

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 431 141

51 Int. Cl.:

H04L 5/02 (2006.01) **H04L 27/26** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 20.03.2007 E 07739962 (4)
 (97) Fecha y número de publicación de la concesión europea: 24.07.2013 EP 1997260
- (54) Título: Señalización de asignaciones de recursos en un sistema de comunicación
- (30) Prioridad:

20.03.2006 GB 0605581

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **25.11.2013**

(73) Titular/es:

NEC CORPORATION (100.0%) 7-1, Shiba 5-chome Minato-ku Tokyo 108-8001, JP

(72) Inventor/es:

ARNOTT, ROBERT y MITRA, DIPTENDU

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Señalización de asignaciones de recursos en un sistema de comunicación

5 CAMPO DE LA INVENCIÓN

La presente invención se refiere a la señalización de asignaciones de recursos dentro de un sistema de comunicación. La invención tiene particular relevancia, aunque no exclusiva, para la señalización de subportadoras que se utiliza en un sistema de comunicación de acceso múltiple por división en frecuencia ortogonal (OFDMA orthogonal frequency divisional multiple access").

ANTECEDENTES DE LA INVENCIÓN

El OFDMA y el FDMA de portadora única se han seleccionado como los esquemas de acceso múltiple de enlace descendente y de enlace ascendente para la interfaz aérea de E-UTRA que está siendo estudiada en la actualidad en el 3GPP [Provecto de Sociedad de 3ª Generación –"3rd Generation Partnership Project"] (que es una colaboración basada en una norma que mira a la evolución futura de los sistemas de telecomunicación móvil de tercera generación). Bajo el sistema de E-UTRA, una estación de base que se comunica con un cierto número de dispositivos de usuario, asigna la cantidad total de recursos de tiempo / frecuencia (dependiendo de la anchura de banda) entre tantos usuarios simultáneos como sea posible, a fin de hacer posible una adaptación de enlace eficiente y rápida y alcanzar una ganancia de diversidad de múltiples usuarios máxima. Los recursos asignados a cada dispositivo de usuario se basan en las condiciones de canal instantáneas entre el dispositivo de usuario y la estación de base, y se informa de ellos a través de un canal de control supervisado por el dispositivo de usuario.

El documento WO 2005/064875 divulga una señalización de anchura de banda en un sistema de telecomunicación inalámbrica de múltiples portadoras. La información es transferida dentro de la propia banda y contiene información 25 acerca del tamaño y la posición de la banda. La información es repetida en un cierto número de portadoras a través de toda la banda.

COMPENDIO DE LA INVENCIÓN

Para dar soporte a un gran número de dispositivos de usuario, es necesario un mecanismo eficiente de señalización 30 de recursos que utilice los menos recursos de tiempo / frecuencia posibles.

Y, de esta forma, existe un gran deseo en la técnica de proporcionar un novedoso método para señalizar datos de asignación de recursos en un sistema de comunicación, un nodo (o estación) de comunicación, dispositivos de usuario para ello, un programa legible por computadora para poner en funcionamiento el método y el aparato, dispositivos y/o sistema.

Aspectos de la invención se recogen en las reivindicaciones independientes que se acompañan.

Características opcionales pero beneficiosas se recogen en las reivindicaciones dependientes que se acompañan.

Estos y otros diversos aspectos de la invención se pondrán de manifiesto de un modo evidente por la siguiente descripción detallada de modos que se proporcionan a modo de ejemplo únicamente y que son descritos con referencia a las figuras que se acompañan.

45 BREVE DESCRIPCIÓN DE LOS DIBUJOS

La Figura 1 ilustra esquemáticamente un sistema de comunicación que comprende diversos teléfonos móviles (celulares) de usuario que se comunican con una estación de base conectada a la red de telefonía;

La Figura 2 ilustra la manera como una anchura de base de comunicación de la estación de base mostrada en la Figura 1, puede ser asignada a un cierto número de teléfonos móviles diferentes que tienen diferentes anchuras de banda a las que se da soporte;

La Figura 3 es un diagrama de bloques que ilustra los componentes principales de la estación de base que se ha mostrado en la Figura 1;

La Figura 4 ilustra la manera como fragmentos de subportadoras situados dentro de una banda subordinada, o subbanda, de 5 MHz pueden ser agrupados formando una pluralidad de grupos para su asignación a los diferentes teléfonos móviles;

La Figura 5A ilustra la manera como pueden asignarse subportadoras basándose en una asignación localizada en la que cada teléfono móvil es asignado a un conjunto de fragmentos consecutivos de subportadoras:

La Figura 5B ilustra la manera como la misma técnica de codificación puede ser utilizada para asignar las subportadoras utilizando una asignación de fragmentos distribuida en la que a cada teléfono móvil se le asigna un conjunto de fragmentos dispersados a través de su anchura de banda a la que se da soporte; La Figura 5C ilustra el modo como la misma técnica de codificación puede ser utilizada para asignar las

subportadoras utilizando una asignación de subportadora distribuida en la que a cada teléfono móvil se le asigna un conjunto de subportadoras posiblemente discontinuas dispersadas a través de su anchura de banda a la que se da soporte;

2

10

15

20

35

40

50

55

60

La Figura 6 es un diagrama de flujo que ilustra el procedimiento llevado a cabo por un módulo codificador que forma parte de la estación de base mostrada en la Figura 3;

La Figura 7 es un diagrama de bloques que ilustra los componentes principales de uno de los teléfonos móviles que se han mostrado en la Figura 1;

La Figura 8 es un diagrama de flujo que ilustra las etapas de procedimiento principales llevadas a cabo por un módulo descodificador que forma parte del teléfono móvil que se ha mostrado en la Figura 7;

La Figura 9 ilustra la manera como fragmentos de subportadoras situados dentro de una subbanda de 2,5 MHz pueden ser agrupados formando una pluralidad de grupos para su asignación a los diferentes teléfonos móviles; y

La Figura 10 ilustra esquemáticamente un árbol de código que se utiliza por el módulo codificador de la estación de base en un modo alternativo de codificar un fragmento de comienzo y uno de final que definen la asignación de subportadora para un usuario.

MODOS DE LLEVAR A CABO LA INVENCIÓN

Generalidades

5

10

15

20

25

40

45

55

60

65

La Figura 1 ilustra esquemáticamente un sistema de telecomunicación móvil (celular) I en el que los usuarios de unos teléfonos móviles 3-0, 3-1 y 3-2 pueden comunicarse con otros usuarios (no mostrados) a través de una estación de base 5 y una red de telefonía 7. En este modo, la estación de base 5 se sirve de una técnica de acceso múltiple por división en frecuencia ortogonal (PFDMA –"orthogonal frequency division multiple access") en la que los datos que se han de transmitir a los teléfonos móviles 3 son modulados sobre una pluralidad de subportadoras. Diferentes subportadoras son asignadas a cada teléfono móvil 3 dependiendo de la anchura de banda del teléfono móvil 3 a la que se da soporte y de la cantidad de datos que se han de enviar al teléfono móvil 3. En este modo, la estación de base 5 también asigna las subportadoras utilizadas para transportar los datos a los respectivos teléfonos móviles 3, con el fin de tratar de mantener una distribución uniforme de los teléfonos móviles 3 que operan a través de la anchura de banda de la estación de base. Para conseguir estos objetivos, la estación de base 5 dinámicamente asigna subportadoras para cada teléfono móvil 3 y señaliza las asignaciones para cada instante de tiempo (subtrama), a cada uno de los teléfonos móviles 3 programados u organizados en el tiempo.

30 La Figura 2 ilustra un ejemplo del modo como la estación de base 5 puede asignar subportadoras situadas dentro de su anchura de banda a la que se da soporte, a diferentes teléfonos móviles 3 que tienen diferentes anchuras de banda a las que se da soporte. En este modo, la estación de base 5 tiene una anchura de banda soportada o habilitada de 20 MHz, de los que 18 MHz se utilizan para la transmisión de datos. En la Figura 2, MT ("mobile terminal") representa un terminal móvil.

A fin de que cada uno de los teléfonos móviles 3 pueda ser informado acerca de la decisión de programación u organización temporal dentro de cada subbanda, cada teléfono móvil 3 requiere un canal de control compartido dentro de su banda de frecuencias temporalmente adoptada. La información señalada o indicada dentro de su canal de control incluirá;

- i) información de asignación de bloque de recursos (tanto para comunicaciones de enlace descendente como para comunicaciones de enlace ascendente);
- ii) información de desmodulación de bloque de recursos para el enlace descendente;
- iii) información de desmodulación de bloque de recursos para el enlace ascendente;
- iv) ACK / NACK [CONFIRMACIÓN / NO CONFIRMACIÓN] para transmisiones de enlace ascendente; y
- v) bits de control de la regulación de secuencia temporal.

Puesto que el número de bits disponibles en el canal de control es limitado, se necesitan métodos eficientes para transportar la información requerida con el número más bajo de bits. La invención se refiere a la manera como la información de asignación de recursos puede ser señalizada o indicada de un modo eficiente a cada uno de los teléfonos móviles 3.

Estación de base

La Figura 3 es un diagrama de bloques que ilustra los componentes principales de la estación de base 5 que se utiliza en este modo. Como se muestra, la estación de base 5 incluye un circuito transmisor-receptor, o transceptor, 21 que es susceptible de hacerse funcionar para transmitir señales a, y para recibir señales de, los teléfonos móviles 3 por medio de una o más antenas 23 (utilizando las subportadoras anteriormente descritas), y que es susceptible de hacerse funcionar para transmitir señales a, y para recibir señales de, la red de telefonía 7 a través de una interfaz 25 de red. El funcionamiento del circuito transceptor 21 es controlado por un controlador 27 de acuerdo con programación o software almacenado en una memoria 29. El software incluye, entre otras cosas, un sistema operativo 31 y un módulo 33 de asignación de recursos. El módulo 33 de asignación de recursos es susceptible de hacerse funcionar para asignar las subportadoras que se utilizan por el circuito transceptor 21 en sus comunicaciones con los teléfonos móviles 3. Como se muestra en la Figura 3, el módulo 33 de asignación de recursos también incluye un módulo codificador 35 que codifica la asignación en una representación eficiente, que es entonces comunicada a los teléfonos móviles 3 respectivos.

En este modo, la estación de base 5 puede utilizar tres tipos diferentes de asignación de subportadora:

i) una asignación de fragmentos localizada en la que a cada teléfono móvil 3 se le asigna un conjunto de fragmentos consecutivos de subportadoras, de tal manera que, en este modo, cada fragmento consiste en un conjunto de 25 subportadoras consecutivas;

ii) una asignación de fragmentos distribuida en la que a cada teléfono móvil 3 se le asigna un conjunto de fragmentos dispersos a través de la anchura de banda a la que se da soporte por parte del teléfono móvil 3; y iii) una asignación de subportadoras distribuida en la que a cada teléfono móvil 3 se le asigna un conjunto de subportadoras posiblemente discontinuas, dispersas a través de la anchura de banda a la que se da soporte por parte del teléfono móvil 3.

Primera técnica de codificación

5

10

30

35

40

45

50

55

60

65

Se describirá, a continuación, una primera técnica de codificación que el módulo codificador 35 puede utilizar para codificar la información de asignación de recursos anteriormente descrita, con referencia a las Figuras 4 a 6. La Figura 4 ilustra esquemáticamente la manera como las 300 subportadoras situadas dentro de una subbanda de 5 MHz de la anchura de banda operativa de la estación de base, son divididas en una secuencia de doce fragmentos (etiquetados como: 0, 1, 2, 3,..., 11), cada uno de los cuales comprende 25 subportadoras. La información que define esta disposición de fragmentos puede ser almacenada como datos dentro de la memoria de la estación de base 5 (y en los teléfonos móviles 3) o puede estar definida en el software o en los circuitos de hardware que marchan en su interior. La Figura 4 también ilustra la manera como el módulo codificador 35 divide, en este modo, los fragmentos de subportadoras en una secuencia de grupos (en este caso, cinco grupos), dependiendo de la asignación de subportadora de corriente. En el ejemplo que se ilustra en la Figura 4, el primer grupo comprende los fragmentos 0 y 1; el segundo grupo comprende el fragmento 2; el tercer grupo comprende los fragmentos 3 a 7; el cuarto grupo comprende los fragmentos 8 y 9; y el quinto grupo comprende los fragmentos 10 y 11.

La Figura 4 también ilustra una configuración o patrón 51 de asignación de recursos que es generado por el módulo codificador 35 y que define este agrupamiento de los fragmentos. Como se muestra, el patrón 51 de bits de asignación de recursos incluye un bit para cada uno de los doce fragmentos contenidos en la subbanda, que se ajusta en un valor de "1" cuando el fragmento correspondiente es el primer fragmento de un nuevo grupo y, en caso contrario, se ajusta en un valor de "0". Como apreciarán los expertos de la técnica, el primer bit del patrón 51 de doce bits es redundante y no necesita ser señalizado (transmitido), debido a que el primer fragmento contenido dentro de la subbanda siempre será el primer fragmento contenido en el primer grupo.

La Figura 4 también ilustra una ID [identificación] 53 de recurso, que se proporciona para cada uno de los grupos definidos. Como se muestra, en este modo, la ID de recurso para un grupo identifica el grupo por su posición dentro de la secuencia de grupos. En particular, las IDs de recursos están implícitamente numeradas de izquierda a derecha en correspondencia con la posición del grupo asociado dentro de la secuencia de grupos.

Cada teléfono móvil 3 es entonces informado de su asignación dentro de cada subbanda de 5 MHz mediante la señalización del patrón 51 de bits de asignación de recursos correspondiente y de una de las IDs 53 de recursos. En este modo, los patrones 51 de bits de asignación de recursos son señalizados a los teléfonos móviles 3 a través de un canal de señalización común existente en cada subbanda de 5 MHz, y la(s) ID(s) 53 de recursos para cada teléfono móvil 3 es (son) individualmente señalizada(s) en su canal de control dedicado. En este modo, cada ID 53 de recursos es señalizada como un número de 3 bits, lo que conduce a un número máximo de ocho teléfonos móviles 3 que pueden ser programados u organizados en el tiempo por cada subbanda de 5 MHz. Los teléfonos móviles 3 con anchuras de banda mayores pueden combinar múltiples subbandas de 5 MHz y descodificar su asignación de recursos total a partir del patrón 51 de bits de asignación de recursos y de la ID 53 de recursos procedentes de cada subbanda.

Como apreciarán los expertos de la técnica, la manera como el módulo codificador 35 genera las configuraciones o patrones 51 de bits de asignación de recursos y las IDs 53 de recursos anteriormente descritos, variará dependiendo de cómo se hayan asignado las subportadoras (esto es, utilizando la asignación de fragmentos localizada, la asignación de fragmentos distribuida o la asignación de subportadoras distribuida). Se describirán, a continuación, ejemplos de estos diferentes tipos de asignaciones con referencia a la Figura 5.

Asignación de fragmentos localizada

La Figura 5A ilustra un ejemplo en el que las subportadoras han sido asignadas a tres teléfonos móviles 3 mostrados en la Figura 1, utilizando una asignación de fragmentos localizada. En particular, en este ejemplo, el teléfono móvil 3-0 tiene una anchura de banda a la que se da soporte de 10 MHz, y se le han asignado los fragmentos 10 y 11 de la primera subbanda y los fragmentos 0 y 1 de la segunda subbanda. De forma similar, en este ejemplo, el teléfono móvil 3-1 tiene una anchura de banda a la que se da soporte de 10 MHz, y se le han asignado el fragmento 2 de la primera subbanda y los fragmentos 3, 4 y 5 de la segunda subbanda. Nótese que la primera subbanda significa las 300 primeras subportadoras (etiquetadas como 51-1) de la Figura 5A, y la segunda subbanda significa las 300

segundas subportadoras (etiquetadas como 51-2) de la Figura 5A. Por último, en este ejemplo, el teléfono móvil 3-2 tiene una anchura de banda a la que se da soporte de 5 MHz, y se le han asignado los fragmentos 3, 4, 5, 6 y 7 contenidos en la primera subbanda. La Figura 5A muestra los dos diferentes patrones 51-1 y 51-2 de bits de recursos y las correspondientes IDs de recursos generadas por el módulo codificador 35 para las dos subbandas ilustradas. La Figura 5A también ilustra, en la parte de debajo de la Figura, la ID de recursos que se ha señalizado a los teléfonos móviles 3 respectivos. Como cada teléfono móvil 3 recibe tan solo 1 ID de recursos para cada subbanda de 5 MHz que ocupa, su asignación de subportadora es contigua dentro de cada subbanda. Sin embargo, a un teléfono móvil 3 que tiene una anchura de banda a la que se da soporte de 5 MHz, se le pueden asignar recursos dentro de cada una de las subbandas de 5 MHz que ocupa, y no es necesario que estos recursos sean contiguos unos con otros, tal como se ilustra en la Figura 5A para el teléfono móvil 3-1.

Como se ha expuesto anteriormente, en este modo, se supone que a lo sumo pueden ser organizados en el tiempo ocho teléfonos móviles 3 dentro de cada subbanda de 5 MHz, en cada instante de tiempo (subtrama). Puede parecer, por lo tanto, que existe una cierta redundancia en el patrón 51 de bits de asignación de recursos, de doce bits (que puede permitir que se definan hasta doce IDs de recursos dentro de cada subbanda). Sin embargo, incluso en el caso de que se hayan organizado en el tiempo el número máximo de ocho teléfonos móviles 3 dentro de una subbanda, sigue siendo posible que algunas subportadoras no se utilicen. Por ejemplo, si a ocho teléfonos móviles 3 se les ha asignado un único fragmento de subportadoras y los 4 restantes fragmentos sin utilizar no están en un bloque contiguo, entonces aún se necesitan hasta doce bits (o doce, si se ignora el primer bit, como se ha explicado en lo anterior) para definir la división o partición de fragmentos para conseguir la asignación deseada.

Asignación de fragmentos distribuida

La Figura 5B ilustra el modo como pueden utilizarse el mismo tiempo de patrón 51 de bits de asignación de recursos y de ID 53 de recursos cuando se emplea un esquema de asignación de fragmentos distribuido. La Figura 5B ilustra la asignación real 61 de fragmentos para 5 teléfonos móviles 3 diferentes, identificados por diferentes sombreados. En el ejemplo que se ilustra, a un teléfono móvil 3 se le han asignado 6 fragmentos (a saber, los fragmentos 0, 2, 4, 6, 8 y 10); a un teléfono móvil se le han asignado 3 fragmentos (a saber, los fragmentos 1, 5 y 9); y a los otros 3 teléfonos móviles 3 se les ha asignado 1 fragmento de subportadoras a cada uno. En este modo, con el fin de facilitar la descodificación de los datos de asignación de recursos dentro de los teléfonos móviles 3, la división o partición de los fragmentos se ha dispuesto en orden decreciente en términos del número de fragmentos por grupo. Para el ejemplo que se muestra en la Figura 5B, esto significa que el grupo que comprende 6 fragmentos está colocado primero, seguido por el grupo que comprende 3 fragmentos, al que siguen los 3 grupos restantes, cada uno de los cuales comprende 1 fragmento. Como las IDs de recursos para estos grupos de fragmentos están numeradas de izquierda a derecha, esto significa que al teléfono móvil 3 con el número más grande de fragmentos asignados se le da la ID más pequeña, de manera que al usuario con el segundo número más grande de fragmentos asignados se le proporciona la siguiente ID más pequeña, etc. Como resultará evidente para los expertos de la técnica, es necesario que el número de fragmentos asignados a cada teléfono móvil 3 sea tenido en consideración en el número de fragmentos que se asignen a otros teléfonos móviles 3 con una ID de recursos más pequeña, a fin de evitar la colisión de recursos durante la descodificación de la señalización de los recursos.

Asignación de subportadoras distribuida

La Figura 5C ilustra esquemáticamente un ejemplo de una asignación de subportadoras distribuida que puede emplearse. Al igual que con el ejemplo que se ha ilustrado en la Figura 5B, en el ejemplo mostrado en la Figura 5C existen cinco teléfonos móviles, de tal manera que al primer teléfono móvil 3 se le han asignado las subportadoras 0, 2, 4,..., 298; al segundo teléfono móvil 3 se le han asignado las subportadoras 1, 5, 9,..., 297; al tercer teléfono móvil 3 se le han asignado las subportadoras 3, 15,..., 291; al cuarto teléfono móvil 3 se le han asignado las subportadoras 7, 19,..., 295; y al quinto teléfono móvil 3 se le han asignado las subportadoras 11, 23,..., 299. En el ejemplo que se ilustra, la separación entre las subportadoras asignadas al primer teléfono móvil 3 es dos, la que existe entre las subportadoras asignadas al segundo teléfono móvil 3 es igual a 4, y la que hay entre las subportadoras asignadas a los 3 teléfonos móviles restantes es igual a 12. En este ejemplo ilustrativo, todos los teléfonos móviles 3 ocupan los 6 fragmentos disponibles, pero con diferentes separaciones entre subportadoras. La asignación es idéntica a la asignación de fragmentos distribuida, repetida para abarcar toda la anchura de banda de 5 MHz, de manera que la anchura de banda de los fragmentos se ha reemplazado por la anchura de banda de portadora sub-25. La Figura 5C ilustra el patrón 51 de bits de asignación de recursos y las IDs 53 de recursos resultantes para esta asignación de subportadora.

Bits de tipo de asignación

Como apreciarán los expertos de la técnica, con el fin de que los teléfonos móviles 3 puedan determinar la asignación de subportadoras correcta, se les ha de informar del tipo de asignación de subportadoras que se ha hecho (es decir, asignación de fragmentos localizada, asignación de fragmentos distribuida o asignación de subportadoras distribuida). Esta información es señalizada a todos los teléfonos móviles 3 utilizando la configuración o patrón del tipo de asignación de dos bits:

60

5

10

15

20

25

30

35

40

45

50

Patrón de tip	Tipo de asignación		
0	0	Fragmento localizado	
0	1	Fragmento distribuido	
1	1	Subportadora distribuida	

Como se describirá con mayor detalle más adelante, los teléfonos móviles 3 utilizan este patrón de bits de tipo de asignación para identificar el modo como se ha de interpretar el grupo de fragmentos que les ha sido asignado, mediante el uso del patrón 51 de bits de asignación de recursos y de la ID 53 de recursos.

Compendio del funcionamiento del módulo codificador

La Figura 6 es un diagrama de flujo que ilustra las etapas de procedimiento principales de llevadas a cabo por el módulo codificador 35 para determinar los patrones 51 de bits de asignación de recursos y las IDs 53 de recursos que se han descrito anteriormente para los diferentes teléfonos móviles 3 organizados o programados temporalmente para un instante de tiempo en curso. Como se muestra, en la etapa s1, el módulo codificador 35 recibe la asignación de subportadora vigente en ese momento, que incluye detalles con respecto a si la asignación es o no de conformidad con el esquema de asignación de fragmentos localizada, el esquema de asignación de fragmentos distribuida o el esquema de asignación de subportadoras distribuida. En la etapa s3, el módulo codificador 35 divide los fragmentos de subportadoras de cada una de las cuatro subbandas de 5 MHz de la estación de base en grupos, basándose en la asignación de subportadoras recibida. Como los expertos de la técnica apreciarán, el tratamiento que se lleva a cabo en la etapa s3 dependerá del tipo de asignación de subportadoras que se ha efectuado. En la etapa s5, el módulo codificador 35 genera la configuración o patrón 51 de bits de asignación de recursos anteriormente descrito para cada subbanda de 5 MHz, que representa la partición de fragmentos en esa subbanda. A continuación, en la etapa s7, el módulo codificador 35 genera una ID de recursos para cada grupo de fragmentos de cada subbanda, a fin de señalizarla al teléfono móvil 3 correspondiente.

Una vez que se han generado las IDs 53 de recursos para los grupos de fragmentos de cada subbanda de 5 MHz, el tratamiento prosigue con la etapa s9, en la que el módulo codificador 35 señaliza (transmite) los patrones 51 de bits 25 de asignación de recursos generados a todos los teléfonos móviles 3. En particular, en esta etapa, el módulo codificador 35 hace que el circuito transceptor 21 señalice, dentro de un canal de señalización común de cada subbanda de 5 MHz, el patrón 51 de bits de asignación de recursos que representa la división o partición de los fragmentos dentro de esa subbanda. Los teléfonos móviles 3 serán, por tanto, capaces de recibir los patrones 51 de bits de asignación de recursos para todas las subbandas en las que operan. Por ejemplo, si los teléfonos móviles 3-30 0 y 3-1 tienen una anchura de banda operativa de 10 MH y el teléfono móvil 3-2 tiene una anchura de banda operativa de 5 MHz, entonces los teléfonos móviles 3-0 y 3-1 recibirán dos patrones 51 de bits de asignación de recursos dentro de sus canales de señalización comunes, y el teléfono móvil 3-2 recibirá un único patrón 51 de bits de recursos dentro de su canal de señalización común. El patrón de tipo de asignación de recursos de dos bits anteriormente descrito es también transmitido con cada patrón 51 de bits de asignación de recursos en la etapa s9. 35 Tras la etapa s9, el procedimiento prosique con la etapa s11, en la que el módulo codificador 35 señaliza las IDs 53 de recursos respectivas a cada teléfono móvil 3 dentro del canal de señalización dedicado del teléfono móvil, en cada subbanda de 5 MHz.

Por lo tanto, con la primera técnica de codificación para cada subbanda de 5 MHz, se señalizan un total de 14 bits de canal común (13 si el primer bit del patrón de asignación de recursos no es señalizado) y se señalizan tres bits de ID de recursos para cada dispositivo de usuario.

Teléfono móvil

5

10

15

20

45

50

55

60

La Figura 7 ilustra esquemáticamente los componentes principales de cada uno de los teléfonos móviles 3 que se muestran en la Figura 1. Como se muestra, los teléfonos móviles 3 incluyen un circuito transmisor-receptor, o transceptor, 71, que es susceptible de hacerse funcionar para transmitir señales a la estación de base 5 y recibir señales de esta a través de una o más antenas 73. Como se muestra, el teléfono móvil 3 incluye un controlador 75 que controla el funcionamiento del teléfono móvil 3 y que está conectado al circuito transceptor 71 y a un altavoz 77, a un micrófono 79, a un dispositivo de presentación visual 81 y a un teclado 83. El controlador 75 funciona de acuerdo con instrucciones de programación o software almacenadas dentro de la memoria 85. Como se muestra, estas instrucciones de software incluyen, entre otras cosas, un sistema operativo 87 y un módulo de comunicaciones 89. En este modo, el módulo de comunicaciones 89 incluye un módulo descodificador 91 que es susceptible de hacerse funcionar para descodificar los datos de asignación de recursos señalizados desde la estación de base 5, con el fin de determinar la asignación de subportadoras de ese teléfono móvil para el instante de tiempo vigente en ese momento.

Se describirá a continuación, con referencia al diagrama de flujo que se muestra en la Figura 8, la manera como el módulo descodificador 91 descodifica los datos de asignación de recursos recibidos desde la estación de base. Como se muestra, en la etapa s21, el módulo descodificador 91 recibe el patrón 51 de bits de asignación de recursos y el patrón de tipo de asignación de dos bits asociado desde cada canal de señalización común recibido. Como resultará evidente de la anterior exposición, el número de patrones 51 de bits de asignación de recursos y el

número de patrones de tipo de asignación que se reciben depende de la anchura de banda del teléfono móvil 3 a la que se da soporte. En la etapa s23, el módulo descodificador 91 recibe la(s) ID(s) 53 de recursos procedente(s) de su(s) canal(es) de señalización de uso exclusivo o dedicado(s). El número de IDs 53 de recursos recibidas también depende de la anchura de banda del teléfono móvil 3 a la que se da soporte. A continuación, en la etapa s25, el módulo descodificador 91 identifica, para cada subbanda de 5 MHz a la que se da soporte, los fragmentos de comienzo y de final del grupo de fragmentos asociado con la ID 53 de recursos recibida para esa subbanda. El módulo descodificador 91 identifica estos fragmentos de comienzo y de final utilizando el patrón 51 de bits de asignación de recursos correspondiente que se ha recibido para esa subbanda. Por ejemplo, si la ID 53 de recursos recibida es el valor binario "010" correspondiente a la ID de recursos "2", entonces el módulo descodificador 91 procesa o trata el patrón 51 de bits de asignación de recursos correspondiente con el fin de identificar las posiciones de bit de los segundo y tercer "1s" contando desde la izquierda (e ignorando el primer bit contenido en el patrón 51 de bits de asignación de recursos en el caso de que este incluya 12 bits, ya que el primer bit siempre corresponde al comienzo del primer grupo). La posición de bit de este segundo "1" identifica el principio del grupo que tiene la ID de recursos "2", y la posición de bit del tercer "1" indica el fragmento que está al comienzo del siguiente grupo dentro de la secuencia de grupos, a partir cual el módulo descodificador 91 puede determinar el fragmento de final del grupo que tiene la ID de recursos "2". En el ejemplo ilustrado en la Figura 5A para la primera subbanda, el segundo "1" del patrón 51 de asignación de bits de recursos (ignorando el primer bit) es el cuarto bit desde el extremo de la izquierda, y el tercer "1" dentro del patrón 51 de bits es el noveno bit desde el extremo de la izquierda. Como puede observarse en la Figura 5A, esto significa que el grupo de fragmentos correspondiente a la ID de recursos recibida de "2" comprende los fragmentos 3 a 7 contenidos en esa subbanda de 5 MHz.

5

10

15

20

25

30

35

40

45

50

Una vez que se han determinado los fragmentos de comienzo y de final del grupo asociado con la ID 53 de recursos recibida, el procedimiento prosigue con la s27, en la que el módulo descodificador 91 utiliza el patrón de tipo de asignación de dos bits recibido para determinar si la asignación es una asignación de fragmentos localizada. Si es así, entonces el procedimiento prosigue con la etapa s29, en la que el módulo descodificador 91 determina que las subportadoras asignadas corresponden al conjunto continuo de subportadoras situadas dentro, y entre, los fragmentos de comienzo y de final identificados. Para el ejemplo anterior, esto tendrá como resultado que el módulo descodificador 91 asigne las subportadoras contenidas en los fragmentos 3 a 7 (ambos inclusive) para las comunicaciones con la estación de base 5.

Si, en la etapa s27, el módulo descodificador 91 determina que la configuración o patrón de tipo de asignación de dos bits no corresponde a una asignación de fragmentos localizada, entonces el procedimiento prosigue con la etapa s31, en la que el módulo descodificador 91 determina si el patrón de tipo de asignación de dos bits corresponde a una asignación de fragmentos distribuida. Si es así, entonces el procedimiento prosique con la etapa s33, en la que el módulo descodificador 91 utiliza los fragmentos de comienzo y de final identificados para determinar la separación entre fragmentos, dividiendo el número total de fragmentos dentro de la subbanda por el número de fragmentos comprendidos entre los fragmentos de comienzo y de final identificados. Por ejemplo, para la asignación de fragmentos distribuida que se ha ilustrado en la Figura 5B, y en la que la ID 53 de recursos recibida es "1", el número total de fragmentos dentro de la subbanda es igual a 12 y el número de fragmentos entre los fragmentos de comienzo y de final identificados es 3. Por lo tanto, se asignan 3 fragmentos dentro de esta subbanda, que están separados unos de otros por 4 (12/3 = 4) fragmentos. La posición del primero de estos fragmentos dentro de la subbanda depende de la asignación de subportadora para otros teléfonos móviles 3 organizados en el tiempo dentro de esa subbanda. En consecuencia, cuando se ha seleccionado la asignación de fragmentos distribuida, el módulo descodificador 91 también considera la asignación de fragmentos para los otros teléfonos 3 organizados temporalmente en ese momento. El módulo descodificador 91 realiza estos identificando las posiciones de todos "1s" contenidos en el patrón 51 de bits de asignación de recursos, a fin de determinar el número total de fragmentos asignados en otros grupos. Para la asignación de mostrada en la Figura 5B, el módulo descodificador identificará que el grupo correspondiente a la "ID" de recursos "0" tiene 6 fragmentos; que el grupo correspondiente a la ID de recursos "1" tiene 3 fragmentos; y que los 3 grupos restantes correspondientes a las IDs de recursos "2", "3" y "4" tienen, cada uno de ellos, 1 fragmento. A partir de esta información, el módulo descodificador 91 determina que los fragmentos asociados con la ID de recursos "0" estarán separados unos de otros por 2 fragmentos.

En este modo, el esquema de asignación de fragmentos distribuida se ha dispuesto de tal manera que el primer fragmento contenido en la subbanda sea siempre asignado al primer fragmento asignado a la ID de recursos "0". Por lo tanto, para el ejemplo anterior, los fragmentos asignados para la ID de recursos "0" serán los fragmentos 0, 2, 4, 6, 8 y 10. El módulo descodificador 91 considera entonces los fragmentos asignados para los recursos "1". Como se ha explicado anteriormente, la separación entre fragmentos para la ID de recursos "1" es de 4. El módulo descodificador 91 asigna entonces el primer fragmento para la ID de recursos "1" como el primer fragmento disponible una vez que se han asignado los fragmentos para la ID de recursos "0". En este ejemplo, el primer fragmento sin asignar es el fragmento 1 y, por tanto, los fragmentos asignados a la ID de recursos "1" serán los fragmentos 1, 5 y 9. De una manera similar, el primer fragmento que se encuentra disponible para su asignación para la ID de recursos "2" es el fragmento 3, etc.

65 Como apreciarán los expertos de la técnica, como los grupos de fragmentos se han ordenado de tal manera que los

grupos más grandes tienen las IDs 53 de recursos más bajas que la suya propia, de tal manera que, en este modo, el teléfono móvil 3 únicamente necesita considerar las asignaciones de fragmentos para los grupos con una ID 53 de recursos más baja a la hora de determinar la posición de su primer fragmento asignado de la subbanda.

Si, en la etapa s31, el módulo descodificador 91 determina que el patrón de tipo de asignación de dos bits no corresponde a una asignación de fragmentos distribuida, entonces el módulo descodificador 91 determina que la asignación corresponde a una asignación de subportadoras distribuida, tal como se ha ilustrado en la Figura 5. En este caso, el tratamiento prosigue con la etapa s35, en la que el módulo descodificador 91 determina el número de subportadoras asignadas al teléfono móvil 3 multiplicando el número de fragmentos contenidos en el grupo asignado por el número de subportadoras de cada fragmento (es decir, por veinticinco). El módulo descodificador 91 también calcula la separación entre las subportadoras dividiendo el número total de fragmentos contenidos en la subbanda por el número de fragmentos contenidos en el grupo asignado. Se determina entonces que la posición de la primera subportadora es la primera subportadora disponible una vez que se han asignado las subportadoras para los grupos asociados con las IDs de recursos que tienen valores más bajos, de una manera similar al modo como se determinó el fragmento de comienzo en el procedimiento de asignación de fragmentos distribuida que se ha descrito anteriormente.

Una vez que el descodificador 91 ha determinado su asignación de subportadoras (ya sea en la etapa s29, ya sea en la etapa s33 o en la etapa s35), el módulo descodificador 91 envía señales de control apropiadas al circuito transceptor 71 para controlar la recepción de los datos utilizando las subportadoras identificadas. Seguidamente, el procedimiento finaliza.

Segunda técnica de codificación

20

30

35

40

45

50

Se describirá a continuación, con referencia a las Figuras 4, 9 y 10, una segunda técnica de codificación que el módulo codificador 35 contenido en la estación de base 5 puede utilizar para codificar la información de asignación de recursos anteriormente descrita. Como se ha ilustrado en la Figura 4, la anchura de banda operativa de 20 MHz de la estación de base 5 puede ser dividida en subbandas de diferentes tamaños, de tal manera que la subbanda más pequeña corresponde a una anchura de banda de 1,25 MHz. El número de fragmentos disponibles para cada subbanda se proporciona en la siguiente tabla:

Anchura de banda de subbanda (MHz)	1,25	2,5	5	10	15	20
Número de fragmentos	3	6	12	24	36	48

En esta segunda técnica de codificación, se utiliza un árbol de código triangular con un número de fragmentos disponibles para la anchura de banda particular que es igual al número de nodos de hoja situados en la base del árbol de código. Para el ejemplo de una subbanda de 2,5 MHz que se ha mostrado en la Figura 9, que tiene 6 fragmentos, el árbol de código correspondiente se ha ilustrado en la Figura 10. Como se muestra, el árbol de código 91 está constituido por un árbol de nodos que tiene una profundidad de N nodos, en correspondencia con el número de fragmentos dentro de la subbanda, y que tiene N nodos de hoja en la fija de debajo del árbol de código 91. En este ejemplo, existen seis fragmentos y, por tanto, el árbol tiene una profundidad de 6. El número total de nodos dentro del árbol es igual a N(N + 1)/2. Puede señalizarse, por tanto, un número de nodo de este árbol utilizando un número de bits techo(log₂(N*(N + 1)/2)). El número exacto de bits requeridos para cada anchura de banda se muestra en la tabla que sigue:

MHz	1,25	2,5	5	10	15	20
N	3	6	12	24	36	48
Número de bits	3	5	7	9	10	11

En este modo, la numeración de nodos se ha diseñado para optimizar el número de bits de señalización que se requieren para señalizar una asignación de recursos particular. En el ejemplo que se ilustra en las Figuras 9 y 10, para una anchura de banda de 2,5 MHz, se ha señalizado un número de cinco bits con el fin de determinar unívocamente el fragmento de comienzo y el número de fragmentos consecutivos asignados (que identifica el fragmento de final). En el caso general en que existen N fragmentos dentro de la subbanda, el fragmento de comienzo (O) y el número de fragmentos consecutivos (P) que son asignados pueden ser señalizados como un entero x sin signo, como sigue:

$$si\left(P-1\right) \le \left\lceil \frac{N}{2} \right\rceil$$

$$x = N(P-1) + O$$

si no.

5
$$x = N(N - (P-1)) + (N-1-O)$$

donde $\lceil r \rceil$ es la función techo, es decir, el entero más pequeño no menor que r. En el receptor, los valores de P y O pueden ser entonces extraídos de la forma que sigue:

$$a = \left\lfloor \frac{x}{N} \right\rfloor + 1$$

 $b = x \mod N$

$$si(a+b>N)$$

15 P = N + 2 - a

$$O = N - 1 - b$$

20 si no,

25

35

40

45

50

55

$$P = a$$

$$O = b$$

donde |r| es la función suelo, es decir, en entero más grande no mayor que r.

Una ventaja con esta técnica de codificación es que no se necesita ninguna tabla de consulta (no estructura de árbol de código) para llevar a cabo la codificación o la descodificación. Por otra parte, la división por N realizada por el receptor puede también ser implementada por medio de una simple operación de multiplicación y desplazamiento.

Para la asignación de fragmentos localizada, a cada teléfono móvil 3 se le señalizará o indicará un número de nodo, que establece una relación de correspondencia o correlación con un conjunto de fragmentos de hoja. Como ejemplo de ello, si a uno de los teléfonos móviles 3 se le asignan los fragmentos 0 y 1, a otro teléfono móvil 3 se le asignan los fragmentos 2, 3 y 4, y a un tercer teléfono móvil 3 se le asigna el fragmento 5 de la anchura de banda de 2,5 MHz ilustrada en la Figura 9, entonces al primer teléfono móvil 3 se le señalizará el valor 6, al segundo teléfono móvil 3 se le señalizará el valor 5. Estos valores son determinados, preferiblemente, utilizando la primera ecuación dada en lo anterior. Alternativamente, estos números de nodo pueden ser determinados a partir de la estructura de árbol 91, identificando el nodo de raíz que es común a los fragmentos asignados. Por ejemplo, para el primer teléfono móvil 3, en el que los fragmentos asignados corresponden a los fragmentos 0 y 1, el nodo de raíz que es común a estos nodos es el nodo numerado como 6. Similarmente, para el segundo teléfono móvil 3, al que se han asignado los fragmentos 2, 3 y 4, el nodo que constituye la raíz común para el fragmento de comienzo 2 y el fragmento de final 4 es el nodo numerado como 14. Por último, para el tercer teléfono móvil, al que se ha asignado el fragmento 5, puesto que existe únicamente 1 fragmento, no hay ningún nodo común y, por tanto, el número de nodo que se ha señalizado corresponde al número de fragmento asignado (esto es, el 5).

En el caso de una asignación de fragmentos distribuida para la misma anchura de banda, pueden utilizarse las mismas ecuaciones para señalizar los fragmentos que han sido asignados. Por ejemplo, si a un teléfono móvil 3 se le han asignado los fragmentos 1 y 5, entonces se señaliza el número 16 conjuntamente con un indicador de asignación de fragmentos distribuida. En el teléfono móvil, los valores P y O son descodificados de la misma manera que se ha explicado anteriormente, si bien su interpretación es diferente. En particular, con la asignación de fragmentos distribuida, el valor de P denota la separación entre fragmentos y el valor de O denota el primer fragmento de la asignación distribuida.

La multiplexación de la asignación de fragmentos distribuida y de la asignación de fragmentos localizada en el mismo instante de tiempo es, también, fácilmente soportada o habilitada utilizando este método de codificación. Por ejemplo, a un teléfono móvil 3 puede asignársele una asignación localizada y señalizársele o indicársele el valor 14,

que establece una correlación con los fragmentos 2, 3 y 4, en tanto que a otro teléfono móvil 3 se le asigna una asignación de fragmentos distribuida y se le señaliza el valor 16, que establece una correlación con los fragmentos 1 y 5.

- Puede darse también soporte a la asignación de subportadoras distribuida con diferentes separaciones para diferentes teléfonos móviles, utilizando el anterior esquema de codificación. En este caso, los valores de O y P son también interpretados de un modo diferente. En este caso, como se ha seleccionado la asignación de subportadoras distribuida, el valor de O identificará el descentramiento de subportadoras asignadas y el valor de P definirá la separación entre las subportadoras. Por ejemplo, si a un teléfono móvil 3 se le ha señalizado el valor 16 y una indicación de que se ha realizado la asignación de subportadoras distribuida, entonces el descentramiento de subportadoras será 1 y la separación entre subportadoras será 5. Similarmente, un teléfono móvil 3 al que se ha señalizado el valor 14 y un indicador de subportadoras distribuidas supondrá un descentramiento de subportadoras de 2 y una separación entre subportadoras de 3. Como apreciarán los expertos de la técnica, la multiplexación de fragmento localizado y de subportadora distribuida no es posible con esta técnica de codificación.
- Si bien los anteriores ejemplos ilustran la situación para una subbanda de 2,5 MHz, esto es por facilidad de ilustración únicamente. La asignación de recursos dentro de la anchura de banda total de la estación de base puede llevarse a cabo en unidades de la capacidad de recepción de enlace descendente de los diferentes teléfonos móviles 3. Por ejemplo, si todos los teléfonos móviles 3 pueden recibir al menos 5 MHz, entonces la asignación de recursos en la estación de base 5 puede hacerse en unidades de 5 MHz. Teléfonos móviles 3 con anchuras de banda más grandes pueden entonces combinar canales de control por múltiples bandas de 5 MHz para decidir su asignación de recursos.

Modificaciones y alternativas

15

- Anteriormente se han descrito varios modos detallados. Como apreciarán los expertos de la técnica, pueden realizarse diversas modificaciones y alternativas a los anteriores modos al tiempo que se sigue tomando beneficio de la invención materializada en esta memoria. A modo de ilustración únicamente, se describirán a continuación un cierto número de estas alternativas y modificaciones.
- En los modos anteriores se ha descrito un sistema de telecomunicación basado en teléfono móvil en el que se han empleado las técnicas de señalización anteriormente descritas. Como los expertos de la técnica apreciarán, la señalización de tales datos de asignación de recursos puede ser empleada en cualquier sistema de comunicación que se sirva de una pluralidad de subportadoras. En particular, las técnicas de señalización descritas en lo anterior pueden ser utilizadas en comunicaciones basadas en cables o inalámbricas que utilicen ya sea señales electromagnéticas, ya sea señales acústicas para transportar los datos. En el caso general, la estación de base será reemplazada por un nodo de comunicación que se comunica con un cierto número de dispositivos de usuario diferentes. Los dispositivos de usuario pueden incluir, por ejemplo, asistentes personales digitales, computadoras portátiles, exploradores de web, etc.
- 40 En los modos anteriores se ha supuesto que la estación de base tiene una anchura de banda operativa de 20 MHz (que se dividió en un cierto número de subbandas), y los fragmentos de las frecuencias de portadora se definieron de manera que comprendían 25 subportadoras cada uno. Como apreciarán los expertos de la técnica, la invención no está limitada a este tamaño particular de la anchura de banda o tamaño de los fragmentos, o al tamaño de las subbandas descrito.
- En la primera técnica de codificación anteriormente descrita, la estación de base dividió los fragmentos contenidos en la subbanda en un cierto número de grupos. El principio y el final de estos grupos fueron entonces identificados por bits comprendidos dentro de una configuración o patrón de bits de asignación de recursos. En el ejemplo, un "1" dentro de este patrón de bits representaba el principio de un nuevo grupo. Como los expertos de la técnica apreciarán, podrían utilizarse otros esquemas de codificación. Por ejemplo, podría utilizarse un "0" para definir el comienzo de cada grupo. Alternativamente, puede utilizarse un cambio en el valor de los bits para definir el comienzo de cada grupo.
- En la primera técnica de codificación que se ha descrito anteriormente, la ID de recursos asignada para cada subbanda se transmitía a cada teléfono móvil por un canal de señalización de uso exclusivo o dedicado. Como los expertos de la técnica apreciarán, esta información de ID de recursos puede, en lugar de ello, ser señalizada dentro del canal de señalización común. En este caso, la ID de dispositivos de usuario correspondiente a cada ID de recursos será señalizada dentro del canal de señalización común, de tal manera que cada dispositivo de usuario pueda identificar la ID de recursos a él asignada.
 - En la primera técnica de codificación anteriormente descrita, la estación de base y el teléfono móvil numeraban implícitamente los grupos y los fragmentos de izquierda a derecha dentro de la subbanda. Como los expertos de la técnica apreciarán, esto no es esencial. La numeración de los grupos y de los fragmentos puede llevarse a cabo de otras maneras, tales como de derecha a izquierda. Siempre y cuando tanto la estación de base 5 como los teléfonos móviles 3 conozcan el esquema de numeración por adelantado, puede llevarse a cabo la anterior codificación.

En los anteriores esquemas de codificación, la estación de base 5 era capaz de asignar subportadoras utilizando diversas técnicas de asignación diferentes. Como los expertos de la técnica apreciarán, es posible prescindir de una o más de estas técnicas de asignación. Por otra parte, si se utiliza una única técnica de asignación, entonces no hay necesidad de señalizar un patrón de bits de tipo de asignación independiente.

En la segunda técnica de codificación anteriormente descrita, se definía una relación de correspondencia, o correlación, entre los fragmentos y un número único o exclusivo que representaba la combinación de un fragmento de comienzo y un fragmento de final dentro de una secuencia de fragmentos asignada al usuario. Como los expertos de la técnica apreciarán, esta correlación puede ser definida de cualquier modo apropiado, tal como utilizando una ecuación o utilizando una tabla de consulta. Se prefiere el uso de una ecuación ya que esta elimina la necesidad de almacenar una tabla de consulta tanto en la estación de base 5 como en cada uno de los teléfonos móviles 3.

En los anteriores modos se han descrito un cierto número de módulos de software. Como los expertos de la técnica apreciarán, los módulos de software pueden proporcionarse en una forma compilada o no compilada, y pueden suministrarse a la estación de base o al teléfono móvil como una señal a través de una red informática, o sobre un medio de grabación. Por otra parte, la capacidad funcional llevada a cabo por parte o por la totalidad de este software puede ser implementada utilizando uno o más circuitos de hardware dedicados. Sin embargo, es preferible el uso de módulos de software ya que ello facilita la actualización de la estación de base 5 y de los teléfonos móviles 3 con el fin de actualizar sus capacidades funcionales.

Ha de apreciarse que otros propósitos, características y ventajas de la presente invención se pondrán de manifiesto de un modo evidente en toda la descripción, y que es posible realizar modificaciones sin apartarse del alcance de las reivindicaciones que se acompañan.

25

5

REIVINDICACIONES

1.- Un método para señalizar datos de asignación de recursos dentro de un sistema de comunicación que utiliza una pluralidad de subportadoras dispuestas en una secuencia de fragmentos, de manera que el método comprende:

recibir (S1) una asignación de dichas subportadoras para cada uno de una pluralidad de dispositivos (3) de usuario, de tal manera que la asignación de subportadoras es diferente para los diferentes dispositivos (3) de usuario;

- procesar o tratar (S3) las asignaciones recibidas para determinar, para cada dispositivo (3) de usuario, respectivos datos que identifican un fragmento de comienzo y un fragmento de final dentro de dicha secuencia de fragmentos, que dependen de las subportadoras asignadas al dispositivo (3) de usuario; generar (S5), para cada dispositivo (3) de usuario, respectivos datos de asignación de recursos para el dispositivo (3) de usuario utilizando una relación de correspondencia o correlación predeterminada que relaciona los datos que identifican el fragmento de comienzo y el fragmento de final determinados en dicha etapa de tratamiento, con un valor único o exclusivo comprendido en los datos de asignación de recursos; y señalizar (S9) los respectivos datos de asignación de recursos, que comprenden dicho valor exclusivo, a cada uno de dicha pluralidad de dispositivos (3) de usuario.
- 2.- Un método de acuerdo con la reivindicación 1, en el cual dicha etapa de generación es susceptible de hacerse funcionar para codificar un identificador del fragmento de comienzo determinado y un identificador del fragmento de final determinado, cuando se generan dichos datos de asignación de recursos.
 - 3.- Un método de acuerdo con la reivindicación 1 o la reivindicación 2, en el que dicho sistema de comunicación utiliza una pluralidad de subbandas, cada una de las cuales comprende subportadoras dispuestas en una secuencia de fragmentos, y de tal manera que el método genera respectivos datos de asignación de recursos para la asignación de subportadoras dentro de cada subbanda.
 - 4.- Un método de acuerdo con la reivindicación 3, en el cual los datos de asignación de recursos para una subbanda son señalizados dentro de esa subbanda.
 - 5.- Un método llevado a cabo por un dispositivo (3) de usuario para determinar una pluralidad de subportadoras a partir de una secuencia de fragmentos, asignados al dispositivo (3) de usuario, de tal manera que el método comprende:
- recibir señales desde un nodo de comunicaciones, de tal manera que dichas señales incluyen diferentes datos de asignación de recursos para cada uno de una pluralidad de dispositivos (3) de usuario, de tal modo que los datos de asignación de recursos para un dispositivo de usuario respectivo comprenden un valor único o exclusivo que se relaciona con datos que identifican un fragmento de comienzo y un fragmento de final dentro de dicha secuencia de fragmentos;
- identificar los datos de asignación de recursos para el dispositivo (3) de usuario que lleva a cabo el método, de tal modo que dichos datos de asignación de recursos identifican dicho fragmento de comienzo y dicho fragmento de final dentro de dicha secuencia de fragmentos;
 - mantener o guardar información que relaciona los datos de asignación de recursos con dicha secuencia de fragmentos de subportadoras, de tal manera que dicha información guardada define una correlación predeterminada que correlaciona dicho valor exclusivo con datos que identifican dicho fragmento de comienzo y dicho fragmento de final de dicha asignación de recursos; y
 - determinar las subportadoras asignadas utilizando los datos de asignación de recursos recibidos y dicha información guardada.
- 6.- Un método de acuerdo con la reivindicación 5, en el cual dicho sistema de comunicación utiliza una pluralidad de subbandas, cada una de las cuales comprende subportadoras dispuestas en una secuencia de fragmentos, y de tal modo que el método recibe respectivos datos de asignación de recursos para la asignación de subportadoras, dentro de una pluralidad de dichas subbandas.
- 55 7.- Un método de acuerdo con la reivindicación 6, en el cual los datos de asignación de recursos para una subbanda son recibidos dentro de esa subbanda.
- 8.- Un método de acuerdo con la reivindicación 5 o la reivindicación 7, en el que dicho datos de asignación son codificados y en el cual dicha etapa de determinación comprende la etapa de descodificar los datos de asignación para determinar dichos fragmentos de comienzo y de final, o para identificar datos que definen dichos fragmentos de comienzo y de final.
 - 9.- Un método de acuerdo con cualquiera de las reivindicaciones precedentes, en el cual dicha correlación se define por una o más ecuaciones.

65

5

10

15

25

30

- 10.- Un producto de programa informático que comprende instrucciones susceptibles de implementarse por computadora para hacer que un dispositivo informático programable lleve a cabo el método de acuerdo con cualquiera de las reivindicaciones 1 a 4 o 9.
- 5 11.- Un producto de programa informático que comprende instrucciones susceptibles de implementarse por computadora para hacer que un dispositivo informático programable lleve a cabo el método de determinar la asignación de subportadoras de acuerdo con cualquiera de las reivindicaciones 5 a 8.
- 12.- Un nodo de comunicación que es susceptible de hacerse funcionar para comunicarse con una pluralidad de dispositivos (3) de usuario utilizando una pluralidad de subportadoras dispuestas en una secuencia de fragmentos, de manera que el nodo de comunicación comprende:
 - un receptor (21), susceptible de hacerse funcionar para recibir una asignación de dichas subportadoras para cada uno de una pluralidad de dispositivos (3) de usuario, de tal modo que la asignación de subportadoras es diferente para los diferentes dispositivos (3) de usuario;
 - un procesador (27), susceptible de hacerse funcionar para procesar o tratar las asignaciones recibidas con el fin de determinar, para cada dispositivo (3) de usuario, respectivos datos que identifican un fragmento de comienzo y un fragmento de final dentro de dicha secuencia de fragmentos, que dependen de las subportadoras asignadas al dispositivo (3) de usuario;
- un generador (27, 33), susceptible de hacerse funcionar para generar, para cada dispositivo (3) de usuario, respectivos datos de asignación de recursos para el dispositivo (3) de usuario, utilizando una relación de correspondencia o correlación predeterminada que relaciona los datos que identifican el fragmento de comienzo y el fragmento de final determinados por dicho procesador, con un valor único o exclusivo comprendido en los datos de asignación de recursos; y
- una salida (21, 23), susceptible de hacerse funcionar para suministrar como salida dichos respectivos datos de asignación de recursos, que comprenden dicho valor exclusivo, a cada uno de dicha pluralidad de dispositivos (3) de usuario.
- 13.- Un nodo de comunicación de acuerdo con la reivindicación 12, en el cual dicha correlación se define por una o más ecuaciones.
 - 14.- Un dispositivo de usuario que es susceptible de hacerse funcionar para comunicarse con un nodo de comunicación (5) que es susceptible de hacerse funcionar para comunicarse con una pluralidad de dispositivos (3) de usuario utilizando una pluralidad de subportadoras dispuestas en una secuencia de fragmentos, de tal manera que el dispositivo (3) de usuario comprende:
 - un receptor (71), susceptible de hacerse funcionar para recibir señales desde un nodo de comunicación, de manera que dichas señales incluyen diferentes dato de asignación de recursos para cada uno de la pluralidad de dispositivos (3) de usuario, de tal modo que los datos de asignación de recursos para un dispositivo de usuario respectivo comprenden un valor único o exclusivo que se relaciona con datos que identifican un fragmento de comienzo y un fragmento de final dentro de dicha secuencia de fragmentos;
 - un controlador (75, 89), susceptible de hacerse funcionar para identificar los datos de asignación de recursos para el dispositivo (3) de usuario, de manera que dichos datos de asignación de recursos identifican dicho fragmento de comienzo y dicho fragmento de final dentro de dicha secuencia de fragmentos;
- una memoria (85) o circuito susceptible de hacerse funcionar para guardar información que relaciona dichos datos de asignación de recursos con dicha secuencia de fragmentos, de tal modo que dicha información guardada define una relación de correspondencia o correlación predeterminada que relaciona dicho valor exclusivo con datos que identifican dicho fragmento de comienzo y dicho fragmento de final de dicha asignación de recursos; y
 - un dispositivo determinador (75, 91), susceptible de hacerse funcionar para determinar las subportadoras asignadas utilizando los datos de asignación de recursos recibidos y dicha información guardada.
 - 15.- Un dispositivo de usuario de acuerdo con la reivindicación 14, en el cual dicha correlación se define por una o más ecuaciones.

55

50

15

35

FIG.1

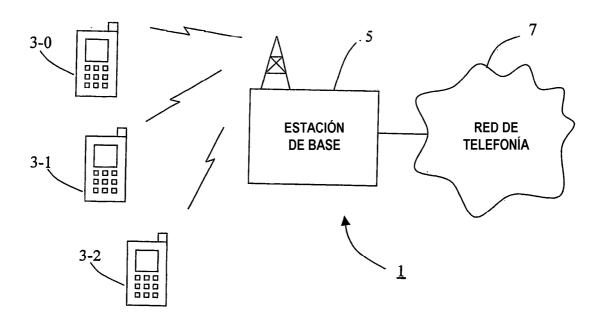


FIG . 2

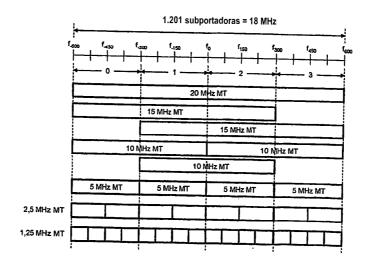


FIG. 3

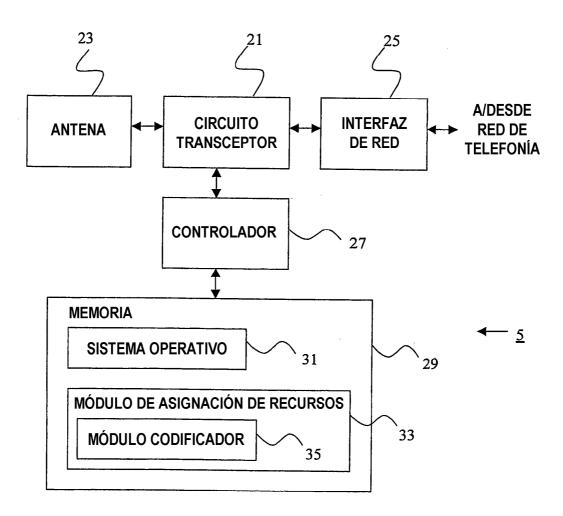
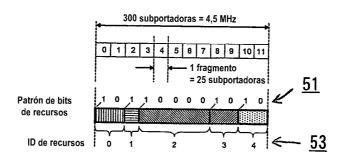
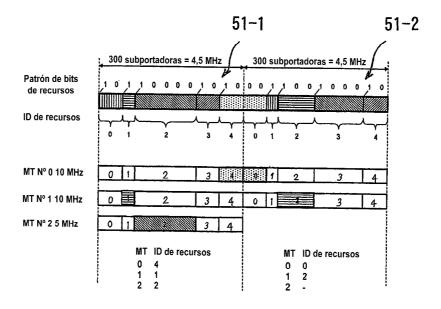




FIG. 4

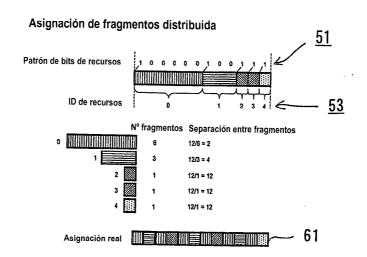


FIG. 5A

Asignación de fragmentos localizada

FIG.5B

FIG . 5C

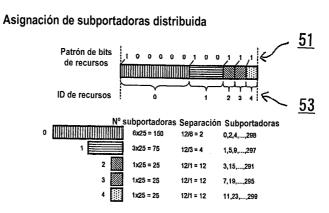


FIG.6

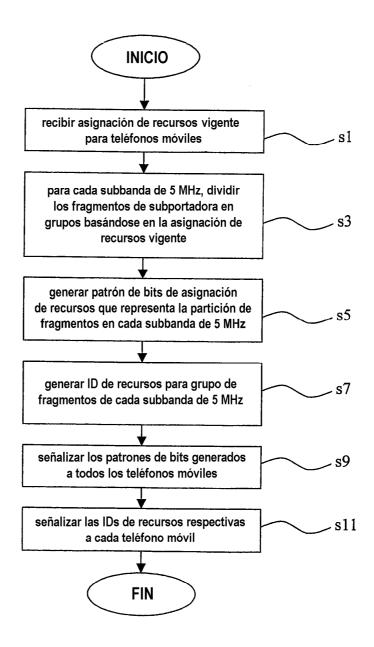
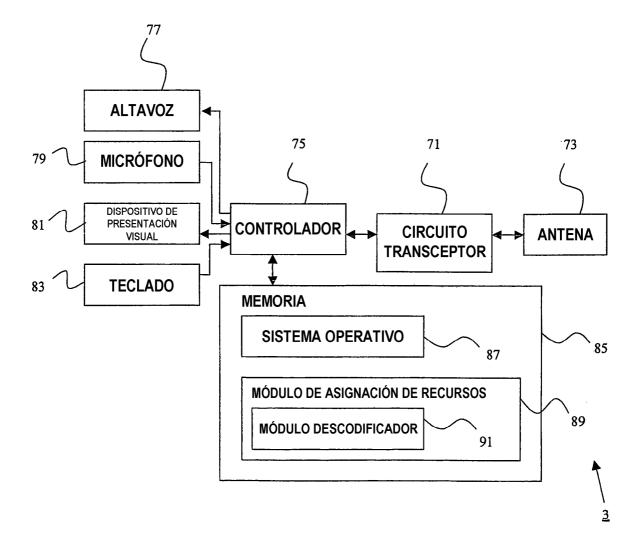



FIG . 7

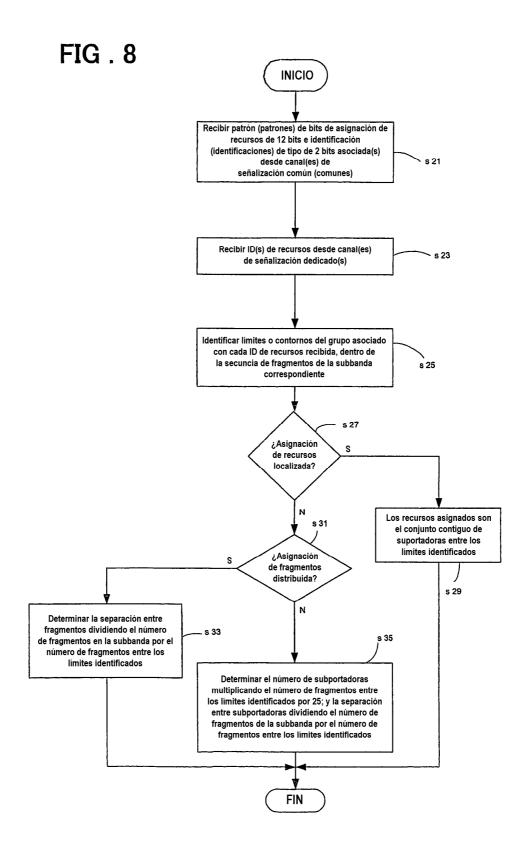


FIG . 9

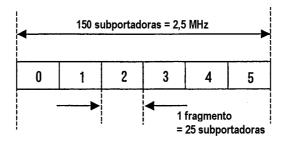
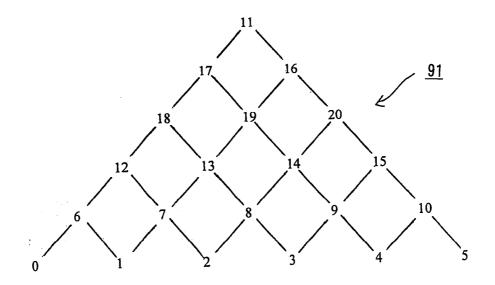



FIG . 10

