

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 426 124

51 Int. Cl.:

C07H 17/08 (2006.01) A61K 31/70 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 23.10.2009 E 09745198 (3)
 97 Fecha y número de publicación de la concesión europea: 19.06.2013 EP 2358732

(54) Título: Procedimiento para sintetizar compuestos macrólidos

(30) Prioridad:

24.10.2008 US 108046 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.10.2013

(73) Titular/es:

MERIAL LTD. (100.0%) 3239 Satellite Blvd. Duluth, GA 30096, US

(72) Inventor/es:

MENDES, ZITA; HENRIQUES, ANTONIO CARLOS SILVA y HEGGIE, WILLIAM

(74) Agente/Representante:

PONTI SALES, Adelaida

DESCRIPCIÓN

Procedimiento para sintetizar compuestos macrólidos

5 Campo de la invención

[0001] La presente invención se refiere a un procedimiento para sintetizar un grupo de compuestos químicos que tienen actividad antibacteriana, que son útiles en el tratamiento de las infecciones bacterianas en mamíferos. De forma más específica, la invención se refiere a procedimientos para sintetizar los compuestos macrólidos, por 10 ejemplo, gamitromicina.

[0002] Incluso de forma más específica, la invención se refiere a un procedimiento para producir gamiromicina utilizando una novedosa configuración de catalizadores, estructuras químicas, y/o procedimientos.

15 **[0003]** La presente invención proporciona también un procedimiento novedoso para inhibir la degradación a la vez que se aísla una estructura de una composición farmacéutica.

Antecedentes de la invención

- 20 [0004] Los macrólidos son un grupo de compuestos químicos, algunos de los cuales tienen actividad antibacteriana y son útiles en el tratamiento de infecciones bacterianas en mamíferos. Los antibióticos macrólidos incluyen los que tienen un anillo de lactona de muchos miembros a los cuales se unen una o más moléculas de desoxiazúcares. Estos antibióticos son generalmente bacteriostáticos, pero se ha demostrado también que son bactericidas para algunos organismos. Los antibióticos macrólidos son eficaces frente a cocos y bacilos gram positivos, aunque algunos de ellos poseen alguna actividad frente a algunos organismos gram-negativos. Los antibióticos macrólidos ejercen su actividad bacteriostática inhibiendo la síntesis de proteínas bacterianas. ("Goodman & Gillman's the Pharmacological Basis of Therapeutics," 9ª ed., J.G. Hadman & L.E. Limbird, eds., ch. 47, pp. 1135-1140, McGraw-Hill, Nueva York (1996)).
- Como clase, los macrólidos tienden a ser incoloros y usualmente cristalinos. Los compuestos son generalmente estables en disolución casi neutra, pero pueden ser menos estables en disoluciones ácidas o básicas. Los precursores de los compuestos macrólidos utilizados en el procedimiento de la invención (por ejemplo, (9E)-9-desoxi-9-hidroxiiminoeritromicina A (a partir de ahora en el presente documento "Estructura 1"); 9-(Z)-eritromicina oxima (a partir de ahora en el presente documento "Estructura 2"); y 9-deoxo-12-desoxi-9,12-epoxi-8a,9-didehidro-8a-aza-8a homoeritromicina A (a partir de ahora en el presente documento "Estructura 3") se han descrito en las Patentes de los Estados Unidos Nos 5,202.434 y US 5.985.844. Además Yang y col., Tetrahedron Letters, 1994, 35(19), 3025-3028 y Djokic y col., J. Chem. Soc. Perkin Trans. 1, 1986, 1881-1890 describen la síntesis de compuestos macrólidos que usan estos compuestos como intermedios. Sin embargo, la síntesis y aislamiento de compuestos macrólidos tales como gamitromicina requiere normalmente múltiples extracciones y separaciones de 40 fase.

[0006] Por tanto, existe todavía una necesidad de simplificar la síntesis y el aislamiento de macrólidos así como de aumentar la estabilidad de los macrólidos y de sus intermedios.

45 **[0007]** La cita o la identificación de cualquier documento en esta solicitud no es una declaración de que dicho documento está disponible como la técnica anterior a la presente invención.

Resumen de la invención

- 50 **[0008]** La presente invención se refiere a un procedimiento novedoso para sintetizar compuestos macrólidos. Una realización de la presente invención puede incluir permitir que prosigan múltiples reacciones químicas sin el aislamiento de intermedios químicos. Por ejemplo, un compuesto químico puede reducirse y posteriormente alquilarse sin aislamiento de los intermedios químicos. De esta manera, se pueden producir múltiples reacciones en un recipiente de reacción lo que puede dar lugar a una considerable disminución en el tiempo de ciclo del 55 procedimiento. En una realización alternativa, se pueden aislar uno o más de los intermedios antes de la reacción.
 - [0009] En una realización (9E)-9-desoxi-9-hidroxiiminoerithromicina A (a partir de ahora en el presente documento "Estructura 1") puede isomerizarse para formar 9-(Z)-eritromicina oxima (a partir de ahora en el presente documento "Estructura 2"). En algunas realizaciones, se puede utilizar una reordenación para convertir la 9-(Z)-

eritromicina oxima en 9-deoxo-12-desoxi-9,12-epoxi-8a,9-didehidro-8a-aza-8a homoeritromicina A (a partir de ahora en el presente documento "Estructura 3"). La reducción y la alquilación se pueden utilizar para convertir la 9-deoxo-12-desoxi-9,12-epoxi-8a,9-didehidro-8a-aza-8a homoeritromicina A en gamitromicina. En otra realización, se puede reducir la cantidad de subproductos resultantes de las destilaciones y lavados.

[0010] Estas y otras realizaciones se dan a conocer o son evidentes a partir de, y quedan abarcadas por, la siguiente Descripción Detallada.

[0011] Además, una realización de la invención puede incluir el aislamiento de un intermedio en condiciones 10 que están controladas para inhibir la degradación del intermedio.

[0012] Se resalta que, en esta divulgación, y particularmente en las reivindicaciones y/o los párrafos, términos tales como "comprende", "comprendido", "que comprende" y similares pueden tener el significado atribuido a estos en la Ley de Patentes de los Estados Unidos; por ejemplo, pueden significar "incluye", "incluido", "que incluye", y similares; y los términos tales como "que consta esencialmente de" y "que consiste esencialmente en" tienen el significado adscrito a los mismos en la Ley de Patentes de los Estados Unidos, por ejemplo permiten no enumerar los elementos de forma explícita, pero excluyen los elementos que se encuentran en la técnica anterior y que afectan a una característica básica o novedosa de la invención.

20 Breve descripción de los dibujos

[0013] La siguiente descripción detallada, que se proporciona por medio de ejemplos, pero que no se pretende que limite la invención únicamente a las realizaciones específicas descritas, se puede comprender mejor junto con los dibujos que la acompañan, en que:

La FIG. 1 representa gráficamente las estructuras químicas implicadas en un procedimiento para sintetizar gamitromicina.

La FIG. 2 representa gráficamente las estructuras químicas de los productos de degradación de la Estructura 3 en 30 un procedimiento para sintetizar gamitromicina.

La FIG. 3 representa gráficamente una traza de HPLC de una muestra de la Estructura 3 aislada.

La FIG. 4 representa gráficamente una traza de HPLC de una muestra de la Estructura 7 aislada obtenida utilizando 35 hidrogenación en condiciones ácidas.

La FIG. 5 representa gráficamente una traza de HPLC de una muestra de la Estructura 7 aislada obtenida utilizando hidrogenación en condiciones menos ácidas.

40 La FIG. 6 representa gráficamente una traza de HPLC de una muestra de la Estructura 8 (Gamitromicina).

La FIG. 7 representa gráficamente una traza de HPLC de una muestra de gamitromicina aislada.

La FIG. 8 representa gráficamente un revestimiento de una traza de HPLC de un procedimiento de síntesis 45 convencional y una traza de HPLC del procedimiento descrito en el presente documento

Descripción detallada

[0014] Por claridad, la numeración de las lactonas macrocíclicas y las lactamas macrocíclicas descritas en el presente documento utilizará la numeración del anillo utilizada en la Patente de los Estados Unidos 5.202.434, que se incorpora en el presente documento por referencia en su totalidad. La numeración del anillo del anillo de la eritromicina A lactona que se muestra a continuación se mantendrá a lo largo de este documento para los compuestos descritos con un anillo de 14 miembros. De manera similar, la numeración de la lactama descrita de 15 miembros que se muestra a continuación se utilizará para los compuestos descritos en el presente documento con 55 un anillo de 15 miembros

Eritromicina A

Anillo de 15 miembros

Lactama

Definiciones

5 **[0015]** Los términos utilizados en el presente documento tienen su significado acostumbrado en la técnica a no ser que se especifique otra cosa. Los restos orgánicos mencionados en las definiciones de las variables de fórmula (I) o (II) son -similares al término halógeno –términos colectivos para listados individuales de los miembros individuales del grupo-. El prefijo $C_n - C_m$ indica en cada caso el número posible de átomos de carbono en el grupo.

10 **[0016]** El término "alquilo" tal como se usa en el presente documento, se refiere a hidrocarburos primarios, secundarios o terciarios, saturados lineales, ramificados, cíclicos, que incluyen aquellos que tienen 1 a 20 átomos, en algunas realizaciones, los grupos alquilo incluirán grupos alquilo C₁-C₁₂, C₁-C₁₀, C₁-C₈, C₁-C₆ o C₁-C₄. Los ejemplos de alquilo C₁-C₁₀ incluyen, pero no se limitan a, metilo, etilo, propilo, 1-metiletilo, butilo, 1-metilpropilo, 2-metilpropilo, 1,1-dimetiletilo, pentilo, 1-metilbutilo, 2-metilbutilo, 3-metilbutilo, 2,2-dimetilpropilo, 1-etilpropilo, hexilo,

15 1,1-dimetilpropilo, 1,2-dimetilpropilo, 1-metilpentilo, 2-metilpentilo, 3-metilpentilo, 4-metilpentilo, 1,1-dimetilbutilo, 1,2-dimetilbutilo, 1,3-dimetilbutilo, 2,2-dimetilbutilo, 2,3-dimetilbutilo, 3,3-dimetilbutilo, 1-etillbutilo, 2-etilbutilo, 1,1,2-trimetilpropilo, 1,2,2-trimetilpropilo, 1-etil-1-metilpropilo, 1-etil-2-metilpropilo, heptilo, octilo, 2-etilhexilo, nonilo y decilo y sus isómeros. Alquilo C₁-C₄ significa, por ejemplo, metilo, etilo, propilo, 1-metiletilo, butilo, 1-metilpropilo, 2-metilpropilo o 1,1-dimetiletilo.

20

[0017] El término "alquenilo" se refiere a cadenas de carbono lineales y ramificadas que tienen al menos un

doble enlace carbono-carbono. En algunas realizaciones, los grupos alquenilos pueden incluir grupos alquenilo C2-C20. En otras realizaciones, alquenilo incluye grupos alquenilo C2-C12, C2-C10, C2-C8, C2-C6 o C2-C4. En una realización de alquenilo, el número de dobles enlaces es 1-3, en otra realización de alquenilo, el número de dobles enlaces es uno o dos. Se contemplan también otros intervalos de dobles enlaces carbono-carbono y numerosos carbonos dependiendo de la localización del resto alquenilo en la molécula. Los grupos "alquenilo C2-C10 pueden incluir más de un doble enlace en la cadena. Los ejemplos incluyen, pero no se limitan a etenilo, 1-propenilo, 2-propenilo, 1-metil-etenilo, 1-butenilo, 2-butenilo, 3-butenilo, 1-metil-1-propenilo, 2-metil-1-propenilo, 2-metil-2-propenilo, 2-metil-2-propenilo, 2-metil-2-propenilo, 1-metil-2-butenilo, 3-metil-1-butenilo, 1-metil-2-butenilo, 3-metil-3-butenilo, 1,1-dimetil-2-propenilo, 1,2-dimetil-1-propenilo, 1,2-dimetil-2-propenilo, 1-etil-1-propenilo, 1-etil-1-propenilo, 1-etil-1-pentenilo, 3-metil-1-pentenilo, 2-metil-1-pentenilo, 3-metil-1-pentenilo, 2-metil-1-pentenilo, 3-metil-1-pentenilo, 2-metil-1-pentenilo, 3-metil-3-pentenilo, 3-metil-3-pentenilo, 3-metil-3-pentenilo, 4-metil-3-pentenilo, 3-metil-3-pentenilo, 2-metil-3-pentenilo, 1,2-dimetil-3-butenilo, 1,2-dimetil-3-butenilo, 1,2-dimetil-3-butenilo, 1,2-dimetil-3-butenilo, 1,2-dimetil-3-butenilo, 1,3-dimetil-3-butenilo, 1,3-dimetil-3-butenilo, 1,3-dimetil-3-butenilo, 3,3-dimetil-3-butenilo, 2,3-dimetil-3-butenilo, 2-etil-3-butenilo, 2-etil-3-butenilo, 1,1-etil-2-propenilo, 1-etil-2-propenilo.

"Alquinilo" se refiere a cadenas de carbono lineales y ramificadas que tienen al menos un triple enlace carbono-carbono. En una realización de alquinilo, el número de triples enlaces es 1-3; en otra realización de alquinilo, el número de triples enlaces es uno o dos. En algunas realizaciones, los grupos alquinilo incluyen grupos alquinilo a partir de C₂-C₂₀. En otras realizaciones, los grupos alquinilo pueden incluir grupos alquinilo C₂-C₁₂, C₂-C₁₀, C₂-C₈, C₂-C₆ o C₂-C₄. Se contemplan también otros intervalos de triples enlaces carbono-carbono y numerosos carbonos dependiendo de la localización del resto alquinilo en la molécula. Por ejemplo, el término "alquinilo C₂-C₁₀" tal como se usa en el presente documento se refiere a un grupo hidrocarburo insaturado de cadena línea o ramificada que tiene de 2 a 10 átomos de carbono y que contiene al menos un triple enlace, tal como etinilo, prop-1-in-1-ilo, prop-2-in-1-ilo, nbut-1-in-1-ilo, n-but-1-in-3-ilo, n-but-1-in-4-ilo, n-pent-1-in-1-ilo, n-pent-1-in-3-ilo, n-pent-1-in-3-ilo, n-pent-1-in-4-ilo, n-pent-1-in-3-ilo, n-hex-1-in-1-ilo, n-hex-1-in-1-i

(a) "Arilo" se refiere a un grupo carbocíclico aromático monovalente de entre 6 a 14 átomos de carbono que tiene un único anillo o múltiples anillos condensados. En algunas realizaciones, los grupos arilo incluyen grupos arilo C₆-C₁₀. Los grupos arilo incluyen, pero no se limitan a, fenilo, bifenilo, naftilo, tetrahidronaftilo, fenilciclopropilo e indanilo. Los grupos arilo pueden estar no sustituidos o sustituidos por uno o más restos seleccionados entre halógeno, ciano, nitro, hidroxi, mercapto, amino, alquilo, alquenilo, alquinilo, cicloalquilo, cicloalquenilo, haloalquilo, haloalquenilo, haloalquinilo, halocicloaquilo, halocicloalquenilo, alcoxi, alqueniloxi, alquiniloxi, haloalqueniloxi, haloalqueniloxi, cicloalcoxi, cicloalqueniloxi, halocicloalqueniloxi, halocicloalqueniloxi, alquilitio, haloalqueniloxi, haloalqueniloxi, alquilitio, haloalqueniloxi, haloalquenilsulfinilo, haloalquinilsulfinilo, alquilsulfinilo, alquenilsulfinilo, alquinilsulfinilo, haloalquinilsulfinilo, haloalquinilsulfinilo, alquilamino, alquenilsulfinilo, alquinilsulfonilo, haloalquinilsulfinilo, alquilamino, alquenilamino, di(alquinil)amino, di(alquenil)amino, o trialquilsililo.

[0020] El término "aralquilo" se refiere a un grupo arilo que está unido al compuesto parental a través de un puente de alquileno dirradical, $(-CH_2-)_m$ en el que n es 1-12 y en el que "arilo" es tal como se ha definido anteriormente.

50

[0021] "Heteroarilo" se refiere a un grupo aromático monovalente de entre 1 a 15 átomos de carbono, preferiblemente entre 1 a 10 átomos de carbono, que tiene uno o más heteroátomos de oxígeno, nitrógeno, y azufre en el anillo, preferiblemente 1 a 4 heteroátomos, o 1 a 3 heteroátomos. Los heteroátomos de nitrógeno y azufre pueden oxidarse opcionalmente. Dichos grupos heteroarilo pueden tener un único anillo (por ejemplo, piridilo o furilo)
55 o múltiples anillos condensados con la condición de que el punto de unión sea a través de un átomo del anillo de heteroarilo. Los heteroarilos preferidos incluyen piridilo, piridazinilo, pirimidinilo, pirazinilo, triazinilo, pirrolilo, indolilo, quinolinilo, isoquinolinilo, quinazolinilo, quinoxalinilo, furanilo, tiofenilo, furilo, pirrolilo, imidazolilo, isoxazolilo, pirazolilo benzofuranilo, y benzotiofenilo. Los anillos de heteroarilo pueden estar sustituidos o no sustituidos por uno o más restos como los descritos anteriormente para arilo.

[0022] En algunas realizaciones, la invención puede incluir las sales farmacéuticamente aceptables o veterinariamente aceptables de los compuestos que se muestran en la Figura 1. Dichas sales se preparan generalmente como sales de adición de ácido combinando un compuesto macrólido con uno a tres equivalentes de 5 un ácido adecuado en un disolvente inerte. La sal se recupera por evaporación del disolvente o por filtración si la sal precipita de forma espontánea, o mediante precipitación utilizando un cosolvente o un cosolvente no polar seguido por filtración. Las sales pueden incluir, pero no se limitan a, acetato, bencenosulfonato, benzoato, bicarbonato, bisulfato, bitartrato, borato, bromuro, calcio, edetato de calcio, edentato, camsilato, carbonato, cloruro, clavulanato, citrato, diclorhidrato, edentato, edisilato, estolato, esilato, etilsuccinato, fumarato, gluceptato, glucoheptonato, lactato, lactobionato, glutamato, glocolilarsanilato, hexilresorcinato, hidrabamina, bromhidrato, clorhidrato, yoduro, isotionato, lactato, lactobionato, laurato, malato, maleato, mandelato, mesilato, metilsulfato, mucato, napsilato, nitrato, oleato, oxalato, pamoato (embonato), palmitato, pantotenato, fosfato/difosfato, poligalacturonato, salicilato, estearato, subacetato, succinato, tantrato, teoclato, tosilato, trietyoduro, valerato y/o sus combinaciones.

15 **[0023]** En una realización, la Estructura 1 se puede isomerizar para formar la Estructura 2 tal y como se muestra en la Figura 1. En algunas realizaciones, la isomerización puede llevarse a cabo en presencia de uno o más reactivos. Los reactivos adecuados incluyen, pero no se limitan a, disolventes y bases. Los disolventes adecuados para la transformación pueden ser disolventes próticos o apróticos comunes conocidos en la técnica. La siguiente lista de reactivos que se proporciona a continuación es ilustrativa, y resultará evidente para una persona experta en 20 la técnica que no se deberían excluir otras bases y disolventes conocidos en la técnica o que se encuentran aún por descubrir.

[0024] Las bases adecuadas incluyen, pero no se limitan a, hidróxidos, que incluyen, pero no se limitan a, hidróxido de litio, hidróxido de sodio, hidróxido de potasio, hidróxido de cesio, hidróxido de calcio, hidróxido de magnesio, hidróxido de tetrametilamonio, hidróxido de benciltrimetilamonio, hidróxido de tetrabutilamonio, y similares, los alcóxidos incluyen, pero no se limitan a, metóxido de litio, etóxido de litio, isopropósido de litio, n-butóxido de litio, sec-butóxido de litio, metóxido de sodio, etóxido de sodio, n-propóxido de sodio, iso-propóxido de sodio, n-butóxido de sodio, sec-butóxido de sodio, terc-butóxido de sodio, trimetilsilanoato de sodio, metóxido de potasio, etóxido de potasio, terc-butóxido de potasio, terc-butóxido de magnesio, etóxido de titanio (IV), isopropóxido de titanio (IV), metóxido de benciltrimetilamonio, y similares; carbonatos que incluyen, pero no se limitan a, carbonato de potasio, carbonato de cesio, carbonato de sodio, y similares, amidas que incluyen, pero no se limitan a, amida de litio, dimetilamida de litio, diisopropilamida de litio, diciclohexilamida de litio, bis8trimetilsilil) amida de litio, amida de sodio bis(trimetilsilil)amida de potasio, y similares, aminas que incluyen, pero no se limitan a, 1,1,3,3-tetrametil guanidina, I,8-diazabiciclo[5,4,0]-undec-7-eno, 1,8-bis(dimetilamino)-naftaleno), y similares, e hidruros que incluyen, pero no se limitan a, hidruro de litio, hidruro de sodio, hidruro de potasio, y similares.

[0025] Los disolventes adecuados incluyen aquellos disolventes miscibles con agua así como aquellos que no son miscibles con agua. En algunas realizaciones, los disolventes adecuados incluyen, pero no se limitan a, agua, 40 metanol, etanol, isopropanol, butanol normal, sec-butanol, terc-butanol, dietil éter, tetrahidrofurano, dimetoxietano, tolueno, diclorometano, cloroformo, dimetilformamida, dimetilacetamida, 1,3-dimetil-2-imidazolidinona, 1-etil-2-pirrolidinona, 1-metil-2-pirrolidinona, hexametilfosforamida, nitrometano, acetonitrilo, dioxano, piridina, dimetil sulfóxido, y similares, y/o combinaciones de los mismos.

45 **[0026]** En una realización, la Estructura 1 puede reaccionar con una base en presencia de un disolvente para formar la Estructura 2. En una realización, la base puede ser hidróxido de litio y el disolvente puede ser etanol. En determinadas realizaciones, se utilizan hidratos de la base, tal como monohidrato de litio.

[0027] En algunas realizaciones, la optimización del procedimiento de la isomerización puede incluir el uso de una combinación de base y disolvente suficiente para desprotonar el grupo hidroxiimino (oxima) de la Estructura 1.
 5 En una realización, se pueden controlar las condiciones de reacción para estabilizar el anión de la oxima durante el periodo de tiempo necesario para completar el procedimiento de isomerización.

[0028] En otra realización, se puede crear una condición de equilibrio tras la adición de la base a la Estructura 1. Una realización puede incluir la protonación de los aniones de la oxima para dar la mezcla de producto de la 10 oxima neutra a partir de la cual se puede aislar la Estructura 2 mediante cristalización, mediante cromatografía seguida de cristalización, o mediante cristalización seguida por cromatografía. Las cantidades relativas de la Estructura 1 y la Estructura 2 en la mezcla de equilibrio pueden controlarse mediante numerosos factores. Estos factores pueden incluir, pero no se limitan a, la fuerza y la cantidad del reactivo base, el tamaño y la polarizabilidad del contraión, el disolvente de reacción, y/o la temperatura de reacción.

15

[0029] En algunas realizaciones, se puede llevar a cabo la reacción de isomerización a una concentración de aproximadamente 1% a aproximadamente 25% en peso de la Estructura 1/volumen de disolvente. En otras realizaciones, la concentración de la Estructura 1 puede ser aproximadamente 5% a aproximadamente 25%, aproximadamente 5% a aproximadamente 15%, o aproximadamente 7% a aproximadamente 12% en peso de la 20 Estructura 1/volumen de disolvente. En una realización preferida, el peso de la Estructura 1/volumen de disolvente puede ser aproximadamente 10%.

[0030] En algunas realizaciones, la cantidad de base utilizada puede estar en un intervalo de entre aproximadamente 1 a aproximadamente 10 equivalentes molares basándose en la cantidad de la Estructura 1 de 25 partida. En otras realizaciones, la cantidad de base puede estar en un intervalo de aproximadamente 1 a aproximadamente 3 equivalentes molares. En una realización preferida, el procedimiento puede incluir utilizar una cantidad de base que tiene un valor de aproximadamente 2 equivalentes molares.

[0031] En algunas realizaciones, se puede vigilar la temperatura de reacción. En una realización, se pueden controlar las condiciones de reacción para mantener una temperatura en un intervalo de entre aproximadamente -10° C a aproximadamente 80° C. La temperatura puede mantenerse en un intervalo de entre aproximadamente 10° C a aproximadamente 70° C en una realización. En otra realización, se puede mantener una temperatura de reacción en un intervalo entre aproximadamente 15° C a aproximadamente 60° C. Otra realización puede incluir mantener una temperatura de reacción en un intervalo de entre aproximadamente 20° C a aproximadamente 30° C. Algunas realizaciones puede incluir mantener una temperatura en un intervalo entre aproximadamente 22° C a aproximadamente 25° C.

[0032] En algunas realizaciones, el tiempo de reacción puede variar, se puede dejar avanzar la reacción durante aproximadamente 0,5 horas hasta aproximadamente 20 días. Otra realización puede incluir dejar avanzar la reacción durante aproximadamente 1 hora hasta aproximadamente 15 días. En otras realizaciones, el tiempo de reacción puede estar en un intervalo de entre aproximadamente 3 horas a aproximadamente 5 días. Alternativamente, un tiempo de reacción puede estar en un intervalo de entre aproximadamente 6 horas a

aproximadamente 24 horas en una realización. Además, una realización puede incluir un tiempo de reacción de aproximadamente 10 horas hasta aproximadamente 24 horas. En otra realización, un tiempo de reacción puede estar en un intervalo de entre aproximadamente 20 horas a aproximadamente 24 horas.

- 5 **[0033]** El equilibrio en estas reacciones puede verse afectado por numerosos factores que incluyen, pero no se limitan a, fuerza y cantidad de la base, el tamaño y a la polarización de un contraión, el disolvente de reacción, y/o la temperatura de reacción, se puede utilizar cualquier disolvente o base conocido en la técnica o que se encuentre aún por descubrir.
- 10 [0034] Una realización de la invención puede incluir el aislamiento de la Estructura 2 mediante cualquier medio adecuado. Por ejemplo, en una realización, se puede aislar la Estructura 2 utilizando la cristalización. En otras realizaciones, el aislamiento de la Estructura 2 puede incluir el uso de cromatografía seguido por cristalización o cristalización seguida por cromatografía. Será evidente para un experto en la técnica que la Estructura 2 o cualquier otro compuesto de la invención puede cristalizarse a partir de la disolución mediante cualquier procedimiento que reduzca de manera adecuada la solubilidad del compuesto en el disolvente. Los procedimientos de cristalización pueden incluir, pero no se limitan a, reducir la temperatura de una disolución, adición de un antidisolvente en el que el compuesto no es soluble, formación de una sal insoluble, y similares.

[0035] El procedimiento utiliza una reordenación para formar una mezcla de la Estructura 3 y la Estructura 5 a 20 partir de una oxima de Estructura 1 o Estructura 2.

Estructura 3

Estructura 4

La reordenación de Beckmann de las cetoximas (véase por ejemplo, "Comprehensive Organic Chemistry," I.O. Sutherland (Ed.), Pergamon Press, Nueva York, 1979, Vol. 2, págs. 398-400 y 967-968; y Gawley, Organic Reactions, 1988, 35, 1-420) puede conducir a carboxamidas y, en sistemas cíclicos, a lactamas con expansión en el anillo. En una realización, se puede utilizar una reordenación catalizada por ácido, tal como la reordenación de Beckman, para formar una mezcla a partir de la Estructura 2. Por ejemplo, en determinadas realizaciones de la invención, una mezcla resultante de una reordenación de Beckmann de la Estructura 2 puede incluir, pero no se limita a 9-deoxo-12-desoxi-9,12-epoxi-8a,9-didehidro-8a-aza-8a homoeritromicina A (a partir de ahora en el presente documento Estructura 3") y/o 9-deoxo-6-desoxi-6,9-epoxi-8a,9-didehidro-8a-aza-8a homoeritromicina A (a partir de ahora en el presente documento "Estructura 4").

[0036] Sin pretender quedar vinculado por teoría alguna, en una realización, el mecanismo de la reordenación de Beckmann puede implicar una conversión inicial del grupo hidroxilo de la oxima a un grupo saliente que a continuación se pierde con la migración simultánea del sustituyente del carbono de la oxima que está situado en dirección contraria al grupo saliente. En un medio acuoso, un catión de nitrilio intermedio formado de esta manera reacciona normalmente con agua para dar como resultado el producto de amida. El intermedio de nitrilio puede ser atrapado por otros nucleófilos adecuados conduciendo de esta forma a productos de imina, tales como imidatos y amidinas.

[0037] Se puede llevar a cabo la reordenación de Beckmann en condiciones variables que incluyen, pero no se limitan a, condiciones ácidas, básicas y neutras. Una realización puede incluir controlar las condiciones de reacción y/o los reactivos para dar lugar a proporciones variables de productos. Los reactivos ácidos comunes que 5 se pueden utilizar incluyen, pero no se limitan a, ácido sulfúrico, que incluye ácido sulfúrico concentrado, ácido polifosfórico, cloruro de tionilo, pentacloruro de fósforo, dióxido de azufre, ácido fórmico y/o combinaciones de los mismos. En algunas realizaciones, se puede producir una reordenación de Beckmann calentando la oxima con gel de sílice en un disolvente adecuado. Los disolventes adecuados incluyen, pero no se limitan a, disolventes aromáticos tales como tolueno o sileno. Una realización alternativa de una reordenación de Beckmann puede incluir 10 calentar la oxima en condiciones de oxidación suaves en un disolvente adecuado, incluyendo hexametilfosforamida.

[0038] En una realización, una reordenación de Beckmann puede incluir la O-sulfonilación inicial del grupo oxima con un agente sulfonilante adecuado. Los agentes sulfonilantes son bien conocidos en la técnica e incluyen, pero no se limitan a, un haluro de alquilsulfonilo, haluro de arilsulfonilo o anhídrido arilsulfónico. Se puede aislar un sulfonato de oxima intermedio formado de esta manera o se puede convertir in situ en los productos reorganizados. Se pueden llevar a cabo las reacciones de sulfonilación y reordenación en presencia de una base orgánica o inorgánica.

Algunas realizaciones pueden incluir reactivos sulfonilantes para efectuar la reordenación de la [0039] 20 Estructura 2 que incluyen, pero no se limitan a, cloruro de metanosulfonilo, cloruro de bencenosulfonilo, cloruro de 4acetamidobencenosulfonilo, cloruro de p-toluensulfonilo, anhídrido bencenosulfónico, anhídrido p-toluensulfónico, y/u otros reactivos sulfonilantes conocidos en la técnica o aún por descubrir. La reacción se puede llevar a cabo en presencia de una base inorgánica que incluye, pero no se limita a, bicarbonato de sodio o carbonato de potasio. De manera alternativa, en algunas reacciones, se puede producir la reacción en presencia de una base orgánica que 25 incluye, pero no se limita a, piridina, 4-dimetillaminopiridina, trietilamina, N,N-diisopropiletilamina, y/o cualquier base orgánica conocida en la técnica o aún por descubrir. Los disolventes adecuados pueden incluir, pero no se limitan a, mezclas acuosas tales como una disolución acuosa de acetona o una disolución acuosa de dioxano y disolventes orgánicos tales como diclorometano, cloroformo, acetato de etilo, dietil éter, tetrahidrofurano, tolueno, acetonitrilo, piridina, y similares. Además, se puede usar una mezcla de disolventes orgánicos, especialmente aquellos que 30 contienen piridina. En una realización, se puede llevar a cabo la reacción utilizando aproximadamente uno a aproximadamente tres equivalentes molares del agente sulfonilante y aproximadamente uno o más equivalentes molares de base a una temperatura de reacción de aproximadamente -20º C a aproximadamente 50º C. En una realización, se puede utilizar la piridina como disolvente y base.

En una realización, la distribución de productos resultantes de una reordenación de Beckmann de la Estructura 2 puede depender de las condiciones de reacción particulares empleadas. Por ejemplo, cuando la reordenación se efectúa con cloruro de p-toluensulfonilo y bicarbonato de sodio en una disolución acuosa de acetona, los productos principales pueden incluir una lactama y la Estructura 4. En una realización, una reordenación de Beckmann de la estructura 2 en condiciones anhidras conduce a una mezcla de producto que comprende los iminoéteres con puentes en 9,12 y 6,9, la Estructura 3 y la Estructura 4. Por ejemplo, cuando la reacción se lleva a cabo en condiciones anhidras, tales como cloruro de p-toluensulfonilo en piridina, los productos principales pueden incluir la Estructura 3 y la Estructura 4. La relación de productos puede verse afectada por la adición de cosolventes, la temperatura, y/o la concentración inicial de oxima. Por ejemplo, aumentando la proporción de piridina como disolvente, aumentando la temperatura de reacción, y/o disminuyendo la concentración inicial de 45 oxima puede favorecerse la formación de la Estructura 3 sobre la Estructura 4.

[0041] En una realización, una reordenación de Beckmann de la Estructura 2 puede implicar la adición de una disolución de aproximadamente 2,5 equivalentes molares de cloruro de p-toluensulfonilo en dietil éter a una disolución de la Estructura 2 en piridina a una temperatura en un intervalo de entre aproximadamente 0° C a aproximadamente 5° C. Una realización puede incluir la O-sulfonilación de la oxima y la posterior reordenación en las condiciones de reacción para formar una mezcla de la estructura 3 y la estructura 4.

[0042] Una realización de la invención puede incluir la purificación de los productos después de la reordenación de Beckmann de la Estructura 2. Por ejemplo, procedimientos cromatográficos que incluyen, pero no se limitan a, se puede utilizar cromatográfía en columna sobre gel de sílice o fase inversa, cromatografía líquida a alta presión, entre otros procedimientos cromatográficos. La estructura 3 y la Estructura 4 se pueden separar mediante procedimientos cromatográficos. En otra realización, se puede purificar la Estructura 3 mediante cristalización. En otra realización, se puede purificar el producto mediante una combinación de cristalización y cromatografía.

[0043] En algunas realizaciones, se puede hacer reaccionar la mezcla de la Estructura 3 y la Estructura 4 sin purificación adicional o con purificación limitada. En una realización, se puede dejar que se produzcan reacciones adicionales sin aislar estructuras individuales. Por ejemplo, se puede reducir la mezcla de isómeros sin purificación.

[0044] En una realización, se puede aislar la Estructura 3 a partir de la mezcla utilizando un procedimiento de purificación a baja temperatura. Por ejemplo, en una realización, se puede llevar a cabo el aislamiento de la Estructura 3 en diclorometano a una temperatura entre aproximadamente -20º C a aproximadamente 15º C. Más normalmente, se puede llevar a cabo el aislamiento a una temperatura de aproximadamente -20º C a 10 aproximadamente 10° C, aproximadamente -10° C a aproximadamente 5° C, aproximadamente -5° C a aproximadamente 5° C, o preferiblemente aproximadamente 0° C a aproximadamente 5° C. En otra realización, se puede llevar a cabo la purificación por debajo de aproximadamente 25° C, por debajo de aproximadamente 20° C, o por debajo de aproximadamente 15º C. En algunas realizaciones, el uso de un procedimiento de purificación a baja temperatura puede inhibir la degradación de la Estructura 3 a productos de degradación que incluyen, pero no se 15 limitan a la estructura 5 y/o la Estructura 6 tal como se representa gráficamente en la Figura 2. En una realización, se puede inhibir la degradación de la Estructura 3 mediante la eliminación del ácido p-toluenosulfónico (a partir de ahora en el presente documento "PTSA") procedente de la fase del diclorometano. Algunas realizaciones pueden incluir eliminar los disolventes procedentes de las fases orgánicas combinadas a vacío a una temperatura por debajo de 35º C. una realización puede incluir eliminar los componentes, tales como diclorometano, con metil butil éter 20 terciario (a partir de ahora en el presente documento "MTBE" concentrando 1 o 2 veces hasta un resto.

[0045] En una realización, se puede formar la Estructura 3 mediante atrapamiento interno de las especies de nitrilio intermedias por el grupo hidroxilo en C-12. Se puede aislar la Estructura 3 como una mezcla de formas mayores y menores que son isómeras alrededor del doble enlace del imino. En una realización, la mezcla inicial de isómeros puede equilibrarse a temperatura ambiente, en disolución o en almacenamiento como un producto bruto, hasta aproximadamente una mezcla 1:1 de isómeros. En una realización, el isómero mayor formado en primer lugar puede aislarse de la mezcla mediante cristalización a partir de la disolución en un disolvente adecuado, tal como una disolución de nitrometano.

30 **[0046]** En una realización, ambas formas del isómero (es decir, la Estructura 3 y la Estructura 4) pueden reducirse fácilmente a 9-deoxo-8a-aza-8a-homoeritromicina A (a partir de ahora en el presente documento "Estructura 7").

Una realización puede incluir un lavado de la mezcla de reacción. En una realización, el lavado puede [0047] 35 llevarse a cabo con un disolvente orgánico adecuado. Los disolventes orgánicos adecuados que se pueden utilizar para el lavado son bien conocidos en la técnica e incluyen, pero no se limitan a, disolventes de hidrocarburos, tales como heptano, hexano, pentano, y similares. Otros disolventes orgánicos incluyen éteres tales como MTBE y similares, alquil ésteres tales como acetato de etilo y similares, disolventes aromáticos tales como tolueno, u otros. Un lavado de heptano puede eliminar algo de piridina en la mezcla de reacción. En una realización, el aceite 40 resultante puede diluirse con una segunda mezcla de disolvente, tal como diclorometano y agua. En una realización alternativa, el aceite resultante puede lavarse con 1,3-dimetil-2-imidazolidinona o N,N'-dimetiletilenurea (a partir de ahora en el presente documento "DMEU"). En algunas realizaciones, el pH de la mezcla puede ajustarse hasta un valor en el intervalo de aproximadamente 7 a aproximadamente 12. Algunas realizaciones adicionales pueden incluir ajustar el pH hasta un valor en el intervalo de entre aproximadamente 9 a aproximadamente 10. Puede hacerse al 45 ajuste del pH utilizando cualquier modificador del pH conocido en la técnica, que incluye, pero que no se limita a, hidróxido metálicos, tales como una disolución acuosa de hidróxido de sodio, una disolución de hidróxido de litio o hidróxido de potasio. Otras sustancias para ajustar el pH adecuadas incluyen sales de carbonato y bicarbonato, y aminas. Una realización puede incluir una separación de fase. Adicionalmente, algunas realizaciones pueden incluir volver a lavar la fase acuosa utilizando diclorometano, u otro disolvente adecuado inmiscible en agua.

[0048] En una realización, se puede eliminar la piridina del residuo durante la cristalización en MTBE. Una realización puede incluir cristalizar el producto a temperatura ambiente y a continuación enfriar este a una temperatura en un intervalo de aproximadamente -20° C a aproximadamente 15° C o más normalmente aproximadamente -20° C a aproximadamente 10° C. en otras realizaciones, la mezcla se enfría a aproximadamente -5° 10° C a aproximadamente 10° C, aproximadamente -5° C a aproximadamente 10° C, o aproximadamente 0° C a aproximadamente 5° C. En algunas realizaciones, el material resultante puede agitarse a esta temperatura durante un periodo de tiempo para aumentar el rendimiento. Por ejemplo, un material puede agitarse durante una hora o más para aumentar el rendimiento.

50

[0049] En una realización, la estructura 3 se puede aislar tras filtración y un lavado con MBTE a baja temperatura de la torta de color amarillo resultante. Otras estructuras químicas que incluyen, pero que no se limitan a la Estructura 4 y a los productos de degradación (por ejemplo, la Estructura 5 y la Estructura 6 –véase la Figura 2-) pueden permanecer disueltos en los licores madre tras la reacción de reordenación. En una realización, la Estructura 5 y puede almacenarse en una forma sólida. El almacenamiento en una forma sólida puede inhibir la degradación.

[0050] En algunas realizaciones, la Estructura 7 se puede sintetizar mediante reducción de la Estructura 3 con un agente reductor adecuado. Se conocen en la técnica diversos reactivos que reducen los iminoéteres, incluyendo los de Estructura 3 y 4, a las correspondientes aminas (véase, por ejemplo "The Chemistry of Amidines and 10 Imidates," S. Patai (Ed.), John Wiley and Sons, 1975, págs. 460-461 y "Comprehensive Organic Chemistry," 1.0. Sutherland (Ed.), Pergamon Press, Nueva York, 1979, Vol. 2, pg. 495). A este respecto, la Patente de los Estados Unidos Nº 5.985.844 describe que la reducción de los iminoéteres cíclicos se lleva a cabo de forma preferible con reactivos de hidruros metálicos, que incluyen borohidruro de sodio y los derivados. Sin embargo, se ha encontrado que la reducción de los iminoéteres de la Estructura 3 y 4 con reactivos de hidruros metálicos, que incluyen reactivos de borohidruro, da como resultado sales de boro que complican el aislamiento del producto y conducen a rendimientos y pureza más bajos.

[0051] De esta forma, en una realización de la invención, la Estructura 7 se forma mediante la reducción de la Estructura 3 utilizando la hidrogenación en condiciones que proporcionan calidad y rendimiento de los productos superiores. La reacción de hidrogenación mejorada de la invención permite en determinadas realizaciones la conversión en un solo recipiente de la Estructura 3 a un macrólido de Estructura 8. En una realización, se puede formar la estructura 7 a partir de la mezcla resultante después de la reordenación. Por ejemplo, la mezcla resultante procedente de la reordenación de Beckmann de la Estructura 2 se puede hidrogenar para formar la Estructura 7 con una presión adecuada de hidrógeno. Las realizaciones incluyen el uso de un catalizador durante la hidrogenación. Los catalizadores incluyen catalizadores basados en paladio (por ejemplo, paladio sobre carbono) hidróxido de paladio sobre carbono) catalizadores basados en platino (por ejemplo, platino sobre carbono). En algunas realizaciones, los catalizadores pueden ser homogéneos o heterogéneos.

[0052] En una realización, se pueden controlar las condiciones para potenciar la formación de la Estructura 7. 30 Por ejemplo, una realización puede incluir el funcionamiento a temperatura ambiente, y a una presión de hidrógeno de 50 bar (5000 kPa).

[0053] En una realización, la reacción de hidrogenación utilizada para formar la Estructura 7 utiliza disolventes polares apróticos que incluyen, pero sin limitarse a DMEU, dimetilacetamida (a partir de ahora en el presente documento "DMA"), dietilacetamida, dimetilsulfóxido (a partir de ahora en el presente documento "DMSO"), dimetilformamida (a partir de ahora en el presente documento "DMF"), N-metilpirrolidona ("NMP"), dioxano, tetrahidrofurano, ésteres tales como acetato de etilo, nitrilos tales como acetonitrilo, y hexametilfosforotriamida y/u otros disolventes conocidos en la técnica o aún por descubrir.

40 **[0054]** En algunas realizaciones, se pueden llevar a cabo reacciones de hidrogenación a una temperatura en un intervalo entre aproximadamente -20° C a aproximadamente 40° C. En otras realizaciones, la reacción de hidrogenación se puede llevar a cabo a una temperatura de aproximadamente -20° C a aproximadamente 30° C, o más normalmente aproximadamente -20° C a aproximadamente 20° C. Preferiblemente, la reacción se lleva a cabo a una temperatura de aproximadamente -10° C a aproximadamente 20° C, aproximadamente -5° C a aproximadamente 20° C, aproximadamente 5° C a aproximadamente 20° C. El control de la temperatura de reacción puede inhibir la formación de productos de degradación en algunas realizaciones.

[0055] En una realización, se puede sintetizar la Estructura 7 directamente a partir de la Estructura 2. Se puede añadir un disolvente polar aprótico a la mezcla en presencia de un catalizador. Por ejemplo, se puede añadir DMA a la Estructura 7 en presencia de un catalizador que tenga un 50% en peso de platino sobre carbono. En algunas realizaciones, se puede aislar la estructura 2 a partir de una mezcla antes de la reacción. Una realización puede incluir hacer reaccionar una mezcla que incluye la Estructura 2 para formar la Estructura 7. En una realización, se pueden controlar las condiciones en la mezcla. Por ejemplo, se puede agitar la mezcla manteniendo a 55 la vez una temperatura de aproximadamente 15° C y una presión de hidrógeno de aproximadamente 50 bar (5000 kPa).

[0056] Tal como se muestra en la Figura 1 gamitromicina (a partir de ahora en el presente documento "Estructura 8" (Gamitromicina) puede formarse mediante aminación reductora de la Estructura 7 en presencia de

propanal y un agente reductor adecuado. En una realización, la reacción de aminación reductora se lleva a cabo en presencia de hidrógeno a presión. En otra realización, la reacción de aminación reductora se lleva a cabo en presencia de un agente reductor de hidruro que incluye, pero que no se limita a, agente reductor de hidruro basado en boro tal como cianoborohidruro de sodio, y similares. En otra realización de la invención, un compuesto de Estructura 8a, en el que R es hidrógeno, alquilo, alquenilo, alquinilo, arilo, heteroarilo o aralquilo. En una realización, un compuesto en el que R es alquilo C₁-C₁₀ se pueden obtener utilizando el agente alquilante adecuado.

(Estructura 8a)

10 [0057] En otra realización más de la invención R es alguilo C₁-C₄

[0058] En una realización de la invención, se puede producir la reacción utilizando un catalizador. Por ejemplo, se puede utilizar un catalizador de paladio o un catalizador de platino. En una realización, se puede producir una reacción completa en unas pocas horas cuando se usa propanal en exceso.. Ee esta manera, 15 utilizando propanal como reactivo y disolvente, se puede disminuir el tiempo de reacción.

[0059] En una realización, se puede controlar el pH en un intervalo entre aproximadamente 5,0 a aproximadamente 5,5 durante las reacciones. Una realización puede incluir controlar el pH de una mezcla de reacción en un intervalo de entre aproximadamente 4,5 a aproximadamente 5,5. Preferiblemente, el pH se controla a 20 aproximadamente 5,0 a aproximadamente 5,5 antes de la hidrogenación. En una realización, se pueden realizar ajustes del pH utilizando ácido acético.

[0060] Una realización puede incluir mantener una temperatura de la mezcla de reacción en un intervalo de entre aproximadamente 20° C a aproximadamente 60° C, aproximadamente 30° C a aproximadamente 50° C, o aproximadamente 40° C a aproximadamente 40° C a aproximadamente 45° C.

[0061] En una realización, la Estructura 8 (Gamitromicina) se puede sintetizar a partir de la Estructura 3 sin aislamiento de la Estructura 7 intermedia. Debido a que la aminación reductora puede usar un catalizador similar al catalizador utilizado en la síntesis de la Estructura 7, estas etapas pueden combinarse en algunas realizaciones. De esta manera, una realización puede incluir formar la Estructura 8 (Gamitromicina) sin aislar la Estructura 7 intermedia. En una realización, la Estructura 7 y la Estructura 8 (Gamitromicina) intermedias se pueden sintetizar en un único recipiente de reacción sin aislamiento. En una realización, esto puede disminuir el tiempo de ciclación.

35 [0062] La invención se describirá ahora adicionalmente por medio de los siguientes ejemplos no limitantes.

Ejemplos

[0063] Se preparó la gamitromicina tal como se ha reseñado en la Figura 1. Inicialmente, la meta era preparar la Estructura 7 sin el aislamiento del intermedio, la Estructura 3. Esto mantendría el mismo número de intermedios aislados que en los procedimientos usados actualmente. Sin embargo, la inestabilidad química de imidato-4 intermedio (Estructura 3) en condiciones variables dio como resultado la degradación. Los productos de degradación incluyeron la Estructura 5 y la Estructura 6. Las condiciones variables incluyeron un pH bajo y algunas disoluciones de disolventes. Se realizaron intentos para aislar el imidato-4 como un sólido estable antes de llevar a cabo las etapas posteriores.

Ejemplo 1 – Formación de la Estructura 3

[0064] Un compuesto de estructura 2 (30 g) se mezcló con piridina (219,4 ml) y se enfrió hasta entre 2º C y 6º C. Se añadió una disolución de cloruro de 4-toluensulfonilo (a partir de ahora en el presente documento "p-TsCl")
15 (16,5 g) en metil-t-butil éter (64,4 ml) y la disolución resultante se agitó durante aproximadamente 4 horas a entre 2º C y 6º C y a continuación se enfrió a entre -15º C y -10º C.

[0065] Se enfrió con antelación heptano (282 ml) a menos de -10° C y a continuación se añadió a la disolución con agitación. Tras la agitación, se dejaron separar las fases durante al menos 40 minutos. Se eliminó la fase superior (fase del heptano) y se añadieron diclorometano (403 ml) y agua (503 ml) a la fase acuosa manteniendo la temperatura a entre 0° C y 5° C. Se ajustó el pH a entre 9 y 10 con una disolución de hidróxido de sodio y la mezcla se agitó durante al menos 40 minutos a entre 0° C y 5° C. Se retiró la fase acuosa y se volvió a lavar dos veces con diclorometano (60 ml). Las fases orgánicas combinadas se secaron con sulfato de sodio y el filtrado seco se concentraron hasta obtener un residuo a una temperatura por debajo de 35° C a vacío. Se añadieron metil t-butil éter (MTBE) y etanol absoluto y la mezcla se concentró hasta un residuo de nuevo. El sólido obtenido se suspendió en MTBE y se agitó durante 4 horas antes de enfriar hasta entre 0° C y 5° C. La suspensión se agitó durante al menos 1 hora antes de la filtración y se lavó con MTBE (2 veces con 30 ml) previamente enfriado hasta entre 0° C y 5° C. El sólido húmedo se secó para dar como resultado un sólido de color amarillo pálido (19,26 g) de Estructura 3.

30 Ejemplo 2 - Formación de la Estructura 7

[0066] Un compuesto de Estructura 3 (8 g) en DMA (80 ml) con catalizador de Pt/C al 5% (4,0 g) se agitó a entre 15° C entre 25° C con una presión de hidrógeno de 50 bar (5000 kPa). Fue necesaria la adición de ácido acético (0,5 ml) para conseguir la finalización de la reacción. Se añadió agua (80 ml) a la suspensión y se filtró la suspensión a través de un lecho de celulosa. La torta del filtro se lavó con agua (80 ml) y se añadió diclorometano al filtrado resultante (160 ml) y la mezcla bifásica se agitó durante al menos 1 hora. Se retiró la fase orgánica y se añadió diclorometano (160 ml) a la fase acuosa antes del ajuste del pH a entre 9 y 11 con una disolución de hidróxido de sodio. La mezcla bifásica se agitó y la fase orgánica separada que contenía la Estructura 7 se lavó con agua (160 ml). La fase orgánica obtenida se secó con sulfato de sodio y la disolución seca se concentró hasta el residuo a una temperatura por debajo de 50° C a vacío para dar como resultado un aceite de Estructura 7 (13,84).

Ejemplo 3 – Formación de la Estructura 8 (Gamitromicina)

[0067] Al aceite residual de la Estructura 7 (13,84 g) se añadieron propanal (80 ml), catalizador de Pd/C al 3% (8,0 g) y ácido acético (7,5 ml). La suspensión se agitó a una temperatura de entre 40° C y 45° C con una presión de hidrógeno de aproximadamente 20 bar (2000 kPa) durante al menos 4 horas. Se añadió agua (80 ml) a la suspensión y la suspensión se filtró a través de un lecho de celulosa. La torta del filtro se lavó con agua (80 ml) y al filtrado resultante se añadió MTBE (160 ml) y la mezcla bifásica se agitó durante al menos 30 minutos. Se eliminó la fase orgánica y se añadió MTBE (160 ml) a l fase acuosa antes del ajuste del pH a entre 9 y 11 con disolución de hidróxido de sodio. La mezcla bifásica se agitó y la fase orgánica separada que contenía la Estructura 8 (Gamitromicina) se lavó con agua (160 ml). La fase orgánica obtenida se secó con sulfato de sodio y la disolución seca se concentró hasta el residuo. Se añadió acetonitrilo y la mezcla se volvió a concentrar hasta el producto bruto de Estructura 8 (Gamitromicina) (6,9 g).

55 Ejemplo 4 – Formación de la Estructura 8 (gamitromicina) sin aislamiento de la Estructura 7

[0068] Un compuesto de Estructura 3 (1 g) en DMA (10 ml) con catalizador de Put al 5% (0,5 g) se agitó a entre 15° C y 25° C con una presión de hidrógeno de 50 bar (5000 kPa). Fue necesaria la adición de ácido acético (0,125 ml) para conseguir la finalización de la reacción. Se añadieron propanal (5 ml) y ácido acético (2,5 ml) a la

suspensión y se agitó a una temperatura ambiente de entre 40° C y 45° C con una presión de hidrógeno de aproximadamente 20 bar (2000 kPa) durante al menos 4 horas. Se añadió agua (10 ml) a la suspensión y se añadió MTBE al filtrado (20 ml) y la mezcla bifásica se agitó durante al menos 30 minutos. Se eliminó la fase orgánica y se añadió MTBE (20 ml) a la fase acuosa antes del ajuste del pH a entre 9 y 11 con disolución de hidróxido de sodio. La mezcla bifásica se agitó y la fase orgánica separada que contenía la Estructura 8 (Gamitromicina) se lavó con agua (20 ml). La fase orgánica obtenida se secó con sulfato de sodio y la disolución seca se concentró hasta el residuo. Se añadió acetonitrilo y la mezcla se volvió a concentrar hasta el residuo bruto de Estructura 8 (Gamitromicina) (0,84 g).

- 10 [0069] La Estructura 3 se sintetizó de acuerdo con el procedimiento de fabricación actual con un desarrollo modificado. El procedimiento se llevó a cabo hasta el lavado del heptano de la mezcla de reacción, diseñado para eliminar parcialmente la piridina y el aceite resultantes se diluyeron con diclorometano y agua. A continuación se ajustó el pH a entre 9 y 10 con una disolución acuosa de hidróxido de sodio. Las fases se separaron a continuación y se volvió a llevar a cabo el lavado de la fase acuosa con diclorometano
 - [0070] Se llevó a cabo el aislamiento de la Estructura 3 en diclorometano a una temperatura de entre 0° C a 5° C. El ácido p-toluenosulfónico (a partir de ahora en el presente documento "PTSA"), procedente del reactivo del cloruro de p-toluensulfonilo, permaneció disuelto en la fase acuosa tras las separaciones de fase.
- 20 **[0071]** Los disolventes procedentes de las fases orgánicas combinadas se eliminaron a vacío a una temperatura por debajo de 35° C y el diclorometano se fijó con MTBE concentrando 1 o 2 veces hasta un residuo.
- **[0072]** La piridina que quedaba en el residuo se eliminó durante la cristalización en MTBE. El producto se cristalizó en primer lugar a temperatura ambiente y a continuación se enfrió a 0-5° C y se agitó a esta temperatura 25 durante 1 hora para aumentar el rendimiento.
 - [0073] Se aisló la Estructura 3 tras la filtración y se llevó a cabo un lavado de la torta de color amarillo resultante con MBTE a baja temperatura. Los productos de la degradación, la Estructura 5 y la Estructura 6, y casi todas las Estructuras 4 formadas en la reordenación de Beckmann permanecieron disueltas en los licores madre.
 - [0074] El rendimiento de la Estructura 2 fue aproximadamente del 65-70% en peso con una pureza de la Estructura 3 aislada de alrededor del 75-85% por área cuando se utiliza HPLC. Los principales contaminantes de la Estructura 3 fueron la Estructura 5 y la Estructura 6, cada una a un nivel del 5% a 10% por área mediante HPLC.

30

35 **[0075]** La Figura 3 representa gráficamente la traza de HPLC de un lote de la Estructura 3 aislada. En la Tabla 1 a continuación, se muestran los resultados del pico para la Figura 3.

Tabla 1

	TR	Nombre	Área	% de Área
1	12,646		23039	0,12
2	14,457	Estructura 5	948922	4,82
3	15,479	Estructura 3	14663001	74,43
4	17,307		625131	3,17
5	18,629		8420	0,04
6	18,821		9933	0,05
7	19,700	Estructura 2		
8	20,563	Estructura 6	1935293	9,82
9	22,537		52241	0,27
10	23,860		5976	0,03
11	24,470		6748	0,03
12	24,848		120168	0,61
13	25,400			
14	25,581		7889	0,04
15	25,990		10197	0,05
16	26,412		9086	0,05
17	27,551		46974	0,24
18	28,296	Impureza por "sobretosilación"	1094959	5,56
19	28,995		81267	0,41
20	29,549		23052	0,12
21	32,061		19794	0,10
22	33,457		8897	0,05
Suma			19700986	

[0076] Aunque la estructura 3 fue inestable en disolución, los sólidos obtenidos no se degradan en el tiempo, 5 y la pureza se mantuvo durante al menos 1 mes.

[0077] Se llevó a cabo la síntesis de la Estructura 7 mediante hidrogenación utilizando un catalizador de óxido de platino. La mezcla de reacción se agitó durante aproximadamente 1 día a temperatura ambiente en hidrógeno de aproximadamente 1000 (6,495 x 10⁶ Pa) a aproximadamente 3000 psi (19,485 x 10⁶ Pa). Estas condiciones fueron el punto de partida de los experimentos. La Estructura 3 aislada resultante se utilizó como patrón para comparar los productos de los diferentes experimentos. Se ensayaron también otros reactivos/catalizadores soportados sobre carbono. La Tabla 2 resume algunos de los resultados.

Tabla 2 – Hidrogenación de la Estructura 3 aislada utilizando varios reactivos/catalizadores

Disolvente (cantidad)	Reactivo/catalizador (cantidad)	Presión (bar/kPa)	Temperatura	Pureza
Àcido acético (40 vol.)	PtO ₂ (100% en peso)	50/5000	t.a.	Estructura 7 - 64% Estructura 6 - 23%
Ácido acético (20 vol.)	Rh/C 5% (50% en peso)	50/5000	t.a.	Estructura 7 - 5% Estructura 6 - 63%
Ácido acético (40 vol.)	Pd/C 5% (50% en peso)	50/5000	t.a. → 50°C	Sin Estructura 7 formada
Ácido acético (20 vol.)	Pt/C 5% (50% en peso)	50/5000	t.a.	Estructura 7 - 49% Estructura 6 - 38%
Ácido acético (40 vol.)	Pt/C 5% (66% en peso)	50/5000	t.a.	Estructura 7 - 29% Estructura 6 - 59%
Ácido acético (40 vol.)	Pt/C 5% con 0,5% de S (66% en peso)	50/5000	t.a.	Estructura 7 -59% Estructura 6 - 35%
Ácido acético (20 vol.)	Pt/C 5% (50% en peso)	50/5000	t.a.	Estructura 7 - 30% Estructura 6 - 70%
Ácido acético (20 vol.)	Pt/C 1,5% (75% en peso)	50/5000	t.a.	Estructura 7 - 45% Estructura 6 - 41%
Ácido acético (20 vol.)	Pd/C 3% (50% en peso)	50/5000	t.a.	Sin estructura 7 formada
Ácido acético (20 vol.)	Pt/C 5% (50% en peso)	50/5000	t.a.	Estructura 7-31% Estructura 6 - 52%
Ácido acético (20 vol.)	Pt/C 5% (50% en peso)	50/5000	t.a.	Estructura 7-39% Estructura 6 - 45%
Ácido acético (20 vol.)	Pt/C 5% (50% en peso)	50/5000	t.a.	Estructura 7 - 50% Estructura 6 - 23%

⁵ **[0078]** En los ensayos realizados, el catalizador de Pt/C al 5% proporcionó un resultado deseado para las condiciones utilizadas. La Figura 4 presenta la traza de HPLC de la Estructura 7 obtenida a partir de un ensayo que utiliza el catalizador de Pt/C al 5%. En la Tabla 3 a continuación se muestran los valores del área bajo el pico en la traza de HPLC.

Tabla 3

	TR	Nombre	Área	% Área
1	15,500	Estructura 3		
2	16,302		45449	0,41
3	16,516		43684	0,40
4	17,243		73435	0,67
5	17,575		24360	0,22
6	18,628		129219	1,18
7	19,700	Estructura 2		
8	19,729		11809	0,11
9	20,414	Estructura 6	2536368	23,10
10	21,409		1189347	10,83
11	23,889		47595	0,43
12	24,300		28497	0,26
13	24,508	Estructura 7	5505606	50,15
14	25,341		20326	0,19
15	26,023		170383	1,55
16	26,374		4586	0,04
17	27,475		12623	0,11
18	27,983		11830	0,11
19	29,262		15805	0,14
20	29,952		32113	0,29
21	31,332		35383	0,32
22	32,221		109461	1,00
23	32,733		51617	0,47
24	32,993		433397	3,95
25	34,142		7096	0,06
26	35,351		406681	3,70
27	36,795		110093	0,09
28	43,278		22005	0,20
Suma			10978866	

5 **[0079]** El uso de óxido de platino proporciona también un resultado deseado.

[0080] Las condiciones normalizadas utilizadas para llevar a cabo la hidrogenación fueron: 20 volúmenes de ácido acético; temperatura ambiente, 50 bar (5000 kPa) de hidrógeno, y se utilizó agitación durante toda la noche en

casi todos los ensayos de laboratorio. A partir de la comparación de los catalizadores, el platino pareció ser el metal noble ideal para esta reacción

[0081] Todos los ensayos de este estudio inicial proporcionaron la Estructura 7 con una cantidad considerable 5 de Estructura 6. Los datos de la estabilidad mostraron que cuando se agita una disolución de Estructura 3 con 20 volúmenes de ácido acético a temperatura ambiente, la Estructura 3 se degradó completamente a Estructura 5 y Estructura 6 tras unas pocas horas. Debido a que se utilizaron estas condiciones en la hidrogenación, se concluyó que la degradación de la Estructura 3 debida a las condiciones ácidas fue competente con la formación de la Estructura 7.

[0082] De este modo, la reacción se ensayó en DMEU en vez de ácido acético. Los resultados fueron sorprendentes, la reacción fue más limpia, formándose solo una pequeña cantidad de la Estructura 6 y la velocidad de reacción fue similar a la de las reacciones llevadas a cabo utilizando ácido acético como disolvente.

15 **[0083]** A continuación se ensayaron otros disolventes con características similares al DMEU, tales como DMF y DMA. Los ensayos mostraron que la Estructura 3 permaneció sin cambiar en una disolución de DMEU, DMF o DMA a una temperatura de aproximadamente 5º C durante 3-4 horas, y con solo una pequeña cantidad de degradación a temperatura ambiente después de 1 día de agitación.

20 **[0084]** La Tabla 4 resume los resultados de las hidrogenaciones llevadas a cabo utilizando estos disolventes y condiciones.

Disolvente (cantidad)	Reactivo/Catalizador (cantidad)	Presión (bar/kPa)	Temperatura	Pureza
DMEU (20 vol.)	Pt/C 5% (50% EN PESO)	50/5000	5° C \rightarrow t.a.	Estructura 7 - 90% Estructura 6 - 1,4%
DMF (20 vol.)	Pt/C 5% (50% EN PESO)	50/5000	5-10° C	Estructura 7 - 85% Estructura 6 - 3,8%
DMA (20 vol.)	Pt/C 5% (50% EN PESO)	50/5000	5-10° C	Estructura 7 - 86,5% Estructura 6 - 1,6%
DMA (10 vol.)	Pt/C 5% (25% EN PESO)	50/5000	5-20° C	Estructura 7 - 87% Estructura 6 - 3,5%
DMA (10 vol.)	Pt/C 5% (50% EN PESO)	50/5000	15-20° C	Estructura 7 - 87% Estructura 6 - 1,4%

Tabla 4 - Hidrogenación de la Estructura 3 aislada utilizando DMEU, DMF y DMA

25

10

[0085] La hidrogenación se llevó a cabo a una temperatura de entre 5° C y 20° C. En algunas reacciones, se añadió ácido acético (0,25-0,5 volúmenes) hacia el final de la reacción. El volumen total del disolvente se redujo de 20 volúmenes a 10 volúmenes a la vez que se llevó a cabo una reducción en la cantidad de catalizador de platino sin afectar el comportamiento de la reacción significativamente.

30

[0086] DMA fue el disolvente escogido. La elaboración fue de la siguiente forma:

[0087] La mezcla de reacción se pasó a través de un filtro de celulosa. El reactor se enjuagó con agua. El agua del enjuague se utilizó para lavar el tapón de celulosa. Se añadió diclorometano al filtrado y se ajustó el pH de 35 la mezcla a entre 4,5 y 5,5 con ácido acético, si es necesario, antes de la separación de fase. Se añadió diclorometano a la fase acuosa y se ajustó el pH a entre 9 y 11 con disolución acuosa de hidróxido de sodio. La fase orgánica resultante que contenía el producto se lavó con agua para eliminar algo del DMA aún presente y a continuación se concentró para dar como resultado una espuma blanca.

40 **[0088]** La Figura 5 representa gráficamente la traza de HPLC de la Estructura 7 obtenida a partir de otro ensayo de laboratorio utilizando 10 volúmenes de DMA y el catalizador de platino. En la Tabla 5 siguiente se muestran los valores del área bajo el pico en la traza de PLC

Tabla 5

	TR	TRR	Nombre	Área	% Área
1	4,482	0,233		60529	0,58
2	6,249	0,324		29113	0,28
3	7,457	0,387		26836	0,26
4	12,721	0,660		6900	0,07
5	15,188	0,789		18851	0,18
6	15,513	0,805		16914	0,16
7	16,442	0,854	Estructura 3	10800	0,10
8	17,827	0,926		12612	0,12
9	18,129	0,941		30191	0,29
10	18,503	0,961		11329	0,11
11	19,262	1,000	Estructura 2	7558	0,07
12	20,725	1,076		8729	0,08
13	21,093	1,095	Estructura 6	142158	1,36
14	21,800	1,132		4515	0,04
15	22,080	1,146		34763	0,33
16	24,460	1,270		7392	0,07
17	25,010	1,298	Estructura 7	9089710	86,99
18	26,733	1,388		49639	0,48
19	28,061	1,457		16743	0,16
20	28,565	1,483		14803	0,14
21	28,880	1,499		26345	0,25
22	29,673	1,541		12139	0,12
23	29,883	1,551		1998	0,02
24	30,942	1,606		47982	0,46
25	31,848	1,653		2627	0,03
26	34,104	1,771		88091	0,84
27	35,821	1,860		512336	4,90
28	41,144	2,136		19501	0,19
29	42,567	2,210		3945	0,04
30	42,929	2,229		62709	0,60
31	46,935	2,437		71390	0,68
Suma				1044918	

[0089] Se llevó a cabo un intento de sintetizar la Estructura 7 directamente a partir de la oxima-Z. Se aplicó el mismo procedimiento de desarrollo que se ha descrito anteriormente en vez de aislar la Estructura 3 mediante adición de MTBE, se añadieron 10 volúmenes de DMA y 50% en peso de catalizador de Pt/C al 5%. La mezcla resultante se agitó a una temperatura de aproximadamente 15° C a una presión de hidrógeno de 50 bar (5000 kPa). La reacción prosiguió tal como se esperaba pero se obtuvo un aceite con una mezcla de la Estructura 7 con aproximadamente un 40% por área mediante HPLC junto con la Estructura 4 con aproximadamente 42% por área mediante HPLC.

10 [0090] Como no se eliminó la Estructura 4 mediante cristalización y no se aisló la Estructura 3, esto se llevó a cabo a través de la Estructura 7 aislada. La presencia de la Estructura 4 en la hidrogenación puede haber afectado el perfil de impurezas obtenido, aunque parece que es inerte en las condiciones de hidrogenación. La piridina residual, no se eliminó debido a que no se aisló la Estructura 3, influenció también la calidad de la Estructura 7 obtenida.

[0091] Se preparó la Estructura 8 (Gamtromicina) llevando a cabo una aminación reductora de la Estructura 7 en presencia de propanal. Esta reacción se llevó a cabo en condiciones catalíticas utilizando hidrógeno y un catalizador de paladio. Se sometieron a cribado algunos catalizadores de paladio y una cantidad más pequeña de catalizadores de platino en esta transformación. Con aproximadamente 10 equivalentes de propanal en etanol, las reacciones fueron lentas e incompletas. Utilizar propanal en un gran exceso permitió una reacción completa en unas pocas horas. El propanal actuó como reactivo y disolvente.

[0092] Se llevaron a cabo intentos para utilizar una disolución de tampón de acetato para conseguir un pH de 5,0 a 5,5. Sin embargo, se estableció posteriormente que el pH de la mezcla de reacción solo necesita ajustarse a entre 5,0 y 5,5 con ácido acético antes de la hidrogenación.

[0093] La Tabla 6 resume algunos de los resultados y condiciones para la síntesis de la Estructura 8 (Gamitromicina).

Tabla 6 – Resultados y condiciones de la aminación reductora de la Estructura 7

30

Disolvente (cantidad)	Reactivo/Catalizador (cantidad)	Presión (bar/kPa)	pH inicial	Temperatura	Pureza
Propanal (10 vol.)	Pd/C al 5% (100% en peso)	20/2000	4,70	40-45℃	Estructura 8 (Gamitromicina) - 42%
Propanal (10 vol.)	Pd/C al 3% (100% en peso)	20/2000	5,23	40-45℃	Estructura 8 (Gamitromicina) - 96%
Propanal (10 vol.)	Pt/C al 5% con 0,5% de S (50% en peso)	10/1000	5,06	40-45℃	Estructura 8 (Gamitromicina) - 46% Estructura 7 - 12%
Propanal (20 vol.)	Pt/C al 5% (100% en peso)	20/2000	-	40-45℃	Estructura 8 (Gamitromicina) - 88%
Propanal (10 vol.)	Pd/C al 3% (100% en peso)	20/2000	5,49	40-45℃	Estructura 8 (Gamitromicina) - 89%

[0094] Los ensayos iniciales indicaron que la hidrogenación a temperatura ambiente tuvieron una lenta velocidad de reacción. Como resultado, se utilizó un intervalo de temperatura de 40-45° C para casi todas las 35 reacciones. El pH de la mezcla de reacción descendió hasta un intervalo de aproximadamente 4,0 a aproximadamente 4,5 durante la hidrogenación

[0095] La estructura 8 (Gamitromicina) se obtuvo tras el desarrollo que se ha descrito anteriormente pero utilizando MTBE como el disolvente de extracción. Los rendimientos dependieron significativamente de la calidad de la Estructura 7 sintetizada y de la escala del experimento de laboratorio. Se obtuvo la Estructura 8 (Gamitromicina) con un rendimiento del 86% en peso a partir de 8 g de la Estructura 3 aislada. La Figura 6 representa gráficamente la traza de HPLC de una Estructura 8 aislada típica (Gamitromicina). En la Tabla 7 a continuación, se muestran los valores del área bajo el pico en la traza de HPLC.

Tabla 7

	TR	TRR	Nombre	Área	% Área
1	8,255	0,242		7309	0,05
2	11,717	0,343		3245	0,02
3	15,434	0,452		2903	0,02
4	18,081	0,529		16167	0,11
5	19,218	0,562		4256	0,03
6	20,235	0,592		11132	0,07
7	21,027	0,615		1696	0,01
8	22,003	0,644		1388	0,01
9	22,797	0,667		1366	0,01
10	23,200	0,679		2027	0,01
11	23,938	0,700		2338	0,02
12	24,327	0,712		23838	0,16
13	24,725	0,723		4942	0,03
14	25,457	0,745		3033	0,02
15	26,469	0,774		20898	0,14
16	26,753	0,783		40372	0,27
17	27,407	0,802		10260	0,07
18	28,108	0,822		4246	0,03
19	28,420	0,832		1291	0,01
20	29,200	0,854		11826	0,08
21	29,310	0,858		29056	0,19
22	29,847	0,873		15468	0,10
23	30,303	0,887		4789	0,03
24	30,767	0,900		7826	0,05
25	31,215	0,913		10291	0,07
26	31,717	0,928		813	0,01
27	31,931	0,934		18022	0,12
28	32,319	0,946		2588	0,02

29	32,590	0,954		8105	0,05
30	33,093	0,968		70110	0,47
31	33,504	0,98		1750	0,01
32	34,176	1000	Estructura 8	13341092	88,88
33	35,049	1,026		21138	0,14
34	35,614	1,042		13337	0,09
35	36,615	1,071		457	0,00
36	37,041	1,084		57533	0,38
37	38,514	1,127		92101	0,61
38	39,107	1,144		8684	0,06
39	39,687	1,161		63300	0,42
40	40,935	1,198		400243	2,67
41	41,533	1,215		3963	0,03
42	41,750	1,222		3210	0,02
43	42,100	1,232		807	0,01
44	42,794	1,252		116557	0,78
45	43,002	1,258		242434	1,62
46	43,283	1,266		6321	0,04
47	45,183	1,322		103524	0,69
48	45,904	1,343		150603	1,00
49	46,942	1,374		37328	0,25
50	48,367	1,415		4688	0,03
Suma				15010670	

[0096] Como la aminación reductora se llevó a cabo utilizando un catalizador de platino, fue posible ensayar el uso del mismo catalizador de platino para la síntesis de la Estructura 8 (Gamitromicina) a partir de la Estructura 3 sin aislar la Estructura 7.

[0097] En un ensayo de laboratorio, se sintetizó la Estructura 7 a partir de la Estructura 3 aislada utilizando 10 volúmenes de DMA como un disolvente y un 50% en peso de Pt/C al 5% tal como se ha descrito anteriormente. Después que la reacción finalizó para formar la Estructura 7, que no se aisló, se añadieron 5 volúmenes de propanal y se ajustó el pH a aproximadamente 5,4 con ácido acético y se llevó a cabo la hidrogenación como anteriormente en las condiciones que se han descrito con anterioridad.

5

15

[0098] La Estructura 7 se convirtió en la Estructura 8 (Gamitromicina), el DMA residual no tuvo efecto perjudicial. Ambas reacciones de hidrogenación prosiguieron tal como se esperaba, con velocidades de conversión similares que comenzaban a partir de los intermedios aislados.

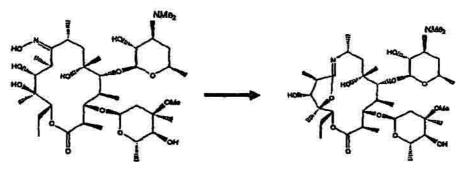
[0099] Tras la elaboración que se ha descrito anteriormente, se obtuvo la Estructura 8 (Gamitromicina) con un rendimiento del 84% en peso a partir de la Estructura 3. Aunque el rendimiento fue comparable con el ensayo del laboratorio en el que se aisló la Estructura 7, la pureza fue inferior (78% por área cuando se midió utilizando HPLC).

20 [0100] Se cristalizaron varios lotes de laboratorio de la Estructura 8 (gamitromicina) para formar gamitromicina

aislada (Estructura 8) que tenían un rendimiento de aproximadamente un 70-80% en peso y una pureza usualmente por encima del 98% por área cuando se midieron utilizando HPLC. La Figura 7 representa gráficamente la traza de HPLC de uno de aquellos lotes de la Estructura 8 (Gamitromicina). En la Tabla 8 a continuación se muestran los valores del área bajo el pico.

Tabla 8

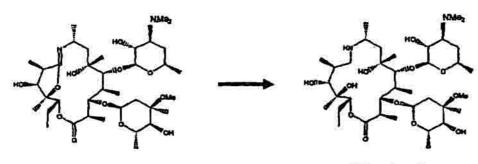
5


	TR	TRR	Nombre	Área	% Área
1	20,149	0,591		16944	0,14
2	26,620	0,780		6928	0,06
3	27,269	0,799		2124	0,02
4	29,192	0,856		21806	0,18
5	29,723	0,871		19650	0,17
6	34,108	1,000	Estructura 8	11629284	98,19
7	35,463	1,040		10530	0,09
8	37,073	1,087		46419	0,39
9	42,781	1,254		89503	0,76
Sum				11843187	

[0101] En la Figura 8, esta traza de HPLC se superpuso con una traza de la Estructura 8 (Gamitromicina) 10 procedente de producción convencional. A partir de una comparación de los dos perfiles de HPLC, no se observó la formación de nuevas impurezas. Por tanto, se puede aplicar este nuevo procedimiento proporcionando la Estructura 8 (Gamitromicina) con un perfil de impureza similar al del procedimiento de fabricación actual.

[0102] Habiendo descrito de esta manera en detalle diversas realizaciones de la presente invención, debe entenderse que la invención definida por los anteriores párrafos no se encuentra limitada a los detalles concretos que se muestran en la anterior descripción, ya que son posibles muchas variaciones evidentes de los mismos sin apartarse del alcance de la presente invención.

REIVINDICACIONES

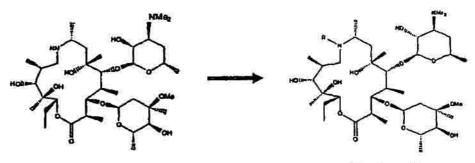

- 1. Un procedimiento para sintetizar un compuesto macrólido que comprende:
- (i) convertir un compuesto de Estructura 2 en un compuesto de Estructura 3;

Estructura 2

Estructura 3

10 (ii) reducir el compuesto de Estructura 3 en presencia de un disolvente polar aprótico y un agente reductor para formar un compuesto de Estructura 7, en el que el compuesto de Estructura 3 se reduce con hidrógeno en presencia de un catalizador de platino o paladio; y

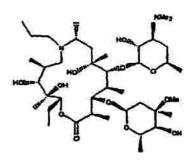
Estructura 3


Estructura 7

15

5

(iii) hacer reaccionar el compuesto de Estructura 7 con un aldehído de estructura R-C(O)H en presencia de un agente reductor para formar un compuesto de Estructura 8a; en el que R es hidrógeno, alquilo, alquenilo, alquinilo, arilo, heteroarilo, o aralquilo;


20

Estructura 7

Estructura 8a

- 2. El procedimiento de la reivindicación 1, en el que en la etapa (i) el compuesto de Estructura 2 se trata con un agente sulfonilante para convertir el compuesto de Estructura 2 en el compuesto de Estructura 3.
- 5 3. El procedimiento de la reivindicación 2, en el que el agente sulfonilante es cloruro de p-toluensulfonilo.
 - 4. El procedimiento de la reivindicación 1, en el que el compuesto de Estructura 3 se aísla a una temperatura por debajo de aproximadamente 10° C.
- 10 5. El procedimiento de la reivindicación 1, en el que el compuesto de Estructura 3 se aísla a una temperatura de aproximadamente -20° C a aproximadamente 10° C.
 - 6. El procedimiento de la reivindicación 1, en el que el agente reductor en la etapa (iii) es hidrógeno; y en el que la reacción se lleva a cabo en presencia de un catalizador de platino, rodio o paladio.
 - 7. El procedimiento de la reivindicación 1, en el que el disolvente polar aprótico en la etapa (ii) es N,N'-dimetiletilenurea, dimetilformamida, dimetilacetamida, dietilacetamida, N-metilpirrolidona, dimetilsulfóxido, hexametilfosforotriamida, o sus mezclas.
- 20 8. El procedimiento de la reivindicación 7, en el que el disolvente polar aprótico es dimetilformamida o dimetilacetamida.
- 9. El procedimiento de la reivindicación 1, en el que el compuesto de Estructura 3 en la etapa (ii) se aísla antes de la etapa (iii).
 - 10. El procedimiento de la reivindicación 1, en el que las etapas (ii) y (iii) se llevan a cabo sin aislar el compuesto de Estructura 7.
- 11. El procedimiento de la reivindicación 1 o la reivindicación 10, en el que en la etapa (iii) RC(O)H es 30 propanal y el compuesto de Estructura 8a es gamitromicina de Estructura 8.

Estructura 8

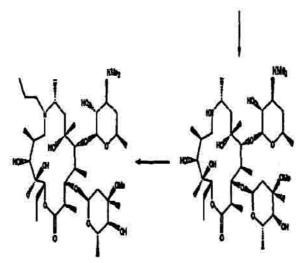
- 12. Un procedimiento de acuerdo con la reivindicación para sintetizar gamitromicina, que comprende:
 - (i) convertir un compuesto de Estructura 2 en un compuesto de Estructura 3:

15

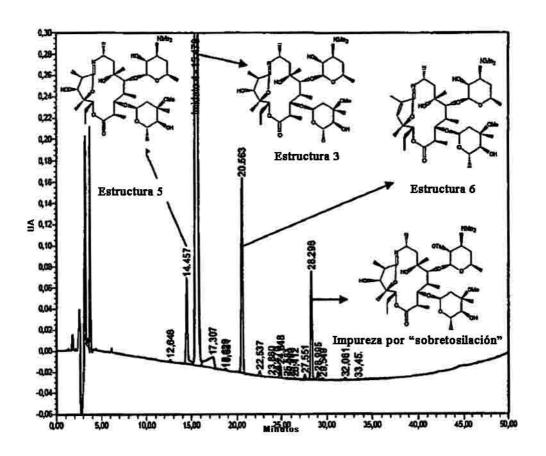
35

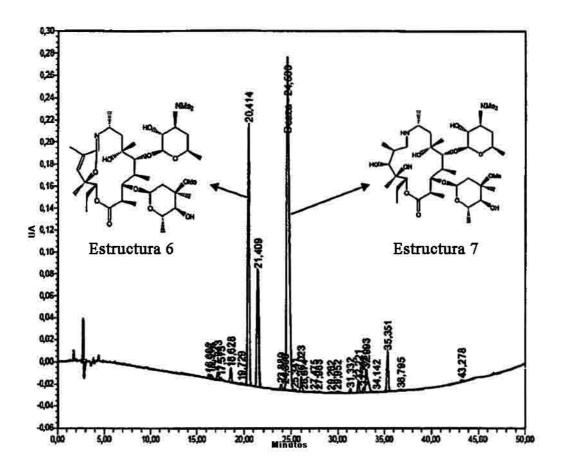
(ii) reducir el compuesto de Estructura 3 en presencia de un disolvente polar aprótico y un agente reductor para formar un compuesto de Estructura 7; y

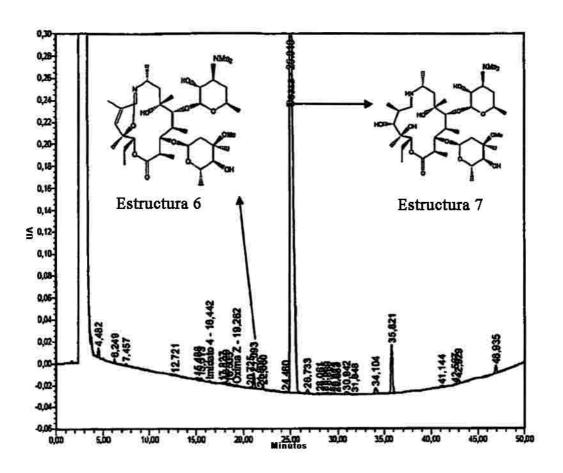
5

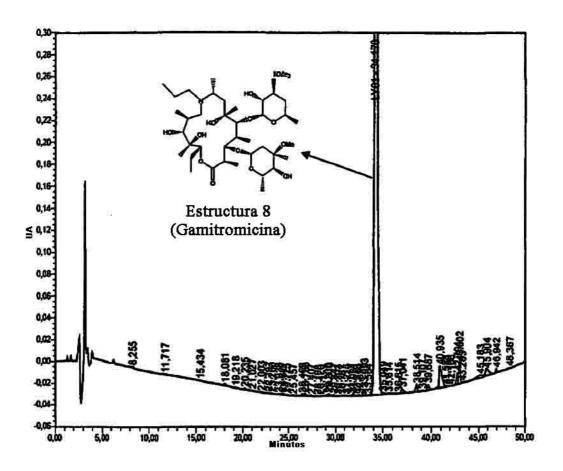

15

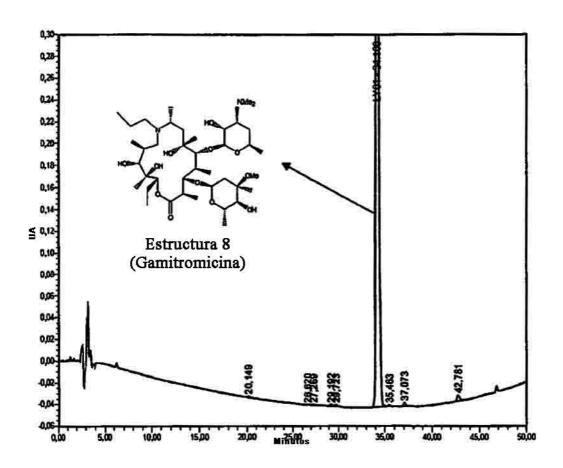
(iii) hacer reaccionar el compuesto de Estructura 7 con propanal en presencia de un agente reductor para formar 10 gamitromicina de Estructura 8;


en el que el compuesto de Estructura 7 procedente de la etapa (ii) no se aísla antes de la etapa (iii);


13. El procedimiento de la reivindicación 12, en el que el disolvente polar aprótico en la etapa (ii) es N,N'-dimetiletilenurea, dimetilacetamida, dietilacetamida, N-metilpirrolidona, dimetilsulfóxido, dimetilformamida, hexametilfosforotriamida, o sus mezclas.


ESTRUCTURA 1 ESTRUCTURA 2 ESTRUCTURA 3 ESTRUCTURA 4




ESTRUCTURA 8 ESTRUCTURA 7

