forme una válvula que sea idónea para una masa prefijada a colar.

Por tanto, las máquinas de colada para diferentes aplicaciones pueden estar equipadas con válvulas de máquina de colada que en principio son del mismo tipo. Mediante una selección de compuertas de válvula adecuadas se pueden consequir propiedades de cierre o de paso diferentes de las válvulas.

El problema se resuelve también por medio de un procedimiento para cambiar el equipamiento de una máquina de colada que comprende los pasos de: (i) retirar las válvulas viejas de la máquina de colada; (ii) instalar válvulas de la máquina de colada como las anteriormente descritas.

- 30 El problema se resuelve también por medio de un sistema de válvula como la anteriormente descrito, en el que el sistema de válvula presenta un adaptador y un elemento de fijación. El adaptador y el elemento de fijación sirven para recibir una válvula, especialmente como la descrita anteriormente. Según la invención, en el adaptador y/o en el elemento de fijación está previsto un seguro antigiro de tal manera que el elemento de fijación ya no pueda ser girado con respecto al adaptador tan pronto como el elemento de fijación esté montado en el adaptador.
- El elemento de fijación consiste especialmente en una tuerca de capuchón, un elemento de apriete o un elemento de pinzado, y el seguro antigiro puede materializarse, por ejemplo, por medio de una unión de ranura-lengüeta. El elemento de fijación y el adaptador pueden unirse también de modo que ya no sean posibles un movimiento mutuo y una suelta no destructiva, por ejemplo por pegadura o soldadura. Se proporciona entonces automáticamente un seguro antigiro.
- 40 Preferiblemente, el elemento de fijación presenta un perfil exterior que ofrece una superficie de ataque para una herramienta de montaje.

45

50

Es imaginable también un kit de construcción para montar sistemas de válvula como los anteriormente descritos, que comprenda al menos un adaptador, al menos un elemento de fijación y una herramienta. La herramienta y la superficie exterior del elemento de fijación están configuradas de tal manera que la herramienta puede cooperar con la superficie del elemento de fijación, y el sistema de válvula ensamblado puede ser agarrado, montado, soltado y/o inmovilizado con ayuda de la herramienta.

El problema se resuelve también por medio de un procedimiento para formar e instalar sistemas de válvula como los anteriormente descritos, que comprende los pasos de: ensamblar un adaptador y un elemento de fijación, y fijar el sistema de válvula ensamblado con ayuda de una herramienta que coopera con la superficie exterior del elemento de fijación y que preferiblemente no coopera con el adaptador.

Se explica seguidamente la invención con más detalle mediante ejemplos de realización y con ayuda de dibujos.

Muestran:

30

La figura 1, un primer ejemplo para una compuerta de válvula según la invención destinada a una válvula de máquina de colada, en una primera vista en perspectiva;

La figura 2, la compuerta de válvula según la figura 1 en una segunda vista en perspectiva;

5 La figura 3, la compuerta de válvula según la figura 1 en un corte axial;

La figura 4, la compuerta de válvula según la figura 1 en una vista en planta;

La figura 5, una representación esquemática de las partes integrantes de un primer sistema de válvula de máquina de colada en una vista en perspectiva;

La figura 6, una representación esquemática de una válvula según la invención con compuertas de válvula unidas una a otra:

La figura 7, una representación esquemática de elementos de válvula de un segundo ejemplo para una válvula según la invención, en una vista en perspectiva;

La figura 8, una representación esquemática de las partes integrantes de un segundo ejemplo para un sistema de válvula de máquina de colada, en una vista en perspectiva;

La figura 9, una representación esquemática de las partes integrantes de otro ejemplo para un sistema de válvula de máquina de colada, en una vista en perspectiva; y

La figura 10, una herramienta y un elemento de fijación en una representación en perspectiva.

La figura 1 muestra una compuerta de válvula 1 destinada a una válvula según la invención, en una primera vista en perspectiva tomada desde dentro.

20 La compuerta de válvula 1 posee una zona de cuello 2 y una zona de compuerta 3.

En la zona de cuello 2 la compuerta de válvula 1 presenta un rebajo 4 en el que es más pequeño el espesor 5 del material. El rebajo 4 ofrece una superficie de apoyo 6 para aplicar la compuerta de válvula 1 a un zócalo de un adaptador que no se muestra en la figura.

En la zona de compuerta 3 la compuerta de válvula 1 posee en un lado un labio de corte 7.

25 En estado montado, este labio de corte 7 solapa a la zona de compuerta de una compuerta de válvula contigua no mostrada.

La figura 2 muestra la compuerta de válvula 1 en una segunda vista en perspectiva tomada desde fuera.

Los cantos 8a, 8b de la compuerta de válvula 1 en la zona de compuerta 3 están reforzados, es decir, construidos con un mayor espesor del material. El refuerzo está diseñado de modo que la compuerta de válvula 1 provista de un labio de corte 7 no sea girada al abrirla bajo presión. Sin la compensación por medio del refuerzo, el lado de la compuerta de válvula en el que está instalado el labio de corte 7 tiene una rigidez más alta que la del otro lado en el que no está previsto ningún labio de corte. Por tanto, al abrir bajo una presión interior uniforme reaccionarían los dos cantos de una manera diferente, lo que conduciría a un fuerte giro no deseado de la compuerta.

Los cantos pueden construirse de tal manera que la masa a dosificar experimente durante su circulación un movimiento de vórtice preseleccionado. Si el chorro de la masa circulante debe ser lo más liso posible, los cantos se construyen entonces de tal manera que se impida un giro de las compuertas durante la apertura y el cierre. Si el chorro debe experimentar una torsión, las compuertas están configuradas entonces de tal manera que las compuertas abiertas conduzcan a una descarga de flujo rotativa alrededor del eje de descarga de flujo.

La figura 3 muestra la compuerta de válvula 1 en un corte axial. El recorrido del contorno 9 de la compuerta de válvula, especialmente en la zona de compuerta 3, está configurado de modo que la fuerza de flexión sea constante al aumentar la abertura de la válvula. La zona de la abertura al abrir las compuertas de válvula montadas bajo presión resulta ser así uniformemente más grande y no se produce ningún salto repentino de la zona de la abertura, por ejemplo por efecto de una violenta sacudida de las compuertas de válvula.

En el presente ejemplo de realización el contorno de la compuerta de válvula pasa de una zona 10 curvada con un primer radio R1 a una zona 12 curvada con un segundo radio R2 a través de una zona sustancialmente recta 11 (radio tendente a infinito o al menos muy grande), siendo el segundo radio R2 mayor que el primer radio R1.

La figura 4 muestra la compuerta de válvula 1 en vista en planta.

5

15

30

35

40

La compuerta de válvula 1 está geométricamente sobredeterminada. En el presente caso, la zona de compuerta 3 cubre un segmento mayor que el que encierra la zona de cuello 2.

La figura 5 muestra una representación esquemática de las partes integrantes de un sistema de válvula 110 en vista en perspectiva.

El sistema de válvula 110 comprende un adaptador 120, una válvula 100 constituida por cuatro compuertas de válvula 1, un anillo intermedio 130 y un elemento de fijación 140 en forma de una tuerca de capuchón.

El adaptador 120 posee una rosca para la fijación del adaptador 120 a un componente no mostrado asociado a la máquina de colada y una segunda rosca 122 para la unión con el elemento de fijación 140.

El adaptador 120 comprende, además, un zócalo cilíndrico 123 alrededor del cual se disponen las compuertas de válvula 1. El adaptador completo 120 está fabricado de un material termoconductor, aquí aluminio. Por tanto, la masa a colar puede atemperarse todavía en la válvula 100. Como alternativa, el adaptador puede fabricarse de PE.

Según la característica de fluencia de la masa y las distancias de las válvulas en una máquina de colada con un gran número de válvulas, el diámetro de la abertura asciende a 5-60 mm, preferiblemente 5-15 mm, y preferiblemente es de alrededor de 10 mm.

Las compuertas de válvula se fabrican, por ejemplo, con un termoplasto o un duroplasto o bien con NBR. Como alternativa, según el campo de aplicación, puede estar previsto también un refuerzo interior, por ejemplo un elemento metálico recubierto de material colado o un elemento vulcanizado de acero para muelles.

El anillo intermedio se fabrica como un anillo deslizante, por ejemplo con POM o PTFE.

La figura 6 muestra una representación esquemática de una válvula 100 según la invención con compuertas de válvula 1 unidas una a otra. Cuatro compuertas de válvula 1 del mismo tipo están unidas en la zona de cuello 2 de modo que se enganchan una a otra a manera de banda y se pueden colocar así fácilmente alrededor de un adaptador no mostrado en la figura.

La figura 7 muestra una representación esquemática de elementos de válvula 241, 242 de un segundo ejemplo para una válvula según la invención, en una vista en perspectiva. La válvula está constituida por un elemento de apoyo 241 sobre el cual se coloca una membrana 242.

El elemento de apoyo 241 comprende un mandril centralmente dispuesto 243 que está fijado con almas de retención 244 a una corona sujetadora 245.

La membrana 242 está constituida preferiblemente por un material elástico y presenta unas aberturas 246 a manera de hendiduras, de modo que se forman unas compuertas de válvula 201, por ejemplo tres compuertas como aquí. Las aberturas 246 a manera de hendiduras pueden producirse directamente durante el proceso de colada o de prensado o bien se cortan o se troquelan. En la zona de las aberturas 246 a manera de hendiduras la membrana 242 presenta un refuerzo 247 del material en donde es mayor el espesor de capa de la membrana 242. El refuerzo 247 del material mejora el sellado de las compuertas de válvula 201 con respecto a las almas 244 y al mandril 243 e impide que se desgarren las aberturas a manera de hendiduras.

En estado montado, la membrana 242 descansa sobre el elemento de apoyo 241.

En el ejemplo aquí mostrado las aberturas 246 a manera de hendiduras de la membrana se corresponden con las almas 244. En este caso, los cantos de las compuertas de válvula 201, es decir, las zonas engrosadas en las aberturas 247 a manera de hendiduras, chocan con las almas 244 y con el mandril 243. Las almas 244 presentan unas superficies de apoyo 248 a las que se aplican los cantos de las compuertas de válvula en estado cerrado. Se garantiza así un cierre hermético de la válvula.

La abertura de la válvula es bloqueada por las compuertas de válvula 201, el mandril 243 y las almas 244, siendo móviles únicamente las compuertas de válvula cuando se ejerce una presión.

En estado montado y también en estado cerrado, las compuertas de válvula 201 son ya presionadas y separadas un poco una de otra por el mandril 243 y las almas 244, es decir que en estado montado cubren una superficie más pequeña que en el estado no montado y están así geométricamente sobredeterminadas. Debido al presionado de separación las compuertas de válvula 201 experimentan un pretensado.

Si se ejerce una presión, las compuertas de válvula 201 son presionadas entonces para separarlas del mandril 243 y las almas 244, se libera al menos parcialmente la abertura de la válvula y se puede descargar masa.

50 El mandril 243 y las almas 244 están conformados preferiblemente de modo que, a ser posible, sean bañados por la

masa circulante bajo una pequeña resistencia y/o sin turbulencias.

10

20

25

Si disminuye la presión, las compuertas de válvula 201 se aplican entonces nuevamente al mandril 243 y a las almas 244, con lo que se cierra la abertura de la válvula y ya no sigue goteando masa alguna.

En estado cerrado, se genera el cierre hermético de la válvula por efecto del choque mutuo de un elemento fijo y un elemento móvil, puesto que las compuertas 201 se aplican a un alma 244 o al mandril 243. Al menos los elementos estacionarios apenas experimentan un desgaste, con lo que se crea una válvula de larga vida útil.

Como alternativa, en lugar de la membrana hendida 242 se pueden disponer también unas membranas individuales como las anteriormente descritas alrededor de un mandril, con lo que el cierre de la válvula se obtiene por efecto del choque mutuo de los cantos de las compuertas y por un contacto de las puntas de las compuertas con el mandril. Las almas de retención para el mandril no necesitan entonces ninguna superficie de apoyo.

La figura 8 muestra una representación esquemática de las partes integrantes de un segundo ejemplo para un sistema de válvula 210 de máquina de colada, en una vista en perspectiva.

El sistema de válvula 210 comprende un adaptador 220, una válvula 200, constituida por un elemento de apoyo 241 y una membrana 242, y un elemento de fijación 240 que puede engatillarse en el adaptador 220.

15 El adaptador 220 comprende, además, un zócalo cilíndrico 223 dentro del cual puede colocarse la válvula 210.

La fijación entre el adaptador 220 y la máquina de colada puede sellarse con un anillo de sellado 249.

La figura 9 muestra una representación esquemática de las partes integrantes de un segundo ejemplo para un sistema de válvula 310 de máquina de colada, en una vista en perspectiva.

El sistema de válvula 310 comprende un adaptador 320, una válvula 300, constituida por varias compuertas de válvula 301, y un elemento de fijación 340 que puede engatillarse en el adaptador 320.

El elemento de fijación 340, que se fabrica, por ejemplo, con un plástico, posee en su superficie interior una pinza 351 que, en estado montado, encaja en un rebajo correspondiente 352 del lado exterior del adaptador 320. La pinza 351 y el rebajo 352 están construidos de modo que el elemento de fijación inicialmente montado 340 ya no pueda retirarse del adaptador sin ser destruido o al menos sin una herramienta ni tampoco pueda ser girado con respecto a dicho adaptador. En el presente ejemplo las pinzas 351 y los rebajos 352 poseen superficies que están dispuestas tangencialmente al eje longitudinal 353 del sistema de válvula 310 y que impiden un giro del elemento de fijación montado 340 con respecto al adaptador 320.

La figura 10 muestra una herramienta 353 y un elemento de fijación 340.

El elemento de fijación 340 posee una superficie exterior perfilada 354, en el ejemplo mostrado un perfil exterior con simetría ternaria en el que puede encajar la herramienta 353. La herramienta 353 presenta para ello un contorno exterior 355 que casa con el perfil exterior 354 del elemento de fijación 340. Con ayuda de la herramienta 353 se puede aplicar, retirar, fijar o soltar, especialmente fijar a una máquina de colada o soltar de ésta, el sistema de válvula ensamblado completo 310.

El adaptador 320 puede fabricarse, por ejemplo, con aluminio y puede atornillarse a un componente correspondiente de una máquina de colada.

REIVINDICACIONES

- 1. Válvula, especialmente para su incorporación en una máquina de colada, en donde la válvula está formada por al menos dos compuertas de válvula (1) preferiblemente del mismo tipo,
- en donde la compuerta de válvula (1) presenta al menos una zona de compuerta (3) y tiene preferiblemente una zona de cuello (2),

caracterizada por que

5

15

30

la compuerta de válvula (1), especialmente en la zona de compuerta (3), está geométricamente sobredimensionada v/o

- la compuerta de válvula (1) presenta al menos un labio de corte (7), preferiblemente en la zona de compuerta (3), que, en estado montado y estando cerrada la válvula, solapa por arriba o por abajo a una compuerta de válvula contigua (1).
 - 2. Válvula según la reivindicación 1, **caracterizada** por que las compuertas de válvula (1) están construidas en las zonas del borde de modo que, en estado montado, se ajustan herméticamente a compuertas de válvula contiguas (1), ajustándose especialmente en una zona de cuello (2), mediante un acoplamiento de conjunción de forma, sobre y/o dentro de compuertas de válvula contiguas (1).
 - 3. Válvula según cualquiera de las reivindicaciones anteriores, caracterizada por que

los cantos (8a, 8b) de la compuerta de válvula (1), especialmente en una zona de compuerta (3), están reforzados, particularmente de tal manera que la fuerza de flexión al abrir la compuerta (1) es constante y/o la compuerta de válvula (1) se abre bajo presión en toda la anchura, y/o

el recorrido del contorno (9) de la compuerta de válvula, especialmente en una zona de compuerta (3), está configurado de modo que la fuerza de flexión es constante durante la apertura y/o la compuerta de válvula (1) se abre bajo presión en toda la anchura, y/o

la compuerta de válvula (1) está configurada de tal manera que una masa que circula por la compuerta de válvula montada experimenta un movimiento de vórtice.

- 4. Sistema de válvula con una válvula (100) según cualquiera de las reivindicaciones 1 a 3, **caracterizado** por que el sistema de válvula (110; 210; 310) presenta un adaptador (120; 220; 320) y un elemento de fijación (140; 240; 340), especialmente una tuerca de capuchón, un elemento de apriete o un elemento de pinzado.
 - 5. Sistema de válvula según la reivindicación 4, **caracterizado** por que el sistema presenta un anillo intermedio (130) mediante el cual se mantiene unidas las compuertas de válvula (1) y el cual está dispuesto especialmente entre las compuertas de válvula (1) y el elemento de fijación (140).
 - 6. Sistema de válvula según cualquiera de las reivindicaciones 4 ó 5, **caracterizado** por que el adaptador (120; 220) presenta al menos un zócalo (123; 223) de material termoconductor alrededor del cual están dispuestas unas compuertas de válvula (1), especialmente con una zona de cuello (2).
- 7. Máquina de colada con una válvula según cualquiera de las reivindicaciones 1 a 3, y/o un sistema de válvula según cualquiera de las reivindicaciones 4 a 6.
 - 8. Procedimiento para formar un sistema de válvula según cualquiera de las reivindicaciones 4 a 6, que comprende los pasos de
 - disponer al menos una válvula (100; 200; 300) según cualquiera de las reivindicaciones 1 a 3 en un adaptador (120; 220; 320),
- 40 inmovilizar la disposición con un elemento de fijación (140; 240; 340).
 - 9. Procedimiento para adaptar un sistema de válvula según cualquiera de las reivindicaciones 4 a 6 a una masa a colar, que comprende los pasos de
 - soltar el elemento de fijación (140; 240; 340),
 - retirar la válvula (100; 200; 300).
- seleccionar compuertas de válvula adecuadas (1; 201),
 - formar un sistema de válvula (110; 210; 310) según la reivindicación 9.

- 10. Kit de construcción para formar un sistema de válvula según la reivindicación 8, que comprende
- un adaptador (120; 320),

5

15

- un elemento de fijación (140; 340) y
- un gran número de compuertas de válvula diferentes (1) para formar una válvula según cualquiera de las reivindicaciones 1 a 3, de modo que se pueda seleccionar entre las compuertas de válvula (1; 301) un grupo de compuertas de válvula que forme una válvula que sea idónea para una masa prefijada a colar.
 - 11. Procedimiento para cambiar el equipamiento de una máquina de colada, que comprende los pasos de
 - retirar las válvulas viejas (100; 200; 300) de la máquina de colada;
- instalar válvulas (100; 200; 300) de la máquina de colada según cualquiera de las reivindicaciones 1 a 3 y/o instalar sistemas de válvula (110; 210; 310) de la máquina de colada según cualquiera de las reivindicaciones 4 a 6.
 - 12. Sistema de válvula según la reivindicación 4, **caracterizado** por que el sistema de válvula (110; 210; 310) presenta un adaptador (120; 220; 330) y un elemento de fijación (140; 240; 340), especialmente una tuerca de capuchón, un elemento de apriete o un elemento de pinzado, para recibir una válvula según cualquiera de las reivindicaciones 1 a 3, y en el adaptador (120; 220; 320) y/o en el elemento de fijación (140; 240; 340) está previsto un seguro antigiro de tal manera que el elemento de fijación (140; 240; 340) ya no pueda ser girado con respecto al adaptador (120; 220; 320) tan pronto como el elemento de fijación (140; 240; 340) esté montado en el adaptador (120; 220; 320).
 - 13. Procedimiento para formar e instalar sistemas de válvula (110; 210; 310) según cualquiera de las reivindicaciones 4 a 6 ó 12, que comprende los pasos de
- 20 ensamblar un adaptador (120; 220; 320) y un elemento de fijación (140; 240; 340),
 - fijar el sistema de válvula ensamblado con ayuda de una herramienta que coopera con la superficie exterior del elemento de fijación (140; 240; 340) y que preferiblemente no coopera con el adaptador (120; 220; 320).

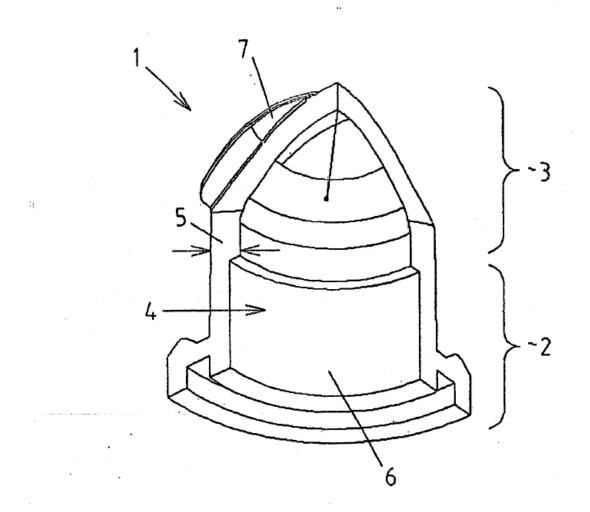


Fig. 1

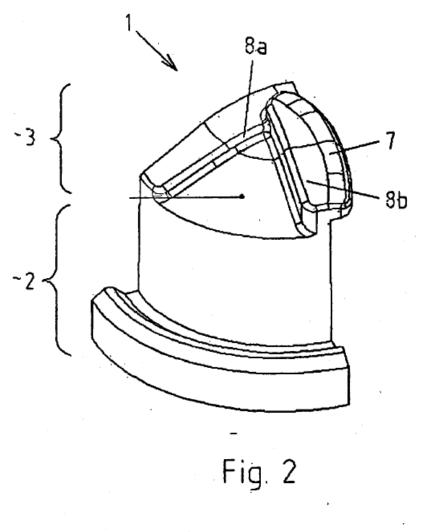


Fig. 3

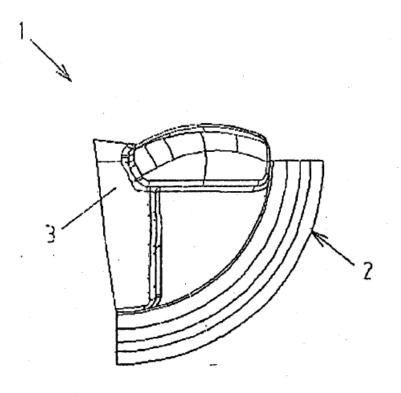
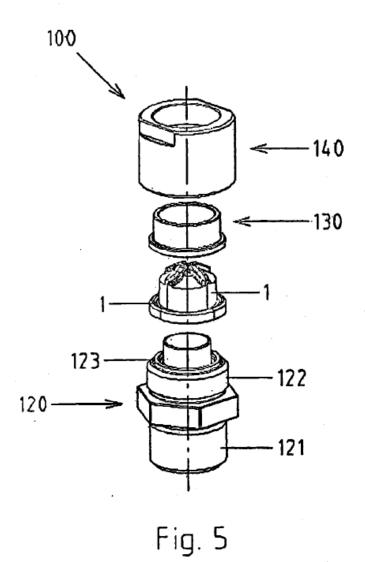



Fig. 4

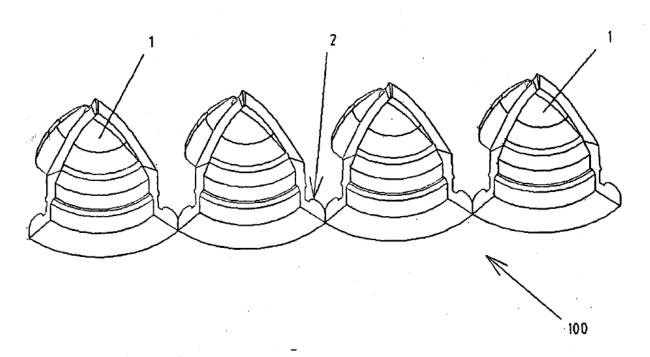


Fig. 6

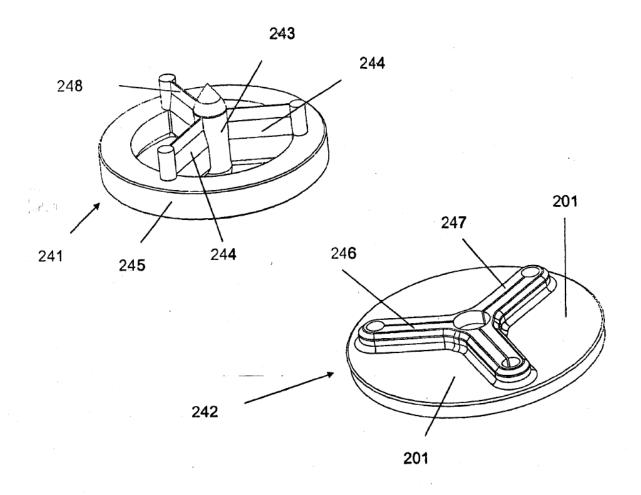


Fig. 7

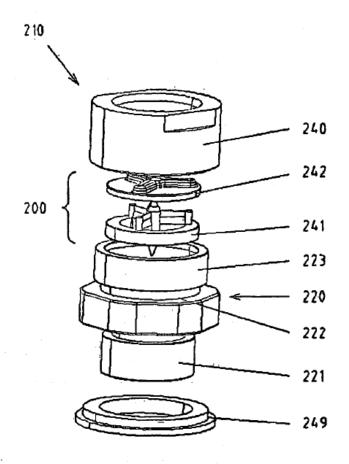


Fig. 8

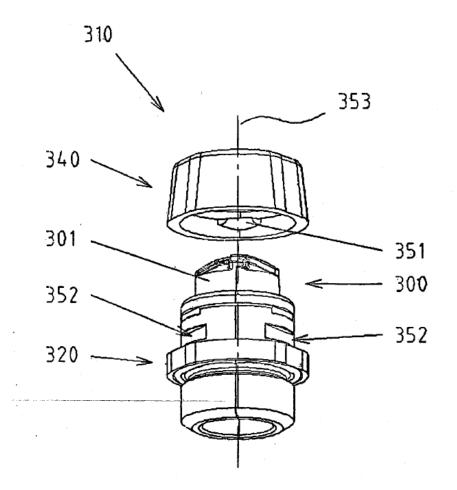


Fig. 9

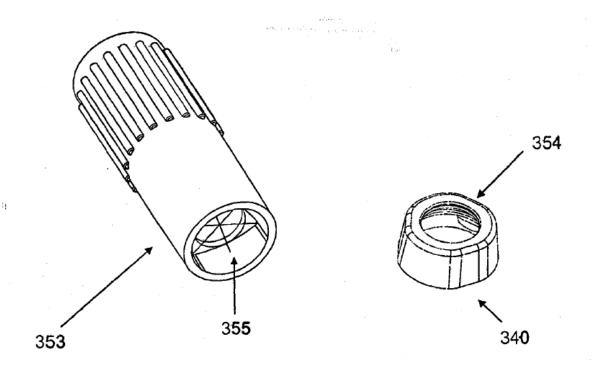


Fig. 10