

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 434 242

(51) Int. Cl.:

A61K 38/00 (2006.01) A61K 38/04 (2006.01) A01N 37/18 (2006.01) C07K 17/00 (2006.01) G01N 33/53 G01N 33/566 (2006.01) G01N 33/567 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 17.12.2004 E 09015653 (0) (97) Fecha y número de publicación de la concesión europea: 07.08.2013 EP 2172208

(54) Título: Péptidos pequeños para el tratamiento de la enfermedad de Alzheimer y otros trastornos de fibrilogénesis de proteína beta-amiloide

(30) Prioridad:

18.12.2003 US 531406 P 17.03.2004 US 554342 P 30.09.2004 US 615614 P 16.12.2004 US 16706

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 16.12.2013

(73) Titular/es:

PROTEOTECH, INC. (100.0%) 12026 - 115TH AVENUE N.E. KIRKLAND, WA 98034, US

(72) Inventor/es:

CASTILLO, GERARDO M.; LAKE, THOMAS P.: **NGUYEN, BETH P.;** SANDERS, VIRGINIA J. y SNOW, ALAN D.

(74) Agente/Representante:

PÉREZ BARQUÍN, Eliana

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Péptidos pequeños para el tratamiento de la enfermedad de Alzheimer y otros trastornos de fibrilogénesis de proteína beta-amiloide

Campo técnico

5

10

15

40

45

50

55

60

Esta invención se refiere a péptidos útiles para el tratamiento de la enfermedad de Alzheimer y otros trastornos de fibrilogénesis de proteína beta-amiloide

Antecedentes de la invención

Antecedentes adicionales para el uso terapéutico de fragmentos de péptidos en el tratamiento de la enfermedad de Alzheimer y otras amiloidosis se pueden encontrar en la patente de EE.UU. nº 7314724 presentada el 22 de agosto de 2001 y en la patente de EE.UU. nº 6933280 presentada el 24 de septiembre de 2001.

Proteína beta-amiloide como una diana terapéutica para la enfermedad de Alzheimer

La enfermedad de Alzheimer (AD) se caracteriza por el depósito y acumulación de un péptido de 39-43 aminoácidos denominado proteína beta-amiloide, Aβ o β/A4 (Glenner and Wong, Biochem. Biophys. Res. Comm. 120:885-890. 20 1984; Masters et al, Proc. Nat. Acad. Sci. U.S.A. 82:4245-4249, 1985; Husby et al, Bull. WHO 71:105-108,1993). La Aβ es derivada de proteínas precursoras más grandes denominadas proteínas precursoras beta-amiloide (ο APPs) de las que hay diversas variantes alternativamente troceadas. Las formas más abundantes para las APP incluyen proteínas que consisten en 695, 751 y 770 aminoácidos (Kitaguchi et al, Nature 331:530-532, 1988; Ponte et al, Nature 331:525-527,1988; Tanzi et al, Nature 331:528-530, 1988). El péptido Aβ pequeño es un componente 25 principal que constituye el núcleo de depósitos amiloides denominados "placas" en los cerebros de pacientes con AD. Además, la AD se caracteriza por la presencia de numerosos "enmarañamientos" neurofibrilares que consisten en filamentos helicoidales emparejados que se acumulan de forma anormal en el citoplasma neuronal (Grundke-Igbal et al Proc. Natl. Acad. Sci. U.S.A. 83:4913-4917., 1986; Kosik et al, Proc. Natl. Acad. Sci. U.S.A. 83:4044-4048, 30 1986; Lee et al, Science 251:675-678, 1991). El otro tipo principal de lesión encontrada en el cerebro de la Ad es la acumulación de amiloide en las paredes de los vasos sanguíneos, en los vasos tanto de las parénquimas como las meninges del cerebro que se sitúan fuera del cerebro. Los depósitos amiloides localizados en las paredes de los vasos sanguíneos se denominan angiopatía amiloide o congofílica cerebrovascular (Mandybur, J. Neuropath. Exp. Neurol. 45:79-90, 1986; Pardridge et al, J. Neurochem. 49:1394-1401, 1987). Las características distintivas patológicas de la AD, por lo tanto, son la presencia de "placas", "enmarañamientos" y depósitos amiloides 35 cerebrovasculares.

Durante muchos años, ha habido una controversia científica continuada sobre la importancia del "amiloide" en la AD y de si las características de las "placas" y "enmarañamientos" de esta enfermedad eran la causa o meramente la consecuencia de la enfermedad. Unos estudios recientes indican que el amiloide es de hecho un factor causante de la AD y no debe ser considerado meramente como una consecuencia. La proteína Aβ de Alzheimer en cultivos celulares se ha mostrado que provoca la degeneración de células nerviosas en un período de tiempo corto (Pike et al, Br. Res. 563:311-314, 1991; J. Neurochem. 64:253-265, 1995). Unos estudios sugieren que es la estructura fibrilar, característica de todos los amiloides la que es principalmente responsable de los efectos neurológicos. La Aβ se ha encontrado también que es neurológica en cultivos troceados del hipocampo (Hadrian et al, Neurobiol. Aging 16:779-789, 1995) e induce la muerte de células nerviosas en ratones transgénicos (Games et al, Nature 373:523-527, 1995; Hsiao et al, Science 274:99-102, 1996). La inyección de Aβ en el cerebro de ratas provoca también dificultades de memoria y disfunción neuronal (Flood et al, Proc. Natl. Acad. Sci. U.S.A. 88:3363-3366, 1991; Br. Res. 663:271-276, 1994). La evidencia convincente de que la Aβ amiloide está directamente involucrada en la patogénesis de la AD procede de estudios genéticos. Se descubrió que la producción aumentada de Aβ podría resultar de mutaciones en el gen que codifica su precursor, APP (Van Broeckhoven et al, Science 248:1120-1122, 1990; Murrell et al, Science 254:97-99, 1991; Haass et al, Nature Med. 1:1291-1296, 1995). La identificación de mutaciones en el gen de APP que provocaría la aparición temprana de la AD familiar es un argumento de peso de que la Aβ y el amiloide son centrales para el procedimiento patogénico subyacente en esta enfermedad. Se han descubierto ahora cuatro mutaciones que provocan las enfermedades descritas que demuestran la importancia de Aβ en causar la AD familiar (examinado por Hardy, Nature Gen. 1:233-234, 1992). Últimamente, unos estudios recientes sugieren que la reducción en el contenido de placa amiloide en ratones transgénicos de APP conduce a mejoras en las dificultades de comportamiento y pérdida de memoria (Chen et al, Nature 408:978-982, 2000; Janus et al, Nature 408:979-982, 2000; Morgan et al, Nature 408:982-985, 2000). Este es el argumento más fuerte hasta la fecha que implica que la reducción de contenido Aβ amiloide en el cerebro debía ser una diana central para el desarrollo de tratamientos nuevos y eficaces de la AD y trastornos relacionados.

Enfermedad de Alzheimer y población envejecida

65 La enfermedad de Alzheimer es la causa líder de demencia en la población de edad avanzada, afectando a un 5-

10% de la población por encima de la edad de 65 años (Jorm, A Guide to Understanding of Alzheimer's Disease and Related Disorders, New York University Press, New York, 1987). En la AD, las partes del cerebro esenciales para los procedimientos cognitivos como la memoria, atención, lenguaje y razonamiento se degeneran. En algunas formas hereditarias de la AD, la aparición es en una edad media, pero más comúnmente, los síntomas aparecen a partir de la mitad de los 60 en adelante. La AD afecta hoy día a 4-5 millones de estadounidenses con ligeramente más de la mitad de estas personas recibiendo cuidados en muchas diferentes instituciones de atención sanitaria. La prevalencia de la AD y otras demencias se duplica para 5 años más allá de 65 y unos estudios recientes indican que casi un 50% de todas las personas con una edad de 85 y de más edad tienen síntomas de AD (NIH Progress Report on AD, National Institute on Aging, 2000). Treinta y tres millones de personas de la población total de los Estados Unidos tienen una edad de 65 y más avanzada y esto ascenderá hasta 51 millones de personas en el año 2025 (NIH Progress Report on AD, National Institute on Aging, 2000). La carga económica anual de la AD en los estados unidos en términos de gastos de cuidados sanitarios y salarios perdidos tanto para pacientes como para sus cuidadores se estima en 80 a 100 miles de millones de dólares (NIH Progress Report on AD, National Institute on Aging, 2000).

Descripción de la invención

10

15

20

25

30

50

65

En un primer aspecto, la presente invención proporciona un péptido que consiste en Leu-Ala-Phe-Val-Leu-Arg-Lys-NH₂.

El péptido puede estar compuesto por N- o D-aminoácidos. Uno o más de los aminoácidos pueden estar N-metilados.

En un segundo aspecto, la presente invención proporciona un péptido del primer aspecto o un anticuerpo específico para dicho péptido para ser usado en el tratamiento de una enfermedad caracterizada por la fibrilogénesis de Aβ.

En un tercer aspecto, la presente invención proporciona el uso de un péptido del primer aspecto o un anticuerpo específico para dicho péptido en la fabricación de un medicamento para el tratamiento de una enfermedad caracterizada para la fibrilogénesis de Aβ.

En un cuarto aspecto, la presente invención proporciona una composición farmacéutica que comprende el péptido del primer aspecto y un vehículo, diluyente o excipiente farmacéuticamente aceptable. Esta composición puede comprender adicionalmente un compuesto activo complementario. La enfermedad puede ser la enfermedad de Alzheimer. El péptido o anticuerpo del segundo y tercer aspectos pueden comprender adicionalmente un vehículo, diluyente o excipiente farmacéuticamente aceptable. Además, el péptido o anticuerpo del segundo y tercer aspectos pueden ser formulados para una administración mediante una vía seleccionada entre oral, parenteral, intravenosa, intradermal, intramuscular, intraperitoneal, anal y bucal. Preferentemente, es formulado para una administración nasal intranasal.

Se describen péptidos pequeños que demuestran una gran eficacia para inhibir y/o destruir fibrilas amiloides. También se describe el uso de algunos péptidos para la formación de imágenes de la ubicación de Aβ en el cuerpo con fines de diagnóstico de la enfermedad de Alzheimer y otros trastornos d fibrilogénesis de proteína β-amiloide (Aβ), así como el uso de algunos péptidos para detectar Aβ en muestras biológicas para fines de diagnóstico de la enfermedad de Alzheimer y otros trastornos de fibrilogénesis de proteína beta-amiloide (Aβ). La "fibrilogénesis" como se usa en la presente memoria descriptiva, indica la unión clínica o patológica de beta-amiloide así misma para formar fibrilas y a veces beta-láminas, como es conocido por los expertos en la técnica.

Esta descripción se relaciona con compuestos y composiciones farmacéuticas de los mismos, que se pueden unir a proteína beta-amiloide $(A\beta)$ y modular o moderar la agregación y/o fibrilogénesis de $A\beta$, para el tratamiento y diagnóstico de enfermedades de $A\beta$ como la enfermedad de Alzheimer y otros trastornos que implican la acumulación y persistencia de $A\beta$. Estas enfermedades de $A\beta$ incluyen, pero sin limitación, el amiloide asociado con la enfermedad de Alzheimer y el síndrome de Down y diversas formas de amiloidosis cerebrales, como resultará familiar los que tienen conocimientos en la técnica.

Las descripción se refiere al descubrimiento nuevo y sorprendente de que ciertos péptidos son elementos de unión y rompedores de fibrilas de Aβ amiloides y, por lo tanto son útiles para la intervención terapéutica de la enfermedad de Alzheimer y trastornos de Aβ relacionados. Los péptidos seleccionados son elementos de unión de Aβ amiloide de la enfermedad de Alzheimer y, por lo tanto son útiles para la formación de imágenes y diagnóstico de la enfermedad de Alzheimer y trastornos Aβ relacionados. Se describen métodos para tratar la enfermedad de Alzheimer y otros trastornos Aβ que comprenden administrar a un sujeto paciente una dosis terapéuticamente eficaz de un péptido 6-9mero seleccionado.

En una realización, en la que preferentemente todos los aminoácidos indicados son Z-aminoácidos, excepto cuando se indique otra cosa (como mediante la indicación de péptidos de forma L con códigos de números "LP" prefijando ciertos códigos de aminoácidos con "L-"), las composiciones farmacéuticas contienen preferentemente el péptido

Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-074). También están incluidos ciertos análogos, derivados, enantiómeros o fragmentos de la secuencia descrita en la presente memoria descriptiva, como se expone en detalle en la presente memoria descriptiva.

También se describe el uso de análogos N-metilados de los péptidos de la invención, que incluyen el uso de αN-metilación o L-aminoácidos (preferentemente aminoácidos metilados) exclusiva o parcialmente durante la síntesis de forma que los péptidos resultantes tendrán puramente enlaces de amidas αN-metiladas o parcialmente αN-metiladas o enlaces de amidas αN-metiladas y no αN-metiladas alternados. Preferentemente, los compuestos se seleccionan con enlaces de amidas modificadas de forma de que al menos uno de los enlaces de amidas en la cadena principal del péptido esté N-metilado, evitando en el propio péptido la formación de beta-láminas.

Se describen también compuestos miméticos (peptidomimético) como modelados a partir del péptido de la invención.

- El término "mimético" incluye generalmente "isoésteres" como modificaciones de las cadenas principales de péptidos (es decir, miméticos de enlaces amidos) con amido-nitrógeno, amido-carbonilo o sustitución completa del enlace amido. El enlace amido puede ser ventajosamente sustituido con puentes de longitud similar conocidos por los expertos en la técnica como: -CH₂S-, -CH=CH-, -CH₂-NH-, -CSNH₂- o COCH₂.
- 20 Los miméticos pueden ser generados usando un programa de ordenador que pueda derivar un modelo de péptido virtual a partir de varias de las estructuras de péptidos descritas en la presente memoria descriptiva. Esto se puede hacer usando el programa de ordenador derivado del algoritmo SLATE. Véase Perkin, Mills and Dean, 1995 Journal of Computer Aided Molecular Design 9(6) p479-490; Mills et al. 2001 Journal of Computer Aided Molecular Design 15(1) p81-96; De Esch, IJ; et al 2001 Journal of Med Chem. 44(11) p1666-74; Mills Perkins and Dean 1997 Journal 25 of Computer Aided Molecular Design 11(2) p175-92). Un ejemplo del programa derivado del algoritmo SLATE es Quasi by De Novo Pharmaceutical. Este programa superpone varias moléculas de péptidos activas pero aparentemente desiguales que son activas para llegar a la mayoría de las estructuras probables esenciales para la actividad (con una mínima restricción de energía). Esto se puede usar para generar un molde o sitio de unión diana con una posición prevista de átomos de unión de hidrógeno en un espacio tridimensional. Esto puede ser 30 seguidamente usado para generar un mimíco no péptido de los péptidos de ligandos originales. Estos programas de ordenador generadores de moléculas están actualmente disponibles en el comercio (por ejemplo, Skelgen and Skelgen II).
- Un "mimético" de un compuesto se refiere también a un compuesto en el que las estructuras químicas del compuesto que son necesarias para la actividad funcional han sido sustituidas con otras estructuras químicas que emulan la conformación del compuesto o péptidos del mismo. El término "mimético", como se usa en la presente memoria descriptiva" está previsto también que incluya moléculas que emulan la estructura química de una estructura L- o D- peptídica y retinen las propiedades funcionales de una estructura L- o D-peptídica. Otras propuestas para diseñar análogos de pépticos, derivados y miméticos son bien conocidas en la técnica. Por ejemplo, véase P.S. Farmer, in Drug Design, E.J. Ariens, ed., Academic Press, New York, 1980, v. 10, pp. 119-143; Ball and Alewood, J. Mol. Recognition 3:55, 1990; Morgan and Gainor, Ann. Rep. Med. Chem. 24:243, 1989; and Freidinger, Trends Pharmacol. Sci. 10:270, 1989. Véase también Sawyer, "Peptidomimetic design and chemical approaches to peptide metabolism", in MD Taylor and GL Amidon, eds., in Peptide-Based Drug Design: Controlling Transport and Metabolism, Ch. 17, 1995; Smith et al, J. Am. Chem. Soc. 117:11113-11123, 1995; Smith et al, J. Am. Chem. Soc. 116:9947-9962, 1994; and Hirschman et al, J. Am. Chem. Soc. 115:12550-12568, 1993.
 - El término "análogos" incluye variantes de la molécula de péptido llevadas a cabo, por ejemplo, mediante sustitución homóloga de uno o más residuos de aminoácidos, como se apreciará por los expertos en la técnica, inversión de la secuencia o sustitución parcial o completa de aminoácidos componentes con enantiómeros de composición indéntica (D- frente a L- aminoácidos). Los análogos incluyen también "sustitución de aminoácidos conservadoras" en las que un aminoácido es sustituido con un aminoácido que tiene una cadena lateral similar. Ejemplos de aminoácidos de cadenas laterales similares son aminoácidos de cadenas laterales básicas (por ejemplo, lisina, arginina, histidina), aminoácidos de cadenas laterales ácidas (por ejemplo, ácido aspártico, ácido glutámico), aminoácidos de cadenas laterales polares sin carga (por ejemplo, aspargina, glutamina, metionina, triptófano), aminoácidos de cadenas laterales polares sin carga (por ejemplo, treonina, leucina, valina, isoleucina) y aminoácidos de cadenas laterales aromáticas (por ejemplo, tirosina, fenilalanina, triptófano, histidina). Los análogos incluyen también "sustituciones de aminoácidos homólogos" en las que un aminoácido es sustituido con aminoácido homólogos, como la sustitución de fenilalanina con tirosina, piridilalanina o homofenilalanina y sustitución de leucina con valina o viceversa.

50

55

60

65

El término "derivado" incluye cambios químicos menores habituales para los expertos en la técnica en los que uno o más grupos reactivos en los péptidos de la invención has sido "derivados con péptidos" de forma que hay péptidos en los que una cadena lateral de aminoácido, cadena principal de péptido o terminación amino o carboxi ha sido derivada, como se expone adicionalmente en la presente memoria descriptiva.

En cualquiera de las estructuras o secuencias anteriores, la nomenclatura o representación simbólica de cualquiera de los aminoácidos individuales es proporcionada mediante la abreviatura estándar de tres letras para los aminoácidos precedida opcionalmente por D- o L- que representa las dos formas enantiómeras (imágenes especulares una de otra) de los aminoácidos individuales que constituyen la secuencia. Acetil y -amida en el N y C-terminal, respectivamente, están opcionalmente incluidos cuando estén presentes o se indique como preferido.

También se describen compuestos que incluyen los péptidos de la invención, partes de estos péptidos y sus nuevos análogos y derivados, para ser usados en el tratamiento en la enfermedad de Alzheimer y otros trastornos que implican la formación y persistencia de Aα. Preferentemente, los trastornos son enfermedad de Alzheimer, síndrome de Down y otras Aβ amiloidosis. Normalmente, la composición farmacéutica incluye una cantidad terapéuticamente eficaz de un compuesto descrito sales farmacéuticamente aceptables de un compuesto, opcionalmente con un vehículo, diluyente o excipiente farmacéuticamente aceptable.

10

20

25

30

40

55

60

También se describe el uso de píldoras, comprimidos, cápsulas, cápsulas de gelatina blandas y duras, pastillas, bolsitas, sobres, cápsulas vegetarianas, gotas líquidas, elíxires, suspensiones, emulsiones, soluciones, jarabes, bolsas de té, aerosoles (como un sólido o en un medio líquido), supositorios, soluciones inyectables esterilizadas y polvos envasados esterilizados, que contienen un compuesto descrito para tratar pacientes con enfermedad de Alzheimer y otros Aβ amiloidosis. Por lo tanto, el uso de un compuesto descrito para una terapia o para la fabricación de un medicamento para el tratamiento de un trastorno asociado con Aβ amiloidosis está también contemplado.

Se proporcionan composiciones usadas para administrar a un sujeto una dosis terapéutica de un compuesto descrito seleccionado que inhibe el depósito de $A\beta$ amiloide o la $A\beta$ amiloidosis en trastornos en los que se produce un depósito de $A\beta$ amiloide. Los compuestos descritos pueden ser usados terapéuticamente para tratar amiloidosis o pueden ser usados profilácticamente en un sujeto susceptible a la $A\beta$ amiloidosis. Los compuestos están basados, al menos en parte, en $A\beta$ amiloide de unión directa en el cerebro o en la circulación periférica, y midiendo la formación de fibrilas de $A\beta$ amiloide y/o provocando la disolución de fibrilas de $A\beta$ amiloide previamente formadas. El secuestro periférico de $A\beta$ por los péptidos de la invención se cree que da lugar al desplazamiento de $A\beta$ desde el cerebro hasta la circulación periférica, inhibiendo así la formación de fibrilas de $A\beta$ amiloide del cerebro y/o provocando la disolución de las fibrilas de $A\beta$ amiloide del cerebro previamente formados.

Se proporcionan métodos para detectar la presencia o ausencia de péptidos Aβ en una muestra biológica. Estos métodos incluyen poner en contacto una muestra biológica con un compuesto seleccionado, en que el compuesto es marcado con una sustancia detectable, por ejemplo, con un radionucleótido, compuesto fosforescente, compuesto fluorescente, proteína fluorescente, compuesto paramagnético, queladores metálicos o enzima, todos los cuales son fácilmente detectables en diversos ensayos y medios de diagnósticos conocidos por los expertos en la técnica y detectar seguidamente la sustancia detectable unida a Aβ péptidos en la muestra biológica.

Se describen en la presente memoria descriptiva métodos de formación de imágenes para la presencia o ausencia de péptidos Aβ en el cuerpo o tejidos biológicos. Estos métodos incluyen poner en contacto péptidos Aβ en el cuerpo con un compuesto, en que el compuesto es marcado con una sustancia detectable, por ejemplo, con un radionucleótido, compuesto fosforescente, compuesto fluorescente, proteína fluorescente, compuesto paramagnético, quelador metálico o enzima y detectar la sustancia detectable unida a péptidos Aβ en el cuerpo o tejidos biológicos.

Se presenta el uso de anticuerpos anti-idiotípicos para los péptidos de la invención, análogos, derivados o fragmentos de los mismos, como elementos de unión potentes de Aβ e inhibidores de la formación, depósito, acumulación y/o persistencia de Aβ amiloide, en la enfermedad de Alzheimer y otras amiloidosis Aβ. La expresión "anticuerpos anti-idiotípicos" se refiere a los anticuerpos (A) surgidos contra o que reconocen específicamente las regiones Fab de otros anticuerpos (b) y las regiones Fab de anticuerpos reconocen los péptidos de la invención. El resultado es que los anticuerpos anti-idiotípicos A para los péptidos de la invención tienen regiones Fab que emulan el péptido, en términos de reactividad. Unión amiloide y propiedades de rotura de amiloides.

Se presenta el uso de anticuerpos que reconocen compuestos para un marcado *in vivo*, por ejemplo, con un radionucleótido, para utilizar la radioformación de imágenes para diagnósticos *in vivo* y/o para un diagnóstico *in vitro*.

Una amiloidosis $A\beta$ importante para los que se dirigen los agentes terapéuticos descritos es la enfermedad de Alzheimer. Una cantidad terapéuticamente eficaz preferida de compuesto descrito es una dosificación en el intervalo de aproximadamente 10 μ g a aproximadamente 50 mg/kg de peso corporal/por día y, más preferentemente, en el intervalo de aproximadamente 100 μ g a aproximadamente 10 mg/kg de peso corporal por día.

Un agente farmacéutico que contiene un compuesto descrito seleccionado puede ser ventajosamente proporcionado mediante inyección o infusión o gotas nasales o pulverización nasal o administración oral. En cualquiera de las estructuras o secuencias anteriores, la nomenclatura o representación simbólica de cualquiera o de la totalidad de los aminoácidos individuales puede ser proporcionada mediante la abreviatura estándar de tres letras para el

aminoácido o el código de letra única estándar para el aminoácido o a veces ambos en casos apropiados

Breve descripción de los dibujos

- 5 Los siguientes dibujos son ilustrativos de realizaciones de la invención y no está previsto que limiten el alcance de la invención.
 - La figura 1 son secuencias de péptidos y dibujos para los péptidos DP68 y DP74.
- 10 La figura 2 es un espectro de CD de Ab42 + polilisina y DP-065 a través de DP-072 a (1:2).
 - La figura 3 es un espectro de CD de de Ab42 + DP-065 a través de DP-072 a (1:0,1, 1:1, 1:2, 1:5).
 - La figura 4 es un resumen de la respuesta a la dosis de CD de Ab42 +/- DP-065 para DP-072.
 - La figura 5 es un resumen de tio T de Ab42 + DP-065 -72 (1:0,1, 1:1, 1:2, 1:5) y polilisina.
 - La figura 6 es un resumen es un sumario para la clasificación de valores de tio T 65-72.
- 20 La figura 7 A y B son espectros de CD que muestran los efectos de 0,2 mg/ml de péptido DP-074 sobre la estructura secundaria de láminas beta de fibrilas amiloides Aβ42 (es decir, Aβ42 +/- DP-074) o DP-074 solamente.
- La figura 8 es un gráfico que muestra un resumen de comparación del efecto de 0,2 mg/ml de péptidos DP-065 con LP-081 y polilisina, sobre la estructura secundaria de láminas beta de fibrilas amiloides Aβ42 25 μM según se valoró mediante CD-. Se muestra la elipticidad de residuos molares de Aβ42 a 218 nm en el eje y, que representan la señal asociada con la estructura secundaria de láminas beta. La pérdida de elipticidad a 218 nm comparada con la señal de fibrilas de Aβ42 solamente indica la capacidad de los péptidos para reducir la estructura secundaria de láminas beta.
- 30 Las figuras 9A y B son espectros de CD que muestran los efectos dependientes de la dosis de péptido DP-074 sobre la estructura secundaria de láminas beta de fibrilas amiloides Aβ42 (es decir, Aβ42 +/- DP-074) o DP-074 solamente.
- La figura 10 es un gráfico que muestra un resumen de comparación del efecto dependiente de la dosis de péptidos DP-065 respecto a LP-081 sobre la estructura secundaria de láminas beta de fibrilas amiloides Aβ42 25 μM según se valoró mediante CD. Se muestra la elipticidad de residuos molares de Aβ42 a 218 nm en el eje y, que representa la señal inversamente relacionada con la estructura secundaria de láminas beta.
- La figura 11 es un gráfico que muestra un resumen ordenado de comparación del efecto de péptidos 6-9meros sobre la estructura secundaria de láminas beta de fibrilas amiloides Aβ42 25 μM según se valoró mediante espectropolarimetría CD. Se muestra el porcentaje de rotura de fibrilas de Aβ42 según se valoró mediante la pérdoida de elipticidad a 218 nm, que representa la señal que está inversamente relacionada con la estructura secundaria de láminas beta.
- La figura 12 es un gráfico que muestra un resumen ordenado de comparación del efecto de péptidos 6-9meros sobre la estructura secundaria de láminas beta de fibrilas amiloides Aβ42 25 μM según se valoró mediante fluorometría de tioflavina T. Se muestra el porcentaje de rotura de fibrilas de Aβ42 por diversos péptidos 6-9meros a una relación de péptidos Aβ42:6-9meros de 1:2.
- La figura 13 es un gráfico que muestra un resumen ordenado de comparación de la eficacia de unión de péptidos 6-9meros sobre sustrato Aβ42 unido según se valoró mediante mediciones de LC/MS de péptidos no unidos después de un período de equilibrio de 2 horas. Se muestra el porcentaje de diversos péptidos 6-9meros sin unir a fibrilas de Aβ42 después de 2 horas de incubación.
- La figura 14 es un gráfico que demuestra la estabilidad del péptido DP-068 en suero humano en un período de incubación de 32 horas según se valoró mediante LC/MS.
 - La figura 15 es un gráfico que demuestra la estabilidad de péptido DP-074 en suero humano en un período de incubación de 32 horas, según se valoró mediante LC/MS.
- 60 Mejor modo de llevar a cabo la invención

EJEMPLO 1

Preparación de péptidos

65

El péptido DP-074 es según la invención. En los siguientes ejemplos, el DP-074 es referido por tener una "amida" N-terminal. Se apreciará a partir de la figura 1 que esta amida es -NH₂.

Los péptidos descritos en la presente memoria descriptiva fueron producidos en formas de los aminoácidos L y D. Además, fueron ensamblados péptidos truncados y análogos de péptidos para ser usados como péptidos terapéuticos potenciales para el tratamiento de fibrilogénesis de Aβ en la enfermedad de Alzheimer y trastornos relacionados. Estos péptidos son sintetizados preferentemente de forma convencional. Por ejemplo, los L- y D-péptidos fueron sintetizados en sintetizadores de péptidos conocidos por los expertos en la técnica como el sintetizador de péptidos múltiple Advanced ChemTech Model 396 (Louisville, KY), usando un protocolo automatizado establecido por el fabricante para una síntesis a escala de 0,025 mmoles. Se realizaron acoplamientos dobles en todos los ciclos usando hexafluorofosfato de 2-(1H-benzotriasol-1-il)-1,1,3,3-tetrametiluronio (HBTU)/N,N-diisopropiletilamina (DIEA)/HOBt/FMOC-AA en un exceso de 4 veces durante 30 minutos, seguido de DIC/HOBt/FMOC-AA en un exceso de cuatro veces durante 45 minutos.

El péptido seguidamente se desprotegió y se retiró de la resina mediante tratamiento con TFA/agua (95% /5%) durante 3 horas y seguidamente se precipitó con éter frío. El sólido resultante seguidamente se sedimentó mediante centrifugación (2400 rpm x 10 min) y el éter se desechó. Seguidamente el sólido se volvió a poner en suspensión en éter y se volvió a centrifugar por segunda vez, después de lo cual el éter se separó por decantación por segunda vez. El sólido se disolvió en ácido acético al 10% y se liofilizó hasta sequedad (~30 mg para péptidos de 12 aminoácidos; 18 mg para péptidos de 7 aminoácidos). El péptido en bruto se purificó mediante HPLC preparativa 20 usando instrumentos conocidos por los expertos en la técnica, como una serie HP110 con detector de hilera de diodos, con una columna C18 Vidac (21 x 250 mm) usando un gradiente de acetonitrilo de 15%-40% durante 80 minutos (a un caudal de 5 ml/min). La fracción primaria seguidamente se recogió y se volvió a analizar en cuanto a la pureza usando HPLC analítica para asegurar un pico simétrico único a todas las longitudes de onda. La 25 confirmación de las estructuras y secuencias se basó en una comparación de pesos moleculares previstos, con pesos moleculares obtenidos mediante espectroscopía de masas ESI. Estos análisis se realizaron usando instrumentos conocidos por los expertos en la técnica, como un espectrómetro de masas de pulverización iónica de cuádruplo triple Sciex API IIIE o ESI Agilent MSD-SL. Se sintetizaron péptidos 12-13meros con las siguientes secuencias, que empleaban todos preferentemente D-aminoácidos, excepto cuando se indicó otra cosa:

Arg-Lys-Arg-Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg-Thr (DP-001),

10

30

40

50

60

Arg-Gln-Val-Phe-Gln-Val-Ala-Tyr-Ile-Ile-Ile-Lys-Ala (DP-002),

35 Tyr-eu-Ser-Lys-Gly-Arg-Leu-Val-Phe-Ala-Leu-Gly (DP-003),

Thr-Leu-Phe-Leu-Ala-His-Gly-Arg-Leu-Val-Phe-Met (DP-004),

Ala-Gly-Gln-Trp-His-Arg-Val-Ser-Val-Arg-Trp-Gly (DP-005),

Asp-Gly-Arg-Trp-His-Arg-Val-Ala-Val-Ile-Met-Gly (DP-006),

His-Gln-Thr-Trp-Thr-Arg-Asn-Leu-Gln-Val-Thr-Leu (DP-007),

45 Ile-Ser-Asn-Val-Phe-Val-Gln-Arg-Leu-Ser-Leu-Ser (DP-008),

Arg-Gly-Leu-Val-Phe-His-Thr-Gly-Thr-Lys-Asn-Ser-Phe (DP-009),

Gly-Asn-Ser-Thr-Ile-Ser-Ile-Arg-Ala-Pro-Val-Tyr (DP-010),

Val-Arg-Trp-Gly-Met-Gln-Gln-Ile-Gln-Leu-Val-Val (DP-011),

Ala-Pro-Val-Asn-Val-Thr-Ala-Ser-Val-Gln-Ile-Gln (DP-012),

55 Thr-Arg-Ile-Ser-Leu-Gln-Val-Gln-Leu-Arg-Lys-Arg (DP-013),

Ala-Lys-Ile-Ile-Ile-Tyr-Ala-Val-Gln-Phe-Val-Gln-Arg (DP-014),

Gly-Leu-Ala-Phe-Val-Leu-Arg-Gly-Lys-Ser-Leu-Tyr (DP-015),

Met-Phe-Val-Leu-Arg-Gly-His-Ala-Leu-Phe-Leu-Thr (DP-016),

Gly-Trp-Arg-Val-Ser-Val-Arg-His-Trp-Gln-Gly-Ala (DP-017),

65 Gly-Met-Ile-Val-Ala-Val-Arg-His-Trp-Arg-Gly-Asp (DP-018),

L-Arg-L-Lys-L-Arg-L-Leu-L-Gln-L-Val-L-Gln-L-Leu-L-Ser-L-Ile-L-Arg-L-Thr (DP-019), y

Arg-Val-Ala-Val-IIe-Met-Pro-Arg-Val-Ala-Val-IIe-Met (DP-050).

5 Además se sintetizaron péptidos 6-9meros que incluyen iAβ5 (LP-025) y piAβ5 (LP-081) con las siguientes secuencias y/o modificaciones:

027), Gln-Trp-His-Arg-Val-Ser-Val (DP-028), Trp-His-Arg-Val-Ser-Val-Arg (DP-029), His-Arg-Val-Ser-Val-Arg-Trp (DP-030), Arg-Val-Ser-Val-Arg-Trp-Gly (DP-031), Asp-Gly-Arg-Trp-His-Arg-Val (DP-032), Gly-Arg-Trp-His-Arg-Val-10 Ala (DP-033), Arg-Trp-His-Arg-Val-Ala-Val (DP-034), Trp-His-Arg-Val-Ala-Val-Ile (DP-035), His-Arg-Val-Ala-Val-Ile (DP-036), Arg-Val-Ala-Val-Ile-Met (DP-037), Thr-Leu-Phe-Leu-Ala-His-Gly-Arg (DP-039), Phe-Leu-Ala-His-Gly-Arg (DP-040), Leu-Ala-His-Gly-Arg-Leu-Val (DP-041), Ala-His-Gly-Arg-Leu-Val-Phe (DP-042), His-Gly-Arg-Leu-Val-Phe-Met (DP-043), Gly-Leu-Ala-Phe-Val-Leu-Arg (DP-044), Leu-Ala-Phe-Val-Leu-Arg-Gly (DP-045), Ala-Phe-Val-Leu-Arg-Gly-Lys (DP-046), Phe-Val-Leu-Arg-Gly-Lys-Ser (DP-047), Val-051), Arg-Val-Ala-Val-Ile-Met (DP-052), His-Arg-Pro-Ala-Val-Ile-Met (DP-053), His-Arg-Val-Pro-Val-Ile-Met (DP-054), His-Arg-Val-Ala-Val-Pro-Met (DP-055), Leu-Ala-Phe-Val-Leu-Arg (DP-056), Leu-Pro-Phe-Val-Leu-Arg (DP-057), Arg-Arg-Pro-Ala-Phe-Val-Leu-Arg (DP-058), Thr-Arg-lle-Ser-Leu-Gln-Val (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Thr-Arg-lle-Ser-Leu-Gln-Val (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Thr-Arg-lle-Ser-Leu-Gln-Val (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-059), Ser-Leu-Gln-Val-Gln-Va 060), Gln-Val-Gln-Leu-Arg-Lys-Arg (DP-061), Arg-Val-Ser-Val-Arg-Trp (DP-062), Arg-Val-Ser-Val-Arg (DP-063), His-20 Pro-Arg-Leu-Val-Phe-Met (DP-064), Trp-His-Arg-Val-Ala-Val-Ile-Met-amida (DP-065), Trp-His-Arg-Val-Ile-Met-amida (DP-065), Trpamida (DP-066), Arg-Val-Ala-Val-IIe-Met-amida (DP-067), Arg-Val-Ala-Val-IIe-Met-Gly-amida (DP-068), Leu-Ala-Phe-Val-Leu-Arg-amida (DP-069), His-Gly-Arg-Leu-Val-Phe-Met-amida (DP-070), Thr-Leu-Phe-Leu-Ala-Arg (DP-071), Trp-His-Leu-Ala-Phe-Val-Leu-Arg (DP-072), Acetyl-Leu-Ala-Phe-Val-Leu-Arg-amida (DP-073), Leu-Ala-Phe-Val-Leu-Arg-amida (DP-073), Leu-Arg-amida (DP-073), Leu-A Arg-Lys-amida (DP-074), Thr-Leu-Phe-Leu-Ala-Arg-amida (DP-075), Acetyl-Thr-Leu-Phe-Leu-Ala-Arg-amida (DP-076), Thr-Leu-Phe-Leu-Ala-Arg-Lys (DP-077), Thr-Leu-Phe-Leu-Ala-Arg-Lys-amida (DP-078), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-amida (DP-079), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-080), and Acetyl-L-Leu-L-Pro-L-Phe-L-Asp-L-amida (LP-081). D- indica D-aminoácidos y L- indica L-aminoácidos.

30 EJEMPLO DE REFERENCIA 1

Rotura de estructura secundaria de láminas beta de fibrilas de Alzheimer mediante péptidos 12-13meros según se ensayó mediante espectropolarimetría CD

Se registraron espectros de dicroísmo circular (CD) de Aβ42 en presencia o ausencia de péptidos sintéticos indicados en el ejemplo 1 a 25°C en un espectropolarímetro JASCO-810 usando una cubeta de cuarzo con longitud de trayectoria de 0,5 mm y sobre el intervalo de 190-260 nm. El instrumento fue calibrado con una solución acuosa de ácido (+)- canforsulfónico. El instrumento seguidamente se ajustó para recoger datos a una anchura de banda de 5 mm, tiempo de respuesta de 32 segundos, modulación de datos de 0,5 nm y una velocidad de exploración de 10 nm/min. Cada espectro de CD era una media de 5 espectros, tomados cada uno a partir de una solución duplicada por separado. Los resultados de CD se expresaron por elipticidad de residuo molar (MRE) de Aβ42, después de la sustracción del espectro del disolvente de fondo y/o el espectro de péptido del ensayo. Para este estudio, se incubó Aβ42 fibrilar (0,1 mg/ml) en TPBSF (10% de TFE, NaF 150 nM, HNaPO₄ 50 mM, pH 7,4) fue incubado durante 3 días a 37°C en presencia y ausencia de diversos péptidos 12-13meros a una relación p/p de Aβ 42:péptido de 1:2, antes de registrar los espectros de CD. El porcentaje de rotura de estructura en láminas β se determinó calculando el porcentaje de pérdida de elipticidad negativa a 218 nm en comparación con Aβ42 solo, después de que se sustrajeran los correspondientes datos en blanco.

Los rompedores de estructura secundaria en láminas beta Aβ42 entre análogos de péptidos 12-13meros se clasifican en orden de eficacia, según se valora mediante espectropolarimetría CD. Otros péptidos que son también eficaces no se incluyen en esta lista. Los péptidos preferidos, incluidos en orden de eficacia son

Ala-Gly-Gln-Trp-His-Arg-Val-Ser-Val-Arg-Trp-Gly (DP-005), Asp-Gly-Arg-Trp-His-Arg-Val-Ala-Val-Ile-Met-Gly (DP-006), Thr-Leu-Phe-Leu-Ala-His-Gly-Arg-Leu-Val-Phe-Met (DP-004), Gly-Leu-Ala-Phe-Val-Leu-Arg-Gly-Lys-Ser-Leu-Tyr (DP-015), Arg-Val-Ala-Val-Ile-Met-Pro-Arg-Val-Ala-Val-Ile-Met (DP-050), Gly-Trp-Arg-Val-Ser-Val-Arg-His-Trp-Gln-Gly-Ala (DP-017), Tyr-eu-Ser-Lys-Gly-Arg-Leu-Val-Phe-Ala-Leu-Gly (DP-003), Gly-Met-Ile-Val-Ala-Val-Arg-His-Trp-Arg-Gly-Asp (DP-018), L-Arg-L-Lys-L-Arg-L-Leu-L-Gln-L-Val-L-Gln-L-Leu-L-Ser-L-Ile-L-Arg-L-Thr (DP-019), Met-Phe-Val-Leu-Arg-Gly-His-Ala-Leu-Phe-Leu-Thr (DP-016), Thr-Arg-Ile-Ser-Leu-Gln-Val-Gln-Leu-Arg-Lys-Arg (DP-013), Arg-Gln-Val-Phe-Gln-Val-Ala-Tyr-Ile-Ile-Ile-Lys-Ala (DP-002), Arg-Gly-Leu-Val-Phe-His-Thr-Gly-Thr-Lys-Asn-Ser-Phe (DP-009), Gly-Asn-Ser-Thr-Ile-Ser-Ile-Arg-Ala-Pro-Val-Tyr (DP-010), Val-Arg-Trp-Gly-Met-Gln-Gln-Ile-Gln-Leu-Val-Val (DP-011), Ala-Pro-Val-Asn-Val-Thr-Ala-Ser-Val-Gln-Ile-Gln (DP-012), Ala-Lys-Ile-Ile-Ile-Tyr-Ala-Val-Gln-Phe-Val-Gln-Arg (DP-014), and Ile-Ser-Asn-Val-Phe-Val-Gln-Arg-Leu-Ser (DP-008). DP-005, DP-006, DP-004 y DP-015 muestran >75% de rotura de Aβ42 fibrilar, mientras que DP-050, DP-017 y DP-003 muestran >50% de rotura de fibrilas de Aβ42.

EJEMPLO DE REFERENCIA 2

Rotura de fibrilas de Aβ de Alzheimer mediante péptidos 12-13meros según se valoró mediante fluorometría de tioflavina T.

5 Diversos péptidos sintetizados como se indican en el ejemplo 1 fueron ensayados en cuanto a la actividad de rompedora de Aβ amiloide potencial usando una diversidad de ensayos in vitro. Uno de estos ensayos, fluorometría de tioflavina T, que mide la cantidad de fibrilas amiloides (LeVine III, Protein Sci. 2:404-410, 1993; Amyloid: Int. J. Exp. Clin. Invest. 2:1-6, 1995; Naiki and Nakakuki, Lab. Invest., 74:374-383, 1996; Castillo et al, J. Neurochem. 69:2452-2465, 1997) fue usado para identificar péptidos sintéticos capaces de romper fibrilas amiloides A642. Para estos estudios, se incubaron 0,1 mg/ml de Aβ42 (Bachem Inc) en tubos de microcentrifugadora a 37ºC durante 3 días (por triplicado solos o bien en presencia de 0,2 mg/ ml de péptido a una relación en peso de Aß: péptido de 1:2) en TPBSF (10% de TFE, NaF 150 mm, HNaPO₄ 50 mM, pH 7,4). Se tomaron partes alícuotas de 50 µl para un análisis en el día 3 y se añadieron partes alícuotas de 200 μl de tioflavina T 125 μM en NaPO₄ 62 mM (pH 6,0) para proporcionar una concentración final de tioflavina T de 100 µM y 62 mM de NaPO₄. Se midió la emisión de 15 fluorescencia a 480 nm en un fluorómetro de microplaca de 96 pocillos (Labsystem) a una longitud de onda de excitación de 450 nm. Para todas las determinaciones, cualquier fluorescencia proporcionada por los péptidos en presencia del reactivo de tioflavina T fue siempre sustraída de todas las lecturas pertinentes. Estudios previos han indicado que las concentraciones crecientes de Aβ42 fibrilar proporcionan un aumento proporcional de la fluorescencia en presencia de tioflavina T 100 µM descartando la presencia de cualquier efecto de filtros internos 20 desproporcionados a esta concentración de tioflavina T (Castillo et al J. Neurochem. 69:2452-2465, 1997).

Rompedores de tioflavina T que se unen a Aβ42 a partir de análogos de péptidos de entre 12-13 aminoácidos, clasificados en orden de eficacia. Los péptidos en orden de eficacia, según se determinó mediante fluorometría de tioflavina T, incluyen, pero sin limitación

 $Val-Arg-Trp-Gly-Met-Gln-Gln-Ile-Gln-Leu-Val-Val \quad (DP-011), \quad Gly-Met-Ile-Val-Ala-Val-Arg-His-Trp-Arg-Gly-Asp \quad (DP-018), \quad His-Gln-Thr-Trp-Thr-Arg-Asn-Leu-Gln-Val-Thr-Leu \quad (DP-007), \quad Arg-Lys-Arg-Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg-Thr \quad (DP-001), \quad Ile-Ser-Asn-Val-Phe-Val-Gln-Arg-Leu-Ser-Leu-Ser \quad (DP-008), \quad Arg-Val-Ala-Val-Ile-Met-Pro-Arg-Val-Ala-Val-Ile-Met \quad (DP-050), \quad Asp-Gly-Arg-Trp-His-Arg-Val-Ala-Val-Ile-Met-Gly \quad (DP-006), \quad Gly-Leu-Ala-Phe-Val-Leu-Arg-Gly-Lys-Ser-Leu-Tyr \quad (DP-015), \quad Gly-Asn-Ser-Thr-Ile-Ser-Ile-Arg-Ala-Pro-Val-Tyr \quad (DP-010), \quad Arg-Gly-Leu-Val-Phe-His-Thr-Gly-Thr-Lys-Asn-Ser-Phe \quad (DP-009), \quad Ala-Pro-Val-Asn-Val-Thr-Ala-Ser-Val-Gln-Ile-Gln \quad (DP-012), \quad Tyr-eu-Ser-Lys-Gly-Arg-Leu-Val-Phe-Ala-Leu-Gly \quad (DP-003), \quad Ala-Gly-Gln-Trp-His-Arg-Val-Ser-Val-Arg-Trp-Gly \quad (DP-005), \quad Ala-Lys-Ile-Ile-Ile-Tyr-Ala-Val-Gln-Phe-Val-Gln-Arg \quad (DP-014). \quad DP-017 \quad y \quad DP-011 \quad demuestran \quad una \quad rotura \quad >80\% \quad de \quad fibrilas \quad de \quad A\beta42, \quad DP-018 \quad y \quad DP-007 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad de \quad fibrilas \quad de \quad A\beta42. \quad DP-015 \quad demuestran \quad una \quad rotura \quad >40\% \quad$

EJEMPLO 2

25

30

45

50

60

40 Rotura de estructuras secundaria de láminas de fibrilas β de Alzheimer ensayados mediante espectropolarimetría CD

La espectropolarimetría de dicroísmo circular (CD) es otra técnica *in vitro* usada para determinar la eficacia de un péptido dado para romper la estructura secundaria de láminas b de fibrilas de Aβ. Los espectros de CD de Aβ 42 en presencia o ausencia de péptidos sintéticos se registraron a 25°C en un espectropolarímetro JASCO-810 usando una cubeta de cuarzo con longitud de trayectoria de 0,5 mM y sobre el intervalo de 190-260 nm. El instrumento fue calibrado con una solución acuosa de ácido (+)-canforsulfónico. El instrumento fue seguidamente ajustado para recoger datos a una anchura de banda de 5 nm, tiempo de respuesta de 32 segundos, ondulación de datos de 0,5 nm y una velocidad de exploración de 10 nm/min. Cada espectro de CD fue una media de 5 espectros, tomados cada uno a partir de una solución duplicada por separado. Los resultados de CD fueron expresados como elipticidad de residuo molar (MRE) de Aβ42, después de la sustracción del espectro del disolvente de fondo y/o espectro de péptido de ensayo. Para este estudio, se incubó Aβ42 fibrilar (0,1 mg/ml) en TPBSF (10% de TFE, NaF 150 mM, HNaPO₄ 50 mM, pH 7,4) durante 3 días a 37°C en presencia y ausencia de diversos péptidos a una relación p/p de Aβ42: péptido de 1:2, antes de registrar los espectros de CD. El porcentaje de rotura de estructura de lámina beta se determinó calculando el porcentaje de pérdida de elipticidad negativa a 218 nm en comparación con Aβ42 solo después de que sustrajeran los correspondientes valores en blanco.

La figura 11 muestra que los rompedores de estructura en láminas beta de Aβ42 entre péptidos 6-9meros y análogos, clasificados en orden de eficacia según se valoró mediante espectropolarimetría de CD. Los péptidos preferidos en orden de eficacia incluyen, pero sin limitación, Arg-Val-Ala-Val-Ile-Met-Gly-amida (DP-068), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-074), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-074), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-amida (DP-073), Leu-Ala-Phe-Val-Leu-Arg-amida (DP-069), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-amida (DP-079), Acetyl- Thr-Leu-Phe-Leu-Ala-Arg-amida (DP-076), Trp-His-Arg-Val-Ala-Val-Ile-Met (DP-051), Thr-Leu-Phe-Leu-Ala-Arg (DP-071), Thr-Leu-Phe-Leu-Ala-Arg-amida (DP-075), His-

Arg-Val-Ala-Val-Ile-Met (DP-036), Arg-Val-Ala-Val-Ile-Met-Gly (DP-037), Leu-Ala-Phe-Val-Leu-Arg (DP-056), Thr-Leu-Phe-Leu-Ala-Arg-Lys-amida (DP-078), Trp-His-Arg-Val-Ala-Val-Ile (DP-035), Arg-Val-Ser-Val-Arg-Trp-Gly (DP-031), Ala, His-Gly-Arg-Leu-Val-Phe (DP-042), His-Gly-Arg-Leu-Val-Phe-Met (DP-043), Trp-His-Arg-Val-Ala-Val-Ile-amida (DP-066), His-Gly-Arg-Leu-Val-Phe-Met-amida (DP-070), and His-Arg-Val-Ser-Val-Arg-Trp (DP-030). El DP068 demuestra una rotura de >90 de estructura de láminas β de β 42, mientras que DP-080, DP-074, DP-072, DP-073, DP-069, DP-079, DP-076, DP-051, DP-071 y DP-075 demuestran todos una rotura de >60% de estructura de láminas de β 42 β 4 (figura 11).

EJEMPLO 3

10

Rotura de fibrilas de Aβ de Alzheimer mediante péptidos 6-9meros según se valoró mediante fluorometría de tioflavina T.

La fluorometría de tioflavina T, que mide la cantidad de fibrilas amiloides (LeVine III, Protein Sci. 2:404-410, 1993; 15 Amyloid: Int. J. Exp. Clin. Invest. 2:1-6, 1995; Naiki and Nakakuki, Lab. Invest., 74:374-383, 1996; Castillo et al, J. Neurochem. 69:2452-2465, 1997) se usó también para determinar la eficacia de péptidos 6-9meros en la rotura de fibrilas amiloides de Aβ42. Para estos estudios, se incubó 0,1 mg/ml de Aβ42 (Bachem Inc) en tubos de microcentrifugadora a 37°C durante 3 días (por triplicado), solos o bien en presencia de 0,2 mg/ml de péptido (a una relación en peso de Aβ: péptido de 1:2) en TPBSF (10% de TFE, NaF 150 mM, HNaPO₄ 50 mM, pH 7,4). Se 20 tomaron partes alícuotas de 50 µl para un análisis en el día 3 y se añadieron partes alícuotas de 200 µl de tioflavina 125 μM en NaPO₄ 62 mM (pH 6,0) proporcionando una concentración final de tioflavina T de 100 μM y 62 mM de NaPO₄. Se midió la emisión de fluorescencia a 480 nM en un fluorómetro de microplaca de 96 pocillos (Labsystem) a una longitud de onda de excitación de 450 nm. Para todas las determinaciones, cualquier fluorescencia proporcionadas por los péptidos en presencia del reactivo de tioflavina T se sustrajeron siempre de todas las 25 lecturas pertinentes. Unos estudios previos han indicado que las concentraciones crecientes de Aβ42 fibrilar proporcionan un aumento proporcional de la fluorescencia en presencia de tioflavina T 100 μM, descartando la presencia de cualesquiera efectos de filtro internos desproporcionados a esta concentración de tiflavina T (Castillo et al J. Neurochem. 69:2452-2465, 1997).

La figura 12 muestra las roturas de la unión de tioflavina T a Aβ42 a partir de péptidos 6-9meros y análogos, clasificadas en orden de eficacia. Los péptidos preferidos en orden de eficacia incluyen, pero sin limitación Trp-His-Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-073), Leu-Ala-Phe-Val-Leu-Arg-amida (DP-073), Leu-Ala-Phe-Val-Leu-Arg-amida (DP-079), Acetyl-Thr-Leu-Phe-Leu-Ala-Arg-amida (DP-076), Trp-His-Arg-Val-Ala-Val-Ile-Met (DP-051), Thr-Leu-Phe-Leu-Ala-Arg-Lys-amida (DP-078), Thr-Leu-Phe-Leu-Ala-Arg-amida (DP-075), Leu-Ala-Phe-Val-Leu-Arg-Gly (DP-045), Arg-Val-Ala-Val-Ile-Met-Gly (DP-037), Arg-Val-Ala-Val-Ile-Met (DP-052), His-Pro-Arg-Leu-Val-Phe-Met (DP-064), Thr-Leu-Phe-Leu-Ala-Arg-Lys (DP-077), Leu-Ala-Phe-Val-Leu-Arg (DP-056), Arg-Val-Ser-Val-Arg-Trp-Gly (DP-031), Trp-His-Arg-Val-Ala-Val-Ille (DP-035), His-Arg-Val-Ser-Val-Arg-Trp (DP-030), Thr-Arg-Ile-Ser-Leu-Gln-Val (DP-059), Ala-His-Gly-Arg-Leu-Val-Phe (DP-042), Ser-Leu-Gln-Val-Gln-Leu-Arg (DP-060), His-Gly-Arg-Leu-Val-Phe-Met (DP-043), Arg-Val-Ser-Val-Arg-Trp (DP-062), Leu-Pro-Phe-Val-Leu-Arg (DP-057) y Ala-Phe-Val-Leu-Arg-Gly-Lys (DP-046). DP-080, DP-073, DP-074, DP-079, DP-076 y DP-051 demostraron todos una inhibición/rotura > 75% de fibrilas de Aβ42, mientras que DP-078 y DP-075 demostraron una inhibición/rotura > 50% de fibrilas de Aβ42.

EJEMPLO 4

45

50

60

65

Unión de péptidos 6-9meros a fibrilas de Aβ42 de Alzheimer

Se determinó la capacidad de diversos péptidos para unirse a Aβ42 unido a sustrato mediante un ensayo de unión en fase sólida junto con una determinación de fracciones de péptido sin unir usando cromatografía líquida a presión elevada unida a un detector selectivo de masa (HPLC/MSD; sistema Agilent 1100 HPLC). Los péptidos fueron resueltos en HPLC usando una columna Synergi-Max RP (2 x 0,4 cm; 2 μm) a partir de phenomenex con un caudal de 1 ml/min y un gradiente de 0-60% de acetonitrilo en agua, que contenía 1% de ácido fórmico durante 5,5 minutos. Los péptidos fueron detectados a medida que salían de la columna usando MSD SL (Agilent). El MSD tenía los siguientes ajustes: verificación de iones positivo en modo de exploración de 200-1200 Da; voltaje fragmentador 150; caudal secador 13 l/min de N₂; presión nebulizadora 3,10 bares; temperatura del gas secador 350ºC y voltaje de capilaridad 3500 voltios;

El ensayo de unión en fase sólida se realizó como sigue: partes alícuotas de 10 μg de Aβ42 se unieron a membrana PVDF en la parte inferior de una microplaca de 96 pocillos (disponible en la entidad Millipore) según las instrucciones del fabricante. La placa se dejó secar y se aplicaron partes alícuotas de 150 μl de 0,1 mg/ml de péptidos 6-9meros en cada pocillo. Cada péptido 6-9mero fue aplicado por triplicado en los pocillos que contenían Aβ42 (pocillos del ensayo) y por triplicado en los pocillos que no contenían Aβ42 (pocillos en blanco). Las placas que contenían 16 péptidos 6-meros diferentes se incubaron a 37ºC durante 2 horas. El péptido sin unir en cada pocillo fue seguidamente transferido a viales de HPLC/MSD para un análisis con los ajustes anteriormente indicados. Los péptidos recuperados de los pocillos sin Aβ42 fueron tomados como los péptidos totales, mientras que los péptidos

recuperados con pocillos con Aβ42 fueron tomados como los péptidos de unión total. Seguidamente se representaron gráficamente los porcentajes de diversos péptidos unidos después de 2 horas de incubación (figura 13).

La figura 13 muestra los elementos de unión de Aβ42 a partir de péptidos 6-9meros y análogos, clasificados en orden de eficacia. Los péptidos preferidos en orden de eficacia incluyen, pero sin limitación, His-Arg-Val-Ala-Val-Ile-Met (DP-036), Trp-His-Arg-Val-Ala-Val-Ile-amida (DP-066), His-Pro-Arg-Leu-Val-Phe-Met (DP-064), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-080), Trp-His-Leu-Ala-Phe-Val-Leu-Arg (DP-072), Acetyl-Leu-Ala-Phe-Val-Leu-Argamida (DP-073), Ala-Phe-Val-Leu-Arg-Gly-Lys (DP-046), Leu-Ala-Phe-Val-Leu-Arg-amida (DP-069), Gly-Leu-Ala-Phe-Val-Leu-Arg (DP-044), Leu-Ala-Phe-Val-Leu-Arg-Lys-amida (DP-074), Arg-Val-Ala-Val-IIe-Met-amida (DP-067), 10 His-Arg-Val-Pro-Val-Ile-Met (DP-054), His-Arg-Val-Ser-Val-Arg-Trp (DP-030), Leu-Ala-Phe-Val-Leu-Arg (DP-056), His-Arg-Pro-Ala-Val-Ile-Met (DP-053), His-Gly-Arg-Leu-Val-Phe-Met-amida (DP-070), Arg-Val-Ala-Val-Ile-Met-Glyamida (DP-068), Ala-His-Gly-Arg-Leu-Val-Phe (DP-042), His-Gly-Arg-Leu-Val-Phe-Met (DP-043), Arg-Val-Ser-Val-Arg-Trp-Gly (DP-031), Phe-Leu-Ala-His-Gly-Arg-Leu(DP-040), Trp-His-Leu-Ala-Phe-Val-Leu-Arg-amida (DP-079), Thr-Leu-Phe-Leu-Ala-Arg-Lys-amida (DP-078), Arg-Val-Ala-Val-Ile-Met-Gly (DP-037), Gly-Arg-Trp-His-Arg-Val-Ala (DP-078), Arg-Val-Ala-Val-Ile-Met-Gly (DP-037), Gly-Arg-Trp-His-Arg-Val-Ala 15 033), Asp-Gly-Arg-Trp-His-Arg-Val (DP-032), Ala-Gly-Gln-Trp-His-Arg-Val (DP-026), Leu-Ala-Phe-Val-Leu-Arg-Gly-(DP-045) y Arg-Trp-His-Arg-Val-Ala-Val (DP-034). DP-036 y DP-066 demostraron una unión > 40% a Aβ42 unido a sustrato, mientras que DP-064 y DP-080 demostraron una unión >30% y DP-072 y DP-073 demostraron una unión > 20% (figura 13).

EJEMPLO 5

20

25

30

35

45

50

55

Rotura de estructura secundaria de láminas de fibrilas β de Alzheimer mediante péptidos 6-9meros según se valoró mediante espectropolarimetría CD

La espectropolarimetría de dicroísmo circular (CD) es otra técnica *in vitro* usada para determinar la eficacia de un péptido dado para romper la estructura secundaria de láminas de fibrilas β de A β . Se registraron espectros de CD de A β 42 en presencia o ausencia de péptidos 6-9meros sintéticos a 25°C en un espectropolarímetro JASCO-810 usando una cubeta de cuarzo con una longitud de trayectoria de 0,5 mm y sobre el intervalo de 190-260 nm. El instrumento fue calibrado con una solución acuosa de ácido (+)-canforsulfónico. El instrumento fue seguidamente ajustado para recoger datos a una anchura de banda de 5 nm, tiempo de respuesta de 32 segundo, ondulación de datos de 0,5 nm y velocidad de exploración de 10 nm/min. Cada espectro de CD fue una media de 5 espectros, tomados cada uno a partir de una solución duplicada por separado. Los resultados de CD fueron expresados como elipticidad de residuo molar (MRE) de A β 42, después de la sustracción del espectro del disolvente de fondo y/o el espectro del péptido del ensayo. Para este estudio, se incubó A β 42 fibrilar (0,1 mg/ml) en TPBSF (10% de TFE, NaF 150 mM, HNaPO₄ 50 mM, pH 7,4) durante 3 días a 37°C en presencia y ausencia de diversos péptidos 6-9meros a una relación p/p de A β 42 2: péptido de 1:2, antes de registrar los espectros de CD.

Los espectros de CD de Aβ42 solo, Aβ42 más péptido 6-9mero y péptido 6-9mero solo se representan en la figura 7, con un resumen global en la figura 8.

La figura 7 muestra el espectro de CD de 0,1 mg/ml de Aβ42 después de 3 días de incubación (línea continua). Tanto la elipticidad negativa a 218 nm como la elipticidad positiva a 195 nm indican la presencia de estructura secundaria de láminas beta. También en la figura 7 está el espectro de CD de 0,1 mg/ml de Aβ42 en presencia de 0,2 mg/ml de DP-074 después de 3 días de incubación (línea de puntos) con una corrección para el espectro de péptido DP-074. La pérdida significativa de elipticidad negativa a 218 nm en presencia de DP-074 indica una pérdida de estructura de láminas beta en Aβ42. La figura 7 muestra el espectro de CD de 0,2 mg/ml de DP-074 solo (línea de puntos) con elipticidades positivas y máximos a aproximadamente 200 nm que indican un enrollamiento al azar invertido congruente con un péptido de aminoácidos, con muy poca estructura de láminas beta. También se muestra en la figura 7 por motivos de comparación el espectro de CD de 0,1 mg/ml de Aβ42 después de 3 días de incubación (línea continua).

La figura 8 muestra las elipticidades de 0,1 mg/ml de Aβ42 a 218 nm en presencia de 0,2 mg/ml de diversos péptidos 6-9meros después de 3 días de incubación y después de la corrección para las elipticidades CD de diversos péptidos. Los péptidos ensayados en este caso son DP-065 a LP-081 y polilisina. Debe apreciarse que los péptidos DP-065, DP-067 y LP-081 provocaron un aumento de la elipticidad negativa a 218 nm, indicando que estos péptidos sorprendentemente favorecen la formación de estructura de láminas beta de Aβ42. Se hace referencia a la figura 11 para la clasificación de la eficacia de diversos péptidos 6-9meros.

60 EJEMPLO 6

Rotura dependiente de la dosis de estructura secundaria de láminas beta de fibrilas de Alzheimer mediante péptidos 6-9meros según se valoró mediante espectropolarimetría CD

65 La espectropolarimetría de dicroísmo circular (CD) es otra técnica in vitro usada para determinar la eficacia de un

péptido dado para romper la estructura secundaria de láminas b de fibrilas. Los espectros de CD de Aβ42 en presencia o ausencia de péptidos 6-9meros sintéticos fueron registrados a 25°C en un espectropolarímetro JASCO-810 usando una cubeta de cuarzo de longitud de trayectoria de 0,5 mM y sobre el intervalo de 190-260 nm. El instrumento fue calibrado con una solución acuosa de ácido (+)- canforsulfónico. El instrumento fue seguidamente ajustado para recoger datos a una anchura de banda de 5 nm, tiempo de respuesta de 32 segundos, ondulación de datos de 0,5 nm y velocidad de exploración de 10 nm/min. Cada espectro de CD fue una media de 5 espectros, tomados cada uno a partir de una solución duplicada por separado. Los resultados de CD fueron expresados como elipticidad de residuo molar (MRE) de Aβ42, después de la sustracción del espectro del disolvente de fondo y/o espectro de péptido del ensayo. Para este estudio se incubó Aβ42 fibrilar (0,1 mg/ml) en TPDSF (10% de TFE, NaF 150 nM, HNaPO₄ 50 mM, pH 7,4) durante 3 días a 37°C en presencia y ausencia de diversos péptidos a relaciones de Aβ42: péptido de 1:0,1, 1:1, 1:2 y 1:10 antes de registrar los espectros de CD.

Los espectros de CD de Aβ42 solo, Aβ42 más péptido 6-9mero y péptido solo se presentan en la figura 9, con un sumario global en la figura 10.

La figura 9 muestra en el espectro de CD de 0,1 mg/ml de Aβ42 después de 3 días de incubación (azul). Tanto la elipticidad negativa a 218 nm como la elipticidad positiva a 195 nm indican la presencia de Estructura de láminas beta en Aβ42. También en la figura 9 está el espectro de CD de 0,1 mg/ml de Aβ42 en presencia de 0,01, 0,1, 0,2 y 0,5 mg/ml de péptido DP-074 después de 3 días de incubación (con corrección para el espectro de péptido DP-074). La pérdida significativa de elipticidad negativa a 218 nm indica una pérdida de estructura de láminas beta en Aβ42. El efecto dependiente de la dosis es observado solamente a 0,2 mg/ml y valores inferiores. A 0,5 mg/ml de péptido DP-074, la tendencia se detiene e invierte su transcurso. Esto es debido quizás a la concentración muy elevada de péptido del ensayo que provoca una absorción significativa de la luz entrante. La figura 9 muestra el espectro de CD de 0,01, 0,1, 0,2 y 0,5 mg/ml de péptido DP-074 solo con elipticidades positivas máximas a aproximadamente 200 nm, indicando un enrollamiento al azar invertido congruente con un péptido de D-aminoácido con muy poca estructura de láminas beta. También en la figura 9 está para fines de comparación el espectro de CD de 0,1 mg/ml de Aβ42 después de 3 días de incubación (azul).

EJEMPLO 7

10

15

25

30

35

40

45

50

Estabilidad de péptidos en suero humano

Una característica deseable de cualquier candidato potencial de agente terapéutico o fármaco es la capacidad de resistir la degradación por enzimas en la sangre, para tener tiempo suficiente para alcanzar su diana. Uno de los ensayos in vitro usados para determinar la estabilidad de los péptidos descritos en la presente memoria descriptiva es incubando estos péptidos en suero humano y determinar el nivel de los péptidos intactos (y degradación posible) a diversos valores del tiempo. Se añadieron partes alícuotas de 50 µl de diversos péptidos a 700 µl de suero humano (en muestras por triplicado. Se tomaron partes alícuotas de 100 µl a las 0, 2, 4, 6, 14 y 32 horas, seguido inmediatamente de la adición de 200 µl de etanol (o 20 µl de ácido trifluoroacético o 300 µl de metanol) y se centrifugaron a 14.000 x g (Eppendorf) durante 10 minutos. El nivel de péptidos intactos en la materia sobrenadante se determinó seguidamente usando LC/MS (Agilent HPLC/MS SL 1100 Series). El MS verificó cada péptido a medida que salía de la HPLC usando una verificación de iones positivos de modo SIM a masas correspondientes a iones de péptidos de carga única, doble y triple. El pico en los cromatogramas iónicos resultantes fue integrado para obtener la abundancia de iones totales en cada muestra. La media de determinaciones por triplicado de la abundancia de iones totales para cada valor de tiempo de incubación de suero fue seguidamente representado gráficamente como una función del tiempo de incubación de suero. La mayoría de las enzimas degradantes de péptidos en el cuerpo reconocen los péptidos naturales preparados a partir de los L-aminoácidos. Como los péptidos consisten en D-aminoácidos, su degradación en fluidos biológicos probablemente se retrasará como se demuestra en este ejemplo y en las figuras siguientes.

La figura 14 muestra el nivel de péptido DP-068 en suero humano como una función del tiempo durante un período de incubación de 32 horas. El péptido DP-068 consiste en todos los D-aminoácidos, como se muestra en la figura 14, y es resistente a la degradación en suero hasta las 32 horas inclusive.

La figura 15 muestra el nivel de péptido DP-074 en suero humano como una función del tiempo durante un período de incubación de 32 horas. El péptido DP-074 consiste en todos los D-aminoácidos, como se muestra en la figura 15, y es resistente a la degradación en el suero hasta las 32 horas inclusive.

Otros datos se ilustran como sigue:

La figura 1 muestra secuencias de péptidos y los dibujos 5-13meros DP-068 y DP-074.

La figura 2 muestra espectros de CD de Aβ42 más polilisina y DP-065 a través de DP-072 a una concentración p/p de Aβ42/péptido de (1:2)

65

La figura 3 muestra espectros de CD de Aβ 42 más DP-065 a través de DP-072 a (1:0,1, 1:1, 1:2, 1:5), con la figura 4 como resumen de la respuesta a la dosis CD de Aβ42 +/- DP-065 respecto a DP-072.

La figura 5 es un resumen de tio T de Aβ42 +/- DP65-72 (1:0,1, 1:1, 1:2, 1:5) y lisina, con la figura 6 como resumen de tio T con valores de 65/72

Aspectos y utilizaciones adicionales

30

35

50

55

60

65

Una aplicación terapéutica es usar péptidos de la invención como agentes de unión o secuestradores de Aβ, inhibidores de la formación de fibrilas amiloides Aβ, inhibidores del depósito de fibrilas amiloides Aβ, inhibidores de la acumulación y/o persistencia de fibrilas amiloides Aβ en enfermedad de Alzheimer, síndrome de Down y otros trastornos amiloides que implican fibrilogénesis de Aβ.

Un "péptido" se refiere a dos o más aminoácidos conjuntamente conectados por enlaces péptidos como es conocido por los expertos en la técnica. Los péptidos preferidos son los descritos en la presente memoria descriptiva, pero pueden incluir también ventajosamente péptidos que tienen una identidad de al menos 70% y, más preferentemente, de 80-90% respecto a un péptido descrito. "% de identidad" como se usa en la presente memoria descriptiva para péptidos, significa los mismos aminoácidos en el mismo lugar. Por tanto, dos péptidos de 10 aminoácidos son un 90% idénticos si la yuxtaposición de uno respecto a otro muestra que la colocación y la identidad de cada aminoácido es idéntica excepto para un aminoácido. Si un péptido de 10 aminoácidos es yuxtapuesto a otro péptido de diez aminoácidos y la colocación y la identidad de los aminoácidos es idéntica, excepto para dos aminoácidos, entonces los dos péptidos de 10 aminoácidos tienen una identidad de 80% uno respecto a otro.

Los péptidos descritos se producen mediante procedimientos sintéticos químicos. La síntesis química de péptidos es un sector en rápida evolución en la técnica y los métodos de síntesis de métodos en fase sólida están bien descritos en las siguientes referencias: : Merrifield, J.Amer.Chem.Soc. 85:2149-2154, 1963; Merrifield, Science 232:341-347, 1986; Fields, Int.J.Polypeptide Prot. Res. 35, 161, 1990. Los péptidos descritos pueden ser utilizados también como reactivos y materiales de investigación para el descubrimiento de tratamiento y diagnósticos para enfermedades humanas.

La vía de administración incluye oral, intravenosa, intraperitoneal, intramuscular, subcutánea, intraarticular, intranasal, intratecal, intradermal, transdermal o mediante inhalación. Una dosis eficaz de cada uno de los péptidos descritos en la presente memoria descriptiva como agentes terapéuticos potenciales para ser usados en el tratamiento de amiloidosis de Aβ en la enfermedad de Alzheimer y otros trastornos es de aproximadamente 1 μg a 500 mg/kg de peso corporal, por administración única, que puede ser fácilmente determinada por un experto en la técnica. La dosificación depende de la edad, sexo, salud y peso del receptor, tipo de terapia concurrente, si la hay, y frecuencia del tratamiento. Otros límites superiores de los intervalos de dosificaciones eficaces son 100 mg/kg de peso corporal, 50 mg/kg de peso corporal, 25 mg/kg de peso corporal y 10 mg/kg de peso corporal.

40 Como se usan en la presente memoria descriptiva, los polipéptidos pueden consistir en L-aminoácidos o D-aminoácidos o una mezcla de ambas formas. Los aminoácidos en la naturaleza consisten en L-aminoácidos. Sin embargo, la sustitución con D-aminoácidos generalmente demuestra una biodisponibilidad mejorada debido a la menor degradación en fluidos biológicos (como el plasma) y una penetración mejorada a través de la barrera sanguínea del cerebro. Los polipéptidos que tienen una secuencia de aminoácidos idéntica a la que se encuentra en un péptido descrito, pero en los que la totalidad o parte de los L-aminoácidos han sido sustituidos con D-aminoácidos son una parte del desarrollo descrito de agentes terapéuticos para tratar la enfermedad de Alzheimer y otras amiloidosis Aβ.

Como SE usa en la presente memoria descriptiva, "vehículo farmacéuticamente aceptable" incluye cualquiera y la totalidad de disolventes, medios de dispersión, revestimientos, agentes antibacterianos y antifúngicos, agentes isotónicos y retardantes de la absorción y similares que sean fisiológicamente compatibles. En una realización, el vehículo es adecuado para una administración parenteral. Preferentemente, el vehículo es adecuado para una administración en el sistema nervioso central (por ejemplo, por vía intraespinal o intracerebral). Alternativamente, el vehículo puede ser adecuado para una administración intravenosa, intraperitoneal o intramuscular. En otra realización, el vehículo es adecuado para una administración oral. Los vehículos farmacéuticamente aceptables incluyen soluciones o dispersiones acuosas esterilizadas y polvos esterilizados para una preparación extemporánea de soluciones o dispersiones inyectables esterilizadas. El uso de estos medios y agentes para sustancias farmacéuticamente activas es bien conocido en la técnica. Excepto en lo que se refiere a cualesquiera medios o agentes convencionales sean compatibles con el compuesto activo, su uso en las composiciones farmacéuticas está contemplado. Pueden ser incorporados también compuestos complementariamente activos en las composiciones.

Como se usa en la presente memoria descriptiva, "amiloidosis $A\beta$ " se refiere a enfermedades amiloides que implican la formación depósito, acumulación y/o persistencia de $A\beta$ (es decir, proteína β -amiloide), que incluye, pero sin limitación, $A\beta$ que contiene 39-43 aminoácidos de longitud, pero, más preferentemente $A\beta$ 1-40 o $A\beta$ 1-42 y mezclas o fragmentos de los mismos.

"Amiloidosis Aß" y " enfermedades de fibrilogénesis de Aß" incluyen, pero sin limitación, enfermedad de Alzheimer, síndrome de Down, formas de amiloidosis familiar, amiloidosis cerebrovascular y hemorragia cerebral, angiopatía amiloide de cistatina C, hemorragia cerebral hereditaria con amiloidosis (tipo Dutch), hemorragia cerebral hereditaria con amiloidosis (tipo islandés) y miositis de cuerpos de inclusión.

Aplicaciones terapéuticas

10

15

50

55

60

65

Los péptidos de la invención, los fragmentos, análogos y derivados de los mismos son usados como agentes terapéuticos inhibidores amiloides. Los péptidos de la invención, sus fragmentos, análogos y derivados pueden ser sintetizados por lo tanto utilizando técnicas estándar (por ejemplo, usando un sintetizador automatizado). En una realización preferida, los péptidos específicos de la invención, sus fragmentos, análogos o derivados pueden ser usados por lo tanto para unir o secuestrar Aβ amiloide, inhibir la formación, depósito, acumulación y/o persistencia de Aβ amiloide en un paciente dado. Análogamente, en otra realización preferida, los anticuerpos anti-idiotípicos preparados contra los péptidos de la invención, sus fragmentos, análogos o derivados, (como se describe con anterioridad) pueden ser proporcionados a un paciente humano como agentes de unión Aβ o anticuerpos secuestrantes potenciales, que pueden romper o inhibir la formación, depósito, acumulación y/o persistencia de Aβ amiloide en el paciente dado.

20 Una formulación para ser usada en el tratamiento de amiloidosis Aβ comprende una cantidad farmacéuticamente eficaz de un péptido de la invención, un fragmento, análogo o derivado del mismo, un anticuerpo anti-idiotípico o un fragmento de anticuerpo anti-idiotípico que incluve un vehículo farmacéuticamente aceptable. Las formulaciones pueden incluir adicionalmente otros anticuerpos o conjugados. Para una administración parenteral, las formulaciones preferidas incluyen soluciones, suspensiones y emulsiones acuosas o no acuosas esterilizadas, que pueden contener agentes o excipientes auxiliares que son conocidos en la técnica. Las formulaciones de anticuerpos antiidiotípicos pueden ser administradas usando modos convencionales de administración que incluyen, pero sin limitación, tópica, intravenosa, intraarterial, intraperitoneal, oral, intralinfática, intramuscular o intralumbar. La administración intravenosa es preferida. Las formulaciones farmacéuticas como comprimidos, píldoras, cápsulas, cápsulas de gelatina blandas y duras, pastillas, bolsitas, sellos, cápsulas vegetarianas, gotas líquidas, elíxires, 30 suspensiones, emulsiones, soluciones, jarabes, bolsas de té, aerosoles (como un sólido o en un medio líquido), supositorios, soluciones inyectables esterilizadas, polvos envasados esterilizados pueden ser preparados según método rutinarios y son conocidos en la técnica. La administración de esta composición puede ser por vías orales o diversas parenterales como las vías subcutánea, intravenosa, intradermal, intramuscular, intraperitoneal, intranasal, transdermal, anal o bucal. La administración parenteral puede ser mediante inyección de bolos o mediante perfusión gradual a los largo del tiempo. Los modos preferidos de administración de las formulaciones de péptidos de la invención, sus fragmentos análogos o derivados es mediante administración oral, intravenosa o aplicación intranasal.

Los péptidos de la invención, sus fragmentos análogos y derivados pueden ser administrados en la forma de una formulación farmacéutica por cualquier medio que consiga su finalidad prevista, por ejemplo, para tratar patologías como la enfermedad de Alzheimer y otras enfermedades amiloides Aβ, u otras patologías relacionadas. Las formulaciones terapéuticas pueden ser una diversidad de formas de dosificación, dependiendo la forma preferida del modo de administración y la aplicación terapéutica. La dosificación óptima, longitud, duración y modos de administración para un paciente individual pueden ser fácilmente determinados mediante protocolos convencionales, conocidos por los expertos en la técnica.

Debe entenderse que la dosificación del péptido de la invención, su fragmento, análogo y derivado administrados *in vivo* o *in vitro* dependerán de la edad, sexo, salud y peso del receptor, tipo de tratamiento concurrente (si lo hay), frecuencia del tratamiento y de la naturaleza del efecto deseado. La dosificación más preferida estrá adaptada al sujeto individual, como es comprendido y determinable por un experto en la técnica, sin una experimentación excesiva.

Un régimen típico para prevenir, suprimir o tratar patologías, como amiloidosis de enfermedad de Alzheimer comprende la administración de una cantidad eficaz de un péptido de la invención, fragmento, análogo o derivado del mismo, administrado durante un período de uno a varios días hasta incluir entre una semana y aproximadamente 72 meses.

La dosis total requerida para cada tratamiento puede ser administrada en dosis múltiples o en una dosis única. Un péptido de la invención, fragmento, análogo o derivado del mismo puede ser administrado solo o en combinación con otros agentes terapéuticos dirigidos a las patologías, como enfermedad de Alzheimer u otras enfermedades amiloides Aβ, como se describe en la presente memoria descriptiva.

Las cantidades eficaces de un péptido de la invención, fragmento, análogo o derivado del mismo, son de aproximadamente 0,01 μg a aproximadamente 1000 mg/kg de peso corporal y, preferentemente, de aproximadamente 10 μg a aproximadamente 50 mg/kg de peso corporal como 0,05, 0,07, 0,09, 0,1, 0,5, 0,7, 0,9, 1,

2, 5, 10, 20, 35, 30, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 o 100 mg/kg.

Las composiciones farmacéuticas que comprenden al menos un péptido de la invención o un anticuerpo antiidiotípico pueden incluir soluciones adecuadas para una administración por vía intravenosa, subcutánea, dermal, nasal, oral, mucosal, rectal o mediante inyección o por vía oral y pueden contener de aproximadamente 0,01 a 99 %, preferentement6e de aproximadamente 20 a 75 por ciento de componente activo (es decir o anticuerpo) junto con el excipiente. Las composiciones farmacéuticas para una administración oral incluyen píldoras, comprimidos, cápsulas, cápsulas de gelatina duras y blandas, pastillas, bolsitas, sellos, cápsulas vegetarianas, gotas líquidas, elixires, suspensiones, emulsiones soluciones y jarabes.

10

El péptido de la invención, fragmento, análogo y derivado del mismo para el tratamiento de la enfermedad de Alzheimer y otras amiloidosis Aβ del sistema nervioso central puede ser modificado para que atraviese la barrera sanguínea del cerebro. Diversas modificaciones son conocidas en la técnica para aumentar el transporte a través de la barrera sanguínea del cerebro (para exámenes de estas modificaciones, véase, por ejemplo Pardridge W.M. (1994) Trends in Biotechnol. 12:239-245; Van Bree, J. et al (1993) Pharm World Sci. 15:2-9; y Pardridge W.M. (1992) Pharmacol. Toxicol. 71:3-10). Una propuesta aumentas la lipofilicidad (log T del péptido mediante enlace covalente del amino o carboxilo terminal a un grupo ácido graso o acilo (como acetilo). Otra propuesta es conjugar el péptido a una proteína que normalmente experimenta una transcitosis mediada por absorción o transitosis mediada por receptores a través de la barrera sanguínea del cerebro. Estas proteínas incluyen ligandos para receptores endoteliales de capilaridad cerebral como un anticuerpo monoclonal para el receptor de transferrina, histonas, biotina, folato, niacina, ácido pantoténico o glicopéptidos. Otra propuesta es unir el péptido a un compuesto con carga positiva elevada como lisina, polilisina, arginina, poliarginina, péptido de glicina-arginina, putrescina, espermidina, espermina, etc., todos los cuales se conoce que facilitan el cruzamiento a través de la barrera sanguínea del cerebro, presumiblemente uniéndose a un receptor.

25

20

Otra propuesta para mejorar el transporte por la barrera sanguínea del cerebro de péptidos es la encapsulación en un vector portador como liposoma o microesferas polímeras, preferentemente con carga positiva por la misma razón anteriormente descrita. El vector portador puede ser modificado también para receptores dianas de transporte por la barrera sanguínea del cerebro, como el receptor de transferrina, uniendo el péptido, por ejemplo, a un anticuerpo contra el receptor de transferrina.

30 cor

Otra aproximación es administrar conjuntamente el péptido con agentes que permeabilizan la barrera sanguínea del cerebro, como bradiquinina o un agonista de bradiquinina.

El fármaco permeable a la barrera sanguínea del cerebro es una característica deseable de los fármacos para el

35

sistema nervioso central en general. Sin embargo, las realizaciones descritas no tienen que cumplir necesariamente los requisitos de permeabilidad por la barrera sanguínea del cerebro con el fin de cumplir las finalidades previstas (es decir, tratamiento eficaz de la enfermedad de Alzheimer y otras amiloidosis). El secuestro principal de Aβ por los péptidos de la invención, sus fragmentos, análogos y derivados y anticuerpos anti-idiotípicos dará lugar al desplazamiento de Aβ desde el cerebro hasta la circulación periférica, agotando la Aβ cerebral, inhibiendo la formación de fibrilas amiloides de Aβ en el cerebro y/o provocando la disolución de fibrilas de Aβ amiloide cerebral. Esto es debido, como se demostró en los estudios previos, al hecho de que la Aβ atraviesa libremente la barrera sanguínea del cerebro (Poduslo et al., Neurobiol. Dis. 4:27-34, 1997; Ghilardi et al., Neuroreport 17:2607-11, 1996; Pluta et al., Neuroreport. 7:1261-51996, 1996; Zlokovic, Neurobiol Dis. 4:23-6, 1996).

45

50

El péptido de la invención, fragmento, análogo y derivado del mismo para el tratamiento de la enfermedad de Alzheimer y otras amiloidosis $A\beta$ del sistema nervioso central puede ser administrado de diversas formas. Los métodos de administración incluyen, pero sin limitación, la administración sistémica, administración parenteral (es decir, A través de las vías intraperitoneal, intravenosa, perioral, subcutánea, intramuscular, intraarterial, intradermal, intramuscular, intranasal epidural u oral. En una realización preferida, el péptido de la invención, su fragmento, análogo o derivado puede ser directamente administrado al fluido cerebro espinal a través de inyección intraventricular. En una realización específica, puede ser deseable administrar un péptido de la invención, su fragmento, análogo y derivado localmente a la zona o tejido que necesita el tratamiento: esto se puede conseguir, por ejemplo, y sin carácter limitativo, mediante infusión local durante una cirugía por aplicación tópica, por inyección, por infusión, usando una cánula con una bomba hosmótica por medio de un catéter, por medio de un supositorio o por medio de un implante.

55

Todavía, en otra realización de un péptido de la invención, fragmento, análogo o derivado del mismo, puede ser administrado en un sistema de liberación controlada, como una bomba osmótica bien calibrada. Todavía, en otra realización, puede ser colocado un sistema de liberación controlada en las proximidades del agente terapéutico, por ejemplo, el cerebro, requiriendo así solamente una fracción de la dosis sistémica.

60

Todavía, en otro aspecto, los compuestos peptidomiméticos modelados a partir de los péptidos de la invención identificados como $A\beta$ de unión u otras proteínas amiloides, sirven como potentes inhibidores de la formación, depósito, acumulación y/o persistencia de amiloides en la enfermedad de Alzheimer y otras amiloidosis $A\beta$. La

modelación peptidomimética se realiza mediante procedimientos estándar conocidos por los expertos en la técnica. Estos compuestos peptidomiméticos pueden ser administrados con formulaciones, dosificaciones, frecuencias, longitudes y vías como se indicó anteriormente, para los fines terapéuticos de tratar la amiloidosis Aβ.

5 Aplicaciones de diagnóstico

En los métodos descritos la $A\beta$ amiloide puede ponerse en contacto con un péptido descrito *in vitro* o *in vivo*. La expresión "ponerse en contacto" está destinada a abarcar tanto la incubación del péptido como los anticuerpos anti-idiotípicos con la preparación de $A\beta$ amiloide *in vitro* y el suministro del péptido y los anticuerpos anti-idiotípicos a un sitio *in vivo* mientras está presente la $A\beta$ amiloide. Como los péptidos y los anticuerpos anti-idiotípicos interacciónan con la $A\beta$ amiloide, pueden ser usados para detectar $A\beta$ amiloide, tanto *in vitro* como *in vivo*. Consecuentemente, los compuestos pueden ser usados como agentes de diagnóstico para detectar la presencia o ausencia de $A\beta$ amiloide en una muestra biológica o *in vivo* en un sujeto. Además de ello, la detección de $A\beta$ amiloide usando los compuestos puede ser usada para diagnosticar amiloidosis $A\beta$ en un sujeto.

15

20

25

30

55

- En una realización, se usa un compuesto *in vitro* para detectar y cuantificar Aβ amiloide en una muestra (como fluido cerebro espinal de un paciente de AD, paciente que se sospecha que tiene AD, una persona con un historial familiar de AD o un adulto normal). Para ayudar a la detección, el compuesto puede ser modificado con un sustrato detectable. La Aß amiloide en la muestra puede ser inmovilizado y el compuesto con la sustancia detectable se pone en contacto con la Aβ amiloide inmovilizado o muestra, como en secciones de tejidos. El compuesto sin unir restante es retirado y el compuesto unido a Aβ puede ser detectado. Alternativamente, el compuesto sin unir que es inversamente proporcional al compuesto unido y, por tanto, la cantidad de Aβ en la muestra puede ser detectada por diversos medios, como espectrometría de masas y otras determinaciones espectrométricas que incluyen fluorescencia, fosforescencia y absorbancia de diversas longitudes de onda desde UV hasta infrarrojos, disminuyendo hasta radioondas como la de RMN. Por ejemplo, la sustancia detectable puede ser biotina (es decir, un péptido biotinilado con terminación amino de la invención) puede ser detectado usando avidina marcada con enzima. La enzima, a su vez, cuando es posteriormente expuesta a un sustrato apropiado, reaccionará con el sustrato de forma que se produzca un resto químico que puede ser detectado, por ejemplo, por medios espectrofotométricos, fluorométricos o visuales. Las enzimas que pueden ser usadas para marcar detectablemente el anticuerpo incluyen, pero sin limitación malato deshidrogenasa, nucleasa estafilococal, delta-5-esteroide isomerasa, alcohol de levadura deshidrogenasa, alfa-glicerofosfato deshidrogenasa, triosa fosfato isomerasa, peroxidasa de rabanillo, fosfatasa alcalina, asparaginasa, glucosa oxidasa, beta-galactosidasa, ribonucleasa, ureasa, catalasa, glucosa-6-fosfato deshidrogenasa, glucoamilasa y acetilcolinesterasa. La detección se puede realizar mediante métodos colorimétricos que emplean un sustrato cromógeno para la enzima. La detección se puede realizar mediante métodos colométricos que emplean un sustrato cromógeno para la enzima. La detección se uede realizar también mediante una comparación visual del alcance de la reacción enzimática de un sustrato con patrones análogamente producidos (véase Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory 1988; Ausubel et al, eds., Current Protocols in Molecular Biology, Wiley Interscience, N.Y. 1987, 1992).
- 40 Los compuestos descritos seleccionados, pueden ser usados también para detectar de forma cuantitativa o cualitativa Aβ amiloide en una muestra biológica. Esto se puede realizar mediante técnicas de inmunofluorescencia empleando un compuesto descrito marcado por fluorescencia acoplado a una detección microscópica de luz, citométrica de flujo o fluorométrica.
- La detección se puede realizar usando cualquiera de una diversidad de otros inmunoensayos. Por ejemplo, mediante radiomarcado del compuesto. Una buena descripción de este ensayo se puede encontrar en in Laboratory Techniques and Biochemistry in Molecular Biology, by Work et al, North Holland Publishing Company, NY (1978), con referencia particular al capítulo titulado "An Introduction to Radioimmune Assay and Related Techniques" por Chard. El isótopo radioactivo puede ser detectado por medios como el uso de un contador gamma, un contador de centelleo o mediante auto-radiografía.
 - Está contemplado también marcar el compuesto con un compuesto fluorescente. Cuando el compuesto marcado por fluorescencia es expuesto a luz a una longitud de onda apropiada, su presencia puede ser seguidamente detectada debido a la fluorescencia. Entre los compuestos marcadores fluorescentes más comúnmente usados están isotiocianato de fluoresceína, rodamina, ficoeritrina, ficocianina, haloficocianina, o-ftaldehído y fluorescamina, que están disponibles en el comercio, por ejemplo, en la entidad (Eugene, Oregon, U.S.A.).
 - Los compuestos pueden ser también detectablemente marcados acoplándolos a un compuesto quimioluminiscente. La presencia del compuesto etiquetado por quimioluminiscencia es seguidamente determinada detectando la presencia de luminiscencia que surge durante el transcurso de una reacción química. Ejemplos de compuestos marcadores quimioluminiscentes particularmente útiles son luminol, isoluminol, éster de acridinio teromático, imidazol, sal de acridinio y éster de oxalato.
- Análogamente, puede ser usado un compuesto bioluminiscente para marcar el compuesto. La bioluminiscencia es un tipo de quimioluminiscencia que se encuentra en sistemas biológicos en los que una proteína catalítica aumenta

la eficacia de la reacción quimiolumisniscente. La presencia de una proteína bioluminiscente es determinada mediante la detección de la presencia de luminiscencia. Compuestos biluminiscentes importantes para los fines de marcado son luciferina, compuestos fosforados y aecuorina.

Los compuestos pueden ser usados también de forma histológica, como en microscopía de inmunofluorescencia inmunoelectrónica, para la detección *in situ* de Aβ amiloide. La toma de una muestra histológica de un paciente y la provisión de un compuesto marcado como una muestra se puede realizar mediante detección *in situ*. El compuesto es preferentemente proporcionado aplicando o sobreponiendo el compuesto marcado o fragmento) a una muestra biológica. Mediante el uso de este procedimiento, es posible determinar no solamente la presencia de Aβ amiloide sino también su distribución en el tejido examinado. Por tanto, los expertos en la técnica apreciarán que cualquiera de una amplia diversidad de métodos histológicos (como procedimientos de tinción) pueden ser modificados con el fin de conseguir esta detección *in situ*.

Los compuestos que interaccionan con Aβ, o sus derivados, se describen también en la presente memoria descriptiva. Los compuestos pueden ser usados para un cierto número de aplicaciones de diagnóstico y/o terapéuticas importantes, como se describe en la presente memoria descriptiva. En una aspecto, pueden ser utilizados péptidos que se unen a Aβ para un análisis de transferencia de ligandos (usando técnicas de transferencia de ligandos estándar conocidas por los expertos en la técnica) para detectar la presencia de fragmentos de proteína Aβ amiloide en tejidos humanos y en tejidos de otras especies. El análisis de transferencia de ligandos puede ser usado también para determinar el tamaño aparente de cada fragmento de proteína amiloide. Además, la transferencia de ligando seguida de densitometría de exploración (conocida por los expertos en la técnica) puede ser usada para cuantificar y comparar niveles de cada uno de los péptidos en las muestras de tejidos, fluidos biológicos o biopsias obtenidas de individuos con enfermedades específicas (como enfermedades amiloides) en comparación con muestras de tejidos, fluidos biológicos o biopsias obtenidas de individuos normales o testigos. Los fluidos biológicos incluyen, pero sin limitación, sangre, plasma, suero, fluido cerebroespinal, esputo, saliva, orina y heces.

En otra realización se usa un compuesto *in vivo* para detectar y, si se desea, cuantificar el depósito de Aβ amiloide en un sujeto, por ejemplo, para ayudar en el diagnóstico de amiloidosis Aβ en el sujeto. Para ayudar a la detección, el compuesto puede ser modificado con una sustancia detectable, preferentemente ⁹⁹mTc o yodo radioactivo. Los métodos para marcar compuestos péptidos con tecnecio son conocidos en la técnica. Puede ser escogido un grupo modificador que proporcione un sitio en el que se pueda introducir un grupo quelante pata ⁹⁹mTc, como un derivado de ácido cólico, que tiene un grupo amino libre. También se proporcionan péptidos de la invención marcados con yodo radioactivo a través de su aminoácido aromático, que está ya presente o es incorporado, para los fines de marcado. Cualquiera de los diversos isotípicos de yodo radioactivo puede ser incorporado para crear un agente de diagnóstico. Preferentemente, puede ser usado ¹²³I (semivida =13,2 horas) para escintigrafía corporal completa, ¹²⁴I (semivida = 4 días) para ¹⁸F para tomografía de emisión de positrones (PET), ¹²⁵I (semivida = 60 días) para estudios de trastornos metabólicos y ¹³¹I (semivida =8 días) para un recuento corporal completo y estudios de formación de imágenes de baja resolución retardados.

40 Listado de secuencias

15

20

25

30

```
<110> PROTEOTECH, INC
     <120> PÉPTIDOS PEQUEÑOS PARA EL TRATAMIENTO DE ENFERMEDAD DE ALZHEIMER Y OTROS
     TRASTORNOS DE FIBRILOGÉNESIS DE PROTEÍNA BETA-AMILOIDE
     <130> P40769EP1/NJL
     <150> US11/016,706
     <151> 16-12-2004
     <150> US60/615.614
     <151> 30-09-2004
50
     <150> US60/554,342
     <151> 17-03-2004
     <150> US60/531,406
     <151> 18-12-2003
     <160>89
     <170> PatentIn ver. 3.2
55
     <210> 1
     <211> 12
     <212> PRT
     <213> Mus musculus
60
     <400> 1
     Arg Lys Arg Leu Gln Val Gln Leu Ser Ile Arg Thr 1 \hspace{1cm} 5 \hspace{1cm} 10
     <210>2
     <211> 12
     <212> PRT
65
     <213> Mus musculus
```

```
<400> 2
                      Lys Ala Phe Asp Ile Thr Tyr Val Arg Leu Lys Phe
                     <210>3
                    <211> 13
                <212> PRT
                    <213> Mus musculus
                     <400> 3
                      Arg Gln Val Phe Gln Val Ala Tyr Ile Ile Ile Lys Ala
1 5 10
                    <210> 4
10
                 <211> 12
                    <212> PRT
                     <213> Homo sapiens
                      <400> 4
                      His Gln Thr Trp Thr Arg Asn Leu Gln Val Thr Leu
1 5 10
15
                    <210>5
                     <211> 12
                      <212> PRT
                      <213> Homo sapiens
                      <400> 5
                      Ile Ser Asn Val Phe Val Gln Arg Leu Ser Leu Ser
20
                                                                                                                                                                                     10
                     <210>6
                      <211> 12
                     <212> PRT
                    <213> Homo sapiens
25
                     <400> 6
                      Ala Ser Pro Pro Ser Val Lys Val Trp Gln Asp Ala
1 5 10
                      <210> 7
                     <211> 13
                    <212> PRT
30
                    <213> Homo sapiens
                     <400> 7
                      Arg Gly Leu Val Phe His Thr Gly Thr Lys Asn Ser Phe
1 10
                     <210>8
                    <211> 12
35
                 <212> PRT
                     <213> Homo sapiens
                      Tyr Leu Ser Lys Gly Arg Leu Val Phe Ala Leu Gly
1 5 10
                    <210>9
40
                    <211> 12
                    <212> PRT
                     <213> Homo sapiens
                      <400> 9
                      Asn Asp Gly Lys Trp His Thr Val Val Phe Gly His 1 \hspace{1cm} 1 \hspace{1cm
45
                    <210> 10
                    <211> 12
                     <212> PRT
                     <213> Homo sapiens
                      <400> 10
                      Gly Asn Ser Thr Ile Ser Ile Arg Ala Pro Val Tyr
1 5 10
50
                     <210> 11
                      <211> 12
                     <212> PRT
                     <213> Mus musculus
55
                     <400> 11
                       Thr Leu Phe Leu Ala His Gly Arg Leu Val Phe Met
                      <210> 12
                      <211> 12
                      <212> PRT
```

```
<213> Mus musculus
     <400> 12
     His Pro Asp Asp Phe Val Phe Tyr Val Gly Gly Tyr
     <210> 13
 5
   <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 13
     Trp Leu Tyr Val Asp Asp Gln Leu Gln Leu Val Lys
10
     <210> 14
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 14
     Val Gln Ser Arg Gln His Ser Arg Ala Gly Gln Trp
     <210> 15
     <211> 12
     <212> PRT
     <213> Mus musculus
20
    <400> 15
     Ala Gly Gln Trp His Arg Val Ser Val Arg Trp Gly
1 5 10
     <210> 16
     <211> 12
     <212> PRT
25
     <213> Mus musculus
     <400> 16
     Val Arg Trp Gly Met Gln Gln Ile Gln Leu Val Val
     <210> 17
     <211> 12
30
     <212> PRT
     <213> Mus musculus
     <400> 17
     Thr Trp Ser Gln Lys Ala Leu His His Arg Val Pro
1 10
     <210> 18
35
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 18
     Asp Gly Arg Trp His Arg Val Ala Val Ile Met Gly
1 0
    <210> 19
40
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 19
     Ala Pro Val Asn Val Thr Ala Ser Val Gln Ile Gln
45
     <210> 20
     <211> 12
     <212> PRT
     <213> Mus musculus
    <400> 20
50
     Ala Ala Ser Ile Lys Val Ala Val Ser Ala Asp Arg
     <210> 21
     <211> 12
     <212> PRT
    <213> Mus musculus
     <400> 21
     Ala Tyr Ser Phe Ile Val Lys Ile Glu Arg Val Gly
     <210> 22
     <211> 12
```

```
<212> PRT
     <213> Mus musculus
     <400> 22
     Glu Asp Ser Leu Ile Ser Arg Arg Ala Tyr Phe Asn 1 10
   <210> 23
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 23
     Arg Ala Tyr Phe Asn Gly Gln Ser Phe Ile Ala Ser
10
     <210> 24
     <211> 12
     <212> PRT
     <213> Mus musculus
    <400> 24
     His Lys Lys Leu Lys Ile Arg Ser Gln Glu Lys Tyr
1 10
     <210> 25
     <211> 12
     <212> PRT
20
    <213> Mus musculus
     <400> 25
     Ala Pro Gly Arg Ala Val Lys Asn Val Gln Ile Thr
                      5
                                          10
     <210> 26
25
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 26
     Val Ile Arg Asp Ser Asn Val Val Gln Leu Asp Val
     <210> 27
30
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 27
     Gly Lys Asn Thr Gly Asp His Phe Val Leu Tyr Met
35
     <210> 28
     <211> 12
     <212> PRT
     <213> Mus musculus
40
     <400> 28
     Ala Val Ser Ile Asp Arg Thr Leu Gln Phe Gly His
1 10
     <210> 29
     <211> 13
     <212> PRT
45
     <213> Mus musculus
     <400> 29
     Arg Leu Val Ser Tyr Asn Gly Ile Ile Phe Phe Leu Lys
     <210> 30
     <211> 12
     <212> PRT
50
     <213> Mus musculus
     <400> 30
     Ala Ser Lys Ala Ile Gln Val Phe Leu Leu Ala Gly
1 5 10
     <210>31
55
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 31
     His Gln Asn Met Gly Ser Val Asn Val Ser Val Gly
```

```
<210> 32
     <211> 12
     <212> PRT
     <213> Mus musculus
    <400> 32
     Leu Val Leu Phe Leu Asn His Gly His Phe Val Ala
1 5 10
     <210> 33
     <211> 12
     <212> PRT
10
    <213> Mus musculus
     <400> 33
     Gly Gly Leu Pro Ala Ser Ser Tyr Ser Ser Lys Leu
1 10
     <210> 34
     <211> 12
15
     <212> PRT
     <213> Mus musculus
     <400> 34
     Leu Arg Thr Pro Thr Gln Met Val Gly Val Thr Pro
1 5 10
     <210>35
20
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 35
     Ser Gly Thr Leu Ala Leu Ser Lys Gln Gly Lys Ala
1 5 10
25
     <210> 36
     <211>40
     <212> PRT
     <213> Mus musculus
     <400> 36
     Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys
1 10 15
      Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20 \hspace{1cm} 25 \hspace{1cm} 30
     Gly Leu Met Val Gly Gly Val Val 35 40
30
     <210> 37
     <211>42
     <212> PRT
     <213> Mus musculus
     <400> 37
     Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys
1 10 15
     Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20 30
     Gly Leu Met Val Gly Gly Val Val Ile Ala 35
     <210> 38
     <211> 416
     <212> PRT
40
    <213> Homo sapiens
     <400> 38
```

Val Val Arg Leu Asn Asp Thr Val Gly Val Thr Lys Lys Cys Ser Glu
1 5 10 15 Asp Trp Lys Leu Val Arg Ser Ala Ser Phe Ser Arg Gly Gly Gln Leu 20 25 30 Ser Phe Thr Asp Leu Gly Leu Pro Pro Thr Asp His Leu Gln Ala Ser 40 45 Phe Gly Phe Gln Thr Phe Gln Pro Ser Gly Ile Leu Leu Asp His Gln
50 60 Thr Trp Thr Arg Asn Leu Gln Val Thr Leu Glu Asp Gly Tyr Ile Glu
65 70 75 80 Leu Ser Thr Ser Asp Ser Gly Gly Pro Ile Phe Lys Ser Pro Gln Thr $85 \hspace{1cm} 90 \hspace{1cm} 95$ Tyr Met Asp Gly Leu Leu His Tyr Val Ser Val Ile Ser Asp Asn Ser 100 105 110Gly Leu Arg Leu Leu Ile Asp Asp Gln Leu Leu Arg Asn Ser Lys Arg Leu Lys His Ile Ser Ser Ser Arg Gln Ser Leu Arg Leu Gly Gly Ser Asn Phe Glu Gly Cys Ile Ser Asn Val Phe Val Gln Arg Leu Ser Leu 145 150 155 160 Ser Pro Glu Val Leu Asp Leu Thr Ser Asn Ser Leu Lys Arg Asp Val 165 170 175 Ser Leu Gly Gly Cys Ser Leu Asn Lys Pro Pro Phe Leu Met Leu Leu $180 \hspace{1cm} 185 \hspace{1cm} 190$ Lys Gly Ser Thr Arg Phe Asn Lys Thr Lys Thr Phe Arg Ile Asn Gln 195 200 205Leu Leu Gln Asp Thr Pro Val Ala Ser Pro Arg Ser Val Lys Val Trp 210 215 220 Gln Asp Ala Cys Ser Pro Leu Pro Lys Thr Gln Ala Asn His Gly Ala 225 230 235 240 Leu Gln Phe Gly Asp Ile Pro Thr Ser His Leu Leu Phe Lys Leu Pro 245 250 255 Gln Glu Leu Leu Lys Pro Arg Ser Gln Phe Ala Val Asp Met Gln Thr 260 265 270 Thr Ser Ser Arg Gly Leu Val Phe His Thr Gly Thr Lys Asn Ser Phe 275 280 285 Met Ala Leu Tyr Leu Ser Lys Gly Arg Leu Val Phe Ala Leu Gly Thr 290 295 300 Asp Gly Lys Lys Leu Arg Ile Lys Ser Lys Glu Lys Cys Asn Asp Gly 305 310 315 320Lys Trp His Thr Val Val Phe Gly His Asp Gly Glu Lys Gly Arg Leu 325 330 335 Val Val Asp Gly Leu Arg Ala Arg Glu Gly Ser Leu Pro Gly Asn Ser 340 345 Thr Ile Ser Ile Arg Ala Pro Val Tyr Leu Gly Ser Pro Pro Ser Gly 355 360 365 Lys Pro Lys Ser Leu Pro Thr Asn Ser Phe Val Gly Cys Leu Lys Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Phe Gln Leu Asp Ser Lys Pro Leu Tyr Thr Pro Ser Ser Ser Phe Gly 385 390 400 Val Ser Ser Cys Leu Gly Gly Pro Leu Glu Lys Gly Ile Tyr Phe Ser 405 410 415 <210>39 <211>964 <212> PRT

<213> Mus musculus

<400> 39

Thr Ser Ile Ser Leu Tyr Met Lys Pro Pro Pro Lys Pro Gln Thr Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Gly Ala Trp Val Ala Asp Gln Phe Val Leu Tyr Leu Gly Ser Lys Asn $20 \hspace{1cm} 25 \hspace{1cm} 30$ Ala Lys Lys Glu Tyr Met Gly Leu Ala Ile Lys Asn Asp Asn Leu Val Tyr Val Tyr Asn Leu Gly Met Lys Asp Val Glu Ile Leu Leu Asp Ser 50 60 Lys Pro Val Ser Ser Trp Pro Ala Tyr Phe Ser Ile Val Lys Ile Glu 65 70 75 80 Arg Val Gly Lys His Gly Lys Val Phe Leu Thr Val Pro Ser Ser Ser 90 95 Ser Thr Ala Glu Glu Lys Phe Ile Lys Lys Gly Glu Phe Ala Gly Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ Asp Ser Leu Leu Asp Leu Thr Pro Glu Asp Thr Val Phe Tyr Val Gly 115 120 125 Gly Val Pro Ala Asn Phe Lys Leu Pro Ala Ser Leu Asn Leu Pro Ser 130 140 Tyr Ser Gly Cys Leu Glu Leu Ala Thr Leu Asn Asn Asp Val Ile Ser 145 150 160 Leu Tyr Asn Phe Lys His Ile Tyr Asn Met Asp Pro Ser Lys Ser Val 165 170 175Pro Cys Ala Arg Asp Lys Leu Ala Phe Thr Gln Ser Arg Ala Ala Ser 180 185 190 Tyr Phe Phe Asp Gly Ser Ser Tyr Ala Val Arg Asp Ile Thr Arg 195 200 205 Arg Gly Lys Phe Gly Gln Val Thr Arg Phe Asp Ile Glu Ile Arg Thr 210 220 220Pro Ala Asp Asn Gly Leu Val Leu Met Val Asn Gly Ser Met Phe 225 230 235 240 Phe Ser Leu Glu Met Arg Asn Gly Tyr Leu His Val Phe Tyr Asp Phe

Gly Phe Ser Asn Gly Pro Val His Leu Glu Asp Thr Leu Lys Lys Ala 260 265 270 Gln Ile Asn Asp Ala Lys Tyr Arg Glu Ile Ser Ile Ile Tyr His Asn 275 280 285 Asp Lys Lys Met Ile Leu Val Val Asp Arg Arg His Val Lys Ser Thr 290 295 300Asp Asn Glu Lys Lys lle Pro Phe Thr Asp Ile Tyr Ile Gly Gly 305 310 315 320 Ala Pro Gln Glu Val Leu Gln Ser Arg Thr Leu Arg Ala His Leu Pro 325 330 335 Leu Asp Ile Asn Phe Arg Gly Cys Met Lys Gly Ile Gln Phe Gln Lys 340 345 350 Lys Asp Phe Asn Leu Leu Glu Gln Thr Glu Thr Leu Gly Val Gly Tyr 355 360 365 Gly Cys Pro Glu Asp Ser Leu Ile Ser Arg Arg Ala Tyr Phe Asn Gly 370 380 Gln Ser Phe Ile Ala Ser Ile Gln Lys Ile Ser Phe Phe Asp Gly Phe 385 390 400 Glu Gly Gly Phe Asn Phe Arg Thr Leu Gln Pro Asn Gly Leu Leu Phe 405 410 415Tyr Tyr Thr Ser Gly Ser Asp Val Phe Ser Ile Ser Leu Asp Asn Gly 420 425 430 Thr Val Val Met Asp Val Lys Gly Ile Lys Val Met Ser Thr Asp Lys 435 440 445 Gln Tyr His Asp Gly Leu Pro His Phe Val Val Thr Ser Ile Ser Asp 450 460 Thr Arg Tyr Glu Leu Val Val Asp Lys Ser Arg Leu Arg Gly Lys Asn 465 470 475 480 Pro Thr Lys Gly Lys Ala Glu Gln Thr Gln Thr Thr Glu Lys Lys Phe 485 490 495 Tyr Phe Gly Gly Ser Pro Ile Ser Pro Gln Tyr Ala Asn Phe Thr Gly 500 505 510 Cys Ile Ser Asn Ala Tyr Phe Thr Arg Leu Asp Arg Asp Val Glu Val 515 520 525 Glu Ala Phe Gln Arg Tyr Ser Glu Lys Val His Thr Ser Leu Tyr Glu 530 540 Cys Pro Ile Glu Ser Ser Pro Leu Phe Leu Leu His Lys Lys Gly Lys 545 550 560 Asn Ser Ser Lys Pro Lys Thr Asn Lys Gln Gly Glu Lys Ser Lys Asp 565 570 575 Ala Pro Ser Trp Asp Pro Ile Gly Leu Lys Phe Leu Glu Gln Lys Ala 580 585 590 Pro Arg Asp Ser His Cys His Leu Phe Ser Ser Pro Arg Ala Ile Glu 595 600 605

His Ala Tyr Gln Tyr Gly Gly Thr Ala Asn Ser Arg Gln Glu Phe Glu 610 615 620 His Glu Gln Gly Asp Phe Gly Glu Lys Ser Gln Phe Ser Ile Arg Leu 625 630 635 640 Lys Thr Arg Ser Ser His Gly Met Ile Phe Tyr Val Ser Asp Gln Glu 645 650 655 Glu Asn Asp Phe Met Thr Leu Phe Leu Ala His Gly Arg Leu Val Phe 660 665 670 Met Phe Asn Val Gly His Lys Lys Leu Lys Ile Arg Ser Gln Glu Lys 675 680 685 Tyr Asn Asp Gly Leu Trp His Asp Val Ile Phe Ile Arg Glu Lys Ser 690 695 700 Ser Gly Arg Leu Val Ile Asp Gly Leu Arg Val Leu Glu Glu Arg Leu 705 710 715 720 Pro Pro Ser Gly Ala Ala Trp Lys Ile Lys Gly Pro Ile Tyr Leu Gly 725 730 735 Gly Val Ala Pro Gly Arg Ala Val Lys Asn Val Gln Ile Thr Ser Val 740 750 Tyr Ser Phe Ser Gly Cys Leu Gly Asn Leu Gln Leu Asn Gly Ala Ser Ile Thr Ser Ala Ser Gln Thr Phe Ser Val Thr Pro Cys Phe Glu Gly 770 780 Pro Met Glu Thr Gly Thr Tyr Phe Ser Thr Glu Gly Gly Tyr Val Val 785 790 795 800 Leu Asp Glu Ser Phe Asn Ile Gly Leu Lys Phe Glu Ile Ala Phe Glu 805 810 815 Val Arg Pro Arg Ser Ser Ser Gly Thr Leu Val His Gly His Ser Val 820 825 830 Asn Gly Glu Tyr Leu Asn Val His Met Arg Asn Gly Gln Val Ile Val 835 840 845 Lys Val Asn Asn Gly Val Arg Asp Phe Ser Thr Ser Val Thr Pro Lys 850 860 Gln Asn Leu Cys Asp Gly Arg Trp His Arg Ile Thr Val Ile Arg Asp 865 870 875 880 Ser Asn Val Val Gln Leu Asp Val Asp Ser Glu Val Asn His Val Val 885 890 895 Gly Pro Leu Asn Pro Lys Pro Val Asp His Arg Glu Pro Val Phe Val 900 905 910 Gly Gly Val Pro Glu Ser Leu Leu Thr Pro Arg Leu Ala Pro Ser Lys 915 920 925 Pro Phe Thr Gly Cys Ile Arg His Phe Val Ile Asp Ser Arg Pro Val 930 935 940 Ser Phe Ser Lys Ala Ala Leu Val Ser Gly Ala Val Ser Ile Asn Ser 945 950 960 Cys Pro Thr Ala

<210> 40

<211>956

<212> PRT

<213> Mus musculus

<400> 40

Thr Ala Leu Lys Phe His Ile Gln Ser Pro Val Pro Ala Pro Glu Pro Gly Lys Asn Thr Gly Asp His Phe Val Leu Tyr Met Gly Ser Arg Gln $20 \ \ 25 \ \ 30$ Ala Thr Gly Asp Tyr Met Gly Val Ser Leu Arg Asn Gln Lys Val His 40 45Trp Val Tyr Arg Leu Gly Lys Ala Gly Pro Thr Thr Leu Ser Ile Asp Glu Asn Ile Gly Glu Gln Phe Ala Ala Val Ser Ile Asp Arg Thr Leu 65 70 75 80 Gln Phe Gly His Met Ser Val Thr Val Glu Lys Gln Met Val His Glu 85 90 95 Ile Lys Gly Asp Thr Val Ala Pro Gly Ser Glu Gly Leu Leu Asn Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ His Pro Asp Asp Phe Val Phe Tyr Val Gly Gly Tyr Pro Ser Asn Phe Thr Pro Pro Glu Pro Leu Arg Phe Pro Gly Tyr Leu Gly Cys Ile Glu 130 135 140 Met Glu Thr Leu Asn Glu Glu Val Val Ser Leu Tyr Asn Phe Glu Gln 145 150 155 160Thr Phe Met Leu Asp Thr Ala Val Asp Lys Pro Cys Ala Arg Ser Lys
165 170 175 Ala Thr Gly Asp Pro Trp Leu Thr Asp Gly Ser Tyr Leu Asp Gly Ser 180 185 190Gly Phe Ala Arg Ile Ser Phe Glu Lys Gln Phe Ser Asn Thr Lys Arg 195 200 205 Phe Asp Gln Glu Leu Arg Leu Val Ser Tyr Asn Gly Ile Ile Phe Phe 210 225 220 Leu Lys Gln Glu Ser Gln Phe Leu Cys Leu Ala Val Gln Glu Gly Thr 225 230 235 240 Leu Val Leu Phe Tyr Asp Phe Gly Ser Gly Leu Lys Lys Ala Asp Pro Leu Gln Pro Pro Gln Ala Leu Thr Ala Ala Ser Lys Ala Ile Gln Val 260 265 270 Phe Leu Leu Ala Gly Asn Arg Lys Arg Val Leu Val Arg Val Glu Arg 275 280 285 Ala Thr Val Phe Ser Val Asp Gln Asp Asn Met Leu Glu Met Ala Asp 290 295 300 Ala Tyr Tyr Leu Gly Gly Val Pro Pro Glu Gln Leu Pro Leu Ser Leu 305 315 320

Arg Gln Leu Phe Pro Ser Gly Gly Ser Val Arg Gly Cys Ile Lys Gly 325 330 335 Ile Lys Ala Leu Gly Lys Tyr Val Asp Leu Lys Arg Leu Asn Thr Thr 340 345 350Gly Ile Ser Phe Gly Cys Thr Ala Asp Leu Leu Val Gly Arg Thr Met 355 360 365 Thr Phe His Gly His Gly Phe Leu Pro Leu Ala Leu Pro Asp Val Ala 370 375 380 Pro Ile Thr Glu Val Val Tyr Ser Gly Phe Gly Phe Arg Gly Thr Gln 385 390 395 400 Asp Asn Asn Leu Leu Tyr Tyr Arg Thr Ser Pro Asp Gly Pro Tyr Gln 405 410 415 Val Ser Leu Arg Glu Gly His Val Thr Leu Arg Phe Met Asn Gln Glu 420 425 430 Val Glu Thr Gln Arg Val Phe Ala Asp Gly Ala Pro His Tyr Val Ala 435 440 445 Phe Tyr Ser Asn Val Thr Gly Val Trp Leu Tyr Val Asp Asp Gln Leu 450 460 Gln Leu Val Lys Ser His Glu Arg Thr Thr Pro Met Leu Gln Leu Gln 465 470 475 480 Pro Glu Glu Pro Ser Arg Leu Leu Leu Gly Gly Leu Pro Val Ser Gly 485 490 495 Thr Phe His Asn Phe Ser Gly Cys Ile Ser Asn Val Phe Val Gln Arg 500 505 510 Leu Arg Gly Pro Gln Arg Val Phe Asp Leu His Gln Asn Met Gly Ser 515 520 525 Val Asn Val Ser Val Gly Cys Thr Pro Ala Gln Leu Ile Glu Thr Ser 530 540 Arg Ala Thr Ala Gln Lys Val Ser Arg Arg Ser Arg Gln Pro Ser Gln 545 550 560 Asp Leu Ala Cys Thr Thr Pro Trp Leu Pro Gly Thr Ile Gln Asp Ala 565 570 575 Tyr Gln Phe Gly Gly Pro Leu Pro Ser Tyr Leu Gln Phe Val Gly Ile 580 585 590 Ser Pro Ser His Arg Asn Arg Leu His Leu Ser Met Leu Val Arg Pro $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605 \hspace{1.5cm} \cdot$ His Ala Ala Ser Gln Gly Leu Leu Ser Thr Ala Pro Met Ser Gly 610 615 620 Arg Ser Pro Ser Leu Val Leu Phe Leu Asn His Gly His Phe Val Ala 625 630 635 640 Gln Thr Glu Gly Pro Gly Pro Arg Leu Gln Val Gln Ser Arg Gln His
645 650 655 Ser Arg Ala Gly Gln Trp His Arg Val Ser Val Arg Trp Gly Met Gln 660 665 670 Gln Ile Gln Leu Val Val Asp Gly Ser Gln Thr Trp Ser Gln Lys Ala 675 680 685

```
Leu His His Arg Val Pro Arg Ala Glu Arg Pro Gln Pro Tyr Thr Leu 690 700
 Ser Val Gly Gly Leu Pro Ala Ser Ser Tyr Ser Ser Lys Leu Pro Val 705 710 720
 Ser Val Gly Phe Ser Gly Cys Leu Lys Lys Leu Gln Leu Asp Lys Gln 725 730 735
 Pro Leu Arg Thr Pro Thr Gln Met Val Gly Val Thr Pro Cys Val Ser
740 745 750
 Gly Pro Leu Glu Asp Gly Leu Phe Phe Pro Gly Ser Glu Gly Val Val 755 760 765
Thr Leu Glu Leu Pro Lys Ala Lys Met Pro Tyr Val Ser Leu Glu Leu 770 780
Glu Met Arg Pro Leu Ala Ala Ala Gly Leu Ile Phe His Leu Gly Gln 785 790 795 800
Ala Leu Ala Thr Pro Tyr Met Gln Leu Lys Val Leu Thr Glu Gln Val
805 810 815
 Leu Leu Gln Ala Asn Asp Gly Ala Gly Glu Phe Ser Thr Trp Val Thr
820 825 830
 Tyr Pro Lys Leu Cys Asp Gly Arg Trp His Arg Val Ala Val Ile Met 835 840 845
Gly Arg Asp Thr Leu Arg Leu Glu Val Asp Thr Gln Ser Asn His Thr 850 860
Thr Gly Arg Leu Pro Glu Ser Leu Ala Gly Ser Pro Ala Leu Leu His 865 870 875 880
Leu Gly Ser Leu Pro Lys Ser Ser Thr Ala Arg Pro Glu Leu Pro Ala 885 890 895
Tyr Arg Gly Cys Leu Arg Lys Leu Leu Ile Asn Gly Ala Pro Val Asn 900 \hspace{1.5cm} 905 \hspace{1.5cm} 910
Val Thr Ala Ser Val Gln Ile Gln Gly Ala Val Gly Met Arg Gly Cys
915 920 925
Pro Ser Gly Thr Leu Ala Leu Ser Lys Gln Gly Lys Ala Leu Thr Gln 930 940
Arg His Ala Lys Pro Ser Val Ser Pro Leu Leu His 945 950 955
<210> 41
<211> 12
<212> PRT
<213> Mus musculus
Lys Pro Arg Leu Gln Phe Ser Leu Asp Ile Gln Thr 1 \hspace{1cm} 10
<210> 42
<211> 12
<212> PRT
<213> Mus musculus
<400> 42
Arg Asn Arg Leu His Leu Ser Met Leu Val Arg Pro
1 10
<210> 43
<211> 12
<212> PRT
<213> Homo sapiens
<400> 43
Ala Ser Phe Gly Phe Gln Thr Phe Gln Pro Ser Gly
1 5 10
<210> 44
<211> 12
<212> PRT
<213> Homo sapiens
<400> 44
Phe Lys Leu Pro Gln Glu Leu Leu Lys Pro Arg Ser
```

10

15

```
<210> 45
     <211> 12
     <212> PRT
     <213> Homo sapiens
    <400> 45
     Lys Asn Ser Phe Met Ala Leu Tyr Leu Ser Lys Gly
     <210> 46
     <211> 12
     <212> PRT
10
     <213> Mus musculus
     <400> 46
     Leu His Val Phe Tyr Asp Phe Gly Phe Ser Asn Gly
1 5 10
     <210> 47
     <211> 12
15
    <212> PRT
     <213> Mus musculus
     <400> 47
     Val Leu Val Arg Val Glu Arg Ala Thr Val Phe Ser
     <210> 48
20
    <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 48
     Phe Leu Pro Leu Ala Leu Pro Asp Val Ala Pro Ile
1 5 10
25
     <210>49
     <211> 12
     <212> PRT
     <213> Mus musculus
     <400> 49
     Gly Pro Leu Pro Ser Tyr Leu Gln Phe Val Gly Ile
1 5 10
30
     <210> 50
     <211> 12
     <212> PRT
     <213> Mus musculus
35
     <400> 50
     Asp Gly Arg Trp His Arg Val Ala Val Ile Met Gly
     <210> 51
     <211> 12
     <212> PRT
40
    <213> Mus musculus
     <400> 51
     Ser Val Gln Ile Gln Gly Ala Val Gly Met Arg Gly
     <210> 52
     <211>5
45
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <400> 52
     Leu Pro Phe Phe Asp
50
     <210> 53
     <211>8
     <212> PRT
     <213> Secuencia Artificial
55
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
    <223> /replace=""
60
```

```
<400> 53
     Arg Lys Arg Leu Gln Val Gln Tyr
1 5
     <210> 54
     <211>8
     <212> PRT
 5
     <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
10
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 54
     Lys Arg Leu Gln Val Gln Leu Tyr
15
    <210> 55
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
20
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
25
     <400> 55
     Arg Leu Gln Val Gln Leu Ser Tyr
     <210> 56
     <211>8
     <212> PRT
30
     <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
35
    <222> (8)..(8)
     <223> /replace=""
     <400> 56
     Leu Gln Val Gln Leu Ser Ile Tyr
     <210> 57
40
    <211>8
     <212> PRT
     <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
45
    <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 57
     Gln Val Gln Leu Ser Ile Arg Tyr
1 5
50
     <210> 58
     <211>8
     <212> PRT
     <213> Secuencia Artificial
55
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
60
    <223> /replace=""
     <400> 58
     Val Gln Leu Ser Ile Arg Thr Tyr
```

```
<210> 59
     <211>7
     <212> PRT
     <213> Secuencia Artificial
 5
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <400> 59
     Arg Gln Val Phe Gln Val Ala
     <210> 60
10
     <211>7
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
15
     <400> 60
     Gln Val Phe Gln Val Ala Tyr
     <210> 61
     <211>7
     <212> PRT
20
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <400> 61
      Val Phe Gln Val Ala Tyr Ile
     <210> 62
25
     <211>7
     <212> PRT
     <213> Secuencia Artificial
     <220>
30
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <400> 62
     Phe Gln Val Ala Tyr Ile Ile
     <210> 63
     <211> 7
     <212> PRT
35
     <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <400> 63
     Gln Val Ala Tyr Ile Ile Ile 1
40
     <210> 64
     <211>7
     <212> PRT
     <213> Secuencia Artificial
45
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <400> 64
      Val Ala Tyr Ile Ile Ile Lys
     <210>65
50
     <211>7
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
55
     <400> 65
     Ala Tyr Ile Ile Ile Lys Ala
     <210>66
     <211>8
     <212> PRT
60
     <213> Secuencia Artificial
     <220>
```

```
<223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
    <223> /replace=""
     <400> 66
     Tyr Leu Ser Lys Gly Arg Leu Tyr
     <210> 67
     <211>8
10
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
15
    <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 67
     Leu Ser Lys Gly Arg Leu Val Tyr
20
     <210> 68
     <211>8
     <212> PRT
     <213> Secuencia Artificial
25
    <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
30
     <400> 68
     Ser Lys Gly Arg Leu Val Phe Tyr
     <210>69
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
40
    <222> (8)..(8)
     <223> /replace=""
     <400> 69
     Lys Gly Arg Leu Val Phe Ala Tyr
     <210> 70
45
    <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
50
    <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 70
     Gly Arg Leu Val Phe Ala Leu Tyr
55
     <210>71
     <211>8
     <212> PRT
     <213> Secuencia Artificial
60
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
```

```
<221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 71
     Arg Leu Val Phe Ala Leu Gly Tyr
 5
     <210>72
     <211>8
     <212> PRT
     <213> Secuencia Artificial
10
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
15
    <223> /replace=""
     <400> 72
     Thr Leu Phe Leu Ala His Gly Tyr
     <210> 73
     <211>8
     <212> PRT
20
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
25
    <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 73
     Leu Phe Leu Ala His Gly Arg Tyr
     <210> 74
30
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
35
    <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 74
40
     Phe Leu Ala His Gly Arg Leu Tyr
     <210> 75
     <211>8
     <212> PRT
45
    <213> Secuencia Artificial
     <220> .
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <<221> VARIANT
50
    <222> (8)..(8)
     <223> /replace=""
     <400> 75
     Leu Ala His Gly Arg Leu Val Tyr
     <210> 76
55
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
60
    <220>
     <221> VARIANT
     <222> (8)..(8)
```

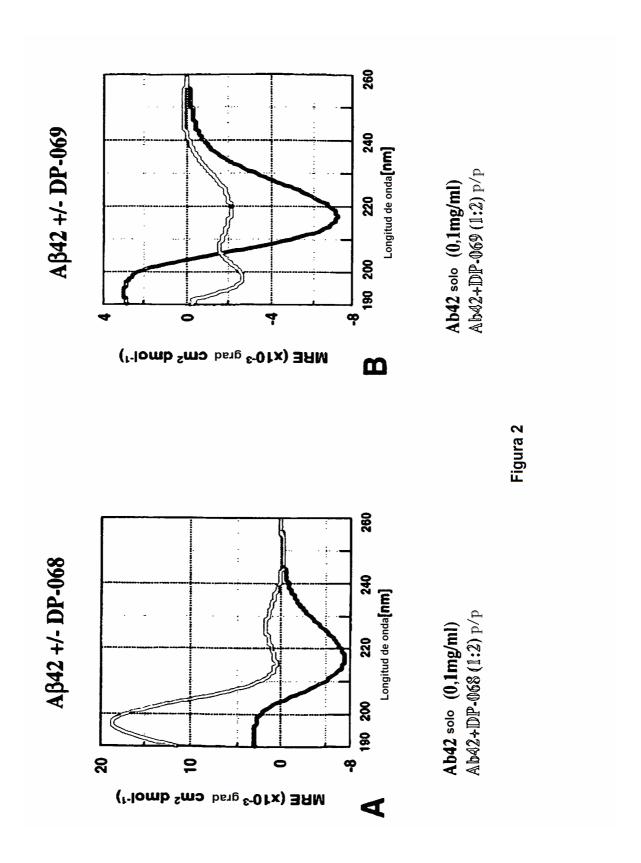
```
<223> /replace=""
     <400> 76
     Ala His Gly Arg Leu Val Phe Tyr
     <210> 77
 5
    <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
10
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 77
     His Gly Arg Leu Val Phe Met Tyr
15
     <210> 78
     <211>8
     <212> PRT
     <213> Secuencia Artificial
20
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
25
    <223> /replace=""
     <400> 78
     Ala Gly Gln Trp His Arg Val Tyr
     <210> 79
     <211>8
     <212> PRT
30
     <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
    <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400> 79
     Gly Gln Trp His Arg Val Ser Tyr
40
    <210> 80
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
45
    <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
50
     <400> 80
     Gln Trp His Arg Val Ser Val Tyr
     <210> 81
     <211>8
     <212> PRT
55
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
60
    <222> (8)..(8)
     <223> /replace=""
     <400> 81
```

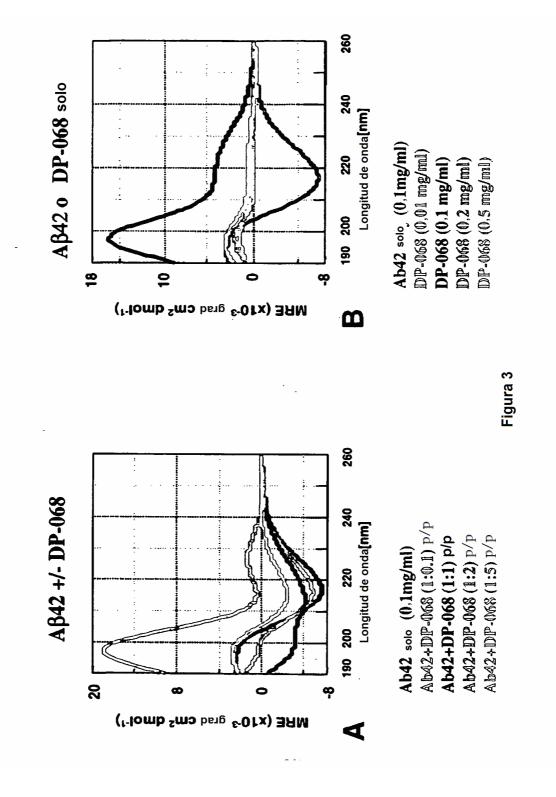
```
Trp His Arg Val Ser Val Arg Tyr
     <210> 82
     <211>8
     <212> PRT
 5
    <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
10
    <222> (8)..(8)
     <223> /replace=""
     <400> 82
     His Arg Val Ser Val Arg Trp Tyr
     <210>83
15
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
20
    <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400>83
     Arg Val Ser Val Arg Trp Gly Tyr
25
     <210>84
     <211>8
     <212> PRT
     <213> Secuencia Artificial
30
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
    <223> /replace=""
35
     <400> 84
     Asp Gly Arg Trp His Arg Val Tyr
     <210> 85
     <211>8
40
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
    <221> VARIANT
45
     <222> (8)..(8)
     <223> /replace=""
     <400> 85
     Gly Arg Trp His Arg Val Ala Tyr
    <210> 86
50
     <211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
55
    <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
60
     <400> 86
     Arg Trp His Arg Val Ala Val Tyr
     <210>87
```

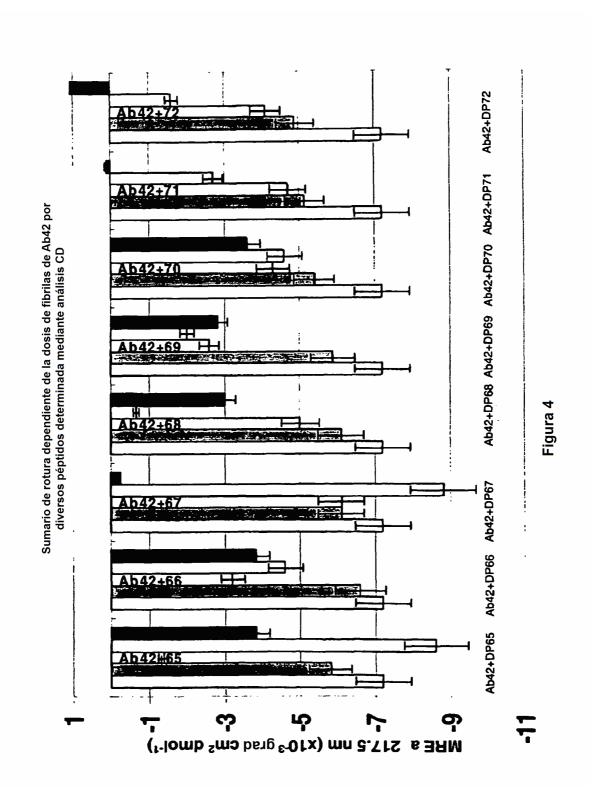
```
<211>8
     <212> PRT
     <213> Secuencia Artificial
     <220>
    <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
    <400> 87
10
     Trp His Arg Val Ala Val Ile Tyr
     <210>88
     <211>8
     <212> PRT
15
    <213> Secuencia Artificial
     <223> Descripción de Secuencia Artificial: Péptido sintético
     <220>
     <221> VARIANT
20
    <222> (8)..(8)
     <223> /replace=""
     <400> 88
     His Arg Val Ala Val Ile Met Tyr
     <210>89
25
    <211> 8
     <212> PRT
     <213> Secuencia Artificial
     <220>
     <223> Descripción de Secuencia Artificial: Péptido sintético
30
    <220>
     <221> VARIANT
     <222> (8)..(8)
     <223> /replace=""
     <400>89
     Arg Val Ala Val Ile Met Gly Tyr
35
```

REIVINDICACIONES

1. Un péptido, que consiste en Leu-Ala-Phe-Val-Leu-Arg-Lys-NH₂.


25


- 5 2. El péptido de la reivindicación 1, en que el péptido está compuesto por L- o D-aminoácidos.
 - 3. El péptido de la reivindicación 1 o la reivindicación 2, en el que uno o más de los aminoácidos están N-metilados.
- 4. Un péptido que consiste en Leu-Ala-Phe-Val-Leu-Arg-Lys-NH₂ o un anticuerpo específico para dicho péptido para
 ser usado en el tratamiento de una enfermedad caracterizada por fibrilogénesis de Aβ.
 - 5. El péptido o anticuerpo de la reivindicación 4, en que la enfermedad es enfermedad de Alzheimer.
- 6. El péptido o anticuerpo de la reivindicación 4 o la reivindicación 5, en el que el péptido está compuesto por L- o Daminoácidos.
 - 7. El péptido o anticuerpo de las reivindicaciones 4, 5 ó 6, en que uno o más de los aminoácidos están N-metilados.
- 8. El péptido o anticuerpo de una cualquiera de las reivindicaciones 4 a 7, que comprende adicionalmente un vehículo, diluyente o excipiente farmacéuticamente aceptable.
 - 9. El péptido o anticuerpo de una cualquiera de las reivindicaciones 4 a 8, que es formulado para una administración mediante una vía seleccionada entre oral, parenteral, intravenosa, intradermal, intramuscular, intraperitoneal, anal y bucal.
 - 10. El péptido o anticuerpo de la reivindicación 9, que es formulado para una administración nasal intranasal.
- 11. Uso de un péptido que consiste en Leu-Ala-Phe-Val-Leu-Arg-Lys-NH₂ o un anticuerpo específico para dicho péptido en la fabricación de un medicamento para el tratamiento de una enfermedad caracterizada por fibrilogénesis
 30 de Aβ.
 - 12. El uso de la reivindicación 11, modificado mediante las características de una cualquiera de las reivindicaciones 5 a 10.
- 13. Una composición farmacéutica, que comprende un péptido como se reivindica en una cualquiera de las reivindicaciones 1 a 3 y un vehículo, diluyente o excipiente farmacéuticamente aceptable.
 - 14. La composición farmacéutica de la reivindicación 13, que comprende adicionalmente un compuesto complementariamente activo.


37

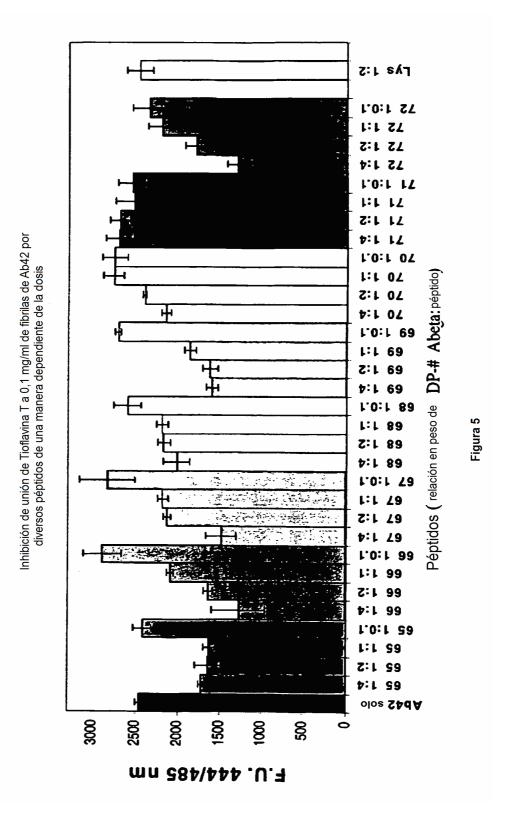
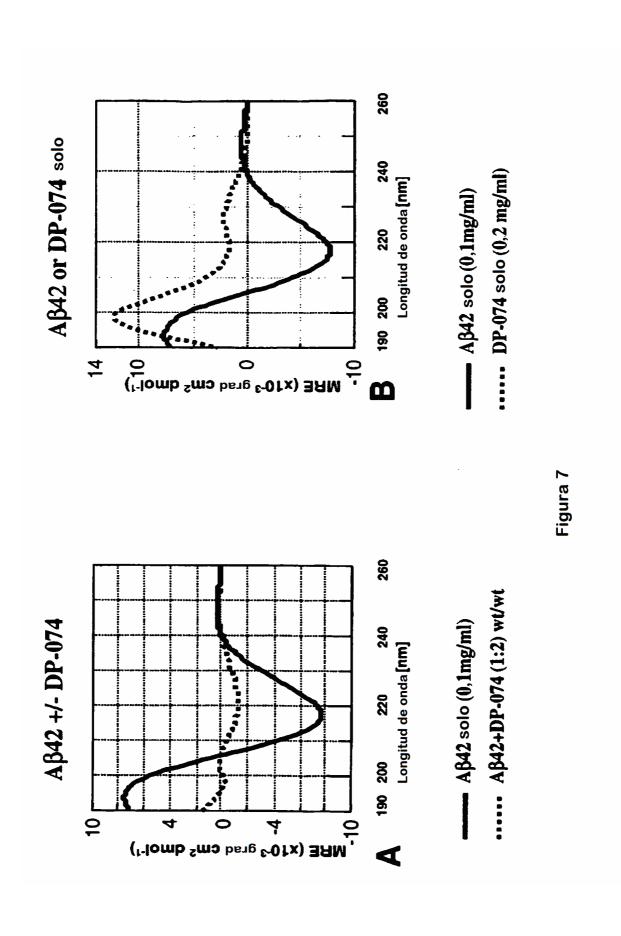
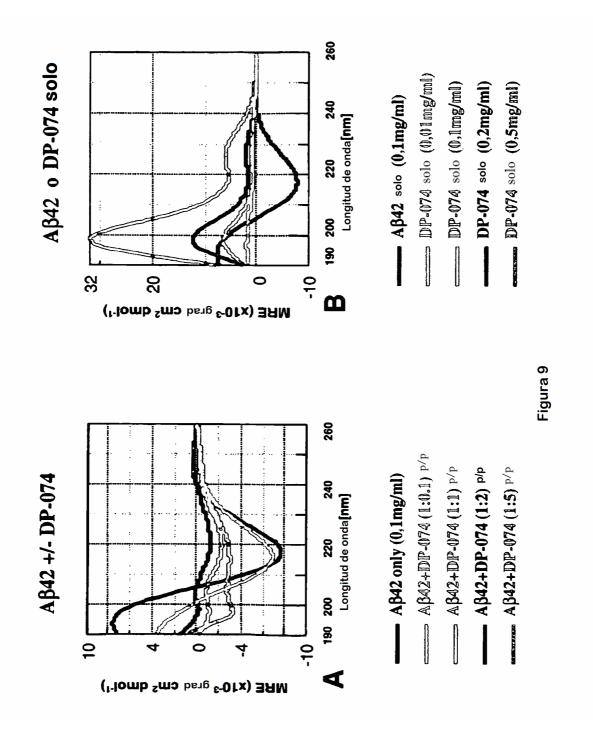

SEQ ID NO	Estructura	Fórmula	PM
DP-068	High Nite Ala-Val-Ile-Met-Gly-amida	C ₂₂ H ₆₁ N ₁₁ O ₇ S	743,98
DP-074	H ₃ N NH	C41H72N12O7	845,10

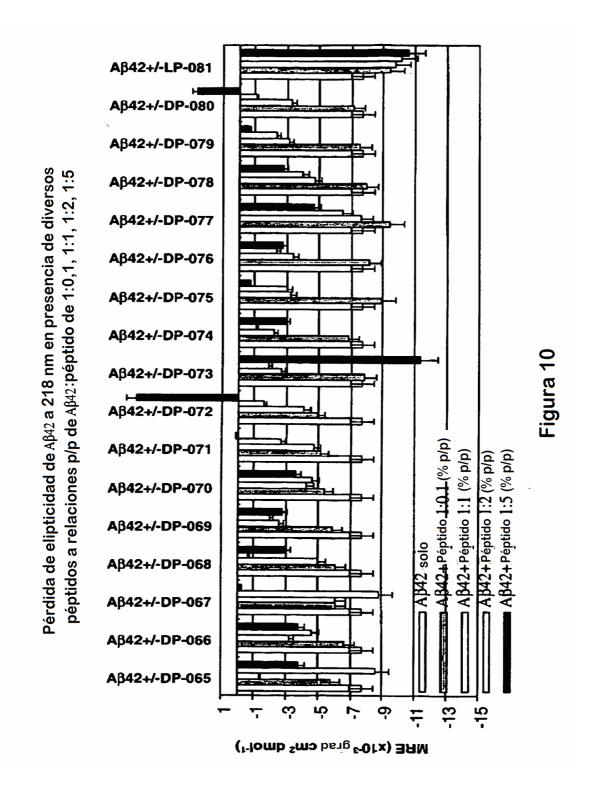
Figura 1

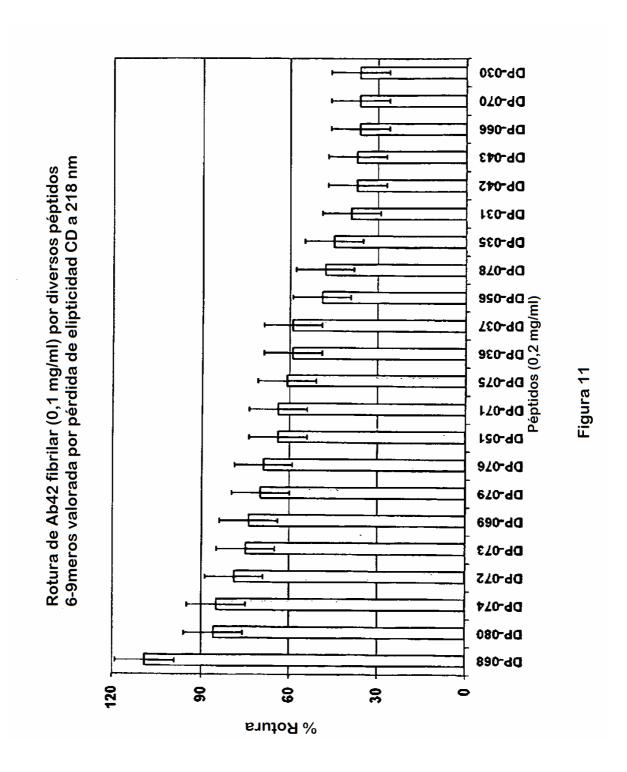


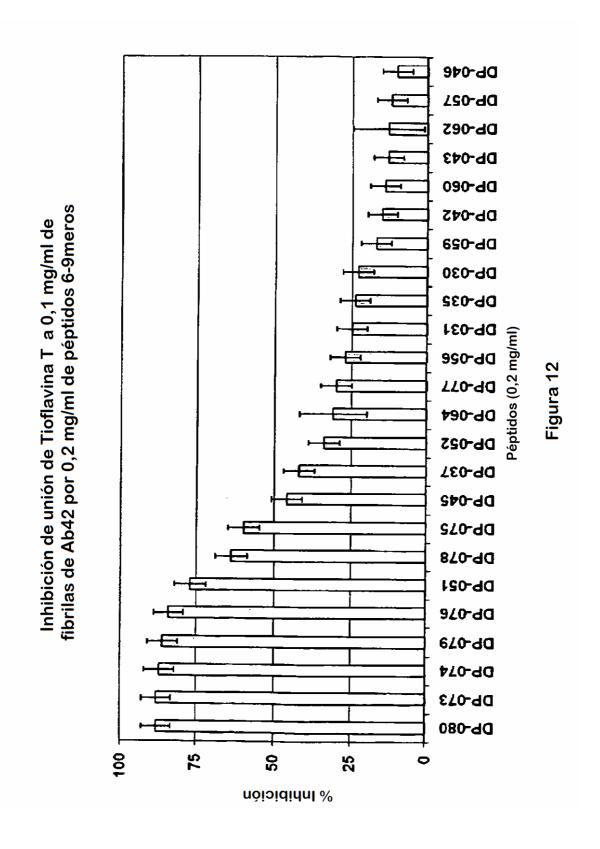
Orden de clasificación de péptidos a Abeta basado en % Inhibición de Tio T

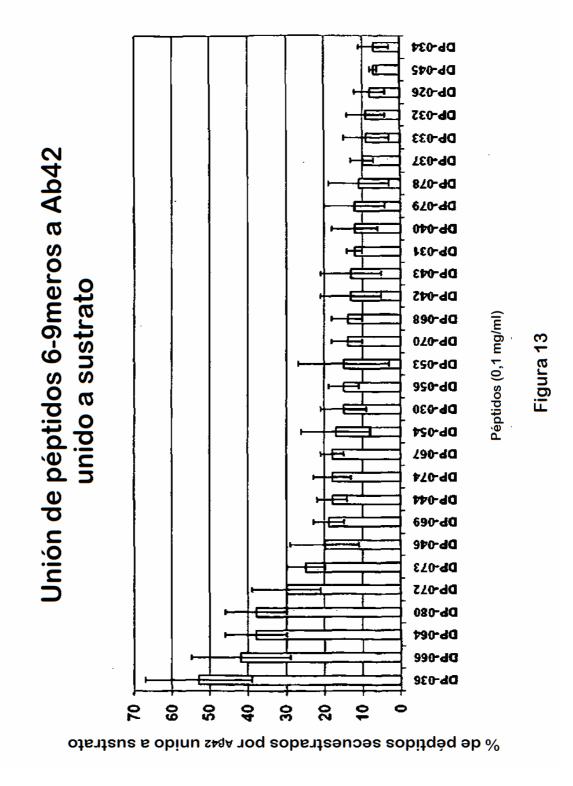
		Tio T
	1:2 p/p	1:1 p/p
DP-072 (WHLAFVLR)	32,6	32,2
DP-071 (TLFLAR)	15.3	14,6
DP-070 (HGRLVFM-amida)	18,7	0,0
DP-067 (RVAVIM-amida)	19,2	12,2
DP-069 (LAFVLR-amida)	18,2	11,1
DP-066 (WHRVAVI-amida)	13,5	13,0
DP-068 (RVAVIMG-amida)	11,5	12,8
DP-065 (WHRVAVIM-amida)	9.6	14,0


Figura 6




AB42 4 P-081


WRE (x10-3 alsa cm2 qmol-1)


Figura 8

