

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 432 862

51 Int. Cl.:

C09J 5/00 (2006.01) C09J 103/18 (2006.01) C09J 175/04 (2006.01) C09J 11/06 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 30.03.2010 E 10712065 (1)
 (97) Fecha y número de publicación de la concesión europea: 31.07.2013 EP 2414470

(54) Título: Masa adhesiva transparente para barra adhesiva

(30) Prioridad:

31.03.2009 DE 102009002022

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.12.2013**

73) Titular/es:

HENKEL AG & CO. KGAA (100.0%) Henkelstrasse 67 40589 Düsseldorf, DE

(72) Inventor/es:

HRZIBEK, MARTIN y RUSTEMEYER, FELIX

74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Masa adhesiva transparente para barra adhesiva

La presente invención se refiere a una masa adhesiva de forma estable para una barra adhesiva, que contiene por lo menos un polímero, un tensioactivo, un azúcar y agua.

Ya se conocen por el estado de la técnica barras adhesivas o masas adhesivas de este tipo. Por ejemplo, en el documento WO 99/48989 se describe una masa adhesiva para la fabricación de barras adhesivas, basada en una dispersión acuosa de poliuretano, que puede contener tensioactivos y también azúcar. Las masas adhesivas descritas son normalmente blancas lechosas y en la forma de ejecución como barra adhesiva, si se aplican incorrectamente para pegar papel, pueden dejar tras de sí pequeños fragmentos de masa adhesiva sobre el papel.

En el documento WO 99/51699 se describe una barra adhesiva basada en un éter de almidón, dicha barra adhesiva contiene además agua, un gel de jabón como sustancia moldeada de armazón y sacarosa. También estas barras adhesivas son blancas lechosas y, si se aplican incorrectamente tal como se ha mencionado previamente, por ejemplo para pegar papel, pueden dejar tras de sí pequeños fragmentos de masa adhesiva.

Esta masa adhesiva para barras adhesivas ya conocida por el estado de la técnica se caracteriza, pues, por una cierta coloración propia, que la convierten en menos apropiada para el pegado de piezas (componentes) transparentes.

En la patente US 2007/149669 A1 se describe una masa adhesiva de forma estable para una barra adhesiva que contiene del 5 a menos del 40% de polipirrolidona, del 3 a menos del 20% de una mezcla de sales de ácidos grasos como tensioactivo, del 20 a menos del 50% de un azúcar, del 15 a menos del 60% de agua, del 0,5 a menos del 30% de varios alcoholes polivalentes, porcentajes referidos al peso total de la masa adhesiva. Estas masas adhesivas alcanzan la estabilidad de forma y aseguran al mismo tiempo la transparencia, sin dejar tras de sí fragmentos sobre la superficie del papel.

30 Sigue habiendo demanda de masas adhesivas para barras adhesivas, que a ser posible no dejen tras de sí aglomerados de adhesivo incluso cuando se utilizan de modo incorrecto, por ejemplo cuando por giro se saca del envase la mayor parte de la barra o cuando se aplica una fuerza de compresión excesiva para pegar el papel o sustratos similares.

35 El cometido de la presente invención consiste, pues, en mejorar las masas adhesivas de forma estable para barras adhesivas ya conocidas por el estado de la técnica hasta el punto que no presenten una coloración propia importante y demás posean una mejor aplicabilidad durante el uso. La masa adhesiva deberá permitir en especial una buena extensibilidad por ejemplo sobre el papel, conservando una dureza suficiente, sin que se formen grumos (conglomerados) sobre el papel.

Este cometido se realiza con una masa adhesiva de forma estable para una barra adhesiva, que contiene por lo menos un polímero, un tensioactivo, un azúcar y agua y está caracterizada porque la proporción ponderal entre la suma del tensioactivo más el azúcar y el agua sea por lo menos de 0,7:1 y la barra adhesiva tenga un contenido de agua del 25 a menos del 35 % en peso, porcentajes referidos al peso total de la masa adhesiva, empleándose como tensioactivos una mezcla por lo menos de un derivado de alcohol graso y por lo menos una sal de un ácido graso o de un derivado de ácido graso y la proporción entre el derivado de alcohol graso y la sal de ácido graso o su derivado se sitúa entre 4:1 y 1:4.

La presente invención se basa en el conocimiento de que las masas adhesivas para barras adhesivas con un contenido de agua inferior al 35 % en peso son transparentes o por lo menos traslúcidas, cuando la masa adhesiva contiene al mismo tiempo un tensioactivo y azúcar en una cantidad tal, que la suma de estos dos componentes se sitúe por lo menos en el 70 % de la cantidad de agua de la barra.

Sin embargo, estas masas adhesivas no solo son transparentes o traslúcidas, sino que además se caracterizan por tener una resistencia mecánica relativamente grande, que a pesar de ello y de modo sorprendente no tienen prácticamente ningún efecto negativo en la aplicabilidad de la masa adhesiva. Esto se traduce en especial en que las barras adhesivas basadas en una masa adhesiva de forma estable de la composición de la invención prácticamente no presentan desprendimientos de aglomerados de adhesivo sobre el sustrato incluso cuando la barra adhesiva se saca mucho por giro del envase y al mismo se aplica con una gran fuerza de compresión sobre el sustrato a recubrir durante la aplicación del adhesivo con un movimiento lateral de la barra adhesiva. Pero al mismo tiempo, aplicando una ligera fuerza de compresión sobre el sustrato se puede recubrir este con una cantidad suficiente de adhesivo. Por otro lado, el pegado por ejemplo de dos hojas de papel produce los resultados deseados, de modo que después de poco tiempo cuando se intenta separar las dos hojas por tracción, estas no se separan, sino que el papel se rasga.

65

60

10

25

40

45

50

En el marco de la presente invención pueden utilizarse para las masas adhesivas en principio todos los azúcares. Es especialmente preferida la utilización de la sacarosa.

Otro desarrollo ulterior de la masa adhesiva de la invención consiste en que la masa adhesiva contenga del 5 al 20 % en peso, con preferencia del 8 al 18 % en peso, con preferencia muy especial del 10 al 16 % en peso de uno o de varios alcoholes, siendo especialmente preferidos los alcoholes polivalentes. Pertenecen a los alcoholes polivalentes especialmente preferidos por ejemplo la glicerina, el propilenglicol (1,2-propilenglicol) o las mezclas de los mismos. La utilización de alcoholes para la masa adhesiva en las cantidades indicadas permite una frotabilidad suave durante el uso de la masa adhesiva para la barra adhesiva, pero sin perjudicar notablemente las propiedades transparentes o traslúcidas de dicha masa adhesiva. Esto se pone de manifiesto en especial con el uso de la glicerina y/o 1,2propilenglicol. Según una forma preferida de ejecución de la masa adhesiva de la invención, el polímero empleado en la masa adhesiva se elige entre poliuretano, poliacrilato, polivinilpirrolidona, almidón y sus derivados, en especial los éteres de almidón, así como las mezclas de los polímeros recién mencionados. El azúcar empleado en la masa adhesiva según la invención no se incluye dentro de los polímeros utilizables para la masa adhesiva, sino que constituye un componente aparte de dicha masa adhesiva. Los polímeros recién mencionados son especialmente preferidos porque de este modo pueden fabricarse masas adhesivas para barras adhesivas que permite pegar el papel de forma simple y fiable. Son especialmente indicados para ello por un lado los poliuretanos, solos o en combinación con la polivinilpirrolidona y por otro lado los éteres de almidón. La utilización de estos polímeros o mezclas de polímeros permite fabricar masas adhesivas transparentes con buenas propiedades de pegado. Los polímeros mencionados previamente se emplean normalmente en forma de dispersiones acuosas.

10

15

20

25

40

45

50

55

60

65

Se entiende por "poliuretano" un polímero, cuyas macromoléculas contienen por lo menos dos grupos uretano -NH-CO-O-, que engarzan entre sí a las unidades repetitivas y/o segmentos estructurales de este polímero. Se entiende por éster de almidón un derivado de almidón, cuyos grupos hidroxi de las unidades glucosa están eterificados por lo menos parcialmente. "Parcialmente" significa que está eterificado por lo menos un grupo OH de la molécula de almidón. Los grupos hidroxi pueden estar eterificados con restos alquilo o aralquilo, que a su vez presentan otros sustituyentes, por ejemplo grupos carboxi.

Según otra forma de ejecución de la masa adhesiva de la invención, esta contiene del 8 al 40 % en peso de polímero, con preferencia del 10 al 30 % en peso, con preferencia muy especial del 12 al 25 % en peso. Estos porcentajes
se refieren a la porción de polímero como sólido, que son porcentajes del peso total de la masa adhesiva. Estas
masas adhesivas se caracterizan porque por un lado despliegan una fuerza adhesiva suficiente sobre los sustratos
habituales, por ejemplo papel, y al mismo tiempo gracias a los demás componentes de la masa adhesiva, en especial el azúcar y el tensioactivo, consiguen una estabilidad suficiente de forma, de modo que las barras adhesivas
fabricadas con ellas según la invención son dimensionalmente estables en un amplio intervalo de temperaturas.

Se ha constatado también como ventajoso para las masas adhesivas de la invención que estas contengan del 2,5 al 15 % en peso de tensioactivo. Este contenido de tensioactivo contribuye a la estabilidad de forma de la masa adhesiva de la invención y facilita al mismo tiempo un buen comportamiento de extensión de las barras adhesivas fabricadas con la masa adhesiva de la invención.

Según otra forma de ejecución de la masa adhesiva de la invención, esta contiene del 15 al 40 % en peso de azúcar, con preferencia del 18 al 35 % en peso. Estas cantidades de azúcar son especialmente preferidas porque la masa adhesiva de la invención consigue una mayor resistencia mecánica y, por consiguiente, mayor estabilidad de forma y al mismo tiempo se asegura su transparencia o traslucidez.

Según una forma especialmente preferida de ejecución de la masa adhesiva de la invención, esta es prácticamente transparente o traslúcida. En el sentido de la presente invención se entiende por masa adhesiva traslúcida aquella masa adhesiva que, cuando la luz incide perpendicularmente sobre la cara de un cubo de masa adhesiva de forma estable de cantos de 2 cm de longitud con un rayo de luz de un diámetro de 2 mm, una potencia de 1 mW y una longitud de onda de 632 nm, permita reconocer al ojo humano en la cara opuesta del cubo el punto luminoso como tal. Debido a los efectos de difracción y de dispersión es posible que aparezcan ligeros fenómenos de ampliación o de distorsión del punto luminoso. A diferencia de las masas adhesivas traslúcidas, las masas adhesivas transparentes sometidas a este ensayo prácticamente no presentan ampliación ni distorsión del punto luminoso.

Las masas adhesivas de la invención se caracterizan porque el tensioactivo comprende una mezcla por lo menos de un derivado de alcohol graso y por lo menos una sal de ácido graso o de un derivado de ácido graso, la proporción entre el derivado de alcohol graso y la sal de ácido graso o su derivado se sitúa entre 4:1 y 1:4. Para ello pueden utilizarse por ejemplo derivados de alcoholes grasos de C₁₂ a C₁₈ y sales de ácidos grasos de C₁₂ a C₁₈ o sus derivados. Se ha constatado que son tensioactivos especialmente apropiados para las masas adhesivas de la invención los derivados de alcoholes de C₁₂ a C₁₄ y las sales de ácidos grasos de C₁₂ a C₁₄ o sus derivados. Estos son especialmente indicados porque los derivados de alcoholes grasos de cadena corta o las sales de los ácidos grasos correspondientes conducen a una mejor traslucidez o transparencia en la masa adhesiva resultante. Como sales de ácidos grasos pueden utilizarse por ejemplo las sales de metales alcalinos, en especial las sales sódicas de los ácidos grasos o los derivados de ácidos grasos. Los derivados de alcoholes grasos que pueden utilizarse según la

invención son por ejemplo los sulfatos de alcoholes grasos o sus sales o los sulfatos etoxilados de alcoholes grasos o sus sales, por ejemplo el sulfato sódico de alcoholes grasos y el sulfato sódico etoxilado de alcoholes grasos.

Según una forma preferida de ejecución de la masa adhesiva de la invención, esta contiene como máximo un 15 % en peso de derivados de alcoholes grasos y sales de ácidos grasos y sus derivados de una longitud de cadena de C₁₆ o mayor, con preferencia como máximo un 3 % en peso. Las masas adhesivas muy especialmente preferidas de la invención están prácticamente libres de derivados de alcoholes grasos y de sales de ácidos grasos y de sus derivados de longitud de cadena de C₁₆ o mayor. Estas masas adhesivas son especialmente preferidas porque un contenido grande estos ácidos grasos de cadena larga o derivados de alcoholes grasos de cadena larga podría influir negativamente en la transparencia o en la traslucidez de las masas adhesivas de la invención.

Según una forma especialmente preferida de ejecución de la masa adhesiva de la invención, la proporción entre el derivado de alcoholes grasos y la sal de ácidos grasos o su derivado se sitúa entre 3:1 y 1:3, con preferencia especial entre 2:1 y 1:2. Tales mezclas de tensioactivos de las masas adhesivas de la invención conducen a una dureza suficiente de la masa adhesiva y permite a pesar de ello una extensibilidad buena de la masa adhesiva, por ejemplo sobre el papel, sin que se formen grumos ni aglomerados sobre dicho papel.

Según un desarrollo ulterior de la masa adhesiva de la invención, esta contiene otros auxiliares, por ejemplo plastificantes, pigmentos, colorantes, aromas, conservantes y/o sustancias reguladoras de la humedad así como, si se desea, otros polímeros solubles en agua y/o dispersables en agua.

Otro objeto de la presente invención se refiere a una barra adhesiva, que contiene la masa adhesiva de la invención. Como ya es sabido, las barras adhesivas presentan una masa adhesiva y además por lo general un envase cilíndrico, en el que se aloja la masa adhesiva de forma estable y que mediante el avance de un husillo se proyecta hacia el exterior y gracias al retroceso del husillo puede arrastrarse de nuevo hacia el interior. Normalmente la abertura del envase, a través de la cual la masa adhesiva cilíndrica puede proyectarse al exterior y recogerse de nuevo en el interior, puede cerrarse con un tapón cilíndrico de quita y pon.

Otro objeto de la presente invención es la utilización de la masa adhesiva de la invención para unir las superficies de dos sustratos, en especial de papel, por ejemplo papel fotográfico, cartón, vidrio y/o plástico, en especial piezas de plástico transparente. Las uniones pegadas pueden realizarse en cada caso sobre sustratos iguales o diferentes entre sí.

La presente invención se ilustra a continuación con mayor detalle mediante ejemplos.

En la tabla 1 se recogen composiciones de las masas adhesivas de la invención.

Tabla 1

10

15

20

25

35

40

45

	ejemplo 1	ejemplo 2
dispersión de poliuretano	40	43
1,2-propilenglicol	5,2	
glicerina		5,2
antiespumante	0,1	0,1
jabón	22	22
ácido tetradecanoico	3	3
hidróxido sódico del 20 %	2,7	2,7
Polivinilpirrolidona	4	4
sacarosa	23	20

La dispersión acuosa de poliuretano empleada en cada caso tiene un contenido de polímero del $35,8\,\%$ en peso y un $63,7\,\%$ en peso de agua. El resto son auxiliares, por ejemplo antiespumante.

El jabón empleado en los ejemplos comprende una mezcla de tensioactivos de estearato sódico, laurato sódico y laurilsulfato sódico y otros componentes de la composición siguiente.

Tabla 2

componente	partes en peso
agua	22,2
Glicerina	21
estearato sódico	7,9

componente	partes en peso
1,2-propilenglicol	15
sorbita	8,8
laurato sódico	7,7
lauretsulfato sódico	5,8
laurilsulfato sódico	1,2
cloruro sódico	1,1

Las masas adhesivas se fabrican por el siguiente método general: en primer lugar se deposita la dispersión acuosa de poliuretano en un recipiente provisto de refrigerante de reflujo y se mezcla con el 1,2-propilenglicol o la glicerina y el antiespumante (Dehydran 975). A continuación se calienta la mezcla lentamente a 80°C y durante la fase de calentamiento se le añade la polivinilpirrolidona. Después se añaden el ácido tetradecanoico (Edenor C 1498 - 100) y el hidróxido sódico. Seguidamente se añade el jabón, se calienta la mezcla a 100°C y se homogeneíza por agitación durante aprox. 30 minutos. Después de enfriar a 80°C se añade el azúcar con agitación, a continuación se introduce en un molde de probeta cilíndrica de 3 cm de longitud y 2,3 cm de diámetro, almacenándose a 20°C durante 24 horas.

Para determinar la fuerza adhesiva inicial se extiende la masa adhesiva sobre una hoja de papel con una presión de aprox. 2 kg con una probeta colocada perpendicularmente sobre el papel, descrita previamente, se pliega la hoja y a continuación se abre de nuevo, determinando de modo subjetivo la fuerza requerida para ello. Una fuerza adhesiva inicial elevada guarda relación con una fuerza de tracción subjetiva elevada.

Al igual que en los ensayos restantes, la hoja de papel empleada es un producto de la empresa "Maestro", de tamaño A4 que tiene un peso de 80 g/m² y el papel tiene color rojo (ZR09). Durante el recubrimiento del papel con las masas adhesivas de la invención prácticamente no se forman grupos (aglomerados) sobre el papel, la aplicación del adhesivo es muy homogénea.

Para determinar el aspecto óptico se irradia un cubo de masa adhesiva de forma estable, que tiene cantos de 2 cm de longitud, en sentido perpendicular a una de sus caras con un rayo de luz de 2 mm de diámetro, 1 mW de potencia y una longitud de onda de 632 nm, y después se evalúa ópticamente el punto luminoso por la cara opuesta del cubo sometido a la radiación. En el caso de la masa adhesiva del ejemplo 1, el punto luminoso es visible de modo prácticamente invariable (transparencia), en el caso de la masa adhesiva del ejemplo 2 se produce una ligera ampliación del punto luminoso hasta aprox. 4 mm (translucidez).

Para determinar la fuerza adhesiva se recubre el papel con el adhesivo del modo antes descrito, pero se espera durante 15 minutos antes de intentar separarlo. Con las dos formulaciones de los ejemplos, el papel no se consigue separar, sino que se rasga.

Los resultados se recogen en la siguiente tabla 3.

Tabla 3

15

20

25

30

35

40

fuerza adhesiva inicial en papel de 80 g/m²ejemplo 1ejemplo 2fuerza adhesiva inicial en papel de 80 g/m²elevadaelevadaaspecto ópticotransparentetraslúcidofuerza adhesiva en papel de 80 g/m²papel rasgadopapel rasgado

Otro ejemplo de formulación y los resultados correspondientes se recogen en la tabla 4.

Tabla 4

composición del ejemplo 3	% en peso
hidroxipropilalmidón (dispersión acuosa al 41%)	47
1,2-propilenglicol	8
neopentilglicol	-
glicerina	-
agua desmineralizada	4,7
ácidos grasos	5
sacarosa	28

ES 2 432 862 T3

composición del ejemplo 3	% en peso
hidróxido sódico del 10 %	1,4
auxiliares	5,9
resultados	
aspecto óptico	traslúcido
resistencia a la presión (20 g)	131 N
fuerza adhesiva (papel, 80 g/m²)	papel rasgado

Resistencia a la presión

Se entiende por término de resistencia a la presión la fuerza máxima aplicada en sentido paralelo al eje longitudinal que provoca la rotura de la forma de la barra.

Para medir la resistencia a la presión se emplea el aparato modelo 464L, cabezal 709, de la empresa Erichsen.

El adhesivo recortado inmediatamente por encima del émbolo, que tiene una longitud mínima de 30 mm, se mete entre dos piezas de sujeción; se trata de discos de PVC rígido, cuyo grosor es de aprox. 10 mm y que tienen una ranura de 3 mm, circular, ajustada al correspondiente diámetro de la barra. La barra provista de las piezas de sujeción se coloca centrada en la mesa de ensayo del aparato que mide la resistencia a la presión. La altura del instrumento que mide la fuerza sobre la mesa de ensayo se ajusta a la altura de la probeta. Se mueve el cabezal medidor con una velocidad de avance de aprox. 70 mm por minuto contra la barra que se somete al ensayo. Una vez alcanzada la fuerza de presión máxima, se lee el valor en el indicador (pantalla) digital.

REIVINDICACIONES

- 1. Masa adhesiva de forma estable para una barra adhesiva, que contiene por lo menos un polímero, un tensioactivo, un azúcar y agua, caracterizada porque la proporción ponderal entre la suma del tensioactivo más el azúcar y el agua se sitúa por lo menos en 0,7:1 y la barra adhesiva tiene un contenido de agua comprendido entre el 25 y menos del 35 % en peso, porcentajes referidos al peso total de la masa adhesiva, como tensioactivos están presentes una mezcla por lo menos de un derivado de alcohol graso y por lo menos una sal de un ácido graso o de un derivado de ácido graso y la proporción entre el derivado de alcohol graso y la sal de ácido graso o de su derivado se sitúa entre 4:1 y 1:4.
- 2. Masa adhesiva según la reivindicación 1, caracterizada porque dicha masa adhesiva contiene del 5 al 20 % en peso de uno o de varios alcoholes, en especial alcoholes polivalentes.
- 3. Masa adhesiva según la reivindicación 1 ó 2, caracterizada porque el polímero se elige entre el poliuretano, poliacrilato, polivinilpirrolidona, almidón y sus derivados y las mezclas de los mismos.

10

- 4. Masa adhesiva según una de las reivindicaciones anteriores, caracterizada porque dicha masa adhesiva contiene del 8 al 40 % en peso de polímero.
- 5. Masa adhesiva según una de las reivindicaciones anteriores, caracterizada porque dicha masa adhesiva contiene del 2,5 al 15 % en peso de tensioactivo.
 - 6. Masa adhesiva según una de las reivindicaciones anteriores, caracterizada porque dicha masa adhesiva contiene del 15 al 40 % en peso de azúcar.
 - 7. Masa adhesiva según una de las reivindicaciones anteriores, caracterizada porque dicha masa adhesiva contiene como tensioactivo un derivado de alcoholes grasos de C_{12} a C_{18} y una sal de ácidos grasos de C_{12} a C_{18} o sus derivados, en especial un derivado de alcoholes grasos C_{12} C_{14} y una sal de ácidos grasos C_{12} C_{14} o su derivado.
- 8. Masa adhesiva según la reivindicación 7, caracterizada porque dicha masa adhesiva contiene como máximo un 5 % en peso de derivados de alcoholes grasos y sales de ácidos grasos y sus derivados que tienen una longitud de cadena de C₁₆ o mayor, con preferencia como máximo un 3 % en peso.
- 9. Masa adhesiva según una de las reivindicaciones anteriores, caracterizada porque dicha masa adhesiva contiene como auxiliares diversos plastificantes, pigmentos, colorantes, aromas, conservantes y/o sustancias reguladoras de la humedad así como, si se desea, otros polímeros solubles en agua y/o dispersables en agua.
 - 10. Barra adhesiva, que contiene una masa adhesiva según una de las reivindicaciones de 1 a 9.
- 40 11. Uso de una masa adhesiva según una de las reivindicaciones de 1 a 9 para el pegado de las superficies de sustratos, en especial de papel, en especial papel fotográfico, cartón, vidrio y/o plástico.