

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 428 625

61 Int. Cl.:

H01H 36/02 (2006.01) G01F 1/24 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 16.10.2003 E 03023566 (7)
97 Fecha y número de publicación de la concesión europea: 07.08.2013 EP 1460393

(54) Título: Detector de flujo provisto de sensor magnético

(30) Prioridad:

21.03.2003 IT MI20030551

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **08.11.2013**

(73) Titular/es:

FUGAS SPA (100.0%) VIA MARCHESINA 42 20090 TREZZANO SUL NAVIGLIO (M, IT

(72) Inventor/es:

FUGAZZA, GIUSEPPE y TRONCONI, ALBERTO

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Detector de flujo provisto de sensor magnético.

15

20

25

30

45

55

La presente invención se refiere a un detector de flujo mejorado, es decir, un componente adaptado para captar la presencia de un flujo de fluido en una instalación hidráulica. La invención encuentra un uso ventajoso en instalaciones combinadas de calefacción y agua sanitaria, es decir dispositivos para uso doméstico en los que el agua calentada por un quemador de gas se utiliza tanto para alimentar los elementos radiantes de calor (calefactores), como para calentar el agua (la llamada agua sanitaria) para diferentes usos. Este uso de la invención no se ha de considerar como una limitación de las posibles aplicaciones del dispositivo de la invención.

Se conocen detectores de flujo en los que está previsto un sensor magnético, incluyendo tales sensores una caja que contiene un imán desplazable axialmente desplazado por el flujo del líquido que circula en la instalación (a continuación en aras de la simplicidad se hará referencia a agua), y un sensor que está montado axialmente con respecto al imán en una ubicación externa a la caja, sensor que está adaptado para generar una señal eléctrica que cambia cuando cambia el campo magnético producido por el movimiento del imán.

Por ejemplo, se da a conocer un sensor de este tipo en la patente europea n° 797 057 al nombre del pres ente solicitante o en el documento FR 2 441 833 que forma el preámbulo de la reivindicación principal.

La patente US nº 5.002.090 da a conocer un sensor de flujo para controlar el flujo de un líquido en una instalación, que comprende un cuerpo con una boca de entrada de fluido y una boca de salida de fluido situadas axialmente, cuerpo en el cual un imán es móvil y se lleva por un pistón conformado de manera que no obstruya la boca de salida cuando el flujo de fluido empuja a este último hacia la boca de salida. El imán coopera con un sensor externo situado lateralmente.

Este dispositivo ha sido diseñado para lograr una máxima sensibilidad sin optimizar su rendimiento con respecto a las pérdidas de carga a los niveles de flujo más grandes. Además, ya que el imán está situado en el flujo principal del fluido, algunos de los materiales magnéticos pueden ser dañados (es decir, corroídos) por materiales abrasivos arrastrados por el líquido, y se pueden depositar partículas ferrosas alrededor de la superficie del imán con el riesgo de bloquear su movimiento. Si bien el imán podría quedar protegido mediante encapsulación dentro del pistón, esto implicaría una reducción del tamaño del imán.

La patente US nº 5.827.978 da a conocer un detector empleado para producir una señal indicativa del caudal de un fluido en un conducto, comprendiendo dicho detector de flujo un cuerpo hueco interno alargado provisto de una abertura de entrada y una abertura de salida, un pistón móvil axialmente dentro de dicho cuerpo, un imán permanente asociado con el pistón, y un sensor magnético situado lateralmente dentro de dicho cuerpo alargado. El pistón es móvil axialmente en cualquier sentido contra la resistencia ejercida por un resorte helicoidal y se detecta la posición del imán permanente asociado con el pistón deslizante por el sensor para proporcionar una señal indicativa del caudal.

El documento GB 2 270 758 da a conocer un aparato para determinar el caudal de un fluido que comprende un flotador situado en una vasija, estando provisto el flotador de un imán y de un sensor para determinar la posición del flotador a fin de proporcionar una indicación del caudal.

El documento DE 33 00 798 da a conocer un aparato para medición del flujo de medios fluyentes que comprende un flotador que contiene un primer imán que coopera con un segundo imán que desliza con un canal separado y cuya posición respectiva es visible a través de un visor.

La patente US nº 5.503.175 da a conocer una válvula de seguridad para agua para cortar el flujo del agua que comprende un imán montado en un pistón deslizante y un interruptor accionado magnéticamente.

El documento GB 2 247 920 da a conocer una bomba para fluidos que comprende medios detectores de flujo que cooperan con un flotador magnético para controlar el flujo de fluido a través de la bomba.

También se dan a conocer interruptores de funcionamiento magnético accionados por el flujo en las patentes US nº 2.419.942 y GB 2 063 565.

Es un objeto de la presente invención superar las limitaciones de los dispositivos conocidos, y en particular proporcionar un detector de flujo que tenga una buena sensibilidad, alta fiabilidad y bajas pérdidas de carga, que sea de un diseño sencillo y fácil de comprobar, y que proporcione además una indicación visual de las condiciones de flujo.

De acuerdo con la invención, los objetivos anteriores se logran a través de un detector de flujo según se reivindica 65 en la reivindicación 1. Otras características ventajosas se exponen en las reivindicaciones dependientes.

ES 2 428 625 T3

El detector de flujo aquí descrito provee al uso de un imán permanente móvil junto con un sensor magnético situado lateralmente, con el fin de utilizar la inversión del flujo magnético que actúa sobre el sensor cuando el imán se desplaza hacia una posición límite y cambia el signo de la señal eléctrica generada por el sensor.

5 El dispositivo aquí descrito se puede utilizar con su eje dispuesto a lo largo de cualquier dirección deseada en un fluido que arrastra partículas y motas en suspensión.

El detector de flujo de acuerdo con la invención prevé además una salida lateral de agua de modo que el imán no está expuesto permanentemente al flujo principal.

Convenientemente, entre el pistón y el cuerpo hueco se proporcionan huelgos relativamente grandes, y el dispositivo de acuerdo con la invención puede funcionar a los caudales adecuados, incluso con huelgos relativamente grandes, por ejemplo de un tamaño mayor que las mallas del filtro incorporado en el dispositivo.

En el dispositivo descrito la forma y la disposición del imán y del sensor Hall contribuyen a obtener un diseño de dispositivo altamente fiable de modo que todos los especímenes de detector suministrarán una indicación clara de la conmutación a pesar de la dispersión característica inevitable de la de los imanes y sensores, en una gama de carreras muy cortas del elemento móvil. De esta manera, incluso con una carrera muy corta del elemento móvil, el dispositivo alcanza una carrera de seguridad adicional considerable, o sea el desplazamiento más allá del punto de conmutación, y se puede centrar la posición axial del elemento móvil efectivamente a los grandes caudales, sobre la ranura de salida, obteniendo de este modo unas pérdidas de carga bajas.

El dispositivo de acuerdo con la invención permite utilizar un imán de gran diámetro, con un diámetro sustancialmente igual (salvo los huelgos) al diámetro interior del conducto cilíndrico en el que el elemento móvil se encuentra alojado.

Convenientemente, principalmente en relación con la fijación de los componentes, se utiliza un imán toroidal con una dimensión axial (longitud) mucho más corta que su diámetro.

La invención se describirá ahora con referencia a los dibujos adjuntos que ilustran formas de realización preferidas pero no limitativas, en los que:

la figura 1 es una vista que ilustra un detector de flujo de acuerdo con la invención.

35 la figura 2 es una vista en sección transversal longitudinal del detector de flujo de la figura 1.

la figura 3 es una vista frontal del detector de flujo de la figura 1.

10

25

las figuras 4 a 6 ilustran el posicionamiento relativo del sensor y el imán durante el funcionamiento del detector de flujo de acuerdo con la invención;

la figura 7 es una vista en perspectiva explosionada que ilustra un detector de flujo de acuerdo con la invención instalado en un grupo hidráulico.

- 45 En todas las figuras, se han utilizado las mismas referencias numéricas para indicar partes que son iguales o funcionalmente equivalentes. En la descripción, los términos aguas arriba y aguas abajo se refieren al flujo de fluido que se ha de detectar.
- Con referencia a las figuras 1 a 3, un detector de flujo de acuerdo con la invención comprende una caja 1 con forma de un cuerpo hueco y alargado, provista de una abertura de entrada 2 y una abertura de salida 3 realizadas como dos ventanas laterales 10, 11 que rompe la continuidad del cuerpo 1, y una parte extrema cerrada 4 provista de un tramo 25 que tiene una forma exterior que es hexagonal o en cualquier caso no cilíndrica.
- Dentro del cuerpo 1 está alojado un elemento 5, desplazable axialmente a lo largo del cuerpo 1, y rodeado por un resorte antagonista helicoidal 7. El elemento móvil 5 presenta la forma de una varilla que lleva en un extremo un imán permanente (preferentemente toroidal) 6, y está formado en el otro extremo con una parte cónica embridada 9 que tiene un diámetro exterior sustancialmente igual al diámetro interior del cuerpo 1, recibiendo esta parte embridada el extremo del resorte 7.
- El elemento móvil 5 está realizado como un componente de una sola pieza por moldeo de un material de resina compatible con el fluido que se haya de detectar. Su parte cónica 9 cumple dos fines, a saber, imparte el movimiento al elemento, es decir, la parte de mayor diámetro provoca las pérdidas de carga necesarias para mover el elemento móvil, y actúa como elemento centrador para el resorte antagonista 7. El elemento móvil 5 además soporta y centra el imán, y tiene una forma tal como para mantener sólo el elemento móvil expuesto en el flujo principal, mientras que la guía del resorte y el imán, aunque inmersos en el fluido, están protegidos por la parte cónica y se hallan menos expuestos a ser golpeados por partículas sólidas.

Resulta que el imán 6 está situado aguas abajo de la salida 3, tanto en la posición de reposo como en la posición que alcanza cuando se produce un flujo de agua. En la entrada 2 el extremo del cuerpo 1 está provisto de una rosca interior 15 en la que se atornilla un anillo metálico 18, equipado con una abertura central 19 y que lleva un filtro cilíndrico 16 con mallas de tamaños predeterminados. Eventualmente, el filtro puede incorporar un dispositivo (no mostrado) para limitar el caudal.

5

10

15

25

30

35

40

55

La parte extrema 4 está formada con una ranura 12 que aloja un sello 13, y todo el dispositivo está montado en un componente adecuado de la instalación hidráulica, tal como un cuerpo generalmente cilíndrico o un componente más complejo tal como el grupo hidráulico mostrado en la figura 7. En la parte extrema 4 del cuerpo 1 está montado un pequeño contenedor 20 que aloja un sensor magnético 8 que resulta estar posicionado lateralmente con respecto al eje del imán 6. Convenientemente, el contenedor 20 está provisto de un collar hexagonal 21 adaptado para cooperar con a la parte hexagonal 25 con el fin de posicionar un circuito (que comprende el sensor magnético 8) alojado en su interior en una disposición angular predeterminada. El contenedor 20 se ajusta a presión en la parte extrema y es por lo menos parcialmente transparente, a fin de hacer visible al exterior la iluminación de un indicador lumínico, típicamente un LED, que proporciona una indicación visual del estado del flujo en el interior del detector de flujo, por ejemplo la superación del caudal requerido para el arranque del quemador de gas en una instalación de calefacción y aqua sanitaria.

20 El sensor 8 está constituido por un sensor de efecto Hall con circuitería asociada de tecnología CMOS y está provisto de 3 conductores eléctricos aislados, típicamente para la línea común de suministro de energía, la señal generada y las líneas de suministro positivas.

El detector de flujo está instalado normalmente en el interior de un elemento de alojamiento provisto de un accesorio axial para la entrada 2 y un accesorio de lado o lateral para la salida 3, cuyas configuraciones pueden variar de acuerdo con la instalación en la que el conjunto se vaya a montar.

Las figuras 4 a 6 ilustran esquemáticamente las posiciones relativas de los componentes y el funcionamiento del detector de acuerdo con la invención. En las figuras se han mostrado las líneas de flujo magnético del imán toroidal 6. La carrera (o desplazamiento) del imán 6 llevado por el elemento móvil 5 se produce a partir de una posición de reposo (correspondiente a un flujo sustancialmente nulo) a una posición que indica la presencia de un flujo, que son opuestas con respecto a un punto P donde el imán es sustancialmente al mismo nivel que el sensor. Más precisamente, la figura 4 ilustra la posición de reposo en ausencia de cualquier flujo de líquido. Se supone convencionalmente que el flujo magnético Φ que fluye a través del sensor 8 es negativo. La figura 5 muestra una posición intermedia del imán en su movimiento hacia la posición extrema que se alcanza en presencia de un flujo de líquido: el imán es sustancialmente al mismo nivel que el sensor 8 de modo que el flujo magnético a través del sensor es prácticamente nulo. La posición extrema del imán 6 se muestra en la figura 6, es decir, dentro de la parte cerrada 4 en la que el sensor 8 es atravesado por un flujo Φ de signo opuesto al de la figura 4. Por lo tanto la detección del flujo se produce a través de una inversión del flujo magnético que cruza el sensor, suministrando así una indicación particularmente limpia y segura. En el espacio que rodea el plano ortogonal al movimiento del imán y que contiene el punto P, el flujo magnético cambia de un flujo máximo a lo largo del sentido N-S a un flujo máximo a lo largo del sentido S-N, conmutando así (activando y desactivando) el sensor de una manera muy fiable y con desplazamientos muy cortos del sensor.

De acuerdo con una forma de realización preferida, se consiguen una alta sensibilidad y una conmutación muy fiable con una carrera corta del elemento móvil cuando el diámetro del imán 6 es de aproximadamente 2 a 5 veces, y preferentemente de 3 a 4 veces, su grosor.

La figura 7 es una vista en perspectiva explosionada que ilustra el montaje del detector de flujo de acuerdo con la invención en el grupo hidráulico de retorno 22 de una instalación mixta para calefacción y agua sanitaria.

El grupo está equipado con los accesorios y herrajes necesarios, algunos de los cuales se muestran de forma esquemática, como el grifo o la electroválvula, varias sondas, los accesorios hacia el intercambiador de calor secundario, la bomba, la válvula de seguridad, el vaso de expansión y, por último, los accesorios hacia la red hídrica externa, es decir, la entrada de agua sanitaria y el circuito de retorno de la calefacción. Es de entender que el detector de flujo de la invención se puede emplear también en un grupo de suministro o en otros componentes con diferentes configuraciones.

Si bien la invención se ha ilustrado con referencia a formas de realización preferidas, es susceptible, en general, de otras aplicaciones y modificaciones que caen dentro del alcance de la invención tal como resultará evidente para los expertos en la materia.

ES 2 428 625 T3

REIVINDICACIONES

1. Detector para captar, o sea detectar la presencia o ausencia del flujo de un líquido que circula a través de una instalación, comprendiendo dicho detector de flujo:

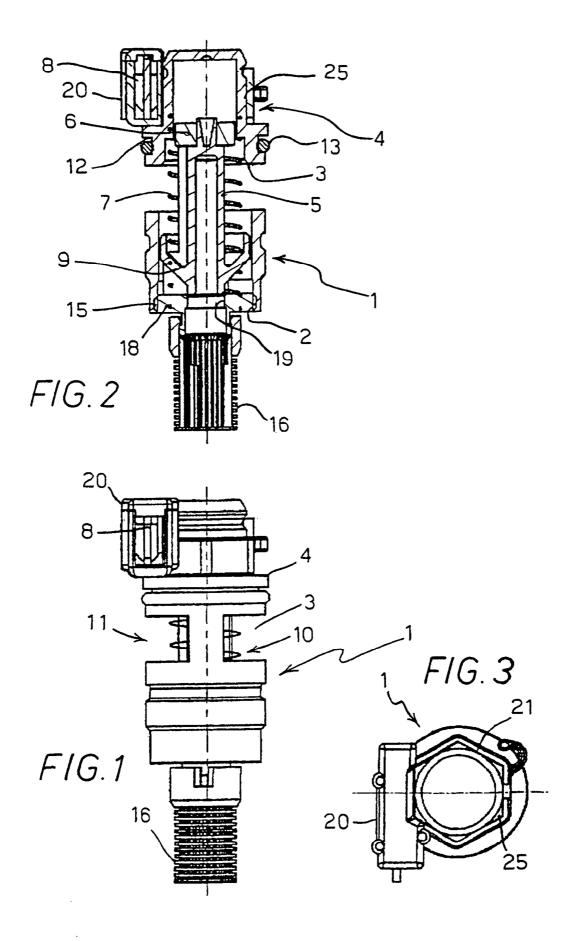
un cuerpo interiormente hueco y alargado (1), provisto de una abertura de entrada (2) y una abertura de salida (3) para dicho líquido, un elemento (5) axialmente móvil dentro de dicho cuerpo (1) y un imán permanente (6) montado en dicho elemento móvil , y un sensor magnético (8) situado lateralmente sobre dicho cuerpo alargado, estando montado dicho imán (6) en un extremo de dicho elemento móvil (5), de tal manera que logre un desplazamiento entre una primera y una segunda posición, estando provisto dicho imán (6) de una forma toroidal, comprendiendo dicho sensor (8) un detector de efecto Hall con una circuitería de tecnología CMOS asociada, provocando el desplazamiento de dicho imán entre dicha primera y segunda posiciones una inversión del flujo magnético (Φ) que atraviesa dicho sensor, conmutando así, es decir, activando y desactivando el sensor y permitiendo la detección de la presencia del flujo dentro del cuerpo hueco (1), caracterizado porque el diámetro del imán (6) es de aproximadamente 2 a 5, y preferentemente de 3 a 4 veces su grosor, porque dicha abertura de salida (3) es una abertura lateral dispuesta aguas arriba de dicho imán (6) y caracterizado porque dicho elemento móvil (5) está realizado como un componente de una sola pieza por moldeo de un material plástico, y porque en el extremo opuesto al provisto de dicho imán (6) prevé una parte cónica embridada (9) que se ensancha en el sentido de flujo y presenta una parte de mayor diámetro sustancialmente igual al diámetro interior del cuerpo (1) y porque la parte cónica embridada (9) está dispuesta aguas arriba de dicho imán (6).

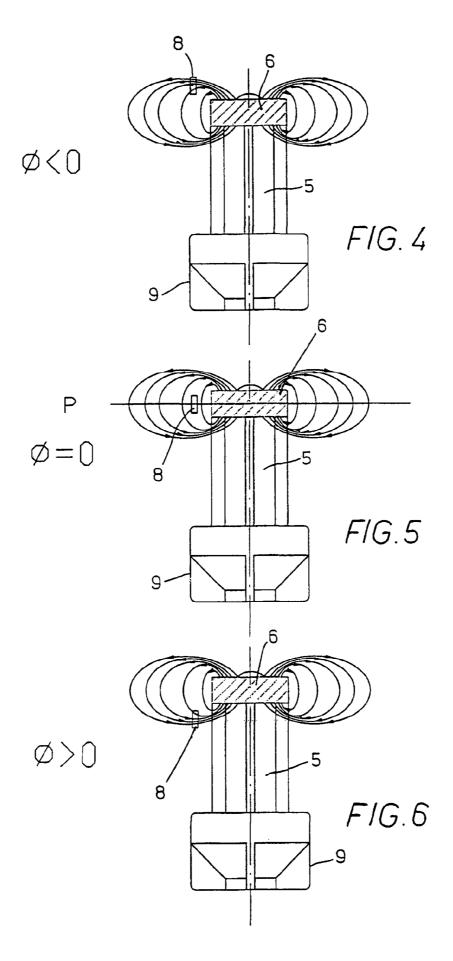
- 2. Detector de flujo según la reivindicación 1, caracterizado porque dicho cuerpo (1) comprende una parte extrema cerrada (4), situada aguas abajo de dicha abertura de salida (3), en la cual dicho imán (6) es por lo menos parcialmente móvil.
- 3. Detector de flujo según la reivindicación 2, caracterizado porque dicha parte extrema (4) comprende un tramo provisto de una superficie externa poligonal (25) para posicionar dicho sensor (8) lateralmente con respecto al eje del imán.
- 30 4. Detector de flujo según la reivindicación 1, caracterizado porque dicha abertura de salida (3) comprende dos ventanas laterales (10, 11).
 - 5. Detector de flujo según la reivindicación 3, caracterizado porque dicho sensor magnético (8) está alojado en un contenedor (20) montado en correspondencia con dicha parte extrema (4) del cuerpo (1) a través de un collar (21) que se acopla con dicho tramo (25) provisto de una superficie exterior poligonal.
 - 6. Detector de flujo según la reivindicación 5, caracterizado porque dicho contenedor (20) comprende un indicador lumínico dispuesto para proporcionar una indicación visual del estado de flujo dentro del detector de flujo y porque el contenedor (20) es por lo menos parcialmente transparente, para hacer visible al exterior la iluminación de un indicador lumínico.
 - 7. Detector de flujo según la reivindicación 1, caracterizado porque el extremo del cuerpo (1), en correspondencia con la abertura de entrada (2) está provisto de una rosca interior (15) sobre la cual se atornilla un anillo metálico (18) que lleva un filtro (16).

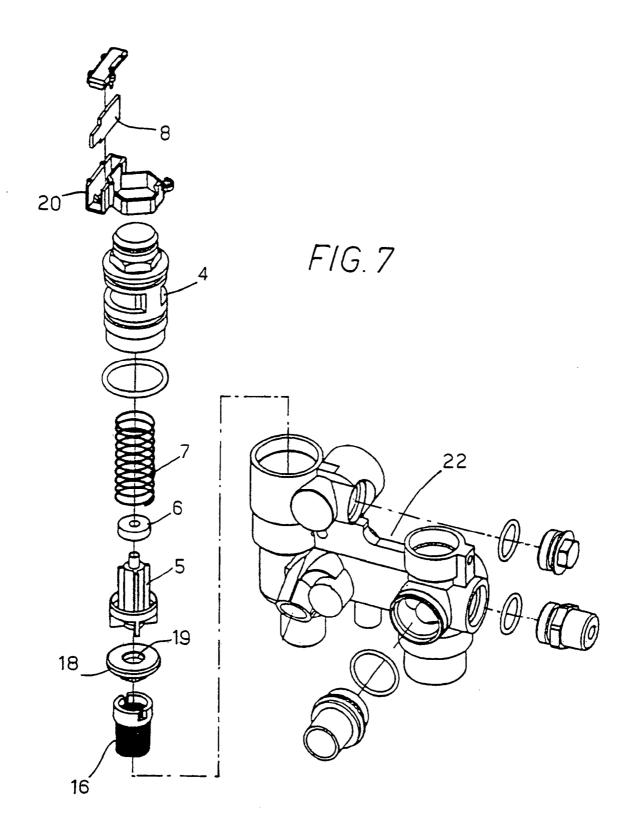
45

5

10


15


20


25

35

40

