

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 426 641

51 Int. Cl.:

C07D 413/04 (2006.01) A61P 3/10 (2006.01)
C07D 413/14 (2006.01) A61P 31/00 (2006.01)
C07D 417/04 (2006.01) A61P 35/00 (2006.01)
C07D 417/14 (2006.01) A61P 9/00 (2006.01)
C07D 487/04 (2006.01)

C07F 9/6558 (2006.01) A61K 31/404 (2006.01) A61P 1/16 (2006.01) A61P 25/16 (2006.01) A61P 25/28 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 18.08.2008 E 08793297 (6)
 Fecha y número de publicación de la concesión europea: 12.06.2013 EP 2178869
- (54) Título: Compuestos indol como inhibidores de la necrosis celular
- (30) Prioridad:

17.08.2007 KR 20070082687

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.10.2013 (73) Titular/es:

LG LIFE SCIENCES LTD. (100.0%) LG TWIN TOWER, EAST TOWER 20, YOIDO-DONG YOUNGDUNGPO-GU SEOUL 150-010, KR

(72) Inventor/es:

KIM, SOON HA; KIM, HYOUNG JIN; KOO, SUN YOUNG; LEE, SUNG BAE; PARK, HEUI SUL; YOON, SEUNG HYUN; PAEK, SEUNG YUP; KWAK, HYO SHIN; SEO, DONG OOK Y PARK, EOK

(74) Agente/Representante:

AZNÁREZ URBIETA, Pablo

S 2 426 641 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Compuestos indol como inhibidores de la necrosis celular

Campo técnico

5

35

La presente invención se refiere a compuestos indol de fórmula (1), a sales farmacéuticamente aceptables o isómeros ópticos de los mismos, así como a un método y a una composición para prevenir o tratar la necrosis celular y enfermedades asociadas a la necrosis que comprende dichos compuestos como ingredientes activos.

Antecedentes técnicos

La mayor parte de las investigaciones relacionadas con la muerte celular se ha concentrado en la apoptosis de las células, también conocida como muerte celular programada (PCD). Con el descubrimiento de la enzima caspasa, diversas compañías farmacéuticas han promovido durante los últimos 10 años el desarrollo de fármacos empleando 10 inhibidores de la caspasa. Sin embargo, la situación actual es que la FDA apenas ha aprobado algunos de estos fármacos. Esto se debe a que la apoptosis de las células es una muerte celular que se produce bajo circunstancias fisiológicas, y una muerte celular de este tipo se puede deber probablemente al mecanismo de defensa para mantener la homeostasis en el cuerpo. En cambio, la necrosis es una muerte celular que se produce principalmente 15 bajo circunstancias mórbidas y en la mayoría de los casos se caracteriza por acompañar a la respuesta inflamatoria. La necrosis ha sido conocida durante mucho tiempo como una muerte celular incontrolada, pero una investigación reciente (Proskurykakov SY y col. 2002, Biochemistry) ha descrito la necrosis como una muerte celular activa/controlada. Las enfermedades típicas causadas por la necrosis incluyen enfermedades isquémicas (por ejemplo infarto de miocardio, ictus, infarto renal), neurodegenerativas e inflamatorias. Como se cree que la necrosis 20 consiste en una muerte celular accidental incontrolada bajo circunstancias mórbidas, apenas se han llevado a cabo investigaciones sobre el mecanismo funcional, los objetivos moleculares, los sistemas de transducción de señales, etc. de la misma. Por consiguiente, se plantea una necesidad imperiosa de descubrir y desarrollar sustancias inhibidoras de la necrosis para el tratamiento de enfermedades isquémicas, neurodegenerativas e inflamatorias provocadas por necrosis, y aclarar las causas biológicas y patológicas de la necrosis.

Los derivados de indol de acuerdo con la presente invención tienen estructuras muy útiles desde el punto de vista médico y muchas publicaciones han informado sobre los resultados de investigaciones con referencia a estas estructuras. Entre tales resultados, los siguientes son los más representativos: la patente WO 2006/112549 describe ciertos derivados indol que tienen actividad para la glucoquinasa, la patente WO 95/07276 derivados indol útiles como agentes antitumorales y como inhibidores contra su producción en el sistema cardiovascular y la patente WO 2004/018428 describe derivados indol útiles como antibióticos.

Descripción detallada de la invención

Cuestión técnica a resolver

Así, los presentes inventores han investigado extensamente bajo los antecedentes técnicos arriba mencionados para desarrollar nuevos compuestos que tengan efectos de prevención o tratamiento y mejoría de la necrosis celular y de las enfermedades asociadas a la misma, en particular útiles para la prevención o el tratamiento de enfermedades hepáticas. Como resultado han confirmado que los derivados indol de fórmula (1) tal como se expone más abajo muestran efectos superiores para la prevención y el tratamiento de la necrosis celular y enfermedades asociadas a la necrosis, con lo que han completado la presente invención.

Por consiguiente, un objeto de la presente invención es proporcionar nuevos derivados indol de fórmula (1).

Otro objeto de la presente invención es proporcionar una composición para la prevención o el tratamiento de la necrosis celular y de las enfermedades asociadas a la necrosis, en particular para la protección hepática, la mejoría de la función hepática y la prevención o el tratamiento de enfermedades hepáticas agudas/crónicas, que comprende como ingredientes activos los compuestos de fórmula (1), sales farmacéuticamente aceptables o isómeros de los mismos, junto con vehículos o diluyentes farmacéuticamente aceptables, y un procedimiento para preparar tal composición.

Otro objeto de la presente invención es proporcionar un método para la prevención o el tratamiento de la necrosis celular y enfermedades asociadas a la necrosis, en particular para la protección hepática, la mejoría de la función hepática y la prevención o el tratamiento de enfermedades hepáticas agudas/crónicas mediante el uso de dicha composición.

50 Medios para resolver la cuestión técnica

Para lograr los objetos arroba indicados, la invención proporciona compuestos indol de la siguiente fórmula (1):

$$R^{1}$$
 A
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}

donde

30

n es un número del 0 al 3;

A representa un heteroarilo o heterociclo de 5 miembros, en cada caso con 1 a 3 heteroátomos seleccionados 5 entre N, O y S;

R¹ representa R⁵-X-B-X'-;

B representa un enlace directo, o representa un heteroarilo o heterociclo de $3 \sim 10$ miembros, en cada caso con 1 a 4 heteroátomos seleccionados entre N, O y S;

X y X' representan, independientemente entre sí, un enlace directo o se seleccionan de entre el grupo consistente en -NR 6 -, -CO-, -CONR 6 -, -CO $_2$ -, -OC(O)-, -S(O) $_m$ -, -O-(CH $_2$) $_m$ -, -(CH $_2$) $_m$ -O-, -(CH $_2$) $_m$ -, -NR 6 CO-, -(R 6 O) $_2$ P(O)- y -NHCO $_2$ -, donde m es un número del 0 al 3 y R 6 representa hidrógeno, alquilo o cicloalquilo;

 R^5 representa hidrógeno, nitrilo, hidroxilo, alquilo, alcoxilo, cicloalquilo o arilo, o un heterociclo o heteroarilo monocíclico o cíclico fusionado de 3 \sim 10 miembros, que tienen en cada caso de 1 a 3 heteroátomos seleccionados entre N, O y S, y opcionalmente sustituido con oxo o alquilo; o

15 R⁵ y R⁶ pueden formar juntos un ciclo de 4 ~ 8 miembros;

 R^2 representa -(CR^8R^9)_p-Y- R^7 ;

p es un número del 0 al 2;

 R^8 y R^9 representan, independientemente entre sí, hidrógeno o alquilo, o pueden formar juntos un ciclo de 4 ~ 8 miembros:

Y representa un enlace directo, o se selecciona de entre el grupo consistente en -O-, -S-, -NR⁶-, -NR⁶C(O)-, -CO₂-, -C(O)-, -C(O)NR⁶-, -S(O)_q-, y -S(O)_qNR⁶-, siendo q un número del 0 al 2;

 R^7 representa hidrógeno, halógeno, ciano, hidroxilo, nitro, alquilo, cicloalquilo o arilo, o representa un heterociclo o heteroarilo de 3 \sim 10 miembros en cada caso con 1 a 3 heteroátomos seleccionados entre N, O y S y que opcionalmente contiene oxo;

25 R³ representa hidrógeno, alquilo, -(CH₂)₀-cicloalquilo o -(CH₂)₀-heterociclo;

R⁴ representa cicloalquilo que opcionalmente contiene oxo;

donde el alquilo, alcoxilo, arilo, cicloalquilo, heterociclo y heteroarilo pueden estar opcionalmente sustituidos, siendo los sustituyentes uno o más seleccionados de entre el grupo consistente en hidroxilo, halógeno, nitrilo, amino, alquilamino, dialquilamino, alquilo, haloalquilo, alquilsulfonilo, carboxialquilo, alquilcarboniloxi, alquiltío, alquiloxicarbonilo, alquilaminocarbonilo, arilalcoxi y oxo,

y sales farmacéuticamente aceptables o isómeros ópticos (isómero R o S), racematos, mezclas de diastereoisómeros o diastereoisómeros individuales de los mismos.

En las anteriores definiciones de los compuestos de la fórmula (1), el término "alquilo" se refiere a un grupo hidrocarburo alifático. El alquilo puede ser un alquilo saturado, que no comprende ninguna fracción alquenilo o alquinilo, o un alquilo insaturado, que comprende al menos una fracción alquenilo o alquinilo. El término "alquenilo" se refiere a un grupo que contiene al menos un enlace doble carbono-carbono y "alquinilo" a un grupo que contiene al menos un enlace triple carbono-carbono. El alquilo puede ser de cadena ramificada o lineal cuando se utiliza solo o en una forma compuesta, tal como alcoxilo.

ES 2 426 641 T3

El grupo alquilo puede tener de 1 a 20 átomos de carbono, a no ser que se defina de otro modo. El grupo alquilo puede ser un alquilo de tamaño medio de 1 a 10 átomos de carbono. Por lo demás, el grupo alquilo puede ser un alquilo inferior de 1 a 6 átomos de carbono. Los ejemplos típicos incluyen, de forma no exclusiva, metilo, etilo, propilo, isopropilo, n-butilo, isobutilo, t-butilo, pentilo, hexilo, etenilo, propenilo, butenilo, etc. Por ejemplo, alquilo(C₁-C₄) tiene de 1 a 4 átomos en la cadena alquilo y se selecciona entre el grupo consistente en metilo, etilo, propilo, isopropilo, n-butilo, iso-butilo, sec-butilo y t-butilo.

El término "alcoxi" significa un alquiloxi de 1 a 10 átomos de carbono, a no ser que se defina de otro modo.

El término "cicloalquilo" significa un ciclo alifático saturado de 3 ~10 miembros, a no ser que se defina de otro modo. Los ejemplos típicos incluyen, de forma no exclusiva, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, etc.

- El término "arilo" incluye al menos un anillo con un sistema de electrones π covalente, por ejemplo grupos monocíclicos o policíclicos fusionados (es decir, ciclos que comparten pares de átomos de carbono adyacentes). En la presente especificación, "arilo" significa un anillo monocíclico o multicíclico aromático de 4 \sim 10 miembros, preferentemente de 6 \sim 10 miembros, incluyendo fenilo, naftilo, etc., a no ser que se defina de otro modo.
- El término "heteroarilo" significa un ciclo aromático de 3 ~ 10 miembros, preferentemente de 4 ~ 8 miembros, de forma especialmente preferente de 5 ~ 6 miembros, con 1 a 4 heteroátomos seleccionados entre N, O y S, y que puede estar fusionado con benzo o cicloalquilo(C₃-C₈), a no ser que se defina de otro modo. El heteroarilo monocíclico incluye, de forma no exclusiva, tiazol, oxazol, tiofeno, furano, pirrol, imidazol, isoxazol, isotiazol, pirazol, triazol, triazina, tiadiazol, tetrazol, oxadiazol, piridina, piridazina, pirimidina, pirazina y similares. El heteroarilo bicíclico incluye, de forma no exclusiva, indol, indolina, benzotiofeno, benzofurano, bencimidazol, benzoxazol, bencisoxazol, benzotiazol, benzotiadiazol, benzotriazol, quinolina, isoquinolina, purina, puropiridina y similares.

El término "heterociclo" se refiere a un ciclo de 3 \sim 10 miembros, preferentemente de 4 \sim 8 miembros, de forma especialmente preferente de 5 \sim 6 miembros, con 1 a 4 heteroátomos seleccionados entre N, O y S, que puede estar fusionado con benzo o cicloalquilo(C_3 - C_8) y que está saturado o incluye 1 o 2 enlaces dobles, a no ser que se defina de otro modo. El heterociclo incluye, de forma no exclusiva, pirrolina, pirrolidina, imidazolidina, pirazolidina, pirazolidi

Se ha de entender que otros términos y abreviaturas utilizados en la presente especificación tienen el significado utilizado habitualmente en este campo por los especialistas, a no ser que se defina de otro modo.

Compuestos preferentes entre los compuestos de la fórmula (1) arriba mostrada son aquellos donde:

n es un número del 0 al 3;

25

- A representa un heteroarilo o heterociclo de 5 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre N. O y S;
 - R¹ representa R⁵-X-B-X'-;
 - B representa un enlace directo o representa un heteroarilo o heterociclo de $3 \sim 10$ miembros, en cada caso con 1 a 4 heteroátomos seleccionados entre N, O y S;
- X y X' representan, independientemente entre sí, un enlace directo o se seleccionan de entre el grupo consistente en -NR⁶-, -CO-, -CONR⁶-, -CO₂-, -OC(O)-, -S(O)₂-, -O-(CH₂)_m-, -(CH₂)_m-O-, -(CH₂)_m-, -NR⁶CO-, -(R⁶O)₂P(O)- y -NHCO₂-, siendo m un número del 0 al 3 y R⁶ representa hidrógeno, alquilo(C₁-C₆) o cicloalquilo(C₃-C₆);
- R^5 representa hidrógeno, nitrilo, hidroxilo, alquilo(C_1 - C_6), haloalquilo(C_1 - C_6), hidroxialquilo(C_1 - C_6), cicloalquilo(C_4 - C_6), fenilo o halofenilo, o representa un heterociclo o heteroarilo monocíclico o cíclico fusionado de 5 \sim 10 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre N, O y S, y opcionalmente sustituido con oxo o haloalquilo(C_1 - C_6); o

 R^5 y R^6 pueden formar juntos un ciclo de 4 ~ 8 miembros;

- R^2 representa - $(CR^8R^9)_p$ -Y- R^7 ;
- p es un número del 0 al 2;
- R⁸ y R⁹ representan, independientemente entre sí, hidrógeno o alquilo(C₁-C₆), o pueden formar juntos un ciclo de 5 ~ 6 miembros;
 - Y representa un enlace directo o se selecciona entre el grupo consistente en -O-, -NR⁶-, -NR⁶C(O)-, -C(O)-, -CO₂-, -C(O)NR⁶- y -S(O)_q-, siendo q un número del 0 al 2;

- R^7 representa hidrógeno, halógeno, ciano, hidroxilo, alquilo(C_1 - C_6), hidroxialquilo(C_1 - C_6) o haloalquilo(C_1 - C_6), fenilo opcionalmente sustituido con alquil(C_1 - C_6)sulfonilo, o representa un heterociclo o un heteroarilo de 5 \sim 6 miembros en cada caso con 1 a 3 heteroátomos seleccionados entre N y O;
- R^3 representa hidrógeno, alquilo(C_1 - C_6), -(CH_2)-cicloalquilo(C_3 - C_6) o -(CH_2)-heterociclo, siendo el heterociclo un ciclo de 5 ~ 6 miembros con 1 a 2 heteroátomos seleccionados entre N, O y S;
- R⁴ representa cicloalquilo(C₃-C₆) que opcionalmente contiene oxo.

5

En los compuestos de fórmula (1) de acuerdo con la presente invención, A representa preferentemente un ciclo que se puede representar mediante una de las siguientes fórmulas (i) a (viii), siendo R hidrógeno o alquilo(C_1 - C_4) opcionalmente sustituido con hidroxilo o amino.

De forma totalmente preferente, A se selecciona entre el grupo consistente en 4,5-dihidrotiazol, tiazol, oxazolina, oxadiazol e isoxadiazol.

En la fórmula R⁵-X-B-X'- de R¹, B representa de forma especialmente preferente un enlace directo, representa imidazol u oxadiazol, o representa un heterociclo de 5 ~ 6 miembros con 1 a 2 heteroátomos seleccionados entre N y O, y de forma totalmente preferente representa una estructura que se puede representar mediante una o más de las siguientes fórmulas (ix) a (xii).

De forma especialmente preferente, X representa un enlace directo o se selecciona de entre el grupo consistente en -CO-, -CONR⁶-, -CO₂-, -SO₂-, -(CH₂)_m- y -O-(CH₂)_m-, siendo m un número del 0 al 2 y R⁶ representa hidrógeno, alquilo(C₁-C₆) o cicloalquilo(C₃-C₆). De forma totalmente preferente, X se selecciona de entre el grupo consistente en -CO-, -CONH-, -CO₂-, -SO₂-, -(CH₂)₂-, -O- y -O-CH₂-.

De forma especialmente preferente, X' representa un enlace directo o se selecciona de entre el grupo consistente en -(CH₂)₂-, -NH-, -CO-, -CO₂-, -CONH-, -S(O)₂-, -(R⁶O)₂P(O)-, -NHC(O)- y -NHCO₂-.

- De forma especialmente preferente, R⁵ representa hidrógeno, nitrilo, hidroxilo, alquilo(C₁-C₆), haloalquilo(C₁-C₆), hidroxialquilo(C₁-C₆), cicloalquilo(C₄-C₆), fenilo o halofenilo, o representa un heterociclo monocíclico o cíclico fusionado de 5 ~ 9 miembros o un heteroarilo de 5 ~ 6 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre el grupo consistente en N, O y S, y opcionalmente sustituido con oxo o trifluorometilo. De forma totalmente preferente, R⁵ se selecciona de entre el grupo consistente en hidrógeno, nitrilo, hidroxilo, metilo, etilo, isopropilo, isobutilo, hidroximetilo, trifluorometilo, ciclobutilo, ciclopentilo, ciclohexilo, pirrolidina, piperidina, 2-oxopiperazina, 2-oxopirrolidina, tetrahidrofurano, tetrahidropirano, tetrahidrotiopirano, morfolina, furano, piridina, 1,3-pirazina, 1,1-dioxotiomorfolina, tetrazol, imidazol, pirazol y 3-trifluorometil-5,6,7,8-tetrahidro-2H-[1,2,4]triazolo[4,3-a]pirazina.
- De forma especialmente preferente, en la fórmula - $(CR^8R^9)_p$ -Y- R^7 de R^2 , R^8 y R^9 representan en cada caso hidrógeno.

De forma especialmente preferente, Y se selecciona de entre el grupo consistente en -O-, -NR 6 -, - NR 6 C(O)-, -C(O)-, -C(O)NR 6 -, y -S(O)₂-, teniendo R 6 el significado definido en el intervalo preferente arriba indicado. De forma totalmente preferente, Y se selecciona de entre el grupo consistente en -O-, -NH-, -NHC(O)-, -SO₂-, y -C(O)-.

De forma especialmente preferente, R^7 representa hidrógeno, halógeno, hidroxilo, alquilo(C_1 - C_6), hidroximetilo o haloalquilo(C_1 - C_6), fenilo opcionalmente sustituido con alquil(C_1 - C_6)sulfonilo, o representa un heterociclo o heteroarilo de 5 \sim 6 miembros, en cada caso con 1 a 2 heteroátomos seleccionados entre N y O. De forma totalmente preferente, R^7 se selecciona de entre el grupo consistente en hidrógeno, bromo, flúor, cloro, metilo, etilo, propilo, hidroximetilo, trifluorometilo, fenilo, 4-metilsulfonilfenilo, piperidina, pirrolidina, furano, pirrol, pirazol y piridina.

De forma especialmente preferente, R³ representa hidrógeno, metilo o isobutilo.

5

30

De forma especialmente preferente, R⁴ representa cicloalquilo(C₃-C₆) que opcionalmente contiene oxo. De forma totalmente preferente, R⁴ se selecciona de entre el grupo consistente en ciclopropilmetilo, ciclopentilmetilo, ciclopentilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilmetilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilmetilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, ciclopentilo, ciclopentilo, de entre el grupo consistente en ciclopropilmetilo, de entre el grupo consistente el grupo consistente el grupo consistente el grupo consis

Los compuestos de fórmula (1) de acuerdo con la presente invención también pueden formar sales farmacéuticamente aceptables. Las "sales farmacéuticamente aceptables" incluyen sales de adición de ácido no 15 tóxicas que contienen un anión farmacéuticamente aceptable, por ejemplo, sales con ácidos inorgánicos tales como los ácidos sulfúrico, clorhídrico, nítrico, fosfórico, bromhídrico, yodhídrico, etc.; sales con ácidos carboxílicos orgánicos tales como los ácidos tartárico, fórmico, cítrico, acético, tricloroacético, trifluoroacético, glucónico, benzoico, láctico, fumárico, maleico, salicílico, etc.; o sales con ácidos sulfónicos tales como los ácidos metanosulfónico, etanosulfónico, bencenosulfónico, p-toluensulfónico, naftalenosulfónico, etc. Los compuestos de 20 fórmula (I) también pueden formar sales de adición de bases farmacéuticamente aceptables, por ejemplo sales con metales alcalinos o alcalinotérreos, como litio, sodio, potasio, calcio, magnesio, etc.; sales con aminoácidos tales como lisina, arginina, guanidina, etc.; o sales orgánicas con diciclohexilamina, N-metil-D-glucamina, tris(hidroximetil)metilamina, dietanolamina, colina, trietilamina, etc. Los compuestos de fórmula (I) de la presente invención se pueden convertir en sus sales siguiendo cualquiera de los métodos convencionales, pudiendo llevarse 25 a cabo la salificación fácilmente por el especialista en base a la estructura de fórmula (1) sin explicaciones adicionales sobre la misma.

En la presente especificación, el término "isómero" significa aquellos compuestos que tienen la misma fórmula química o molecular que los compuestos de fórmula (1), o sus sales, pero que son óptica o estéricamente diferentes de éstos. Los compuestos de fórmula (1) de la presente invención pueden tener uno o más centros de carbono asimétricos en la estructura y, por consiguiente, se pueden presentar en forma de isómeros ópticos (isómero R o S), racematos, mezcla de diastereoisómeros o diastereoisómero individual, etc. Cuando los compuestos tienen un enlace doble, se pueden presentar en forma de isómeros geométricos (isómero cis o trans). La presente invención también abarca todos los isómeros y sus mezclas.

En adelante, los compuestos de fórmula (1) incluyen las sales e isómeros farmacéuticamente aceptables de los mismos, a no ser que se explique otra cosa. Se ha de considerar que la presente invención abarca las sales e isómeros. Para mayor comodidad, la presente especificación los designa en resumen como compuestos de fórmula (1).

Compuestos típicos entre los compuestos de fórmula (1) son los seleccionados de entre el siguiente grupo:

```
ciclopentil-[2-(4,5-dihidro-1,3-tiazol-2-il)-1H-indol-7-il]-amina;
```

- 40 [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol;
 - [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
 - ácido [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
 - 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol;
 - (R)-2-[7-ciclopentilamino-5-(hidroximetil)-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metanol;
- 45 ácido [(S)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
 - ácido [(S)-2-(5-metil-7-(4,4-difluorociclohexan-4-il)amino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]acético;
 - ácido [(S)-2-(5-metil-7-ciclobutilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
 - 'acido~[(S)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il] ac'etico;
 - [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol;
- 50 [(R)-2-(5-(dimetilamino)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-metanol;
 - [(R)-2-(5-(pirrol-3-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
 - [(R)-2-(5-(1,3-imidazol-1-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
 - [(R)-2-(5-(pirazol-1-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-metanol;
 - [(R)-2-(5-acetilamino-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]-metanol;
- 55 ácido [(R)-2-(5-fenoximetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
 - [(R)-2-(5-(pirrolidin-1-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acetato de metilo; ciclopentil-[5-cloro-2-((R)-4-isobutil-4,5-dihidrotiazol-2-il)-1H-indol-7-il)-amina;
 - [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propanoato de etilo;

ES 2 426 641 T3

```
ciclopentil-[5-fluor-2-((R)-4-etil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]-amina;
      {(R)-2-[7-(metilciclopentil)amino-5-fluor-1H-indol-2-il]-4,5-dihidro-1,3-tiazol-4-il}-metanol;
      [(S)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
      ácido [(S)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
      [(S)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol;
      [(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]carboxilato de etilo;
      ácido [(S)-2-(5-fenoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
      [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
      [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etanol;
10
      [(R)-2-(5-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
      [(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
      [(R)-2-(5-(piridin-3-il)oxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-metanol;
      [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
      [(R)-2-(5-(isoindol-1,3-dion-2-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-illmetanol:
15
      ácido [(R)-2-(3-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
      ácido [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
      [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4.5-dihidrotiazol-4-il]acetato de etilo;
      [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol;
      ácido [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
      [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de etilo;
20
      [(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
      ácido [(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
      ácido [(R)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético:
      ácido [(R)-2-(5-propiloxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
25
      ácido [(R)-2-(5-fenoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
      [(R)-2-(5-(piridin-3-il)oxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
      ácido [(R)-2-(5-(piridin-3-il)oxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
      [(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
      ácido [(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
30
      ácido [(R)-2-(5-(4-(metanosulfonil)fenoxi)-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
      [(R)-2-(5-fenoximetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
      [(R)-2-(5-fenilaminometil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acetato de metilo;
      [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
      ácido [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]acético;
35
      [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol;
      [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-etil-acetamida;
      ácido 3-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,3-dihidrotiazol-4-il]-propiónico;
      [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propanol;
      3-[(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propionato de etilo;
40
      ácido 3-[(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
      ácido 3-[(R)-2-(5-fenoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
      3-[(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propionato de etilo;
      ácido 3-[(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
      3-[(R)-2-(5-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propionato de etilo;
45
      ácido 3-[(R)-2-(5-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
      ácido 3-[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
      ácido 3-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
      3-[(R)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propionato de etilo;
      ácido 3-[(R)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
      3-[(R)-2-(5-trifluorometoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propionato de etilo;
50
      ácido 3-[(R)-2-(5-trifluorometoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
      ácido [(S)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrooxazol-4-il]acético;
      ácido [(S)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrooxazol-4-il]-acético;
      [2-((4S,5R)-5-aminometil-4-bencil-dihidrooxazol-2-il)-5-cloro-1H-indol-7-il]-ciclopentil-amina;
      {2-[(R)-5-((S)-1-amino-2-feniletil)-4,5-dihidrooxazol-2-il]-5-cloro-1H-indol-7-il}-ciclopentil-amina;
55
      ciclopentil-[2-(4,5-dihidrooxadiazol-2-il)-1H-indol-7-il]-amina;
      [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]metanol;
      [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-5-il]metanol;
      [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]carboxilato de etilo;
60
      ácido [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]carboxílico;
      [2-(7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]metanol;
      [2-(7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]carboxilato de metilo;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-morfolin-4-il-etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etilamino-etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)propilamino-etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-metilamino-etanona;
```

ES 2 426 641 T3

```
2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-dimetilamino-etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-[4-(metil)piperazin-1-il]etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(3-dimetilaminopirrolidin-1-il)etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(piperidin-4-il)etanona;
      2-I(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(4-(metil)piperazin-1-il)etanona;
      2-I(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etilamino-etanona;
      2-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(metilamino)-4-il-etanona;
      2-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)-etanona;
      2-[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-metilamino-etanona;
10
      2-[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)-etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etilamino-etanona;
      2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(4-(metil)piperazin-1-il)etanona;
      ciclopentil-{5-metanosulfonilmetil-2-[(R)-4-(2-morfolin-4-il-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina;
      1-(4-{2-[(R)-2-(7-ciclopentilamino-5-metanosulfonilmetil-1H-indol-2-il)-4.5-dihidro-tiazol-4-illetil\oiperazin-1-il\otatanona:
15
      ciclopentil-[2-((R)-4-pirrolidin-1-ilmetil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]-amina;
      {5-cloro-2-[(R)-4-(2-dimetilaminoetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina;
      {5-cloro-2-I(R)-4-(2-piperazin-1-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentil-amina;
      (5-cloro-2-{(R)-4-|2-(4-etanosulfonil-piperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
      1-(4-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona;
      {5-cloro-2-[(R)-4-(2-pirazol-1-il-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentil-amina;
20
      ácido (S)-1-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}pirrolidin-2-carboxílico;
      {5-cloro-2-[(R)-4-(2-metanosulfonil-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina;
      3-{2-[(R)-2-(3-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-illetil}-5-metil-3H-imidazol-4-carboxilato
                                                                                                                                   de
25
      ácido 3-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-5-metil-3H-imidazol-4-carboxílico;
      ciclopentil-{2-[(R)-4-(2-metoxietil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina;
      [2-((R)-4-aminometil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]ciclopentilamina;
      {2-[(R)-4-((R)-3-aminopirrolidin-1-iletil)-4,5-dihidrotiazol-2-il]-5-cloro-1H-indol-7-il}-ciclopentilamina;
      4-[(R)-2-(7-ciclopentilamino-5-etoxi-1H-indol-2-il)-4,5-dihidrotiazol-4-iletil]piperazin-2-ona;
      {2-[(R)-4-((S)-3-aminopirrolidin-1-iletil)-4,5-dihidrotiazol-2-il]-5-cloro-1H-indol-7-il}-ciclopentilamina:
30
      (5-cloro-2-\(S)-4-\(2-(3-dimetilamino-fenil)etil\)-4,5-dihidrotiazol-2-il\-1H-indol-7-il\-ciclopentilamina;
      1-(4-{2-[(S)-2-(7-ciclopentilamino-5-cloro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)etanona;
      1-(4-{2-[(S)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)etanona;
      (5-metoxi-2-{(R)-4-[2-(pirrolidin-1-il)-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
      (5-metanosulfonilmetil-2-{(S)-4-[(2-oxopiperazin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
35
      1-(4-{2-[(R)-2-(7-ciclopentilamino-5-cloro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-2-il)etanona;
      (5-cloro-2-{(R)-4-[4-metilpiperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-IH-indol-7-il)-ciclopentilamina:
      (5-cloro-2-{(R)-4-[4-(hidroxi)piperidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
      (5-cloro-2-{(R)-4-[2-oxopiperazin-4-il)-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
40
      (5-cloro-2-{(R)-4-[(piperidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
      (5-cloro-2-{(R)-4-[(1,1-dioxotiomorfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
      (5-cloro-2-{(R)-4-[(2-oxopirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
      (5-fluor-2-{(R)-4-(2-aminoetil)-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
      1-(4-{2-[(R)-2-(5-fluor-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona;
      (5-fluor-2-{(R)-4-[(morfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
45
      (5-fluor-2-{(R)-4-(2-dimetilaminoetil)-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
      (5-fluor-2-{(R)-4-[(pirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
      (5-fluor-2-{(R)-4-[(1,1-dioxotiomorfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
      (5-fluor-2-{(R)-4-[(2-oxopirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
50
      1-(4-{2-[(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona;
      (5-fluor-2-{(R)-4-[metanosulfonil-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
      (2-{(R)-4-[2-dimetilaminoetil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
      (2-{(R)-[(piperidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
      1-(4-{2-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona;
      1-(4-{2-[(R)-2-(7-ciclopentilamino)-5-cloro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propil}piperazin-1-il)etanona,
55
      2-{(R)-4-[(morfolin-4-il)metil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
      (5-cloro-2-{(R)-4-[(morfolin-4-il)-propil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
      (2-{(R)-4-[2-dimetilamino-metil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
      (5-cloro-2-{(S)-4-[(morfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
60
      1-(4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona;
      (5-fenoxi-2-{(S)-4-[(piperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
      4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-etil]piperazin-1-carboxilato de t-butilo;
      ciclopentil-(5-fenoxi-2-{(S)-4-[2-(3-fluorometil-5,6-dihidro-8H-[1,2,4]triazolo[4,3-a]pirazin-7-il)etil]-4,5-dihidrotiazol-2-il}-
      1H-indol-7-il)-amina;
```

(4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)oxoran-2-il-metanona;

(5-fenoxi-2-{(S)-4-[2-oxopiperazin-4-il)-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina:

(5-fenoxi-2-{(S)-4-[(piridin-2-il)piperazinetil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;

(5-fenoxi-2-{(S)-4-[(2-fluorofenil)piperazinetil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;

(5-cloro-2-{(S)-4-[2-oxopiperazin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;

(5-fenoxi-2-{(S)-4-[(3S)-3-(amino)pirrolidin-1-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;

1-(4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)etanona;

(5-cloro-[(S)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il])pirrolidin-3-il-acetamida;

(5-fenoxi-2-{(S)-4-[4-(bencil)piperazin-1-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;

(5-fenoxi-2-{(R)-4-[pirrolidin-1-iletil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;

(5-fenoxi-2-{(S)-4-[pirrolidin-1-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;

10 (5-metil-2-{(S)-4-[2-oxopiperazin-4-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-4,4-difluorociclohexil-amina;

(5-metil-2-{(S)-4-[morfolin-4-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-4,4-difluorociclohexil-amina;

1-(4-{2-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona; [(R)-2-(5-aminometil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;

[7-ciclopentilamino-2-((R)-4-hidroximetil-4,5-dihidrotiazol-2-il)-1H-indol-5-ilmetil]amida de ácido furano-2-carboxílico;

[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetoxi]acetato de metilo;

àcido [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetoxi]acético;

ciclopentil-{2-[(R)-4-(3-ciclopentil-[1,2,4]oxadiazol-5-ilmetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina; y ciclopentil-{2-[(R)-4-(3-piperidin-1-il-[1,2,4]oxadiazol-5-ilmetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina.

La presente invención también proporciona procesos para preparar los compuestos de fórmula (1). En adelante, los procesos para preparar los compuestos de fórmula (1) se ilustran mediante ejemplos de esquemas de reacción para mejor comprensión. No obstante, un especialista en el campo al que pertenece la presente invención puede preparar los compuestos de fórmula (1) mediante diversas vías de acuerdo con sus estructuras, debiendo considerarse dichos procesos como dentro del alcance de la presente invención. Dicho de otro modo, los compuestos de fórmula (1) se pueden preparar combinando opcionalmente diversos métodos de síntesis descritos en la presente especificación o dados a conocer en el estado anterior de la técnica. Los procesos para preparar los compuestos de fórmula (1) incluyen incluso dichos procesos y no están limitados a los abajo explicados.

En primer lugar, los compuestos de fórmula (1) se pueden preparar por reacción de acoplamiento amida o de alguilación a partir de los compuestos (2) y (3) de acuerdo con el siguiente esquema de reacción (1).

Esquema de reacción 1

15

30

40

En el esquema de reacción (1) arriba mostrado,

A, R¹, R², R³, R⁴ y n tienen el significado arriba definido, y W representa un ácido carboxílico utilizado en la reacción de acoplamiento amida, o un halógeno, alquilsulfonato, etc. utilizado en la reacción de acoplamiento.

En particular, en el esquema de reacción (1) arriba mostrado, R¹ representa preferentemente un grupo que contiene un nucleófilo amina o carbono.

La reacción de amidación se puede llevar a cabo utilizando un agente de acoplamiento, por ejemplo diciclohexilcarbodiimida (DCC), EDC, N-[dimetilamino-1H-1,2,3-triazol[4,5-b]piridin-1-ilmetilen]-N-metilmetanoaminio (HATU), etc. junto con HOBT. La reacción se lleva a cabo en DMF o DCM, en presencia de una base Et₃N, DIPEA, etc., durante 4 a 12 horas y a temperatura ambiente. En caso de un nucleófilo que contiene un átomo de nitrógeno, la reacción de alquilación se puede llevar a cabo utilizando diversas bases, tales como Et₃N, K₂CO₃, NMPA, DBU, etc., en un disolvente como acetonitrilo, THF, o DMF, a una temperatura de 25 a 80°C y durante 4 a 24 horas. La mayor parte de los compuestos (3) están disponibles en el comercio.

En el siguiente esquema de reacción (2), los compuestos (2-1) y (2-2) donde A es 4,5-dihidrotiazol se pueden preparar por hidrólisis de (4,5-dihidrotiazol-4-il) ésteres del compuesto (4), o mediante la síntesis alcohólica primero por reducción e introduciendo grupos haluro o sulfonilo como grupos salientes.

Esquema de reacción 2

En el esquema de reacción (2) arriba mostrado,

n, R², R³ y R⁴ tienen el significado arriba definido,

Q representa un grupo saliente, preferentemente halógeno o alquilsulfonato, y

R representa alquilo, preferentemente metilo, etilo, isopropilo, etc.

Específicamente, el compuesto ácido carboxílico (2-1) se puede obtener hidrolizando el compuesto éster (4), empleándose de 2 a 10 equivalentes de NaOH, LiOH, KOH, etc. como base, y uno o más disolventes seleccionados entre agua, metanol, THF y dioxano. Esta reacción de hidrólisis se lleva a cabo durante 30 minutos a 12 horas a una temperatura entre temperatura ambiente y 100°C.

- El compuesto alcohol (5) también se puede obtener por reducción del compuesto éster (4), utilizando NaBH₄, LiBH₄, LAH, etc. como agente reductor, y un alcohol como metanol, THF, dioxano, etc. como disolvente. Esta reacción de reducción se lleva a cabo durante 30 minutos a 24 horas a una temperatura entre temperatura ambiente y 100°C. El agente reductor se utiliza normalmente en una cantidad de 3 a 5 equivalentes, pero también se puede emplear en una cantidad en exceso de aproximadamente 10 equivalentes, en caso necesario.
- La reacción de halogenación del compuesto alcohol (5) se puede llevar a cabo utilizando un agente seleccionado entre yodo, bromo, N-yodosuccinimida (NIS), N-bromosuccinimida (NBS), tetracloruro de carbono (CCl₄), tetrabromuro de carbono (CBr₄), etc., en presencia de una base como imidazol, dimetilamino-piridina (DMAP), etc. y una fosfina como trifenilfosfina (Ph₃P), tributilfosfina (Bu₃P), etc. El agente de halogenación, la base y la fosfina se utilizan normalmente en cada caso en una cantidad de 1 a 10 equivalentes con respecto al compuesto (5). La reacción se puede llevar a cabo en un disolvente seleccionado entre éteres como tetrahidrofurano, dietil éter, etc., diclorometano, cloroformo, etc., a una temperatura de 0 a 50°C y durante 10 minutos a 12 horas.

La reacción de sulfonación del compuesto alcohol (5) se puede llevar a cabo utilizando un agente seleccionado entre cloruro de metanosulfonilo, cloruro de p-toluensulfonilo, etc., en una cantidad de 1 a 10 equivalentes, en presencia de una base orgánica como piridina, trietilamina, etc. La reacción puede tener lugar en un disolvente seleccionado entre diclorometano, dicloroetano, etc., a una temperatura de 0 a 50°C y durante 10 minutos a 12 horas.

El compuesto indol-4,5-dihidrotiazol (4') se puede obtener tal como muestra el siguiente esquema de reacción (3), esto es, introduciendo 4,5-dihidrotiazol en el compuesto de partida de 7-nitroindol éster, reduciendo el grupo nitro y llevando a cabo una reacción de aminación reductora para introducir R³ y R⁴.

Esquema de reacción 3

En el esquema de reacción (3) arriba mostrado,

R² tiene el significado arriba definido,

R" representa p-metoxibencilo (p-MeOBn) o trifenilmetilo (Ph₃C), y

R''' representa R¹ o R¹ protegido, y normalmente representa alquiloxicarbonilo (alquil-OC(O)-) o alquilcarboxilato (alquil-CO₂-).

La reacción de hidrólisis en el esquema de reacción (3) se lleva a cabo del modo explicado en relación con el esquema de reacción (2), y la reacción de acoplamiento amida se lleva a cabo tal como se explica en relación con el esquema de reacción (1). La reacción de ciclación se puede llevar a cabo utilizando pentacloruro de fósforo (PCl₅) en diclorometano como disolvente cuando R" es p-metoxibencilo, o utilizando anhídrido trifluorometanosulfónico (Tf₂O) y óxido de trifenilfosfina (Ph₃PO) en diclorometano como disolvente cuando R" es trifenilmetilo.

La reducción del grupo nitro del compuesto 7-nitroindol (10) se puede llevar a cabo utilizando un catalizador ácido y un metal o utilizando un catalizador metálico bajo gas hidrógeno. En la reacción con catalizador ácido, como metal se puede utilizar hierro, zinc, litio, sodio o estaño (normalmente cloruro de estaño), y como catalizador ácido se pueden utilizar ácidos inorgánicos tales como los ácidos clorhídrico, sulfúrico, nítrico, fosfórico, etc.; ácidos carboxílicos orgánicos tales como ácido acético, ácido trifluoroacético, etc.; sales ácidas aminadas tales como cloruro de amonio, etc., preferentemente ácido clorhídrico, ácido acético o cloruro de amonio. Además, en la reducción empleando un catalizador metálico bajo gas hidrógeno, como catalizadores metálicos a utilizar se pueden mencionar paladio, níquel, platino, rutenio, rodio, etc., preferentemente paladio o níquel.

La reacción de aminación reductora se lleva a cabo utilizando un compuesto que contiene un grupo carbonilo (cetona o aldehído). Como agente reductor se pueden mencionar borohidruro de sodio, cianoborohidruro de sodio, triacetoxiborohidruro de sodio, etc. La reacción se puede facilitar utilizando un ácido como catalizador. Como catalizadores ácidos útiles se pueden mencionar: ácidos inorgánicos tales como los ácidos clorhídrico, sulfúrico, nítrico, fosfórico, etc.; ácidos carboxílicos orgánicos tales como ácido acético, ácido trifluoroacético, etc.; sales de ácido de aminadas tales como cloruro de amonio, etc., preferentemente ácido clorhídrico o ácido acético.

En el siguiente esquema de reacción (4) el compuesto (11) y el compuesto indol (7) se acoplan para obtener el compuesto (9-1), que después se cicla bajo condiciones ácidas y se hidroliza para obtener el compuesto (2-3) donde R''' es alcohol. Además, el compuesto (2-4), que se obtiene sustituyendo el grupo alcohol del compuesto (2-3) por un grupo saliente, se puede someter a reacción con el compuesto (14) para obtener el compuesto de amina (2-5).

30 Esquema de reacción 4

10

En el esquema de reacción (4) arriba mostrado, Q, R², R⁵, R⁶ y R" tienen el significado arriba definido.

Las reacciones de acoplamiento amida y ciclación se pueden llevar a cabo bajo las condiciones explicadas en relación con los esquemas de reacción (1) y (3).

- 5 La reacción de hidrólisis para obtener el compuesto (2-3) se lleva a cabo en una mezcla disolvente de agua y un disolvente orgánico en presencia de una base, pudiendo utilizarse THF, metanol, dioxano, etc. como disolvente orgánico, y LiOH, KOH, NaOH, etc. como base.
- La reacción para introducir el grupo saliente Q se puede llevar a cabo bajo las condiciones explicadas en relación con el esquema de reacción (2). La síntesis del compuesto (2-5) por la introducción de un grupo amina se lleva a cabo sometiendo a reacción el compuesto (14) con el compuesto (2-4) en presencia de una base, a una temperatura de 25 a 80°C, durante un tiempo de 20 minutos a 24 horas. Como base se pueden mencionar Et₃N, DIPEA, DMAP, etc., pero la reacción también se puede llevar a cabo en ausencia de bases, si así se requiere.

El compuesto 7-nitroindol (6) es comercial o se puede preparar de acuerdo con el siguiente esquema de reacción (5).

15 Esquema de reacción 5

En el esquema de reacción (5) arriba mostrado, R² tiene el significado arriba definido.

El compuesto nitrofenilamina (15) es comercial o se puede preparar de acuerdo con el proceso dado a conocer en Heterocycles, 68(11), 2285~99, 2006, o en Bioorganic & Medicinal Chemistry Letters, 14(19), 4903~4906, 2004.

El compuesto hidrazina (16) también es comercial o se puede preparar modificando el grupo amina del compuesto (15) en un grupo hidrazina de acuerdo con el proceso dado a conocer en Journal of the America Chemical Society, 198(48), 15374~75, 2006.

El compuesto hidrazona (18) se puede obtener combinando el compuesto cetona (17) con el compuesto hidrazina (16). Cuando el compuesto hidrazina (16) está en forma neutra no se utiliza ninguna base, pero ésta sí se ha de utilizar cuando el compuesto está en forma de sal ácida, para pasarlo a una forma neutra. Como bases se pueden mencionar hidróxidos metálicos como hidróxido de sodio, hidróxido de litio, etc.; carbonatos metálicos como bicarbonato de sodio, carbonato de potasio, etc.; acetatos metálicos como acetato de sodio, etc.; bases orgánicas como trietilamina, piridina, etc., preferentemente acetato de sodio, bicarbonato de sodio, etc.

El compuesto hidrazona (18) se puede preparar sometiendo a reacción una sal de diazonio con el compuesto cetona (19) en presencia de una base de acuerdo con el método de reestructuración de Japp-Klingemann dado a conocer en Organic Process Research & Development, 2, 1988, 214~220.

La reacción de ciclación del compuesto (18) se puede llevar a cabo de acuerdo con el proceso dado a conocer en Journal of Organic Chemistry, 68(24), 2003, 9506~9509, Tetrahedron, 55(34), 1999, 10271~10282, etc. El ácido a utilizar en esta reacción es ácido polifosfórico, ácido clorhídrico, ácido p-toluensulfónico, ácido sulfúrico, ácido acético, etc. En caso de ácido polifosfórico, éste se puede utilizar solo o junto con un hidrocarburo aromático seleccionado entre benceno, tolueno, etc.

El compuesto modificado en la posición 5 del anillo de indol se puede obtener a partir del compuesto (6') tal como muestra el siguiente esquema de reacción (6).

Esquema de reacción 6

10

En el esquema de reacción (6) arriba mostrado, R", R" y R7 tienen el significado arriba definido.

El compuesto (20) se puede obtener protegiendo el grupo amina del (5-metil-7-nitro-1H-indol-2-il)carboxilato de metilo (6') utilizando Boc₂O en presencia de una base y convirtiendo el grupo metilo en la posición 5 en un grupo bromometilo con un agente de bromación.

La acetilación subsiguiente del compuesto (20) con acetato de sodio, la desprotección del grupo BOC y la reacción de hidrólisis pueden dar como resultado el compuesto alcohol (22).

La reacción de ciclación se puede llevar a cabo utilizando pentacloruro de fósforo en el compuesto (9-2), que se obtiene de la reacción de acoplamiento amida entre los compuestos (22) y (8), tal como se explica en relación con el esquema de reacción (3), para obtener el compuesto (2-6) donde el alcohol está sustituido por cloruro, y el compuesto (2-6) se puede convertir en el compuesto (2-7) mediante la introducción del grupo R⁷.

El compuesto (1-2) que tiene un grupo amina en la posición 5 del anillo indol se puede obtener preparando el compuesto (24) a partir del compuesto de ftalimida (23) y por acilación del grupo amina del compuesto (1-1), que se obtiene a partir del compuesto (24), tal como se representa en el siguiente esquema de reacción (7).

15 Esquema de reacción 7

5

En el esquema de reacción (7) arriba mostrado, R⁴, R", R"' y R¹⁰ tienen el significado arriba definido.

La potasio ftalimida utilizada en la reacción de alquilación para introducir un grupo ftalimida es comercial y esta reacción se puede llevar a cabo en presencia de tetrahidrofurano, N,N-dimetilformamida, N-metilpirrolidinona, etc. La reacción de hidrólisis se puede llevar a cabo del mismo modo que el proceso para preparar el compuesto (2-3) en el esquema de reacción (4). El acoplamiento amida del compuesto (23), la ciclación y reducción y la aminación reductora del compuesto (24) también se pueden llevar a cabo del modo arriba explicado. La reacción para eliminar el grupo ftalimida del compuesto (24) se puede llevar a cabo utilizando hidrazina. El compuesto (1-2) se puede obtener por acilación del compuesto amina (1-1) utilizando el cloruro ácido (25), empleándose una base seleccionada entre Et₃N, DIPEA, DMAP, piridina, etc. normalmente en una cantidad de 2 equivalentes o más con respecto al compuesto amina.

En el siguiente esquema de reacción (8), los compuestos (8-1) y (8-2) se preparan protegiendo el grupo tiol de los aminoácidos como cisteína, o introduciendo un grupo tiol en derivados aminoácidos de ácido glutámico, ácido aspártico, etc.

15 Esquema de reacción 8

10

En el esquema de reacción (8) arriba mostrado,

R" tiene el significado arriba definido, y

R"" representa alquilo, preferentemente metilo, etilo, isopropilo o ciclohexilo.

20 El compuesto (8-1) se puede preparar sometiendo a reacción el compuesto aminoácido protegido en amina (28) con diazometano para obtener el compuesto azo, prolongando el número de carbonos utilizando un ión de plata tal como benzoato de plata, esterificando el grupo ácido y eliminando el grupo protector de amina. Específicamente, la reacción de prolongación de carbono se puede llevar a cabo sometiendo a reacción el compuesto (28) con

cloroformato de etilo (ETOCOCI) o cloroformato de isobutilo (iBuOCOCI) en presencia de una base [por ejemplo, N-metilmorfolina (NMM), trietilamina, etc.] en un disolvente tetrahidrofurano, a temperatura ambiente, de acuerdo con un método dado a conocer en Helvetica Chimica Acta, 87, 2004, 3131~3159, para obtener un anhídrido, sometiendo a reacción el anhídrido resultante con una solución acuosa de diazometano-hidróxido de potasio en dietil éter como disolvente a 0°C y después con un ión Ag [por ejemplo, trifluoroacetato de plata (CF₃CO₂Ag), benzoato de plata, etc.] y un alcanol (por ejemplo metanol, etanol, etc.) bajo condiciones de oscuridad para obtener el alquil éster.

En la reacción arriba mostrada, el diazometano se puede obtener sometiendo a reacción Diazald, N-metil-N-nitrosoguanidina o N-metil-

El compuesto aminoácido (28) cuyo grupo amino está protegido con BOC se puede obtener protegiendo el grupo tiol de la cisteína bajo una condiciones básicas y protegiendo el grupo amina con BOC. Específicamente, la protección del grupo tiol se puede llevar a cabo utilizando cloruro de p-metoxibencilo (PMBCI) o cloruro de trifenilmetilo (TrCI) en presencia de una base seleccionada entre NaOH, NaH, etc. La protección con BOC del grupo amino se puede llevar a cabo utilizando (BOC)₂O bajo condiciones básicas, pudiendo incluir la base NaOH, Et₃N, NaHCO₃, etc., y pudiendo utilizarse un disolvente seleccionado entre DCM, dioxano, agua, etc.

El compuesto (8-2) se puede obtener introduciendo un grupo tiol en el compuesto (31) y eliminando el grupo BOC del mismo. Específicamente, la adición del grupo tiol se puede llevar a cabo utilizando PMB-SH (p-metoxibenciltiol) en presencia de una base seleccionada entre NaH, CeCO₃, K₂CO₃, etc. Por otro lado, el compuesto (31) se puede obtener protegiendo el compuesto alcohol (29) con cloruro de metanosulfonilo en presencia de una base Et₃N o DIPEA.

El compuesto (29) se puede sintetizar utilizando como compuesto de partida ácido glutámico o ácido aspártico de acuerdo con el método dado a conocer en Synlett, 15, 2005, 2397~2399 o Journal of Organic Chemistry, 66(5), 2001,1919~1923, etc.

En el siguiente esquema de reacción (9), la fracción de ácido carboxílico del derivado de cisteína (28) se modifica para obtener el compuesto (11).

Esquema de reacción 9

10

25

45

En el esquema de reacción (9) arriba mostrado, R" tiene el significado arriba definido.

La protección del grupo amino del compuesto (28) se puede llevar a cabo utilizando (BOC)₂O, la acilación se puede llevar a cabo utilizando cloruro de ácido isobutírico, cloruro de ácido t-butírico, etc. en presencia de una base, y la reducción se puede llevar a cabo utilizando NaBH₄.

La acilación del compuesto (32) se lleva a cabo utilizando cloruro de pivaloílo en presencia de una base y la eliminación del BOC se lleva a cabo tal como se explica más arriba.

Los compuestos cuyos métodos de preparación no se explican de forma expresa en la presente especificación, son conocidos en sí, o se pueden preparar a partir de compuestos conocidos de acuerdo con procesos conocidos o similares a éstos.

En los procesos de acuerdo con la presente invención, las mezclas se separan convencionalmente por cromatografía en columna. En el caso de un producto final, éste se puede separar una vez completada la reacción por recristalización o por HPLC normal o en fase inversa (Waters, Delta Pack, 300x50 mmLD., C18 5 μm, 100 A). Si el producto se purifica por recristalización o HPLC, el compuesto se puede obtener en forma de una sal con ácido trifluoroacético. Si se desea una sal con ácido clorhídrico, se puede emplear una resina de intercambio iónico.

Tal como se explica más arriba, los compuestos de acuerdo con la presente invención y los materiales de partida, los productos intermedios, etc. para la preparación de los mismos se pueden obtener mediante diversos procesos, debiendo considerarse dichos procesos para preparar los compuestos de fórmula (1) como pertenecientes al alcance de la presente invención

5 Efecto

20

25

30

35

40

50

La presente invención proporciona además una composición para la prevención o el tratamiento de la necrosis y las enfermedades asociadas, que comprende una cantidad terapéuticamente eficaz de los compuestos de fórmula (1) o de sales farmacéuticamente aceptables de los mismos como ingrediente activo, junto con vehículos o diluyentes farmacéuticamente aceptables.

10 La presente invención también proporciona un método para la prevención o el tratamiento de la necrosis y las enfermedades asociadas mediante el uso de la composición arriba descrita.

La necrosis y las enfermedades asociadas que pueden ser tratadas y/o prevenidas de acuerdo con la presente invención incluyen: enfermedades hepáticas agudas/crónicas (por ejemplo hepatitis, fibrosis hepática, cirrosis hepática), enfermedades neurodegenerativas (por ejemplo demencia, enfermedad de Parkinson, enfermedad de Huntington), enfermedades cardíacas isquémicas, lesión por reperfusión, ataque de isquemia o lesión isquémica, pancreatitis, sepsis bacteriana/vírica, diabetes mellitus o complicaciones diabéticas, enfermedades vasculares diabéticas [en particular, estas diabetes están causadas por sustancias destructoras de las células pancreáticas y son producidas por virus, hiperglucemia, ácidos grasos, dieta, toxinas, estreptozotocina y similares], procolitis necrosante, fibrosis quística, artritis reumatoide, artritis degenerativa, nefropatías, infecciones bacterianas, infecciones víricas (por ejemplo VIH), esclerosis múltiple, leucemia, linfoma, síndrome de insuficiencia respiratoria neonatal, asfixia, tuberculosis, endometriosis, angiastenia, psoriasis, sabañones, complicaciones por tratamiento con esteroides, gangrena, llagas por presión, hemoglobinuria, quemaduras, hipertermia, enfermedad de Crohn, enfermedad celíaca, síndrome compartimental, lesiones de la médula espinal, glomerulonefritis, distrofia muscular, enfermedades metabólicas hereditarias, enfermedades micoplasmáticas, ántrax, enfermedad de Andersen, enfermedad mitocondrial congénita, fenilcetonuria, infarto placentario, sífilis, necrosis aséptica, etc. Además, necrosis y enfermedades asociadas causadas por fármacos y sustancias tóxicas se seleccionan entre el grupo consistente en necrosis asociada al alcoholismo, a la exposición a la y/o la administración y/o la autoadministración de cocaína, a fármacos (por ejemplo, paracetamol), antibióticos, agentes anticancerosos, adriamicina, puromicina, bleomicina, AINS, ciclosporina, toxinas químicas (por ejemplo tetracloruro de carbono, cianuro, metanol, etilenglicol), gas tóxico, productos agroquímicos, metales pesados (por ejemplo plomo, mercurio, cadmio) o lesiones debidas a la exposición a radiactividad/UV y necrosis asociada a la misma.

En particular, la composición de acuerdo con la presente invención no solo presenta efectos de protección hepática y mejoría de la función hepática, sino que también muestra efectos profilácticos y terapéuticos en caso de enfermedades hepáticas crónicas, como hígado graso, fibrosis hepática, cirrosis hepática, etc. y enfermedades hepáticas agudas, como hepatitis, etc. causadas por virus o fármacos. Por consiguiente, también se pueden tratar complicaciones de enfermedades hepáticas, incluyendo, de forma no exclusiva, hipertensión portal. Más particularmente, la composición médica de acuerdo con la presente invención es también eficaz para el tratamiento o la prevención de enfermedades hepáticas seleccionadas entre trasplantes de hígado, hígado graso alcohólico o no alcohólico, fibrosis hepática, cirrosis hepática y hepatitis causadas por virus o fármacos, y es efectiva para las enfermedades hepáticas alcohólicas agudas/crónicas.

Además, la composición de acuerdo con la presente invención es eficaz para el tratamiento o la prevención del hígado graso inducido por ácidos grasos o de enfermedades hepáticas agudas/crónicas derivadas del hígado graso.

Tal como se utiliza aquí, el término "tratamiento" significa la interrupción o el retraso de la enfermedad en caso de administración a un sujeto que muestra la aparición de síntomas de la enfermedad y el término "prevención" significa la interrupción o el retraso de los signos de la aparición de la enfermedad en caso de administración a un sujeto que no muestra, pero que tiene el riesgo de mostrar, la aparición de síntomas de la enfermedad.

La "composición farmacéutica" arriba mencionada puede incluir vehículos, diluyentes, excipientes o combinaciones de los mismos farmacéuticamente aceptables, en caso necesario, junto con los compuestos de la presente invención. La composición farmacéutica facilita la administración del compuesto a un organismo vivo. Existen diversas técnicas para administrar el compuesto, que incluyen, de forma no exclusiva, la administración oral, inyectable, por aerosol, parenteral y tópica.

Tal como se utiliza aquí, el término "vehículo" significa una sustancia que facilita la incorporación del compuesto en las células o tejidos. Por ejemplo, el sulfóxido de dimetilo (DMSO) es un vehículo típico utilizado para facilitar la introducción de diversos compuestos orgánicos en las células o tejidos de organismos vivos.

Tal como se utiliza aquí, el término "diluyente" se define como una sustancia que diluida en agua disuelve el compuesto y además estabiliza la forma biológicamente activa del compuesto en cuestión. Las sales disueltas en

solución tampón se utilizan como diluyentes en la técnica. Una solución tampón utilizada típicamente es una solución salina tamponada con fosfato, que imita la forma salina de solución humana. Los diluyentes tampón raras veces alteran las actividades biológicas del compuesto, ya que las sales tampón pueden controlar el pH de la solución a baja concentración.

5 Tal como se utiliza aquí, el concepto "farmacéuticamente aceptable" significa la propiedad de no influir negativamente en las actividades biológicas y las propiedades físicas del compuesto.

Los compuestos de la presente invención se pueden formular como diversas formas de dosificación farmacéuticas de acuerdo con el objetivo deseado. Para preparar la composición farmacéutica de la presente invención, el ingrediente activo, específicamente los compuestos de fórmula (1), sus sales o isómeros farmacéuticamente aceptables, se mezclan entre sí con diversos vehículos farmacéuticamente aceptables que se pueden seleccionar de acuerdo con la formulación a preparar. Por ejemplo, la composición farmacéutica de la presente invención se puede formular como una preparación inyectable, una preparación oral, etc. de acuerdo con el objetivo deseado.

Los compuestos de la presente invención se pueden formular mediante los métodos conocidos en la técnica, empleando vehículos y excipientes farmacéuticos conocidos en la técnica, y se pueden incorporar en los recipientes de forma de dosis unitaria o en forma de multidosis. La forma de preparación puede consistir en soluciones, 15 suspensiones o emulsiones en medios oleosos o acuosos, y normalmente contiene agentes dispersantes, agentes de suspensión o estabilizadores. También puede consistir, por ejemplo, en una forma de polvo seco previsto para ser reconstituido por disolución en agua estéril, libre de pirógenos, antes de su uso. Los compuestos de la presente invención también se pueden formular en forma de supositorios utilizando una base para supositorios típica, como 20 manteca de cacao y otros glicéridos. Como formas de dosificación sólida para la administración oral se pueden preparar cápsulas, pastillas, píldoras, polvos y gránulos, siendo especialmente útiles las cápsulas y pastillas. Preferiblemente, las pastillas y píldoras se preparan como formas con revestimiento entérico. Las formas de dosificación sólidas se pueden preparar mezclando los compuestos de la presente invención con vehículos, por ejemplo uno o más diluyentes inertes tales como sacarosa, lactosa, almidón, etc., lubricantes, como estearato de 25 magnesio, desintegrantes, aglutinantes, etc.

En caso necesario, los compuestos de la presente invención o las composiciones farmacéuticas que los contienen también pueden ser administrados en combinación con otros agentes activos, incluyendo agentes citoprotectores con diversos mecanismos de acción de diferentes tipos, en especial los agentes existentes utilizados para la protección hepática, la mejoría de la función hepática y la prevención o el tratamiento de enfermedades hepáticas: promotores de regeneración de hepatocitos, adyuvantes funcionales hepáticos, agentes antivirales, inmunosupresores, inhibidores de la fibrosis, etc.

Los compuestos de la presente invención o las composiciones farmacéuticas que los contienen se pueden administrar conjuntamente con agentes profilácticos o terapéuticos para cualquier necrosis y enfermedades asociadas derivadas de fármacos. Estos fármacos incluyen los fármacos para cualquier grupo de enfermedades, como antibióticos, agentes anticancerosos, antivirales, antiinfecciosos, antiinflamatorios, anticoagulantes, agentes mejoradores de lípidos, inhibidores de la muerte celular, antihipertensivos, antidiabéticos/ antiobesidad, agentes terapéuticos para enfermedades cardiovasculares, agentes terapéuticos para enfermedades neurodegenerativas, agentes antienvejecimiento, agentes terapéuticos para la enfermedad metabólica, etc.

Los compuestos de la presente invención o las composiciones farmacéuticas que los contienen pueden ser utilizados para la prevención de los daños celulares y la necrosis subsiguiente y enfermedades asociadas derivados de causas diversas tales como toxinas, y estas causas incluyen especies de oxígeno reactivo (ROS), metales pesados, alcohol, alimentos, suplementos, radiación, dieta, etc.

La dosificación de los compuestos de fórmula (1) depende de la prescripción de un médico, teniendo en cuenta factores tales como el peso corporal, el sexo, la edad, el estado de salud y la dieta del paciente, la naturaleza específica de la enfermedad, el tiempo de administración del agente, el método de administración, la proporción de mezcla de agentes y la gravedad de la enfermedad, etc. No obstante, la dosificación necesaria para el tratamiento de un adulto oscila en general entre aproximadamente 1,0 mg y 2.000 mg al día, dependiendo de la intensidad y frecuencia de la administración. Cuando se administra a un adulto vía intramuscular o intravenosa, normalmente una dosificación total entre aproximadamente 1,0 mg y 300 mg al día será suficiente cuando se administra por separado en una dosificación única, pero para algunos pacientes puede ser deseable una dosis más alta.

La presente invención también proporciona un método para preparar la composición para la prevención o el tratamiento de la necrosis y enfermedades asociadas, que incluye el paso de mezclar los compuestos de fórmula (1), sales o isómeros ópticos (isómeros R o S) farmacéuticamente aceptables, racematos, mezclas de diastereoisómeros o diastereoisómeros individuales de los mismos, como ingrediente activo, junto con vehículos o diluyentes farmacéuticamente aceptables.

Mejor forma de realización de la invención

10

30

35

45

50

ES 2 426 641 T3

La presente invención se explica más específicamente mediante las siguientes preparaciones y ejemplos. No obstante, se ha de entender que están previstos para ilustrar la invención y no para limitar en modo alguno el alcance de la misma. En las siguientes preparaciones y ejemplos, M significa concentración molar y N significa concentración normal.

5 Las siguientes preparaciones explican más detalladamente preparaciones de productos intermedios necesarios para la síntesis de los ejemplos de compuestos. Las abreviaturas utilizadas en las siguientes preparaciones y ejemplos son:

Ac: acetilo

AIBN: 2,2'-azobis(2-metilpropionitrilo)

10 BOC: t-butoxicarbonilo

Bu: butilo Bn: bencilo c-Pen: ciclopentilo c-Hex: ciclohexilo

15 CBZ(Cbz): benciloxicarbonilo

DME: dimetoxietano DCM: diclorometano DIPEA: diisopropiletilamina DMAP: 4-dimetilaminopiridina DMF: N,N-dimetilformamida

EDC: 1-(3-dimetilaminopropil)-3-etilcarbodiimida, clorhidrato

Et: etilo

20

30

45

EtOAC: acetato de etilo

Hex: n-hexano

25 HOBT: hidroxibenzotriazol

HBTU: hexafluorofosfato de 2-(1H-benzotriazol-1-il)-1,1,3,3-tetrametiluronio

i-Pr: isopropilo i-Pen: isopentilo Me: metilo F: fenilo Pid: piperidina

Pid: piperidina Piz: piperazina Pid: pirrolidina

PMB: parametoxibencilo

35 TEA: trietilamina

TFA: ácido trifluoroacético TF: tetrahidrofurano TP: tetrahidropirano t-Bu : t-butilo

40 Preparación 1: 4-(piridin-3-iloxi)fenilamina

Paso A: 4-(piridin-3-il)oxi-1-nitrobenceno

En primer lugar se disolvió 1-cloro-4-nitrobenceno (40 g, 0,25 mol) y 3-hidroxipiridina (36 g, 0,38 mol) en N,N-dimetilformamida (100 ml). Luego se añadió carbonato de potasio (52,6 g, 0,38 mol) y la mezcla se agitó durante 20 horas a 100°C. Una vez completa la reacción se añadió agua. La mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro para obtener el compuesto indicado en el título.

Paso B: 4-(piridin-3-iloxi)fenilamina

El 4-(piridin-3-il)oxi-1-nitrobenceno preparado en el paso A se disolvió en una mezcla de agua (100 ml), tetrahidrofurano (100 ml) y metanol (100 ml). Luego se añadió polvo de hierro (103 g, 1,84 mol) y cloruro de amonio (99 g, 1,84 mol) y la mezcla se agitó durante 3 horas a 80°C utilizando un agitador mecánico. Una vez completa la reacción, la mezcla de reacción se filtró a través de celite, se lavó con metanol y se concentró bajo presión reducida. El sólido así obtenido se filtró, se lavó con éter y se secó para obtener el compuesto indicado en el título (17 g, rendimiento 36%). Masa [M+H]: 186 (M+1)

Preparación 2: 4-(4-metanosulfonil-fenoxi)fenilamina

55 Paso A: 1-(4-metilsulfanilfenoxi)-4-nitrobenceno

En primer lugar se disolvió 1-cloro-4-nitrobenceno (15 g, 95 mmol) y 4-(metilmercapto)fenol (13,3 g, 95 mmol) en sulfóxido de dimetilo (100 ml). Luego se añadió carbonato de potasio (15,8 g, 134 mmol) y la mezcla se agitó durante 12 horas a 100°C. Una vez completa la reacción se añadió agua en exceso para precipitar un sólido, que se filtró y secó para obtener el compuesto indicado en el título.

5 Paso B: 4-(4-metanosulfonil-fenoxi)nitrobenceno

El 1-(4-metilsulfanilfenoxi)-4-nitrobenceno (86 g, 330 mmol) preparado en el paso A se disolvió en diclorometano (500 ml). Luego se añadió mCPBA (ácido 3-cloroperbenzoico) (83 g, 330 mmol) y la mezcla se agitó durante 2 horas a una temperatura entre 0°C y la temperatura ambiente. Una vez completa la reacción se añadió un exceso de una disolución acuosa de hidróxido de sodio 6N. La mezcla de reacción se extrajo con acetato de etilo y diclorometano, se lavó con una disolución saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro para obtener el compuesto indicado en el título (28 g, rendimiento 100%).

Paso C: 4-(4-metanosulfonil-fenoxi)fenilamina

El 4-(4-metanosulfonil-fenoxi)nitrobenceno (28 g, 95 mmol) preparado en el paso B se disolvió en metanol (500 ml) y acetato de etilo (500 ml). Luego se añadió 10% Pd/C (1,0 g) y la mezcla se agitó bajo hidrógeno gas a presión atmosférica durante 3 horas. Una vez completa la reacción, la mezcla de reacción se filtró a través de celite, se lavó con metanol, se concentró bajo presión reducida y se secó con sulfato de magnesio anhidro para obtener el compuesto indicado en el título (25 g, rendimiento 100%). Masa [M+H]: 263 (M+1)

Preparación 3: 4-etoxi-2-nitrofenilamina

Paso A: 4-etoxi-1-acetilaminobenceno

En primer lugar se disolvió 4-etoxianilina (40 g, 0,29 mol) y trietilamina (61 ml, 0,44 mol) en diclorometano (200 ml). Luego se añadió gota a gota anhídrido acético (30 ml, 0,32 mol) y la mezcla de reacción se agitó durante 1 hora a una temperatura entre 0°C y la temperatura ambiente. Después se añadió una disolución de ácido clorhídrico 1N y la mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución de cloruro de sodio y se secó con sulfato de magnesio anhidro para obtener el compuesto indicado en el título.

25 Paso B: 4-etoxi-2-nitro-1-fenilamina

El 4-etoxi-1-acetilaminobenceno (51 g, 0,29 mol) preparado en el paso A se disolvió en diclorometano (200 ml). Luego se añadió gota a gota ácido nítrico fumante (13 ml, 0,29 mol) a 0°C y la mezcla se agitó durante 1 hora a una temperatura entre 0°C y la temperatura ambiente. Después se añadió una disolución acuosa saturada de bicarbonato de sodio a la mezcla de reacción, que se extrajo a continuación con acetato de etilo, se lavó con una disolución saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro. El compuesto nitro resultante se disolvió en metanol (100 ml) y tetrahidrofurano (100 ml). Luego se añadió gota a gota hidruro de sodio 6N y la mezcla se agitó durante 6 horas a temperatura ambiente. Una vez completa la reacción, la mezcla de reacción se neutralizó a un pH de aproximadamente 7 utilizando una disolución de ácido clorhídrico 6N, se extrajo con acetato de etilo, se lavó con una disolución saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro para obtener el compuesto indicado en el título (44 g, rendimiento 83%). Masa [M+H]: 182 (M+1)

Preparaciones 4 a 13:

Los compuestos de fenilamina preparados en las preparaciones 1 y 2 y las anilinas comerciales se sometieron a reacción de acuerdo con el mismo procedimiento que la preparación 3 para sintetizar los compuestos de preparación indicados en la siguiente tabla.

40

30

35

Preparación	R ²	Masa [M+H]
4	-O-(piridin-3-ilo)	231
5	-O-(4-metanosulfonilfenilo)	308
6	metoxi	168
7	fenoxi	231
8	fluoro	156
9	bromo	217
10	NAc	195
11	-O-(n-Pr)	196
12	-O-CF3	222

Preparaci	ón	R^2	Masa [M+H]
13		cloro	172

Preparación 14: 5-cloro-7-nitro-1H-indol-2-carboxilato de metilo

Método A

Paso A: clorhidrato de (4-cloro-2-nitrofenil)hidrazina

La 4-cloro-2-nitroanilina (40 g, 0,23 mol) preparada en la preparación 13 se disolvió en ácido clorhídrico 12N (100 ml). Después se añadió lentamente, gota a gota, nitrito de sodio (16 g, 0,23 mol) disuelto en agua (50 ml) a 0°C y la mezcla se agitó durante 30 minutos a una temperatura entre 0°C y temperatura ambiente. La mezcla de reacción se enfrió a 0°C, luego se añadió lentamente, gota a gota, cloruro de estaño (II) (132 g, 0,70 mol) disuelto en ácido clorhídrico 12N (100 ml) y la mezcla se agitó durante 3 horas a una temperatura entre 0°C y temperatura ambiente.
 El sólido amarillo resultante se filtró, se lavó con una pequeña cantidad de HCl 6N y se para obtener el compuesto indicado en el título (30 g, rendimiento 63%). ¹H-NMR (400 HMz, DMSO-d₆); δ 9,21 (s, 1H), 7,98 (d, J = 2,4 Hz, 1H), 7,66 (d, J = 9,6 Hz, 1H), 7,55 (dd, J = 2,4, 9,6 Hz, 1H), 4,74 (br s, 2H).

Paso B: 2-[(4-cloro-2-nitrofenil)hidrazono]propionato de metilo

El clorhidrato de (4-cloro-2-nitrofenil)hidrazina (30 g, 0,14 mol) preparado en el paso A y piruvato de metilo (14,4 ml, 0,16 mol) se disolvieron en metanol (300 ml) y se añadió acetato de sodio (14,2 g, 0,17 mol). La solución de reacción se agitó durante 8 horas a temperatura ambiente y el sólido amarillo resultante se filtró, se lavó con agua y metanol y se secó para obtener el compuesto indicado en el título (30 g, rendimiento 82%). ¹H-NMR (400 HMz, CDCl₃); δ 10,88 (s, 1H), 8,21 (d, J = 2,4 Hz, 1H), 8,01 (d, J = 9,2 Hz, 1H), 7,56 (dd, J = 2,4, 9,2 Hz, 1H), 3,90 (s, 3H), 2,23 (s, 3H).

Paso C: 5-cloro-7-nitro-1H-indol-2-carboxilato de metilo

Al 2-[(4-cloro-2-nitrofenil)hidrazono]propionato de metilo (13 g, 46 mmol) preparado en el paso B se añadió ácido polifosfórico (100 ml) y la mezcla se calentó durante 4 h a 100°C. Una vez completa la reacción se añadió agua a la mezcla de reacción a 0°C. La mezcla resultante se agitó durante 2 horas y se filtró para recoger el sólido. El sólido se lavó con agua y se secó para obtener el compuesto indicado en el título (6,0 g, rendimiento 49%). ¹H-NMR (400 HMz, CDCl₃); δ 10,32 (br s, 1H), 8,29 (d, 1H), 8,03 (d, J = 2,4 Hz, 1H), 7,31 (d, J = 2,0 Hz, 1H), 4,01 (s, 3H).

25 Método B

30

Paso A: 2-[(4-cloro-2-nitrofenil)hidrazono]propionato de metilo

La 4-cloro-2-nitrofenilamina (11,0 g, 64,05 mmol) preparada en la preparación 13 se disolvió en ácido clorhídrico concentrado (32 ml) en un matraz A y se enfrió a -10°C. Después se añadió hielo (90 g) y luego lentamente nitrito de sodio (4,42 g, 64,05 mmol) disuelto en agua (50 ml), y la mezcla se agitó hasta que ese volvió transparente. En un matraz B se disolvió 2-metil-3-oxobutanoato de metilo (8,32 g, 64,05 mmol) en etanol (76 ml) y se enfrió a -10°C. Luego se añadió hidróxido de potasio (19,05 ml) disuelto en agua (19 ml), al que se le había añadido la solución preparada en el matraz A a -10°C. La mezcla se agitó durante 1 hora. El sólido resultante se filtró para obtener el compuesto indicado en el título (7,54 g, rendimiento 46%).

Paso B: 5-cloro-7-nitro-1H-indol-2-carboxilato de metilo

35 El 2-[(4-cloro-2-nitrofenil)hidrazono]propionato de metilo preparado en el paso A se sometió a reacción mediante el mismo procedimiento que en el paso C del Método A de la preparación 14 para obtener el compuesto indicado en el título. ¹H-NMR (400 HMz, CDCI); δ 10,32 (br s, 1H), 8,29 (d, 1H), 8,03 (d, J = 2,4 Hz, 1H), 7,31 (d, J = 2,0 Hz, 1H), 4,01 (s, 3H)

Preparaciones 15 a 26

40 Los compuestos de las preparaciones se sometieron a reacción con piruvato de metilo, piruvato de etilo, 2-metil-3-oxobutanato de metilo o 2-metil-3-oxobutanoato de etilo mediante el método A o B de la preparación 14 para sintetizar los compuestos de preparación indicados en la siguiente tabla.

Preparación	R	R^2	¹ H-NMR
15	metilo	metilo	500 HMz, DMSO-d ₆); δ 11,25 (br s, 1H), 8,08 (3, 1H), 7,96 (s, 1H), 7,32 (s, 1H), 3,87 (s, 3H), 2,44 (s, 3H)
16	metilo	metoxi	(400 HMz, DMSO-d ₆); δ 11,26 (br s, 1H), 7,84 (s, 1H), 7,80 (s, 1H), 7,35 (s, 1H), 3,91 (s, 3H), 3,89 (s, 3H)
17	metilo	hidrógeno	$^{1}\text{H-NMR}$ (500 HMz, DMSO-d ₆); δ 11,36 (br s, 1H), 8,23 (d, 1H), 8,17 (d, 1H), 7,42 (s, 1H), 7,32 (t, 1H), 3,88 (s, 3H)
18	etilo	fluoro	(400 HMz, DMSO-d ₆); δ 11,55 (br s, 1H), 8,16 (m, 1H), 8,10 (m, 1H), 7,42 (s, 1H), 4,40 (q, 2H), 1,36 (t, 3H)
19	etilo	etoxi	(400 HMz, DMSO-d ₆); δ 10,20 (br s, 1H), 7,86 (s, 1H), 7,51 (s, 1H), 7,26 (s, 1H), 4,13 (m, 2H), 3,98 (s, 3H), 1,47 (m, 3H)
20	metilo	bromo	(400 HMz, CDCl ₃); δ 10,33 (br s, 1H), 8,41 (s, 1H), 8,18 (s, 1H), 7,30 (d, J = 4,0 Hz, 1H), 4,01 (s, 3H)
21	metilo	fenoxi	(400 HMz, CDCl ₃); δ 10,26 (br s, 1H), 8,05 (s, 1H), 7,69 (s, 1H), 7,39 (m, 2H), 7,26 (s, 1H), 7,15 (m, 1H), 7,01 (m, 2H), 4,00 (s, 3H)
22	etilo	-O-(4- metanosulfonilo)	(400 HMz, DMSO-d ₆); δ 8,099 s, 1H), 10,20 (br s, 1H), 7,86 (s, 1H), 7,51 (s, 1H), 7,26 (s, 1H), 4,13 (m, 2H), 3,98 (s, 3H), 1,47 (m, 3H)
23	etilo	-O-(piridin-3-ilo)	¹ H-NMR (400 HMz, CDCl ₃); δ 10,32 (br s, 1H), 8,51~8,47 (m, 2H), 8,05 (d, J = 2,4 Hz, 1H), 7,73 (d, J = 2,0 Hz, 1H), 7,42~7,35 (m, 2H), 7,31 (d, J = 2,4 Hz, 1H), 4,48 (q, 2H), 1,47 (t, 3H)
24	etilo	-O-(n-Pr)	(400 HMz, DMSO-d ₆); δ 10,12 (brs, 1H), 7,92 (s, 1H), 7,51 (s, 1H), 7,24 (s, 1H), 4,44 (m, 2H), 4,01 (m, 2H), 1,91 (m, 2H), 1,44 (m, 3H), 1,08 (m, 3H)
25	etilo	-O-CF ₃	(400 HMz, DMSO-d ₆); δ 10,34 (br s, 1H), 7,91 (s, 1H), 7,80 (s, 1H), 7,45 (s, 1H), 4,34 (m, 2H), 1,45 (m, 3H)
26	etilo	NAc	(400 HMz, DMSO-d ₆); δ 11,26 (s, 1H), 10,31 (s, 1H), 8,55 (s, 1H), 8,44 (s, 1H), 7,45 (s, 1H), 4,40 (q, 2H), 2,11 (s, 3H), 1,36 (t, 3H)

Preparación 27: clorhidrato de (R)-3-amino-4-(4-metoxi-bencilsulfanil)-butanoato de metilo

Paso A: ácido (R)-2-amino-3-(4-metoxi-bencilsulfanil)propiónico

A una mezcla de dietil éter (400 ml) y ácido clorhídrico concentrado (400 ml) se añadió gota a gota, a lo largo de 2 horas, alcohol 4-metoxibencílico (280 g, 1.780 mmol) disuelto en dietil éter (400 ml) y la mezcla se agitó durante 1 hora. La capa orgánica se separó y se añadió a una solución preparada disolviendo L-cisteína (197 g, 1625 mmol) y una disolución acuosa de hidróxido de sodio 2N (980 ml) en etanol (1890 ml). La mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, la mezcla de reacción se enfrió a 0°C y se neutralizó a pH 7 con una disolución acuosa de ácido clorhídrico 3N. El sólido resultante se filtró y se secó para obtener el compuesto indicado en el título (250 g, rendimiento 64%).

Paso B: ácido (R)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propiónico

15

El ácido (R)-2-amino-3-(4-metoxi-bencilsulfanil)propiónico (30,7 g, 127,3 mmol) preparado en el paso A se disolvió en tetrahidrofurano (150 ml) y agua (150 ml). Luego se añadió carbonato de potasio (26,4 g, 190 mmol) y (BOC)₂O (27,7 g, 127,3 mmol) y la mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, la mezcla de reacción se destiló bajo presión reducida para eliminar el tetrahidrofurano. El residuo se enfrió a 0°C y se acidificó a pH 3 con una disolución acuosa de ácido clorhídrico 3N. El sólido resultante se lavó con agua y se secó para obtener el compuesto indicado en el título (43 g, rendimiento 99%).

Paso C: [(R)3-diazo-1-(4-metoxi-bencilsulfanilmetil)-2-oxopropil]carbamato de t-butilo

El ácido (R)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propiónico (43 g, 132 mmol) preparado en el paso B, 1-metilmorfolina (14,5 ml, 132 mmol) y cloroformato de etilo (14,1 ml, 132 mmol) se disolvieron en tetrahidrofurano (500 ml) y la mezcla se agitó durante 1 hora a -25°C. Al mismo tiempo se disolvió hidróxido de potasio (75 g, 1336 mmol) en agua (75 ml) y dietil éter (750 ml), se añadió gota a gota N-metil-nitrosourea (26 g, 252 mmol) a lo largo de 2 horas a 0°C, y la mezcla se agitó durante 30 minutos. Las dos soluciones así obtenidas se mezclaron entre sí y se agitaron durante 3 horas a una temperatura entre -25°C y temperatura ambiente. Una vez completa la reacción se añadió agua a la mezcla de reacción, que después se lavó con una disolución acuosa saturada de bicarbonato de

sodio y con una disolución acuosa saturada de cloruro de amonio, en este orden. La capa orgánica se concentró para obtener el compuesto indicado en el título (46,0 g, rendimiento 95 %). 1 H-NMR (400 HMz, CDCl₃); δ 7,25 (d, J = 8,8 Hzm 2H), 6,86 (d, J = 8,8 Hz, 2H), 5,48 (br s 1H), 5,29 (m, 1H), 4,31 (m, 1H), 3,79 (s, 3H), 3,69 (s, 2H), 2,76 (d, J-6,0 Hz, 2H), 1,45 (s, 9H)

5 Paso D: (R)-3-t-butoxicarbonilamino-4-(4-metoxi-bencilsulfanil)butanoato de metilo

El [(R)-3-diazo-1-(4-metoxi-bencilsulfanilmetil)-2-oxopropil]carbamto de t-butilo (40 g, 109 mmol) preparado en el paso C se disolvió en metanol (600 ml) y la mezcla se enfrió a -25°C. Luego se añadió trifluoroacetato de plata y la mezcla se calentó lentamente. Una vez completa la reacción, la fracción sólida se retiró por filtración a través de celite. Después se añadió una disolución acuosa saturada de NH₄Cl y la mezcla se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna (eluyente: EtOAc/n-Hex = 1/3) para obtener el compuesto indicado en el título (30,6 g, rendimiento 76%). ¹H-NMR (500 HMz, CDCl₃); δ 7,24 (d, J = 8,6 Hz, 2H), 6,83 (d, J = 8,6 Hz, 2H), 5,09 (m, 1H), 4,08 (m, 1H), 3,79 (s, 3H), 3,68 (s, 2H), 3,66 (s, 3H), 2,70~2,52 (m, 4H), 1,44 (s, 9H)

Paso E: (R)-3-amino-4-(4-metoxi-bencilsulfanil)butanoato de metilo

10

25

El (R)-3-t-butoxicarbonilamino-4-(4-metoxi-bencilsulfanil)butanoato de metilo (30 g, 81,3 mmol) preparado en el paso D se disolvió en diclorometano (70 ml). Luego se añadió una solución 4N de ácido clorhídrico/1,4-dioxano (71 ml) y la mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, la solución de reacción se concentró bajo presión reducida. Al residuo se le añadió diclorometano (30 ml) y dietil éter (150 ml). El sólido resultante se filtró y se secó para obtener el compuesto indicado en el título (19,2 g, rendimiento 87%). ¹H NMR (400 MHz, DMSO-d₆); δ 8,21 (br s, 3H), 7,25 (d, 2H), 6,83 (d, 2H), 3,78 (s, 3H), 3,68 (s, 2H), 3,65 (s, 3H), 3,29 (m, 1H), 2,51-2,48 (m, 2H), 2,35-2,31 (m, 2H)

Preparación 28: clorhidrato de (R)-3-amino-4-(4-metoxi-bencilsulfanil)-butirilato de etilo

EI [(R)-3-diazo-1-(4-metoxi-bencilsulfanilmetil)-2-oxopropil]carbamato de t-butilo preparado en el paso C de la preparación 27 y etanol se sometieron a reacción secuencialmente por los mismos procedimientos que en los pasos D y E de la preparación 27 para obtener el compuesto indicado en el título. ¹H NMR (400 MHz, CDCl₃); δ 8,37 (br s, 3H), 7,28 (d, J = 8,0 Hz, 2H), 6,87 (d, J = 8,0 Hz, 2H), 4,11 (m, 2H), 3,73 (s, 3H), 3,70 (s, 2H), 2,81~2,67 (m, 4H), 1,18 (t, 3H)

Preparación 29: clorhidrato de (R)-4-amino-5-(4-metoxi-bencilsulfanil)-pentanoato de etilo

Paso A: (R)-4-BOC-amino-5-hidroxipentanoato de etilo

30 Un 5-etil ester-1-metil éster de ácido (R)-2-BOC-aminopentanoico comercial (57,8 g, 200 mmol) se disolvió en metanol (200 ml). Después se añadió LiBH₄ (en solución en THF, 400 ml) y la mezcla se agitó durante 2 horas manteniendo la temperatura a 10°C o inferior. Una vez completa la reacción, la mezcla de reacción se enfrió a 0°C y se añadió lentamente agua para extinguirla. El metanol se eliminó bajo presión reducida y el residuo se diluyó con una disolución acuosa saturada de NaHCO₃. La mezcla se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (39 g, rendimiento 75%).

Paso B: (R)-4-BOC-amino-5-metanosulfoniloxi-pentanoato de etilo

El (R)-4-BOC-amino-5-hidroxipentanoato de etilo (36 g, 137,8 mmol) preparado en el paso A y trietilamina (38,4 ml, 275,5 mmol) se disolvieron en diclorometano (200 ml). Después se añadió gota a gota cloruro de metanosulfonilo (11,7 ml, 151,5 mmol) y la mezcla se agitó durante 1 hora a una temperatura entre 0°C y temperatura ambiente. Una vez completa la reacción, se añadió una disolución 1N de ácido clorhídrico, que después se extrajo con acetato de etilo, se lavó con una disolución acuosa saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro para obtener el compuesto indicado en el título.

Paso C: (R)-4-BOC-amino-5-(4-metoxi-bencilsulfanil)pentanoato de etilo

Se disolvió hidruro de sodio (5,5 g, 137,8 mmol) y 4-metoxibencilmercaptano (15,4 ml, 110,2 mmol) en N,N-dimetilformamida (150 ml) y la mezcla se agitó durante 10 minutos a 0°C. A la solución resultante se le añadió gota a gota el (R)-4-BOC-amino-5-metanosulfoniloxi-pentanoato de etilo (46,7 g, 137,8 mmol) preparado en el paso B y la mezcla se agitó durante 4 horas a 0°C. Después se añadió agua para extinguir la reacción y la mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución acuosa saturada de cloruro de sodio y se secó con sulfato de sodio anhidro. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título. ¹H-NMR (400 HMz, CDCl₃); δ 7,25 (d, J = 8,8 Hz, 2H), 6,85 (d, J = 8,8 Hz, 2H), 4,56 (m, 1H), 4,12 (m, 2H), 3,79 (s, 3H), 3,69 (s, 2H), 2,53 (m, 2H), 2,33 (t, 2H), 1,93 (m, 1H), 1,70 (m, 1H), 1,44 (s, 9H), 1,25 (t, 3H)

Paso D: clorhidrato (R)-4-amino-5-(4-metoxi-bencilsulfanil)pentanoato de etilo

El (R)-4-BOC-amino-5-(4-metoxi-bencilsulfanil) pentanoato de etilo (11 g, 62,7 mmol) preparado en el paso C se disolvió diclorometano (200 ml). Luego se añadió una disolución 4N de ácido clorhídrico/acetato de etilo (20 ml) y la mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó por completo bajo presión reducida. El residuo se recristalizó a partir de dietil éter (150 ml) y se secó para obtener el compuesto indicado en el título (20 g, rendimiento 96%). 1 H NMR (400 MHz, DMSO-d₆); δ 8,69 (br s, 3H), 7,29 (d, J = 8,0 Hz, 2H), 6,89 (d, J = 8,0 Hz, 2H), 4,08 (m, 2H), 3,74 (m, 5H), 3,26 (m, 1H), 2,76~2,63 (m, 2H), 2,49~2,40 (m, 2H), 1,89 (m, 2H), 1,20 (t, 3H)

Preparación 30: (S)-3-amino-4-(metoxi-bencilsulfanil)butanoato de isopropilo

10 Paso A: 4-isopropiléster 1-metiléster de ácido (S)-2-BOC-amino-succínico

Un 1-metil éster de ácido (S)-2-BOC-aminosuccínico comercial (2,4 g, 10 mmol) se disolvió en DCM (30 ml) y se añadió trietilamina (2,8 ml, 20 mmol). A esta mezcla se añadió isopropanol (660 mg, 11 mmol), EDC (2,5 g, 26 mmol) y HOBt (2,3 g, 30 mmol) y la mezcla se agitó durante 4 horas a temperatura ambiente. La reacción se extinguió con una disolución acuosa saturada de NaHCO₃. La mezcla de reacción se extrajo con EtOAc, se lavó con una disolución acuosa saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (2,5 g, rendimiento 87%).

Paso B: (S)-3-amino-4-(metoxi-bencilsulfanil)butanoato de isopropilo

15

El 4-isopropiléster 1-metil éster de ácido (S)-2-BOC-aminosuccínico preparado en el paso A se sometió a reacción con el mismo procedimiento que en la preparación 29 para obtener el compuesto indicado en el título. Masa [M+H]: 397

Preparación 31: 2,2-dimetilpropanoato de (R)-2-amino-3-(4-metoxi-bencilsulfanil)propilo

Paso A: (R)-2-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo

Se hicieron reaccionar el ácido (R)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propiónico preparado en el paso B de la preparación 27 y metanol con el mismo procedimiento que en la preparación 30 para obtener el compuesto indicado en el título. ¹H NMR (400 MHz, DMSO-d₆, sal de HCl); δ 8,81 (br s, 3H), 7,29 (d, J = 8,4 Hz, 2H), 6,91 (d, J = 8,4 Hz, 2H), 4,28 (m, 1H), 3,18 (br s, 8H), 2,95 (m, 2H)

Paso B: (R)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo

Se disolvió el (R)-2-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo (30,7 g, 127,3 mmol) preparado en el paso A en DCM. Luego se añadió Et₃N (26,4 g, 190 mmol) y (BOC)₂O (27,7 g, 127,3 mmol) y la mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, la mezcla de reacción se destiló bajo presión reducida para eliminar el DCM y se utilizó en la siguiente reacción sin ninguna purificación adicional.

Paso C: [(R)-2-hidroxi-1-(4-metoxi-bencilsulfanilmetil)etil]carbamato de t-butilo

El (R)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo preparado en el paso B se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título.

¹H NMR (500 MHz, DMSO-d₆); δ 7,24 (d, J = 8,6 Hz, 2H), 6,84 (d, J = 8,6 Hz, 2H), 4,96 (br s, 1H), 3,78 (s, 3H), 3,76 (br s, 1H), 3,70 (s, 2H), 3,7~3,66 (m, 3H), 2,58 (m, 2H), 1,44 (s, 9H)

Paso D: 2,2-dimetilpropionato de (R)-2-t-butoxicarbonilamino-3-(4-metoxi-bencilsulfanil)propilo

El [(R)-2-hidroxi-1-(4-metoxi-bencilsulfanilmetil)etil]carbamato de t-butilo (71,3 g, 227,9 mmol) preparado en el paso C se disolvió en diclorometano, (300 ml). Luego se añadió trietilamina (58 ml, 414,4 mmol) y cloruro de ácido trimetilacético (28 ml, 227,9 mmol) y la mezcla se agitó durante 6 horas a 0°C. Después se añadió agua para extinguir la reacción. La mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución acuosa saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (81,0 g, rendimiento 95%). ¹H NMR (400 MHz, CDCl₃); δ 7,25 (d, J = 8,8 Hz, 2H), 6,85 (d, J = 8,8 Hz, 2H), 4,71 (m, 1H), 4,11 (m, 2H), 3,79 (s, 3H), 3,70 (s, 2H), 2,55 (d, J = 6,4 Hz, 2H), 1,52 (s, (H, 1,27 (s, 9H)

Paso E: 2,2-dimetilpropionato de (R)-2-amino-3-(4-metoxi-bencilsulfanil)propilo

El 2,2-dimetilpropionato de (R)-2-t-butoxicarbonilamino-3-(4-metoxi-bencilsulfanil)-propilo (81 g, 196 mmol) preparado en el paso D se disolvió en diclorometano (300 ml). Luego se añadió una disolución 4N de ácido

clorhídrico/1,4-dioxano (100 ml) y la mezcla se agitó durante 8 horas a temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó por completo bajo presión reducida. El residuo se recristalizó a partir de dietil éter y se secó para obtener el compuesto indicado en el título (68 g, rendimiento 95%). 1 H NMR (400 MHz, DMSO-d₆, forma libre); δ 7,24 (d, J = 12,0 Hz, 2H), 6,85 (dd, J = 4,0, 8,0 Hz, 2H), 4,04 (m, 1H), 3,95 (m, 1H), 3,80 (s, 3H), 3,68 (s, 2H), 3,10 (m, 1H), 2,60 (m, 1H), 2,36 (m, 1H), 1,18 (s, 9H)

Preparación 32: 2,2-dimetilpropionato de (S)-2-amino-3-(4-metoxibencil-sulfanil)propilo

Paso A: (S)-2-BOC-amino-3-metilsulfoniloxi-propionato de metilo

Se hicieron reaccionar un (S)-2-BOC-amino-3-hidroxipropionato de metilo comercial y cloruro de metanosulfonilo con el mismo procedimiento que en el paso B de la preparación 29 para obtener el compuesto indicado en el título.

10 Paso B: (S)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo

Se hicieron reaccionar el (S)-2-BOC-amino-3-metilsulfoniloxi-propionato de metilo preparado en el paso A y 4-metoxibenciltiol con el mismo procedimiento que en el paso C de la preparación 29 para obtener el compuesto indicado en el título.

Paso C: (S)-2-t-butoxicarbonilamino-3-(4-metoxi-bencilsulfanil)propanol

15 El (S)-2-BOC-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo preparado en el paso B y LiBH₄ se sometieron a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título.

Paso D: 2,2-dimetilpropionato de (R)-2-amino-3-(4-metoxi-bencilsulfanil)propilo

Se sometieron a reacción El (S)-2-t-butoxicarbonilamino-3-(4-metoxibencil-sulfanil)propanol preparado en el paso C, cloruro de trimetilacetilo y HCl (solución 4N en dioxano) con los mismos procedimientos que en los pasos D y E de la preparación 31 consecutivamente para obtener el compuesto indicado en el título. Masa [M+H]: 397

Preparación 33: 2-amino-3-(4-metoxi-bencilsulfanil)propionato de metilo

Un BOC-Ser-OMe comercial se sometió a reacción con los mismos procedimientos que en los pasos B, C y D de la preparación 29 secuencialmente para obtener el compuesto indicado en el título. Masa [M+H]: 255 (M+1)

25 Preparación 34: 2-[(4-metoxi-bencilsulfanil)etilamina

Un BOC-aminoetanol comercial se sometió a reacción con los mismos procedimientos que en los pasos B y C de la preparación 29 y el paso E de la preparación 31 secuencialmente para obtener el compuesto indicado en el título. Masa [M+H]: 197 (M+1)

Preparación 35: (R)-1-[(4-metoxi-bencilsulfanil)metil]propilamina

30 Un (R)-2-BOC-amino-1-butanol comercial se sometió a reacción con los mismos procedimientos que en los pasos B y C de la preparación 29 y el paso E de la preparación 31 secuencialmente para obtener el compuesto indicado en el título. Masa [M+H]: 225 (M+1)

Preparación 36: (R)-1-[(4-metoxi-bencilsulfanil)metil]-2-metil-1-propilamina

Un 2-BOC-amino-3-metilbutanoato de metilo comercial se sometió a reacción con los mismos procedimientos que en los pasos A, B y C de la preparación 29 y el paso E de la preparación 31 secuencialmente para obtener el compuesto indicado en el título. Masa [M+H]: 239 (M+1)

Preparación 37: 5-bromometil-7-nitroindol-2-carboxilato de metilo

Paso A: 1-BOC-5-metil-7-nitroindol-2-carboxilato de metilo

El 5-metil-7-nitro-1H-indol-2-carboxilato de metilo (24,0 g, 100 mmol) preparado en la preparación 15 se disolvió en diclorometano (500 ml), añadiéndose trietilamina (84 ml, 601 mmol) y 4-(dimetilamino) piridina (600 mg, 5 mmol). Luego se añadió gota a gota (BOC)₂O (43,7 g, 200 mmol) disuelto en diclorometano (100 ml) y la mezcla de reacción se agitó durante 8 horas a temperatura ambiente. Una vez completa la reacción, se añadió agua. La mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución acuosa saturada de cloruro de sodio, se secó con sulfato de magnesio anhidro y se concentró bajo presión reducida para obtener el compuesto indicado en el título (34,0 g, rendimiento 100%). ¹H-NMR (500 HMz, CDCl₃); δ 7,80 (s, 1H), 7,67 (s, 1H), 7,15 (s, 1H), 3,93 (s, 3H), 2,51 (s, 3H), 1,62 (s, 9H)

Paso B: 1-BOC-5-bromometil-7-nitroindol-2-carboxilato de metilo

El 1-BOC-5-metil-7-nitroindol-2-carboxilato de metilo (34 g, 101,7 mmol) preparado en el paso A se disolvió en tetracloruro de carbono (100 ml). Luego se añadió N-bromosuccinimida (27,2 g, 152,6 mmol) y AlBN (1,7 g, 10,2 mmol) y la mezcla de reacción se agitó durante 5 horas a 80°C. Una vez completa la reacción, la mezcla de reacción se destiló bajo presión reducida y se purificó por cromatografía en columna para obtener el compuesto indicado en el título (48,0 g, rendimiento 100%). ¹H-NMR (500 HMz, CDCl₃); δ 8,01 (s, 1H), 7,90 (s, 1H), 7,21 (s, 1H), 4,60 (s, 2H), 3,93 (s, 3H), 1,62 (s, 9H)

Paso C: 5-bromometil-7-nitroindol-2-carboxilato de metilo

El 1-BOC-5-bromometil-7-nitroindol-2-carboxilato de metilo preparado en el paso B se sometió a reacción con el mismo procedimiento que en el paso E de la preparación 31 para obtener el compuesto indicado en el título. Masa [M+H]: 313 (M+1)

Preparación 38: ácido 5-hidroximetil-7-nitro-1H-indol-2-carboxílico

Paso A: 1-BOC-5-acetoximetil-7-nitroindol-2-carboxilato de metilo

El 1-BOC-5-bromometil-7-nitroindol-2-carboxilato de metilo (10,0 g, 24,2 mmol) preparado en el paso B de la preparación 37 se disolvió en N,N-dimetilformamida (50 ml). Luego se añadió acetato de sodio (2,4 g, 29,0 mmol) y la mezcla se agitó durante 4 horas a temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó por destilación bajo presión reducida. El residuo se extrajo con acetato de etilo, se lavó con una disolución acuosa saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro. El residuo se purificó mediante cromatografía en columna para obtener el compuesto indicado en el título (4,7 g, rendimiento 50%). ¹H-NMR (500 HMz, CDCl₃); δ 7,99 (s, 1H), 7,90 (s, 1H), 7,21 (s, 1H), 5,22 (s, 2H), 3,94 (s, 3H), 2,12 (s, 3H), 1,63 (s, 9H)

Paso B: 5-acetoximetil-7-nitro-1H-indol-2-carboxilato de metilo

El 1-BOC-5-acetoximetil-7-nitroindol-2-carboxilato de metilo (4,7 g, 12,0 mmol) preparado en el paso A se disolvió en diclorometano (50 ml). Después se añadió una disolución 2N de ácido clorhídrico (30 ml, 60 mmol) y la mezcla se agitó durante 12 h a temperatura ambiente. La mezcla de reacción se destiló bajo presión reducida para obtener el compuesto sólido indicado en el título (3,5 g, rendimiento 100%). ¹H-NMR (500 HMz, CDCl₃); δ 10,33 (br s, 1H), 8,32 (s, 1H), 8,06 (s, 1H), 7,34 (s, 1H), 5,24 (s, 2H), 3,99 (s, 3H), 2,12 (s, 3H)

Paso C: ácido 5-hidroximetil-7-nitro-1H-indol-2-carboxílico

25

30

35

El 5-acetoximetil-7-nitro-1H-indol-2-carboxilato de metilo (3,5 g, 12,0 mmol) preparado en el paso B se disolvió en una mezcla de disolventes tetrahidrofurano, metanol y agua (1:1:1, 100 ml). Luego se añadió hidrato de hidróxido de litio (1,5 g, 35,9 mmol) y la mezcla se agitó durante 3 horas a temperatura ambiente. Una vez completa la reacción, el metanol y el tetrahidrofurano se eliminaron por destilación a presión reducida. Después se añadió ácido clorhídrico 1N al residuo. La mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se destiló bajo presión reducida para eliminar el disolvente. El residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (2,3 g, rendimiento 81%). ¹H-NMR (500 HMz, DMSO-d₆); δ 11,02 (br s, 1H), 8,21 (s, 1H), 8,10 (s, 1H), 7,34 (s, 1H), 5,43 (br s, 1H), 4,64 (s, 2H)

Preparación 39: 5-(1,3-dioxo-1,3-dihidroisoindol-2-ilmetil)-7-nitro-1H-indol-2-carboxilato de metilo

Paso A: 1-BOC-5-(1,3-dioxo-1,3-dihidroisoindol-2-ilmetil)-7-nitro-1H-indol-2-carboxilato de metilo

El 1-BOC-5-bromometil-7-nitroindol-2-carboxilato de metilo (4,9 g, 11,4 mmol) preparado en el paso B de la preparación 37 se disolvió en N,N-dimetilformamida (50 ml). Luego se añadió ftalimida de potasio (2,7 g, 14,8 mmol) y la mezcla se agitó durante 4 horas a temperatura ambiente. Después se añadió agua para extinguir la reacción. La mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución acuosa saturada de cloruro de sodio y se secó con sulfato de magnesio anhidro. El disolvente se retiró por destilación a presión reducida y el residuo se purificó mediante cromatografía en columna para obtener el compuesto indicado en el título (3,6 g, rendimiento 66%). ¹H-NMR (500 HMz, CDCl₃); δ 8,04 (s, 1H), 7,98 (s, 1H), 7,85 (m, 2H), 7,71 (m, 2H), 7,17 (s, 1H), 4,96 (s, 2H), 4,37 (q, 2H), 1,59 (s, 9H), 1,39 (t, 3H)

Paso B: 5-(1,3-dioxo-1,3-dihidroisoindol-2-ilmetil)-7-nitro-1H-indol-2-carboxilato de metilo

El 1-BOC-5-(1,3-dioxo-1,3-dihidroisoindol-2-ilmetil)-7-nitro-1H-indol-2-carboxilato de metilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el paso B de la preparación 38 para obtener el compuesto indicado en el título. Masa [M+H]: 379 (M+1)

50 Preparación 40: 2,2-dimetilpropionato de (R)-2-(7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetilo

Paso A: ácido 7-nitro-1H-indol-2-carboxílico

25

35

El 7-nitro-1H-indol-2-carboxilato de metilo (13 g, 59 mmol) preparado en la preparación 17 se disolvió en una mezcla de disolventes tetrahidrofurano y agua (1:1, 300 ml), a la que se añadió una disolución acuosa de hidróxido sódico 1N (180 ml, 177 mmol). La mezcla se agitó durante 3 horas a temperatura ambiente y se añadió un exceso de una disolución de ácido clorhídrico 6N. La mezcla de reacción se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de cloruro de sodio, se secó con sulfato de magnesio anhidro y se filtró. El disolvente se eliminó por destilación a presión reducida y el residuo se secó para obtener el compuesto indicado en el título (12 g, rendimiento 99%).

Paso B: 2,2-dimetilpropionato de (R)-3-(4-metoxi-bencilsulfanil)-2-[(7-nitro-1H-indol-2-carbonil)amino]propilo

- El ácido 7-nitro-1H-indol-2-carboxílico (8,2 g, 22,7 mmol) preparado en el paso A y el 2,2-dimetilpropionato de (R)-2-amino-3-(4-metoxi-bencilsulfanil)propilo (13,2 g, 27,2 mmol) preparado en la preparación 31 se disolvieron en N,N-dimetilformamida (100 ml). Luego se añadió EDC (6,6 g, 25,0 mmol) y HOBT (4,6 g, 25,0 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. Después se añadió una disolución acuosa saturada de bicarbonato de sodio a la mezcla para extinguir la reacción. La mezcla de reacción se extrajo con acetato de etilo, se secó mediante sulfato de magnesio anhidro, se filtró y se destiló bajo presión reducida. El residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (8,1g, rendimiento 71%). ¹H-NMR (400 HMz, CDCl₃); δ 10,47 (br s, 1H), 8,27 (d, J = 8,0 Hz, 1H), 8,01 (d, J = 8,0 Hz, 1H), 7,26 (m, 2H), 6,93 (d, J = 4,0 Hz, 1H), 6,83 (m, 2H), 6,74 (d, J = 8,0 Hz, 1H), 4,56 (m, 1H), 4,44 (m, 1H), 4,24 (m, 1H), 3,74 (m, 5H), 2,77 (m, 1H), 2,62 (m, 1H), 1,18 (s, 9H)
- 20 Paso C: 2,2-dimetilpropionato de [(R)-2-(7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metilo

El 2,2-dimetilpropionato de (R)-3-(4-metoxi-bencilsulfanil)-2-[(7-nitro-1H-indol-2-carbonil)amino]propilo (1,6 g, 3,2 mmol) preparado en el paso B se disolvió en diclorometano (50 ml). Luego se añadió pentacloruro de fósforo (1,3 g, 6,4 mmol) y la mezcla se agitó durante 5 horas a temperatura ambiente. Después se añadió una disolución acuosa saturada de bicarbonato de sodio a la mezcla para extinguir la reacción. La mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro, se filtró y se destiló bajo presión reducida. El residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (0,8 g, rendimiento 69%). ¹H-NMR (400 HMz, CDCl₃); δ 10,53 (br s, 1H), 8,26 (d, J = 8,0 Hz, 1H), 7,99 (d, J = 8,0 Hz, 1H), 7,04 (d, J = 2,0 Hz, 1H), 6,90 (d, J = 7,6 Hz, 1H), 4,78 (m, 1H), 4,46 (m, 1H), 4,30 (m, 1H), 3,59 (m, 1H), 3,36 (m, 1H), 1,20 (s, 9H)

Preparación 41: ácido 2,2-dimetilpropionato de (R)-2-[(5-clorometil-7-nitro-1H-indol-2-il)-(4,5-dihidrotiazol-4-30 il)metilo

Paso A: 2,2-dimetilpropionato de (R)-2-[(5-hidroximetil-7-nitro-1H-indol-2-carbonil)-amino-3-(4-metoxi-bencilsulfanil)propilo

El ácido 5-hidroximetil-7-nitro-1H-indol-2-carboxílico preparado en la preparación 38 y el 2,2-dimetilpropionato de (R)-2-amino-3-(4-metoxi-bencilsulfanil)propilo preparado en la preparación 31 se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 40 para obtener el compuesto indicado en el título.

Paso B: 2,2-dimetilpropionato de (R)-2-[(5-clorometil-7-nitro-1H-indol-2-il)-(4,5-dihidrotiazol-4-il)metilo

El 2,2-dimetilpropionato de (R)-2-[(5-hidroximetil-7-nitro-1H-indol-2-carbonil)-amino]-3-(4-metoxi-bencilsulfanil)propilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el paso C de la preparación 40 para obtener el compuesto indicado en el título. Masa [M+H]: 395 (M+1)

40 Preparación 42: (R)-2-[(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo

El ácido 5-hidroximetil-7-nitro-1H-indol-2-carboxílico preparado en la preparación 38 y el clorhidrato de (R)-3-amino-4-(4-metoxi-bencilsulfanil)butanoato de metilo preparado en la preparación 27 se sometieron a reacción con los mismos procedimientos que en los pasos B y C de la preparación 40 para obtener el compuesto indicado en el título. Masa [M+H]: 353 (M+1)

- 45 Preparación 43: 2,2-dimetilpropionato de (R)-2-[5-(2,2-dimetil-propioniloxi-metil)-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-ilmetilo
 - Paso A: 2,2-dimetilpropionato de (R)-2-{[5-(2,2-dimetil-propioniloximetil)-7-nitro-1H-indol-2-carbonil]amino}-3-(4-metoxi-bencilsulfanil)propilo
- El 2,2-dimetilpropionato de (R)-2-[(5-hidroximetil-7-nitro-1H-indol-2-carbonil)-amino]-3-(4-metoxi-bencilsulfanil)propilo (3,1 g, 6,01 mmol) preparado en el paso A de la preparación 41 se disolvió en DCM, añadiéndose Et₃N (1,68 ml, 12,02 mmol). Luego se añadió cloruro de pivaloílo (0,92 ml, 6,61 mmol) y la mezcla se agitó durante 12 horas a

temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna (eluyente: EtOAc/n-Hex = 1/1) para obtener el compuesto indicado en el título.

Paso B: 2,2-dimetilpropionato de (R)-2-{[5-(2,2-dimetil-propioniloximetil)-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metilo

5 El 2,2-dimetilpropionato de (R)-2-{[5-(2,2-dimetil-propioniloximetil)-7-nitro-1H-indol-2-carbonil]amino}-3-(4-metoxibencilsulfanil)propilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el paso C de la preparación 40 para obtener el compuesto indicado en el título. Masa [M+H]: 475 (M+1)

Preparación 44: 2,2-dimetilpropionato de (R)-2-{[5-metanosulfonilmetil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metilo

10 Paso A: (5-metanosulfonilmetil-7-nitro-1H-indol-2-il)carboxilato de metilo

El 5-bromometil-7-nitroindol-2-carboxilato de metilo (251 mg, 0,805 mmol) preparado en la preparación 37 se añadió a DMF (8 ml). Luego se añadió NaSO₂Me (290 mg, 2,415 mmol) y la mezcla se agitó durante 2 horas a temperatura ambiente. La reacción se extinguió con una disolución acuosa saturada de NaHCO₃. La mezcla de reacción se extrajo con EtOAc y se secó con sulfato de magnesio anhidro. El disolvente se eliminó bajo presión reducida y el residuo se utilizó en la siguiente reacción sin ninguna purificación adicional.

Paso B: 2,2-dimetilpropionato de (R)-2-H5-metanosulfonilmetil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metilo

El (5-metanosulfonilmetil-7-nitro-1H-indol-2-il)carboxilato de metilo preparado en el paso A y el 2,2-dimetilpropionato de (R)-2-amino-3-(4-metoxi-bencilsulfanil)-propilo preparado en la preparación 31 se sometieron a reacción con el mismo procedimiento que en la preparación 40 para obtener el compuesto indicado en el título. Masa [M+H]: 453 (M+1)

Preparación 45: (R)-2-[5-metanosulfonilmetil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il-acetato de metilo

El (5-metanosulfonilmetil-7-nitro-1H-indol-2-il)carboxilato de metilo preparado en el paso A de la preparación 44 y el clorhidrato de (R)-3-amino-4-(4-metoxi-bencilsulfanil)butanoato de metilo preparado en la preparación 27 se sometieron a reacción con el mismo procedimiento que en la preparación 40 para obtener el compuesto indicado en el título. Masa [M+H]: 411 (M+1)

Preparaciones 46 a 91

Los compuestos de las preparaciones 14 a 26, 38 y 39 y los compuestos de las preparaciones 27 a 36 se utilizaron selectivamente para sintetizar los compuestos de preparación indicados en la siguiente tabla mediante un método seleccionado entre las preparaciones 40 a 45.

30

15

20

Preparación	R ¹	*	n	\mathbb{R}^2	Masa [M+H]
46	MeO ₂ C-	R	1	(piridin-3-il)oxi	412
47	(t-Bu)C(O)O	R	1	(piridin-3-il)oxi	454
48	MeO ₂ C-	R	1	4-(metanosulfonil)fenoxi	489
49	MeO ₂ C-	R	1	metoxi	347
50	MeO ₂ C-	R	2	metoxi	361
51	MeO ₂ C-	R	1	metoxi	347
52	(i-Pr)O ₂ C-	S	1	metilo	361
53	(t-Bu)C(O)O	R	1	metilo	375
54	EtO ₂ C-	R	1	metilo	347
55	EtO ₂ C-	S	2	metilo	361
56	EtO ₂ C-	R	2	metilo	361
57	EtO ₂ C-	R	2	bromo	412
58	MeO ₂ C-	R	1	bromo	386
59	(t-Bu)C(O)O	R	1	bromo	440
60	(t-Bu)C(O)O	R	1	acetilamino	418
61	MeO ₂ C-	S	1	etoxi	363
62	EtO ₂ C-	R	2	etoxi	391

Preparación	R ¹	*	n	R ²	Masa [M+H]
63	MeO ₂ C-	R	1	etoxi	363
64	EtO ₂ C-	R	1	cloro	367
65	(t-Bu)C(O)O	R	1	cloro	395
66	(i-Pr)O ₂ C-	S	1	cloro	381
67	MeO ₂ C-	R	1	cloro	353
68	MeO ₂ C-	R	2	cloro	367
69	isobutilo	R	0	cloro	323
70	MeO ₂ C-	R	1	fenoxi	411
71	(i-Pr)O ₂ C-	S	1	fenoxi	439
72	MeO ₂ C-	R	2	fenoxi	425
73	MeO ₂ C-	R	1	fenilaminometilo	424
74	etilo	R	0	fluoro	293
75	EtO ₂ C-	R	1	fluoro	351
76	EtO ₂ C-	R	2	fluoro	365
77	(t-Bu)C(O)O	R	1	fluoro	379
78	(t-Bu)C(O)O	R	1	CH ₂ -(isoindol-1,3-dion-1-ilo)	520
79	MeO ₂ C-	R	1	CH ₂ -(isoindol-1,3-dion-1-ilo)	478
80	(t-Bu)C(O)OCH ₂	R	1	H	361
81	MeO ₂ C-	R	1	H	319
82	(i-Pr)O ₂ C-	S	1	Н	347
83	EtO ₂ C-	R	2	Н	347
84	(t-Bu)C(O)OCH ₂	S	1	Н	361
85	metilo	R	0	Н	261
86	etilo	R	0	Н	275
87	MeO ₂ C-	R	0	Н	305
88	(t-Bu)C(O)O	R	2	Н	375
89	MeO ₂ C-	R	1	O(n-Pr)	363
90	EtO ₂ C-	R	2	OCF ₃	417
91	(t-Bu)C(O)O	R	2	OCH₃	391

Preparación 92: 2,2-dimetilpropionato de [(R)-2-(5-dimetilaminometil-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metilo

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo (1,0 g, 2,4 mmol) preparado en la preparación 41 se disolvió en sulfóxido de dimetilo (15 ml). Luego se añadió diisopropiletilamina (0,6 g, 4,9 mmol) y dimetilamina (0,2 g, 4,9 mmol) y la mezcla se agitó durante 6 horas a temperatura ambiente. Una vez completa la reacción, se añadió agua. La mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El filtrado se destiló bajo presión reducida y se purificó por cromatografía en columna para obtener el compuesto indicado en el título (0,7 g, rendimiento 71%). Masa [M+H]: 418 (M+1)

Preparación 93: 2,2-dimetilpropionato de {(R)-2-[5-(morfolin-4-il)metil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

15

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo preparado en la preparación 41 y morfolina se sometieron a reacción con el mismo procedimiento que en la preparación 92, excepto que se utilizó DMF como disolvente en lugar de DMSO, para obtener el compuesto indicado en el título. Masa [M+H]: 460 (M+1)

Preparación 94: 2,2-dimetilpropionato de {(R)-2-[5-(pirazol-1-il)metil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo preparado en la preparación 41 y pirazol se sometieron a reacción con el mismo procedimiento que en la preparación 92, excepto que se utilizó DMF como disolvente en lugar de DMSO, para obtener el compuesto indicado en el título. Masa [M+H]: 441 (M+1)

Preparación 95: 2,2-dimetilpropionato de {(R)-2-[5-(1,3-imidazol-1-il)metil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo preparado en la preparación 41 y 1,3-imidazol se sometieron a reacción con el mismo procedimiento que en la preparación 92, excepto que se utilizó DMF como disolvente en lugar de DMSO, para obtener el compuesto indicado en el título. Masa [M+H]: 441 (M+1)

Preparación 96: 2,2-dimetilpropionato de {(R)-2-[5-(1,2,4-triazol-1-il)metil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo preparado en la preparación 41 y 1,2,4-triazol se sometieron a reacción con el mismo procedimiento que en la preparación 92, excepto que se utilizó DMF como disolvente en lugar de DMSO, para obtener el compuesto indicado en el título. Masa [M+H]: 442 (M+1)

Preparación 97: 2,2-dimetilpropionato de {(R)-2-[5-(pirrol-1-il)metil-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo preparado en la preparación 41 y pirrol se sometieron a reacción con el mismo procedimiento que en la preparación 92, excepto que se utilizó DMF como disolvente en lugar de DMSO, para obtener el compuesto indicado en el título. Masa [M+H]: 440 (M+1)

Preparación 98: [(R)-2-(7-nitro-5-fenoximetil-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo

Primero se disolvió fenol (192 mg, 2,04 mmol) en DMF. Luego se añadió NaH (60% aceite mineral, 82 mg, 2,04 mmol) y la solución de reacción se enfrió a 0°C. A esta mezcla se añadió lentamente el (R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il-acetato de metilo (500 mg, 1,36 mmol) preparado en la preparación 42, que se había disuelto en DMF. La solución de reacción se calentó a temperatura ambiente y se agitó durante 4 horas. Después se añadió una disolución acuosa saturada de NH₄Cl para extinguir la reacción, la mezcla de reacción se extrajo con EtOAc, se secó con MgSO₄, y se filtró. El disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna (eluyente: EtOAc/n-Hex = 1/2) para obtener el compuesto indicado en el título. Masa [M+H]:425 (M+1)

Preparación 99: 2,2-dimetilpropionato de {(R)-2-[7-nitro-5-(fenilamino)metil-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

El (R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il-acetato de metilo preparado en la preparación 42 y fenilamina se sometieron a reacción con el mismo procedimiento que en la preparación 98 para obtener el compuesto indicado en el título. Masa [M+H]: 466 (M+1)

Preparación 100: 2,2-dimetilpropionato de {(R)-2-[7-nitro-5-(pirrolidin-1-il)metil-1H-indol-2-il]-4,5-dihidrotiazol-4-il}metilo

El 2,2-dimetilpropionato de [(R)-2-(5-clorometil-7-nitro-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metilo preparado en la preparación 41 y pirrolidina se sometieron a reacción con el mismo procedimiento que en la preparación 92, excepto que se utilizó DMF como disolvente en lugar de DMSO, para obtener el compuesto indicado en el título. Masa [M+H]: 444 (M+1)

Preparación 101: 2-(4,5-dihidrotiazol-2-il)-7-nitro-1H-indol

Paso A: ácido 7-nitro-1H-indol-2-carboxílico

5

45

- Un 7-nitroindol-2-carboxilato de etilo comercial (500 mg, 2,14 mmol) se disolvió en una mezcla de disolventes tetrahidrofurano y agua (1:1, 20 ml). Luego se añadió hidrato de hidróxido de sodio (448 mg, 10,7 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. Después se añadió una disolución de ácido clorhídrico 1N y la mezcla de reacción se extrajo con acetato de etilo. El extracto se secó con sulfato de magnesio anhidro y se filtró. El filtrado se destiló bajo presión reducida para obtener el compuesto indicado en el título.
- 40 Paso B: (2-cloroetil)amida de ácido 7-nitro-1H-indol-2-carboxílico

El ácido 7-nitro-1H-indol-2-carboxílico (371 mg, 3,2 mmol) preparado en el paso A se disolvió en N,N-dimetilformamida (10 ml). Luego se añadió trietilamina (0,6 ml, 4,3 mmol), EDC (614 mg, 3,2 mmol) y HOBT (433 mg, 3,2 mmol) y después 2-cloroetilamina (252,8 mg, 3,2 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. A continuación se añadió una disolución de ácido clorhídrico 1N y la mezcla de reacción se extrajo con acetato de etilo, se lavó con una disolución saturada de bicarbonato de sodio, se secó con sulfato de magnesio anhidro y se filtró. El filtrado se destiló bajo presión reducida para obtener el compuesto indicado en el título. ¹H NMR (400 MHz, CDCl₃); δ 10,51 (br s, 1H), 8,28 (d, J = 6,4 Hz, 1H), 8,02 (d, J = 6,4 Hz, 1H), 7,27 (t, 1H), 7,03 (s, 1H), 6,62 (br s, 1H), 3,86 (m, 2H), 3,77 (m, 2H)

Paso C: 2-(4,5-dihidrotiazol-2-il)-7-nitro-1H-indol

La (2-cloroetil)amida de ácido 7-nitro-1H-indol-2-carboxílico (267 mg, 1 mmol) preparada en el paso B se disolvió en dicloroetano (10 ml) y tolueno (10 ml) y luego se añadió reactivo de Lawessson (1,29 g, 3,2 mmol). La mezcla se sometió a reflujo durante 4 horas y se destiló bajo presión reducida. Después se añadió agua y la mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El filtrado se destiló bajo presión reducida y el concentrado se purificó por cromatografía en columna para obtener el compuesto indicado en el título como un producto de la reacción de ciclación (148 mg, rendimiento 60%). ¹H-NMR (400 HMz, CDCl₃); δ 10,49 (br s, 1H), 8,24 (d, J = 8,0 Hzm 1H), 7,98 (d, J = 7,6 Hz, 1H), 7,23 (t, 1H), 7,02 (s, 1H), 4,47 (t, 2H), 3,51 (t, 2H)

Preparación 102: [(S)-2-(5-cloro-7-nitro-1H-indol-2-il)-4,5-dihidrooxazol-4-il]-carboxilato de isopropilo

Paso A: (S)-3-amino-4-hidroxibutanoato de isopropilo

El 4-isopropil éster de ácido (S)-2-BOC-aminosuccínico preparado en el paso A de la preparación 30 se sometió a reacción con los mismos procedimientos que en los pasos A a D de la preparación 29 secuencialmente para obtener el compuesto indicado en el título.

Paso B: [(S)-3-(5-cloro-7-nitro-1H-indol-2-carbonil)amino]-4-hidroxibutanoato de isopropilo

El ácido 5-cloro-7-nitro-1H-indol-2-carboxílico obtenido por hidrólisis del 5-cloro-7-nitro-1H-indol-2-carboxilato de metilo preparado en la preparación 14 de acuerdo con el paso A de la preparación 40 y el (S)-3-amino-4-hidroxibutanoato de isopropilo preparado en el paso A se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 40 para obtener el compuesto indicado en el título.

Paso C: [(S)-3-(5-cloro-7-nitro-1H-indol-2-carbonil)amino]-4-metanosulfoniloxi-butanoato de isopropilo

El [(S)-3-(5-cloro-7-nitro-1H-indol-2-carbonil)amino]-4-hidroxibutanoato de isopropilo preparado en el paso B se sometió a reacción con el mismo procedimiento que en el paso B de la preparación 29 para obtener el compuesto indicado en el título.

Paso D: [(S)-2-(5-cloro-7-nitro-1H-indol-2-il)-4,5-dihidrooxazol-4-il]carboxilato de isopropilo

El [(S)-3-(5-cloro-7-nitro-1H-indol-2-carbonil)amino]-4-metanosulfoniloxi-butanoato de isopropilo (930 mg, 2 mmol) preparado en el paso C se añadió a TF (10 ml). Luego se añadió K₂CO₃ (330 mg, 10 mmol) y la mezcla se agitó durante 2 horas a 80°C. Después se añadió agua para extinguir la reacción. La mezcla de reacción se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna (eluyente: EtOAc/ n-Hex/DMC = 1/4/1) para obtener el compuesto indicado en el título (445 mg, rendimiento 61%). Masa [M+H]: 365 (M+1)

Preparación 103: (1S,2R)-(3-amino-1-bencil-2-hidroxipropil)carbamato de t-butilo

30 Paso A: (1S,2R)-(3-azido-1-bencil-2-hidroxipropil)carbamato de t-butilo

Un (1-oxiran-2-feniletil)carbamato de t-butilo comercial (2,6 g, 10 mmol) se disolvió en DMF (30 ml). Luego se añadió azida sódica (655 mg, 10 mmol) y la mezcla se agitó durante 12 horas a 80°C. Después se añadió agua para extinguir la reacción. La mezcla de reacción se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (2,75 g, rendimiento 90%).

Paso B: (1S,2R)-(3-amino-1-bencil-2-hidroxipropil)carbamato de t-butilo

El (1S,2R)-(3-azido-1-bencil-2-hidroxipropil)carbamato de t-butilo (2,5 g, 8,17 mmol) preparado en el paso A se disolvió en metanol (15 ml), añadiéndose Pd/C (100 mg). La mezcla se sometió a reacción durante 12 horas en un reactor de hidrógeno (50 psi) y se filtró a través de celite. El disolvente se eliminó bajo presión reducida y el residuo se utilizó en la siguiente reacción sin ninguna purificación adicional. Masa [M+H]: 280 (M+1)

Preparación 104: [(1S,2R)-1-bencil-3-(1,3-dioxo-1,3-dihidroisoindol-2-il)-2-hidroxipropil-carbamato de t-butilo

El (1R,2S)-(3-amino-1-bencil-2-hidroxipropil)carbamato de t-butilo (1,4 g, 5 mmol) preparado en la preparación 103 se disolvió en DMF (20 ml), añadiéndose anhídrido ftálico (735 mg, 5 mmol). Luego se añadió Et₃N (1,4 ml, 10 mmol) y la mezcla se agitó durante 24 horas a 80°C. La reacción se extinguió con agua y la mezcla de reacción se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó bajo presión reducida y el residuo se disolvió en DCM. Luego se añadió TFA y la mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó bajo presión reducida. El residuo se recristalizó a partir de DCM/Hex para obtener el compuesto indicado en el título (1,18g, rendimiento 71%). Masa [M+H]: 410 (M+1)

Preparaciones 105 a 109:

25

35

40

Los ésteres del ácido indol-2-carboxílico preparados en las preparaciones 14, 15 y 17 y aminoetanoles comerciales o preparados en las preparaciones 103 y 104 se sometieron a reacción con el mismo procedimiento que en la preparación 101 para sintetizar los compuestos de preparación mostrados en la siguiente tabla.

Preparación	R ¹	R ^{1a}	*	**	n	R^3	Masa [M+H]
105	MeO ₂ C	H	S	-	1	metilo	317
106	isobutilo	H	R	-	0	CI	321
107	Н	(S)-Ph-CH ₂ -CH(NH ₂)	-	R	0	CI	384
108	Ph-CH₂		S	R	1	C	514
109	Н	Н	-	-	0	Н	231

Preparación 110: 2-(tiazol-2-il)-7-nitro-1H-indol

Paso A: amida de ácido 7-nitro-1H-indol-2-carbotioico

El ácido 7-nitro-1H-indol-2-carboxílico preparado en el paso A de la preparación 101 y cloruro de amonio se sometieron a reacción con los mismos procedimientos que en los pasos B y C de la preparación 101 para obtener el compuesto indicado en el título.

Paso B: 2-(tiazol-2-il)-7-nitro-1H-indol

5

10

15

20

La amida de ácido 7-nitro-1H-indol-2-carbotioico (1,15 g, 5 mmol) preparada en el paso A se disolvió en DMF (15 ml). Luego se añadió 2-bromo-1,1-dioxietano (985 mg, 5 mmol) y la mezcla se agitó bajo reflujo durante 2 horas a 100°C. La reacción se extinguió con agua y la mezcla de reacción se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (612 mg, rendimiento 65%). Masa [M+H]: 245 (M+1)

Preparación 111: 2-(7-nitro-1H-indol-2-il)tiazol-4-carboxilato de metilo

Un 3-cloro-2-oxopropionato de metilo y la amida de ácido 7-nitro-1H-indol-2-carbotioico preparada en el paso A de la preparación 110 se sometieron a reacción con el mismo procedimiento que en la preparación 110 para obtener el compuesto indicado en el título. Masa [M+H]: 303 (M+1)

Preparación 112: [2-(7-nitro-1H-indol-2-il)tiazol-4-il]metanol

El 2-(7-nitro-1H-indol-2-il)tiazol-4-carboxilato de metilo preparado en la preparación 111 se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título. Masa [M+H]: 275 (M+1)

25 Preparación 113: 2-(5-metil-7-nitro-1H-indol-2-il)tiazol-4-carboxilato de etilo

Paso A: amida de ácido (5-metil-7-nitro-1H-indol-2-il)carbotioico

Un ácido (5-metil-7-nitro-1H-indol-2-il)carboxílico se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 110 para obtener el compuesto indicado en el título.

Paso B 2-(5-metil-7-nitro-1H-indol-2-il)tiazol-4-carboxilato de etilo

La amida de ácido (5-metil-7-nitro-1H-indol-2-il)carbotioico preparada en el paso A y 3-cloro-2-oxopropionato de etilo se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 110 para obtener el compuesto indicado en el título. Masa [M+H]: 331 (M+1)

Preparación 114: [2-(5-metil-7-nitro-1H-indol-2-il)tiazol-4-il]metanol

ES 2 426 641 T3

El 2-(5-metil-7-nitro-1H-indol-2-il)tiazol-4-carboxilato de metilo preparado en la preparación 113 se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título. Masa [M+H]: 289 (M+1)

Preparación 115: [5-(7-nitro-1H-indol-2-il)-[1,2,4]oxadiazol-3-il]acetato de metilo

5 Paso A: 2-(N-hidroxicarbamimidoil)acetato de metilo

Se disolvió 2-cianoacetato de metilo (990 mg, 10 mmol) en THF (30 ml). Luego se añadió hidroxiamina (690 mg, sal de HCl, 10 mmol) y la mezcla se agitó durante 2 horas a 80°C. Una vez completa la reacción, se añadió HCl 1N. La mezcla de reacción se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó a presión reducida y el residuo se utilizó en la siguiente reacción sin ninguna purificación adicional.

10 Paso B: 3-(hidroxiimino)-3-[(7-nitro-1H-indol-2-carbonil)amino]propionato de metilo

El 2-(N-hidroxicarbamimidoil)acetato de metilo preparado en el paso A y el ácido 7-nitro-1H-indol-2-carboxílico preparado en el paso A de la preparación 101 se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 101 para obtener el compuesto indicado en el título.

Paso C: 2-[5-(7-nitro-1H-indol-2-il)-[1,2,4]oxadiazol-3-il]acetato de metilo

El 3-(hidroxiimino)-3-[(7-nitro-1H-indol-2-carbonil)amino]propionato de metilo (960 mg, 1 mmol) preparado en el paso B se disolvió en DMF (10 ml). Luego se añadió piridina (1 ml) y la mezcla se agitó durante 4 horas a 80°C. La reacción se extinguió con una disolución acuosa de NH₄Cl. La mezcla de reacción se extrajo con EtOAc y se secó con MgSO₄. El disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (830 mg, rendimiento 90%). Masa [M+H]: 302 (M+1)

20 Preparación 116: 2-[5-(7-nitro-1H-indol-2-il)-[1,2,4]oxadiazol-3-il]etanol

El 2-[5-(7-nitro-1H-indol-2-il)-[1,2,4]oxadiazol-3-il]acetato de metilo preparado en la preparación 115 se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título. Masa [M+H]: 274 (M+1)

Preparación 117: 5-metil-7-nitro-2-[1,3,4]oxadiazol-2-il-1H-indol

El 5-metil-7-nitro-1H-indol-2-carboxilato de metilo (234 mg, 1 mmol) preparado en la preparación 15 se disolvió en metanol (10 ml), añadiéndose hidrazina (3 ml). La solución de reacción se sometió a reflujo durante 3 h y se concentró bajo presión reducida. A este concentrado se añadió ortoformato de trimetilo (10 ml) y la mezcla se sometió a reflujo durante 8 horas. La mezcla de reacción se destiló a presión reducida y el sólido resultante se lavó con acetato de etilo para obtener el compuesto indicado en el título (49 mg, rendimiento 20%).

30 Ejemplo 1: ciclopentil-[2-(4,5-dihidro-1,3-tiazol-2-il)-1H-indol-7-il]-amina

Paso A: [2-(4,5-dihidro-1,3-tiazol-2-il)-1H-indol-7-il]amina

El 2-(4,5-dihidro-tiazol-2-il)-7-nitro-1H-indol preparado en la preparación 101 se sometió a reacción con el mismo procedimiento que en el paso B de la preparación 1 para obtener el compuesto indicado en el título.

Paso B: ciclopentil-[2-(4,5-dihidro-1,3-tiazol-2-il)-1H-indol-7-il]-amina

- La [2-(4,5-dihidro-1,3-tiazol-2-il)-1H-indol-7-il]amina (15 mg, 0,07 mmol) preparada en el paso A se disolvió en 1,2-dicloroetano (10 ml). Luego se añadió ciclopentanona (12 mg, 0,14 mmol) y triacetoxiborohidruro de sodio (29 mg, 0,14 mmol) y la mezcla se agitó durante 3 horas a temperatura ambiente. La reacción se extinguió con agua y la mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El disolvente se eliminó a presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (6,7 mg, rendimiento 34%). ¹H-NMR (400 HMz, CDCl₃); δ 10,27 (s, 1H), 7,06 (d, J = 8,0 Hz, 1H), 7,00 (t, J = 7,6 Hz, 1H), 6,92 (s, 1H), 6,52 (d, J = 7,2 Hz, 1H), 4,42 (m, 2H), 4,38 (m, 1H), 4,35 (m, 2H), 2,00 (m, 2H), 1,64 (m, 4H), 1,46 (m, 2H)
 - Ejemplo 2: [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol

Paso A: 2,2-dimetilpropionato de [(R)-2-(7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metilo

45 El 2,2-dimetilpropionato de (R)-2-(7-amino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetilo preparado en la preparación 40 se sometió a reacción con el mismo procedimiento que en el paso B del ejemplo 1 para obtener el compuesto indicado en el título.

Paso B: [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol

10

35

40

El 2,2-dimetilpropionato de [(R)-2-(7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título. 1 H-NMR (500 HMz, CDCl₃); δ 11,17~11,08 (m, 1H), 7,09 (m, 1H), 6,99 (t, 1H), 6,96 (s, 1H), 6,52 (m, 1H), 4,72 (m, 1H), 4,04 (m, 1H), 3,75 (m, 1H), 3,65 (m, 1H), 3,51 (m, 1H), 3,40 (m, 1H), 1,90 (m, 2H), 1,60 -1,49 (m, 4H), 1,41-1,24 (m, 2H)

Ejemplo 3: [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo

EI [(R)-2-(5-cloro-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo preparado en la preparación 67 y ciclopentanona se sometieron a reacción con los mismos procedimientos que en los pasos A y B del ejemplo 1 para obtener el compuesto indicado en el título. 1 H NMR (DMSO-d₆, ppm); δ 11,51 (s, 1H), 6,79 (s, 1H), 6,79 (s, 1H), 6,16 (s, 1H), 6,13 (d, 1H), 4,85 (m, 1H), 3,80 (m, 1H), 3,62 (m, 1H), 3,58 (s, 3H), 3,19 (m, 1H), 2,71 (m, 1H), 2,63 (m, 1H), 1,93 (m, 2H), 1,69 (m, 2H), 1,56 (m, 4H)

Ejemplo 4: ácido [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético

El [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo preparado en el ejemplo 3 se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título. ¹H NMR (DMSO-d₆, ppm); δ 12,51 (br s, 1H), 11,51 (s, 1H), 6,79 (s, 1H), 6,79 (s, 1H), 6,16 (s, 1H), 6,14 (d, 1H), 4,87 (m, 1H), 3,80 (m, 1H), 3,61 (m, 1H), 3,19 (m, 1H), 2,72 (m, 1H), 2,64 (m, 1H), 1,93 (m, 2H), 1,69 (m, 2H), 1,56 (m, 4H)

Ejemplo 5: 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etanol

El ácido [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético (391 mg, 1 mmol) preparado en el ejemplo 4 se disolvió en DCM (10 ml). Luego se añadió trietilamina (280 μl, 2 mmol) y cloruro de ácido isobutírico (106 mg, 1 mmol) y la mezcla se agitó durante 30 minutos a 0°C. Una vez completa la reacción, el disolvente se eliminó a presión reducida. El residuo se diluyó con THF. Después se añadió NaBH₄ (74 mg, 2 mmol) y la mezcla se agitó durante 12 horas. La reacción se extinguió con una pequeña cantidad de agua. De nuevo se añadió un exceso de agua a la mezcla de reacción, que después se agitó durante 30 minutos, se extrajo con EtOAc, se secó con MgSO₄ y se filtró. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (272 mg, rendimiento 72%). ¹H NMR (400 MHz, DMSO-d₅); δ 11,47 (s, 1H), 6,79 (s, 1H), 6,67 (s, 1H), 6,11 (s, 1H), 6,09 (m, 1H), 4,65 (t, 1H), 4,54 (m, 1H), 3,80 (m, 2H), 3,61 (m, 2H), 3,52 (m, 1H), 3,15 (m, 1H), 2,47 (m, 1H), 1,97 (m, 2H), 1,68 (m, 2H), 1,54 (m, 4H)

30 Ejemplo 6: (R)-2-[7-ciclopentilamino-5-(hidroximetil)-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metanol

Paso A: 2,2-dimetilpropionato de (R)-2-[7-ciclopentilamino-5-(2,2-dimetil-propioniloximetil)-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metilo

El 2,2-dimetilpropionato de (R)-2-[5-(2,2-dimetil-propioniloximetil)-7-nitro-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metilo preparado en la preparación 43 y ciclopentanona se sometieron a reacción con el mismo procedimiento que en el ejemplo 1 para obtener el compuesto indicado en el título.

Paso B: (R)-2-[7-ciclopentilamino-5-(hidroximetil)-1H-indol-2-il]-4,5 dihidrotiazol-4-il-metanol

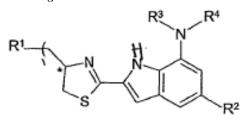
El 2,2-dimetilpropionato de (R)-2-[7-ciclopentilamino-5-(2,2-dimetil-propioniloxi-metil)-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 29 para obtener el compuesto indicado en el título. 1 H-NMR (400 MHz, CDCl₃); δ 9,63 (brs, 1H), 7,40 (s, 1H), 7,18 (s, 1H), 6,90 (s, 1H), 4,80 (m, 1H), 4,73 (s, 2H), 4,06 (m, 1H), 3,84 (m, 1H), 3,66 (m, 2H), 3,48 (m, 1H), 3,31 (m, 1H), 1,79 (m, 2H), 1,43 (m, 4H), 1,26 (m, 2H)

Ejemplo de referencia 7: [2-(4,5-dihidrotiazol-2-il)-1H-indol-7-il]-piperidin-4-il-amina

Paso A: [2-(4,5-dihidrotiazol-2-il)-1H-indol-7-il]-(1-BOC-piperidin-4-il)-amina

El 2-(4,5-dihidrotiazol-2-il)-7-nitro-1H-indol preparado en la preparación 101 y 1-BOC-4-piperidona se sometieron a reacción con el mismo procedimiento que en el ejemplo 1 para obtener el compuesto indicado en el título.

Paso B: [2-(4,5-dihidrotiazol-2-il)-1H-indol-7-il]-piperidin-4-il-amina


La [2-(4,5-dihidrotiazol-2-il)-1H-indol-7-il]-(1-BOC-piperidin-4-il)-amina preparada en el paso A se sometió a reacción con el mismo procedimiento que en el paso D de la preparación 29 para obtener el compuesto indicado en el título.

 $^{1}\text{H-NMR (400 HMz, CDCl}_{3}, \text{ MeOH-d}_{4}); \ \delta \ 7,39 \ (\text{s}, \ 1\text{H}), \ 7,07 \ (\text{d}, \ J=8,0 \ \text{Hz}, \ 1\text{H}), \ 6,99 \ (\text{t}, \ J=8,0 \ \text{Hz}, \ 1\text{H}), \ 6,93 \ (\text{s}, \ 1\text{H}), \ 6,47 \ (\text{d}, \ J=7,6 \ \text{Hz}, \ 1\text{H}), \ 4,41 \ (\text{m}, \ 2\text{H}), \ 3,77 \ (\text{m}, \ 1\text{H}), \ 3,48 \ (\text{m}, \ 4\text{H}), \ 3,11 \ (\text{m}, \ 2\text{H}), \ 2,29 \ (\text{m}, \ 2\text{H}), \ 1,87 \ (\text{m}, \ 2\text{H})$

Ejemplos 8 a 117:

5

Los compuestos preparados en las preparaciones 40 y 48 a 100 se sometieron a reacción para sintetizar los ejemplos de compuestos mostrados en la siguiente tabla mediante un método seleccionado entre los ejemplos 1 a 7.

Ejemplo	IR ¹	*	n	R ²	\mathbb{R}^3	R⁴
Бјотгріо	Datos H ¹ NMR	1		11	1.,	1.0
Ejemplo de	carboxilo	R	1	metilo	lΗ	(THP-4-il)metilo
referencia 8), 6,22 (s, 1H), 5,29 (m, 1H),
						,84-2,52 (m, 2H), 2,32 (s,
	3H), 1,90 (m, 1H),				011), 2	,0 1 2,02 (111, 211), 2,02 (0,
Ejemplo de	carboxilo	Is	1	metilo	Н	1-(trifluoroacetil-piperidin-4-
referencia 9					'	ilo
	(400 MHz CDCl ₂):	δ 11 9	4 (brs 1	IH) 6.98 (s. 1H) 6.78	(s 1H)	, 6,25 (s, 1H), 5,33 (m, 1H),
						(m, 2H), 2,36 (s, 3H), 2,04
	(m, 2H),1,56 (m, 2l	-	, - ,,	-, -, (, - ,, ,	,	()
Ejemplo de	carboxilo	Ś	1	Н	Н	(THP-2-il)metilo
referencia 10	(400 MHz, CDCl ₃):	δ 11.6	3 (brs.	1H), 7.06-6.98 (m, 3H)	. 6.45	(s, 1H), 5,32 (m, 1H), 3,96
						2,80 (m, 1H), 2,65 (m, 1H),
	1,83 (m, 1H), 1,71	•			,,	, , , , , , , , , , , , , , , , , , , ,
Ejemplo de	carboxilo	S		H	Н	THP-4-ilo
referencia 11	(400 MHz, CDCl ₃);	δ 11,8	7 (brs,	1H), 7,15 (s, 1H), 7,03	(m, 2H	H), 6,50 (m, 1H), 5,39 (m, 1H),
						,83 (m, 1H), 2,69 (m,1H),
	2,11 (m, 2H), 1,64	(m, 2H)		•	
Ejemplo de	carboxilo	S	1	Н	Н	(THP-4-il)metilo
referencia 12	(400 MHz, CDCl ₃);	δ 11,89	9 (brs,	1H), 7,13 (s, 1H), 7,04	(m, 21	H), 6,44 (m 1H), 5,39 (m, 1H),
						m, 2H), 2,78 (m, 1H), 2,64 (m,
	1H), 2,00 (m, 1H),				•	
Ejemplo de	carboxilo	S	1	metilo	Н	1-acetil-pirrolidin-3-ilo
referencia 13	(400 MHz, CDCl ₃);	δ 10,13	3 (brs,	1H), 6,93 (s, 1H), 6,82	(s, 1H)), 6,38 (s, 1H), 5,09 (m, 1H),
					3,25 (r	m, 1H), 2,91 (m, 1H), 2,66 (m,
	1H), 2,48 (s, 3H), 2	2,23 (m	, 1H), 2	2,00 (m, 1H)		
14	carboxilo	S	1	Н	Н	C-Pen
						H), 6,45 (s, 1H), 5,48 (m, 1H),
), 3,23	(m, 1H), 2,75 (m, 1H),	2,67 (r	m, 1H), 2,04 (m, 2H), 1,75 (m,
	2H), 1,61-1,48 (m,			T	1	
Ejemplo de	carboxilo	R	1	fenoxi	Н	(THP-4-il)metilo
referencia 15						H), 6,60 (s, 1H), 6,20 (s,
						(m, 1H), 3,06 (m,2H2,72 (m,
				,73 (m, 2H), 1,40m, 2H		1
Ejemplo de	carboxilo	S	1	fenoxi	Н	THP-4-ilo
referencia 16			•			m, 4H), 6,58 (s, 1H), 6,24 (s,
					, 3H), 2	2,23 (m,1H), 2,72,78-2,62 (m,
	2H), 2,0404 (m,2H					1
17	carboxilo	S	2	metilo	Н	4,4-difluoro-ciclohexano
), 6,26 (s, 1H), 5,35 (m, 1H),
),), 3,22	2 (m, 1H),2,75 (m, 1H),	, 2,62 (m, 1H), 2,37 (s, 25 (m, 1H),
	2,09-1,73 (m,(m, 7			Τ.		[(T) D 4 1)
Ejemplo de	carboxilo	S	10:"	cloro	H	(THP-4-il)metilo
referencia 18						, 1H), 6,21 (s, 1H), 6,15 (s,
					4H), 3	3,05 (m, 2H), 2,6 (m2H), 1,88
	(m, 1H), 1,76 (m, 2	$(\Pi), 1,3$	i (m, 2	m), 1,09 (m, 1H)		

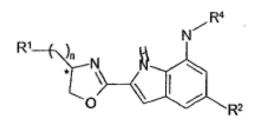
ES 2 426 641 T3

Ejemplo	IR ¹	*	n	I R ²	\mathbb{R}^3	\mathbb{R}^4
19	carboxilo	S	1	metilo	Н	ciclobutilo
		δ 11,21	(br s,1		(s, 1H),	6,00 (s, 1H), 4,89 (br s,1H)
		,63 (m,	,1H), 3	,35 (m, 2H), 2,67 (m, 2	H), 2,50	
Ejemplo de	carboxilo	S	1) 0.00	metilo	H	tetrahidrofuran-3-ilo
referencia 20						1H), 5,30 (br s, 1H), 5 (4,15 2,61 (m, 2H), 2,37 (s, 3H),
	2,23 (m, 1H), 1,98			, (111, 111), 0, 10 (3, 111),	2,10-2	.,01 (111, 211), 2,07 (3, 311),
21	carboxilo	S	1	metilo	Н	ciclopropilmetilo
						6,77 (s, 1H), 6,25 (s, 1H),
						n, 1H), 2,63 (m, 1H), 2,34 (s,
Ejemplo de	carboxilo	1,18 (n	n, 1 ⊓), T1	0,52 (m, 2H), 0,24 (m, metilo	<u>∠⊓)</u> Tµ	(THP-4-il)metilo
referencia 22		δ 11.9	1 ' 2 (br S		7 (s. 1 -	f), 6,22 (s, 1H), 6,29 (br s,
						08 (m, 2H), 2,729m, 1H),
	2,56 (m, 1H), 2,37			(m, 1H), 1,75 (m, 2H),		, 2H)
23	carboxilo	S	1 1	metilo	H	(c-Pen)metilo
						1H), 6,09 (s, 1H), 5,81 (br s, 77~2,69 (m, 2H), 2,28 (s,
				1,65~1,58 (m, 4H), 1,3		
Ejemplo de	HO-	S	2	metilo	H	THP-4-ilo
referencia 24), 6,32 (s, 1H), 4,64 (m, 1H),
Ejemplo de			<u>m, 4H)</u> T⊿		3H), 2,0 TH	5 (m, 4H), 1,51 (m,2H)
referencia 25	carboxilo	S -d ₂): 8 1	1 77 (k	metilo or s. 1H) 6.98 (sm. 2H)		THP-4-ilo s, 1H), 4,95 (m, 1H), 4,02 (m,
	,	-,.	, ,	. , ,.	, ,	(s, 1H), 1,94 (m, 2H), 162
	(m, 2H)	,	, ,	. , , , , , , , , , , , , , , , , , , ,	,, ,	, , , , , , , , , , , , , , , , , , , ,
26	carboxilo	S	1	metilo	H	c-Pen
						s, 1H), 6,74 (s, 1H), 4,94 (m, 2H), 2,51 (s, 3H), 1,93 (m,
	2H), 1,76~1,56 (m		11, 1111),	3,47 (III, 111), 2,07~2,7	0 (111, 2	11), 2,51 (8, 511), 1,95 (11),
Ejemplo de	Н	-	0	Н	Н	(tiofen-3-il)metilo
referencia 27						7,13 (d, J = 8,0 Hz, 1H),
	7,07 (d, J = 5,2 Hz (s, 2H), 4,36 (m, 2				s, 1H),	6,56 (d, J = 7,6 Hz, 1H), 4,42
Ejemplo de	(5, 211), 4,30 (III, 21	- -	0		Н	tetrahidrofuran-3-ilo
referencia 28	(400 MHz, CDCl ₃);	δ 10,3	6 (s, 1l	H), 7,10 (d, J = 8,0 Hz,	1H), 7,	00 (t, J = 8,0 Hz, 1H), 6,99
				4,41 (m, 2H), 4,18 (s,	1H), 3,9	98~3,73 (m, 4H), 3,47 (m,
00	2H), 2,28 (m, 1H),	1,90 (n	n, 1H)	Tir	1	Latata basella
29	(500 MHz, CDCL):	K S 11 1	1 7 11 0	H R (m 1 Ll) 7 00 (m 1 Ll	H	ciclohexilo (t, 1H), 6,96 (s, 1H), 6,52 (m,
						51 (m, 1H), 3,40 (m, 1H),
), 1,41~1,24 (m, 2H)	7, -,	
Ejemplo de	carboxilo	R	2	Н	Н	THP-4-ilo
referencia 30						I, 1H), 6,72 (s, 1H), 6,33 (d,
				(m, 2H), 1,39 (m, 2H)	(III, Z), 3,42 (t, 2H), 3,17 (m, 1H),
Ejemplo de	HO-	R	1	cloro	Н	isopropilo
referencia 31), 6,43 (s, 1H), 4,75 (m, 1H),
Figure 1			H), 3,6	1 (m, 1H), 3,43 (dd, 1H), 1,09	
Ejemplo de referencia 32	metilo	R S 11 1	1 U 3 (br c	1H) 7.08-6.00 (m. 3H	1) 652 H	THP-4-ilo
TOTOTOTION JZ						(d, 1H), 4,76 (m, 1H), 4,09), 1,68 (m, 2H), 1,48 (d, 3H)
33	HO-	R	1	(morfolin-4-il)metilo	H	c-Pen
	· ·			1H), 7,06 (s, 1H), 6,95), 6,62 (s, 1H), 4,80 (m, 1H),
		-			3,51 (s	s, 2H), 3,45 (m, 5H), 2,51 (br
34	s, 4H), 2,00 (m, 2H HO-	1), 1,45 R	(m, 2F	1) (dimetilamino)-	Н	c-Pen
34	110-	11	'	metilo	[''	0 1 611
	(400 MHz, CDCl ₃);	δ 10,8	6 (br s,		3 (s, 1H), 6,51 (s, 1H), 4,75 (m, 1H),
	4,37 (m, 2H), 3,85	(m, 1H), 3,71			, 2H), 2,27 (s, 6H), 1,96 (m,
25	2H), 1,59 (m, 4H),	_	n, 2H) Ta	(pirrol-2 il\matila	Тμ	c-Pen
35	HO-	R	<u> </u>	(pirrol-3-il)metilo	Н	c-Pen

Ejemplo	R ¹	* r	1	R ²	R^3	R ⁴
						2H, m), 6,62 (1H, s), 6,36
						01 (1H, m), 3,99 (2H, s),
	(1H, m), 1,33~1,26		30 (2	.n, III), 1,96~1,65 (2n,	111), 1,0	65~1,47 (4H, m), 1,42~1,33
36	HO-	R 1	1	(1,3-imidazol-1-	Н	c-Pen
				il)metilo		
						7,23 (1H, s), 6,87 (3H, br),
						m), 3,79~1,73 (1H, m), 66~1,53 (4H, m), 1,43~1,37
	(2H, m)	J, 1 J~ J,	<i>31</i> (2	11, 111), 1,30~1,00 (211,	111), 1,0	1,55 (411, 111), 1,45~1,57
37	HO-	R 1	1	(pirazol-1-il)metilo	Н	c-Pen
						7,34 (1H, d, J = 2,45 Hz),
						, s), 4,75~4,67 (1H, m),
	(4H, m), 1,33~1,20		01 (2	.⊓, III), 3,4 <i>1</i> ~3,36 (∠⊓,	111), 1,8	92~1,81 (2H, m), 1,60~1,46
38	HO-	R 1		acetilamino	Н	c-Pen
						l), 6,88 (s, 1H), 4,77 (m, 1H),
		m, 1H),	3,73	(m, 1H), 3,47 (m, 2H),	2,20 (s	s, 3H), 2,04 (m, 2H), 1,60 (m,
39	4H), 1,44 (m, 2H) carboxilo	R 1	1	fenoximetilo	Н	c-Pen
			(1H. ł			7,00 (3H, m), 6,99 (1H, s),
	6,93 (1H, m), 6,48 (1H, m),	5,39~	-5,30 (1H, m), 5,07 (2l	Н, s), 3,	,94~3,86 (1H, m), 3,75~3,68
					,61 (1H	I, m), 2,05~1,96 (2H, m),
40	1,79~ 1,70 (2H, m), MeO ₂ C-	1,66~1,	56 (4 I	H, m) (pirrolidin-1-il)metilo	Н	c-Pen
40			<u>.</u> (1H k			6,73 (1H, s), 5,05~4,95 (1H,
				70~3,60 (1H, m), 3,49		
				H, m), 2,71~2,65 (1H,		
41	isobutilo	R (cloro	H	c-Pen
						I), 6,42 (s, 1H), 4,54 (t, 1H), 32 (m, 9H), 0,89 (d, 3H), 0,83
	(d, 3H)	ι,,, ο	,0 . (.	,,, _,, . (, _, .,,,	,,,,,,	oz (, o. 1), o,oo (a, o. 1), o,oo
42	EtO ₂ C	R 2	2	Н	Н	c-Pen
						H), 6,91 (s, 1H), 6,52 (d, J = 8 , 3,12 (t, 1H), 2,52 (m, 2H),
				(m, 4H), 1,28 (m, 1H),		
Ejemplo de	HO-	R 1	., <u></u>	H	H	(3R)-1-acetilpirrolidin-3-ilo
referencia 43						H), 6,88 (d, 1H), 6,43 (m,
					1H), 3,	.69 (m, 2H), 3,62 (m, 1H),
44	3,51~3,42 (m, 5H), etilo	R (fluor	Н	c-Pen
		•				I), 4,65 (m, 1H), 3,99 (br s,
	1H), 3,75 (m, 1H), 3	3,53 (m,	1H),	3,117 (m, 1H), 2,02~1		2H), 1,77 (m, 1H), 1,63 (m,
45	5H), 1,44 (m, 1H), 1 HO-	I,28 (m, R /	1H), (I	0,94 (m, 3H) fluor	Ме	c-Pen
45	-		hrs			H), 6,59 (s, 1H), 4,71 (m, 1H),
						1H), 2,68 (s, 3H), 1,82 (m,
	1H), 1,72 (m, 1H), 1	1,62~1,4			T	
46	MeO ₂ C-	S 1	<u> </u>	etoxi	H	c-Pen
	1					l), 6,17 (s, 1H), 5,08 (m, 1H), d, 1H), 2,85 (dd, 1H), 2,65
				3 (m, 4H), 1,45-1,33 (n		a, 111), 2,00 (dd, 111), 2,00
47	carboxilo	S 1		etoxi	Н	c-Pen
						(s, 1H), 6,11 (s, 1H), 5,33 (m,
	I		-	3,69 (m, 1H), 3,18 (d, (m, 4H), 1,43 (m, 3H)	1H), 2,	73 (m, 1H), 2,59 (m, 1H),
48	HO-	S 2	_	etoxi	Н	c-Pen
	-	δ 10,64	(br s,		9 (d, 1H	l), 6,15 (d, 1H), 4,69 (br s,
	1H), 4,60 (m, 1H), 4	1,06~3,8	4 (m,	5H), 3,54 (m, 1H), 3,1		H), 2,08~1,94 (m, 4H), 1,70
40	(m, 2H), 1,58 (m, 4H			•	Н	c-Pen
49	EtO ₂ C-	R (,	metilo	1 [c-Pen

Ejemplo	R ¹	*	n	\mathbb{R}^2	R^3	R ⁴
, ,	(400 MHz, CDCl ₃);	δ 9,74	(br s, 1	1H), 6,85 (d, J = 4 Hz,	2H), 6,3	37 (s, 1H), 5,33 (t, 1H), 4,23
			1 (m, 2	2H), 2,39 (s, 3H), 2,03	(m, 2h)	, 1,68 (m, 2H), 1,61 (m, 2H),
50	1,47 (m, 2h), 1,26 (<u> </u>	I a	for and	1	I - Dan
50	carboxilo	S	1 1	fenoxi	H	c-Pen
						H), 7,01 (t, 1H), 6,93 (d, J = 8
						' (s, 1H), 4,93 (m, 1H), 3,75 1,90 (m, 2H), 1,72 (m, 2H),
	1,60 (m, 4H)	1), 0,20	(4, 111), 2,02 (dd, 111), 2,10 (9, 111),	1,50 (111, 211), 1,72 (111, 211),
Ejemplo de	HO-	R	1	Н	Н	THP-4-ilo
referencia 51	(400 MHz, CDCl ₃);	δ 10,9	1 (br s,	1H), 7,01~6,91 (m, 3H	1), 6,48	(d, J= 7,2 Hz, 1H), 4,86 (m,
	1H), 4,34 (m, 2H),	4,00 (m				31 (m, 1H), 2_OS(m, 2H),
	1,55 (m, 2H), 1,16	(s, 9H)		Τ	1	T
Ejemplo de	HO-	R	1	H 744 (1 1 705	H	THF-3-ilo
referencia 52), 7,00 (m, 1H), 6,94 (m, 1H),
	(m, 2H), 2,20 (m, 1			-	o⊓), o,	90~3,65 (m, 4H), 3,50~3,39
Ejemplo de	HO-	R	1	H	ТН	1-(metanosulfonil)-pirrolidin-
referencia 53						3-ilo
	(500 MHz, CDCl ₃);	δ 10,50) (br s,	1H), 7,15 (d, J = 7,95	Hz, 1H), 7,00 (dd, 1H), 6,93 (s, 1H),
	6,46 (d, J = 7,35 Hz	z, 1H),	4,77 (r	n, 1H), 4,18 (m, 1H), 4	,08 (dd	
		3,48 (9	s, 3H),	2,27 (m,1H), 1,95 (m,	1H)	
54	HO-	K	1 1	fluor] H	c-Pen
						H), 6,33 (m, 1H), 4,78 (m, 3,49 (m, 2H), 2,01 (m, 2H),
	1,62 (m, 4H), 1,41), 3,79 (III, 1H), 3,73 (I	11, 1□),	3,49 (III, 2H), 2,01 (III, 2H),
Ejemplo de	HO-	R	1	fluor	Н	THP-4-ilo
referencia 55		1	5 (br s.		1	H), 6,34 (m, 1H), 4,82 (m,
						54~3,43 (m, 5H), 2,03 (m,
	2H), 1,50 (m, 2H)					
56	HO-	R	2	cloro	Н	c-Pen
						I), 6,45 (s, 1H), 4,74 (m, 1H),
	4,06 (m, 1H), 3,81 (m, 2H)	(m, 1H), 3,71	(m, 1H), 3,45 (dd, 2H)	, 1,99 (m, 2H), 1,60 (m, 4H), 1,37
57	HO-	R	1	cloro	Н	<u></u>
0,		1 \		Cioro	1	 ()s
	(400 MHz CDCla):	δ 10 8 ⁻	7 (hr e	1H) 7 01 (c 1H) 6 80] (c 1H), 6,40 (s, 1H), 4,80 (m, 1H),
						n, 4H), 2,29 (m, 2H), 1,56 (m,
	2H)	(,,	,, -,	(, =), =,== (,),	_, (,,, =,== (, =:-), .,== (,
58	HÓ-	R	1	bromo	Н	c-Pen
	(400 MHz, CDCl ₃);	δ 10,59	9 (br s,	1H), 7,23 (s, 1H), 6,88	3 (s, 1H), 6,64 (d, 1H), 4,77 (m, 1H),
		(m, 1H)), 3,76	(m, 1H), 3,49 (dd, 2H)	, 2,04 (m, 2H), 1,65 (m, 4H), 1,41
Figurals 4s	(m, 2H)	Ь	1	hromo	LI	TUD 4 ile
Ejemplo de referencia 59	(400 MHz, CDCl-):	R 8 10 5	l l	bromo	H 7 (c. 1⊔	THP-4-ilo
Telefelicia 33), 6,63 (d, 1H), 4,80 (m, 1H), 2,02 (m, 2H), 1,45 (m, 2H)
60	HO-	R	1	metoxi	H	c-Pen
		1	1,23 (h		1	1H), 5,89 (m, 1H), 5,84 (m,
						45 (m, 1H), 3,33 (m, 1H),
				m, 2H), 1,53 (m, 4H)	1	
61	HO-	R	1	(piridin-3-il)oxi	Н	c-Pen
						H), 7,30 (m, 1H), 7,22 (m,
					H), 4,02	2 (m, 1H), 3,75 (m, 2H), 3,46
Ejemplo de	(m, 2m, 1,97 (m, 2l HO-	n), 1,63 R	7 (111, 4 1	(piridin-3-il)oxi	Н	THP-4-ilo
referencia 62			լ <u>'</u> Տ (hr ໑	· · · · · · · · · · · · · · · · · · ·		8,26 (m, 1H), 7,27 (m, 1H),
						: 1,6 Hz, 1H), 4,81 (m, 1H),
						5H), 1,93 (m, 2H), 1,52 (m,
	2H)	,	,			
63	HO-	R	1	metanosulfonil	Н	c-Pen
	1	i	Ì	metilo	1	1

Ejemplo	R ¹	r	n	R^2	R^3	R^4
	(500 MHz, CDCl ₃); δ	11,10	(brs, 1	1H), 7,01 (s, 1H), 6,88	(m, 1H)), 6,49 (s, 1H), 4,76 (m, 1H),
				n, 1H), 3,68 (m, 1H), 3,	43 (m,	2H), 2,73 (s, 3H), 1,96 (m,
0.4	2H), 1,57 (m, 4H), 1,	'	2H)	/: : I I 4 0 I' 0		
64	HO-	₹	1	(isoindol-1,3-dion-2- il)metilo	Н	c-Pen
	(500 MHz DMSO-do)	\· S 11	30 (h		7 60 (r	n, 1H), 7,51 (m, 1H), 7,44
						96 (brs, 1H), 4,67 (m, 1H),
						, 1H), 1,94 (m, 2H), 1,68 (m,
	2H), 1,54 (m, 4H)					
Ejemplo de		₹	1	cloro	Н	THP-4-ilo
referencia 65						H), 6,28 (s, 1H), 6,07 (d, 1H),
	(m, 2H), 1,40 (m, 2H)		3,64 ((S, 3H), 3,62 (M, 2H), 3	5,44 (t, <i>i</i>	2H), 2,82-2,71 (m, 2H), 1,94
Ejemplo de		, R T	1	cloro	Н	THP-4-ilo
referencia 66); δ 12	,43 (bi		6,81 (s	s, 1H), 6,71 (s, 1H), 6,28 (s,
						4 (t, 2H), 3:19 (m, 1H), 3,74
	(m, 1H), 2,63 (m, 1H)			H), 1,41 (m, 2H)		
Ejemplo de		-	2	cloro	Н	THP-4-ilo
referencia 67						H), 6,28 (s, 1H), 6,05 (d, 1H),
	4,66 (q, 1H), 4,54 (t, 1,93 (m, 3H), 1,73 (m				٦), 3,44	I (t, 2H), 3,15 (m, 1H), 1,99-
68		1, 111), R	1	bromo	Н	c-Pen
		•	br s.			H), 6,56 (s, 1H), 5,31 (m,
						08 (m, 2H), 1,86 (m, 2H),
	1,66 (m, 4H)	, ,				, , , , , , , , , , , , , , , , , , , ,
69	1.		2	bromo	Н	c-Pen
), 6,59 (d, 1H), 4,67 (m, 2H),
	4,02 (m, 2H), 3,91 (m 4H)	n, 1H),	3,63 ((m, 1H), 3,16 (t, 1H), 2,	,10 (m,	4H), 1,74 (m, 2H), 1,4 (m,
Ejemplo de	· /	٦	2	bromo	Н	THP-4-ilo
referencia 70), 6,59 (d, 1H), 4,67 (m, 2H),
				(t, 1H), 2,12 (m, 4H), 1		
71	carboxilo F	7	1	fluor	Н	c-Pen
						H), 6,07 (dd, 1H), 4,98 (m,
			1H), 3	3,16 (m,1H), 2,79 (m, 1	H), 2,6	60 (m, 1H), 1,96 (m, 2H),
72	1,71 (m, 2H), 1,58 (m EtO ₂ C- F	1, 4H) R	1	fluor	Н	c-Pen
12		•	/hr c			H), 6,23 (dd, 1H), 5,07 (m,
						22 (m, 1H), 2,88 (m, 1H),
				(m, 4H), 1,40 (m, 2H),		
73		_	2	fluor	Н	c-Pen
						H), 6,26 (dd, 1H), 4,68 (m,
	1	88 (m,	1H), 3	3,62 (m, 1H), 3,15 (t, 1	H), 2,10	0 (m, 4H), 1,74 (m, 2H), 1,62
Ejemplo de	(m, 4H) carboxilo F	٦	1	fluor	Н	THP-4-ilo
referencia 74			45 (s			H), 6,16 (d, J = 6,8 Hz, 1H),
						n, 2H), 3,22 (m, 1H), 2,80 (m,
	1H), 2,65 (m, 1H), 2,9				, (, ,, , (, ,, , , , , ,
75		₹	1	Н	Н	c-Pen
	•		•	* * * * * * * * * * * * * * * * * * * *	•	l), 6,43 (d, 1H), 5,34 (m,
	1	-	1H), 3	3,19 (m, 1H), 2,72 (m,	1H), 2,6	60 (m, 1H), 2,01 (m, 2H),
76	1,74 (m, 2H), 1,59 (m EtO ₂ C- F	1, 4H) R	1	Н	Н	c-Pen
			(br s			H), 6,91 (d, 1H), 6,51 (d,
						21 (m, 1H), 2,86 (m, 1H),
				(m, 2H), 1,62 (m, 4H),		
77			2	Н	Н	c-Pen
						(s, 1H), 6,25 (d, 1H), 5,78
						3,51 (m, 1H), 3,11 (m, 1H),
Ejemplo de			07 (m, 0	<u>3H), 1,56-1,54 (m, 4H)</u> H	Н	THP-4-ilo
Ljempio de	Carbonio F	`	J	1.1	11	1 1 11 - 1 -110


Ejemplo	R^1
referencia 78	(400 MHz, DMSO-d ₆); δ 12,42 (br s, 1H), 11,34 (s, 1H), 6,80 (d, 1H), 6,72 (s, 1H), 1R), 6,80
	(d, 6,33 (d, 1H), 5,79 (d, 1H), 4,86 (q, 1H), 3,88 (m, 2H), 3,60-3,52 (m, 2H), 3,42 (t, 2H),
	3,17 (m, 1H), 2,74 (m, 1H), 2,59 (m, 1H), 1,94 (m, 2H), 1,39 (m, 2H)
Ejemplo de	HO- R 2 H H THP-4-ilo
referencia 79	$(400 \text{ MHz}, \text{DMSO-d}_6); \delta \ 11,29 \ (\text{s}, \ 1\text{H}), \ 6,79 \ (\text{m}, \ 2\text{H}), \ 6,70 \ (\text{s}, \ 1\text{H}), \ 6,33 \ (\text{d}, \ 1\text{H}), \ 5,76 \ (\text{d}, \ 1\text{H}), \ 6,83 \ (\text$
	1H), 4,66 (q, 1H), 4,54 (t, 1H), 3,88 (m, 2H), 3,62-3,59 (m, 3H), 3,53 (t, 1H), 3,43 (m, 2H),
00	3,12 (m, 1H), 1,96 (m, 3H), 1,75 (m, 1H), 1,40 (m, 2H)
80	MeO ₂ C- R 1 metoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,24 (s, 1H), 6,62 (s, 1H), 6,22 (s, 1H), 5,89 (d, 1H), 5,84 (s, 1H),
	4,83 (q, 1H), 3,77 (m, 1H), 3,64 (s, 3H), 3,59 (s, 3H), 3,56 (m, 1H), 3,15 (m, 1H), 2,69 (m,
	1H), 2,58 (m, 1H), 1,90 (m, 2H), 1,67 (m, 2H), 1,51 (m, 4H)
81	carboxilo R 1 metoxi H c-Pen
	(400 MHz, DMSO-d ₆); δ 12,54 (br s, 1H), 11,21 (s, 1H), 6,63 (s, 1H), 6,23 (s, 1H), 5,89 (d,
	1H), 5,84 (s, 1H), 4,84 (q, 1H), 3,77 (m, 1H), 3,64 (s, 3H), 3,56 (m, 1H), 3,15 (m, 1H), 2,69
	(m, 1H), 2,58 (m, 1H), 1,90 (m, 2H), 1,67 (m, 2H), 1,52 (m, 4H)
Ejemplo de referencia 82	carboxilo R 1 metoxi H THP-4-ilo
Telefelicia 62	(500 MHz, DMSO-d ₆); δ 11,21 (br s, 1H), 6,64 (m, 1H), 6,26 (m, 1H), 5,95 (m, 1H), 5,84 (m, 1H), 4,85 (m, 1H), 3,85 (m, 1H), 3,64 (s, 3H), 3,63-3,49 (m, 2H), 3,43 (m, 2H), 3,17 (m,
	11), 4,33 (m, 11), 3,63 (m, 11), 3,64 (3, 31), 3,63-3,43 (m, 21), 3,43 (m, 21), 3,17 (m, 11), 2,73 (m, 1H), 2,62 (m, 1H), 1,94 (m, 2H), 1,72 (m, 1H), 1,38 (m, 2H)
83	carboxilo R 1 etoxi H c-Pen
	(400 MHz, DMSO-d ₆); δ 11,24 (br s, 1H), 6,65 (d, J = 2,0 Hz, 1H), 6,26 (d, J = 2,0 Hz, 1H),
	5,92 (d, J = 6,0 Hz, 1H), 5,88 (d, J = 2,0 Hz, 1H), 4,89 (m, 1H), 3,94 (q, 2H), 3,81 (m, 1H),
	3,65 (m, 1H), 3,20 (m, 1H), 2,74 (m, 1H), 2,62 (m, 1H), 1,94 (m, 2H), 1,72 (m, 2H), 1,61 (m,
84	4H), 1,31 (t, 3H)
0-4	(500 MHz,, CDCl ₃); δ 12,79 (br s, 1H), 7,05 (s, 1H), 6,26 (s, 1H), 6,22 (s, 1H), 5,14 (br s,
	1H), 3,88 (m, 3H), 3,41 (m, 2H), 3,07 (m, 1H), 2,83 (m, 1H), 2,03 (m, 2H), 1,82 (m, 3H),
	1,69 (m, 2H),1,60 (m, 2H), 1,04 (t, 3H)
85	carboxilo R 1 fenoxi H c-Pen
	(400 MHz, CDCl ₃); δ 11,92 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,56 (s, 1H), 6,22 (s, 1H),
	1
	5,34 (br s, 1H), 3,81 (br s, 1H), 3,70 (m, 1H), 3,22 (d, J = 12,0 Hz, 1H), 2,76~2,62 (m, 2H), 1,73 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H)
Fiemplo de	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H)
Ejemplo de referencia 86	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo
Ejemplo de referencia 86	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H),
	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
referencia 86	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
referencia 86	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
referencia 86	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
referencia 86	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
referencia 86 87	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
referencia 86 87	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
87	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
87 88 Ejemplo de	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
87	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
87 88 Ejemplo de	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
87 88 Ejemplo de	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
88 Ejemplo de referencia 89	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 3,65 (m, 1H), 3,59 (s, 3H), 3,20 (m, 1H), 2,83 (m, 1H), 2,67 (m, 1H), 1,98 (m, 2H), 1,61 (m, 4H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H)
87 88 Ejemplo de referencia 89 Ejemplo de	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 3,65 (m, 1H), 3,59 (s, 3H), 3,20 (m, 1H), 2,83 (m, 1H), 2,67 (m, 1H), 1,98 (m, 2H), 1,61 (m, 4H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H)
87 88 Ejemplo de referencia 89 Ejemplo de	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 3,65 (m, 1H), 3,59 (s, 3H), 3,20 (m, 1H), 2,83 (m, 1H), 2,67 (m, 1H), 1,98 (m, 2H), 1,61 (m, 4H), 1,46 (m, 2H) Carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H) MeO ₂ C- R 1 metilo H c-Pen Carboxilo Carboxilo R 1 metilo H c-Pen Carboxilo Carboxilo R 1 met
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H) MeO ₂ C- R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); δ 11,19 (s, 1H), 6,62 (s, 1H), 6,55 (s, 1H), 6,07 (s, 1H), 5,75 (d, 1H),
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H) MeO ₂ C- R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); δ 11,19 (s, 1H), 6,62 (s, 1H), 6,55 (s, 1H), 6,07 (s, 1H), 5,75 (d, 1H),
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 3,65 (m, 1H), 3,59 (s, 3H), 3,20 (m, 1H), 2,83 (m, 1H), 2,67 (m, 1H), 1,98 (m, 2H), 1,61 (m, 4H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H) MeO ₂ C- R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); δ 11,19 (s, 1H), 6,62 (s, 1H), 6,55 (s, 1H), 6,07 (s, 1H), 5,75 (d, 1H), 4,88 (q, 1H), 3,79 (m, 1H), 3,63-3,57 (m, 5H), 3,17 (m, 1H), 2,82-2,73 (m, 2H), 2,23 (s, 3H), 1,94 (m, 2H), 1,68 (m, 2H), 1,55 (m, 3H) carboxilo R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); δ 11,19 (s, 1H), 6,62 (s, 1H), 6,61 (s, 1H), 6,64 (s, 1H), 6,62 (s, 1H), 6,64 (s
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) Carboxilo R 1 Fenoxi H THP-4-ilo (400 MHz, CDCl ₃); \$ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); \$ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 3,65 (m, 1H), 3,59 (s, 3H), 3,20 (m, 1H), 2,83 (m, 1H), 2,67 (m, 1H), 1,98 (m, 2H), 1,61 (m, 4H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); \$ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); \$ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); \$ 8,14 (s, 1H), 8,07 (s, 1H), 7,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); \$ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H) MeO ₂ C- R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); \$ 11,19 (s, 1H), 6,62 (s, 1H), 6,55 (s, 1H), 6,07 (s, 1H), 5,75 (d, 1H), 4,88 (q, 1H), 3,79 (m, 1H), 3,63-3,57 (m, 5H), 3,17 (m, 1H), 2,82-2,73 (m, 2H), 2,23 (s, 3H), 1,94 (m, 2H), 1,68 (m, 2H), 1,55 (m, 3H) (400 MHz, DMSO-d ₆); \$ 12,42 (br s, 1H), 1,121 (s, 1H), 6,61 (s, 1H), 6,64 (s, 1H), 6,02 (s, 1H), 5,76 (
88 Ejemplo de referencia 89 Ejemplo de referencia 90	1,96 (m, 2H), 1,73 (m, 2H), 1,58 (m, 4H) carboxilo R 1 fenoxi H THP-4-ilo (400 MHz, CDCl ₃); δ 11,98 (br s, 1H), 7,28 (m, 2H), 7,00 (m, 4H), 6,58 (s, 1H), 6,22 (s, 1H), 5,34 (br s, 1H), 3,98 (br s, 2H), 3,70 (m, 1H), 3,50 (m, 3H), 3,21 (m, 2H), 2,74 (m, 1H), 2,66 (m, 1H), 2,05 (m, 2H), 1,58 (m, 2H) MeO ₂ C- R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 10,89 (br s, 1H), 8,41 (d, 1H), 8,26 (m, 1H), 7,27 (m, 1H), 7,19 (m, 1H), 6,85 (s, 1H), 6,62 (d, 1H), 6,22 (m, 1H), 5,04 (m, 1H), 4,13 (br s, 1H), 3,78 (m, 1H), 3,65 (m, 1H), 3,59 (s, 3H), 3,20 (m, 1H), 2,83 (m, 1H), 2,67 (m, 1H), 1,98 (m, 2H), 1,61 (m, 4H), 1,46 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H c-Pen (400 MHz, CDCl ₃); δ 11,86 (br s, 1H), 8,40 (d, 1H), 8,26 (m, 1H), 7,25 (m, 1H), 7,17 (m, 1H), 6,96 (s, 1H), 6,57 (d, 1H), 6,18 (d, 1H), 5,33 (br s, 1H), 3,80 (br s, 1H), 3,70 (m, 1H), 3,21 (m, 1H), 2,73 (m, 1H), 2,65 (m, 1H), 1,96 (m, 2H), 1,72 (m, 2H), 1,58 (m, 4H) MeO ₂ C- R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, DMSO-d ₆); δ 11,48 (br s, 1H), 8,30 (d, 1H), 8,25 (m, 1H), 7,34 (m, 1H), 7,29 (m, 1H), 6,76 (d, 1H), 6,46 (d, 1H), 6,18 (d, 1H), 4,93 (m, 1H), 3,87 (m, 3H), 3,66 (s, 3H), 3,59 (m, 1H), 3,44 (m, 2H), 3,23 (m, 1H), 2,81 (m, 2H), 1,95 (m, 2H), 1,43 (m, 2H) carboxilo R 1 (piridin-3-il)oxi H THP-4-ilo (400 MHz, MeOH-d ₄); δ 8,14 (s, 1H), 8,07 (s, 1H), 7,25 (m, 2H), 6,76 (s, 1H), 6,45 (s, 1H), 6,12 (d, 1H), 4,84 (m, 1H), 3,85 (m, 1H), 3,83 (m, 1H), 3,53 (m, 1H), 3,40 (m, 2H), 3,21 (m, 2H), 3,12 (m, 1H), 2,73 (m, 1H), 2,59 (m, 1H), 1,93 (m, 2H), 1,46 (m, 2H) MeO ₂ C- R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); δ 11,19 (s, 1H), 6,62 (s, 1H), 6,55 (s, 1H), 6,07 (s, 1H), 5,75 (d, 1H), 4,88 (q, 1H), 3,79 (m, 1H), 3,63-3,57 (m, 5H), 3,17 (m, 1H), 2,82-2,73 (m, 2H), 2,23 (s, 3H), 1,94 (m, 2H), 1,68 (m, 2H), 1,55 (m, 3H) carboxilo R 1 metilo H c-Pen (400 MHz, DMSO-d ₆); δ 11,19 (s, 1H), 6,62 (s, 1H), 6,61 (s, 1H), 6,64 (s, 1H), 6,62 (s, 1H), 6,64 (s

Ejemplo	R ¹	*	n	\mathbb{R}^2	R^3	R⁴			
referencia 93		δ 11.8			1	l), 6,26 (s, 1H), 5,32 (m, 1H),			
						n, 1H), 2,76 (m, 1H), 2,64 (m,			
	1H), 2,31 (s, 3H), 2				-, - (, ,, , - (, ,, ,- (,			
94	carboxilo	R	1	4-(metano-	Н	c-Pen			
				sulfonil)fenoxi					
	(500 MHz, DMSO-	d ₆); δ 1	1,71 (b	or s, 1H), 7,81 (d, 2H), 7	7,05 (m	, 2H), 6,65 (s, 1H), 6,49 (s,			
	1H), 6,35 (m, 1H), 5,96 (s, 1H), 4,86 (m, 1H), 3,75 (m, 1H), 3,52 (m, 1H), 3,17 (m, 1H),								
	3,12 (s, 3H), 1,87 (1,67 ((m, 2H), 1,53 (m, 4H)					
95	MeO ₂ C-	R	1	fenoximetilo	Н	c-Pen			
						, 7,01 (m, 2H), 6,93 (m, 1H),			
			-			1H), 3,71 (s, 3H), 3,65 (m,			
00			1, 1H), □ ₄		I'	75 (m, 2H), 1,58 (m, 4H)			
96	MeO ₂ C-	R	/h =	fenilamino-metil	H /a 411	c-Pen			
						1), 6,88 (s, 1H), 6,75 (m, 3H),			
	1H), 2,92 (m, 1H),				,/2 (5,	3H), 3,68 (m, 1H), 3,23 (m,			
97	MeO ₂ C-	2,10~1, R	,30 (III, 1	metanosulfonil	Н	c-Pen			
37	IVIEO ₂ O-	1	'	metilo		C-I ell			
	(500 MHz, CDCl ₀):	S 10 21	l 2 (hr e		/ /e 1H), 6,50 (s, 1H), 5,05 (m, 1H),			
						1H), 2,72 (s, 3H), 2,66 (m,			
	1H), 2,03 (m, 2H),				,00 (,	,, =,: = (e, e::), =,ee (,			
98	carboxilo	R	1	metanosulfonil	Н	c-Pen			
				metilo					
	(400 MHz, DMSO-	d ₆); δ 1	1,68 (b	or s, 1H), 6,85 (s, 1H), 6	6,71 (s,	1H), 6,33 (s, 1H), 6,18 (m,			
	1H), 4,88 (m, 1H),	4,35 (s	, 2H), 3	3,84 (m, 1H), 3,56 (m, 1	IH), 3,2	20 (m, 1H), 2,84 (s, 3H), 2,55			
	(m, 1H), 2,09 (m, 1	H), 1,9	7 (m, 2	2H), 1,73 (m, 2H), 1,58	(m, 4H)			
99	HO-	R	2	metanosulfonil	Н	c-Pen			
				metilo	L				
), 6,49 (s, 1H), 4,68 (m, 1H),			
		m, 3H)	, 3,59 ((m, 1H), 3,13 (m, 1H), 2	2,05 (m	, 4H), 1,72 (m, 2H), 1,60 (m,			
100	4H)	Ь	1	ш	ш	c Pon			
100	EtŃHC(O)-	R 8.0.66	1	H 6.00 (m. 2H) 6.02 (d. 1	H 6 5	c-Pen			
100	EtNHC(O)- (400 MHz, CDCl ₃);	δ 9,66,		6,99 (m, 2H), 6,92 (d, 1	H), 6,5	55 (d, J = 7,2 Hz, 1H), 5,88			
100	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1	δ 9,66, H), 4,1	3 (m, 1	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32	H), 6,5				
	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1	δ 9,66, H), 4,1 H), 1,7	3 (m, 1 2~1,53	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32 (m, 6H), 1,08 (m, 3H)	H), 6,5 ~3,18 (ı	55 (d, J = 7,2 Hz, 1H), 5,88 m, 3H), 2,67 (1H, m), 2,52			
100	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo	δ 9,66, H), 4,1 H), 1,7 R	3 (m, 1 2~1,53 2	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro	H), 6,5 ~3,18 (ı	c-Pen 7,2 Hz, 1H), 5,88 m, 3H), 2,67 (1H, m), 2,52			
	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-	δ 9,66, H), 4,1; H), 1,7; R	3 (m, 1 2~1,53 2 de Na)	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- g (m, 6H), 1,08 (m, 3H) cloro ; & 11,69 (br s, 1H), 6,8	H), 6,5 ~3,18 (r H 2 (d, J	c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H),			
	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO- 6,27 (s, 1H), 6,18 (δ 9,66, H), 4,1; H), 1,7; R d_6 , sal α	3 (m, 1 2~1,53 2 de Na) 4,63 (r	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro ; \$ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3	H), 6,5 ~3,18 (r H 2 (d, J	c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H),			
101	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO- 6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H),	δ 9,66, H), 4,1; H), 1,7; R d_6 , sal c_8 , 1H), 1,72 (r	3 (m, 1 2~1,53 2 de Na) 4,63 (r n, 2H),	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro ; \$ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H)	H), 6,5 ~3,18 (r H 2 (d, J ,50 (m,	55 (d, J = 7,2 Hz, 1H), 5,88 m, 3H), 2,67 (1H, m), 2,52 c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H), 1H), 3,13 (m, 1H),			
	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO- 6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO-	δ 9,66, H), 4,1; H), 1,7; R d ₆ , sal o s, 1H), 1,72 (r	3 (m, 1 2~1,53 2 de Na) 4,63 (r n, 2H),	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H)	H), 6,5 ~3,18 (I H 2 (d, J ,50 (m,	55 (d, J = 7,2 Hz, 1H), 5,88 m, 3H), 2,67 (1H, m), 2,52 c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H), 1H), 3,13 (m, 1H),			
101	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO- 6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃);	δ 9,66, H), 4,1; H), 1,7; R d ₆ , sal c s, 1H), 1,72 (r R	3 (m, 1 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro	H), 6,5 -3,18 (I H 2 (d, J ,50 (m,	55 (d, J = 7,2 Hz, 1H), 5,88 m, 3H), 2,67 (1H, m), 2,52 c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H), 1H), 3,13 (m, 1H), c-Pen), 6,37 (s, 1H), 4,58 (m, 1H),			
101	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO- 6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃);	δ 9,66, H), 4,1; H), 1,7; R d ₆ , sal c s, 1H), 1,72 (r R	3 (m, 1 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H)	H), 6,5 -3,18 (I H 2 (d, J ,50 (m,	55 (d, J = 7,2 Hz, 1H), 5,88 m, 3H), 2,67 (1H, m), 2,52 c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H), 1H), 3,13 (m, 1H), c-Pen), 6,37 (s, 1H), 4,58 (m, 1H),			
101	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo	$\begin{array}{c} \delta \ 9,66,\\ H),\ 4,1\\ H),\ 1,7\\ \hline R\\ d_6,\ sal\ c\\ s,\ 1H),\\ 1,72\ (r\\ \hline R\\ \delta \ 10,42\\ (m,\ 2H)\\ \hline R\\ \end{array}$	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro	H), 6,5,-3,18 (r H 22 (d, J ,50 (m, H 2 (s, 1H 1,51 (n	c-Pen c-Pen c-Pen c-Pen c-Pen c-Pen c-Pen b, 6,37 (s, 1H), 4,58 (m, 1H), 1,31 (m, 2H) c-Pe-Pen c-Pen c			
101 102 Ejemplo de	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal α s, 1H), 1,72 (r R δ 10,42 (m, 2H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r m, 2H), 3 2 (br s,), 3,65 2 de Na)	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8	H), 6,5,-3,18 (n H 2 (d, J),50 (m, H 2 (s, 1H 1,51 (n H 6 (s, 11	c-Pen			
101 102 Ejemplo de referencia 103	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6,67 (m, 1H), 3,91 2H)	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal α s, 1H), 1,72 (r R δ 10,42 (m, 2H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r m, 2H), 3 2 (br s,), 3,65 2 de Na)	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8	H), 6,5,-3,18 (n H 2 (d, J),50 (m, H 2 (s, 1H 1,51 (n H 6 (s, 11	C-Pen C-Pe			
101 102 Ejemplo de referencia 103 Ejemplo de	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-(6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-(4,67 (m, 1H), 3,91 2H) HO-	δ 9,66, H), 4,1, H), 1,7, R d ₆ , sal c s, 1H), 1,72 (r R δ 10,42 (m, 2H) R	3 (m, 1 2~1,53 2 de Na) 4,63 (r m, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen C-Pe			
101 102 Ejemplo de referencia 103	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6 6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6 4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃);	δ 9,66, H), 4,1; H), 1,7; R d ₆ , sal c s, 1H), 1,72 (r R δ 10,42 (m, 2H) R d ₆ , sal c (m, 2H)	3 (m, 1 2~1,53 2 de Na) 4,63 (r m, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen C-Pe			
101 102 Ejemplo de referencia 103 Ejemplo de	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6 6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6 4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H),	δ 9,66, H), 4,1, H), 1,7,7 R d ₆ , sal c s, 1H), 1,72 (r R δ 10,42 (m, 2H) R d ₆ , sal c (m, 2H)	3 (m, 1 2~1,53 2 de Na) 4,63 (r m, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, n, 1H),	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m,	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen C-Pe			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97	$\begin{array}{c} \delta \ 9,66,\\ H),\ 4,1\\ H),\ 1,7\\ R\\ d_{6},\ sal\ c\\ s,\ 1H),\\ 1,72\ (r\\ R\\ \delta \ 10,42\\ (m,\ 2H)\\ \hline R\\ d_{6},\ sal\ c\\ (m,\ 2H)\\ \hline \end{array}$	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6,4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C-	$\begin{array}{c} \delta \ 9,66,\\ H),\ 4,1\\ H),\ 1,7\\ \hline R\\ d_6,\ sal\ (s,\ 1H),\\ 1,72\ (r\\ \hline R\\ \delta \ 10,42\\ (m,\ 2H)\\ \hline \hline R\\ \delta \ 11,00\\ 3,95\ (m,\ 2H)\\ \hline R\\ \end{array}$	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6,4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃);	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal (ss, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (m (m, 2H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, n, 1H), n, 1,83 2 5 (br s,	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6,4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal (ss, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (m (m, 2H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, n, 1H), n, 1,83 2 5 (br s,	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 1,37 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H)	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal (s, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (m (m, 2H) R δ 10,75 (m, 1H)	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83 2 5 (br s,	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro 5 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro 5 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-6,4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal (s, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (m (m, 2H) R δ 10,75 (m, 1H)	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, n, 1H), n, 1,83 2 5 (br s,), 3,11	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro 5 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro 5 11,53 (br s, 1H), 6,8 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,310 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo (400 MHz, CDCl ₃);	δ 9,66, H), 4,1 H), 1,7 R d ₆ , sal 6 s, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (m (m, 2H) R δ 10,75 (m, 1H)	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83 2 5 (br s,), 3,11	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro 5 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro 5 11,53 (br s, 1H), 6,82 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	c-Pen = 4,0 Hz, 1H), 6,68 (s, 1H), 1H), 3,13 (m, 1H), c-Pen], 6,37 (s, 1H), 4,58 (m, 1H), 1,41, 1,31 (m, 2H) THP-4-ilo H), 6,76 (s, 1H), 6,34 (s, 1H), n, 2H), 2,01 (m, 4H), 1,43 (m, THP-4-ilo), 6,31 (s, 1H), 4,89 (br s, 65 (m, 1H), 3,51 (m, 4H), n, 1H), 1,40 (m, 1H) c-Pen H), 4,71 (m, 1H), 4,01 (q 2H), h, 3H), 2,01 (m, 4H), 1,64 (m, c-Pen H, 6,06 (s, 1H), 5,05 (br d,			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo (400 MHz, CDCl ₃); 1H), 4,60 (m, 1H), 3	8 9,66, H), 4,1, H), 1,7, R d ₆ , sal (s, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (m, 2H) R δ 10,75 (m, 1H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83 2 5 (br s,), 3,11	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 5 (m, 6H), 1,08 (m, 3H) cloro 5 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro 5 11,53 (br s, 1H), 6,82 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H),	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104 105	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo (400 MHz, CDCl ₃); 1H), 4,60 (m, 1H), 5 5H), 1,78~1,54 (m,	8 9,66, H), 4,1, H), 1,7, R d ₆ , sal (s, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (r (m, 2H) R δ 10,75 (m, 1H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83 2 (br s, 1, 1H), 1, 1,83 1 2 (br s, 1, 1H), 1, 1,83	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 6 (m, 6H), 1,08 (m, 3H) cloro 5 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro 5 11,53 (br s, 1H), 6,82 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H), metilo 1H), 6,56 (s, 1H), 6,54 3,45 (m, 1H), 3,06 (m,	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo (400 MHz, CDCl ₃); 1H), 4,60 (m, 1H), 5H), 1,78~1,54 (m, carboxilo	8 9,66, H), 4,1 H), 1,7 R d ₆ , sal (s, 1H), 1,72 (r R δ 10,42 (m, 2H) R δ 11,00 3,95 (r (m, 2H) R δ 10,75 (m, 1H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83 2 (br s, 1, 1H), 2 (br s, 1, 1H), 2	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- 6 (m, 6H), 1,08 (m, 3H) cloro 5 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro 5 11,53 (br s, 1H), 6,82 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H), metilo 1H), 6,56 (s, 1H), 6,54 3,45 (m, 1H), 3,06 (m,	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104 105	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo (400 MHz, CDCl ₃); 1H), 4,60 (m, 1H), 5H), 1,78~1,54 (m, carboxilo) (400 MHz, DMSO-6,00 MHZ,	8 9,66, H), 4,1; H), 1,7; (R) Hs, 1,72 (r) R δ 10,42 (m, 2H) R β 11,00 (m, 2H) R β 11,34 (m, 1H) R β 1134 (m, 1H) R β (m, 1H) R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H), 1, 1,83 2 (br s, 1, 1H), 2 (br s, 1, 1H), 1, 1,83 2 (br s, 1, 1H), 1, 1,83	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,82 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H), metilo 1H), 6,56 (s, 1H), 6,54 3,45 (m, 1H), 3,06 (m,	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			
101 102 Ejemplo de referencia 103 Ejemplo de referencia 104 105	EtNHC(O)- (400 MHz, CDCl ₃); (m, 1H), 5,02 (m, 1 (m, 1H), 2,04 (m, 1 carboxilo (400 MHz, DMSO-6,27 (s, 1H), 6,18 (2,08~1,96 (m, 6H), HO- (400 MHz, CDCl ₃); 4,56 (m, 1H), 3,75 carboxilo (400 MHz, DMSO-4,67 (m, 1H), 3,91 2H) HO- (400 MHz, CDCl ₃); 1H), 4,56 (m, 1H), 3,10 (m, 1H), 1,97 EtO ₂ C- (400 MHz, CDCl ₃); 3,83 (m, 1H), 3,53 4H), 1,40 (m, 2H) carboxilo (400 MHz, CDCl ₃); 1H), 4,60 (m, 1H), 5H), 1,78~1,54 (m, carboxilo (400 MHz, DMSO-6,1H), 6,40 (d, 1H), 6	8 9,66, H), 4,1 H), 1,7 (R) Hs, 1,72 (R) R δ 10,42 (m, 2H) R R δ 11,00 (m, 2H) R R R δ 11,34 (m, 1H) R R R R δ 11,34 (m, 1H) R R R R R R R R R R R R R R R R R R R	3 (m, 1) 2~1,53 2 de Na) 4,63 (r n, 2H), 3 2 (br s,), 3,65 2 de Na)), 3,49 3 0 (br s, 1, 1H),), 1,83 2 (br s, 1, 1H), 1,59 (b 1H), 5	6,99 (m, 2H), 6,92 (d, 1 H), 3,61 (m, 1H), 3,32- c (m, 6H), 1,08 (m, 3H) cloro ; δ 11,69 (br s, 1H), 6,8 m, 1H), 3,83 (m, 1H), 3, 1,58 (m, 4H) cloro 1H), 6,94 (s, 1H), 6,82 (m, 1H), 1,95 (m, 7H), cloro ; δ 11,53 (br s, 1H), 6,82 (m, 4H), 3,21 (m, 1H), cloro 1H), 6,93 (s, 1H), 6,82 3,85 (m, 1H), 3,77 (m, (m, 3H), 1,74 (m, 1H), metilo 1H), 6,82 (d, 2H), 6,32 (m, 1H), 2,44 (m, 2H), metilo 1H), 6,56 (s, 1H), 6,54 3,45 (m, 1H), 3,06 (m, fenoxi or s, 1H), 7,29 (m, 2H), 1,99 (d, 1H), 4,63 (m, 1H)	H), 6,5,-3,18 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C-Pen			

108	Ejemplo	R ¹	*	n	\mathbb{R}^2	R^3	R⁴	
1H), 4,19-4,02 (m, 3H), 3,84 (m, 1H), 3,60 (m, 1H), 3,18 (m, 1H), 2,51 (m, 2H), 2,07 (m, 4H), 1,74-1,46 (m, 6H), 1,21 (m, 3H) 109		EtO ₂ C-	R	2	fluor	Н	c-Pen	
1H), 4,19-4,02 (m, 3H), 3,84 (m, 1H), 3,60 (m, 1H), 3,18 (m, 1H), 2,51 (m, 2H), 2,07 (m, 4H), 1,74-1,46 (m, 6H), 1,21 (m, 3H) 109		(400 MHz, CDCl ₃);	δ 10,48	3 (br s,				
Carboxilo								
(400 MHz, DMSO-d ₆); δ 11,63 (br s, 1H), 6,49 (m, 1H), 6,33 (m, 1H), 6,09 (m, 1H), 6,66 (m, 1H), 4,61 (m, 1H), 3,85 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,09-1,74 (m, 12H) 110 EtO ₂ C- R 2 brom H c-Pen (400 MHz, CDCl ₃); δ 10,02 (br s, 1H), 7,16 (s, 1H), 6,81 (s, 1H), 6,57 (s, 1H), 4,74 (m, 1H), 4,11 (m, 2H), 4,02 (m, 2H), 3,59 (q, 1H), 3,16 (q, 1H), 2,52 (m, 2H), 2,06 (m, 4H), 1,72 (m, 3H), 1,49 (m, 2H), 1,19 (t, 3H) 111 Carboxilo R 2 bromo H c-Pen (400 MHz, DMSO-d ₆); δ 11,77 (br s, 1H), 6,96 (s, 1H), 6,68 (s, 1H), 6,31 (m, 1H), 6,29 (s, 1H), 4,64 (m, 1H), 3,82 (m, 1H), 3,53 (m, 1H), 3,13 (m, 1H), 2,05 (m, 2H), 1,97 (m, 2H), 1,77 (m, 3H), 1,58 (m, 4H) 112 Carboxilo R 2 H C-Pen (400 MHz, DMSO-d ₆); δ 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 2H), 5,70 (s, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113 Carboxilo R 2 metoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 letoxi H c-Pen (500 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 Carboxilo R 2 letoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 4,64 (m, 2H), 1,97 (m, 4H), 1,69 (m, 2H), 1,57 (m, 4H), 1,59 (m, 1H), 3,50 (m, 1H), 3,51 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 115 Carboxilo R 2 letoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,50 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 116 EtO ₂ C- R 2 letoxi H c-Pen (400 MHz, DMSO-d ₆); δ 1		4H), 1,74~1,46 (m,	6H), 1	,21 (m,	3H)			
1H), 4,61 (m, 1H), 3,85 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,09-1,74 (m, 12H) EtO ₂ C- R 2 bromo H c-Pen (400 MHz, CDCl ₃); δ 10,02 (br s, 1H), 7,16 (s, 1H), 6,81 (s, 1H), 6,57 (s, 1H), 4,74 (m, 1H), 4,11 (m, 2H), 4,02 (m, 2H), 3,59 (q, 1H), 3,16 (q, 1H), 2,52 (m, 2H), 2,06 (m, 4H), 1,72 (m, 3H), 1,49 (m, 2H), 1,19 (t, 3H) 111 carboxilo R 2 bromo H c-Pen (400 MHz, DMSO-d ₆); δ 11,777 (br s, 1H), 6,96 (s, 1H), 6,68 (s, 1H), 6,31 (m, 1H), 6,29 (s, 1H), 4,64 (m, 1H), 3,82 (m, 1H), 3,53 (m, 1H), 3,13 (m, 1H), 2,05 (m, 2H), 1,97 (m, 2H), 1,77 (m, 3H), 1,58 (m, 4H) 112 carboxilo R 2 H c-Pen (400 MHz, DMSO-d ₆); δ 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 2H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113 carboxilo R 2 metoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 etoxi H c-Pen (400 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 carboxilo R 2 etoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 CoCr ₃ H c-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05 (am, 1H), 4,45 (m, 1H), 3,34 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 3,57 (m, 1H), 3,57 (m, 1H), 3,66 (m, 1H), 4,66 (m, 1H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H)	109	carboxilo	R	2	fluor	Н	c-Pen	
110 EtO ₂ C- R 2 bromo H c-Pen (400 MHz, CDCl ₃); & 10,02 (br s, 1H), 7,16 (s, 1H), 6,81 (s, 1H), 6,57 (s, 1H), 4,74 (m, 1H), 4,11 (m, 2H), 4,02 (m, 2H), 3,59 (q, 1H), 3,16 (q, 1H), 2,52 (m, 2H), 2,06 (m, 4H), 1,72 (m, 3H), 1,49 (m, 2H), 1,19 (t, 3H) carboxilo R 2 bromo H c-Pen (400 MHz, DMSO-d ₆); & 11,77 (br s, 1H), 6,96 (s, 1H), 6,86 (s, 1H), 6,31 (m, 1H), 6,29 (s, 1H), 4,64 (m, 1H), 3,82 (m, 1H), 3,53 (m, 1H), 3,13 (m, 1H), 2,05 (m, 2H), 1,97 (m, 2H), 1,77 (m, 3H), 1,58 (m, 4H) carboxilo R 2 H h c-Pen (400 MHz, DMSO-d ₆); & 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) carboxilo R 2 metoxi H c-Pen (400 MHz, DMSO-d ₆); & 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) EtO ₂ C- R 2 etoxi H c-Pen (500 MHz, CDCl ₃); & 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) carboxilo R 2 etoxi H c-Pen (400 MHz, DMSO-d ₆); & 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) carboxilo R 2 etoxi H c-Pen (500 MHz, CDCl ₃); & 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,67 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) (arboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),		(400 MHz, DMSO-0	d ₆); δ 1	1,63 (b	r s, 1H), 6,49 (m, 1H),	6,33 (n	n, 1H), 6,09 (m, 1H), 6,66 (m,	
(400 MHz, CDCl ₃); δ 10,02 (br s, 1H), 7,16 (s, 1H), 6,81 (s, 1H), 6,57 (s, 1H), 4,74 (m, 1H), 4,11 (m, 2H), 4,02 (m, 2H), 3,59 (q, 1H), 3,16 (q, 1H), 2,52 (m, 2H), 2,06 (m, 4H), 1,72 (m, 3H), 1,49 (m, 2H), 1,19 (t, 3H) 111		1H), 4,61 (m, 1H), 3	3,85 (m	n, 1H),	3,52 (m, 1H), 3,11 (m,	1H), 2,	09~1,74 (m, 12H)	
4,11 (m, 2H), 4,02 (m, 2H), 3,59 (q, 1H), 3,16 (q, 1H), 2,52 (m, 2H), 2,06 (m, 4H), 1,72 (m, 3H), 1,49 (m, 2H), 1,19 (t, 3H) 111 carboxilo R 2 bromo H c-Pen (400 MHz, DMSO-d ₆); 8 11,77 (br s, 1H), 6,96 (s, 1H), 6,68 (s, 1H), 6,31 (m, 1H), 2,05 (m, 2H), 1,97 (m, 2H), 1,77 (m, 3H), 1,58 (m, 4H) H c-Pen 112 carboxilo R 2 H H c-Pen (400 MHz, DMSO-d ₆); 8 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113 carboxilo R 2 metoxi H c-Pen (400 MHz, DMSO-d ₆); 8 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 etoxi H c-Pen (500 MHz, CDCl ₃); 8 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 carboxilo R 2 etoxi H c-Pen	110					• •		
3H), 1,49 (m, 2H), 1,19 (t, 3H) 111								
111					(q, 1H), 3,16 (q, 1H), 2	,52 (m,	2H), 2,06 (m, 4H), 1,72 (m,	
(400 MHz, DMSO-d ₆); δ 11,77 (br s, 1H), 6,96 (s, 1H), 6,68 (s, 1H), 6,31 (m, 1H), 6,29 (s, 1H), 4,64 (m, 1H), 3,82 (m, 1H), 3,53 (m, 1H), 3,13 (m, 1H), 2,05 (m, 2H), 1,97 (m, 2H), 1,77 (m, 3H), 1,58 (m, 4H) 112					Τ.		_	
1H), 4,64 (m, 1H), 3,82 (m, 1H), 3,53 (m, 1H), 3,13 (m, 1H), 2,05 (m, 2H), 1,97 (m, 2H), 1,77 (m, 3H), 1,58 (m, 4H) 112	111			_				
1,77 (m, 3H), 1,58 (m, 4H) carboxilo R 2 H H c-Pen (400 MHz, DMSO-d ₆); δ 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113 carboxilo R 2 metoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 etoxi H c-Pen (500 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 carboxilo R 2 letoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 COF ₃ H c-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,455 (m, 1H), 1,34 (m, 1H) 117 carboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),								
112 Carboxilo R 2 H H C-Pen (400 MHz, DMSO-d ₆); δ 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113 Carboxilo R 2 metoxi H C-Pen (400 MHz, DMSO-d ₆); δ 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 etoxi H C-Pen (500 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 Carboxilo R 2 etoxi H C-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 OCF ₃ H C-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117 Carboxilo R 2 OCF ₃ H C-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),					3,53 (m, 1H), 3,13 (m,	1H), 2,	05 (m, 2H), 1,97 (m, 2H),	
(400 MHz, DMSO-d ₆); δ 11,46 (br s, 1H), 6,85 (m, 2H), 6,70 (s, 1H), 6,27 (d, J = 4,0 Hz, 1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113	112	. , , , , ,	Ш, 4П		Пш	ш	c Pop	
1H), 5,94 (d, J = 8,0 Hz, 1H), 4,65 (m, 1H), 3,86 (m, 1H), 3,52 (m, 1H), 3,11 (m, 1H), 2,05 (m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113 carboxilo R 2 metoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 etoxi H c-Pen (500 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 carboxilo R 2 etoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 OCF ₃ H c-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117 carboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),	112		1.1. 2.1.		• •			
(m, 2H), 1,97 (m, 3H), 1,78 (m, 3H), 1,56 (m, 4H) 113								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$), 3,32	(111, 111), 3,11 (111, 111), 2,03	
(400 MHz, DMSO-d ₆); δ 11,28 (br s, 1H), 6,61 (s, 1H), 6,27 (s, 1H), 5,97 (m, 1H), 5,88 (s, 1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114 EtO ₂ C- R 2 etoxi H c-Pen (500 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115 carboxilo R 2 etoxi H c-Pen (400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 OCF ₃ H c-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117 carboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),	113				T : ' : '	Н	c-Pen	
1H), 4,59 (m, 1H), 3,75 (m, 1H), 3,68 (s, 3H), 3,48 (m, 2H), 3,08 (m, 1H), 2,00 (m, 5H), 1,75 (m, 3H), 1,57 (m, 4H) 114		(400 MHz, DMSO-c	d ₆); δ 1	1,28 (b	r s, 1H), 6,61 (s, 1H), 6	,27 (s,	1H), 5,97 (m, 1H), 5,88 (s,	
114								
(500 MHz, CDCl ₃); δ 9,79 (br s, 1H), 6,80 (s, 1H), 6,44 (s, 1H), 6,19 (s, 1H), 4,69 (m, 1H), 4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115		1,75 (m, 3H), 1,57 ((m, 4H))				
4,11 (q, 2H), 4,03 (q, 2H), 3,83 (m, 1H), 3,54 (m, 1H), 3,11 (m, 1H), 2,49 (m, 2H), 2,02 (m, 4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115	114	EtO ₂ C-	R	2	etoxi	Н	c-Pen	
4H), 1,69 (m, 2H), 1,60 (m, 2H), 1,48 (m, 2H), 1,25 (t, 3H), 1,19 (t, 3H) 115								
115								
(400 MHz, DMSO-d ₆); δ 11,37 (br s, 1H), 6,78 (s, 1H), 6,30 (s, 1H), 5,94 (s, 1H), 4,64 (m, 1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 OCF ₃ H c-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117 Carboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),	445		_			H), 1,1		
1H), 3,93 (q, 2H), 3,82 (m, 1H), 3,60 (m, 1H), 3,21 (m, 1H), 2,44 (m, 2H), 1,97 (m, 4H), 1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116	115					H		
1,71 (m, 2H), 1,57 (m, 4H), 1,32 (t, 3H) 116 EtO ₂ C- R 2 OCF ₃ H c-Pen (500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117 carboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						IH), 2,4	14 (m, 2H), 1,97 (m, 4H),	
(500 MHz, CDCl ₃); δ 10,97 (br s, 1H), 6,93 (s, 1H), 6,86 (s, 1H), 6,30 (s, 1H), 4,76 (m, 1H), 4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117 carboxilo R 2 OCF ₃ H c-Pen (40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),	116					ы	o Don	
4,05-3,89 (m, 3H), 3,78 (m, 1H), 3,57 (m, 1H), 3,16 (m, 2H), 2,42 (m, 2H), 2,00 (m, 4H), 1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117	110							
1,63 (m, 2H), 1,45 (m, 1H), 1,34 (m, 1H) 117								
117						211), 2,	42 (111, 211), 2,00 (111, 411),	
(40 MHz, DMSO-d ₆); 11,61 (br s, 1H), 6,85 (d, 1H), 6,77 (s, 1H), 6,16 (s, 1H), 4,66 (m, 1H),	117					Н	c-Pen	
				_	0			
				•		•		
(4H)						·		

Ejemplos 118 a 123:

Los compuestos preparados en las preparaciones 102 y 105 a 109 se sometieron a reacción para sintetizar los ejemplos de compuestos mostrados en la siguiente tabla mediante un método seleccionado entre los ejemplos 1 a 7.

Ejemplo	R ¹	*	n	R ²	R ⁴		
	Datos H ¹ NMR						
Ejemplo de	hidroxi S 2 metilo THP-4-ilo						
referencia 118	(400 MHz, CDCl ₃); & 4,48 (m, 1H), 4,10~3 2H), 1,58 (m, 2H)	z, CDCl ₃); δ 10,11 (br s, 1H), 6,91 (s, 1 1H), 4,10~3,93 (m, 5H), 3,63~ 3,52 (m		H), 6,86 (s, 1H), 6,3 3H), 2,39 (s, 3H), 2,	4 (s, 1H), 4,60 (t, 1H), 07 (d, 2H), 1,94 (m,		
119	carboxilo	S	1	metilo	c-Pen		

Ejemplo	I R ¹	*	l n	\mathbb{R}^2	\mathbb{R}^4				
	Datos H ¹ NMR	l.	1	1	1				
	(400 MHz, CDCl ₃ /MeOH-d ₄); δ 6,97 (s, 1H), 6,79 (s, 1H), 6,33 (s, 1H), 4,86 (m, 1H), 4,62								
				1H), 2,67 (dd,1H), 2,					
	2H), 1,78 (m, 2H), 1	,65 (m, 4H)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , ,				
Ejemplo de	carboxilo	S	1	metilo	THP-4-ilo				
referencia 120	(400 MHz, CDCl ₃ /M	eOH-d ₄); δ 6,9	94 (s, 1H), 6,8	1 (s, 1H), 6,32 (s, 1H	H), 4,87 (m, 1H), 4,59				
				3 (m, 3H), 2,92 (dd, 1	1H), 2,68 (dd, 1H),				
	2,38 (s, 3H), 2,13 (c	l, 2H), 1,57 (m	n, 2H)	T					
121	carboxilo	S	1	CI	c-Pen				
	· ·				H), 4,79 (m, 1H), 4,55				
			1H), 2,86 (dd,	1H), 2,264 (dd, 1H),	2,01 (m, 2H), 1,71				
	(m, 2H), 1,57 (m, 4H	,	T	Γ					
Ejemplo de	carboxilo	S	1	CI	(THP-4-il)-metilo				
referencia 122				H), 6,27 (s, 1H), 4,78					
				3,08 (d, 2H), 2,98 (d	dd, 2H), 2,64 (d, 2H),				
	1,94 (m,1H), 1,75 (r		•						
	· ·	•), 6,27 (1H, d, J = 1,2				
			, 3,66-3,56 (1	H, m), 3,34 (1H, brs)), 2,77 (2H, brs), 1,93				
	(2H, brs), 1,54-1,48	(6H, m)							
Ejemplo de	Н	-	0	H	THP-4-ilo				
referencia 123				0 (d, 8 Hz, 1H), 7,00					
			4,12 (m, 2H),	4,00 (m, 2H), 3,58 (r	m, 1H), 3,50 (m, 2H),				
	2,04 (m, 2H), 1,47 (m, 2H)							

Ejemplo 124: [2-((4S,5R)-5-aminometil-4-bencil-dihidrooxazol-2-il)-5-cloro-1H-indol-7-il]ciclopentilamina

Paso A: 2-[(4S,5R)-bencil-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-oxazol-5-ilmetil]isoindol-1,3-diona

La 2-[(4S,5R)-bencil-2-(5-cloro-7-nitro-1H-indol-2-il)-4,5-dihidrooxazol-5-ilmetil]-isoindol-1,3-diona preparada en la preparación 108 y ciclopentanona se someten a reacción con el mismo procedimiento que en el ejemplo 1 para obtener el compuesto indicado en el título.

Paso B: [2-((45,5R)-5-aminometil-4-bencil-dihidrooxazol-2-il)-5-cloro-1H-indol-7-il]-ciclopentilamina

La 2-[(4S,5R)-bencil-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrooxazol-5-ilmetil]isoindol-1,3-diona (50 mg, 1 mmol) preparada en el paso A se disolvió en etanol (10 ml). Luego se añadió clorhidrato de hidrazina (1,8 ml, 0,33 mmol) y la mezcla se agitó durante 4 horas a 80°C. Una vez completa la reacción, el disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (16 mg, rendimiento 39%). ¹H-NMR (400 MHz, MeOH-d₄); δ 7,36-7,18 (6H, m), 6,95 (1H, s), 6,75 (1H, s), 6,27 (1H, d, J = 1,2 Hz), 3,84 (1H, brs), 3,77 (1H, brs), 3,66-3,56 (1H, m), 3,34 (1H, brs), 2,77 (2H, brs), 1,93 (2H, brs), 1,54-1,48 (6H, m)

15 Ejemplo 125: {2-[(R)-5-((S)-1-amino-2-feniletil-4,5-dihidrooxazol-2-il]-5-cloro-1H-indol-7-il}ciclopentilamina

El $\{(S)-1-[(R)-2-(5-cloro-7-nitro-1H-indol-2-il)-4,5-dihidrooxazol-5-il]-2-feniletil\}$ -carbamato de t-butilo preparado en la preparación 107 se sometió a reacción con el mismo procedimiento que en el ejemplo 1 y el producto así obtenido (50 mg, 1 mmol) se disolvió en DCM (2 ml). Luego se añadió TFA (2 ml) y la mezcla se agitó durante 2 horas. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (38 mg, rendimiento 92%). 1 H-NMR (400 MHz, MeOH-d₄); δ 10,4 (1H, brs), 7,34-7,31 (2H, m), 7,27-7,20 (3H, m), 7,03 (1H, d, J = 1,6 Hz), 6,95 (1H, s), 6,46 (1H, d, J = 1,6 Hz), 4,65-4,59 (1H, m), 4,25-4,04 (2H, m), 3,92-3,83 (2H, m), 3,15-3,07 (1H, m), 2,90-2,85 (1H, m), 2,72-2,64 (1H, m), 2,05-2,00 (2H, m), 1,58 (2H, brs), 1,68-1,63 (4H, m), 1,49-1,47 (2H, m)

Ejemplos 126 a 134:

10

20

Los compuestos preparados en las preparaciones 110 a 117 se sometieron a reacción para sintetizar los ejemplos de compuestos mostrados en la siguiente tabla mediante un método seleccionado entre los ejemplos 1 a 7.

Ejemplo	Α	R ¹	n	R^2	R^4			
	Datos H ¹ NMR							
Ejemplo de	isoxadiazol-3-ilo	5-carboxilo	1	Н	THP-4-ilo			
referencia 126	(500 HMz, CDCl ₃ , MeOl	H-d ₄); δ 7,20 (s, 1H),	6,96 (d_1 , $J = 8,0$ Hz, 1H), θ	6,92 (t, J = 8,0 Hz,			
	1H), 6,42 (d, J = 7,4 Hz,	1H), 3,96 (m, 2H), 3	,83 (s,	2H), 3,57 (m, 1H),	3,49 (m, 2H), 2,02			
	(m, 2H), 1,54 (m, 2H)	-						
Ejemplo de	isoxadiazol-3-ilo	5-hidroxi	2	Н	THP-4-ilo			
referencia 127	(400 MHz, CDCl ₃); δ 10,	40 (br s, 1H), 7,27 (s	s, 1H),	7,08 (d, J = 8,0 Hz,	, 1H), 7,04 (t, J =			
	8,0 Hz, 1H), 6,55 (d, J =		n, 4H),	3,70 (m, 1H), 3,61	(t, 2H), 3,06 (m,			
	2H), 2,14 (m, 2H), 1,66	(m, 2H)	1	1				
128	oxadiazol-2-ilo	H	0	metilo	c-Pen			
	(400 MHz, CDCl ₃); δ 9,9							
	4,15 (br s, 1H), 3,94 (m,	1H), 2,42 (s, 3H), 2,	04 (m,	2H), 1,73 (m, 2H),	1,63 (m, 2H), 1,54			
	(m, 2H)	T	1.	T				
129	tiazol-2-ilo	4-hidroxi	1	metilo	c-Pen			
		(400 MHz, CDCl ₃); δ 10,42 (br s, 1H), 7,14 (s, 1H), 6,88 (d, J = 4 Hz, 1H), 6,86 (s, 1H),						
	6,36 (s, 1H), 4,70 (s, 2H), 3,86 (m, 1H), 3,69	(br s, '	1H), 2,39 (s, 3H), 1	,95 (m, 2H), 1,37			
400	(m, 4H), 1,26 (m, 2H)	E bishassi	T _A		- D			
130	tiazol-2-ilo	5-hidroxi	T	metilo	c-Pen			
	(400 MHz, DMSO-d ₆); δ							
	(d, J = 8 Hz, 1H), 5,62 (I)		F HZ, ∠I	1), 3,88 (m, 1H), 2,	30 (S, 3H), 1,99 (M,			
131	2H), 1,74 (m, 2H), 1,57 tiazol-2-ilo	4-EtO ₂ C-	0	metilo	c-Pen			
131			•					
	$(400 \text{ MHz}, \text{CDCI}_3); \delta 9,36 \text{ (br s, 1H)}, 8,07 \text{ (s, 1H)}, 6,91 \text{ (d, J} = 4 \text{ Hz, 1H)}, 6,84 \text{ (s, 1H)}, 6,37 \text{ (s, 1H)}, 4,37 \text{ (q, 2H)}, 3,95 \text{ (m, 1H)}, 3,64 \text{ (br s, 1H)}, 2,40 \text{ (s, 3H)}, 2,04 \text{ (m, 2H)}, 1,76$							
	(m, 2H), 1,65 (m, 2H), 1		•	111), 2,40 (3, 311), 2	.,04 (111, 211), 1,70			
132	tiazol-2-ilo	4-carboxilo	10	metilo	c-Pen			
102	(400 MHz, DMSO-d ₆ , sa		_					
	6,13 (s, 1H), 3,87 (m, 1H							
133	tiazol-2-ilo	4-hidroxi	1	 	c-Pen			
	(400 MHz, CDCl ₃); δ 10,		: 1H)	6 99 (m. 3H) 6 53				
	4,71 (s, 2H), 3,87 (m, 1H							
134	tiazol-2-ilo	4-MeO ₂ C-	0	H	c-Pen			
	(400 MHz, CDCl ₃); δ 9,3	-	1H), 7	.05 (m. 3H), 6,56 (d				
	(s, 3H), 3,73 (m, 1H), 2,0	• • • • • • • • • • • • • • • • • • • •			-, , · · · · · -, · · · · · · · , · · · ·			
	1 \-, - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- , -, =,, -,, (,	,, ,,	- ,				

Ejemplo de referencia 135: ácido {(R)-2-[5-metil-7-(4-oxo-ciclohexilamino)-1H-indol-2-il]-4,5-dihidrotiazol-4-il}acético

5 Paso A: {(R)-2-[7-(1,4-dioxa-espiro[4.5]dec-8-ilamino)-5-metil-1H-indol-2-il]-4,5-dihidrotiazol-4-il}acetato de etilo

El [(R)-2-(5-metil-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de etilo preparado en la preparación 54 y 1,4-dioxaespiro[4,5]decan-8-ona se sometieron a reacción con el mismo procedimiento que en el ejemplo 1 para obtener el compuesto indicado en el título.

Paso B: ácido {(R)-2-[5-metil-7-(4-oxo-ciclohexilamino)-1H-indol-2-il]-4,5-dihidro-tiazol-4-i}acético

El {(R)-2-[7-(1,4-dioxaespiro[4,5]dec-8-il)amino-5-metil-1H-indol-2-il]-4,5-dihidro-tiazol-4-il}acetato de etilo preparado en el paso A se disolvió en metanol (10 ml). Luego se añadió HCl (concentrado 2 ml) y la mezcla se sometió a reacción durante 6 horas a 60°C. El disolvente se eliminó bajo presión reducida y se añadió agua al residuo. La mezcla de reacción se extrajo con EtOAc, se secó, se concentró y se purificó por HPLC para obtener el compuesto indicado en el título (76 mg, rendimiento 50%). ¹H-NMR (500 MHz, CDCl₃); δ 11,99 (br s, 1H), 7,00 (s, 1H), 6,79 (s, 1H), 6,30 (s, 1H), 5,34 (m, 1H), 3,89 (m, 1H), 3,71 (m, 1H), 3,21 (m, 1H), 2,66 (m, 2H), 2,59 (m, 2H), 2,43-2,35 (m, 5H), 2,26 (m, 2H), 1,97 (m, 2H)

Ejemplo 136: 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]-1-morfolin-4-il-etanona

El ácido [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético preparado en el ejemplo 4 y morfolina se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 101 para obtener el compuesto indicado en el título. 1 H-NMR (500 MHz, DMSO-d₆); δ 11,52 (br s, 1H), 6,80 (s, 1H), 6,69 (s, 1H), 6,16 (s, 1H), 6,12 (m, 1H), 4,95 (m, 1H), 3,81 (m, 1H), 3,63 (m, 1H), 3,41 (m, 8H), 3,12 (m, 1H), 2,85 (m, 1H), 2,69 (m, 1H), 1,93 (m, 2H), 1,68 (m, 2H), 1,56 (m, 4H)

Ejemplos 137 a 155:

Los compuestos preparados en los ejemplos 4, 11, 66, 71, 75, 81 y 101 y aminas comerciales se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 101.

	I - 1		1	1 = 2	1 - 4
Ejemplo	R ¹	*	n	\mathbb{R}^2	R ⁴
	Datos H ¹ NMR				
137	1-(morfolin-4-il)etilamino	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,53 (br s, 11				
	1H), 6,12 (m, 1H), 4,93 (m, 1H), 3,80 (m, 1H),	3,53 (m, 5H), 3,20 (m, 3	H), 2,60 (m, 1H),
	2,32 (m, 7H), 1,93 (m, 2H), 1,68 (m, 2H	1), 1,53	(m, 4l	1)	
138	1-(morfolin-4-il)propilamino	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,52 (br s, 11				
	1H), 6,12 (m, 1H), 4,93 (m, 1H), 3,80 (H), 2,59 (m, 1H),
	2,37 (m, 1H), 2,25 (m, 6H), 1,93 (m, 2l	1), 1,68	(m, 2l		
139	metilamino	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,52 (br s, 11				
	1H), 6,13 (m, 1H), 4,93 (m, 1H), 3,80 (H), 2,58 (m, 4H),
	2,39 (m, 1H), 1,93 (m, 2H), 1,68 (m, 2H	H), 1,56	(m, 4H	1)	
140	dimetilamino	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,53 (br s, 11)				
	1H), 4,93 (m, 1H), 3,81 (m, 1H), 3,63 (H), 2,87 (m, 1H),
	2,83 (s, 3H), 2,65 (m, 1H), 1,93 (m, 2H	l), 1,69	(m, 2H), 1,53 (m, 4H)	
141	4-(metil)piperazin-1-ilo	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,52 (br s, 11	H), 6,80	(s, 1H), 6,69 (s, 1H), 6,1	6 (s, 1H), 6,12 (m,
	1H), 4,94 (m, 1H), 3,80 (m, 1H), 3,62 (
	2,85 (m, 1H), 2,66 (m,1H), 2,24 (m, 4H	1), 2,13	(s, 3H)	, 1,93 (m, 2H), 1,6	88 (m, 2H), 1,55 (m,
	4H)		•		
142	3-dimetilaminopirrolidin-1-ilo	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,53 (br s, 11)				
	1H), 4,94 (m, 1H), 3,81 (m, 1H), 3,62 (
	2,53 (m, 2H), 2,11 (s, 3H), 2,07 (s, 3H)	<u>), 1,93 (</u>	m, 2H)	<u>, 1,69 (m, 3H), 1,5</u>	<u>9 (m,5H)</u>
143	piperidin-1-ilo	R	1	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,52 (br s, 11				
	1H), 4,94 (m, 1H), 3,81 (m, 1H), 3,63 (H), 3,14 (m, 1H),
	2,85 (m, 1H),1,93 (m, 2H), 1,68 (m, 2H		m, 10l		
Ejemplo de	metilamino	R	1	cloro	THP-4-ilo
referencia	(500 MHz, DMSO-d ₆); δ 11,54 (br s, 11)				
144	1H), 6,08 (m, 1H), 4,93 (m, 1H), 3,85 (m, 2H),	3,56 (1	m, 2H), 3,44 (m, 2	H), 3,15 (m, 1H),
	2,06 (m, 4H), 2,37 (m, 1H), 1,93 (m, 2l	H), 1,39	(m, 21	1)	
Ejemplo de	morfolin-4-ilo	R	1	cloro	THP-4-ilo
referencia 145	(500 MHz, DMSO-d ₆); δ 11,53 (br s, 11				
	1H), 4,96 (m, 1H), 3,86 (m, 2H), 3,47 (m, 12H)), 3,15	(m, 1H), 2,85 (m,	1H), 2,69 (m, 1H),
	1,94 (m, 2H), 1,39 (m, 2H)				
146	4-(metil)piperazin-1-ilo	R	1	fluoro	c-Pen

Ejemplo	R ¹	*	n	R^2	R^4
	Datos H ¹ NMR				
	(400 MHz, DMSO-d ₆); δ 11,44 (br s, 1)	H), 6,73	s (s, 1H), 6,52 (dd, 1H), 6	,19 (d, J = 1,2 Hz,
	1H), 6,07 (dd, 1H), 4,99 (m, 1H), 3,84				
	2,88 (m, 1H), 2,71 (m, 1H), 2,28 (m, 4l	H), 2,17	' (s, 3H), 1,98 (m, 2H), 1,	72 (m, 2H), 1,58 (m,
	4H)			1	
147	(morfolin-4-il)etilamino	R	1	fluoro	c-Pen
	(400 MHz, DMSO-d ₆); δ 11,46 (br s, 1)				
	J = 4.0 Hz, 1H), 6.07 (dd, 1H), 5.00 (m)				
4.40	(m, 3H), 2,73 (m,1H), 2,45 (m, 3H), 2,3	34 (m, 4	IH), 1,9		_
148	metilamino	R	1	metoxi	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,22 (br s, 11				
	1H), 5,85 (s, 1H), 4,90 (m, 1H), 3,76 (r				I), 3,12 (m, 1H), 2,58
1.10	(m, 4H), 2,35 (m, 1H), 1,91 (m, 2H), 1,		2H), 1,: L₄		a Dan
149	morfolin-4-ilo	R	T	metoxi	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,21 (br s, 1)				
	1H), 4,92 (m, 1H), 3,77 (m, 1H), 3,65 (
150	1H), 2,84 (m, 1H), 2,66 (m, 1H), 1,91 (metilamino	(III, ∠⊓), R	1,67 (III, 201), 1,55 (III, 4 H	c-Pen
150	(500 MHz, DMSO-d ₆); δ 11,33 (br s, 1)		 (m. 1		
	1H), 5,80 (m, 1H), 4,93 (m, 1H), 3,81 (
	2,58 (m, 3H), 2,38 (m, 1H), 1,93 (m, 2H)				11), 2,02 (111, 111),
151	morfolin-4-ilo	IR	1	H	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,32 (br s, 1)	H). 6.78	(m. 11	H), 6.71 (s. 1H), 6.	
	1H), 4,95 (m, 1H), 3,81 (m, 1H), 3,61 (
	1H), 2,68 (m, 1H), 1,93 (m, 2H), 1,68 ((, ,, ,- (,
Ejemplo de	metilamino	R	1	H	THP-4-ilo
referencia 152	(500 MHz, DMSO-d ₆); δ 11,34 (br s, 1)	H), 7,90	(m, 1	H), 6,79 (m, 1H), 6	5,72 (s, 1H), 6,33 (m,
	1H), 5,76 (m, 1H), 4,93 (m, 1H), 3,86 ((m, 1H),	3,54 (m, 2H), 3,43 (m, 2	2H), 3,14 (m, 1H),
	2,61 (m, 1H), 2,59 (m, 3H), 2,38 (m, 1	H), 1,95	(m, 2l	H), 1,40 (m, 2H)	
Ejemplo de	morfolin-4-ilo	R	1	Н	THP-4-ilo
referencia 153	(500 MHz, DMSO-d ₆); δ 11,34 (br s, 1)				
	1H), 4,95 (m, 1H), 3,87 (m, 1H), 3,61 (3,57-3	3,38 (m, 11H), 3,1	5 (m, 1H), 2,87 (m,
	1H), 2,68 (m, 1H), 1,95 (m, 2H), 1,40 (_		Т .	_
154	(morfolin-4-il)etilamino	R	2	cloro	c-Pen
	(400 MHz, CDCl ₃); δ a s, 1H), 7,06 (br				
	(m, 1H), 3,88 (m, 2H), 3,77 (s, 4H), 3,4				n, 6H), 2,44 (m, 2H),
455	2,10 (m, 3H), 1,95 (m, 1H), 1,71 (m, 2				
155	4-(metil)piperazin-1-ilo	R	2	cloro	c-Pen
	(400 MHz, CDCl ₃); δ 10,33 (br s, 1H),				
	3,85 (m, 1H), 3,65 (m, 2H), 3,56 (m, 1H)	H), 3,45	(m, 2F	1), 3,13 (m, 1H), 2	2,43 (m, 6H), 2,04
	(m, 2H), 1,72 (m, 8H), 1,54 (m, 2H)				

Ejemplo 156: ciclopentil-{5-metanosulfonilmetil-2-[(R)-4-(2-morfolin-4-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina

Paso A: ciclopentil-{2-[(R)-4-(2-yodoetil)-4,5-dihidrotiazol-2-il]-5-metanosulfonil-metil-1H-indol-7-il}-amina

El 2-[(R)-2-(7-ciclopentilamino-5-metanosulfonilmetil-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etanol (178 mg, 0,42 mmol) preparado en el ejemplo 99 se disolvió en tetrahidrofurano (10 ml). Luego se añadió yodo (161 mg, 0,63 mmol), trifenilfosfina (166 mg, 0,63 mmol) e imidazol (86 mg, 1,23 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. La reacción se extinguió con agua y la mezcla de reacción se extrajo con acetato de etilo. El extracto se lavó con una disolución acuosa saturada de cloruro de sodio, se secó con sulfato de magnesio anhidro y se filtró. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (120 mg, rendimiento 54%).

Paso B: ciclopentil-{5-metanosulfonilmetil-2-[(R)-4-(2-morfolin-4-iletil)-4,5-dihidro-tiazol-2-il]-1H-indol-7-il}-amina

15

La ciclopentil-{2-[(R)-4-(2-yodoetil)-4,5-dihidrotiazol-2-il]-5-metanosulfonilmetil-1H-indol-7-il}-amina (116 mg, 0,22 mmol) preparada en el paso A se disolvió en N,N-dimetilformamida (4 ml). Luego se añadió morfolina (57 mg, 0,66 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. La reacción se extinguió con agua y la mezcla se extrajo con acetato de etilo. El extracto se secó con sulfato de magnesio anhidro. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el

título (68 mg, rendimiento 64%). 1 H-NMR (500 HMz, CDCl₃); δ 10,60 (br s, 1H), 6,99 (s, 1H), 6,89 (s, 1H), 6,49 (s, 1H), 4,79 (m, 1H), 4,26 (s, 2H), 3,86 (m, 1H), 3,57 (m, 5H), 3,19 (m, 1H), 2,72 (s, 3H), 2,45 (m, 2H), 2,32 (m, 2H), 2,26 (m, 2H), 2,04 (m, 2H), 1,80 (m, 2H), 1,66 (m, 4H), 1,41 (m, 2H)

Ejemplo 157: 1-(4-{2-[(R)-2-(7-ciclopentilamino-5-metanosulfonilmetil-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)etanona

La ciclopentil- $\{2-[(R)-4-(2-yodo-etil)-4,5-dihidrotiazol-2-il]-5-metanosulfonilmetil-1H-indol-7-il}-amina preparada en el paso A del ejemplo 156 y acetilpiperazina se sometieron a reacción con el mismo procedimiento que en el paso B del Ejemplo 156 para obtener el compuesto indicado en el título. <math>^1H$ -NMR (500 HMz, CDCl₃); δ 10,62 (br s, 1H), 6,99 (s, 1H), 6,89 (s, 1H), 6,46 (s, 1H), 4,77 (m, 1H), 4,26 (s, 2H), 3,87 (m, 1H), 3,57 (m, 1H), 3,30 (m, 2H), 3,16 (m, 1H), 2,72 (s, 3H), 2,46 (m, 2H), 2,31 (m, 2H), 2,21 (m, 2H), 2,04 (s, 3H), 2,03 (m, 2H), 1,79 (m, 2H), 1,64 (m, 4H), 1,45 (m, 2H)

Ejemplo 158: ciclopentil-[2-((R)-4-pirrolidin-1-ilmetil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]-amina

10

EI [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol preparado en el ejemplo 2 y pirrolidina se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título. 1 H-NMR (400 HMz, DMSO-d₆); δ 11,37 (br s, 1H), 6,83 (m, 1H), 6,75 (d, J = 2,0 Hz, 1H), 6,29 (d, J = 8,0 Hz, 1H), 5,86 (d, J = 8,0 Hz, 1H), 4,80 (m, 1H), 3,87 (m, 1H), 3,52 (m, 1H), 3,43 (m, 1H), 3,33 (m, 2H), 2,78 (m, 2H), 2,61 (m, 2H), 1,99 (m, 2H), 1,72 (m, 6H), 1,60 (m, 4H)

Ejemplo 159: {5-cloro-2-[(R)-4-(2-dimetilamino-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentilamina

El 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol preparado en el ejemplo 5 y dimetilamina se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título. ¹H-NMR (500 HMz, CDCl₃); δ 10,07 (br s, 1H), 6,99 (s, 1H), 6,80 (s, 1H), 6,42 (s, 1H), 4,67 (m, 1H), 3,54 (m, 1H), 3,16 (m, 1H), 2,46 (m, 1H), 2,37 (m, 1H), 2,19 (s, 6H), 2,02 (m, 3H), 1,81 (m, 4H), 1,69 (m, 4H)

Ejemplo 160: {5-cloro-2-[(R)-4-(2-piperazin-1-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentilamina

25 Paso A: {5-cloro-2-[(R)-4-(2-1-BOC-piperazin-4-il-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentil-amina

El 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol preparado en el ejemplo 5 y 1-BOC-piperazina se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título.

Paso B: {5-cloro-2-[(R)-4-(2-piperazin-1-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina

La {5-cloro-2-[(R)-4-(2-1-BOC-piperazin-4-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina preparada en el paso A se disolvió en diclorometano (50 ml). Luego se añadió una disolución 4N de acetato de etilo clorhídrica (1,3 ml, 5,28 mmol) y la mezcla se agitó durante 4 horas a temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó bajo presión reducida. El residuo se recristalizó a partir de DCM y dietil éter para obtener el compuesto indicado en el título (125 mg, rendimiento 55%). ¹H NMR (DMSO-d₆, ppm); δ 11,48 (1H, s), 6,79 (1H, s), 6,67 (1H, s), 6,11 (1H, s), 6,10 (1H, d), 4,61 (1H, m), 3,80 (1H, m), 3,54 (1H, m), 3,15 (1H, m), 2,93 (2H, m), 2,50-2,41 (2H, m), 2,31 (3H, m), 1,95 (4H, m), 1,79 (1H, m), 1,68 (3H, m), 1,57-1,50 (4H, m), 1,20 (1H,m); FAB MS(m/e) = 432

Ejemplo 161: (5-cloro-2-{(R)-4-[2-(4-etanosulfonil-piperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina

- 40 La {5-cloro-2-[(R)-4-(2-piperazin-1-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina preparada en el ejemplo 160 y cloruro de etilsulfonilo se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 29 para obtener el compuesto indicado en el título. 1 H-NMR (500 HMz, CDCl₃); δ 11,29 (br s, 1H), 6,97 (s, 1H), 6,86 (s, 1H), 6,37 (s, 1H), 4,93 (m, 1H), 3,92 (br s, 1H), 3,77 (m, 1H), 3,57 (m, 1H), 3,16 (m, 1H), 2,95 (m, 2H), 2,80 (m, 4H), 2,42-2,28 (m, 4H), 2,03 (m, 4H), 1,74 (m, 3H), 1,63 (m, 4H), 1,43 (m, 1H), 1,32 (t, 3H)
- 45 Ejemplo 162: 1-(4-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)-2-hidroxietanona

La $\{5\text{-cloro-}2\text{-}[(R)\text{-}4\text{-}(2\text{-piperazin-}1\text{-il-etil})\text{-}4,5\text{-dihidrotiazol-}2\text{-il}\}\text{-ril}\}$ -ciclopentilamina preparada en el ejemplo 160 y ácido glicólico se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 101 para obtener el compuesto indicado en el título. $^1\text{H-NMR}$ (500 HMz, DMSO-d₆); δ 11,47 (br s, 1H), 6,79 (s, 1H), 6,68

(s, 1H), 6,16 (s, 1H), 6,10 (m, 1H), 4,63 (m, 1H), 4,50 (m, 1H), 4,04 (m, 2H), 3,81 (m, 1H), 3,55 (m, 1H), 3,43 (m, 2H), 3,16 (m, 1H), 2,52 (m, 2H), 2,35 (m, 4H), 1,95 (m, 3H), 1,81 (m, 1H), 1,68 (m, 2H), 1,53 (m, 4H)

Ejemplo 163: {5-cloro-2-[(R)-4-(2-pirazol-1-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentilamina

El 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol (81 mg, 0,11 mmol) preparado en el ejemplo 5 se disolvió en tetrahidrofurano (4 ml). Luego se añadió yodo (13, 2 mg, 0,11 mmol) e imidazol (9,7 mg, 0,14 mmol) y la mezcla se agitó durante 2 horas a temperatura ambiente. Una vez completa la reacción, la mezcla de reacción se filtró para retirar la fracción sólida. El disolvente se eliminó bajo presión reducida y luego se añadió tetrahidrofurano (4 ml) al residuo. Después se añadió pirazol (58 mg, 0,85 mmol) e hidruro de sodio (60% aceite mineral, 21 mg, 0,85 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. La reacción se extinguió con agua y la mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (24 mg, rendimiento 34%). ¹H NMR (DMSO-d₆, ppm); δ 11,50 (1H, s), 7,76 (1H, s), 7,42 (1H, s), 6,80 (1H, s), 6,70 (1H, s), 6,22 (1H, s), 6,17 (1H, s), 6,11 (1H, d), 4,49 (1H, quin), 4,32 (2H, m), 3,80 (1H, m), 3,53 (1H, t), 3,12 (1H, t), 2,38 (1H, m), 2,14 (1H, m), 1,92 (2H, m), 1,68 (2H, m), 1,59-1,50 (4H, m)

Ejemplo 164: ácido (S)-1-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}pirrolidin-2-carboxílico

Paso A: 2-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-etil}-pirrolidin-2-carboxilato de metilo

El 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol preparado en el ejemplo 5 y (S)pirrolidin-2-il-carboxilato de metilo se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título.

Paso B: ácido (\$)-1-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etil}pirrolidin-2-carboxílico

El 2-{2-[(R)-2-(S-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-pirrolidin-2-carboxilato de metilo preparado en el paso A se hidrolizó de acuerdo con el mismo procedimiento que el paso A de la preparación 101 para obtener el compuesto indicado en el título. ¹H NMR (CDCl₃, ppm); δ 12,04 (1H, s), 11,02 (1H, s), 6,85 (1H, s), 6,69 (1H, s), 6,31 (1H, s), 6,24 (1H, m), 4,37 (1H, m), 4,10 (1H, m), 3,86 (1H, m), 3,79 (1H, m), 3,59 (1H, m), 3,28 (1H, m), 2,88 (2H, m), 2,59 (1H, m), 2,21 (1H, m), 2,06-1,59 (11H, m), 1,23 (1H, m)

Ejemplo 165: {5-cloro-2-[(R)-4-(2-metanosulfonil-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentilamina

El 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol (50 mg, 0,1 mmol) preparado en el ejemplo 5 se disolvió en N,N-dimetilformamida (2 ml). Luego se añadió metanosulfonato de sodio (54 mg, 0,55 mmol) y la mezcla se agitó durante 8 horas a temperatura ambiente. La reacción se extinguió con agua. La mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (19 mg, rendimiento 45%). ¹H-NMR (400 HMz, CDCl₃); δ 10,39 (brs, 1H), 7,03 (s, 1H), 6,89 (s, 1H), 6,48 (s, 1H), 6,17 (s, 1H), 4,77 (m, 1H), 3,87 (m, 1H), 3,59 (m, 1H), 3,29 (m, 1H), 3,17 (m, 2H), 2,86 (s, 3H), 2,26 (m, 2H), 2,10 (m, 2H), 1,70 (m, 4H), 1,51 (m, 2H)

Ejemplo 166: 3-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etil}-5-metil-3H-imidazol-4-carboxilato de etilo

El 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol preparado en el ejemplo 5 y 5-metil-3H-imidazol-4-carboxilato de etilo se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título. ¹H-NMR (500 HMz, DMSO-d₆); δ 11,49 (brs, 1H), 7,71 (s, 1H), 6,80 (s, 1H), 6,72 (s, 1H), 6,17 (s, 1H), 6,08 (m, 1H), 4,56 (m, 1H), 4,16 (m, 4H), 3,81 (m, 1H), 3,58 (m, 1H), 3,18 (m, 1H), 2,46 (s, 3H), 2,11 (m, 2H), 1,95 (m, 2H), 1,68 (m, 2H), 1,53 (m, 4H), 1,22 (m, 3H)

Ejemplo 167: ácido 3-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-5-metil-3H-imidazol-4-carboxílico

50

El 3-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-5-metil-3H-imidazol-4-carboxilato de etilo preparado en el ejemplo 166 se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 101 para obtener el compuesto indicado en el título. 1 H NMR (DMSO-d₆, ppm); δ 11,50 (1H, s), 7,71 (1H, s), 6,80 (1H, s), 6,72 (1H, s), 6,17 (1H, s), 6,08 (1H, m), 4,55 (1H, m), 4,13 (2H, m), 3,80 (1H, m), 3,55 (2H, m), 2,19-2,15 (2H, m), 1,95 (3H, m), 1,68 (3H, m), 1,51 (5H, m)

Ejemplo de referencia 168: ácido 1-(2-{(R)-2-[5-cloro-7-(tetrahiropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidrotiazol-4-il}etil)piperidin-3-carboxílico

Paso A: 1-(2-{(R)-2-[5-cloro-7-(tetrahidropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidro-tiazol-4-il}etil)piperidin-3-carboxilato de etilo

- 5 El 2-{2-[(R)-5-cloro-7-(tetrahidropiran-4-il)amino-1H-indol-2-il]-4,5-dihidrotiazol-4-il]}etanol preparado en el ejemplo 67 y piperidin-3-carboxilato de etilo se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título. ¹H NMR (DMSO-d₆, ppm); δ 11,48 (1H, s), 6,82 (1H, s), 6,67 (1H, s), 6,29 (1H, s), 6,04 (1H, d), 4,61 (1H, quin), 4,47 (1H, m), 3,87 (2H, m), 3,62 (2H, q), 3,56 (2H, m), 3,44-3,39 (4H, m), 3,14 (2H, m), 2,52 (1H, m), 2,37-2,30 (6H, m), 1,96-1,92 (3H, m), 1,81 (1H, m), 1,42 (2H, m), 1,28 (3H, t)
- 10 Paso B: ácido 1-(2-{(R)-2-[5-cloro-7-(tetrahidropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidrotiazol-4-il}etil)piperidin-3-carboxílico

15

30

50

El 1-(2-{(R)-2-[5-cloro-7-(tetrahidropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidrotiazol-4-il}etil)piperidin-3-carboxilato de etilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 101 para obtener el compuesto indicado en el título. 1 H NMR (DMSO-d₆, ppm); δ 13,17 (1H, s), 11,94 (1H, s), 6,80 (1H, s), 6,68 (1H, s), 6,28 (1H, s), 6,04 (1H, d), 4,62 (1H, quin), 4,47 (1H, m), 3,87 (2H, m), 3,56 (2H, m), 3,44-3,39 (4H, m), 3,14 (2H, m), 2,52 (1H, m), 2,37-2,30 (6H, m), 1,96-1,92 (3H, m), 1,80 (1H, m), 1,40 (2H, m)

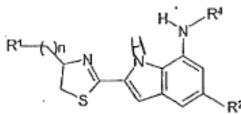
Ejemplo de referencia 169: 1(S)-1-(2-{(R)-2-[5-cloro-7-(tetrahidropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidrotiazol-4-il}etil)pirrolidin-3-il]carbamato de t-butilo

El 2-{2-[(R)-5-cloro-7-(tetrahidropiran-4-il)amino-1H-indol-2-il]-4,5-dihidrotiazol-4-il]}etanol preparado en el ejemplo 67 y (S)-3-BOC-aminopirrolidina se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título. ¹H-NMR (500 HMz, DMSO-d₆); δ 11,48 (brs, 1H), 6,92 (m, 1H), 6,81 (s, 1H), 6,68 (s, 1H), 6,28 (m, 1H), 6,05 (m, 1H), 4,63 (m, 1H), 3,86 (m, 3H), 3,59 (m, 1H), 3,54 (m, 1H), 3,44 (m, 2H), 3,14 (m, 1H), 2,71-2,58 (m, 2H), 2,25 (m, 1H), 1,95 (m, 4H), 1,75 (m, 1H), 1,52 (m, 1H), 1,39 (m, 2H), 1,37-1,32 (m, 11H)

Ejemplo de referencia 170: (2-{(R)-4-[2-((S)-3-aminopirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-5-cloro-1H-indol-7-il)-(tetrahidropiran-4-il)-amina

El [(S)-1-(2-{(R)-2-[5-cloro-7-(tetrahidropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidro-tiazol-4-il}etil)pirrolidin-3-il]carbamato de t-butilo (150 mg, 0,27 mmol) preparado en el ejemplo 169 se disolvió en diclorometano (30 ml). Luego se añadió una disolución 4N de dioxano en ácido clorhídrico (0,34 ml, 1,35 mmol) y la mezcla se agitó durante 4 horas a temperatura ambiente. Una vez completa la reacción, el disolvente se eliminó bajo presión reducida. El residuo se recristalizó a partir de DCM/éter etílico para obtener el compuesto indicado en el título (92 mg, rendimiento 75%). 1 H NMR (DMSO-d₆, ppm); δ 10,92 (1K s), 8,63 (2H, s, br), 6,86 (1H, s), 6,83 (1H, s), 6,43 (1H, s), 6,11 (1H, m), 4,72 (1H, m), 3,65 (5H, m), 3,45 (5H, m), 3,22 (3H, m), 2,37 (2H, m), 2,19 (3H, m), 1,90 (2H, m), 1,49 (2H, m)

35 Ejemplo de referencia 171: N-[(S)-1-(2-{(R)-2-[5-cloro-7-(tetrahidropiran-4-ilamino)-1H-indol-2-il]-4,5-dihidrotiazol-4-il}etil)pirrolidin-3-il]acetamida


La (2-{(R)-4-[2-((S)-3-aminopirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-5-cloro-1H-indol-7-il)-(tetrahidropiran-4-il)-amina (85 mg, 0,19 mmol) preparada en el ejemplo 170 se disolvió en diclorometano (10 ml). Luego se añadió diisopropiletilamina (0,13 ml, 0,75 mmol) y cloruro de acetilo (0,013 ml, 0,19 mmol) y la mezcla se agitó durante 30 minutos a temperatura ambiente. La reacción se extinguió con agua y la mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El disolvente se eliminó bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (39 mg, rendimiento 42%). ¹H NMR (DMSO-d₆, ppm); δ 11,49 (1H, s), 7,97 (1H, s), 6,81 (1H, s), 6,69 (1H, s), 6,28 (1H, s), 6,05 (1H, d), 4,64 (1H, quin), 4,12 (1H, m), 3,85 (2H, m), 3,53 (2H, m), 3,44 (2H, t), 3,34 (2H, m), 3,15 (1H, t), 2,72-2,60 (3H, m), 2,39 (1H, m), 2,05-1,87 (4H, m), 1,80-1,72 (4H, m), 1,53 (1H, m), 1,37 (2H, m)

Ejemplo 172: ciclopentil-{2-[(R)-4-(2-metoxietil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina

El 2-[2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol preparado en el ejemplo 77 y metóxido de sodio se sometieron a reacción con el mismo procedimiento que en el ejemplo 165 para obtener el compuesto indicado en el título. 1 H-NMR (500 HMz, DMSO-d₆); δ 10,62 (brs, 1H), 7,03 (d, J = 7,95 Hz, 1H), 6,99 (t, 1H), 6,93 (s, 1H), 6,48 (d, J = 7,35 Hz, 1H), 4,83 (m, 1H), 3,83 (m, 1H), 3,56 (m, 1H), 3,46 (m, 2H), 3,20 (m, 4H), 2,05~1,87 (m, 4H), 1,70~1,38 (m, 6H)

Ejemplos 173 a 224:

Los compuestos preparados en los ejemplos 2, 5, 24, 56, 67, 73, 77, 79, 99 y 102 y aminas comerciales o metanosulfonato de sodio se sometieron a reacción para sintetizar los ejemplos de compuestos mostrados en la siguiente tabla de acuerdo con un método seleccionado entre los ejemplos 156 a 172.

				11.	
Ejemplo	R^1	*	n	R^2	R^4
	Datos H ¹ NMR				
173	amino	R	1	Н	c-Pen
	(400 MHz, DMSO-d ₆); δ 6,92 (s, 1H), 6	3,86 (m,	2H), 6	4,28 (d, J = 6 Hz, 1)	H), 5,84 (m, 1H),
	4,24 (m, 1H), 3,86 (m, 2H), 3,56 (m, 1H	H), 2,75	(m, 2F	H), 1,97 (m, 2H), 1	,72 (m, 2H), 1,56
	(m, 4H)				
174	(3R)-3-(amino)pirrolidin-1-ilo	R	2	cloro	c-Pen
	(400 MHz, DMSO-d ₆); δ 11,24 (s, 1H),				
	4,83 (q, 1H), 3,77 (m, 1H), 3,64 (s, 3H)), 3,59 (s, 3H),	3,56 (m, 1H), 3,15	5 (run, 1H), 2,69
	(m,1H), 2,58 (m, 1H), 1,90 (m, 2H), 1,6	37 (m, 2	<u>'H), 1,5</u>	51 (m, 4H)	
175	2-oxopiperazin-4-ilo	R	2	metoxi	c-Pen
	(400 MHz, CDCl ₃); δ 10,75 (brs, 1H), 7				
	6,13 (d, J = 4 Hz, 1H), 4,71 (m, 1H), 3,				
	3,16 (m, 2H), 3,08 (m, 1H), 2,57 (m, 4H	Ⅎ), 2,01	(m, 2F	H), 1,95 (m, 1H), 1	,84 (m, 1H), 1,71
470	(m, 2H), 1,57 (m, 4H)	10	ı	Ι.	1 -
176	(3S)-3-(amino)pirrolidin-1-ilo	S		cloro	c-Pen
	(400 MHz, MeOD); δ 7,51 (s, 1H), 7,28				
	3,95-3,8 (m, 5H), 3,67 (m, 3H), 3,44 (d	a, 1H),	2,70 (r	n, 1H), 2,40-2,25 ((m, 3H), 2,10 (m,
477	2H), 1,91 (m, 4H), 1,71 (m, 2H)			alawa	a Dan
177	(3S)-3-(dimetilaminofenil)etil aminopirrolidin-1-ilo	S	2	cloro	c-Pen
	•	1 4 4 4 6	74 (0	1U\ 6.61 (m. 3U\	624 (6.14) 464
	(500 Hz, CDCl ₃); δ 7,16 (t, 1H), 6,89 (s				
	(m, 1H), 3,86 (m, 1H), 3,66 (m, 2H), 3, 2H), 3,03 (t, 1H), 3,05-2,95 (brs, 1H), 2				
	1,65 (m, 4H), 1,58 (m, 1H)	2,92 (5,	011), 2,	36 (01 5, 111), 2,00	5-1,05 (111, 511), 1,00-
178	1-(acetil)piperazin-4-ilo	S		cloro	c-Pen
	(500 Hz, CDCl ₃); δ 10,17 (br s, 1H), 7,0		H). 6.8	3 (s. 1H), 6.43 (s.	
	3,83 (m, 2H), 3,58 (m, 1H), 3,56 (dd, 1				
	(dd, 1H), 2,46 (m, 2H), 2,36 (m, 1H), 2				
	2H), 1,96 (m, 1H), 1,80 (m, 1B), 1,66 (l				, ,, , , , ,
Ejemplo de	1-(acetil)piperazin-4-ilo	S	2	cloro	Н
referencia 179	(500 Hz, DMSO); δ 11,70 (br s, 1H), 10	0,41 (s.	1H), 7	91 (s, 1H), 7,78 (d	d, 1H), 7,58 (s, 1H),
	7,46 (s, 2H), 7,36 (m, 3H), 7,09 (t, 1H)				
	2H)	•			
180	pirrolidin-1-ilo	R	2	metoxi	c-Pen
	(500 MHz, CDCl ₃); δ 10,11 (br s, 1H), 0	6,82 (s,	1H), 6	,44 (s, 1H), 6,16 (s	s, 1H), 4,72 (m, 1H),
	3,81 (s, 3H), 3,74 (m, 1H), 3,54 (dd, 1H	H), 3,15	(dd, 1	H), 2,62 (m, 1H), 2	2,46 (m, 1H), 2,42
	(m, 4H), 2,01 (m, 4H), 1,84 (m, 1H), 1,	73-1,64	(m, 3ł	H), 1,58 (m, 2H), 1	,50 (m, 1H), 1,42
	(m, 1H)				
Ejemplo de	pirrolidin-1-ilo	R	2	Н	THP-4-ilo
referencia 181	(500 MHz, CDCl ₃); δ (2H, m), 7,51-7,4			9-4,66 (4H, m), 4,3	39 (4H, brs), 3,73-
	3,55 (6H, m), 3,42-3,33 (6H, m), 3,04-2			T	1
Ejemplo de	2-oxopiperazin-4-ilo	S	2	metilo	THP-4-ilo
referencia 182	(500 MHz, CDCl ₃); δ 11,05 (s, 1H), 7,7				
	4,71-4,67 (m, 1H), 4,03-4,01 (m, 2H), 3	3,62-3,4	17 (m, 4	4H), 3,30-3,20 (m,	2H, 3,15 (d, 2H),
	3,11-3,08 (m, 1H), 2,59-2,53 (m, 4H), 2		36 (m, 3	3H), 2,09-2,04 (m,	2H), 1,95-1,92 (m,
455	1H), 1,84-1,81 (m, 1H, 1,59-1,51 (m, 2			Τ ,	T 5
183	2-oxopiperazin-4-ilo	R	2	metano	c-Pen
	I control of the cont	1	i	sulfonilmetilo	1

Ejemplo	R ¹	*	l n	\mathbb{R}^2	IR ⁴
Бјетпріо	Datos H ¹ NMR	<u> </u>		IN.	IN
	$\begin{array}{c} (400 \text{ MHz, CDCl}_3); \ \delta \ 10,61 \ (\text{brs, 1H}), \ \ell \\ 4,75\text{-}4,69 \ (\text{m, 2H}), \ 4,28 \ (\text{s, 2H}), \ 3,93 \ (\text{m, 2H}), \ 2,75\text{-}2,52 \ (\text{m, 6H}), \ 2,06 \ (\text{m, 2H}), \ 2,06 \ (m, $	m, 1H), H), 1,93	3,58 (r 3 (m, 2l	m, 1H), 3,42-3,23 H), 1,74 (m, 2H),	(m, 3H), 3,19-3,10 1,68-1,53 (m, 6H)
Ejemplo de	morfolin-4-ilo	S	2	metilo	THP-4-ilo
referencia 184	(400 MHz, CDCl ₃); δ 10,91 (s, 1H), 6,8				
	3,96 (m, 2H), 3,60~3,41 (m, 7H), 3,17		,40 (m,	2H), 2,36 (s, 3H)	, 2,29 (m, 2H), 2,18
405	(m, 2H), 2,04~1,79 (m, 4H), 1,39 (m, 2		10	Ι.	T 5
185	1-(acetil)piperazin-4-ilo	R	2	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,47 (br s, 1)				
	1H), 4,62 (m, 1H), 3,80 (m, 1H), 3,55 (m, 4H), 1,96 (m, 4H), 1,96 (m, 4H), 1,90 (m, 1H)				111), 2,46 (III, 111),
186	2,32 (m, 4H), 1,95 (m, 4H),1,80 (m, 1H 4-metilpiperazin-1-ilo	1), 1,00 R	2	cloro	c-Pen
100	(500 MHz, DMSO-d ₆); δ 11,47 (br s, 1)				
	1H), 4,59 (m, 1H), 3,80 (m, 1H), 3,54 (
	1,95 (m, 3H), 1,78 (m, 1H), 1,68 (m, 2				1011), 2, 10 (0, 011),
187	4-(hidroxi)piperidin-1-ilo	R	2	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,48 (brs, 1H	I), 6,79	(s, 1H)	, 6,68 (s, 1H), 6,1	6 (s, 1H), 6,10 (m,
	1H), 4,60 (m, 1H), 3,80 (m, 1H), 3,54 (
	2,60 (m, 1H), 2,32 (m, 5H), 1,71 (m, 5	H), 1,57	7 (m, 5l	1)	
188	2-oxopiperazin-4-ilo	R	2	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,48 (br s, 1)				
	1H), 6,10 (m, 1H), 4,61 (m, 1H), 3,81 (3H), 2,92 (m, 2H),
400	2,56 (m 3H), 1,96 (m, 3H), 1,80 (m, 1H		1 -		- D
189	piperidin-1-ilo	R	(- 411)	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,52 (brs, 1H)				
	1H), 4,63 (m, 1H), 3,80 (m, 1H), 3,57 (1,95 (m, 3H), 1,68 (m, 2H), 1,58 (m, 9		, 3,29 (III, 411), 3, 17 (III,	III), 2,60 (III, 4II),
190	1,1-dioxotiomorfolin-4-ilo	R	2	cloro	c-Pen
100	(500 MHz, DMSO-d ₆); δ 11,48 (brs, 1H				
	1H), 4,61 (m, 1H), 3,80 (m, 1H), 3,56 (
	2,67 (m, 2H), 1,94 (m, 3H), 1,81 (m, 1				,, _, =, =, (,,,
191	2-oxopirrolidin-1-ilo	R	2	cloro	c-Pen
	(500 MHz, DMSO-d ₆); δ 11,49 (brs, 1F	1), 6,80	(s, 1H)	, 6,69 (s, 1H), 6,1	6 (s, 1H), 4,51 (m,
	1H), 3,80 (m, 1H), 3,57 (m, 1H), 3,46 (1H), 2,18 (m, 2H),
	1,91 (m, 5H), 1,80 (m, 1H), 1,68 (m, 2	H), 1,53	1	T.	T
Ejemplo de	(3S)-3-(dimetilamino-	R	2	cloro	THP-4-ilo
referencia 192	carboxi)piperidin-1-ilo	0.04 (411)	200 (411) 200	(411) 2 2 4 (1 411)
	(400 MHz, DMSO-d ₆); δ 11,48 (s, 1H),				
	4,60 (q, 1H), 3,87 (m, 2H), 3,56 (m, 2H), 1H), 2,88-2,76 (m, 2H), 2,74 (m, 5H),				
	(m, 3H), 1,23 (m, 1H)	1,90 (111	, +1 1),	,00 (111, 211), 1,00	(111, 211), 1,50-1,57
Ejemplo de	piperazin-1-ilo	R	2	cloro	THP-4-ilo
referencia 193	(400 MHz, DMSO-d ₆); δ 11,42 (s, 1H),		s. 1H). (
	4,69 (m, 1H), 3,85 (m, 1H), 3,52-3,42 (
	1,92 (m, 3H), 1,42 (m, 3H)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,, ,
Ejemplo de	1-(hidroximetilcarbonil)-piperazin-4-	R	2	cloro	THP-4-ilo
referencia 194	ilo				
	(500 MHz, DMSO-d ₆); δ 11,48 (brs, 1H				
	1H), 6,05 (d, J = 7,4 Hz, 1H), 4,62 (m,				
	(m, 1H), 3,45 (m, 4H), 3,29 (m, 4H), 3, 1H), 1,40 (m, 2H)	16 (m,	1H), 2,	36 (m, 4H), 1,96 (m, 3H), 1,80 (m,
Ejemplo de	1-(trifluoroacetil)piperazin-4-ilo	R	2	cloro	THP-4-ilo
referencia 195	(500 MHz, DMSO-d ₆); δ 11,47 (s, 1H),				•
10.0.0.0.0.0	4,62 (q, 1H), 3,87 (m, 2H), 3,56 (m, 4H)				
	2,37~2,30 (m, 4H), 1,94 (m, 3H), 1,81	-			,, =,00 (,,,
Ejemplo de	1-[(furan-2-il)carbonil]-piperazin-4-ilo	R	2	cloro	THP-4-ilo
referencia 196	(500 MHz, DMSO-d ₆); δ 11,48 (br s, 1)	H), 7,79) (s, 1H), 6,81 (s, 1H), 6,0	
	1H), 6,28 (s, 1H), 6,05 (m, 1H), 4,63 (r				
	3,16 (m, 2H), 2,56 (m, 1H), 1,96 (m, 3	H), 1,83	3 (m, 11	H), 1,41 (m, 2H)	
Ejemplo de	1-(1,4-pirazin-2-il)piperazin-4-ilo	R	2	cloro	THP-4-ilo

Ejemplo	\mathbb{R}^1	*	n	R^2	R^4		
	Datos H ¹ NMR						
referencia 197	(500 MHz, DM50-d ₆); δ 11,48 (br s, 1)	H), 8,27	(s, 1H)	, 8,04 (s, 1H), 7,80	0 (s, 1H), 6,81 (s,		
	1H), 6,69 (s, 1H), 6,29 (s, 1H), 6,05 (r	m, 1H), 4	4,64 (m	i, 1H), 3,86 (m, 2H), 3,57 (m, 2H), 3,53		
	(m, 4H), 3,18 (m, 1H), 2,57 (m, 1H), 1	I,99 (m,	<u>1H), 1,</u>	95 (m, 2H), 1,83 (r			
Ejemplo de	1-(1,3-pirazin-2-il)piperazin-4-ilo	R	2	cloro	THP-4-ilo		
referencia 198	(500 MHz, DMSO-d ₆); δ 11,49 (brs, 1						
	1H), 6,28 (s, 1H), 6,06 (m, 1H), 4,65 (
	3,45 (m, 2H), 3,35 (m, 1H), 3,18 (m, 1	1H), 2,56	6 (m, 11	H), 2,43 (m, 3H), 2	,00 (m, 1H), 1,96		
400	(m, 2H), 1,40 (m, 2H)	15	10	I a			
199	amino	R	2	fluor	c-Pen		
	(400 MHz, CDCl ₃ /DMSO-d ₆); δ 11,28						
	(dd, 1H), 6,16 (dd, 1H), 4,58 (m, 1H),	3,01 (111	$(, \Pi \Pi), \mathcal{S}$	5,54 (III, III), 3,24	(III, 2H), 3,U2 (III,		
200	1H), 2,13~1,55 (m, 10H) 1-(acetil)piperazin-4-ilo	R	2	fluor	c-Pen		
200	71 1		1=				
	(400 MHz, CDCl ₃); δ 10,47 (brs, 1H), 12,0 Hz, 1H), 4,80 (m, 1H), 3,92 (m,						
	(m, 1H), 3,18 (m, 1H), 2,44 (m, 2H), 2						
	1,93 (m, 1H), 1,81 (m, 1H), 1,71 (m, 5				11, 111), 2,00 (0, 011),		
201	morfolin-4-ilo	R	2	fluor	c-Pen		
	(400 MHz, CDCl ₃); δ 10,92 (brs, 1H),	6.87 (s.	1H). 6.				
	12,0 Hz, 1H), 4,83 (m, 1H), 3,93 (m,						
	(m, 1H), 2,38 (m, 1H), 2,33 (m, 2H), 2						
	4H), 1,47 (m, 1H), 1,35 (m, 1H)						
202	dimetilamino	R	2	fluor	c-Pen		
	(400 MHz, CDCl ₃); δ 10,99 (br s, 1H),						
	12,0 Hz, 1H), 4,59 (m, 1H), 4,13 (m, 1						
222	(m, 1H), 2,42 (s, 6H), 2,01 (m, 3H), 1,				_		
203	pirrolidin-1-ilo	R	2	fluor	c-Pen		
	(400 MHz, CDCl ₃); δ 11,39 (br s, 1H),						
	1H), 4,17 (m, 1H), 3,89 (m, 1H), 3,32 1,95 (m, 4H), 1,77 (m, 2H), 1,65 (m, 4		, 3,07 (m, 3⊓), ∠,/1 (m, 1	H), 2,09 (M, 2H),		
204	1,1-dioxotiomorfolin-4-ilo	IR	2	fluor	c-Pen		
20.	(400 MHz, CDCl ₃); δ 11,05 (br s, 1H),	1	1				
	12,0 Hz, 1H), 4,74 (m, 1H), 3,85 (m, 1						
	8H), 2,74 (m, 2H), 2,05 (m, 3H), 1,79				(4,), -, (,		
205	2-oxopiperazin-4-ilo	R	2	fluor	c-Pen		
	$(400 \text{ MHz}, \text{CDCl}_3)$; δ 11,26 (br s, 1H), 7,26 (br s, 1H), 6,87 (s, 1H), 6,58 (d, J = 8,0 Hz,						
i	(400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r						
	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1	m, 1H), 3	3,84 (m 2H), 1,	, 1H), 3,53 (t, 1H),	3,19 (m, 5H), 2,57		
206	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-	m, 1H), 3	3,84 (m	, 1H), 3,53 (t, 1H),			
206	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4- ilo	m, 1H), 3 I,74 (m, R	3,84 (m 2H), 1,	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor	3,19 (m, 5H), 2,57 c-Pen		
206	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H),	m, 1H), 3 I,74 (m, R R, 6,89 (s	3,84 (m 2H), 1, 2 , 1H), 6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J =		
206	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2	m, 1H), 3 I,74 (m, R R, 6,89 (s H), 3,77	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q,		
206	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38	m, 1H), 3 1,74 (m, R , 6,89 (s. H), 3,77 (m, 3H)	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H , 2,12 (, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, l), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q,		
	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1	m, 1H), 3 1,74 (m, R , 6,89 (s H), 3,77 (m, 3H) 1H), 1,26	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H , 2,12 (, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H)	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H),		
206	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo	m, 1H), 3 1,74 (m, R , 6,89 (s H), 3,77 (m, 3H) 1H), 1,26 R	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H)	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen		
	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 6	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s,	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H , 2,12 (5 (m, 1H 2 1H), 6,6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (d	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,		
	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 6 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s,	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H , 2,12 (5 (m, 1H 2 1H), 6,6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (d	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,		
207	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 6 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H)	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H),	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H , 2,12 (6 (m, 1H 2 1H), 6,6 3,13 (m	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H)	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,		
	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 6 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino	m, 1H), 3 1,74 (m, R , 6,89 (s H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H),	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H)	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,), 2,27 (m, 2H), 2,04 THP-4-ilo		
207 Ejemplo de	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 6 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H)	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H), R	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J =		
207 Ejemplo de referencia 208	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 4,10 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H),	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H), R	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J =		
207 Ejemplo de referencia 208 Ejemplo de	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 61 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 2	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H), R	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m,), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J =		
207 Ejemplo de referencia 208	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 61 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 26H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H),	m, 1H), 3 1,74 (m, R, 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R, 6,87 (s, m, 1H), R, 6,79 (s, 2H), 3,59 R, 6,87 (s, m, 6,87 (s, 2H), 3,59	3,84 (m 2H), 1, 2 , 1H), 6 , (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m 2 , 1H), 6 9 (m, 4H)	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (d, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 1H), 6,26		
207 Ejemplo de referencia 208 Ejemplo de	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 61 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 2 6H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,69 (m, 1H), 4,17 (d, J	m, 1H), 3 1,74 (m, R , 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H), R 6,79 (s, 2H), 3,50 R , 6,87 (s, = 8,0 H	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m 2 , 1H), 6 9 (m, 4H) 2 , 1H), 6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (d, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz, 3,60 (m, 5H), 3,17	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 1H), 6,26		
207 Ejemplo de referencia 208 Ejemplo de referencia 209	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 26H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,69 (m, 1H), 4,17 (d, J 1H), 2,67 (m, 5H), 2,09 (m, 3H), 1,90	m, 1H), 3 1,74 (m, R) R, 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R, 6,87 (s, m, 1H), R R, 6,79 (s, 2H), 3,59 R, 6,87 (s, m, 4H)	3,84 (m 2H), 1, 2 , 1H), 6 (m, 1H, , 2,12 (6 (m, 1H) 2 1H), 6,6 3,13 (m 2 , 1H), 6 9 (m, 4H) 2 , 1H), 6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz, 3,60 (m, 5H), 3,17 m, 2H)	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 7 (m, 1H), 2,90 (m, H), 2,90 (m, H)		
207 Ejemplo de referencia 208 Ejemplo de referencia 209 Ejemplo de	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 26H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,69 (m, 1H), 4,17 (d, J 1H), 2,67 (m, 5H), 2,09 (m, 3H), 1,90 morfolin-4-ilo	m, 1H), 3 1,74 (m, R) R, 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R, 6,87 (s, m, 1H), R R, 6,79 (s, 2H), 3,59 R (s, 6,87 (s, m, 4H), 4H)	3,84 (m 2H), 1, 1, 1H), 6 (m, 1H, 2,12 (m, 1H), 6,6 3,13 (m) 2 1H), 6,6 3,13 (m) 2 1H), 6,6 3,13 (m) 2 1H), 6,6 3,13 (m) 2 1H), 6,6 1H), 6,7 1H), 6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, I), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz, 3,60 (m, 5H), 3,17 m, 2H) fluor	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 7 (m, 1H), 2,90 (m, H), 2,90 (m, H)		
207 Ejemplo de referencia 208 Ejemplo de referencia 209	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 26H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,69 (m, 1H), 4,17 (d, J 1H), 2,67 (m, 5H), 2,09 (m, 3H), 1,90 morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 1,267 (m, 5H), 2,09 (m, 3H), 1,90 morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H),	m, 1H), 3 1,74 (m, R) R, 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R, 6,87 (s, m, 1H), R R, 6,87 (s, R) R (s, R) (s, R) R (s, R) (s, R) R (s, R) (s, R) R (s, R) (s, R) (s, R) R (s, R) (s, R) (s, R) (s, R) R (s, R) (s, R) (s, R) (s, R) (s, R) R (s, R) (s,	3,84 (m 2H), 1, 1 2 , 1H), 6 (m, 1H , 2,12 (6 (m, 1H 2 1H), 6,6 3,13 (m 2 , 1H), 6 9 (m, 4H 2 , 1H), 6 z, 2H), , 1,57 (2 , 1H), 6	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, l), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz, 3,60 (m, 5H), 3,17 m, 2H) fluor ,64 (d, J = 8,0 Hz,	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 7 (m, 1H), 2,90 (m, H), 2,90 (m, H) THP-4-ilo 1H), 6,23 (d, J = 1H		
Ejemplo de referencia 208 Ejemplo de referencia 209 Ejemplo de	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 61 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 2 6H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,69 (m, 1H), 4,17 (d, J 1H), 2,67 (m, 5H), 2,09 (m, 3H), 1,90 morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,75 (m, 1H), 4,02 (m, 2 11), 12,0 Hz, 1H), 12,0 Hz, 1H), 14,75 (m, 1H), 14,02 (m, 2 11)	m, 1H), 3 1,74 (m, R) R, 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H), R R, 6,79 (s, 2H), 3,59 R R R, 6,87 (s, m, 4H) R R, 6,86 (s, 1H), 3,66	3,84 (m 2H), 1, 1 1H), 6, 3,13 (m 2 1H), 6, 3,13 (m 2 1H), 6, 1 1H), 6, 2 1H), 6, 1 1H), 6, 1 2 1H), 6, 1 1H), 6, 1 2 1H), 6, 1 1H	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, l), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz, 3,60 (m, 5H), 3,17 m, 2H) fluor ,64 (d, J = 8,0 Hz, H), 3,51 (m, 4H), 3	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 7 (m, 1H), 2,90 (m, H), 2,90 (m, H) THP-4-ilo 1H), 6,23 (d, J = 1H		
Ejemplo de referencia 208 Ejemplo de referencia 209 Ejemplo de	1H), 6,22 (d, J = 12,0 Hz, 1H), 4,73 (r (m, 4H), 2,04 (m, 3H), 1,95 (m, 1H), 1 1-(hidroximetilcarbonil)- piperazin-4-ilo (400 MHz, CDCl ₃); δ 11,26 (br s, 1H), 12,0 Hz, 1H), 4,85 (m, 1H), 4,10 (s, 2 1H), 3,00 (m, 1H), 2,91 (m, 1H), 2,38 1,77 (m, 1H), 1,63 (m, 4H), 1,36 (m, 1 metanosulfonilo (400 MHz, CDCl ₃); δ 9,89 (br s, 1H), 3,83 (t, 1H), 3,59 (m, 1H), 3,31 (m, 2H), 1,68 (m, 6H), 1,51 (m, 2H) dimetilamino (400 MHz, CDCl ₃); δ 11,27 (br s, 1H), 12,0 Hz, 1H), 4,61 (m, 1H), 4,13 (m, 26H), 1,65 (m, 2H), 1,26 (m, 2H) pirrolidin-1-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 12,0 Hz, 1H), 4,69 (m, 1H), 4,17 (d, J 1H), 2,67 (m, 5H), 2,09 (m, 3H), 1,90 morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H), 1,267 (m, 5H), 2,09 (m, 3H), 1,90 morfolin-4-ilo (400 MHz, CDCl ₃); δ 11,16 (br s, 1H),	m, 1H), 3 1,74 (m, R) R, 6,89 (s, H), 3,77 (m, 3H) 1H), 1,26 R 6,87 (s, m, 1H), R R, 6,79 (s, 2H), 3,59 R R R, 6,87 (s, m, 4H) R R, 6,86 (s, 1H), 3,66	3,84 (m 2H), 1, 1 1H), 6, 3,13 (m 2 1H), 6, 3,13 (m 2 1H), 6, 1 1H), 6, 2 1H), 6, 1 1H), 6, 1 2 1H), 6, 1 1H), 6, 1 2 1H), 6, 1 1H	, 1H), 3,53 (t, 1H), 62 (m, 2H) fluor ,63 (d, J = 8,0 Hz, l), 3,57 (m, 2H), 3, m, 2H), 2,02 (m, 4 H) fluor 67 (dd, 1H), 6,28 (m, 2H), 2,84 (s, 3H) fluor ,60 (d, J = 8,0 Hz, H), 3,04 (m, 1H), 2 fluor ,68 (d, J = 8,0 Hz, 3,60 (m, 5H), 3,17 m, 2H) fluor ,64 (d, J = 8,0 Hz, H), 3,51 (m, 4H), 3	3,19 (m, 5H), 2,57 c-Pen 1H), 6,22 (d, J = 41 (m, 1H), 3,14 (q, H), 1,85 (m, 1H), c-Pen dd, 1H), 4,77 (m, 0), 2,27 (m, 2H), 2,04 THP-4-ilo 1H), 6,22 (d, J = 2,55 (s, 4H), 2,04 (m, H), 2,04 (m, H) THP-4-ilo 1H), 6,26 (d, J = 7 (m, 1H), 2,90 (m, H), 2,90 (m, H) THP-4-ilo 1H), 6,23 (d, J = 1H		

Fiemplo	R ¹	*	n	R ²	R⁴
Ejemplo	Datos H ¹ NMR	<u> </u>	111	13	13
referencia 211	(400 MHz, CDCl ₃); δ 10,20 (br s, 1H),	6 87 (c	1H) 6	68 (d I = 8 0 Hz	1H) 6 27 (d. l
Totoronoia 211	12,0 Hz, 1H), 4,76 (m, 1H), 4,01 (m, 3l				
	(m, 2H), 2,33 (m, 4H), 2,06 (m, 7H), 1,				,,20 (,), 2,0 .
Ejemplo de	1,1-dioxotiomorfolin-4-ilo	R	2	fluor	THP-4-ilo
referencia 212	(400 MHz, CDCl ₃); δ 6,93 (s, 1H), 6,64	(d, J =	8,0 Hz	, 1H), 6,28 (d, J =	12,0 Hz, 1H), 4,68
	(m, 1H), 4,03 (m, 2H), 3,55 (m, 3H), 3,				
	1H), 2,82 (m, 1H), 2,09 (m, 4H), 1,82 (, , , ,
Ejemplo de	metanosulfonilo	R	2	fluor	THP-4-ilo
referencia 213	(400 MHz, CDCl ₃); δ 10,15 (br s, 1H),				
	1H), 4,05 (m, 1H), 3,56 (m, 4H), 3,36 (H), 2,91 (s, 3H),
<u> </u>	2,32 (m, 1H), 2,22 (m, 1H), 2,133 (m, 1	_			I=
Ejemplo de	2-oxopiperazin-4-ilo	R	2	fluor	THP-4-ilo
referencia 214	(400 MHz, CDCl ₃); δ 11,07 (br s, 1H),				
	1H), 6,22 (d, J = 12,0 Hz, 1H), 5,19 (m				
215	(m, 4H), 3,33 (m, 3H), 3,14 (m, 1H), 2, 1-(hidroximetilcarbonil)- piperazin-4-	73 (III, 1	4⊓), ∠, 2	fluor	THP-4-ilo
213		K	_	liuoi	11115-4-110
	(400 MHz, CDCl ₃); δ 11,19 (br s, 1H),	6 89 (s	1H) 6	65 (d. l = 8.0 Hz	1H) 6 23 (d .l =
	12,0 Hz, 1H), 4,82 (m, 1H), 4,20 (m, 1H)				
	4H), 3,16 (m, 3H), 2,42 (m, 3H), 2,17 (
216	dimetilamino	R	2	H	c-Pen
	(500 MHz, DMSO-d ₆); δ 10,62 (br s, 11	H), 7,03	(d, J =	7,95 Hz, 1H), 6,9	9 (t, 1H), 6,93 (s,
	1H), 6,48 (d, J = 7,35 Hz, 1H), 4,83 (m	, 1H), 3	,83 (m	, 1H), 3,56 (m, 1H), 3,46 (m, 2H), 3,20
	(m, 4H), 2,05~1,87 (m, 4H), 1,70~1,38	(m, 6H)		
217	piperidin-1-ilo	R	2	Н	c-Pen
	(400 MHz, CDCl ₃); δ 10,34 (br s, 1H),				
	3,86 (m, 1H), 3,51 (m, 1H), 3,15 (m, 1H	T .		· ·	
Ejemplo de	metanosulfonilo	R	2	H	THP-4-ilo
referencia 218	(400 MHz, CDCl ₃); δ 10,02 (br s, 1H),				
	4,78 (m, 1H), 4,01 (m, 2H), 3,61-3,47 (m, 2H), 1,51 (m, 2H)		, 3,33 (m, 1H), 3,15 (m, 2	2H), 2,85 (s, 3H),
219	2,25 (m, 2H), 2,05 (m, 2H), 1,51 (m, 2H) 1-(hidroximetilcarbonil)- piperazin-4-	R	2	metoxi	c-Pen
219		1	_	IIIGIOXI	0-1 611
	(400 MHz, CDCl ₃); δ 11,13 (br s, 1H),	6 98 (s	1H) 6	42 (s. 1H) 6.13 (c	d 1H) 4.85 (m. 1H)
	4,07 (s, 2H), 3,81 (m, 8H), 3,55 (m, 2H				
	1H), 2,35 (m, 3H), 2,10 (m, 2H), 1,99 (
	1,44 (m, 1H), 1,35 (m, 1H)		`		
220	1-(acetil)piperazin-4-ilo	R	3	cloro	c-Pen
	(400 MHz, CDCl ₃); δ 10,33 (br s, 1H),	6,97 (s,	1H), 6	,81 (s, 1H), 6,42 (s	s, 1H), 4,64 (m, 1H),
	3,85 (m, 1H), 3,65 (m, 2H), 3,56 (m, 1H)	Ⅎ), 3,45	(m, 2l	H), 3,13 (m, 1H), 2	2,43 (m, 6H), 2,04
004	(m, 2H), 1,72 (m, 8H), 1,54 (m, 2H)		T .	111	- D
221	morfolin-4-ilo	R N C 02	/ 41	H	c-Pen
	$(400 \text{ MHz}, \text{DMSO-d}_6); \delta 11,37 \text{ (br s, 11)}$	-			· ·
	1H), 5,85 (d, J = 8,0 Hz, 1H), 4,87 (m, (m, 1H), 2,54 (m, 2H), 2,44 (m, 2H), 1,				
222	morfolin-4-ilo	89 (III, 1	3	cloro	c-Pen
	(400 MHz, CDCl ₃); δ 11,07 (br s, 1H),				
	3,94 (m, 4H), 3,55 (m, 1H), 3,04 (m, 3H				
	(m, 3H)				
223	dimetilamino	R	1	Н	c-Pen
	(400 MHz, CDCl ₃); δ 9,87 (br, 1H), 7,0				
	(d, J = 8,0 Hz, 1H), 4,83 (m, 1H), 3,91				l), 2,63 (m, 1H), 2,44
	(m, 1H), 2,29 (s, 6H), 2,04 (m, 2H), 1,7				T
224	morfolin-4-ilo	R	2	cloro	c-Pen
	(DMSO-d ₆ , ppm); δ 11,46 (1H, s), 6,79				
	4,61 (1H, quin), 3,81 (1H, m), 3,57 (4H				
I	1,95 (2H, m), 1,80 (1H, m), 1,68 (2H, r	11), 1,5/	- i , 4 9 (4⊓, III), 1,∠1 (1H,	111)

Ejemplo de referencia 225: {5-metil-2-[(R)-4-(2-morfolin-4-iletil)-4,5-dihidro-oxazol-2-il]-1H-indol-7il}-(tetrahidropiran-4-il)-amina

El ácido 2-[(R)-2-(5-metil-7-nitro-1H-indol-2-il)-4,5-dihidrooxazol-4-il]acético preparado en el ejemplo 104, tetrahidropiran-4-ona y morfolina se sometieron a reacción consecutivamente con los mismos procedimientos que en el ejemplo 1, el paso A de la preparación 29 y el ejemplo 156 para obtener el compuesto indicado en el título. 1 HNMR (404 MHz, CDCl₃); δ 10,11 (br s, 1H), 6,91 (s, 1H), 6,86 (s, 1H), 6,34 (s, 1H), 4,60 (t, 1H), 4,48 (m, 1H), 4,10~3,93 (m, 5H), 3,63~3,52 (m, 3H), 2,39 (s, 3H), 2,07 (d, 2H), 1,94 (m, 2H), 1,58 (m, 2H)

Ejemplo de referencia 226: {5-metil-2-[(S)-4-(2-morfolin-4-iletil)-45-dihidro-tiazol-2-il]-1H-indol-7-il}-(tetrahidropiran-4-ilmetil)-amina

Paso A: ((S)-2-{5-metil-7-[(tetrahidropiran-4-ilmetil)amino]-1H-indol-2-il}-4,5-dihidrotiazol-4-il)acetato de isobutilo

El [(5-metil-7-nitro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de isopropilo preparado en la preparación 52 y tetrahidropirano-4-carboxialdehído se sometieron a reacción con el mismo procedimiento que en el ejemplo 1 para obtener el compuesto indicado en el título.

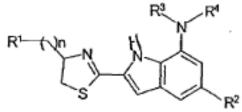
Paso B: 2-((R)-2-{5-metil-7-[(terahidropiran-4-ilmetil)amino]-1H-indol-2-il}-4,5-dihidrotiazol-4-il)etanol

El ((S)-2-{5-metil-7-[(tetrahidropiran-4-ilmetil)amino]-1H-indol-2-il}-4,5-dihidrotiazol-4-il)acetato de isopropilo preparado en el paso A se sometió a reacción con el mismo procedimiento que en el ejemplo 5 para obtener el compuesto indicado en el título.

Paso C: {5-metil-2-[(S)-4-(2-morfolin-4-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-(tetrahidropiran-4-ilmetil)-amina

El 2-((R)-2-{5-metil-7-[(tetrahidropiran-4-ilmetil)amino]-1H-indol-2-il}-4,5-dihidro-tiazol-4-il)etanol preparado en el paso B y morfolina se sometieron a reacción con el mismo procedimiento que en el ejemplo 156 para obtener el compuesto indicado en el título. 1 H NMR(500 MHz, CACl₃); δ 11,13 (s,1H), 6,82 (d,2H), 6,24 (s,1H), 4,81-4,78 (m, 1H), 3,88-3,81 (m,2H), 3,60-3,46 (m,5H), 3,35-3,30 (m, 2H), 3,19-3,17 (m,1H, 3,01 (br,2H), 2,38-2,26 (m,7H), 2,14 (s,2H),1,91-1,88 (m,1H), 1,75-1,71 (m,2H), 1,53~1,47 (m,2H), 1,28-1,16 (m,2H),

Ejemplos 227 a 257:


5

15

20

25

Los compuestos de los ejemplos 10, 22, 51, 66 y 82 se sometieron a reacción con el mismo procedimiento que en el ejemplo 226, o los compuestos de las preparaciones 52 y 71 y aldehídos o cetonas y aminas comerciales se sometieron a reacción selectivamente con el mismo procedimiento que en el ejemplo 226 para sintetizar los ejemplos de compuestos mostrados en la siguiente tabla.

Ejemplo	R ¹	*	n	R^2	R^3	R^4		
	Datos H ¹ NMR							
Ejemplo de	1-(acetil)piperazin-4-ilo	S	2	fenoxi	isobutilo	isobutilo		
referencia 227								
Ejemplo de	pirrolidin-1-ilo	S	2	fenoxi	isobutilo	isobutilo		
referencia 228								
229	1-(hidroximetil- carbonil)piperazin-4-ilo	S	2	fenoxi	Н	c-Pen		
	(400 MHz, CDCl ₃); δ 10,7 (1H, brs), 7,30-7,27 (2H, m), 7,04-6,97 (3H, m), 6,86 (1H, s), 6,62 (1H, d, J = 2,0 Hz), 6,28 (1H, d, J = 2,5 Hz), 4,87-4,80 (1H, m), 3,80-3,75 (1H, m), 3,59-3,55 (2H, m), 3,49-3,45 (1H, m), 3,18-3,08 (2H, m), 3,03-3,01 (1H, m), 2,47-2,38 (m), 2,24-2,14 (3H, m), 2,05-1,88 (4H, m), 1,84-1,55 (8H, m), 1,49-1,39 (2H, m)							
230	piperazin-1-ilo	S	2	fenoxi	Н	c-Pen		

Fiomple	R ¹	*	l n	\mathbb{R}^2	R^3	R ⁴
Ejemplo	Datos H ¹ NMR	<u> </u>	n	Ιζ	I IX	l u
	(400 MHz, CDCl ₃); δ 7,40-7,36	6 (4H ı	m) 71	6-7 12 (1H	m) 7 04-7 02 (2	2H m) 6.94 (1H s)
	4,20-4,15 (1H, m), 3,99-3,94 (
	m), 2,44-2,40 (2H, m), 2,09-2,					
231	1-BOC-piperazin-4-ilo	S	2	fenoxi	Н	c-Pen
	(400 MHz, CDCl ₃); δ 10,7 (1H					
	(1H, d, J = 2.0 Hz), 6.26 (1H, d)					
	(1H, m), 3,59-3,54 (1H, m), 3,					
	brs), 2,17 (1H, brs), 2,03-1,91 1,42-1,35 (1H, m)	(4⊓, 11	1), 1,84	F1,75 (1H, I	11), 1,67-1,53 (4	H, M), 1,45 (9H, S),
232	1, 1 2-1,55 (111, 111)	S	2	fenoxi	Н	c-Pen
	>n^		-			0.0
	Mark Mark					
	(400 MHz, CDCl ₃); δ 10,9 (1H	, brs),	7,32-7,	28 (2H, m),	7,05-6,99 (3H, i	m), 6,90 (1H, s),
	6,59 (1H, d, J = 1,6 Hz), 6,29					
	3,95-3,82 (4H, m), 3,62-3,57 (l, m), 2,77-2,74 (1H,
	m), 2,00-1,98 (4H, m), 1,69 (2	_	, 1,60-			
233	2-oxopiperazin-4-ilo	S	7.00.7	fenoxi	H	c-Pen
	(400 MHz, CDCl ₃); δ 10,7 (1H 6,60 (1H, d, J = 2,0 Hz), 3,25					
	3,52 (1H, m), 3,50-3,26 (2H, n					
	1,73-1,58 (8H, m)	,, 0,2	3 0, 10	(=: :, :::), =,0	2,01 (111,111),	2,01 1,00 (111, 111),
234	1-[(tetrahidrofuran-2-	S		fenoxi	Н	c-Pen
	il)carbonil]piperazin-4-ilo					
	(400 MHz, CDCl ₃); δ 10,67-10					
	d, J = 1,2 Hz), 6,62 (1H, d, J =					
	1H), 3,96-3,91 (1H, m), 3,87-3					
	(2H, m), 2,33-2,16 (4H, m), 2,1 1,40 (2H, m)	07-1,0	7 (OH, I	111), 1,03-1,7	3 (4H, III), 1,00-	-1,56 (1H, III), 1, 4 9-
235	1-(piridin-2-il)-piperazin-4-ilo	S	2	fenoxi	Н	c-Pen
	(400 MHz, CDCl ₃); δ 10,3 (1H	, s), 8,	19-8,18	3 (1H, m), 7	49-7,45 (1H, m)	, 7,29-7,25 (2H, m),
	7,03-6,98 (3H, m), 6,85 (1H, s					
	m), 3,79 (1H, brs), 3,60-3,55 (
226	m), 1,99 (3H, brs), 1,88-1,86 (1-(2-fluorofenil)-piperazin-4-	TH, M)	, 1,70 2		61-1,47 (3H, M) H	c-Pen
236	l ilo	٥		fenoxi	11	C-F ell
	(400 MHz, CDCl ₃); δ 10,7 (1H	. s). 7.2	29-7.25	5 (2H, m), 7	.07-6.98 (5H. m)), 6.95-6.88 (2H.m),
	6,86 (1H, s), 6,23 (1H, d, J = 1					
	brs), 3,60-3,56 (1H, m), 3,23-3				s), 2,54-2,43 (5	H, m), 2,04-1,94
	(3H, m), 1,98-1,82 (2H, m), 1,				Ι	T _
237	2-oxopiperazin-4-ilo	S	2	H	H	c-Pen
	(400 MHz, CDCl ₃); δ 10,23 (bi 3,92 (m, 1H), 3,54 (m, 1H), 3,54					
	1,55 (m, 6)	50-5, 1	i (iii, 3	11, 4,13-4,0	··· (III, +II), ∠, I I-	1,50 (111, 411), 1,74-
238	(3S)-3-(amino)- pirrolidin-1-	S	2	fenoxi	Н	c-Pen
	ilo					
	(400 Hz, CDCl ₃); δ 9,97 (br s,					
	1H), 6,34 (m, 1H), 4,83 (m, 1H					1H), 3,10 (m, 4H),
000	2,58 (m, 6H), 2,05 (m, 3H), 1,9	92 (m,				a Dan
239	1-(acetil)piperazin-4-ilo	0) 7 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	fenoxi	04 6 09 (3H m)	c-Pen
	$(400 \text{ MHz}, \text{CDCl}_3); \delta 10,6 (1H (1H, d, J = 2,0 Hz), 6,27 (1H, d)$					
	brs), 3,74 (1H, brs), 3,64-3,55					
	2,68-2,63 (3H, m), 2,56-2,48 (
	1,56 (4H, m)			, ,,,	, , , , ,	, , , , ,
Ejemplo de	(2R)-2-(amino-	S	2	metilo	Н	(THP-4-il) metilo
referencia 240	carbonil)pirrolidin-1-ilo		<u></u>	L	<u> </u>	
	(CDCl ₃ , 400 MHz) δ 11,31 (s,					
	6,22 (s, 1H), 5,50 (br, 1H), 4,7					
	3,25 (m, 1H), 3,19-3,06 (m, 4H) 2,39 (s, 3H) 2,25-2,12 (m, 1H)					
	1,53-1,40 (m, 2H)	,, 2,00-	<u>-</u> ,∪⊤ (I	,,, .,	1,00 (111, 211), 1	,55 1,55 (111, 711),
i	·,~~ ·, ·~ (···, - · · <i>)</i>					

Ejemplo	R ¹	*	n	R ²	R^3	R ⁴
	Datos H ¹ NMR					
Ejemplo de	(2R)-2-(hidroxilmetil)-	S	2	metilo	Н	(THP-4-il) metilo
referencia 241	pirrolidin-1-ilo					
	(CDCl ₃ , 400 MHz) δ 10,25 (s,					
	2H), 4:16-4,0 (m, 1H), 4,00-3,					
	2H), 2,99-2,94 (m, 2H), 2,32 (
242	2H), 1,42-1,36 (m, 2H), 1,14-7 (3R)-3-(acetilamino)-	s (III	, ∠⊓), t 2	fenoxi	n, ∠n), 0,73-0,6 H	c-Pen
242	pirrolidin-1-ilo	3	_	IEIIOXI	11	C-FeII
	(500 Hz, CDCl ₃) ₁ δ 11,45 (br s	1 H)	R 14 (h	rs 1H) 60	00 (s. 1H) 6.77	(s 1H) 6.37 (s 1H)
	4,83 (m, 1H), 4,66 (m, 1H), 4,					
	3,13 (m, 1H), 3,08-3,00 (m, 2l					
	2,00 (s, 3H), 1,80 (m, 2H), 1,7	'1 (m, 2	2H), 1,6	3 (m, 2H)	,, ,	,, ,
243	4-(bencil)piperazin-1-ilo	S	2	fenoxi	Н	c-Pen
	(500 Hz, CDCl ₃); δ 7,32-724 (
	4,71 (m, 1H), 3,87 (m, 1H), 3,					2,80 (br s, 8H), 2,60
F: 1 1	(br s, 2H), 2,11-1,99 (m, 4H),	_				(TUD 4 3)
Ejemplo de	Ö	S	2	metilo	H	(THP-4-il) metilo
referencia 244	r. r. R.					
	(400 MH ODOL) \$ 40 00 (41.1\ 6	00 (411) 0 00 (411) 0.00 (411) 4 00 (411)
	(400 MHz, CDCl ₃) _§ δ 10,08 (s					
	4,10-3,90 (m, 6H), 3,52 (dd, 1 3H), 2,95-2,85 (m, 2H), 2,72 (11), 2, 10-1,95 (111,
Ejemplo de	morfolin-4-ilo	s S	2	metilo	H	(THP-4-il) metilo
referencia 245	(500 MHz, CDCl ₃) ₁ δ 11,13 (s				s 1H) 6 24 (s 1	
	1H), 3,87 (d, 2H), 3,60-3,46 (r					
	2,38-2,36 (m, 7H), 2,14 (br, 2					
246	pirrolidin-1-ilo	R	2	fenoxi	Н	c-Pen
	(500 MHz, CDCl ₃); δ 7,26-7,2	3 (2H, i	m), 6,9	8-6,95 (1H,	m), 6,91-6,90 (2	2H, m), 6,74 (1H, s),
	6,46-6,45 (1H, m), 6,12 (1H, t					
	3,33-3,28 (5H, m), 3,14-3,10 ((1H, m)	, 2,14-	2,03 (6H, m), 2,00-1,94 (2H	I, m), 1,78 (2H, brs),
Figure 1.	1,66-1,60 (4H, m)	10		f : :	Lii	/TUD 4 :1) 4:1-
Ejemplo de referencia 247	morfolin-3-ilo	S 141	2 20 (fenoxi	H 1 (m. 2H) 6.84	(d. 1H) G GE (d.
Telefelicia 247	(400 MHz, CDCl ₃); δ 10,19 (b 1H), 6,27 (d, 1H), 4,77 (m, 1H					
	6H), 3,19 (m, 1H), 3,04 (m, 2H					
	1,60 (m, 2H), 1,30 (m, 2H)	1), 2, 10	, (III, ZI	1), 2,01 (111,	111), 2,00 (111, 1	11), 1,00 (111, 211),
Ejemplo de	2-oxopiperazin-4-ilo	S	2	fenoxi	Н	(THP-4-il) metilo
referencia 248	(400 MHz, CDCl ₃); δ 10,7 (brs	, 1H), ī	7,28 (m	n, 2H), 7,00	(m, 3H), 6,85 (b	ors, 1H), 6,81 (d,
	1H), 6,60 (d, J = 1,6 Hz, 1H),	6,20 (d	J = 2	0 Hz, 1H),	5,03 (m, 1H), 4,	70 (m, 1H), 3,98 (m,
	2H), 3,56 (m, 1H), 3,49-3,36 (3,06 (m, 4H), 2,80 (m, 1H),	2,71 (m, 3H), 1,95-
2.12	1,91 (m, 3H), 1,72 (m, 2H), 1,	42 (m,			T.,	T 5
249	pirrolidin-1-ilo	7 (011 -	2	fenoxi	H	c-Pen
	(500 MHz, CDCl ₃); δ 7,31-7,2 J = 2,0 Hz), 6,17 (1H, d, J = 2					
	3,46-3,37 (4, m), 3,23-3,19 (1					
250	2-oxopiperazin-4-ilo	s,,	2,24-2,	metilo	H	4.4-difluoro-
			_			ciclohexano
	(400 MHz, CDCl ₃); δ 10,14 (b	rs, 1H).	6,82 (s, 1H), 6,80	(s, 1H), 6,31 (s	
	3,54 (m, 1H), $3,53$ (dd, $J = 8$ H					
	2,65 (m, 4H), 2,38 (s, 3H), 2,2	28-2,04	(m, 4h	I), 1,96-1,86	6 (m, 2H), 1,73 (
251	morfolin-4-ilo	S	2	metilo	Н	4,4-difluoro-
	(400 MH 000) 0 0 0 0 0	41.15	<u> </u>	410 0 5 5		ciclohexano
	(400 MHz, CDCl ₃); δ 9,67 (brs					
	3,65 (m, 6H), 3,55 (dd, J = 8 H 9H), 2,15-2,04 (m, 4H), 1,96-					1H), 2,52-2,29 (III,
Ejemplo de		S	2	metilo	H	(THP-4-il) metilo
referencia 252	CF ₂		_	moulo		
202	. N .]					
	Now					
	(500 MHz, CDCl ₃); δ 9,47 (br					
	1H), 4,12-4,00 (m, 2H), 3,85 (
	1H), 2,85-2,70 (m, 3H), 2,41 (s, 3H),	2,10 (r	n, 2H), 1,96	5 (m, 2H), 1,60 (m, 2H)

	T_1	*	1	1 = 2	1 = 3	1 = 4
Ejemplo	R ¹	*	n	R^2	R ³	R ⁴
	Datos H ¹ NMR					
Ejemplo de	2-oxopiperazin-4-ilo	S	2	metilo	Н	(THP-4-il) metilo
referencia 253	(500 MHz, CDCl ₃); δ 11,03 (s,	1H), 8	,19 (br	s, 1H), 6,82	2 (s, 1H), 6,79 (s	s, 1H), 6,31 (s, 1H),
	4,84-4,65 (m, 3H), 4,24 (m, 1H	H), 3,91	l (m, 2l	H), 3,82-3,5	5 (m, 4H), 3,31	(m, 2H), 3,19 (m,
	1H), 3,14 (m, 2H), 2,95 (m, 2H	1), 2,69) (m, 1H	H), 2,20 (m,	1H), 1,98 (m, 1	H), 1,81 (d, 2H),
	1,39 (m, 2H)					
Ejemplo de	1-(piridin-2-il)-piperazin-4-ilo	S	2	cloro	Н	THP-4-ilo
referencia 254	(400 MHz, CDCl ₃); δ 9,71 (brs	, 1H), 8	3,17 (s,	1H), 7,47 ((m, 1H), 7,03 (s,	1H), 6,82 (s, 1H),
	6,62 (m, 1H), 6,45 (s, 1H), 4,7	3 (m, 1	H), 4,0	1 (m, 2H),	3,61-3,49 (m, 8H	H), 3,20 (m, 1H),
	2,69-2,50 (m, 6H), 2,11-2,01 (m, 3H)	, 1,92 ((m, 1H), 1,5	2 (m, 2H)	
Ejemplo de	1-[(tetrahidrofuran-2-	S	2	cloro	Н	THP-4-ilo
referencia 255	il)carbonil]piperazin-4-ilo					
	(400 MHz, CDCl ₃); δ 9,89 (brs					
	4,57 (m, 1H), 4,01 (m, 2H), 3,9	94 (m,	1H), 3,	85 (m, 1H),	3,78-3,49 (m, 8	H), 3,15 (m, 2H),
	2,64-2,21 (m, 7H), 2,11-1,81 (m, 7H)	, 1,48 ((m, 1H)		
Ejemplo de	2-oxopiperazin-4-ilo	R	2	metoxi	Н	THP-4-ilo
referencia 256	(400 MHz, CDCl ₃); δ 10,75 (br	s, 1H)	, 7,02 ((br s, 1H), 6	5,83 (s, 1H), 6,4°	1 (s, 1H), 6,14 (s,
	1H), 4,70 (m, 1H), 4,01 (d, J =	12 Hz	, 2H), 3	3,58 (s, 3H)	, 3,54 (m, 4H), 3	3,11~3,36 (m, 5H),
	2,66 (m, 4H), 2,12 (m, 2H), 1,9	97 (m,	1H), 1,	88 (m, 1H),	1,56 (m, 2H)	
Ejemplo de	1-(hidroximetil-	R	2	metoxi	Н	THP-4-ilo
referencia 257	carbonil)piperazin-1-ilo					
	(400 MHz, CDCl ₃); δ 11,13 (br	s, 1H)	, 6,91 ((s, 1H), 6,47	7 (s, 1H), 6,17 (s	s, 1H), 4,86 (m, 1H),
	4,13 (m, 2H), 3,97 (m, 3H), 3,8	34 (m,	3H), 3,	62 (m, 2H),	3,47 (m, 4H), 3	,03 (m, 3H), 2,43
	(m, 3H), 2,17 (m, 5H), 1,98 (m	ı, 3H),	1,44 (n	n, 2H)		·

Ejemplo 258: [(R)-2-(5-aminometil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol

10

15

20

30

La 2-[7-ciclopentilamino-2-((R)-4-hidroximetil-4,5-dihidrotiazol-2-il)-1H-indol-5-ilmetil]isoindol-1,3-diona (27 mg, 0,07 mmol) preparada en el ejemplo 64 se disolvió en etanol (3 ml). Luego se añadió hidrato de hidrazina (0,6 ml, 0,11 mmol) y la mezcla se agitó durante 3 horas a 80°C. Una vez completa la reacción, la mezcla de reacción se destiló bajo presión reducida y se purificó por cromatografía en columna para obtener el compuesto indicado en el título (7 mg, rendimiento 37%). ¹H-NMR (500 HMz, CDCl₃); δ 10,50 (brs, 1H), 6,98 (s, 1H), 6,88 (s, 1H), 6,46 (s, 1H), 4,72 (m, 1H), 4,40 (m, 1H), 3,86 (s, 2H), 3,81 (m, 1H), 3,70 (m, 1H), 3,44 (m, 2H), 1,97 (m, 2H), 1,59 (m, 4H), 1,41 (m, 2H)

Ejemplo 259: [7-ciclopentilamino-2-((R)-4-hidroximetil-4,5-dihidrotiazol-2-il)-1H-indol-5-ilmetil]amida de ácido furan-2-carboxílico

EI [(R)-2-(5-aminometil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-metanol preparado en el ejemplo 258 y ácido furan-2-carboxílico se sometieron a reacción con el mismo procedimiento que en el paso B de la preparación 101 para obtener el compuesto indicado en el título. 1H-NMR (CDCl₃); δ 11,01 (1H, br), 7,38 (1H, s), 7,12 (1H, d, J = 3,7 Hz), 7,03 (1H, s), 6,90 (1H, s), 6,58 (1H, br), 6,49~6,45 (2H, m), 4,76~4,67 (1H, m), 4,60 (2H, d, J = 5,5 Hz), 4,06~4,01 (1H, m), 3,80~3,73 (1H, m), 3,70~3,64 (1H, m), 3,52~3,46 (1H, m), 3,45~3,38 (1H, m), 1,99~1,86 (2H, m), 1,62~1,46 (4H, m), 1,41~1,32 (1H, m), 1,32~1,24 (1H, m)

Ejemplo 260: [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il-metoxi]acetato de metilo

EI [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol preparado en el ejemplo 2 y bromoacetato de etilo se sometieron a reacción con el mismo procedimiento que en el paso b de la preparación 29 para obtener el compuesto indicado en el título. 1 H-NMR (400 MHz, CDCl₃); δ 10,16 (br s, 1H), 6,87 (s, 1H), 6,66 (dd, J = 2,4, 9,2 Hz, 1H), 6,30 (dd, J=2,4, 11,8 Hz, 1H), 4,94 (m, 1H), 4,25 (q, 2H), 4,13 (d, J = 5,6 Hz, 2H), 3,87 (m, 1H), 3,76 (d, J = 6,4 Hz, 2H), 3,56 (m, 1H), 3,44 (m, 1H), 2,07 (m, 2H), 1,67 (m, 4H), 1,51 (m, 2H), 1,30 (t, 3H)

Ejemplo 261: ácido [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetoxi]acético

El [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetoxi]acetato de metilo preparado en el ejemplo 260 se sometió a reacción con el mismo procedimiento que en el paso A de la preparación 101 para obtener el compuesto indicado en el título. 1 H-NMR (400 MHz, DMSO-d₆); δ 12,70 (br s, 1H), 7,07 (s, 1H), 6,57 (d, J = 8,8 Hz, 1H), 6,23 (d, J = 12 Hz, 1H), 5,13 (m, 1H), 4,34 (m, 1H), 4,07 (m, 2H), 3,89 (m, 1H), 3,63 (m, 3H), 2,03 (m, 2H), 1,58 (m, 6H)

Ejemplo 262: ciclopentil-{2-[(R)-4-(3-ciclopentil-[1,2,4]oxadiazol-5-ilmetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina

El ácido [(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético (140 mg, 0,41 mmol) preparado en el ejemplo 75 se disolvió en N,N-dimetilformamida (5 ml). Luego se añadió 1,1'-dicarbonildiimidazol (73 mg, 0,45 mmol) y la mezcla se agitó durante 30 minutos a temperatura ambiente. Después se añadió N-hidroxiciclopentanocarboxamidina (260 mg, 2,03 mmol) y la mezcla se agitó durante 5 horas a 80°C. Una vez completa la reacción, se añadió agua. La mezcla de reacción se extrajo con acetato de etilo, se secó con sulfato de magnesio anhidro y se filtró. El filtrado se destiló bajo presión reducida y el residuo se purificó por cromatografía en columna para obtener el compuesto indicado en el título (100 mg, rendimiento 56%). ¹H-NMR (400 HMz, CDCl₃); δ 10,62 (br s, 1H), 7,04 (d, 1H), 6,97 (t, 1H), 6,92 (d, 1H), 6,49 (d, 1H), 5,20 (m, 1H), 3,83 (m, 2H), 3,64 (m, 1H), 3,39 (m, 1H), 3,31 (m, 1H), 3,17 (m, 1H), 3,01 (m, 1H), 1,97 (m, 4H), 1,73 (m, 4H), 1,60 (m, 6H), 1,46 (m, 2H), 1,34 (m, 2H)

10 Ejemplo 263: ciclopentil-{2-[(R)-4-(3-piperidin-1-il-[1,2,4]oxadiazol-5-ilmetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina

El ácido [(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético preparado en el ejemplo 75 y N-hidroxipiperidincarboxamidina se sometieron a reacción con el mismo procedimiento que en el ejemplo 262 para obtener el compuesto indicado en el título. 1 H-NMR (400 HMz, CDCl₃); δ 10,56 (br s, 1H), 7,01 (d, 1H), 6,96 (t, 1H), 6,90 (d, 1H), 6,46 (d, 1H), 5,23 (m, 1H), 3,83 (m, 2H), 3,64 (m, 1H), 3,36 (m, 1H), 3,31 (m, 1H), 3,17 (m, 2H), 3,01 (m, 1H), 1,95 (m, 2H), 1,68-1,43 (m, 11H), 1,35 (m, 1H).

Ejemplo experimental 1: medidas y análisis de los ejemplos de compuestos en cuanto al efecto de protección de los hepatocitos contra sustancias que producen toxicidad en los mismos

Diversos ataques endógenos/exógenos a las células disparan los mecanismos de muerte celular, que en general se clasifican en dos tipos, esto es apoptosis y necrosis. Utilizando estos mecanismos de muerte celular, en el presente 20 ejemplo experimental, hepatocitos primarios aislados de ratas se trataron con fármacos que, tal como se comprobó clínicamente, producían efectos secundarios graves de toxicidad de hepatocitos, o con diversas sustancias químicas que producen muerte celular, y los compuestos sintetizados en los ejemplos se evaluaron en cuanto a sus efectos de protección de los hepatocitos, después de 24 - 48 horas. Las sustancias utilizadas para producir la muerte de 25 hepatocitos incluyen CCl₄, ActD, H₂O₂, doxorrubicina, anti-Fas Ab/actinomicina D, acetaminofeno, EtOH, CdCl₂, palmitato, estearato, ciclofosfamida, terfenadina, diclofenaco, simvastatina y adefovir. Los hepatocitos primarios se aislaron utilizando el método de Seglen PO (Experimental Cell Research 74(1972) pp 450-454). En pocas palabras: los hepatocitos se aislaron de acuerdo con el método de perfusión de colagenasa en dos pasos y las células muertas se retiraron mediante centrifugación a baja velocidad (500 rpm) durante 10 minutos utilizando gradiente de 30 Percoll (Kreamer BL etc., In Vitro Cellular & Developmental Biology 22(1986) pp: 201-211). Durante este paso, la viabilidad de las células se mantuvo en un 90% o más. Las células se suspendieron en medio HepatoZYME (Gibco BRL) y se realizó un recuento del número de células. 1,5·10⁴ células en 100 µl se dispusieron en la placa de 96 pocillos revestida con colágeno (BD biocoat) y se adhirieron al fondo durante 3 - 4 horas.

Para evaluar el efecto de protección de hepatocitos, las células adheridas arriba indicadas se trataron previamente con los ejemplos de compuestos durante 30 minutos. Después, la concentración de los ejemplos de compuestos se diluyó en serie en un factor 2 o un factor 3 en 5 pasos comenzando por 30 μM, 10 μM o 1 μM, dependiendo de los experimentos, y la concentración final de DMSO se ajustó al 0,2%. Treinta minutos después del tratamiento con los compuestos, las células se trataron con las sustancias que producen la muerte de hepatocitos o con fármacos hepatotóxicos en las concentraciones indicadas en la Tabla 1. Después de 24 - 48 horas se determinó la viabilidad de las células para evaluar los efectos de protección de hepatocitos. La viabilidad de las células se determinó utilizando el método WST-1 (MK-400, Takeda) mediante la absorbancia a 440 nm. Los efectos de protección de hepatocitos de los ejemplos de compuestos se representaron mediante EC₅₀, que se calculó a partir de los valores medidos. El concepto EC₅₀ significa aquí la concentración del compuesto con la que se observa un 50% del efecto de protección máxima en el experimento.

Preferentemente, el EC_{50} del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos.

La Tabla 1 muestra las concentraciones de tratamiento de diversas sustancias que producen hepatotoxicidad y el efecto de protección de hepatocitos del compuesto del ejemplo 4. La Tabla 2 muestra los efectos de protección de hepatocitos de los ejemplos de compuestos contra una sustancia que produce hepatotoxicidad, la doxorrubicina.

50 **Tabla 1**

	Efecto de protección celular del compuesto del Ejp. 4 contra las sustancias que producen								
	hepatotoxicidad								
Ī	Sustancias hepato- Concentración del EC ₅₀ (µM) Nota sobre sust. hepato-								
	tóxicas	tratamiento		tóxicas					
Ī	Terfenadina	10 μM	0,4	Antialérgico					
	Simvastatina	16 µM	< 10 µM	reductor de lípidos					

Efecto de protección celular del compuesto del Ejp. 4 contra las sustancias que producen									
	hepatotoxicidad								
Sustancias hepato- Concentración del EC ₅₀ (µM) Nota sobre sust. hepato-									
tóxicas	tóxicas tratamiento tóxicas								
Diclofenaco	Diclofenaco 350 µM		antiinflamatorio no						
		100 μM	esteroideo (AINS)						
Adefovir	100 μM	50% de viabilidad a 3-30	Fármaco antiviral						
	•	μM							

Tabla 2

Efectos de protección celular contra doxorrubicina en hepatocitos								
							1	
Ejemplo	EC ₅₀ , μM	Ejemplo	EC ₅₀ , μM	Ejemplo	EC ₅₀ , μM	Ejemplo	EC ₅₀ , μM	
1	>1	38	2,0	109	0,61	229	0,25	
2	0,1	40	15,58	115	<1	230	>0,32	
4	0,3	43 *	1~10	117	<0,5	231	0,2	
6	4,93	45	1,32	118 *	0,41	232	0,24	
7 *	1,17	46	0,4	119	0,17	233	0,27	
8 *	0,41	47	0,36	120 *	1,12	234	0,09	
9*	>2	48	0,2	121	0,47	235	>0,54	
10 *	0,6	50	0,25	122 *	0,96	236	0,16	
11 *	2,8	51 *	0,6	127 *	1,18	237	0,2	
12 *	3,25	52 *	0,75	128	0,2	238	0,33	
13 *	1,13	61	0,78	130	0,1	239	0,83	
14	0,19	62 *	3,77	133	0,31	240 *	0,28	
15 *	0,6	64	0,54	134	0,51	241 *	0,21	
16 *	1,29	67 *	>1	135 *	1,26	244 *	0,195	
17	0,315	68	0,49	158	0,91	246	0,35	
18 *	2,42	71	1,1	173	1,98	247 *	0,86	
19	0,35	78 *	29,44	176	>1	249	0,11	
20 *	5,77	83	0,6	177	>1	250	0,09	
21	0,3	84	106	178	0,23	251	0,3	
22 *	0,25	85	0,4	182 *	0,375	252 *	0,51	
23	0,14	88	1,87	184 *	0,18	253 *	0,2	
24 *	0,13	90 *	7,92	193 *	0,62	254 *	1,0	
25 *	0,76	93 *	0,55	201	0,33	257	< 0,4	
26	0,2	94	28,14	205	0,34	-		
32 *	2,12	97	4,1	218 *	0,26	-		
33	4,04	101	1~10	222	0,18	·		
34	5,58	108	<0,5	228	0,13			
			* Ejemplo de	e referencia				

Ejemplo experimental 2: efectos de protección al tratar hepatocitos y otras células de diversos tejidos con tBHP (hidroxiperóxido de terc-butilo; t-BuOOH)

1) Efecto protector al tratar hepatocitos primarios con tBHP

5

10

20

Los hepatocitos se aislaron con el mismo procedimiento que en el ejemplo experimental 1, se suspendieron en medio DMEM (Gibco+10% FBS+1X antibiótico) y se distribuyeron en la placa. Veinticuatro horas después de la distribución de los hepatocitos, los compuestos se diluyeron en serie en un factor 3 hasta una concentración final de 30, 10, 3, 1, 0,3, 0,1 µM, con la que las células se sometieron a tratamiento previo durante 30 minutos. Las células se trataron con tBHP en una concentración final de 300 µM y los efectos de protección se determinaron 1 hora después. Como en el ejemplo experimental 1, después de 1,5 horas de tratamiento con WST-1 (Takeda, 10 ul) se calcularon los valores EC₅₀ mediante medidas de la absorbancia a 440 nm con un SpectraMax (Molecular Device).

Preferentemente, el EC₅₀ del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos.

2) Efecto protector al tratar células pancreáticas (Linm5F) con tBHP

Con el fin de determinar el efecto de protección en células pancreáticas, células Linm5F, una clase de células beta, se distribuyeron en la placa de 96 pocillos en una cantidad de 2·10⁴ células/pocillo, y se incubó durante 24 horas. Los ejemplos de compuestos se diluyeron en serie en un factor 3 hasta una concentración final de 30, 10, 3, 1, 0,3,

0,1 μM, con la que cada pocillo fue tratado durante 1 hora. Las células se trataron en una concentración final de 400 μM y se incubaron durante otras 5 horas. Los efectos de protección se determinaron utilizando el método SRB (proteína sulforrodamina B), en el que se tiñe la cantidad total de proteína celular. En pocas palabras, las células se incubaron durante 5 horas, se añadieron 50 μl de solución de formaldehído al 4% a cada pocillo para fijar las células y éstas se conservaron durante aproximadamente 30 minutos a temperatura ambiente. Después de desechar el medio, cada pocillo se lavó con agua destilada 2-3 veces y la placa se secó en una estufa a 50°C. A cada pocillo se añadieron 50 μl de solución SRB y las placas se mantuvieron durante aproximadamente 30 minutos a temperatura ambiente. Después de retirar la solución de SRB, la placa se lavó con una disolución de ácido acético al 1% 2-3 veces. Después de secar la placa en una estufa a 50°C, se añadieron 100 μl de tris 10 mM para eluir la SRB que teñía la proteína intracelular. La absorbancia se midió a 590 nm y 650 nm utilizando SpectraMax y la absorbancia a 650 nm se restó de la absorbancia a 590 nm para calcular el valor EC₅₀.

Preferentemente, el EC $_{50}$ del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos. De forma representativa, el EC $_{50}$ del compuesto del ejemplo 14 era de 0,15 μ M, y el del compuesto del ejemplo de referencia 22 era de 0,20 μ M.

15 3) Efecto protector al tratar células cardíacas (H9C2, cardiomiocitos de rata blanca) con tBHP

Con el fin de evaluar el efecto de protección en células cardíacas, las células H9C2 se distribuyeron en una cantidad de 1,5·10⁴ células/pocillo y se incubaron durante 24 horas. Los ejemplos de compuestos se diluyeron en serie en un factor 3 hasta una concentración final de 30, 10, 3, 1, 0,3, 0,1 µM, con la que cada pocillo fue tratado durante 45 minutos. Las células se trataron con tBHP hasta una concentración final de 400 µM y se incubaron durante 2 horas. El efecto de protección de cada compuesto se determinó utilizando el mismo método de SRB que en las Linm5F del punto 2) arriba mostrado.

Preferentemente, el EC $_{50}$ del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos. Los valores EC $_{50}$ de los ejemplos de compuestos representativos son los siguientes: ejemplo de referencia 22: 0,17 μ M y ejemplo 85: 0,7 μ M.

25 4) Efecto protector al tratar células renales (LLC-PK1) con tBHP

10

20

30

55

Con el fin de determinar el efecto de protección en células renales, $4\cdot10^4$ células se distribuyeron en cada pocillo y se incubaron durante 24 horas. Las células se trataron con los ejemplos de compuestos en la concentración final de 30, 10, 3, 1, 0,3, 4,1 µM y se incubaron durante 30 minutos. Las células se trataron con tBHP 400 µM y se incubaron durante otras 6 horas. El efecto de protección de cada compuesto se determinó utilizando el mismo método de SRB que en las Linm5F del punto 2) arriba mostrado.

Preferentemente, el E C_{50} del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos.

- 5) Efecto protector al tratar condrocitos con tBHP
- 35 Con el fin de determinar el efecto protector en condrocitos, los condrocitos se aislaron de 2 patas traseras de ratas de 16 semanas de edad (peso corporal: 450 - 460 g). El método de aislamiento es el siguiente: se aisló cartílago de la zona de las rodillas de las patas traseras de las ratas y se transfirió a una placa 100 pi que contenía PBS (+1X antibiótico). La PBS se mantuvo a 4ºC en un baño de hielo. La PBS se cambió por otra fresca y se centrifugó a 1.000 rpm. Después de retirar la PBS, se añadieron 3 ml de 1X tripsina (Gibco) a una temperatura de 37°C y la mezcla se 40 trató durante 15 minutos. El sobrenadante se desechó después de una centrifugación y se lavó de nuevo con PBS. El sobrenadante se desechó después de centrifugación. Tras añadir 0,2% colagenasa (Worthington, tipo II), las células se aislaron mediante incubación durante una noche en una incubadora giratoria a 37ºC. La solución celular filtrada se centrifugó y se desechó el sobrenadante. Después de lavarlas con PBS, las células se suspendieron en 10 ml de DMEM/F-12 (Gibco, 10% FBS). En cada pocillo se distribuyeron 2·10⁴ células, que se incubaron durante 24 45 horas. Los ejemplos de compuestos se diluyeron en serie en un factor 3 hasta una concentración final de 30, 10, 3, 1, 0,3, 0,1 µM, con la que cada pocillo fue tratado durante 1 hora. Las células se trataron con tBHP en una concentración final de 500 µM y se incubaron durante 3 horas. El efecto de protección de cada compuesto se determinó utilizando el mismo método de tinción con SRB que en las Linm5F del punto 2) arriba mostrado.

Preferentemente, el EC $_{50}$ del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos.

6) Efecto protector al tratar células cerebrales (SK-N-MC) con tBHP

Con el fin de evaluar el efecto de protección en las células cerebrales, en las placas de 96 pocillos se distribuyeron 2·10⁴ células cerebrales utilizando medio DMEM (Gibco, 10% FBS) y se incubaron durante 24 horas. Los ejemplos de compuestos se diluyeron en serie en un factor 3 hasta una concentración final de 30, 10, 3, 1, 0,3, 0,1 µM, con la

que cada pocillo fue tratado durante 1 hora. Las células se trataron con tBHP en una concentración final de 400 μ M y se incubaron durante 6 horas. Luego se tomaron 50 μ l de medio de cada pocillo para efectuar el ensayo LDH (Promega). En el ensayo LDH, 50 ml de medio se mezclaron con 50 μ l de solución de ensayo. Después de 30 minutos de reacción a temperatura ambiente, la absorbancia se midió a 490 nm utilizando SpectraMax (Molecular Device).

Preferentemente, el E C_{50} del ejemplo de compuesto es de 30 μ M o menos, de forma especialmente preferente 10 μ M o menos y de forma particularmente preferente 1,0 μ M o menos. De forma representativa, el compuesto del ejemplo 4, por ejemplo, mostraba una actividad excelente en el presente experimento y su valor E C_{50} era 0,1 μ M o menos.

Aplicación industrial

5

10

15

Tal como demuestran los resultados arriba indicados, los nuevos compuestos de acuerdo con la presente invención no sólo muestran los efectos de protección hepática y mejoría de la función hepática, sino que también pueden ser útiles para la prevención y el tratamiento de enfermedades hepáticas crónicas, como hígado graso, fibrosis hepática, cirrosis hepática, etc. y enfermedades hepáticas agudas/crónicas, como hepatitis, etc. causadas por virus o fármacos. Los compuestos de la presente invención también muestran eficacia en la inhibición de la necrosis de células de páncreas, riñón, cerebro, cartílago y corazón.

Por consiguiente, los compuestos de la presente invención pueden ser útiles para la prevención y el tratamiento de la necrosis y enfermedades asociadas.

20 Los especialistas en la técnica tienen capacidad para llevar a cabo diversas aplicaciones y modificaciones sin salirse del alcance de la presente invención.

REIVINDICACIONES

1. Compuestos indol de la siguiente fórmula (1):

donde

5

15

25

35

45

n es un número del 0 al 3:

representa un heteroarilo o heterociclo de 5 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre N, O y S;

10 representa R5-X-B-X'-; R^1

> В representa un enlace directo o representa un heteroarilo o heterociclo de 3 ~ 10 miembros, en cada caso con 1 a 4 heteroátomos seleccionados entre N, O y S;

> X y X' representan, independientemente entre sí, un enlace directo o se seleccionan de entre el grupo consistente en -NR⁶-, -CO-, -CONR⁶-, -CO₂-, -OC(O)-, -S(O)₂-, -O-(CH₂)_m-, -(CH₂)_m-O-, -(CH₂)_m-, -NR⁶CO-, -(R⁶O)₂P(O)- y -NHCO₂-, siendo m un número del 0 al 3 y R⁶ representa hidrógeno, alquilo o cicloalquilo;

representa hidrógeno, nitrilo, hidroxilo, alquilo, haloalquilo, hidroxialquilo, cicloalquilo, arilo, o representa un heterociclo o heteroarilo monocíclico o cíclico fusionado de 3 ~ 10 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre N, O y S, y opcionalmente sustituido con oxo o alquilo; o

 R^{5} y R^{6} pueden formar juntos un ciclo de 4 ~ 8 miembros; R^{2} representa -($CR^{8}R^{9}$)_p-Y- R^{7} ; representa -(CR8R9)p-Y-R7; 20

es un número del 0 al 2;

R⁸ y R⁹ representan, independientemente entre sí, hidrógeno o alquilo o pueden formar juntos un ciclo de 4 ~ 8 miembros:

representa un enlace directo o se selecciona entre el grupo consistente en -O-, -NR⁶-, -NR⁶C(O)-, -C(O)-, -CO₂-, -C(O)NR⁶- y -S(O)_q-, siendo q un número del 0 al 2;

representa hidrógeno, halógeno, ciano, hidroxilo, nitro, alquilo, cicloalquilo o arilo, o representa un heterociclo o un heteroarilo de 3 ~ 10 miembros en cada caso con 1 a 3 heteroátomos seleccionados entre N, S y O, y que opcionalmente contiene oxo; R³ representa hidrógeno, alguilo, -(CH₂)

representa hidrógeno, alquilo, -(CH₂)_q-cicloalquilo o -(CH₂)_q-heterociclo;

 R^4 30 representa cicloalquilo, que opcionalmente contiene oxo.

> donde el alguilo, alcoxi, arilo, cicloalquilo, heterociclo y heteroarilo pueden estar opcionalmente sustituidos, y los sustituyentes son uno o más seleccionados de entre el grupo consistente en hidroxilo, halógeno, nitrilo, amino, alquilamino, dialquilamino, alquilo, haloalquilo, alquilsulfonilo, carboxialquilo, alquilcarboniloxi, alquiltío, alquiloxicarbonilo, alquilaminocarbonilo, arilalcoxi v oxo.

así como sales farmacéuticamente aceptables o isómeros ópticos (isómeros R o S), racematos, mezclas de diastereoisómeros o diastereoisómeros individuales de los mismos.

2. Compuestos según la reivindicación 1, caracterizados porque

40 es un número del 0 al 3;

Α representa un heteroarilo o heterociclo de 5 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre N, O y S;

 R^1 representa R5-X-B-X'-;

representa un enlace directo o representa un heteroarilo o heterociclo de 3 ~ 10 miembros, en cada caso con 1 a 4 heteroátomos seleccionados entre N, O y S;

X y X' representan, independientemente entre sí, un enlace directo o se seleccionan de entre el grupo consistente en -NR 6 -, -CO-, -CONR 6 -, -CO $_2$ -, -OC(O)-, -S(O) $_2$ -, -O-(CH $_2$) $_m$ -, -(CH $_2$) $_m$ -O-, -(CH $_2$) $_m$ -, -NR 6 CO-, -(R 6 O) $_2$ P(O)- y -NHCO $_2$ -, siendo m un número del 0 al 3 y R 6 representa hidrógeno, alquilo(C $_1$ -C $_6$) o cicloalquilo(C_3 - C_6);

50 representa hidrógeno, nitrilo, hidroxilo, alquilo(C_1 - C_6), haloalquilo(C_1 - C_6), hidroxialquilo(C_1 - C_6), cicloalquilo(C₄-C₆), fenilo o halofenilo, o representa un heterociclo o heteroarilo monocíclico o cíclico fusionado de 5 ~ 10 miembros, en cada caso con 1 a 3 heteroátomos seleccionados entre N, O y S, y opcionalmente sustituido con oxo o haloalquilo(C₁-C₆); o

 R^5 y R^6 pueden formar juntos un ciclo de 4 ~ 8 miembros; R^2 representa -(CR^8R^9)_p-Y- R^7 ;

es un número del 0 al 2;

5

10

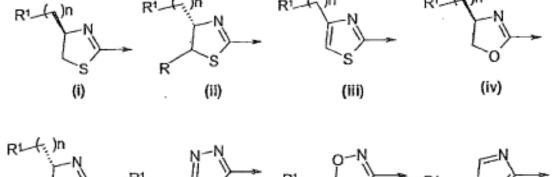
15

20

25

35

R⁸ y R⁹ representan, independientemente entre sí, hidrógeno o alquilo(C₁-C₆), o pueden formar juntos un ciclo de 5 ~ 6 miembros;

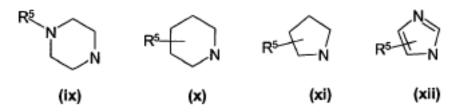

representa un enlace directo o se selecciona entre el grupo consistente en -O-, -NR⁶-, -NR⁶C(O)-, -C(O)-, $-CO_2$ -, $-C(O)NR^6$ - y $-S(O)_q$ -, siendo q un número del 0 al 2;

representa hidrógeno, halógeno, ciano, hidroxilo, alquilo (C_1-C_6) , hidroxialquilo (C_1-C_6) o haloalquilo(C₁-C₆), fenilo opcionalmente sustituido con alquil(C₁-C₆)sulfonilo, o representa un heterociclo o un heteroarilo de 5 ~ 6 miembros en cada caso con 1 a 3 heteroátomos seleccionados entre N y O;

 $representa\ hidr\'ogeno,\ alquilo(C_1-C_6),\ -(CH_2)-cicloalquilo(C_3-C_6)\ o\ -(CH_2)-heterociclo,\ siendo\ el$ R^3 heterociclo un ciclo de 5 ~ 6 miembros con 1 a 2 heteroátomos seleccionados entre N, O y S;

representa cicloalquilo(C₃-C₆) que opcionalmente contiene oxo.

3. Compuestos según la reivindicación 2, caracterizados porque A representa un ciclo representado por una de las siguientes fórmulas (i) a (viii):



donde n y R1 tienen el significado definido en la reivindicación 2 y R representa hidrógeno, o representa alquilo(C₁-C₄) opcionalmente sustituido con hidroxi o amino.

4. Compuestos según la reivindicación 3, caracterizados porque A se selecciona de entre el grupo consistente en 4.5-dihidrotiazol, tiazol, oxazolina, oxadiazol e isoxadiazol,

5. Compuestos según la reivindicación 2, caracterizados porque B representa un enlace directo, representa imidazol u oxadiazol, o representa un heterociclo de 5~6 miembros que tienen en cada caso de 1 a 2 heteroátomos seleccionados entre N v O.

30 6. Compuestos según la reivindicación 5, caracterizados porque B representa una estructura representada por una de las siguientes fórmulas (ix) a (xii):

donde R⁵ tiene el significado definido en la reivindicación 2.

7. Compuestos según la reivindicación 2, caracterizados porque X representa un enlace directo, o se selecciona entre el grupo consistente en -CO-, -CONR⁶-, -CO₂- -SO₂-, -(CH₂)_m- y -O-(CH₂)_m-, donde m es un número del 0 al 2 y R⁶ representa hidrógeno, alquilo(C₁-C₆) o cicloaquilo(C₃-C₆).

- **8.** Compuestos según la reivindicación 7, caracterizados porque X se selecciona de entre el grupo consistente en -CO-, -CONH-, -CO₂-, -SO₂- -(CH₂)₂-, -O- y -O-CH₂-.
- 9. Compuestos según la reivindicación 2, caracterizados porque X' representa un enlace directo, o se selecciona de entre el grupo consistente en -(CH₂)₂-, -NH-, -CO-, -CO₂- -CONH-, -S(O)₂-, -(R⁶O)₂P(O)-, -NHC(O)- y -NHCO₂-, teniendo R⁶ el significado definido en la reivindicación 2.
- Compuestos según la reivindicación 2, caracterizados porque R⁵ representa hidrógeno, nitrilo, hidroxilo, alquilo(C₁-C₆), haloalquilo(C₁-C₆), hidroxialquilo(C₁-C₆), cicloalquilo(C₄-C₆), fenilo o halofenilo, o representa un heterociclo monocíclico o cíclico fusionado de 5~9 miembros o un heteroarilo de 5~6 miembros, que tienen en cada caso de 1 a 3 heteroátomos seleccionados de entre el grupo consistente en N, O y S, y opcionalmente con oxo o trifluorometilo.
- Compuestos según la reivindicación 10, caracterizados porque R⁵ se selecciona de entre el grupo consistente en hidrógeno, nitrilo, hidroxilo, metilo, etilo, isopropilo, isobutilo, hidroximetilo, trifluorometilo, ciclobutilo, ciclopentilo, ciclohexilo, pirrolidina, piperidina, 2-oxopiperazina, 2-oxopirrolidina, tetrahidrofurano, tetrahidropirano, tetrahidrotiopirano, morfolina, furano, piridina, 1,3-pirazina, 1,1-dioxotiomorfolina, tetrazol, imidazol, pirazol y 3-trifluorometil-5,6,7,8-tetrahidro-2H-[1,2,4]triazolo[4,3-a]pirazina.
- Compuestos según la reivindicación 2, caracterizados porque R⁸ y R⁹ representan en cada caso hidrógeno.
 - 13. Compuestos según la reivindicación 2, caracterizados porque Y se selecciona de entre el grupo consistente en -O-, -NR⁶-, -NR⁶C(O)-, -C(O)-, -C(O)NR⁶- y -S(O)₂-, teniendo R⁶ el significado definido en la reivindicación 2.
- 25 **14.** Compuestos según la reivindicación 13, caracterizados porque Y se selecciona entre el grupo consistente en -O-, -NH-, -NHC(O)-, -SO₂- y -C(O)-.
- Compuestos según la reivindicación 2, caracterizados porque R⁷ representa hidrógeno, halógeno, hidroxilo, alquilo(C₁-C₆), hidroximetilo o haloalquilo(C₁-C₆), representa fenilo opcionalmente sustituido con alquil(C₁-C₆)sulfonilo, o representa un heterociclo o heteroarilo de 5~6 miembros que tienen en cada caso de 1 a 2 heteroátomos seleccionados entre N y O.
- 16. Compuestos según la reivindicación 15, caracterizados porque R⁷ se selecciona de entre el grupo consistente en hidrógeno, bromo, flúor, cloro, metilo, etilo, propilo, hidroximetilo, trifluorometilo, fenilo, 4-metilsulfonil-fenilo, piperidina, pirrolidina, furano, pirrol, pirazol y piridina.
 - 17. Compuestos según la reivindicación 2, caracterizados porque R³ representa hidrógeno, metilo o isobutilo.
- 18. Compuestos según la reivindicación 2, caracterizados porque R⁴ se selecciona de entre el grupo consistente en ciclopropilmetilo, ciclopentilmetilo, ciclobutilo, ciclopentilo, ciclobexilo, 4-metilciclohexilo, 4,4-difluorociclohexilo y 4-oxociclohexilo.
 - **19.** Compuestos según la reivindicación 2, caracterizados porque se seleccionan de entre los siguientes: ciclopentil-[2-(4,5-dihidro-1,3-tiazol-2-il)-1H-indol-7-il]-amina;
- 45 [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol;
 - [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
 - ácido [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
 - 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-etanol;
 - (R)-2-[7-ciclopentilamino-5-(hidroximetil)-1H-indol-2-il]-4,5-dihidrotiazol-4-il-metanol;
- 50 ácido [(S)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;

- ácido [(S)-2-(5-metil-7-(4,4-difluorociclohexan-4-il)amino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
- ácido [(S)-2-(5-metil-7-ciclobutilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético:
- ácido [(S)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
- [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-1,3-tiazol-4-il]metanol;
- [(R)-2-(5-(dimetilamino)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metanol;
 - [(R)-2-(5-(pirrol-3-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
 - [(R)-2-(5-(1,3-imidazol-1-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
 - [(R)-2-(5-(pirazol-1-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
 - [(R)-2-(5-acetilamino-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]-metanol;
 - acido [(R)-2-(5-fenoximetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]acético;
 - [(R)-2-(5-(pirrolidin-1-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
 - ciclopentil-[5-cloro-2-((R)-4-isobutil-4,5-dihidrotiazol-2-il)-1H-indol-7-il)-amina;
 - [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propanoato de etilo;
 - ciclopentil-[5-fluor-2-((R)-4-etil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]-amina;

```
{(R)-2-[7-(metilciclopentil)amino-5-fluor-1H-indol-2-il]-4,5-dihidro-1,3-tiazol-4-il}metanol;
                [(S)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
                ácido [(S)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
                [(S)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol:
 5
                [(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]carboxilato de etilo;
                ácido [(S)-2-(5-fenoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
                [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
                [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etanol;
                [(R)-2-(5-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-metanol;
                [(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-metanol;
10
                [(R)-2-(5-(piridin-3-il)oxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
                [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]metanol;
                [(R)-2-(5-(isoindol-1,3-dion-2-il)metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
                ácido I(R)-2-(3-bromo-7-ciclopentilamino-1H-indol-2-il)-4.5-dihidrotiazol-4-illacético:
15
                ácido [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
                [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de etilo;
                [(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etanol;
                ácido [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
                [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de etilo;
                [(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
20
                ácido [(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
                ácido [(R)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
                ácido [(R)-2-(5-propiloxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-illacético:
                ácido [(R)-2-(5-fenoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
                [(R)-2-(5-(piridin-3-il)oxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
25
                ácido [(R)-2-(5-(piridin-3-il)oxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]acético;
                [(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
                ácido [(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-acético;
                ácido [(R)-2-(5-(4-(metanosulfonil)fenoxi)-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acético;
30
                I(R)-2-(5-fenoximetil-7-ciclopentilamino-1H-indol-2-il)-4.5-dihidrotiazol-4-ill-acetato de metilo:
                [(R)-2-(5-fenilaminometil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]acetato de metilo;
                [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]acetato de metilo;
                ácido [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4.5-dihidrotiazol-4-il]acético;
                [(R)-2-(5-metanosulfonilmetil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etanol;
                [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-etil-acetamida;
35
                ácido 3-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,3-dihidrotiazol-4-il]propiónico;
                [(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propanol;
                3-[(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propionato de etilo;
                ácido 3-[(R)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
40
                ácido 3-[(R)-2-(5-fenoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
                3-[(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propionato de etilo;
                ácido 3-[(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
                3-[(R)-2-(5-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propionato de etilo;
                ácido 3-[(R)-2-(5-bromo-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
45
                ácido 3-[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propiónico;
                ácido 3-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico:
                3-[(R)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-propionato de etilo;
                ácido 3-[(R)-2-(5-etoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
                3-[(R)-2-(5-trifluorometoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propionato de etilo;
                ácido 3-[(R)-2-(5-trifluorometoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propiónico;
50
                ácido [(S)-2-(5-metil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrooxazol-4-il]-acético;
                ácido [(S)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrooxazol-4-il]-acético;
                [2-((4S,5R)-5-aminometil-4-bencil-dihidrooxazol-2-il)-5-cloro-1H-indol-7-il]-ciclopentilamina;
                {2-[(R)-5-((S)-1-amino-2-feniletil)-4,5-dihidrooxazol-2-il]-5-cloro-1H-indol-7-il]ciclopentilamina;
55
                ciclopentil-[2-(4,5-dihidrooxadiazol-2-il)-1H-indol-7-il]-amina;
                [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]metanol;
                [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-5-il]metanol;
               [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]carboxilato de etilo;
                ácido [2-(5-metil-7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]carboxílico;
60
                [2-(7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]metanol;
                [2-(7-ciclopentilamino-1H-indol-2-il)tiazol-4-il]carboxilato de metilo;
                2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-morfolin-4-il-etanona;
                2-I(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etilamino-etanona;
                2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)propilamino-etanona;
                2-I(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4.5-dihidrotiazol-4-ill-1-metilamino-etanona:
65
                2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-dimetilamino-etanona;
```

```
2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-[4-(metil)piperazin-1-il]etanona;
                2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(3-dimetilaminopirrolidin-1-
                il)etanona:
                2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(piperidin-4-il)etanona;
 5
                2-I(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(4-(metil)piperazin-1-il)etanona;
                2-I(R)-2-(5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etilamino-etanona;
                2-I(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(metilamino)-4-il-etanona;
                2-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)-etanona;
                2-[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-metilamino-etanona;
                2-[(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etanona;
10
                2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(morfolin-4-il)etilamino-etanona; 2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-1-(4-(metil)piperazin-1-il)etanona;
                ciclopentil-{5-metanosulfonilmetil-2-[(R)-4-(2-morfolin-4-il-etil)-4,5-dihidro-tiazol-2-il]-1H-indol-7-il}-amina;
                1-(4-{2-I(R)-2-(7-ciclopentilamino-5-metanosulfonilmetil-1H-indol-2-il)-4.5-dihidrotiazol-4-illetil\piperazin-1-
15
                il)etanona:
                ciclopentil-[2-((R)-4-pirrolidin-1-ilmetil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]-amina;
                {5-cloro-2-I(R)-4-(2-dimetilaminoetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina;
                 {5-cloro-2-[(R)-4-(2-piperazin-1-iletil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}ciclopentilamina;
                (5-cloro-2-{(R)-4-[2-(4-etanosulfonil-piperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                 1-(4-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)-2-
20
                hidroxietanona:
                {5-cloro-2-[(R)-4-(2-pirazol-1-il-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina;
                                   (S)-1-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidro-tiazol-4-il]etil}pirrolidin-2-
                 ácido
                carboxílico;
25
                {5-cloro-2-[(R)-4-(2-metanosulfonil-etil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-ciclopentilamina;
                3-{2-[(R)-2-(3-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-5-metil-3H-imidazol-4-
                carboxilato de etilo:
                ácido
                           3-{2-[(R)-2-(5-cloro-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-5-metil-3H-imidazol-4-
                carboxílico:
30
                ciclopentil-{2-[(R)-4-(2-metoxietil)-4.5-dihidrotiazol-2-il]-1H-indol-7-il}-amina:
                [2-((R)-4-aminometil-4,5-dihidrotiazol-2-il)-1H-indol-7-il]ciclopentilamina;
                {2-[(R)-4-((R)-3-aminopirrolidin-1-iletil)-4,5-dihidrotiazol-2-il]-5-cloro-1H-indol-7-il}ciclopentilamina;
                4-[(R)-2-(7-ciclopentilamino-5-etoxi-1H-indol-2-il)-4,5-dihidrotiazol-4-iletil]-piperazin-2-ona:
                {2-[(R)-4-((S)-3-aminopirrolidin-1-iletil)-4,5-dihidrotiazol-2-il]-5-cloro-1H-indol-7-il}ciclopentilamina;
                (5-cloro-2-{($)-4-[2-(3-dimetilamino-fenil)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
35
                 1-(4-{2-[(S)-2-(7-ciclopentilamino-5-cloro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)etanona;
                 1-(4-{2-[(S)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)etanona;
                 (5-metoxi-2-{(R)-4-[2-(pirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
                (5-metanosulfonilmetil-2-{(S)-4-[(2-oxopiperazin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
40
                 1-(4-{2-[(R)-2-(7-ciclopentilamino-5-cloro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-2-il)etanona;
                 (5-cloro-2-{(R)-4-[4-metilpiperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-IH-indol-7-il)ciclopentilamina;
                 (5-cloro-2-{(R)-4-[4-(hidroxi)piperidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                 (5-cloro-2-{(R)-4-[2-oxopiperazin-4-il)-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                 (5-cloro-2-{(R)-4-[(piperidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
45
                (5-cloro-2-{(R)-4-[(1,1-dioxotiomorfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                (5-cloro-2-{(R)-4-[(2-oxopirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                 (5-fluor-2-{(R)-4-(2-aminoetil)-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
                 1-(4-{2-[(R)-2-(5-fluor-7-ciclopentilamino)-1H-indol-2-il)-4.5-dihidrotiazol-4-il]etil}piperazin-1-il)-2-
                hidroxietanona:
                 (5-fluor-2-{(R)-4-[(morfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
50
                 (5-fluor-2-{(R)-4-(2-dimetilaminoetil)-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                (5-fluor-2-{(R)-4-[(pirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                 (5-fluor-2-{(R)-4-[(1,1-dioxotiomorfolin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                (5-fluor-2-{(R)-4-[(2-oxopirrolidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
                 1-(4-{2-](5-fluor-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}-piperazin-1-il)-2-hidroxietanona;
55
                 (5-fluor-2-{(R)-4-[metanosulfonil-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                 (2-{(R)-4-[2-dimetilaminoetil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                (2-{(R)-[(piperidin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina:
                 1-(4-{2-I(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)-2-
60
                hidroxietanona;
                 1-(4-{2-[(R)-2-(7-ciclopentilamino)-5-cloro-1H-indol-2-il)-4,5-dihidrotiazol-4-il]propil}piperazin-1-il)etanona,
                2-{(R)-4-[(morfolin-4-il)metil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentil-amina;
                (5-cloro-2-{(R)-4-[(morfolin-4-il)-propil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-ciclopentilamina;
                (2-{(R)-4-[2-dimetilamino-metil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
                (5-cloro-2-{(S)-4-[(morfolin-4-il)etil]-4,5--dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
65
```

```
1-(4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)-2-
               hidroxietanona:
               (5-fenoxi-2-{(S)-4-[(piperazin-1-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]-etil}-piperazin-1-carboxilato de t-
 5
               ciclopentil-(5-fenoxi-2-{(S)-4-[2-(3-fluorometil-5,6-dihidro-8H-[1,2,4]triazolo-[4,3-a]pirazin-7-il)etil]-4,5-
               dihidrotiazol-2-il}-1H-indol-7-il)-amina;
               (5-fenoxi-2-{(S)-4-[2-oxopiperazin-4-il)-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)oxoran-2-il-
               metanona:
10
               (5-fenoxi-2-{(S)-4-[(piridin-2-il)piperazinetil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (5-fenoxi-2-i(S)-4-i(2-fluorofenil)piperazinetil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (5-cloro-2-{(S)-4-[2-oxopiperazin-4-il)etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (5-fenoxi-2-{(S)-4-[(3S)-3-(amino)pirrolidin-1-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               1-(4-{2-[(S)-2-(5-fenoxi-7-ciclopentilamino)-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)etanona;
15
               (5-cloro-[(S)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il])pirrolidin-3-il-acetamida;
               (5-fenoxi-2-{(S)-4-[4-(bencil)piperazin-1-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (5-fenoxi-2-{(R)-4-[pirrolidin-1-iletil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (5-fenoxi-2-{(S)-4-[pirrolidin-1-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)ciclopentilamina;
               (5-metil-2-{($)-4-[2-oxopiperazin-4-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-4,4-difluorociclohexilamina;
20
               (5-metil-2-{(S)-4-[morfolin-4-il-etil]-4,5-dihidrotiazol-2-il}-1H-indol-7-il)-4,4-difluorociclohexilamina;
               1-(4-{2-[(R)-2-(5-metoxi-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]etil}piperazin-1-il)-2-
               hidroxietanona:
               [(R)-2-(5-aminometil-7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-il]metanol;
               [7-ciclopentilamino-2-((R)-4-hidroximetil-4,5-dihidrotiazol-2-il)-1H-indol-5-ilmetil]amida de ácido furan-2-
25
               carboxílico:
               [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetoxilacetato de metilo;
               ácido [(R)-2-(7-ciclopentilamino-1H-indol-2-il)-4,5-dihidrotiazol-4-ilmetoxi]-acético;
               ciclopentil-{2-[(R)-4-(3-ciclopentil-[1,2,4]oxadiazol-5-ilmetil)-4,5-dihidrotiazol-2-il]-1H-indol-7-il}-amina; y
30
               ciclopentil-{2-[(R)-4-(3-piperidin-1-il-[1,2,4]oxadiazol-5-ilmetil)-4,5-dihidro-tiazol-2-il]-1H-indol-7-il}-amina.
      20.
               Composición para la prevención o el tratamiento de la necrosis y enfermedades asociadas con la necrosis,
               que comprende una cantidad terapéuticamente eficaz de los compuestos de fórmula (1), sales o isómeros
               ópticos (isómeros R o S) farmacéuticamente aceptables, racematos, mezclas de diastereoisómeros o
               diastereoisómeros individuales de los mismos tal como se definen en la reivindicación 1 como ingrediente
35
               activo, junto con vehículos o diluyentes farmacéuticamente aceptables.
      21.
               Composición según la reivindicación 20, caracterizada porque la necrosis y las enfermedades asociadas
               con la necrosis se seleccionan de entre el grupo consistente en enfermedades hepáticas agudas/crónicas.
               enfermedades
                                neurodegenerativas,
                                                         enfermedades
                                                                           isquémicas,
                                                                                          diabetes,
                                                                                                       pancreatitis.
40
               bacteriana/vírica, procolitis necrosante, fibrosis quística, artritis reumatoidea,
                                                                                                       artritis degenerativa,
               nefropatías, infecciones bacterianas, infecciones víricas, esclerosis múltiple, leucemia, linfoma, síndrome de
               insuficiencia respiratoria neonatal, asfixia, tuberculosis, endometriosis, angiastenia, psoriasis, sabañones,
               complicaciones por tratamiento con esteroides, gangrena, llagas por presión, hemoglobinuria, quemaduras,
               hipertermia, enfermedad de Crohn, enfermedad celíaca, síndrome compartimental, lesiones de la médula
45
               espinal, glomerulonefritis, distrofia muscular, enfermedades metabólicas hereditarias, enfermedades
               micoplasmáticas, ántrax, enfermedad de Andersen, enfermedad mitocondrial congénita, fenilcetonuria,
               infarto placentario, sífilis y necrosis aséptica.
      22.
               Composición según la reivindicación 20, caracterizada porque la necrosis y las enfermedades asociadas
50
               con la necrosis están causadas por fármacos y sustancias tóxicas y seleccionándose éstas de entre el
               grupo consistente en la necrosis asociada con el alcoholismo. la exposición a la v/o la administración v/o la
               autoadministración de cocaína, fármacos, antibióticos, agentes anticancerosos, adriamicina, puromicina,
               bleomicina, AINS, ciclosporina, toxinas químicas, gas tóxico, productos agroquímicos, metales pesados, o
               lesiones debidas a la exposición a radiactividad/UV y necrosis asociada con la misma.
55
      23.
               Composición según la reivindicación 20, para la protección hepática, la mejoría de la función hepática y la
               prevención o el tratamiento de enfermedades hepáticas.
               Composición según la reivindicación 23, caracterizada porque la enfermedad hepática se selecciona de
      24.
60
               entre el grupo consistente en trasplantes de hígado, hígado graso alcohólico o no alcohólico, fibrosis
               hepática, cirrosis hepática y hepatitis causada por virus o fármacos.
```

67

Composición según la reivindicación 23, caracterizada porque la enfermedad hepática es enfermedad

25.

65

hepática alcohólica aguda/crónica.

- **26.** Composición según la reivindicación 23, caracterizada porque la enfermedad hepática es hígado graso inducido por ácidos grasos o en enfermedades hepáticas agudas/crónicas derivadas del hígado graso.
- **27.** Composición según la reivindicación 23, caracterizada porque la enfermedad hepática está mediada por especies de oxígeno reactivo (ROS).
 - **28.** Composición según la reivindicación 23, caracterizada porque la enfermedad hepática está mediada por metales pesados.
- 29. Composición según la reivindicación 20, caracterizada porque se co-administra junto con agentes profilácticos o terapéuticos para la necrosis y enfermedades asociadas a la necrosis producidas por fármacos.
- 30. Composición según la reivindicación 29, caracterizada porque los agentes profilácticos o terapéuticos para la necrosis y enfermedades asociadas a la necrosis producidas por fármacos se seleccionan de entre el grupo consistente en antibióticos, agentes anticancerosos, agentes antivirales, antiinfecciosos, agentes antiinflamatorios, anticoagulantes, agentes mejoradores de lípidos, inhibidores de la muerte celular, agentes antihipertensivos, agentes antidiabéticos/antiobesidad, agentes terapéuticos para enfermedades cardiovasculares, agentes terapéuticos para enfermedades neurodegenerativas, agentes antienvejecimiento y agentes terapéuticos para enfermedades metabólicas.
 - **31.** Composición según la reivindicación 23, caracterizada porque se co-administra conjuntamente con agentes seleccionados de entre el grupo consistente en promotores de la regeneración de hepatocitos, adyuvantes funcionales hepáticos, agentes antivirales, inmunosupresores e inhibidores de la fibrosis.
- **32.** Composición según la reivindicación 21, caracterizada porque la enfermedad neurodegenerativa es demencia, enfermedad de Parkinson o enfermedad de Huntington.

- 33. Composición según la reivindicación 21, caracterizada porque la enfermedad isquémica es enfermedad cardíaca, lesión por reperfusión, ataque de isquemia o lesión isquémica.
 - **34.** Composición según la reivindicación 21, caracterizada porque la diabetes está provocada por sustancias destructoras de las células pancreáticas, complicaciones diabéticas o enfermedades vasculares diabéticas.
- **35.** Composición según la reivindicación 34, caracterizada porque la diabetes está mediada por virus, hiperglucemia, ácidos grasos, dieta, toxinas o estreptozotocina.
- Método para preparar una composición para la prevención o el tratamiento de necrosis o enfermedades asociadas a la necrosis, que incluye el paso de mezclar los compuestos de fórmula (1), sales o isómeros ópticos (isómeros R o S) farmacéuticamente aceptables, racematos, mezclas de diastereoisómeros o diastereoisómeros individuales de los mismos, tal como se definen en la reivindicación 1, como ingrediente activo, junto con vehículos farmacéuticamente aceptables.