

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 428 547

61 Int. Cl.:

H04L 12/46 (2006.01) H04L 12/24 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 27.10.2008 E 08832773 (9)
 (97) Fecha y número de publicación de la concesión europea: 24.07.2013 EP 2135392

(54) Título: Gestión de fallo de conectividad en el dominio de la Ingeniería del Tráfico de Puente de Red Troncal de Proveedor (PBB-TE)

(30) Prioridad:

01.11.2007 US 984572 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **08.11.2013**

(73) Titular/es:

TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) (100.0%)
164 83 Stockholm, SE

(72) Inventor/es:

SALTSIDIS, PANAGIOTIS

4 Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Gestión de fallo de conectividad en el dominio de la Ingeniería del Tráfico de Puente de Red Troncal de Proveedor (PBB-TE).

Campo técnico

La presente invención se refiere a las redes de telecomunicaciones. Más específicamente, y sin limitación, la invención se dirige a un sistema y método para proporcionar Gestión de Fallo de Conectividad (CFM – Connectivity Fault Management, en inglés) en redes de telecomunicaciones de Ingeniería del Tráfico de Puente de Red Troncal de Proveedor (PBB-TE – Provider Backbone Bridge - Traffic Engineering, en inglés) que utilizan transporte de paquetes basado en Ethernet.

10 Antecedentes

Las abreviaturas siguientes se utilizan en todo este documento:

B-BEB	Componente B de un Puente de Borde de Red Troncal	B-component of a Backbone Edge Bridge, en inglés
ССМ	Mensaje de Comprobación de Continuidad	Continuity Check Message, en inglés
CFM	Gestión de Fallo de Conectividad	Connectivity Fault Management, en inglés
СВР	Puerto de Red Troncal de Abonado	Customer Backbone Port, en inglés
ESP	Ruta de Conmutación de Ethernet	Ethernet Switched Path, en inglés
IEEE	Instituto de Ingenieros Eléctricos y Electrónicos	Institute of Electrical and Electronics Engineers, en inglés
I-SID	Identificador de Instancia de Servicio de Red Troncal	Backbone Service Instance Identifier, en inglés
LAN	Red de Área Local	Local Area Network, en inglés
LBM/LBR	Mensaje de Bucle de Retorno / Respuesta de Bucle de Retorno	Loopback Message/Loopback Reply, en inglés
LTM/LTR	Mensaje de Traza de Enlace / Respuesta de Traza de Enlace	Linktrace Message/Linktrace Reply, en inglés
MAC	Control de Acceso a Medios	Media Access Control, en inglés
MEP	Punto de Extremo de Asociación de Mantenimiento	Maintenance association End Point, en inglés
MIP	Punto Intermedio de Asociación de Mantenimiento	Maintenance association Intermediate Point, en inglés
MP	Punto de Mantenimiento	Maintenance Point (MEP o MP), en inglés
PBB	Puente de Red Troncal de Proveedor	Provider Backbone Bridge, en inglés
PBBN	Red con Puente de Red Troncal de Proveedor	Provider Backbone Bridged Network, en inglés
PBB-TE	Ingeniería del Tráfico de Puentes de Red Troncal de Proveedor	Provider Backbone Bridges Traffic Engineering, en inglés
PIP	Puerto de Instancia de Proveedor	Provider Instance Port, en inglés
SAP	Punto de Acceso a Servicio	Service Access Point, en inglés
TLV	Tipo, Longitud, Valor	Type, Length, Value, en inglés
VID	Identificador de VLAN	VLAN Identifier, en inglés

Ethernet se ha convertido en la tecnología líder indiscutible de la Red de Área Local (LAN – Local Area Network, en inglés). Este logro parte de las características intrínsecas de la tecnología: simple, barata, fácil de gestionar y compatible con lo anterior.

Los operadores y portadores de telecomunicación están mirando hacia la posibilidad de obtener los mismos beneficios reemplazando la infraestructura de SONET/SDH de sus redes de metro y troncal con una infraestructura

de transporte de paquetes basada en Ethernet, puesto que los servicios de datos ahora tienen en cuenta el volumen de tráfico. No obstante, las redes de metro y troncal tienen requisitos muy diferentes a las LANs de empresa. En consecuencia, la tecnología de Ethernet requiere mejoras específicas si tiene que cumplir estos requisitos de grado de portador. El trabajo actual llevado a cabo en el Instituto de Ingenieros Eléctricos y Electrónicos (IEEE – Electrical and Electronics Engineers, en inglés) en los conceptos de Ingeniería del Tráfico de Red Troncal de Proveedor (PBB-TE - Provider Backbone Bridge Traffic Engineering, en inglés) está previsto para corregir el estándar 802.1 Q de Ethernet para proporcionar una verdadera solución de transporte de paquetes de grado de portador basado en Ethernet. (Véase, el estándar P802.1Q – 2006/D0.1 del IEEE, Estándar Borrador del IEEE para Redes de Área Local y Metropolitana: Redes de Área Local con Puentes Virtuales: Virtual Bridged Local Area Network, en inglés).

La PBB-TE (es decir, P802.1Qay/D0.0 del IEEE, Draft Standard for Local and Metropolitan Area Networks – Virtual Bridged Local Area Networks – Amendment ?: Provider Backbone Bridges – Traffic Engineering, Mayo de 2007) propone una solución simple, orientada a la conexión. La PBB-TE mantiene las ventajas inherentes a la Ethernet, al tiempo que soluciona las deficiencias de la Ethernet como protocolo de transporte de paquetes de clase de portador. Se basa en los conceptos establecidos en las enmiendas al 802.1Q del IEEE para proporcionar una solución escalable, principalmente la separación de red del PBB en el P802.1ah/D3.8 del IEEE, Draft Standard for Local and Metropolitan Area Networks – Virtual Bridged Local Area Networks – Amendment ?: Provider Backbone Bridges, Octubre de 2007.

La Gestión de Fallo de Conectividad (CFM – Connectivity Fault Management, en inglés) es un componente muy importante en la mejora de la Ethernet con funcionalidad de grado de portador. El IEEE ha especificado parámetros, procedimientos y objetos gestionados para soportar la gestión del fallo de conectividad. (Véase, P802.1ag/D8.1 del IEEE, Approved Standard for Local and Metropolitan Area Networks – Virtual Bridged Local Area Networks – Amendment 05: Connectivity Fault Management, Junio de 2007). Estos protocolos, procedimientos y objetos gestionados permiten el descubrimiento y la verificación de la ruta, a través de puentes, y LANs (tomados para tramas dirigidas a y desde usuarios de la red específicada) así como la detección de un fallo de conectividad y aislamiento del fallo a un puente o LAN específicos.

El documento "IEEE 802.1Qay" por Panagiotos Saltsidis; Ericsson XP002524314 describe una topología en la que las ESPs están encaminadas por la PBB-TE a lo largo de un árbol seleccionado por el identificador de la VLAN hasta la dirección de destino.

El documento "Surpass hiD 6600 – metro Ethernet deployment with Siemens PBB-TE" describe dónde comparten las ESPs la misma dirección de fuente y dirección de destino pero tienen diferentes identificadores de VLAN.

Compendio

20

25

30

35

40

El protocolo de CFM original, no obstante, fue diseñado para monitorizar los mejores servicios de Ethernet. El dominio de la PBB-TE requiere un mayor nivel de calidad, y en consecuencia, la aplicación directa del protocolo de CFM original al dominio de la PBB-TE no funciona. Se requieren mejoras a la especificación de CFM original con el fin de generalizar sus mecanismos originales de manera que sean aplicables a los servicios de PBB-TE.

La especificación de CFM actual permite la configuración de Asociaciones de Mantenimiento (MAs – Maintenance Associations, en inglés) que pueden monitorizar instancias de servicio tales como las tradicionales instancias de servicio de VLAN o las instancias de servicio de red troncal basadas en los identificadores de VLAN (VIDs – VLAN Identifiers, en inglés) o en los Identificadores de Instancia de Servicio de Red Troncal (I-SIDs), respectivamente. Estos servicios y las MAs de monitorización correspondientes se distinguen basándose en sus VIDs o sus I-SIDs. En el caso de la PBB-TE, no obstante, un solo parámetro ya no puede identificar de manera única un servicio de PBB-TE. En particular, los I-SIDs no son visibles dentro de un dominio de PBB-TE, y los parámetros VID no son únicos porque pueden ser reutilizados por instancias de servicio de PBB-TE independientes.

Eso se resuelve mediante las realizaciones de esta memoria de acuerdo con las reivindicaciones 1, 11 y 15.

La presente invención proporciona una manera consistente de identificar servicios de punto a punto y de punto a multipunto de PBB-TE; proporciona una metodología para asignar una dirección a los Puntos de Mantenimiento (MPs – Maintenance Points, en inglés) asociados a la PBB-TE; mejora los MPs tales como los Puntos de Extremo de asociación de Mantenimiento (MEPs – Maintenance association End Points, en inglés) y los Puntos intermedios de Mantenimiento (MIPs – Maintenance association Intermediate Points, en inglés) con funcionalidad adicional de desmultiplexación de PBB-TE para identificar instancias de servicio de PBB-TE independientes; y proporciona mejoras a los protocolos de CFM básicos (es decir, protocolos de Comprobación de Continuidad, de Bucle de Retorno y de Traza de Enlace), permitiendo con ello el mismo comportamiento que el experimentado por su operación sobre MAs basadas en VLAN tradicionales.

En una realización, la presente invención se dirige a un método para proporcionar CFM en una red de telecomunicación de PBB-TE que utiliza transporte de paquetes basado en Ethernet. El método incluye las etapas de identificar servicios de punto a punto y de punto a multipunto de PBB-TE; asignar una dirección a los puntos de mantenimiento de PBB-TE asociados con los servicios de PBB-TE identificados; modificar los puntos de

mantenimiento de PBB-TE a los que se les ha asignado una dirección añadiendo a cada punto de mantenimiento de PBB-TE un Desmultiplexador de Servicio de PBB-TE para identificar instancias de servicio de PBB-TE independientes; y mejorar los protocolos de CFM básicos para duplicar el comportamiento de los protocolos de CFM en asociaciones de mantenimiento basadas en VLAN. Los puntos de mantenimiento de PBB-TE pueden incluir MEPs y MIPs.

En otra realización, la presente invención se dirige a un sistema para proporcionar CFM en una red de telecomunicación de PBB-TE que utiliza transporte de paquetes basado en Ethernet. El sistema incluye un punto de mantenimiento de PBB-TE, que incluye un Desmultiplexador de Servicio de PBB-TE para identificar instancias de servicio de PBB-TE independientes. El sistema también incluye un medio para asignar una dirección al punto de mantenimiento de PBB-TE; y protocolos de CFM mejorados adaptados para duplicar el comportamiento de los protocolos de CFM o de las asociaciones de mantenimiento basadas en VLAN. El punto de mantenimiento de PBB-TE puede ser un MEP o un MIP.

En otra realización, la presente invención se dirige a un punto de mantenimiento de PBB-TE para proporcionar CFM en una red de telecomunicación de PBB-TE que utiliza transporte de paquetes basado en Ethernet. El punto de mantenimiento de PBB-TE incluye un Desmultiplexador de Servicio de PBB-TE que identifica instancias de servicio de PBB-TE independientes; y un medio para operar protocolos de CFM mejorados adaptado para duplicar el comportamiento de los protocolos de CFM o de asociaciones de mantenimiento basadas en VLAN. El punto de mantenimiento de PBB-TE puede ser un MEP o un MIP.

Breve descripción de los dibujos

5

10

15

- 20 En lo que sigue, se describirán con detalle las características esenciales de la invención mostrando realizaciones preferidas, con referencia a las figures adjuntas, en las cuales:
 - la FIG. 1 es un diagrama de flujo que ilustra las etapas de una realización de ejemplo del método de la presente invención:
- la FIG. 2 es un diagrama de bloques simplificado de una red de componentes B de Puentes de Borde de Red Troncal (B-BEBs – B components of Backbone Edge Bridges, en inglés) que ilustra dos Rutas de Conmutación mediante Ethernet (ESPs – Ethernet Switched Paths, en inglés) independientes que utilizan el mismo VID;
 - la FIG. 3 es un diagrama de bloques simplificado de un Punto de Extremo de asociación de Mantenimiento (MEP Maintenance association End Point, en inglés) modificado en una realización de ejemplo de la presente invención;
- la FIG. 4 es un diagrama de bloques simplificado de una Función Medio (MHF Half Function, en inglés) de un 30 Punto Intermedio de asociación de Mantenimiento (MIP – Maintenance association Intermediate Point, en inglés) modificado en una realización de ejemplo de la presente invención; y
 - la FIG. 5 es un diagrama de flujo que ilustra las etapas de un método de ejemplo de mejorar protocolos de CFM de acuerdo con las enseñanzas de la presente invención.

Descripción detallada

- La FIG. 1 es un diagrama de flujo que ilustra las etapas de una realización de ejemplo del método de la presente invención. La invención proporciona CFM en redes de telecomunicación de PBB-TE que utilizan transporte de paquetes basado en Ethernet. En la etapa 11, se identifican servicios de punto a punto y de punto a multipunto de PBB-TE. En la etapa 12, a los puntos de mantenimiento de PBB-TE asociados con los servicios de PBB-TE identificados se les asigna una dirección. En la etapa 13, los puntos de mantenimiento de PBB-TE a los que se les ha asignado una dirección son modificados añadiendo desmultiplexadores de PBB-TE, los cuales identifican instancias de servicio de PBB-TE independientes. En la etapa 14, los protocolos de CFM se mejoran para duplicar el comportamiento que los protocolos de CFM muestran en las asociaciones de mantenimiento basadas en VLAN tradicionales.
- La PBB-TE reemplaza el plano de control de MSTP con un plano de gestión o un plano de control externo y a continuación rellena las tablas de filtrado de puentes de los repetidores de Puente del componente 802.1 ad y 802.1 ah creando entradas de tablas de filtrado estáticas. El plano de gestión/control de PBB-TE externo es responsable de mantener y controlar toda la información de topología para soportar Rutas de Conmutación por Ethernet (ESPs Ethernet Switched Paths, en inglés) unidireccionales de punto a punto o de punto a multipunto sobre la Red con Puentes de Red Troncal de Proveedor (PBBN Provider Backbone Bridged Network, en inglés). El plano de gestión/control se utiliza para configurar las Entradas de Filtrado Estático en los puentes de PBB y de esta manera crear una ruta de conexión dentro de una PBBN.

Cada una de tales ESP unidireccionales está identificada por una 3-tupla <ESP-MAC-DA, ESP-MAC SA, ESP-VID>. En una realización, la ESP-MAC DA identifica la Dirección de Destino (DA – Destination Address, en inglés) del Puerto de Instancia de Proveedor (PIP – Provider Instance Port, en inglés). La ESP-MAC SA es la dirección de

fuente (SA – Source Address, en inglés), es decir, la dirección del PIP que encapsula la instancia de servicio del abonado en una instancia de servicio de Red Troncal identificada por el valor I-SID. El ESP-VID es el identificador de VLAN relativo al servicio. El ESP-VID sólo puede tomar valores que estén asignados al dominio de la PBB-TE identificados mediante un Identificador de Instancia de Árbol de Alcance Múltiple (MSTID – Multiple Spanning Tree Instance Identifier, en inglés) especial.

En otra realización, el ESP-VID para un MEP dado tiene un valor del parámetro ESP-VID que identifica a una ESP de componente que tiene la dirección de MAC del MEP dado como su parámetro de dirección de fuente ESP-MAC, y la dirección de MAC de un MEP dado es la dirección de MAC del Puerto de Red Troncal de Abonado, CBP (Customer Backbone Port, en inglés), y el Puerto de Instancia del Proveedor, PIP (Provider Instance Port, en inglés), la dirección de MAC se hace igual a la dirección de MAC del puerto de CPB conectado.

Las dos realizaciones anteriores resultan en tener direcciones de MAC del PIP iguales a las direcciones de MAC del CBP para los puertos conectados de PIP/CBP.

Una instancia de servicio de PBB-TE de punto a punto (PtP – Point to Point, en inglés) (PBB-TE trunk – Conferencia de PBB-TE, en inglés) es identificada mediante un par de ESPs unidireccionales conjuntamente encaminadas y de manera correspondiente mediante un par de 3-tuplas:

<DA1, SA1, VID1>

5

10

15

35

<SA1, DA1, VID2>

Los identificadores de la VLAN (VID1 y VID2) pueden ser los mismos o en el caso genérico pueden ser diferentes.

Una instancia de servicio de PBB-TE de Punto a Multipunto (PtMP – Point to Multipoint, en inglés) es identificada por una ESP de multidifusión de multipunto más n ESPs unidireccionales encaminadas a lo largo de las hojas de la ESP de multidifusión y de manera correspondiente mediante n+1 3-tuplas:

<MDA, SA, VID>

<SA, SA1, VID1>

<SA, SA2, VID2>

25 <SA, SAn, VIDn>

La DA de Multidifusión (MDA – Multicast Destination Address, en inglés) identifica una lista de direcciones de MAC {SA1, SA2,...,SAn}. Incluso aunque los parámetros de dirección de MAC utilizados para identificar ESPs están establecidos en PIPs, las ESPs reales son aprovisionadas entre Puertos de Red Troncal de Abonado (CBPs – Customer Backbone Ports, en inglés).

30 Direccionar MPs de PBB-TE

Para monitorizar servicios de PBB-TE, deben configurarse asociaciones de mantenimiento (MAs – Maintenance Associations, en inglés). En una realización, cada una de tales MAs es configurada mediante el mismo conjunto de parámetros que se requieren para identificar el correspondiente servicio de PBB-TE (es decir, una lista de las ESPs del componente). Así que, en lugar de proporcionar una lista de VIDs o un I_SID como parámetros, se requiere la lista de las ESPs del componente, estando cada una de ellas identificada mediante la 3-tupla <ESP-MAC DA, ESP-MAC SA, ESP-VID>.

Los MEPs relativos a un servicio de PBB-TE requieren el mismo conjunto de parámetros que requiere un MEP basado en VLAN, con los siguientes cambios:

- 1. En el VID Primario no puede escribirse, sino que siempre tiene el valor del parámetro ESP-VID que identifica a la ESP del componente que tiene la dirección de MAC del MEP como su parámetro ESP-MAC SA; y
 - 2. La dirección de MAC del MEP es la dirección de MAC del puerto de PIP que está conectado al puerto CBP sobre el cual está operando el MEP.

Mejoras Arquitectónicas del MP

La FIG. 2 es un diagrama de bloques simplificado de una red 21 de componentes B de Puentes de Borde de Red
Troncal (B-BEBs – B-components Backbone Edge Bridges, en inglés) 22a-d que ilustra dos ESPs independientes
que utilizan el mismo VID. Las ESPs independientes pueden ser identificadas por el mismo valor de VID si algún otro
parámetro en su 3-tupla de identificación es diferente. La FIG. 2 ilustra un caso en el cual una primera ESP 23 se
distingue de una segunda ESP 24 por sus direcciones de fuente, SA1 y SA2 (del inglés Source Address). La
arquitectura de MEP actual asume que los servicios se distinguen por sus VIDs. Puesto que los VIDs son los
mismos, la arquitectura de MEP actual no puede distinguir PDUs de CFM de estas dos asociaciones de

mantenimiento diferentes. Se requieren mejoras a la arquitectura de MPs para poder distinguir correctamente tales MAs. La presente invención proporciona las mejoras requeridas a las arquitecturas de la Función Medio de MEP y de MIP (MHF – MIP Half Function, en inglés).

La FIG. 3 es un diagrama de bloques simplificado de un Punto de Extremo de asociación de Mantenimiento (MEP – Maintenance association End Point, en inglés) 31 en una realización de ejemplo de la presente invención. El MEP incluye un nuevo componente, un Desmultiplexador de Servicio de PBB-TE de MP 32. El Desmultiplexador de servicio de PBB-TE comprueba la dirección de fuente de las PDUs de CFM y separa las PDUs de CFM que pertenecen a la MA de PBB-TE monitorizada enviando esas PDUs de CFM hacia un Desmultiplexador de Op-Código Igual 33. Si la PDU de CFM es identificada como no perteneciente a la MA asociada con el MEP, la dirección de destino, la dirección de fuente y los parámetros VID de las correspondientes PDUs son enviados a una entidad de gestión local (no mostrada) para inspección. Si ningún MEP con esos parámetros está configurado en el puerto de recepción, aparece un defecto de conexión cruzada.

La FIG. 4 es un diagrama de bloques simplificado de una Función Medio de Punto Intermedio de asociación de Mantenimiento (MHF – Maintenance association Intermediate Point (MIP) Half Function, en inglés) 41 en una realización de ejemplo de la presente invención. La MHF también incluye un nuevo Desmultiplexador de Servicio de PBB-TE de MP 42. El Desmultiplexador de servicio de PBB-TE comprueba la dirección de fuente de las PDUs de CFM y separa las PDUs de CFM que pertenecen a la MA de PBB-TE monitorizada enviando esas PDUs de CFM hacia un Desmultiplexador de Op-Código de MHF 43. El Desmultiplexador de servicio de PBB-TE de MHF 42 envía tramas con dirección de fuente no reconocida por la MHF a un Multiplexador de MHF Pasivo 44.

20 Meioras de los Protocolos de CFM

15

25

30

35

45

La FIG. 5 es un diagrama de flujo que ilustra las etapas de un método de ejemplo de mejora de protocolos de CFM de acuerdo con las enseñanzas de la presente invención. Tres protocolos de CFM básicos son mejorados en la presente invención. En la etapa 51, el protocolo de Comprobación de Continuidad es mejorado para construir y transmitir un Mensaje de Comprobación de Continuidad (CCM – Continuity Check Message, en inglés) en el contexto de la PBB-TE. En la etapa 52, el protocolo de Bucle de Retorno es mejorado para adaptar ProcesarLBM() para que procese un mensaje de Bucle de Retorno (LBM – LoopBack Message, en inglés) recibido y para llamar al proceso xmitLBR() para que genere y transmita una Respuesta de Bucle de Retorno (LBR – LoopBack Reply, en inglés) si el LBM no fue descartado. En la etapa 53, el protocolo de Traza de Enlace es mejorado para proporcionar mensajes de Traza de Enlace (LTMs – LinkTrace Messages, en inglés) y Respuestas de Traza de Enlace (LTRs – LinkTrace Replies, en inglés) mediante un MIP asociado con un servicio de PBB-TE. Detalles específicos de las mejoras se describen a continuación.

Protocolo de Comprobación de Continuidad. Se requiere un cambio en el procedimiento responsable de construir y transmitir un CCM. En particular, el parámetro de dirección de destino es puesto en el campo de ESP-MAC DA de la ESP que tiene como su ESP-MAC SA la dirección de MAC del MEP que emite el CCM. Todos los demás procesos permanecen igual.

Protocolo de Bucle de Retorno. El procedimiento ProcesarLBM() Mensaje de Bucle de Retorno original utilizado por la máquina de estado Respondedor de Bucle de Retorno en 20.26.1 del 802.1ag/D8.1 del IEEE se cambia como sigue:

ProcesarLBM()

- 40 El procesoLBM() es llamado por la máquina de estado del Respondedor de Bucle de Retorno del MP siempre que se recibe un Mensaje de Bucle de Retorno (LBM Loopback Message, en inglés). ProcesarLBM() procesa el LBM en la PDU de LBM como sigue:
 - 1. Si el parámetro de dirección de destino contiene una dirección de MAC Individual que no coincide con la dirección de MAC del MP de recepción o una dirección de MAC Individual que no coincide con la ESP MAC DA de cualquiera de las ESPs que componen la PBB-TE asociada con este MP, entonces ProcesarLBM() descarta el LBM y no lleva a cabo ningún procesamiento adicional.
 - 2. Si el parámetro de dirección de destino contiene una dirección de Grupo y la máquina de estado del Respondedor de Bucle de Retorno de MP reside en una MHF (en lugar de en un MEP), ProcesarLBM() descarta el LBM y no lleva a cabo ningún procesamiento adicional.
- 50 3. Si el parámetro de dirección de fuente es un Grupo, y no una dirección de MAC Individual, ProcesarLBM() descarta la trama y no lleva a cabo ningún procesamiento adicional.
 - 4. ProcesarLBM() procesa el LBM de acuerdo con la subsección 20.26.4.2 del 802.1ag/D8.1 del IEEE, y puede validar el LBM de acuerdo con la subsección 20.46.4.3 y descarta cualquier trama que falle la validación.

- 5. Si el MP está asociado con un MP de PBB-TE y no hay ningún TLV de PBB-TE o hay un TLV de PBB-TE pero la dirección que lleva el campo de MAC de MIP no coincide con la dirección de MAC de la MHF de recepción, entonces ProcesarLBM() descarta el LBM y no lleva a cabo ningún procesamiento adicional.
- 6. Si el LBM no fuese descartado, entonces ProcesarLBM() llama a xmitLBR() para generar y transmitir una LBR.

xmitLBR()

5

10

25

xmitLBR() en 20.26.2 del 802.1ag/D8.1 del IEEE se cambia como sigue:

xmitLBR() es llamada por ProcesarLBM() para transmitir una LBR. xmitLBR() construye una LBR del LBM contenida en la PDU de LBM, y la transmite al Punto de Acceso a Servicio (SAP – Service Access Point, en inglés) Activo utilizando un M_UNITDA-TA.request (request – solicitud, en inglés) como sigue:

- 1. xmitLBR() iguala el parámetro de dirección de destino a la dirección de fuente del LBM recibido.
- 2. xmitLBR() iguala el parámetro de dirección de fuente a la dirección de MAC del MP de respuesta, o a la ESP-MAC SA de cualquier ESP de componente que tenga la dirección de fuente de LBM original en su campo ESP-MAC DA, si el MP está asociado con un MP de PBB-TE.
- 15 3. xmitLBR() cambia el campo OpCódigo (23.4.3) de LBM a LBR.
 - 4. xmitLBR() copia el recordatorio de la unidad de datos de servicio de MAC del LBM literalmente al LBR.
 - 5. Si el MP de respuesta es un MEP, xmitLBR() incrementa el contador de transmisión de LBR en 1 (12.14.7.1.3:ad).

xmitLBM()

20 xmitLBM() en 20.29.1 del 802.1ag/D8.1 del IEEE se cambia como sigue:

xmitLBM() es responsable de construir y de transmitir un LBM. En lugar de establecer el parámetro de dirección de destino del objeto gestionado apropiado (12.14.7.3.2:b) en el 802.1ag del IEEE, si el MEP está configurado en una MA de PBB-TE, el parámetro de dirección de destino toma el valor del campo ESP-MAC DA de la ESP de componente que tiene la dirección de MAC del MEP como el valor de su campo ESP-MAC SA. Además, un campo de Tipo, Longitud, Valor (TLV) es siempre insertado como el primer TLV. Esto permite que los MIPs intermedios intercepten selectivamente a LBMs que los tienen como objetivo. La dirección de MAC del MIP contiene la dirección de MAC de destino para los LBMs transmitidos por el MEP. El formato de TLV de PBB-TE se ilustra en la Tabla 1 siguiente.

Tabla 1

	Octeto
Tipo = 9	1
Longitud	2-3
dirección de MAC de MIP	4-9

- Protocolo de Traza de Enlace. Los LBMs transmitidos por un MEP asociado con una MA de PBB-TE utilizan como parámetro de dirección de destino el valor del campo de ESP-MAC DA correspondiente a la ESP del componente que tiene la dirección de MAC del MEP como el valor de su campo ESP-MAC SA. Los LBMs recibidos por los MPs asociados con una MA de PBB-TE son considerados válidos si tienen como dirección de destino una dirección de MAC individual que coincide con el ESP-MAC DA de cualquiera de las ESPs que componen la PBB-TE asociada con este MP. El proceso para identificar un posible puerto de salida mediante un dispositivo intermedio que implementa un MIP asociado con una MA de PBB-TE, pregunta a la base de datos de filtrado del puente correspondiente, utilizando la dirección de destino y el identificador de VLAN del LTM como parámetros para la búsqueda.
- El Mensaje de Traza de Enlace (LTM LinkTrace Message, en inglés) que es enviado por un MIP asociado con una PBB-TE utiliza la dirección de destino, la dirección de fuente y el identificador de VLAN del LTM de entrada y establece el parámetro elegible para borrado del LTM enviado como falso.

Finalmente una Respuesta de Traza de Enlace (LTR – LinkTrace Reply, en inglés) emitida por un MIP asociado con una PBB-TE:

ES 2 428 547 T3

- 1. Utiliza como dirección de fuente el valor del campo ESP-MAC SA de cualquiera de las ESP del componente que tienen la dirección de fuente de LTM original en su campo ESP-MAC DA.
- 2. Utiliza como dirección de destino, la dirección de fuente del LTM original.
- 3. Utiliza como VID Primario el valor en el campo de ESP-VID de la ESP del componente que tiene la dirección de fuente de LTM original en su campo ESP-MAC DA.

Todo el resto del proceso de Traza de Enlace es igual.

10

15

Se ha mostrado así que la presente invención proporciona una manera consistente de identificar servicios de punto a punto y de punto a multipunto de PBB-TE. La invención proporciona una metodología para asignar una dirección a los MPs asociados a PBB-TE, y mejora los MEPs o MHFs con funciones de desmultiplexación de PBB-TE adicionales que se requieren para identificar las instancias de servicio de PBB-TE. La invención también proporciona mejoras a los protocolos de CFM básicos: Comprobación de Continuidad, Bucle de Retorno, y Traza de Enlace que permite el mismo comportamiento que el experimentado mediante su operación sobre MAs basadas en VLAN.

Aunque se han ilustrado realizaciones preferidas de la presente invención en los dibujos que se acompañan y se describen en la Descripción Detallada anterior, debe entenderse que la invención no está limitada a las realizaciones descritas, sino que es capaz de numerosas redisposiciones, modificaciones y sustituciones sin separarse del alcance de la invención. La memoria contempla cualquiera de todas las modificaciones que se encuentran dentro del alcance de la invención definida por las realizaciones adjuntas.

REIVINDICACIONES

1. Un método de proporcionar Gestión de Fallo de Conectividad, CFM (Connectivity Fault Management, en inglés), en una red de telecomunicación con Ingeniería del Tráfico de Puente de Red Troncal del Proveedor, PBB-TE (Provider Backbone Bridge Traffic Engineering, en inglés), utilizando transporte de paquetes basado en Ethernet, estando el citado método caracterizado porque comprende las etapas de:

identificar (11) servicios de punto a punto y de punto a multipunto de PBB-TE;

5

10

15

30

35

40

asignar una dirección (12) a puntos de mantenimiento de PBB-TE (31, 42) asociados con los servicios de PBB-TE identificados, donde la etapa de asignar una dirección incluye proporcionar una lista de Rutas de Conmutación mediante Ethernet, ESPs (Ethernet Switched Paths, en inglés) donde cada ESP es unidireccional y está identificada por una 3-tupla que comprende un Control de Acceso a Medio, MAC (Medium Access Control, en inglés) de ESP, dirección de destino, una dirección de fuente de ESP-MAC y una red de área local virtual de ESP, VLAN, identificador, ESP-VID, y donde una instancia de servicio de PBB-TE es identificada por al menos dos ESPs;

modificar (13) los puntos de mantenimiento de PBB-TE a los que se les ha asignado una dirección añadiendo a cada punto de mantenimiento de PBB-TE un Desmultiplexador de Servicio de PBB-TE (32, 42) para identificar instancias de servicio de PBB-TE independientes, cuyo Desmultiplexador de Servicio de PBB-TE (32, 42) comprueba la dirección de fuente de ESP-MAC de las unidades de datos en paquetes, PDU (Packet Data Units, en inglés) para identificar instancias de servicio de PBB-TE independientes, siendo la dirección de fuente de ESP-MAC la dirección de un Puerto de Instancia de Proveedor, PIP (Provider Instance Port, en inglés), encapsulando una instancia de servicio de abonado; y

- mejorar (14) los protocolos de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace, ajustando un parámetro de dirección de destino al campo de dirección de destino de ESP-MAC de la ESP que tiene su dirección de fuente de ESP-MAC, emitiendo la dirección de MAC del punto de mantenimiento de PBB-TE correspondientes mensajes de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace.
- 2. El mensaje de acuerdo con la reivindicación 1, en el que los puntos de mantenimiento de PBB-TE incluyen
 Puntos de Extremo de asociación de Mantenimiento, MEPs (Maintenance association End Points, en inglés) y
 Puntos Intermedios de asociación de Mantenimiento, MIPs (Maintenance association Intermediate Points, en inglés).
 - 3. El método de acuerdo con la reivindicación 2, en el que el ESP-VID para un MEP dado tiene el valor del parámetro ESP-VID que identifica a una ESP de componente que tiene una dirección de MAC de MEP dada como su parámetro de dirección de fuente de ESP-MAC, y la dirección de MAC del MEP dado es la dirección de MAC del Puerto de Instancia del Proveedor, PIP (Provider Instance Port, en inglés), que está conectado al Puerto de Red Troncal del Abonado, CBP (Customer Backbone Port, en inglés), puerto sobre el cual el MEP dado está operando.
 - 4. El método de acuerdo con la reivindicación 2, en el que el ESP-VID para un MEP dado tiene el valor del parámetro ESP-VID que identifica una ESP de componente que tiene la dirección de MAC del MEP dado como su parámetro de dirección de fuente de ESP-MAC, y la dirección de MAC del MEP dado es la dirección de MAC del Puerto de Red Troncal del Abonado, CBP (Customer Backbone Port, en inglés), puerto sobre el cual el MEP está operando, y el Puerto de Instancia de Proveedor, PIP (Provider Instance Port, en inglés), la dirección de MAC se hace igual a la dirección de MAC del puerto CBP conectado.
 - 5. El método de acuerdo con la reivindicación 2, en el que la etapa de modificar los puntos de mantenimiento de PBB-TE a los que se les ha asignado una dirección incluye añadir a cada punto de mantenimiento, el Desmultiplexador de Servicio de PBB-TE (32, 42) que comprueba la dirección de fuente de ESP-MAC de las PDUs de CFM recibidas y envía las PDUs de CFM que pertenecen a la asociación de mantenimiento de PBB-TE monitorizada hacia un Desmultiplexador de OpCódigo Igual en el punto de mantenimiento.
 - 6. El método de acuerdo con la reivindicación 1, en el que la etapa de mejorar el protocolo de Bucle de Retorno incluye adaptar un ProcesarLBM() para procesar un mensaje de Bucle de Retorno recibido mediante:
- descartar un mensaje de Bucle de Retorno recibido si la dirección de fuente, de destino o de MAC contenida en el mensaje de Bucle de Retorno es incorrecta; y

llamar a un proceso xmitLBR() para generar y transmitir una respuesta de Bucle de Retorno si el mensaje de Bucle de Retorno no fue descartado.

7. El método de acuerdo con la reivindicación 6, en el que la etapa de mejorar el protocolo de Bucle de Retorno también incluye adaptar el proceso xmitLBR() para llevar a cabo las etapas de:

construir una respuesta de Bucle de Retorno dirigida a la dirección de fuente del mensaje de Bucle de Retorno; y transmitir la respuesta de Bucle de Retorno a un Punto de Acceso a Servicio, SAP (Service Access Point, en inglés) Activo, utilizando una M_UNIT-DATA.request (request – solicitud, en inglés).

- 8. El método de acuerdo con la reivindicación 7, en el que la etapa de mejorar el protocolo de Bucle de Retorno también incluye adaptar un proceso xmitLBR() para construir y transmitir un mensaje de Bucle de Retorno mediante:
- hacer el parámetro de dirección de destino igual al valor del campo de dirección de destino de ESP-MAC de la ESP del componente que tiene la misma dirección de MAC de MEP igual al valor de su campo de dirección de fuente de ESP-MAC; e

insertar un campo de Tipo, Longitud, Valor, TLV, de PBB-TE, como el primer TLV del mensaje de Bucle de Retorno;

donde el LTV de PBB-TE permite que los MIPs intermedios intercepten selectivamente mensajes de Bucle de Retorno que están dirigidos a los MIPs intermedios.

10 9. El método de acuerdo con la reivindicación 1, en el que la etapa de mejorar el protocolo de Traza de Enlace incluye adaptar el protocolo de Traza de Enlace para llevar a cabo las etapas de:

15

30

35

40

45

50

validar un mensaje de Bucle de Retorno recibido por un punto de mantenimiento dado asociado con una asociación de mantenimiento de PBB-TE si el mensaje de Bucle de Retorno tiene como dirección de destino, una dirección de MAC individual que coincide con la dirección de destino de ESP-MAC de cualquiera de las ESPs que componen el servicio de PBB-TE asociado con el MP dado:

identificar mediante un dispositivo intermedio que implementa un MIP asociado con una asociación de mantenimiento de PBB-TE, un puerto de salida para un mensaje de Traza de Enlace, preguntando a una base de datos de filtros de un correspondiente puente utilizando la dirección de destino y el VID del mensaje de Traza de Enlace como parámetros para la pregunta;

enviar un mensaje de Traza de Enlace de entrada por parte de un MIP asociado con un servicio de PBB-TE utilizando la dirección de destino, la dirección de fuente y el VID del mensaje de Traza de Enlace de entrada y hacer un parámetro elegible para borrado del mensaje de Traza de Enlace enviado igual a falso; y

emitir una respuesta de Traza de Enlace por parte de un MIP asociado con un servicio de PBB-TE, incluyendo la citada etapa de emisión:

Utilizar como dirección de fuente de la respuesta de Traza de Enlace, el valor en el campo de dirección de fuente de ESP-MAC de la ESP del componente que tiene la dirección de fuente original del mensaje de Traza de Enlace en su campo de dirección de destino de ESP-MAC;

utilizar como dirección de destino de la respuesta de Traza de Enlace, la dirección de fuente del mensaje de Traza de Enlace original; y

- utilizar como VID Primario, el valor en el campo de ESP-VID del ESP de componente que tiene la dirección de fuente original del mensaje de Traza de Enlace en su campo de dirección de destino de ESP-MAC.
- 10. Un sistema para proporcionar Gestión de Fallo de Conectividad, CFM (Connectivity Fault Management, en inglés), en una red de telecomunicación con Ingeniería del Tráfico de Puente de Red Troncal de Proveedor, PBB-TE (Provider Backbone Bridge Traffic Engineering, en inglés), utilizando transporte de paquetes basado en Ethernet, estando el citado sistema **caracterizado porque** comprende:

un punto de mantenimiento de PBB-TE (31, 41), incluyendo el citado punto de mantenimiento de PBB-TE un Desmultiplexador de Servicio de PBB-TE (32, 42) para identificar instancias de servicio de PBB-TE independientes;

un medio para direccionar el punto de mantenimiento de PBB-TE, mientras que el medio para asignar una dirección al punto de mantenimiento de PBB-TE incluye un medio para proporcionar una lista de Rutas de Conmutación mediante Ethernet, ESPs (Ethernet Switched Paths, en inglés), donde cada ESP es unidireccional y está identificada mediante una 3-tupla que comprende una dirección de destino de Control de Acceso a Medio, MAC (Medium Access Control, en inglés) de ESP, una dirección de fuente de ESP-MAC, y una red de área local virtual, VLAN (Virtual Local Area Network, en inglés) de ESP, identificador, ESP-VID, donde una instancia de servicio de PBB-TE está identificada por al menos dos ESPs y donde el Desmultiplexador de Servicio de PBB-TE (32, 42) está configurado para comprobar la dirección de fuente de ESP-MAC de las unidades de datos en paquetes, PDUs (Packet Data Units, en inglés), para identificar instancias de servicio de PBB-TE independientes; siendo la dirección de fuente de ESP-MAC la dirección de un Puerto de Instancia de Proveedor, PIP (Provider Instance Port, en inglés), que encapsula una instancia de servicio de abonado; y

protocolos de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace Mejorados, donde la mejora comprende el que un parámetro de dirección de destino sea establecido como el campo de dirección de destino de ESP-MAC del ESP que tiene como su dirección de fuente de ESP-MAC la dirección de MAC del punto de mantenimiento de PBB-TE que emite correspondientes mensajes de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace.

ES 2 428 547 T3

- 11. El sistema de acuerdo con la reivindicación 10, en el que el punto de mantenimiento de PBB-TE es uno de un Punto de Extremo de asociación de Mantenimiento, MEP (Maintenance association End Point, en inglés), y un Punto Intermedio de asociación de mantenimiento, MIP (Maintenance association Intermediate Point, en inglés).
- 12. El sistema de acuerdo con la reivindicación 11, en el que el punto de mantenimiento de PBB-TE es un MEP, y el ESP-VID para el MEP tiene el valor del parámetro ESP-VID que identifica a una ESP de componente que tiene la dirección de MAC del MEP como su parámetro de dirección de fuente de ESP-MAC, y la dirección de MAC del MEP es la dirección de MAC del Puerto de Instancia del Proveedor, PIP (Provider Instance Port, en inglés), que está conectado al Puerto de Red Troncal del Abonado, CBP (Customer Backbone Port, en inglés), puerto sobre el cual está operando el MEP.
- 13. El sistema de acuerdo con la reivindicación 11, en el que el punto de mantenimiento de PBB-TE es un MEP, y el ESP-VID para el MEP tiene el valor del parámetro ESP-VID que identifica a una ESP de componente que tiene la dirección de MAC del MEP como es el parámetro de dirección de fuente de ESP-MAC, y la dirección de MAC del MEP dado es la dirección de MAC del Puerto de Red Troncal del Abonado, CBP (Customer Backbone Port, en inglés), mediante el cual el MEP está operando y la dirección de MAC del Puerto de Instancia del Proveedor, PIP (Provider Instance Port, en inglés) se hace igual a la dirección de MAC del puerto CBP conectado.
 - 14. Un punto de mantenimiento de Ingeniería del Tráfico de Puente de Red Troncal de Proveedor, PBB-TE (Provider Bridge Traffic Engineering, en inglés) (31, 41) para proporcionar Gestión de Fallo de Conectividad, CFM (Connectivity Fault Management, en inglés), en una red de telecomunicación de PBB-TE que utiliza transporte de paquetes basado en Ethernet, estando el citado punto de mantenimiento de PBB-TE caracterizado porque comprende:
 - un Desmultiplexador de Servicio de PBB-TE (32, 42) para identificar instancias de servicio de PBB-TE independientes, cuyo Desmultiplexador de Servicio de PBB-TE (32, 42) está configurado para comprobar unas Rutas de Conmutación mediante Ethernet, ESP (Ethernet Switched Paths, en inglés), -Control de Acceso a Medio, MAC (Medium Access Control, en inglés), dirección de fuente de unidades de datos en paquetes, PDU (Packet Data Units, en inglés), para identificar instancias de servicio de PBB-TE independientes, siendo la dirección de fuente de ESP-MAC la dirección de un Puerto de instancia de Proveedor, PIP (Provider Instance Port, en inglés), que encapsula una instancia de servicio de abonado; y
- un medio para operar protocolos de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace, donde la mejora comprende un parámetro de dirección de destino que se iguala al campo de dirección de destino de ESP-30 MAC de la ESP que tiene como su dirección de fuente de ESP-MAC, la dirección de MAC del punto de mantenimiento de PBB-TE que emite correspondientes mensajes de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace, donde el medio para operar los protocolos de Comprobación de Continuidad, Bucle de Retorno y Traza de Enlace incluye un medio para reconocer como dirección para el punto de mantenimiento de PBB-TE, una lista de ESPs de componente, donde cada ESP está identificado por una 3-tupla que comprende una dirección de destino de ESP-MAC, la dirección de fuente de ESP-MAC y un identificador de ESP-VLAN, ESP-VID y la instancia de servicio de PBB-TE está identificada por al menos dos ESPs.
 - 15. El punto de mantenimiento de PBB-TE de acuerdo con la reivindicación 14, en el que el punto de mantenimiento de PBB-TE es uno de un Punto de Extremo de asociación de Mantenimiento, MEP (Maintenance association End Point, en inglés), y un Punto Intermedio de asociación de Mantenimiento, MIP (Maintenance association Intermediate Point, en inglés).
 - 16. El punto de mantenimiento de PBB-TE de acuerdo con la reivindicación 15, donde el punto de mantenimiento de PBB-TE es un MEP, y el MEP tiene una dirección de ESP-ID y de MAC, donde el ESP-VID de MEP tiene el valor del parámetro ESP-VID que identifica a una ESP de componente que tiene la dirección de MAC del MEP como su parámetro de dirección de fuente de ESP-MAC, y la dirección de MAC del MEP es la dirección de MAC del Puerto de Instancia de Proveedor, PIP (Provider Instance Port, en inglés), el cual está conectado al Puerto de Red Troncal del Abonado, CBP (Customer Backbone Port, en inglés), puesto sobre el cual está operando el MEP.
 - 17. El punto de mantenimiento de PBB-TE de acuerdo con la reivindicación 16, en el que el punto de mantenimiento de PBB-TE es un MEP, y el MEP tiene un ESP-ID y una dirección de MAC, donde el ESP-VID tiene el valor del parámetro ESP-VID que identifica a una ESP de componente que tiene la dirección de MAC del MEP dado y su parámetro de dirección de fuente de ESP-MAC, y la dirección de MAC del MEP es la dirección de MAC del Puerto de Red Troncal del Abonado, sobre la cual está operando el MEP y el Puerto de Instancia de Proveedor, y la dirección de MAC del PIP (Provider Instance Port, en inglés) se hace igual a la dirección de MAC del puerto de CBP conectado.

55

20

25

40

45

50

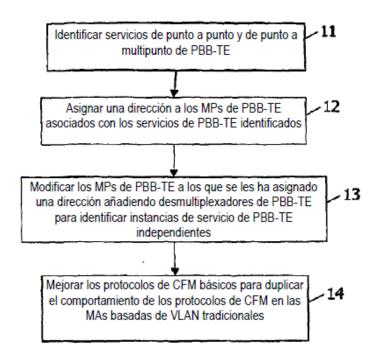
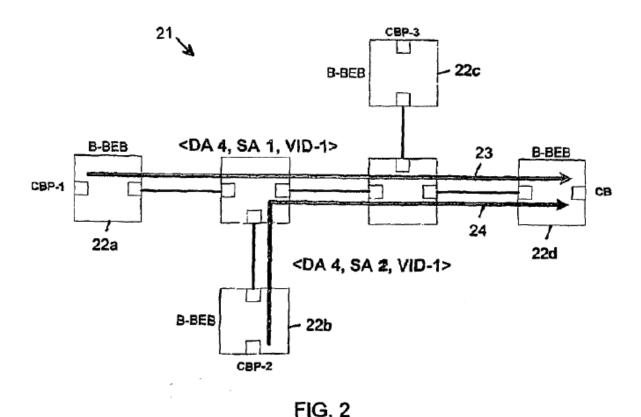



FIG. 1

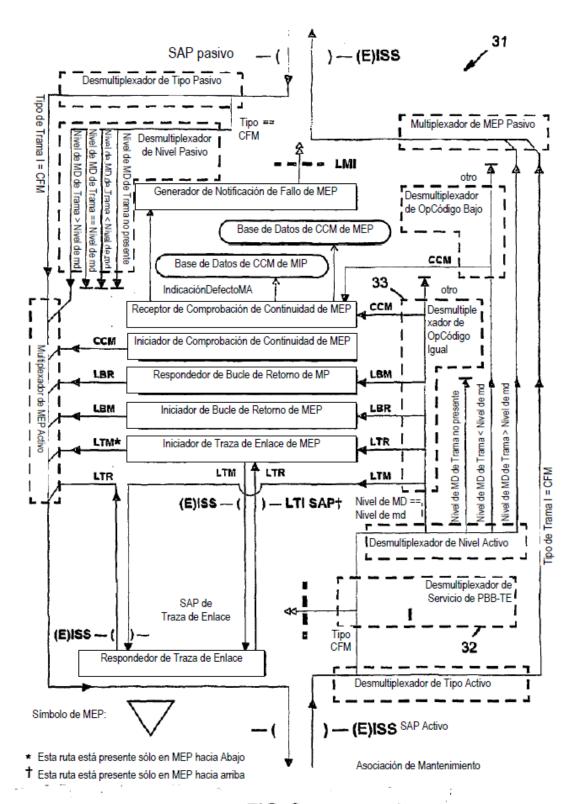
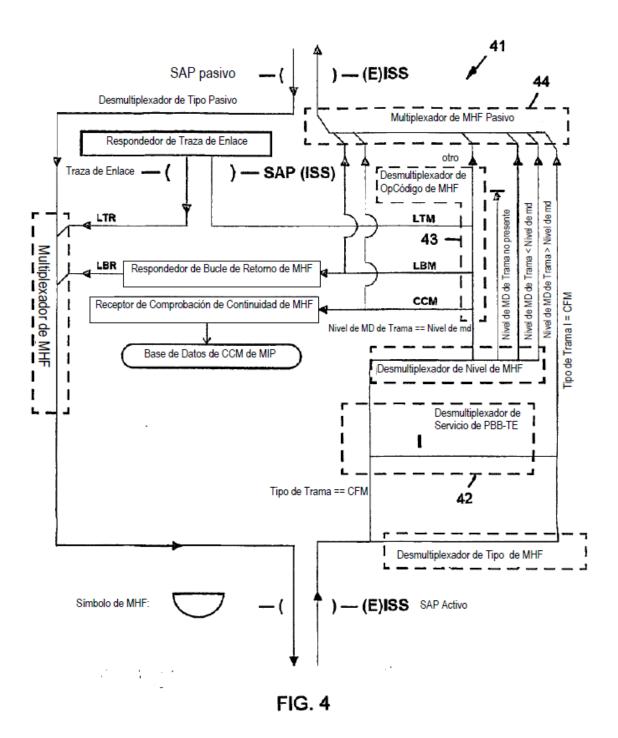



FIG. 3

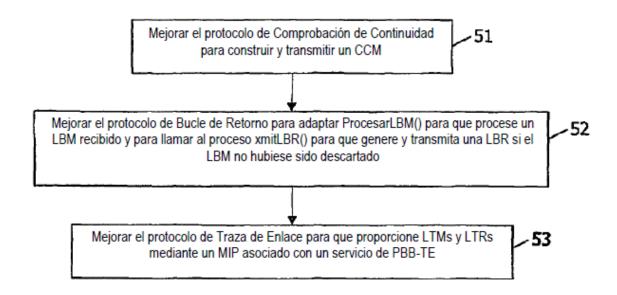


FIG. 5