

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 435 096

51 Int. Cl.:

B60J 7/12 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 01.05.2003 E 03714609 (9)

97) Fecha y número de publicación de la concesión europea: 14.08.2013 EP 1515863

54 Título: Dispositivo tensor por fluido

(30) Prioridad:

25.06.2002 CH 109102

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 18.12.2013

73) Titular/es:

PROSPECTIVE CONCEPTS AG (100.0%) FLUGHOFSTRASSE 41 8152 GLATTBRUGG, CH

(72) Inventor/es:

STOLL, KURT y KEREKES, LASZLO

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

ES 2 435 096 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Dispositivo tensor por fluido

15

20

30

La presente invención se refiere a un dispositivo tensor por fluido para estructuras superficiales, que se activa por medio de un fluido, de acuerdo con el preámbulo de la reivindicación 1 de la patente.

Las estructuras superficiales, como toldos de camiones, quitasoles, pantallas de cine, es decir, instalaciones esencialmente planas la mayoría de las veces de naturaleza textil, pero también superficies curvadas en varios ejes, como techos de tiendas de campaña, por ejemplo naves de exposiciones, deben tensarse y a menudo retensarse. Esto se realiza, en general, de tal manera que en el borde del material textil están colocados unos ojales, a través de los cuales se estiran cables tensores o correas tensoras, con cuya ayuda de estira y, por lo tanto, se tensa la estructura superficial contra un bastidor, un chasis o, en general, contra una estructura estática.

El documento DE 196 30 856 que forma el tipo muestra un dispositivo tensor por fluido para estructuras superficiales que se colocan sobre una estructura que debe cubrirse por la estructura superficial.

El documento WO 91/19618 muestra un techo de vehículo plegable, que descansa en el funcionamiento sobre mangueras que están bajo presión, de manera que las mangueras están fijadas de nuevo en escotaduras de una abrazadera contra vuelco. De esta manera, se consigue una estructura rígida que soporte el techo, pero la tensión del techo no es regulable.

El documento US 3 499 680 muestra un toldo adecuado para un carro agrícola, que se puede desenrollar sobre un contenedor de carga, de manera que puede cubrirlo o se puede arrollar, de modo que se libera el contenedor. El desenrollamiento se realiza contra la presión de un muelle de rodillos, el arrollamiento se realiza por medio de su presión de muelle. El desenrollamiento es forzado por medio de mangueras de presión llenas con aire, que se extienden sobre la longitud del toldo. El arrollamiento se realiza evacuando el aire fuera de las mangueras. Para la prevención de pliegues en el toldo están previstas barras de retención, El toldo desplegado se puede fijar en los lado del contenedor y de esta manera se pueden tensar.

Con este método tensor convencional están implicados varios inconvenientes: la introducción de la fuerza puntual en los ojales conduce a la retracción y, por lo tanto, a la formación de pliegues en el material textil; un retensado en todo caso necesario de la estructura superficial es costosa y molesta, por ejemplo, en virtud de la dilatación térmica y, por lo tanto, se pasa por alto; solamente se puede conseguir una tensión uniforme de la estructura con frecuencia a través de retensado repetido – y dado el caso local -.

La presente invención tiene el cometido de crear un dispositivo tensor para tales estructuras superficiales, que soluciona los inconvenientes mencionados, que se puede fabricar económicamente y que se puede accionar o activar fácilmente.

La solución del cometido planteado se reproduce en la parte de caracterización de la reivindicación 1 de la patente en lo que se refiere a sus características esenciales, en las reivindicaciones siguientes de la patente en lo que se refiere a otras configuraciones ventajosas.

35 Con la ayuda del dibujo adjunto se explica en detalle la invención. En este caso:

La figura 1 muestra un primer ejemplo de realización de una representación isométrica.

Las figuras 2a, b muestran el ejemplo de realización en la sección trasversal en dos estados de funcionamiento.

La figura 3 muestra una representación esquemática de una sección transversal.

La figura 4 muestra una instalación de suspensión en la sección transversal.

40 La figura 5 muestra un segundo ejemplo de realización en una vista en planta superior.

La figura 6 muestra un tercer ejemplo de realización en una isometría.

Las figuras 7a, b muestran un cuarto ejemplo de realización como dispositivo elevador en vista lateral y en sección transversal.

La figura 8 muestra una variante con respecto a la figura 7a, b.

La figura 9 muestra una variante y complemento del ejemplo de realización según la figura 8.

La figura 1 muestra la representación isométrica de un camión con una estructura, que se cierra por medio de toldos 1. De acuerdo con el estado de la técnica, tales toldos 1 presentan a lo largo de su borde inferi9or o bien una pluralidad de correas y hebillas, con las que se fija y se tensa el toldo en una barra que se extiende en dirección

longitudinal paralelamente al puente, o están colocados una pluralidad de ojales en el borde inferior del toldo, a través de los cuales se extiende un cable largo, que rodea después de cada ojal también dicha barra.

Sin embargo, aquí de acuerdo con la invención el toldo está suspendido en el puente o en un elemento conectado con éste o está realizado de manera que se puede colgar con pocas manipulaciones. El proceso de fijación realizado por lo demás por las corras o cables se lleva a cabo aquí por medio de un dispositivo tensor 2 descrito a continuación. Este dispositivo está constituido, en principio, de acuerdo con la representación de las figuras 2a, b: el toldo 1, que está constituido, por ejemplo, de tejido de poliéster recubierto con PVC, está doblado a lo largo de una tira 3 de la anchura <u>b</u> por material del mismo tipo y está conectado con el toldo 1 en los bordes de la tira 2 por medio de encielado, soldadura o costura. De esta manera, se obtiene una bolsa 4 extendida alargada, en la que está insertada una burbuja 5 igualmente extendida alargada de plástico elástico. Evidentemente la burbuja 5 puede estar dividida en varias secciones parciales. En el estado plano, la bolsa 4 tiene una anchura s_o. La burbuja 5 está cerrada en sus bordes de forma hermética a fluido u lleva en al menos un extremo una válvula 6 para el fluido, con el que debe impulsarse. En la mayoría de los casos, éste será aire comprimido; en casos especiales, se puede indicar, sin embargo, la utilización de otros gases o de líquido. Con el concepto del fluido se entienden siempre gases y/o líquidos.

Si se impulsa ahora la burbuja 5 a través de la válvula 6 con el fluido, entonces se infla y pasa desde el estado vacío plano hacia el estado lleno, como máximo aproximadamente de forma circular ahora en la sección transversal. En este caso se reduce la anchura de la bolsa 4 desde so hasta máximo

$$s = s_o \frac{2}{\pi}$$

5

10

15

25

30

35

40

45

50

en la que <u>s</u> significa el diámetro de la sección transversal de la manguera 5 considerada de forma circular. El acortamiento abstracto alcanzable del dispositivo tensor es, por lo tanto,

$$s_o - s = s_o \left(1 - \frac{2}{\pi} \right) \cong s_o \cdot 0.36$$

Si se supone la anchura s_o , por ejemplo, en 10 cm, entonces el acortamiento abstracto alcanzable se extiende a 3,6 cm. Abstracto significa aquí en primer lugar que no se ha tenido en consideración la modificación de la forma alcanzable realmente de la manguera 5.

Si deben ponerse en relación entre sí la presión del fluido, la fuerza tensora por unidad de longitud del toldo 1 (en la dirección del eje de la manguera 5) y la anchura s_0 , entonces se aplican las siguientes consideraciones, que se pueden exponer con la ayuda de la figura 3, y que son conocidas por el técnico:

La figura 3 muestra de una manera esquemática y omitiendo más detalles condicionados por el material, una fase intermedia entre las posiciones extremas representadas en la figura 2a y en la figura 2b del dispositivo tensor 2. Por lo tanto, si se impulsa la burbuja 5 con un fluido, entonces se infla; las partes del toldo 1 que la delimitan adoptan una forma de arco circular en la sección transversal. La fuerza tensora por unidad de longitud (en la dirección de la extensión longitudinal de las tiras 3) σ [N/m] es entonces, por razones evidentes, proporcional a la presión y a la anchura s_o de la tira 3.

Los acortamientos relativos $\Delta s/s_o$ que se pueden alcanzar en la práctica están con preferencia en el intervalo de aproximadamente 02 a 0,3. La posición extrema con $\Delta s/s_0 = 0,36$ es desfavorable en cuanto a la fuerza, puesto que en esta posición la tensión σ alcanzable pasa a cero. Si el acotamiento necesario para una finalidad determinada condujera a anchuras so grandes impracticables, entonces se pueden disponer evidentemente dos o tres -o en general: varios – de tales dispositivos tensores según las figuras 2a, b, 3 sucesivamente y opcionalmente se pueden impulsar con la misma presión de fluido. En la figura 4 se representa una sección transversal a través de una instalación de suspensión que se puede colocar en un camión. Los cometidos de esta instalación de suspensión son, por una parte, la introducción uniforme de la tensión σ en la estructura del camión, por ejemplo de un tablón lateral 7 del puente del camión y, por otra parte, el aseguramiento de la unión del toldo 1 y del tablón lateral 7 también en el estado sin presión del dispositivo tensor. Por el concepto de tablón lateral debe entenderse también el tablón dispuesto en la parte trasera del puente. En el borde inferior del toldo 1 está fijado un elemento 8 en forma de gancho en la sección transversal, que se extiende esencialmente sobre todo el borde inferior del toldo 1, por ejemplo con una contra placa 9 que se extiende de la misma manera en dirección longitudinal y que está atornillada o remachada con el borde superior del elemento 8. Otros tipos de unión están incluidos de la misma manera en la idea de la invención. En el tablón lateral o bien están fijados una pluralidad de mandriles 10 dirigidos hacia abajo, o un soporte de fijación igualmente extendido alargado con sección transversal del tipo de mandril. Esta sección transversal está configurada de tal forma que se ensancha hacia abajo y a continuación confluye en una punta.

El elemento 8 extendido alargado en forma de gancho en la sección transversal está configurado en su parte inferior

como canal 11, y los mandriles 10 están realizados de tal forma que ajustan con poco juego en este canal. En el borde superior de este canal 11 están insertados unos elementos de resorte 12, que encajan elásticamente sobre los ensanchamientos de los mandriles 10; de esta manera, el toldo 1 está conectado con los tablones laterales 7, aunque se elimine la tensión σ sobre el toldo 1. Para la estructura de la instalación de suspensión es ventajoso que los mandriles 10 se encuentren en el mismo plano que el toldo 1 tensado. De esta manera, no resulta ningún par de torsión sobre la instalación de suspensión.

5

10

50

55

La figura 5 muestra la representación de un segundo ejemplo de realización del dispositivo tensor de acuerdo con la invención. Por ejemplo, en un bastidor 13 está empotrada una pantalla de cine 14. Especialmente en el caso de cines al aire libre, como se instalan temporalmente en verano, la pantalla 14 está sometida a grandes oscilaciones de temperatura, que conducen en el caso de tejidos sintéticos a modificaciones considerables de la dimensión.

En el ejemplo de realización representado, la pantalla 14 está fijada con los medios descritos con relación a la figura 3 en cuatro elementos planos 15 en forma de barra, que pueden estar realizados como los elementos 8 en forma de gancho de la figura 4.

En el presente ejemplo de realización, a continuación de los elementos 15 del tipo de barra, se insertan dos dispositivos tensores 2 de acuerdo con las figuras 1, 2, respectivamente, uno en el elemento superior y un segundo en el elemento izquierdo 15. Evidentemente se pueden prever también cuatro dispositivos tensores 2 de este tipo, respectivamente, uno sobre cada lado de la pantalla 14. Para tensar la pantalla 14 se ponen bajo presión los dispositivos tensores 2 empleados, lo que es necesario durante el periodo de tiempo de un pase de la película. El tiempo restante, la pantalla 14 puede permanecer distendida.

Un tercer ejemplo de realización para el dispositivo tensor de acuerdo con la invención se muestra en la figura 6. Un 20 techo de tienda de campaña 16, por ejemplo, para una exposición o una nace fija se instala a través de un soporte central 17 (representado con línea de trazos). Desde éste se estira el techo de tienda de campaña 16 sobre todos los lados hacia abajo y se tensa por medio de varios ganchos tensores 18 insertados en la costura inferior del techo de tienda de campaña 16 y se amarra en zócalos 19. La tensión alcanzable a través del cable tensor 18 ha de 25 ajustarse después de una temperatura baja, puesto que los textiles utilizados normalmente para tales techos de tiendas de campaña 16 se dilatan fuertemente en el caso de elevación de la temperatura. Si se ajusta correctamente la tensión a alta temperatura, entonces en el caso de fuerte refrigeración existe el peligro de sobredilatación y de desgarro del techo de la tienda de campaña 16. Para poder asegurar la tensión óptima en cualquiera temperatura de funcionamiento, están previstos unos dispositivos tensores 2 en todos los bordes inferiores del techo de tienda de 30 campaña 16, con preferencia adyacentes a los cables tensores 18. Éstos pueden estar segmentados, como se representa en el lado izquierdo de la figura 6 o, como se representa en el lado derecho de la figura 6, se extienden esencialmente sobre toda la longitud de un cable tensor. No se representan los conductos de aire comprimido (o en general: conductos para el fluido). Éstos se conducen con preferencia paralelamente a los cables tensores a lo largo del borde inferior del techo de tienda de campaña 16 y, por ejemplo, en los zócalos 19 en conductos subterráneos.

Otro ejemplo de realización de la idea de acuerdo con la invención en forma de un dispositivo elevador se muestra en las figuras 7a, b, donde la figura 7a representa una vista en planta superior, la figura 7b muestra una sección AA: entre dos piezas de soporte 21, por ejemplo, respectivamente, con un ojal 22 para la introducción de cargas puntuales, se extiende con el eje longitudinal transversalmente a la dirección de la fuerza una bolsa 23 en forma de manguera de un material textil, con preferencia de fuerza de tracción grande y de capacidad de dilatación más pequeña. En la bolsa 23 está insertada una burbuja 24, que puede ser impulsada a través de una válvula 25 con presión de fluido. La burbuja 24 está fabricada, por ejemplo, de un plástico elástico, en el que entonces la burbuja 24 debe estar cerrada en sus extremos – salvo un orificio para la válvula 25 -. De manera alternativa, la burbuja 24 puede estar constituida de un material textil recubierto hermético a fluido o – como una alternativa secundaria – está constituido de plástico elástico y está alojado en otra bolsa textil.

Cada una de las piezas de soporte 21 presenta una ranura esencialmente redonda circular 26 en la sección transversal, en la que la bolsa 23 se pliega hacia dentro. La parte de la bolsa plegada hacia dentro de esta manera se fija a través de una barra redonda 27, que se inserta con juego en la ranura 26 y en la parte plegada hacia dentro de la bolsa 23.

En lugar de material textil para la bolsa se pueden utilizar también otros materiales adecuados, es decir, flexibles y poco dilatables, como por ejemplo laminas de acero para muelles. En este caso, a través de radios grandes adecuados de la ranura 26 y de la barra redonda 27 se procura que no se produzcan lugares de pandeo.

Una variante al ejemplo de realización según las figuras 7a, b se representa en la figura 8 en la sección a través de los ojales 22. Dos tiras 28 de un material textil dilatable están conectadas entre sí, por ejemplo, por medio de costuras o soldadura en lugares de unión lineales 29. En la bolsa 4 resultante está insertada de nuevo una burbuja 5, que o bien está constituida ella misma de material textil hermético a fluido o está constituida de otra bolsa textil de mejor capacidad de dilatación, que contiene una burbuja 5 de un plástico elástico. La burbuja 5 se puede impulsar a través de la válvula 6 con un fluido de presión; en la solución con la otra bolsa, ésta presenta un orificio para la

ES 2 435 096 T3

válvula 6.

5

10

Las dos bandas 28 están fijadas en sus extremos en dos piezas de soporte 21, de manera que aquí las piezas de soporte 21 están realizadas de tal manera que se fijan las tiras: un brazo de sujeción 30 es libremente móvil y se fija con tornillos 31 en un segundo brazo de sujeción 32 conectado fijamente con la pieza de soporte 21. Entre estos brazos de sujeción 30, 32 se sujetan las tiras 28 sobre toda su anchura.

La figura 9 muestra una variante del ejemplo de realización según la figura 8. Aquí se seleccionan las tiras 28 tan largas que – separadas a través de otro lugar de unión 29 – resultan dos bolsas 4 con las mismas características que en la figura 8. Evidentemente, este ejemplo de realización se puede ampliar a tres o más bolsas 4, de manera que se puede elevar una caga puntual suspendida en el ojal inferior 22 sobre una diferencia de altura que permite la reducción máxima del dispositivo de elevación según las figuras 7, 8, 9.

REIVINDICACIONES

1.- Dispositivo tensor por fluido para estructuras superficiales, caracterizado porque

5

10

20

30

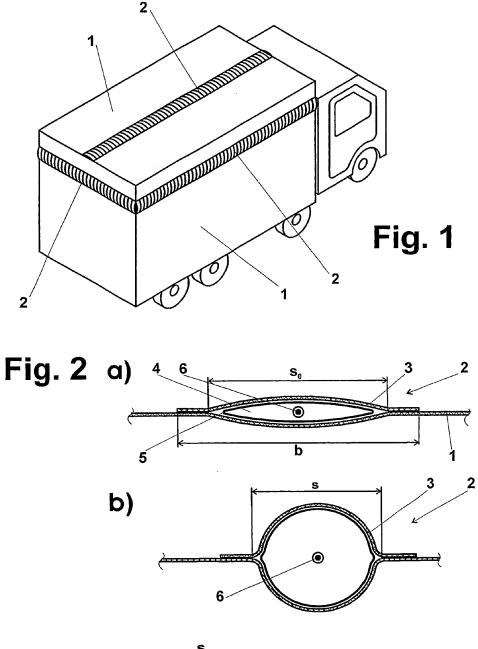
35

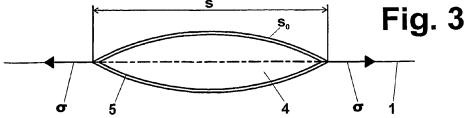
40

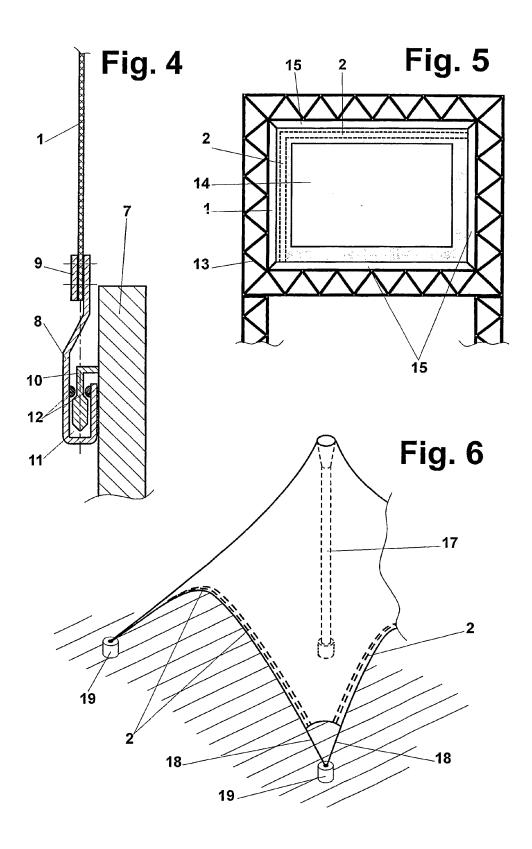
- en la superficie de la estructura (1, 14, 16) a tensar está incorporada al menos una bolsa (4) extendida alargada, que se extiende esencialmente sobre al menos una de las dimensiones lineales de la estructura (1,14, 16),
- está presente al menos una burbuja (5) extendida alargada hermética a fluido con una válvula (6) y está insertada en la bolsa (4) de tal manera que la burbuja (5) se puede poner bajo presión con un fluido y se infla en este caso, y la bolsa (4) se infla de la misma manera a través de la burbuja (5) inflada, con lo que se acorta su dimensión que se extiende transversalmente a su extensión longitudinal, y dicha estructura superficial (1, 14, 16) se tensa de esta manera con una tensión σ [N/m].
- 2.- Dispositivo sensor por fluido de acuerdo con la reivindicación 1, caracterizado porque la estructura superficial (1, 14, 16) está constituida de un tejido textil y la bolsa (4) está generada a través de doblamiento del tejido sobre una anchura s₀.
- 3.- Dispositivo sensor por fluido de acuerdo con la reivindicación 1, caracterizado porque la burbuja (5) está constituida por un tejido textil hermético a fluido.
 - 4.- Dispositivo sensor por fluido de acuerdo con la reivindicación 1, caracterizado porque la burbuja (5) está constituida por un plástico elástico.
 - 5.- Dispositivo sensor por fluido de acuerdo con la reivindicación 4, caracterizado porque la burbuja (5) de plástico elástico está insertada en otra bolsa de un tejido elástico, que está insertada, por su parte, en la bolsa (4) extendida alargada.
 - 6.- Dispositivo sensor por fluido de acuerdo con la reivindicación 2, caracterizado porque
 - la estructura superficial es una pantalla de cine (14),
 - esta pantalla de cine (14) está fijada en sus bordes en elementos (15) del tipo de barra,
 - la al menos una bolsa (4) está dispuesta advacente a uno de los elementos (15) del tipo de barra.
- 25 7.- Dispositivo sensor por fluido de acuerdo con la reivindicación 2, caracterizado porque
 - la estructura superficial es un toldo (1) de un camión,
 - cada lado del toldo (1) presenta esencialmente sobre toda su longitud al menos una bolsa (4).
 - 8.- Dispositivo sensor por fluido de acuerdo con la reivindicación 7, caracterizado porque
 - cada lado del toldo (1) se puede fijar en su extremo inferior esencialmente sobre toda su longitud en una instalación de suspensión, con la que se puede introducir la tensión σ del toldo (1) esencialmente sobre toda la longitud.
 - la instalación de suspensión presenta medios, que fuerzan a que el toldo (1) permanezca suspendido también en el estado distendido.
 - 9.- Dispositivo sensor por fluido de acuerdo con la reivindicación 8, caracterizado porque
 - la instalación de suspensión está constituida por un elemento (8) en forma de gancho en la sección transversal, que se extiende esencialmente sobre todo el borde del toldo (1), cuyo elemento está configurado en su parte inferior como canal (11), y el elemento (8) esencialmente en forma de gancho está conectado sobre toda su longitud con el borde inferior del toldo (1),
 - el canal está configurado de tal manera que una pluralidad de mandriles (10), que están conectados con tablones laterales (7) del puente del camión, pueden encajar en él,
 - el borde superior del canal (11) presenta elementos de resorte (12), que pueden encajar elásticamente sobre ensanchamientos en los mandriles (10), de tal manera que el toldo (1) puede permanecer conectado con los tablones laterales (7) del puente, aunque se reduzca la tensión σ sobre el toldo (1).
- 10.- Dispositivo sensor por fluido de acuerdo con la reivindicación 8, caracterizado porque también el lado trasero del toldo (1) está provisto con una instalación de suspensión.

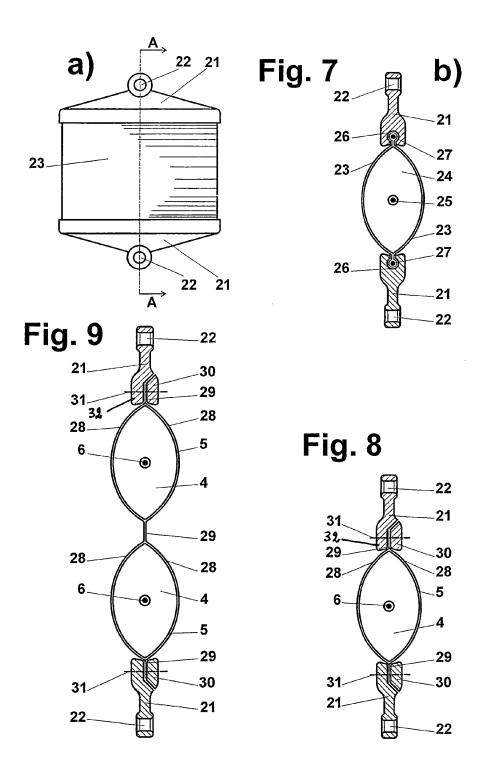
ES 2 435 096 T3

- 11.- Dispositivo sensor por fluido de acuerdo con la reivindicación 7, caracterizado porque el toldo (1) presenta también un lado de techo con una bolsa (4).
- 12.- Dispositivo sensor por fluido de acuerdo con una de las reivindicaciones 2 a 5, caracterizado porque la estructura superficial es un techo de tienda de campana (16).
- 5 13.- Dispositivo sensor por fluido de acuerdo con la reivindicación 12, caracterizado porque
 - el techo de tienda de campana (16) está erigido por medio de un sopor (17) y está tensado hacia abajo por medio de cables tensores (18) insertados en el borde inferior del techo de tienda de campana (16),
 - los dispositivos tensores (2) están colocados adyacentes a los cables tensores (18).
 - 14.- Dispositivo sensor por fluido de acuerdo con una de las reivindicaciones 2 a 5. caracterizado porque
- la estructura superficial está constituida esencialmente sólo por la al menos una bolsa (4) extendida alargada,
 - de la al menos una bolsa (4) extendida alargada, las bolsas (4) más exteriores están fijadas esencialmente a lo largo de toda su longitud en una pieza de soporte (21) reducida, estando insertadas las piezas de soporte (21) sobre sus lados alejados de las bolsas para la introducción de cargas puntuales, de manera que durante la impulsión con presión de las burbujas (5) se inicia una reducción de la distancia de las piezas de soporte (21) y, unido con ello, puede aparecer una fuerza de tracción.
 - 15.- Dispositivo sensor por fluido de acuerdo con la reivindicación 14, caracterizada porque las piezas de soporte (21) presentan sobre sus lados dirigidos hacia las bolsas (4), respectivamente, unos medios para la fijación de la al menos una bolsa (4).
- 20 16.- Dispositivo sensor por fluido de acuerdo con la reivindicación 15, caracterizado porque


15


25


30


35

- las piezas de soporte presentan sobre sus lados dirigidos hacia las bolsas (4), respectivamente, una ranura (26) de sección transversal esencialmente redonda circular, que se extiende esencialmente sobre toda la longitud de la pieza de soporte (21), en cuyas ranuras (26) se puede doblar hacia dentro el material de las bolsas (4) adyacente a las piezas de soporte,
- están presentes dos barras redondas (27) para la inserción en las ranuras (26) y para la fijación de las partes de las bolsas (4) dobladas hacia dentro en las ranuras (26).
- 17.- Dispositivo sensor por fluido de acuerdo con la reivindicación 15, caracterizado porque
 - cada pieza de soporte (21) presenta sobre su lado dirigido hacia las bolsas (4) un primer brazo de sujeción (32) conectado fijamente con ella,
- respectivamente, está presente un segundo brazo de sujeción (30) libremente móvil, que se puede fijar en el primer brazo de sujeción (32) por medio de tornillos (31).
 - las bolsas (4) están constituidas por dos tiras (28) de un material textil menos extensible, que están conectadas entre sí al menos en dos puntos de unión lineales (29),
 - dos de los puntos de unión lineales (29) son encajados, respectivamente, entre dos brazos de sujeción (30, 32),
 - respectivamente, entre dos puntos de unión lineales (29) está insertada en cada caso una burbuja (5, 24), que se puede impulsar con presión a través de su válvula (6), con lo que se inicia una reducción de la distancia de las piezas de soporte (21) y, unido con ello, puede aparecer una fuerza de tracción.

