

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 438 523

51 Int. Cl.:

H04L 12/26 (2006.01) **H04L 12/24** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 26.08.2009 E 12164551 (9)
 (97) Fecha y número de publicación de la concesión europea: 09.10.2013 EP 2479930

(54) Título: Método de recogida de estadísticas de calidad y método correspondiente de gestión de la recogida de estadísticas de calidad

(30) Prioridad:

02.09.2008 EP 08305518

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 17.01.2014

(73) Titular/es:

THOMSON LICENSING (100.0%) 1-5, rue Jeanne d'Arc 92130 Issy-les-Moulineaux, FR

(72) Inventor/es:

STRAUB, GILLES; COLMAGRO, JEAN-CLAUDE y BRIAND, FRANÇOIS YVES

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Método de recogida de estadísticas de calidad y método correspondiente de gestión de la recogida de estadísticas de calidad

1. Campo de la invención

La invención se refiere al campo de la telecomunicación y más particularmente, a la obtención de una estadística relativa a la calidad relacionada con la recepción de datos, por ejemplo calidad y/o calidad de la experiencia del usuario de servicios digitales de audio y/o video.

2. Antecedentes técnicos

10

15

20

25

35

50

55

De acuerdo con la técnica anterior, un dispositivo está conectado a una red que proporciona servicios tales como servicios de audio y/o video. La red que transporta estos servicios puede incluir varios equipos tales como transmisores, moduladores, desmoduladores, encaminadores, conmutadores, DSLAMs (Multiplexador Asíncrono de Línea de Abonado Digital - Digital Subscriber Line Asynchronous Multiplexer, en inglés), módems. Estos equipos están interconectados mediante conexiones por cable y/o inalámbricas que pueden influir en la calidad de recepción de un dispositivo. La calidad de recepción puede a su vez influir en la calidad de la experiencia de usuario de un usuario que utiliza el dispositivo, siendo la calidad de la experiencia de usuario la calidad experimentada por el usuario del dispositivo cuando se le está prestando el servicio. Hay una diferencia entre la calidad de recepción y la calidad de la experiencia de usuario. Por ejemplo, cuando un dispositivo recibe un servicio sujeto a la pérdida de un número relativamente pequeño de paquetes, pero los paquetes que se han perdido conciernen a paquetes de tipo I (Intra) en un flujo codificado mediante H.264, el impacto sobre la prestación del servicio puede ser importante, puesto que el descodificador del dispositivo no puede utilizar otros paquetes que dependen de los paquetes de tipo I tales como paquetes de tipo B o P, incluso cuando estos paquetes se han recibido correctamente. A continuación, la pérdida de un número relativamente pequeño de paquetes puede provocar la aparición de artefactos visibles tales como macro-bloques. Por lo que respecta a la Calidad de Servicio, la Calidad de Experiencia es medible. Por ejemplo, la calidad de la experiencia puede ser medida en tiempo de cambio de canal y el número de macro-bloques en un video por entidad de tiempo, o el número de pérdidas en una prestación de audio.

A lo largo de este documento, se utilizan los términos QoS, para Calidad de Servicio (Quality of Service, en inglés) que corresponde a la calidad de recepción y QoE, para Calidad de Experiencia (Quality of Experience, en inglés) que corresponde a la calidad de la experiencia del usuario.

En el resto de este documento, se utiliza el término general de estadísticas de calidad, que comprende estadísticas de QoS y QoE.

Debido a las diferencia en la ruta de red que un mismo servicio proporcionado para diferentes pasos por dispositivos, diferentes dispositivos de usuario pueden tener diferentes QoE debido a diferencias en la calidad de la prestación o de la descodificación del dispositivo.

Por lo tanto, existen métodos que permiten que un proveedor de servicios a dispositivos obtenga estadísticas relativas a la QoS / QoE de servicios de audio y video digitales. Por ejemplo, el TR-135 Versión 1 (TR, para Informe Técnico (Technical Report, en inglés), una serie de documentos emitidos por el Broadband Forum, anteriormente DSL Forum), especifica un mecanismo para monitorizar la QoS y la QoE de un servicio de IPTV (Televisión sobre Protocolo de Internet - Internet Protocol TeleVision, en inglés). El TR-135 es parte de la serie de especificaciones TR-069, en la que la TR-069 especifica un protocolo que permite la gestión remota de dispositivos.

40 El documento WO2007/128097A1 describe una monitorización continua no invasiva de la calidad de los servicios de AV (Audio/Video) digitales de los dispositivos de descodificación de video (VDD – Video Decoding Devices, en inglés) que emplea un agente de monitorización que opera de manera continua sobre los dispositivos de descodificación de video, llevando a cabo una o más pruebas sobre una señal de AV proporcionada al VDD durante operación normal. La operación continua de la monitorización de la calidad requiere no obstante que la gama de pruebas esté limitada con el fin de no ser invasiva para el VDD. Notablemente, el tamaño del agente de monitorización se mantiene pequeño y las pruebas son realizadas en la capa de Transporte de acuerdo con ISO (Organización de Estándares Internacional – International Standard Organization, en inglés).

El documento WO2006/097832A1 describe terminales de cliente en una WLAN (Red de Área Local Inalámbrica – Wireless Local Area Network, en inglés), en la que los terminales activan de manera autónoma mediciones de la QoS basándose en reglas que son proporcionadas mediante solicitudes de medición. No obstante, no se tiene en cuenta ninguna incapacidad de invasión de las mediciones.

El inconveniente de la técnica anterior, representada por ejemplo por los documentos TR-069 y TR-135 Versión 1, es que la técnica anterior permite la recogida de estadísticas de monitorización de la QoS para redes de IPTV pero estas estadísticas están sujetas al comportamiento del usuario del dispositivo del cual se obtienen las estadísticas. No hay manera de obtener estadísticas de calidad del dispositivo durante un periodo de no actividad del dispositivo,

y por ello no es posible obtener estadísticas de calidad durante un periodo que esté libre de cualquier acción del usuario. Además, no hay manera de obtener estadísticas de calidad sobre un mismo periodo de tiempo de varios dispositivos.

3. Compendio de la invención

5 La presente invención se dirige a aliviar los inconvenientes de la técnica anterior.

En particular, el objetivo de la presente invención es mejorar la recogida de estadísticas de calidad.

La invención se define mediante las reivindicaciones independientes 1, 10, 16, 17 y sus correspondientes reivindicaciones dependientes.

La invención se refiere más particularmente a un método de recogida de estadísticas de calidad, caracterizado 10 porque el método comprende las etapas de:

> recepción de una señal que comprende una información representativa de un modo de recogida de estadísticas calidad, llamado modo solicitado, teniendo el modo solicitado al menos dos valores posibles que comprenden un primer modo y un segundo modo;

si el modo solicitado es el primer modo, entrar en el primer modo;

si el modo solicitado es el segundo modo, entrar en el segundo modo;

en el primer modo, conexión a un flujo de prueba mediante la recepción de una señal que comprende una solicitud de conexión al flujo de prueba;

en el segundo modo, conexión automática a un flujo de prueba siempre que haya recursos de un dispositivo necesarios para la recogida de estadísticas de calidad disponibles.

20 El método comprende también una etapa de:

> recogida de estadísticas de calidad, cuando la recogida de estadísticas de calidad ha sido habilitada mediante la recepción de una señal que habilita la recogida de estadísticas de calidad y cuando el dispositivo está conectado a un flujo.

De acuerdo con una realización particular de la invención, el flujo de prueba del segundo modo es un parámetro que es configurable mediante un dispositivo diferente del dispositivo necesario para la recogida de estadísticas de 25 calidad.

De acuerdo con la invención, se considera que los recursos de un dispositivo necesarios para la recogida de estadísticas de calidad están disponibles cuando una conexión al flujo de prueba no impacta en la calidad de la prestación de servicio por parte del dispositivo.

De acuerdo con una realización particular de la invención, se considera que los recursos de un dispositivo necesarios para la recogida de estadísticas de calidad están disponibles cuando el dispositivo no está conectado a un flujo procedente de una Red de Área Extensa.

De acuerdo con la invención, los recursos de un dispositivo necesarios para la recogida de estadísticas de calidad se hacen disponibles en un estado de espera de un dispositivo.

La invención también se refiere a un método de gestión de recogida de estadísticas de calidad. Comprende una etapa de:

> envío de una señal al menos a un dispositivo de recogida que comprende una información representativa de un modo de recogida de estadísticas de calidad, llamado modo solicitado, teniendo el modo solicitado al menos dos posibles valores que comprenden un primer modo y un segundo modo,

> y una etapa de, en el primer modo, envío de una señal de solicitud al menos a un dispositivo de recogida que comprende una solicitud de conexión a un flujo de prueba;

> en el primer modo, una conexión de una dispositivo de recogida a un flujo de prueba se realiza mediante la recepción de la señal de solicitud; y

> en el segundo modo, una conexión de un dispositivo de recogida al flujo de prueba es realizada automáticamente siempre que hay disponibles recursos del dispositivo de recogida.

De acuerdo con una realización particular de la invención, el método comprende una etapa de recepción de estadísticas de calidad de al menos un dispositivo de recogida.

3

15

30

35

40

De acuerdo con una realización particular de la invención, el método comprende una etapa de envío de información representativa de un intervalo de recogida, al menos a un dispositivo de recogida.

De acuerdo con una realización particular de la invención, una señal que solicita una conexión a un flujo de prueba es enviada al menos a un dispositivo de recogida.

De acuerdo con una realización particular de la invención, las estadísticas de calidad son clasificadas de acuerdo con el tipo de flujo para el cual aplican las citadas estadísticas de calidad.

De acuerdo con una realización particular de la invención, el tipo de flujo comprende un flujo de tipo de prueba y un flujo de tipo seleccionado por el usuario.

De acuerdo con una realización particular de la invención, las estadísticas de calidad pertenecen a un conjunto que comprende la calidad de servicio y la calidad de experiencia.

De acuerdo con una realización particular de la invención, las estadísticas de calidad se refieren a servicios del tipo de audio y video.

4. Lista de Figuras

Más ventajas de la invención resultarán evidentes mediante la descripción de realizaciones particulares no restrictivas de la invención. Las realizaciones se describirán con referencia a las siguientes figuras:

- La figura 1 muestra una infraestructura de red de ejemplo que es compatible con la invención.
- Las figuras 2 a 4 muestran modelos de datos de ejemplo de acuerdo con realizaciones particulares de la invención.
- Las figuras 5 a 7 muestran intercambios de mensajes entre los dispositivos de la infraestructura de la figura 20 1, donde está aplicado el modelo de datos de las figuras 2 a 4.
 - la figura 8 muestra un dispositivo de gestión de estadísticas de calidad de ejemplo de acuerdo con la invención.
 - la figura 9 muestra un dispositivo de recogida de estadísticas de calidad de ejemplo de acuerdo con la invención.
- 25 la figura 10 muestra un algoritmo de un método de recogida de estadísticas de calidad mediante un dispositivo de acuerdo con la invención.
 - la figura 11 muestra un algoritmo de un método de gestión de estadísticas de calidad mediante un dispositivo de gestión de estadísticas de calidad de acuerdo con la invención.

5. Descripción detallada de la invención.

50

30 La especificación TR-135 Versión 1 especifica un modelo de datos que puede ser implementado mediante un dispositivo tal como un dispositivo de usuario final. El modelo de datos comprende una amplia gama de parámetros que reflejan estadísticas. En pocas palabras, un modelo de datos describe entre otros las clases y atributos de un dispositivo, las relaciones entre estas clases. Los atributos de clases pueden ser escribibles, legibles y sólo legibles. Las clases del modelo de datos están organizadas en una jerarquía y tienen atributos. Las instancias de clases se denominan objetos. Por ejemplo, si un dispositivo de gestión remota desea cambiar el valor del atributo 35 HabilitarMuestra (SampleEnable, en inglés) de la clase MonitorizaciónServicio (ServiceMonitoring, en inglés) a VERDADERO, el modelo de datos especifica que existe un objeto para este propósito que se denomina .ServicioSTB. {i}. MonitorizaciónServicio (.STBService.{i}).ServiceMonitoring, en inglés) con un atributo HabilitarMuestra (SampleEnable, en inglés) de tipo Booleano, y una descripción de cuál es el efecto de atribuir al 40 particular. ĖΙ nombre de objeto .ServicioSTB. {i}. MonitorizaciónServicio (.STBService{i}.ServiceMonitoring, en inglés) significa que a su vez es una subclase de la clase ServicioSTB (STBService, en inglés). Las clases tienen instancias, es decir, representaciones físicas, denominadas objetos; por lo tanto, el término "{i}" que sigue al nombre de clase ServicioSTB (STBService, en inglés) y que está situado antes del punto indica que hay potencialmente cero o más objetos de ServicioSTB (STBService, en inglés) presentes del objeto del cual se especifica el nombre de clase tras el término. Se puede así cambiar el valor del atributo 45 HabilitarServicio (SampleEnable, en inglés) en un Descodificador (Set Top Box, en inglés) para un servicio de audio o video "i" específico.

Se puede acceder a los valores del atributo y los contenidos del objeto de un dispositivo por varios medios. De acuerdo con una realización de la invención, se accede a los valores del atributo y a los contenidos del objeto de un modelo de datos implementado por un dispositivo de recogida mediante el envío de mensajes y solicitudes. De acuerdo con una realización de variante de la invención, se accede a los valores de un atributo y a los contenidos de

un objeto mediante una conexión a un agente de base de datos del dispositivo. De acuerdo con una realización de variante de la invención, se accede a los valores de un atributo y a los contenidos de un objeto mediante mensajes de texto simples enviados sobre una conexión de IP. De acuerdo con una realización de variante de la invención, se accede a los valores del atributo y a los contenidos de un objeto utilizando HTTP (Protocolo de Transmisión de Hiper Texto – Hyper Text Transmission Protocol, en inglés). De acuerdo con una realización de variante de la invención, se accede a los valores de un atributo y a los contenidos de un objeto utilizando una interfaz de Red. Estas realizaciones no son excluyentes, es decir, todas las realizaciones precedentes pueden ser combinadas en una realización particular. Otras realizaciones que utilizan otros medios no descritos para acceder a los valores y a los objetos son posibles y no se excluyen.

- La especificación TR-135 Versión 1 especifica también un intervalo de muestra configurable es decir, un intervalo de tiempo durante el cual se obtienen estadísticas de calidad. Todas las estadísticas son a continuación calculadas sobre este intervalo de muestra utilizando contadores. Cuando termina un intervalo de muestra, un valor de contador se llama un reporte, y un reporte es a continuación almacenado en la memoria del dispositivo. La especificación TR-135 Versión 1 identifica entonces un método para obtener los reportes para los diferentes contadores.
- Una característica específica de la especificación TR-135 Versión 1 es que las estadísticas son calculadas por un dispositivo durante el periodo de actividad del dispositivo: por ejemplo, cuando el dispositivo no está recibiendo ningún video, los contadores no son calculados.
- Para diferenciar el periodo de recepción de datos del periodo en el cual no se recibe ningún dato, existe un parámetro en el modelo de datos de la especificación TR-135 Versión 1, denominado SegundaMuestra (SecondSample, en inglés). Este parámetro indica durante cuántos segundos del intervalo de la muestra ha estado el dispositivo calculando estadísticas. La especificación TR-135 Versión 1 también especifica un método para forzar a un dispositivo a conectarse a un flujo de prueba con varios propósitos. Un posible objetivo de este flujo de prueba es forzar la recogida de estadísticas en un flujo de referencia para pruebas específicas, por ejemplo, durante una intervención directa por parte de un operador de línea de asistencia en el dispositivo de un cliente. No obstante, cuando el cliente cambia de canal, o cuando apaga su dispositivo, ya no se recogen estadísticas del flujo de referencia o respectivamente no se recogen en absoluto.
 - La especificación TR-135 Versión 1 Sección 1.3 proporciona una visión global de la característica de "monitorización de servicio" que corresponde a la recogida de estadísticas de calidad.
- En el resto de este documento, se utiliza el término "dispositivo" o "dispositivo de recogida", que comprende dispositivos de usuario final y dispositivos intermedios, adaptados para recoger estadísticas de calidad de acuerdo con el método de recogida de estadísticas de calidad. Un dispositivo de usuario final es un dispositivo con el cual un usuario interactúa directamente por medio de un medio de interacción tal como un control remoto o un teclado, por ejemplo, un descodificador (Set Top Box, en inglés); un dispositivo intermedio comprende puertas de enlace, proxies, conmutadores y otros equipos de red.
- De acuerdo con la invención, se definen al menos dos modos de recogida de estadísticas de calidad para la operación del dispositivo: un primero, modo de MONITORIZACIÓN NO AUTOMÁTICA y un segundo, modo de MONITORIZACIÓN AUTOMÁTICA, también llamados modos "primero" y "segundo".
 - En el modo de MONITORIZACIÓN NO AUTOMÁTICA, un dispositivo lleva a cabo un cálculo estadístico sobre intervalos de muestra cuando está conectado a algún flujo.
- Cuando el modo de MONITORIZACIÓN AUTOMÁTICA es activado en un dispositivo, el dispositivo cambia automáticamente a un flujo de prueba determinado desde el cual recoger las estadísticas de calidad, tan pronto como el dispositivo detecta que sus recursos necesarios para conexión al flujo de prueba predefinido están disponibles. Este modo permite proporcionar un cálculo estadístico de la calidad continuo a lo largo del tiempo.
- De acuerdo con una realización particular de la invención, se considera que hay recursos disponibles cuando una conexión a un flujo de prueba y una recogida de estadísticas de calidad en el flujo de prueba no impactan a la calidad de la prestación del servicio del dispositivo. Éste es por ejemplo el caso en el que el usuario de un dispositivo no utiliza la interfaz de red para conectarse al flujo de prueba empezando a reproducir un video a partir de un PVR incrustado, o cuando el usuario no está recibiendo ningún flujo procedente de la WAN (Red de Área Local Extensa Wide Area Network, en inglés) sobre la interfaz de red, sino que sólo está reproduciendo un flujo desde la LAN (Red de Área Local Local Area Network, en inglés) y si hay recursos disponibles en la interfaz de red para recibir un flujo de prueba además del flujo de la LAN.

55

De acuerdo con una realización particular de la invención, la distinción entre un flujo procedente de la WAN y un flujo procedente de la LAN se lleva a cabo mirando la dirección de IP de fuente del flujo. Si la dirección de IP de fuente pertenece a la misma subred que la propia dirección del dispositivo de recogida, entonces el flujo viene de la LAN y no de la WAN.

De acuerdo con una realización particular de la invención, el dispositivo de recogida es de un tipo híbrido, que tiene dos tipos de interfaces, por ejemplo DTT (Televisión Digital Terrestre – Digital Terrestrial Television, en inglés) inalámbrica e IPTV sobre una conexión de ADSL por cable. Entonces, los recursos para la conexión a un flujo de prueba y para la recogida de estadísticas están disponibles cuando el dispositivo de recogida libera la interfaz de IPTV – ADSL cuando activa la interfaz de DTT.

Estas realizaciones particulares pueden ser combinadas para formar una realización particular con ventajas particulares.

Otros ejemplos de evitar el impacto de la calidad de la prestación de servicio del dispositivo de recogida se proporcionan con más detalle en esta memoria.

En otra realización particular de la invención, los recursos necesarios para la recogida de estadísticas de calidad están disponibles cuando el dispositivo pasa a modo de espera, definiendo un modo de espera especial en el cual sólo permanecen activos los componentes necesarios del dispositivo. Por supuesto, para poder mantener los recursos necesarios para la recogida de estadísticas de calidad en modo de espera, un dispositivo que implementa la invención soporta este modo de espera especial. El estado actual de la técnica muestra que es común mantener activos componentes seleccionados en un estado de espera sin que el usuario sea consciente del hecho de que su dispositivo está todavía funcionando parcialmente en un estado de espera. Este modo de espera especial se diferencia de un modo de espera real en que sólo están activos los componentes mínimos con el fin de poder despertar al dispositivo a una orden del usuario.

La invención también introduce un medio de configuración que permite una gestión de la recogida de estadísticas de calidad que comprende el envío de una información representativa de un modo de recogida de estadísticas de calidad, donde los modos de monitorización comprenden MODO DE MONITORIZACIÓN NO AUTOMÁTICA y MODO DE MONITORIZACIÓN AUTOMÁTICA.

La invención también introduce una manera de clasificar estadísticas de calidad. Cada estadística recogida está clasificada de acuerdo con si el dispositivo estaba conectado a un flujo de prueba o si el dispositivo estaba recibiendo un flujo seleccionado por el usuario. Esta clasificación de acuerdo con el tipo de flujo se proporciona por ejemplo indicando el número de segundos que estuvo recogiendo datos en un flujo de prueba, y el número de segundos que estuvo recogiendo estadísticas de una conexión a un flujo seleccionado por el usuario. Esto resulta útil para correlacionar posibles eventos de error con la experiencia de usuario: los errores que ocurren en un flujo de prueba no son visibles para el usuario, o al menos no impactan la experiencia del usuario. De acuerdo con una realización particular de la invención, este problema se resuelve añadiendo un conjunto particular de parámetros al modelo de datos de la TR-135 Versión 1, a saber, SegundosMuestraUsuario (UserSampleSecond, en inglés) y SegundosMuestraPrueba (TestSampleSecond, en inglés). SegundosMuestraUsuario se define como el número de segundos durante los cuales se recogieron datos durante un intervalo de muestra cuando se estaba conectado a un flujo seleccionado por el usuario. SegundosMuestraPrueba refleja el número de segundos durante los cuales se recogieron datos durante un intervalo de muestra en el que el dispositivo estaba conectado a un flujo de prueba. De acuerdo con otra realización de la invención, se añade un TipoServicio (ServiceType, en inglés) extra con un valor "PRUEBA" al modelo de datos de la especificación TR-135 Versión 1 existente. El uso del parámetro TipoServicio se explica en la especificación TR-135 Versión 1. De acuerdo con esta realización, cuando el dispositivo recoge estadísticas, son almacenadas en una instancia específica del objeto modelo de datos FlujoPrincipal (MainStream, en inglés) de la especificación TR-135 Versión 1 de un TipoServicio específico que corresponde al tipo de flujo, es decir, seleccionado por el usuario o de prueba. Si las estadísticas son recogidas cuando el dispositivo está conectado a un flujo de prueba, las estadísticas son almacenadas en un objeto FlujoPrincipal que tiene su atributo TipoServicio puesto en "PRUEBA"; si las estadísticas son recogidas cuando el dispositivo está conectado a un flujo seleccionado por el usuario, las estadísticas son almacenadas en otro objeto FlujoPrincipal que tiene su atributo TipoServicio puesto en uno de los tipos definidos en el modelo de datos existente como "IP", "IPTV" o "VoD".

La figura 1 muestra una infraestructura de red de ejemplo que es compatible con la invención y que incluye un dispositivo de gestión de estadísticas de calidad y una pluralidad de dispositivos adaptados para recoger estadísticas de calidad;

La infraestructura comprende:

5

25

30

35

40

45

- un programa que ofrece un servidor de gestión 116;
- un programa que ofrece un servidor de señalización 112;
- un dispositivo de gestión de estadísticas de calidad 110;
- un codificador de flujo de prueba 111;
- codificadores de flujo de programa 113, 114 y 115;

- una red de operador 117;
- una red de acceso 120;
- un dispositivo de puerta de enlace 121;
- LAN 112; y

15

20

5 - un descodificador (Set Top Box, en inglés) que recoge dispositivos, dispositivos 123, 124 y 125.

Un operador de servicios proporciona servicios a dispositivos tales como 123, 124 y 125. Estos servicios son proporcionados a través de la puerta de enlace 121 para los dispositivos 123 y 124, o directamente al dispositivo 125, a través de la red de acceso 120 y a través de la red del operador 117 y a través del equipo del operador que está conectado a la red del operador.

El dispositivo 121 es una puerta de enlace que sirve como punto de acceso a la red de acceso para los dispositivos 123 y 124 que están conectados en una LAN.

Los dispositivos 123, 124 y 125 son descodificadores (Set Top Boxes, en inglés) es decir, receptores de servicios de AV. El dispositivo 124 es un descodificador como el dispositivo 123 pero con capacidad de PVR (Grabador de Video Personal – Personal Video Recorder, en inglés) adicional. Los dispositivos 123 y 124 y 121 están conectados en una LAN que permite a los dispositivos 123 y 124 utilizar sus servicios entre ellos, por ejemplo el dispositivo 124 puede proporcionar servicios de PVR al dispositivo 123, por ejemplo para reproducir un video grabado. La puerta de enlace 121 proporciona servicios de traducción de dirección de red de manera que los dispositivos 123 y 124 pueden acceder a la red del operador 117 y a sus servicios. La puerta de enlace 121 tiene una interfaz adaptada a una conexión a la red de acceso, que es del tipo de ADSL, mientras que interactúa con los dispositivos 123 y 124 a través de una interfaz de IP.

El dispositivo 125 está directamente conectado a la red de acceso 120 y por lo tanto está provisto de una interfaz adaptada a esa red.

La WAN está representada en esta memoria por la red de acceso 120 y la LAN está representada en esta memoria por la red local 122.

- Lo primero de todo, los dispositivos 123, 124 y 125 se conectan programa que ofrece un servidor de gestión con el fin de identificarse y obtener la dirección del servidor de señalización 112 en el cual puede obtenerse una lista de servicios disponibles. A continuación, los dispositivos pueden conectarse a cualquiera de los flujos que son proporcionados por los codificadores de flujo de programa 113, 114 y 115. Los dispositivos 123, 124 y 125 son capaces de recibir y descodificar los servicios ofrecidos por el operador.
- La red del operador 117 comprende también un dispositivo de gestión de estadísticas de calidad 110 que permite al operador recoger estadísticas de calidad de los dispositivos 123, 124 y 125.
 - Los dispositivos 123, 124 y 125 son también capaces de recibir señales que los instruyen para recoger las estadísticas de calidad deseadas y almacenar éstas en una memoria que puede ser leída por el dispositivo de gestión de estadísticas de calidad 110.
- De acuerdo con una realización particular, el dispositivo de gestión de estadísticas de calidad y el dispositivo que lee las estadísticas de calidad recogidas no es el mismo dispositivo. Esta característica permite separar las tareas y utilizar el equipo dedicado que está adaptado al tipo de tarea.
 - Los dispositivos 123, 124 y 125 son también capaces de recibir una señal para conectarse a un flujo de prueba proporcionado por el codificador 111 del flujo de prueba.
- Dinámicamente, el dispositivo de gestión de estadísticas de calidad 110 recoge estadísticas de calidad de los 40 dispositivos 123, 124 y 125 de la siguiente manera: el dispositivo de gestión de estadísticas de calidad 110 envía una señal al menos a uno de los dispositivos 123, 124 y 125. Esta señal puede tener valores que comprenden dos modos de recogida de estadísticas, siendo un primer modo de MONITORIZACIÓN NO AUTOMÁTICA y siendo un segundo modo de MONITORIZACIÓN AUTOMÁTICA. Tras un periodo de tiempo, el dispositivo de gestión de 45 estadísticas de calidad 110 puede recoger las estadísticas recogidas por los dispositivos 123, 124 y 125. De acuerdo con una realización particular, una señal es enviada a uno o más dispositivos 123, 124 y 125 indicando una solicitud para una conexión a un flujo de prueba. Esta característica tiene la ventaja de permitir la inmediata prueba de varios dispositivos 123, 124 y 125 al mismo tiempo. De acuerdo con una realización particular, las estadísticas de calidad recogidas de los dispositivos 123, 124 y 125 son clasificadas de acuerdo con el tipo de flujo para el cual aplican las 50 estadísticas. Esta característica permite errores relativos a los tipos de flujo. De acuerdo con una realización particular, el tipo de flujo comprende al menos un flujo de tipo de prueba y al menos un flujo de tipo seleccionado por el usuario. Esta característica permite conocer si ha sido observado algún error por parte del usuario o no.

5

10

15

20

25

30

50

55

Los dispositivos 123, 124 y 125 recogen estadísticas de calidad como sigue. Reciben una señal que comprende una información representativa de un modo de recogida de estadísticas de calidad, primero (es decir MONITORIZACIÓN NO AUTOMÁTICA) o segundo (es decir, MONITORIZACIÓN AUTOMÁTICA). Los dispositivos 123, 124 y 125 entran en el modo que corresponde a la señal recibida. En el primero, el modo de MONITORIZACIÓN NO AUTOMÁTICA, se hace una conexión a un flujo de prueba especificado mediante la recepción de una señal que comprende una solicitud de conexión al flujo de prueba, y la recogida de estadísticas se realiza cuando la recogida es habilitada mediante la recepción de una señal de habilitación y cuando el dispositivo está conectado a un flujo. En el segundo, modo de MONITORIZACIÓN AUTOMÁTICA, se realiza una conexión automática a un flujo de prueba siempre que los recursos del dispositivo necesarios para la recogida de estadísticas de calidad estén disponibles. De acuerdo con una realización particular de la invención, el flujo de prueba del segundo modo es un parámetro que es configurable mediante un dispositivo diferente del dispositivo que recoge las estadísticas de un tipo de flujo diferente, y que observa los resultados. De acuerdo con una realización particular, se considera que los recursos están disponibles cuando una conexión al flujo de prueba y una recogida de estadísticas no impacta a la calidad de prestación del servicio del dispositivo: esto es, la calidad de los servicios que el dispositivo presta. Esta característica tiene la ventaja de procurar un funcionamiento continuado del dispositivo, sea lo que sea que esté haciendo, sin ser perturbado de ninguna manera por la recogida de estadísticas de calidad o por la conexión al flujo de prueba. Por ejemplo, la recogida de estadísticas no carga la CPU del dispositivo con una carga que retarde el tiempo de cambio del canal, o la conexión al flujo de prueba no reduce el ancho de banda disponible para el flujo seleccionado por el usuario que un usuario está visualizando o grabando. De acuerdo con una realización particular de la invención, los recursos necesarios para la recogida de una colección de estadísticas de calidad están disponibles en modo de espera. Esta característica permite la recogida de estadísticas sobre un largo periodo de tiempo, sin impactar a la calidad de prestación de servicio del dispositivo. Ventajosamente de acuerdo con una realización de variante, los recursos necesarios para la recogida de estadísticas de calidad se considera que están disponibles cuando el citado dispositivo no está conectado a un flujo procedente de una Red de Área Extensa. Esta característica permite, para un dispositivo de recogida conectado a una WAN, un rápido medio de determinar si los recursos necesarios están disponibles.

De acuerdo con una realización de variante, el dispositivo de puerta de enlace 121 es en sí mismo un dispositivo de recogida intermedio, que recoge estadísticas de calidad sobre los dispositivos que están conectados a su LAN. De acuerdo con una realización particular de la invención, el dispositivo de recogida intermedio es un dispositivo de recogida para el dispositivo de gestión de estadísticas de calidad, y es un dispositivo de gestión de estadísticas de calidad para los dispositivos de recogida conectados a su LAN. Entonces, el dispositivo de recogida intermedio implementa tanto el método de recogida de estadísticas como el método de gestión de recogida de estadísticas de acuerdo con la invención.

La figura 2 muestra un modelo de datos de ejemplo de acuerdo con una realización particular de la invención. Este modelo de datos de ejemplo utiliza el modelo de datos de la especificación TR-135 como marco. El modelo de datos descrito en la especificación TR-135 permite una funcionalidad de gestión remota de la Televisión Digital en un Descodificador. El uso de los parámetros SegundosMuestra (SampleSecond, en inglés) y SegundosMuestra (SampleSecond, en inglés) de acuerdo con la invención permite que un dispositivo que maneja o lee las estadísticas distinga entre las estadísticas recogidas mientras estaba conectado al flujo de prueba o no.

En las figuras 2, 3 y 4, el modelo de datos se describe en forma de tabla, lo que muestra la clase a la cual pertenece un atributo, el nombre del objeto y la jerarquía de clase en el modelo de datos (201), y atributos específicos de la clase con el nombre del atributo (203), el tipo de atributo (204) y la descripción de uso del atributo (205). En referencia a la figura 2, el elemento 200 introduce el objeto que está descrito en esta memoria y que puede ser encontrado en el elemento 201. El elemento 202 introduce los atributos del modelo de datos descritos en las entradas de la tabla 206, 207, 208, 209, 210 y 211.

De acuerdo con la realización particular ilustrada mediante esta figura, se muestra un detalle del modelo de datos para el objeto .ServicioSTB. {i}. MonitorizaciónServicio. FlujoPrincipal. {i}. Muestra (.STBService{i}. ServiceMonitoring. MainStream{i}. Sample, en inglés). En la especificación TR-135 Versión 1, las estadísticas recogidas se denominan muestras. Con el fin de poder distinguir entre la duración en la que fueron recogidas las estadísticas de calidad en un flujo seleccionado por el usuario y la duración en la que fueron recogidas las estadísticas de calidad en un flujo de prueba, el modelo de datos de acuerdo con la invención introduce dos atributos SegundosMuestra distintos, a saber, "SegundosMuestraUsuario" y "SegundosMuestraPrueba".

El atributo Segundos Muestra Usuario es una lista separada por comas en la que cada entrada de la lista es el número de segundos durante los cuales fueron recogidas estadísticas de calidad mientras se estaba conectado a un flujo seleccionado por el usuario.

El atributo SegundosMuestraPrueba es una lista separada por comas, donde cada entrada de la lista es el número de segundos durante los cuales fueron recogidas estadísticas de calidad mientras se estaba conectado a un flujo de prueba.

La figura 3 muestra una variante del modelo de datos de la figura 2 de acuerdo con una realización particular de la invención, donde el uso del TipoServicio permite que un dispositivo que maneja o lee las estadísticas distinga entre estadísticas recogidas mientras estaba conectado al flujo de prueba o no.

Como para la figura 2, el modelo de datos se describe en forma de tabla. Los elementos comunes con la figura 2 han sido explicados ya anteriormente y así no se describirán con más detalle en esta memoria.

10

15

20

25

30

35

En esta realización, la diferenciación entre la duración en la que las muestras, es decir, las estadísticas de calidad, son recogidas en un flujo seleccionado por el usuario y en un flujo de prueba, es realizada utilizando un atributo TipoServicio (ServiceType, en inglés) aumentado del objeto .ServicioSTB. {i}. Capacidades. MonitorizaciónServicio (.STBService. {i}. Capabilities. ServiceMonitoring, en inglés) de la especificación TR-135 Versión 1. El atributo TipoServicio es aumentado para soportar una clasificación de diferenciación entre los flujos seleccionados por el usuario y un flujo de prueba. Para almacenar la calidad recogida en diferentes objetos de acuerdo con el tipo de flujo el procedimiento es como sigue: varias instancias de objetos FlujoPrincipal (MainStream, en inglés) son creadas por el dispositivo de recogida. La información que contienen estos objetos puede ser leída por dispositivos externos tales como un dispositivo de gestión de recogida de calidad. Una instancia tiene su atributo TipoServicio puesto a un valor que refleja que el servicio es un flujo de prueba (por ejemplo "PRUEBA"), otra instancia tiene su atributo TipoServicio puesto a un valor para indicar que el servicio es un flujo seleccionado por el usuario (por ejemplo "Usuario de IPTV"). Para las estadísticas de calidad recogidas mientras se está conectado a un flujo de prueba, la instancia del objeto FlujoPrincipal (MainStream, en inglés) de la figura 2 (referencia 201) con su atributo TipoServicio puesto a "PRUEBA" se utiliza para almacenar las estadísticas. Para las estadísticas de calidad recogidas mientras se estaba conectado a un flujo seleccionado por el usuario de IPTV, la instancia del objeto FlujoPrincipal con el atributo TipoServicio puesto a "Usuario de IPTV" se utiliza para almacenar las estadísticas.

El atributo TipoServicio es del tipo secuencia, y es una lista separada por comas de tipos de servicio soportados, cada uno de los cuales se refiere a una fuente de flujo. Cada elemento se toma de una lista que comprende:

- Usuario de IPTV: un flujo de IPTV seleccionado por el usuario que se origina desde una WAN;
- Usuario de VoD: un flujo de Video bajo Demanda seleccionado por el usuario que se origina desde una WAN;
- Usuario de IP: cualquiera de los flujos anteriores (Usuario de IPTV o Usuario de VoD) seleccionados por el usuario que se originan desde una WAN;
- PRUEBA: un flujo de prueba que se origina desde la WAN que fue especificado mediante el ajuste del atributo URI del objeto .ServiceSTB{i}. Componentes. ExtremoFrontal{i}. IP. ConexiónServicio (.STBService{i}. Components. FrontEnd{i}. IP. ServiceConnect, en inglés);
- TODO-IP: Cualquier tipo de flujo de IP que se origina desde la WAN, que comprende flujos seleccionados por el usuario, IPTV y VoD;
- CAB un flujo que se origina desde un sintonizador de cable;
- DTT un flujo que se origina desde un sintonizador de Televisión Terrestre Digital (Digital Terrestrial Television, en inglés);
- SAT un flujo que se origina desde un sintonizador de satélite;
- PVR un flujo que se origina desde un Grabador de Video Personal.
- De acuerdo con una realización diferente de la invención, y en lugar de aumentar el conjunto de valores del parámetro TipoServicio, se añade un nuevo parámetro que se denomina por ejemplo SubTipoServicio que se utiliza además del parámetro TipoServicio de la especificación TR-135 Versión 1 existente, que toma uno de los valores "USUARIO" o "PRUEBA". El SubTipoServicio, utilizado junto con el parámetro TipoServicio heredado (especificación TR-135 Versión 1) permite distinguir dos instancias diferentes de un objeto FlujoPrincipal, una dedicada a un flujo seleccionado por el usuario, una dedicada a un flujo de prueba.
- La figura 4 muestra una realización de la diferenciación entre los modos primero y segundo de la recogida de estadísticas. Se implementa en un dispositivo compatible con la invención tal como cualquiera de los dispositivos 123, 124 y 125. Como para las figuras 2 y 3, el modelo de datos se describe en forma de tabla. Los elementos comunes con las figuras 2 y 3 han sido explicados ya anteriormente y así no se describirán con más detalle en esta memoria.
- El modelo de datos de la especificación TR-135 Versión 1 que se utiliza como marco para esta realización particular de la invención ha sido aumentado con la introducción de un nuevo atributo, a saber, "MonitorizaciónAutomática" (AutoMonitor, en inglés) 406, que es de tipo "Booleano" 407. Cuando un dispositivo de gestión de estadísticas de calidad pone el atributo de objeto MonitorizaciónAutomática del .ServicioSTB. {i}. MonitorizaciónServicio

(.STBService. {i}. ServiceMonitoring, en inglés) 401 al valor Booleano "VERDADERO", solicita que el dispositivo de recogida del cual es ajustado el atributo entre en el modo de recogida de estadísticas de calidad de MONITORIZACIÓN AUTOMÁTICA. Si no, cuando el atributo MonitorizaciónAutomática es puesto a "FALSO", el dispositivo de gestión de estadísticas de calidad solicita que el dispositivo de recogida entre en el primer modo de recogida de estadísticas que es el de MONITORIZACIÓN NO AUTOMÁTICA. El significado de estos dos modos ha sido ya explicado previamente en este documento y por lo tanto no se explica con más detalle.

5

15

40

45

50

55

El atributo HabilitarMuestra (SampleEnable, en inglés), cuando es puesto a VERDADERO por un dispositivo de gestión de calidad, es un habilitador de recogida de estadísticas de calidad.

La figura muestra una realización de la invención, en la que el flujo de prueba del segundo modo es un parámetro que es configurable mediante un dispositivo diferente del dispositivo de recogida de estadísticas de calidad, ilustrado mediante el mensaje 501.

La figura 5 muestra un intercambio de mensajes entre los dispositivos de la infraestructura de red de la figura 1 y el usuario, de una realización de la invención que utiliza el modelo de datos tal como se ilustra mediante la figura 2. Ilustrado mediante la figura 5 está el segundo modo de recogida de estadísticas, llamado modo de MONITORIZACIÓN AUTOMÁTICA. Las barras verticales en el diagrama representan, de izquierda a derecha, el dispositivo de gestión de estadísticas de calidad 110, el dispositivo de recogida de estadísticas de calidad 125, el usuario 500 y la red de acceso 120. Las flechas horizontales representan intercambios de mensajes o de señales o acciones

El intercambio se inicia con el envío de mensajes relativos a la gestión de estadísticas de calidad desde el dispositivo de gestión de estadísticas de calidad 110 al dispositivo de recogida de estadísticas de calidad 125. El 20 orden de los mensajes 501 a 503 es arbitrario. Los mensajes 503 a 504 y 509 y 514 utilizan el modelo de datos de las figuras 2 y 4. Él mensaje 503 corresponde al ajuste del atributo Monitorización Automática (AutoMonitor, en inglés) 406 de la figura 4 a VERDADERO. El mensaje 504 corresponde al ajuste del atributo HabilitarMuestra (SampleEnable, en inglés) 409 de la figura 4 a VERDADERO. El mensaje 509 corresponde al ajuste del atributo SegundosMuestraUsuario (UserSampleSeconds, en inglés) 206. El mensaje 514 corresponde al ajuste del atributo 25 SegundosMuestraPrueba (TestSampleSeconds, en inglés) 209. Primero, un URI (Identificador de Recurso Uniforme - Uniform Resource Identifier, en inglés) es enviado al dispositivo 125, que contiene información representativa de la ubicación del flujo de prueba (en esta memoria: CANAL DE PRUEBA - TEST CH, en inglés) y cómo conectarse a él. Pero, no se realiza ninguna conexión inmediata. Esto es diferente del funcionamiento del atributo URI en el modelo 30 de datos de la especificación TR-135 existente, en el que la simple acción de escribir de un atributo URI activa la conexión al flujo especificado por parte del dispositivo 125. De acuerdo con la invención, la configuración de una dirección de conexión para un flujo de prueba por parte de un dispositivo diferente del dispositivo que ejecuta la recogida de estadísticas de calidad y la acción de la propia conexión al flujo de prueba son acciones separadas. Esto permite soportar el segundo modo de recogida de estadísticas, modo de MONITORIZACIÓN AUTOMÁTICA. Aunque una inmediata conexión mediante la especificación del URI es útil en el modelo de funcionamiento del 35 estándar TR-135, pero de acuerdo con la invención, se realiza una conexión automática a un flujo de prueba en modo de MONITORIZACIÓN AUTOMÁTICA cuando los recursos están disponibles.

El segundo mensaje 502 enviado al dispositivo 125 contiene el IntervaloMuestra (SampleInterval, en inglés), ya explicado al principio de esta sección. El siguiente mensaje 503 habilita el segundo modo de recogida de estadísticas, modo de MONITORIZACIÓN AUTOMÁTICA, en el dispositivo 125. El mensaje 504 habilita la recogida de estadísticas de calidad. Ahora, la recogida de estadísticas puede comenzar. Una acción de usuario de cambio de canal se ilustra mediante el mensaje 505 (ZAP) del usuario 500 al dispositivo 125. Cuando el usuario cambia de canal a un canal de noticias, el dispositivo 125 solicita el canal requerido emitiendo una solicitud de conexión a la red de acceso 120, ilustrada en esta memoria mediante el mensaje 506 CONEXIÓN DE IGMP (CANAL DE NOTICIAS). IFMP corresponde a Protocolo de Multidifusión de Grupo de Internet (Internet Group Multicast Protocol, en inglés), que es un protocolo que permite una conexión (unión) a y una desconexión (abandono) de flujos de multidifusión sobre IP. A continuación, el dispositivo 125 recibe el flujo (507) solicitado.

Las estadísticas de calidad recogidas son, de acuerdo con el modelo de datos de la figura 2, almacenadas en el objeto .ServicioSTB {i}. MonitorizaciónServicio (.STBService {i}. ServiceMonitoring, en inglés), y el número de segundos en los que la recogida tiene lugar y el dispositivo que está conectado al flujo seleccionado por el usuario es almacenado en SegundosMuestraUsuario (UserSampleSeconds, en inglés), ilustrado mediante la acción 509.

A continuación, el usuario 500 pone su dispositivo 125 en el estado de espera. Tan pronto como el dispositivo 125 detecta que hay recursos disponibles, el dispositivo 125 se conecta al flujo de prueba que fue especificado en el mensaje 501 (URI) y continúa almacenando estadísticas de calidad en el objeto .ServicioSTB {i}. MonitorizaciónServicio (.STBService {i}. ServiceMonitoring, en inglés), mientras que el número de segundos en los que la recogida tiene lugar es almacenado en el atributo SegundosMuestraPrueba (TestSampleSeconds, en inglés) del objeto, lo que se ilustra mediante la acción 514. De acuerdo con una realización particular de la invención, las estadísticas de calidad recogidas son recibidas en el dispositivo de gestión de estadísticas de calidad, ilustrado mediante el mensaje 515. Esto ilustra una etapa de recepción de estadísticas de calidad recogidas.

La figura ilustra una realización particular de la invención, en la que los recursos necesarios se consideran disponibles cuando una conexión al flujo de prueba y una recogida de estadísticas de calidad sobre el flujo de prueba no impactan a la calidad de la prestación del servicio por parte del citado dispositivo. Mediante la recepción del mensaje HabilitarMuestra (SampleEnable, en inglés) 504, se recogen estadísticas, y continúa incluso en el estado de espera, tal como se ilustra mediante el intercambio de mensajes que continúa tras entrar en el estado de espera mediante el mensaje 510.

5

10

15

30

50

55

La figura también muestra una realización particular de la invención, en la que el dispositivo de gestión de estadísticas de calidad, que implementa el método de gestión de recogida de estadísticas de calidad, comprende el envío de información representativa de un intervalo de recogida al dispositivo de recogida 125, por medio del mensaje 502.

La figura 6 muestra un intercambio de mensajes entre los dispositivos de la infraestructura de red de la figura 1 y el usuario, de una realización de la invención que utiliza el modelo de datos tal como se ilustra mediante la figura 3. Lo que se ilustra mediante la figura 6 es el segundo modo de recogida de estadísticas, esto es, modo de MONITORIZACIÓN AUTOMÁTICA. La figura muestra el método de recogida de estadísticas de calidad por parte del dispositivo 125 y el método de gestión de las estadísticas de calidad en el dispositivo de gestión de estadísticas de calidad 110.

Los elementos comunes con la figura 5 han sido ya explicados para la figura 5 y por lo tanto no se explican con más detalle en esta memoria.

Diferentes con la figura 5 son las acciones 609 y 616, que ilustran el almacenamiento de las estadísticas recogidas y el número de segundos que las estadísticas fueron recogidas en un flujo de prueba y en un flujo seleccionado por el usuario en diferentes instancias de un objeto .ServicioSTB {i}. MonitorizaciónServicio. FlujoPrincipal{i}. Muestra (.STBService {i}. ServiceMonitoring. Mainstream {i}. Sample, en inglés) con el atributo TipoServicio puesto respectivamente a "Usuario de IPTV" para estadísticas que fueron recogidas mientras que el dispositivo 125 estaba conectado a un flujo seleccionado por el usuario, y un objeto .ServicioSTB {i}. MonitorizaciónServicio. FlujoPrincipal {i}. Muestra (.STBService {i}. ServiceMonitoring. Mainstream {i}. Sample, en inglés) con el atributo TipoServicio puesto respectivamente a "PRUEBA" para las estadísticas que fueron recogidas mientras que el dispositivo 125 estaba conectado al flujo de prueba.

De acuerdo con una realización diferente de la invención, y en lugar de aumentar el conjunto de valores del atributo TipoServicio, se añade un nuevo parámetro que se llamó por ejemplo SubTipoServicio que se utilizó además del parámetro TipoServicio de la especificación TR-135 Versión 1 existente, que toma uno de los valores "USUARIO" o "PRUEBA". El SubTipoServicio, utilizado junto con el parámetro TipoServicio (especificación TR-135 Versión 1) heredado permite distinguir dos instancias diferentes de un objeto FlujoPrincipal, una dedicada al flujo seleccionado por el usuario, una dedicada a un flujo de prueba.

De acuerdo con una realización particular ilustrada en las figuras 5 y 6, los recursos necesarios para la recogida de estadísticas de calidad se hacen disponibles en un estado de espera del dispositivo 125, ilustrado mediante las acciones continuadas y mensajes tras entrar en el estado de espera con la acción del usuario 510.

De acuerdo con una realización particular ilustrada en las figuras 5 y 6 mediante las acciones 509, 514 y 609, 614, las estadísticas de calidad están clasificadas de acuerdo con el tipo del flujo para el cual aplican las estadísticas, ilustrado en esta memoria mediante las acciones 609 y 614.

- De acuerdo con una realización particular de la invención ilustrada en las figuras 5 y 6 mediante las acciones 509 y 514, el tipo de flujo comprende un flujo de tipo de prueba y un flujo de tipo seleccionado por el usuario, representado respectivamente por "SegundosMuestraPrueba" (TestSampleSeconds, en inglés) y "SegundosMuestraUsuario" (UserSampleSeconds, en inglés) de la figura 5 y por el valor de TipoServicio "PRUEBA" y "Usuario de IPTV" de la figura 6.
- La figura 7 muestra un intercambio de mensajes entre los dispositivos de la infraestructura de red de la figura 1 y el usuario, de una realización de la invención que utiliza el modelo de datos tal como se ilustra mediante la figura 3. Ilustrado mediante la figura 7 está el primer modo de recogida de estadísticas, esto es, el modo de MONITORIZACIÓN NO AUTOMÁTICA.
 - Los elementos comunes con la figura 6 han sido ya explicados y por lo tanto no se explican con más detalle en esta memoria.

Diferente con la figura 6 son notablemente los mensajes "MonitorizaciónAutomática (F)" (Automonitor, en inglés) 700 correspondiente a 406 de la Fig. 4, y "ForzarConexión (T)" (ForceConnection, en inglés) 701 que son enviados al dispositivo 125. El mensaje 700 solicita la entrada del dispositivo 125 en el primer modo, MONITORIZACIÓN NO AUTOMÁTICA. En este modo, no se realiza ninguna conexión automática a un flujo de prueba. La conexión al flujo de prueba se realiza mediante la recepción de la señal de solicitud que comprende una solicitud para una conexión a

un flujo de prueba con el mensaje 701. La conexión al flujo de prueba se realiza entonces con el mensaje 512. La figura ilustra el envío de una señal a un dispositivo que solicita una conexión a un flujo de prueba.

De acuerdo con una realización particular de la invención, se añade un atributo "ForzarConexión" (ForceConnection, en inglés) al modelo de datos de la especificación TR-135. El atributo es del tipo Booleano y pertenece al objeto .ServicioSTB. {i}. Components. ExtremoFrontal. {i}. IP.ConexiónServicio (.STBService. {i}). Componentes. FrontEnd. {i}. IP.ServiceConnect, en inglés). El atributo indica, cuando se proporciona con el valor VERDADERO, que la conexión es solicitada a un flujo de prueba que es especificado en el parámetro URI que ha sido establecido con la ayuda del mensaje 501. Proporcionar un valor FALSO no tiene ningún efecto. En realidad, si el usuario procede con una acción de cambio de canal tal como un mensaje de ZAP ilustrado por el mensaje 505, pero tras haber recibido el mensaje de ForzarConexión (T) 701 que solicita una conexión a un flujo de prueba, la conexión al flujo de prueba es deshecha y reemplazada por una conexión al flujo seleccionado por el usuario.

La figura 8 ilustra un dispositivo de gestión de estadísticas de calidad 8 de acuerdo con una realización particular de la invención. El dispositivo corresponde por ejemplo al dispositivo 110 de la figura 1. El dispositivo 8 comprende los siguientes elementos, interconectados mediante una dirección y un bus de datos 840:

- un microprocesador 820 (o CPU, para «Unidad de Procesamiento Central» «Central Processing Unit», en inglés);
- una memoria no volátil del tipo ROM («Memoria de Sólo Lectura» «Read Only Memory», en inglés);
- una memoria de lectura escritura o RAM («Memoria de Acceso Aleatorio» «Random Access Memory», en inglés); y
- una interfaz de red 830, que se utiliza para conectar el dispositivo a una red de operador tal como 117 de la figura 1.

Durante el encendido, el microprocesador 820 copia un programa que comprende las instrucciones del algoritmo que implementa las etapas del método de gestión de la recogida de estadísticas de calidad que está almacenado en la ROM 800 al registro de RAM 811 y las ejecuta.

La interfaz de red 830 permite que el dispositivo reciba y envíe mensajes y datos sobre una conexión de red, tal como la conexión a la red del operador 117.

La palabra «registro» utilizada en la descripción de las memorias 800 y 810 significa una zona de memoria de baja capacidad (sólo algunos datos binarios) o una zona de memoria de alta capacidad (que permite el almacenamiento de un programa completo o de una gran cantidad de datos).

Cada uno de los registros en la ROM 800 y la RAM 810 pueden contener un número variable de datos de tamaño variable. La memoria de sólo lectura 800 comprende:

- un registro 801, donde el programa está almacenado.

La memoria de acceso aleatorio 810 comprende:

5

10

15

20

25

30

35

40

45

- un registro 811, utilizado para almacenar el programa que es copiado del registro ROM 801;
- un registro 812, utilizado para almacenar información representativa de una lista de dispositivos de los cuales pueden recogerse estadísticas o se recogen. La información almacenada aquí es tal como: nombre del dispositivo, tipo del dispositivo, dirección del dispositivo.
- un registro 813, utilizado para almacenar las estadísticas de calidad recibidas de los dispositivos; y
- un registro 814 que contiene datos necesarios para el funcionamiento del programa almacenado en el registro RAM 811, tal como variables temporales y bases de datos.

La figura 9 ilustra un dispositivo de recogida 9 de acuerdo con una realización particular de la invención. El dispositivo 9 corresponde por ejemplo a alguno de los dispositivos 123, 124 y 125 de la figura 1. El dispositivo 9 comprende los siguientes elementos, interconectados mediante una dirección y bus de datos 940:

- un microprocesador 920 (o CPU, para «Unidad de Procesamiento Central» «Central Processing Unit», en inglés);
- una memoria no volátil del tipo ROM («Memoria de Sólo Lectura» «Read Only Memory», en inglés) 900;

- una memoria de lectura escritura o RAM («Memoria de Acceso Aleatorio» «Random Access Memory», en inglés) 910; y
- una interfaz de red 930, que se utiliza para conectar el dispositivo a una red de acceso tal como 120 de la figura 1.
- 5 Con el encendido, el microprocesador 920 copia un programa que comprende las instrucciones del algoritmo que implementa las etapas del método de recogida de estadísticas de calidad que está almacenado en la ROM 900 al registro RAM 911 y las ejecuta.

La interfaz de red 930 permite que el dispositivo reciba y envíe mensajes y datos sobre una conexión de red, tal como la red de acceso 120 de la figura 1.

La palabra «registro» utilizada en la descripción de las memorias 900 y 910 significa una zona de memoria de baja capacidad (sólo algunos datos binarios) o una zona de memoria de alta capacidad (que permite el almacenamiento de un programa completo o de una gran cantidad de datos).

Cada uno de los registros en la ROM 900 y la RAM910 puede contener un número variable de datos de tamaño variable. La memoria de sólo lectura 900 comprende:

- un registro 901, en el que el programa está almacenado;

La memoria de acceso aleatorio 910 comprende:

15

20

25

40

- un registro 911, utilizado para almacenar el programa que está copiado del registro ROM 901;
- un registro 912, utilizado para almacenar información representativa del modo de recogida de estadísticas de calidad, siendo un modo primero, MONITORIZACIÓN NO AUTOMÁTICA o segundo, MONITORIZACIÓN AUTOMÁTICA:
- un registro 913, utilizado para almacenar información representativa de la dirección del flujo de prueba, es decir, el URI de prueba;
- un registro 914, utilizado para almacenar las estadísticas recogidas;
- un registro 915, utilizado para almacenar el número de segundos en los que las estadísticas fueron recogidas mientras estaba conectado a un flujo seleccionado por el usuario;
- un registro 916, utilizado para almacenar el número de segundos en los que las estadísticas fueron recogidas mientras están conectado a un flujo de prueba;
- un registro 917 que contiene datos necesarios para el funcionamiento del programa almacenado en el registro RAM 911, tal como variables y tablas temporales.
- De acuerdo con una realización particular de la invención, los registros están organizados de acuerdo con la jerarquía del modelo de datos ilustrado por la Fig. 2. Entonces, la RAM 910 comprende un objeto de modelo de datos 201, con atributos 206 y 209.

La figura 10 muestra un algoritmo de recogida de estadísticas de calidad de acuerdo con una realización particular de la invención, tal como es implementada por el dispositivo 9 de la figura 9.

La CPU 920 carga el programa que contiene el algoritmo de la memoria ROM 900 a la memoria RAM 910 e inicia el programa. El algoritmo se inicia con la etapa de inicialización 1000, en la que las variables necesarias para el algoritmo son inicializadas.

En la prueba 1001, el dispositivo 9 determina si una señal que comprende una información representativa de un modo de recogida de estadísticas de calidad, llamado modo solicitado, es recibida. El citado modo solicitado tiene al menos dos posibles valores que comprenden un primer modo y un segundo modo.

Si el modo solicitado es el primer modo, es decir, de MONITORIZACIÓN NO AUTOMÁTICA, el algoritmo continúa con la prueba 1003.

Si el modo solicitado es el segundo modo, es decir, de MONITORIZACIÓN AUTOMÁTICA, una conexión al flujo de prueba especificada en el atributo URI de prueba tal como está almacenado en el registro 913 de la figura 9 es automáticamente realizado en la etapa 1002 siempre que los recursos del dispositivo 9 necesarios para la recogida de estadísticas de calidad están disponibles. A continuación, la prueba 1005 es ejecutada.

En la prueba 1003, en el primer modo, se determina si se recibe una señal que comprende una solicitud de una conexión a un flujo de prueba. La etapa se repite si no se recibe tal señal. Si tal señal es recibida, se realiza una conexión a un flujo de prueba en la etapa 1004 y se ejecuta la prueba 1005.

A continuación, en la prueba 1005, se determina si se ha recibido una señal que permite la recogida de estadísticas de calidad. La prueba se repite si no se recibe tal señal. Si se recibe tal señal, la recogida de estadísticas de calidad es ejecutada cuando se está conectado a un flujo, ya sea seleccionado por un usuario o de prueba. Entonces el algoritmo se inicia de nuevo con la etapa 1001.

Cuando las estadísticas de calidad son recogidas, pueden ser enviadas a y recibidas por un dispositivo que solicita leerlas, tal como el dispositivo de gestión de estadísticas de calidad 110 de la figura 1, implementado mediante el dispositivo 8 de la figura 8.

10

15

40

45

50

55

La figura 11 muestra un algoritmo de gestión de recogida de estadísticas de calidad de acuerdo con una realización particular de la invención, tal como se implementa mediante el dispositivo 8 de la figura 8.

La CPU 820 carga el programa que contiene el algoritmo de la memoria ROM 800 a la memoria RAM 810 e inicia el programa. La gestión de la recogida de estadísticas de calidad se inicia con la etapa de inicialización 1100, en la que todas las variables necesarias para el algoritmo son inicializadas. En la etapa 1101, se envía una señal que comprende información representativa de un modo de recogida de estadísticas de calidad, la cual solicita a los dispositivos que entren en el primer modo, o en el segundo modo. En el primer modo, una señal de solicitud es enviada a los dispositivos de recogida para conectarse a un flujo de prueba, lo que se ilustra mediante la etapa 1102. En el segundo modo, no se envía tal señal. El algoritmo finaliza con la etapa 1103.

De acuerdo con una realización particular de la invención las estadísticas de calidad recogidas de acuerdo con el método ilustrado mediante la figura 10 y de acuerdo con el método de gestión de estadísticas de calidad ilustrado mediante la figura 11 son representados por datos no procesados. De acuerdo con otra realización particular, las estadísticas de calidad están representadas por datos que son extraídos de los datos no procesados.

De acuerdo con otra realización particular de la invención, las estadísticas de calidad están representadas tanto por datos no procesados como extraídos. De acuerdo con una realización de variante de la invención, los datos no procesados para estadísticas de calidad comprenden mediciones de tramas de datos perdidas, la velocidad de trama de un flujo recibido, el número de tramas descodificadas, el número de recepción y la memoria temporal del descodificador no exceden el límite y/o el número de memorias temporales excede el límite. De acuerdo con otra realización de variante de la invención, los datos extraídos de los datos no procesador comprende el número medio de tramas perdidas, la distribución Gausiana de la memoria temporal no excede el límite con respecto a la velocidad de trama. De acuerdo con otra realización particular más de la invención, las estadísticas de datos no procesados recogidas de al menos un dispositivo son obtenidas en otro dispositivo en el que los datos estadísticas son extraídos de los datos no procesados. Las realizaciones particulares descritas anteriormente pueden ser combinadas en forma de una realización con particulares ventajas.

Resultará evidente para el lector del presente documento que las realizaciones descritas están dadas como realizaciones de ejemplo de la invención, y que por ello la invención no está limitada a estas realizaciones.

La infraestructura de la figura 1 se ilustra como una realización de ejemplo. Otras infraestructuras son posibles que son compatibles con la invención, con adicionales o menos dispositivos; algunas funciones proporcionadas por los diferentes dispositivos se ilustran en esta memoria pueden ser combinadas en dispositivos únicos. Asimismo, las funciones proporcionadas por un único dispositivo pueden ser separadas y proporcionadas por diferentes dispositivos. De acuerdo con una realización particular de la invención, el dispositivo que envía las solicitudes para poner al menos otro dispositivo en modo de recogida primero o segundo no es el mismo dispositivo que obtiene las estadísticas de calidad recogidas. De acuerdo con una realización particular de la invención, la red del operador comprende otros dispositivos necesarios para su funcionamiento; equipo transmisor, equipo de gestión del tráfico y tarificación. En una realización particular de la invención, la red del operador típicamente comprende más o menos de los tres dispositivos mostrados. En una realización particular de la invención, es necesario otro equipo de red que comprende conmutadores y encaminadores de red. De acuerdo con una realización particular de la invención, hay un DSLAM (Multiplexador de Acceso de Línea de Abonado Digital - Digital Subscriber Line Access Multiplexer, en inglés) en la red de acceso y los dispositivos necesitan un modelo del tipo de ADSL (Línea de Abonado Digital Asíncrona - Asynchronous Digital Subscriber Line, en inglés), bien externo o interno, para conectarse a la red de acceso. De acuerdo con una realización particular de la invención, los dispositivos acceden a un mismo operador a través de diferentes redes de acceso. De acuerdo con una realización particular de la invención, los dispositivos tienen una interfaz secundaria, que les permite recibir recepciones de DTT (TV Terrestre Digital - Digital Terrestrial TV, en inglés) además de los servicios que son proporcionados por la red de acceso. De acuerdo con una realización particular de la invención el dispositivo debe ser directamente conectado a una red de acceso, que comprende un receptor de IPTV conectado a una red de ADSL, y un teléfono móvil conectado a una red de acceso de 3GPP inalámbrica.

De acuerdo con una realización particular de la invención, los dispositivos tienen los recursos que les permiten grabar un programa y ver otro al mismo tiempo. De acuerdo con una realización particular de la invención, los dispositivos pueden ser de un tipo dedicado, que comprenden un tipo STB (Descodificador – Set Top Box, en inglés) y un tipo PC (Ordenador Personal – Personal Computer, en inglés).

- Las etapas del método de recogida no necesariamente deben ser ejecutadas en el orden listado. Por ejemplo, la conexión al flujo de prueba en el primer modo depende de la recepción de una señal que indica una solicitud para conexión al flujo de prueba, y no necesariamente precede a la etapa de recogida de estadísticas.
- Aunque la invención está descrita utilizando los ejemplos de los estándares TR-69 y TR-135 y sus modelos de datos como marco, la invención no está limitada a la aplicación en el campo de los protocolos y arquitecturas citados, tales como TR-69 y TR-135 sino que puede también ser aplicada a otros protocolos y arquitecturas propietarios o estandarizados cuando se desea recoger y gestionar estadísticas de calidad, tal como SNMP (Protocolo de Gestión de Red Simple Simple Network Management Protocol, en inglés), especificado por el Grupo de Trabajo de Ingeniería de Internet IETF (Internet Engineering Task Force, en inglés). El SNMP expone datos de gestión en forma de variables en los sistemas gestionados, que describen la configuración del sistema. Estas variables pueden ser solicitadas y ajustadas por aplicaciones de gestión. Asimismo, los métodos de acuerdo con la invención no necesariamente necesitan la implementación de un modelo de datos, por ejemplo, puede utilizarse un protocolo de intercambio de mensajes que define mensajes de HTTP específicos para enviar y recibir señales y estadísticas de calidad de acuerdo con la invención.

REIVINDICACIONES

1. Un método de recogida de estadísticas de calidad, comprendiendo el método las siguientes etapas, implementadas por el dispositivo de recogida de estadísticas de calidad (123, 124, 125), denominado primer dispositivo:

5

10

15

25

30

- recepción de una señal de modo de recogida (503, 700) de tipo Booleano que comprende una información representativa de un modo de recogida de estadísticas de calidad, denominado modo solicitado, teniendo el citado modo solicitado dos posibles valores que comprenden un primer modo y un segundo modo, si el modo solicitado es el segundo modo, conexión automática a un flujo de prueba siempre que los recursos del citado primer dispositivo (123, 124, 125) necesarios para la citada recogida de estadísticas de calidad están disponibles, considerándose los citados recursos del citado primer dispositivo (123, 124, 125) como necesarios para la citada recogida de estadísticas de calidad cuando una conexión al citado flujo de prueba y la citada recogida de estadísticas de calidad en el citado flujo de prueba no impactan a la calidad de la prestación del servicio por parte del citado primer dispositivo (123, 124, 125), definiendo un modo de espera especial en el cual sólo los componentes del dispositivo necesarios para la recogida de estadísticas de calidad permanecen activos
- recogida de estadísticas de calidad cuando la citada recogida de estadísticas de calidad ha sido habilitada mediante la recepción de una señal de habilitar recogida de estadísticas de calidad (504) de tipo Booleano que habilita la citada recogida de estadísticas de calidad, y cuando el citado primer dispositivo (123, 124, 125) está conectado a un flujo.
- 20 2. Método de acuerdo con la reivindicación 1, caracterizado porque el citado flujo de prueba es un parámetro que es configurable por un segundo dispositivo diferente del citado primer dispositivo (123, 124, 125).
 - 3. Método de acuerdo con cualquiera de las reivindicaciones 1 a 2, caracterizado porque los citados recursos del citado primer dispositivo (123, 124, 125) necesarios para la citada recogida de estadísticas de calidad se considera que están disponibles cuando el citado primer dispositivo (123, 124, 125) no está conectado a un flujo procedente de una Red de Área Extensa, por lo que se realiza una distinción entre un flujo procedente de la Red de Área Extensa y un flujo no procedente de la Red de Área Extensa comparando una dirección de IP de fuente del flujo con la dirección de IP del citado primer dispositivo (123, 124, 125).
 - 4. Método de acuerdo con cualquiera de las reivindicaciones 1 a 3, caracterizado porque el citado primer dispositivo es un dispositivo híbrido, que comprende una primera interfaz de Televisión Terrestre Digital y una segunda interfaz de Televisión sobre Protocolo de Internet sobre Línea de Abonado Digital Asíncrona por cable, y los citados recursos del citado primer dispositivo (123, 124, 125) necesarios para la citada recogida de las citadas estadísticas de calidad se considera que están disponibles cuando el citado primer dispositivo activa la citada segunda interfaz y libera la citada primera interfaz.
- 5. Método de acuerdo con cualquiera de las reivindicaciones 1 a 4, caracterizado porque los citados recursos del citado primer dispositivo (123, 124, 125) necesarios para la citada recogida de estadísticas de calidad están disponibles en un estado de espera del citado primer dispositivo (123, 124, 125).
 - 6. Método de acuerdo con cualquiera de las reivindicaciones 1 a 5, caracterizado porque las citadas estadísticas de calidad están clasificadas de acuerdo con un tipo de flujo para el cual aplican las citadas estadísticas de calidad.
- 40 7. Método de acuerdo con la reivindicación 6, caracterizado porque el citado tipo de flujo comprende un flujo de prueba y un flujo del tipo seleccionado por el usuario.
 - 8. Método de acuerdo con cualquiera de las reivindicaciones 1 a 7, caracterizado porque las citadas estadísticas de calidad pertenecen a un conjunto que comprende calidad de servicio y calidad de experiencia.
- 9. Método de acuerdo con cualquiera de las reivindicaciones 1 a 7, caracterizado porque las citadas estadísticas de calidad se refieren a servicios del tipo audio o video.
 - 10. Un método de gestión de recogida de estadísticas de calidad, comprendiendo el método las siguientes etapas, implementadas por un medio de gestión de estadísticas de calidad (110):
 - envío de una señal de modo de recogida (503, 700) de tipo Booleano al menos a un dispositivo de recogida de estadísticas de calidad (123, 124, 125) que comprende una información representativa de un modo de recogida de estadísticas de calidad, llamado modo solicitado, teniendo el citado modo solicitado dos posibles valores que comprenden un primer modo y un segundo modo, si el modo solicitado es el segundo modo, una conexión del citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125) al flujo de prueba es automáticamente realizada siempre que los recursos del citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125) necesarios para la citada

recogida de estadísticas de calidad están disponibles, considerándose los citados recursos del citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125) necesarios para la citada recogida de estadísticas de calidad disponible cuando una conexión al citado flujo de prueba y la citada recogida de estadísticas de calidad en el citado flujo de prueba no impacta a la calidad de prestación de servicio por parte del citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125), definiendo un modo de espera especial en el cual sólo los componentes del dispositivo necesarios para la recogida de estadísticas de calidad permanecen activos.

11. Método de acuerdo con la reivindicación 10, caracterizado porque el método comprende una etapa de recepción (515) de estadísticas de calidad recogidas desde el citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125).

5

- 12. Método de acuerdo con cualquiera de las reivindicaciones 10 a 11, caracterizado porque el método comprende una etapa de envío (502) de información representativa de un intervalo de recogida, al citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125).
- Método de acuerdo con cualquiera de las reivindicaciones 10 a 12, caracterizado porque una señal (501)
 que solicita una conexión a un flujo de prueba es enviada al citado al menos un dispositivo de recogida de estadísticas de calidad (123, 124, 125).
 - 14. Método de acuerdo con cualquiera de las reivindicaciones 10 a 13, caracterizado porque las citadas estadísticas de calidad están clasificadas de acuerdo con el tipo de flujo para el cual aplican las estadísticas de calidad.
- 20 15. Método de acuerdo con la reivindicación 14, caracterizado porque el citado tipo de flujo comprende un flujo de prueba y un flujo del tipo seleccionado por el usuario.
 - 16. Dispositivo (9) para la recogida de estadísticas de calidad que implementa el método de recogida de estadísticas de calidad de acuerdo con cualquiera de las reivindicaciones 1 a 9.
- 17. Dispositivo (8) para la gestión de estadísticas de calidad que implementa el método de gestión de recogida de estadísticas de calidad de acuerdo con cualquiera de las reivindicaciones 10 a 15.

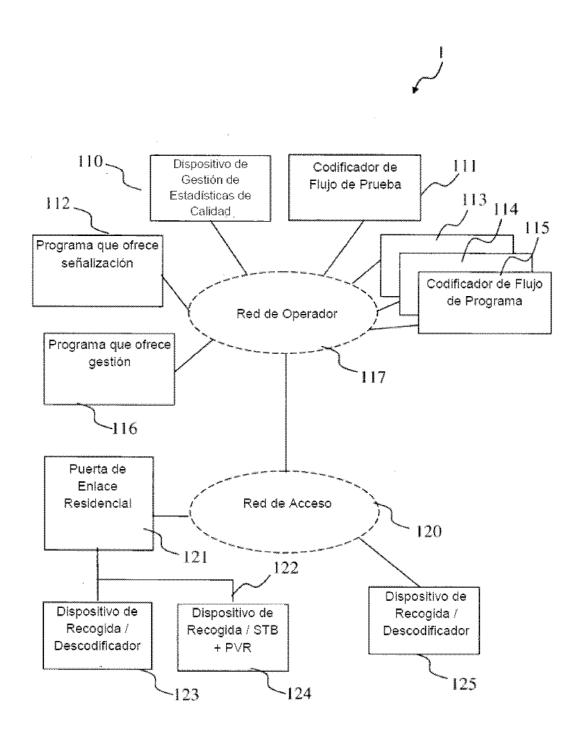


Fig. 1

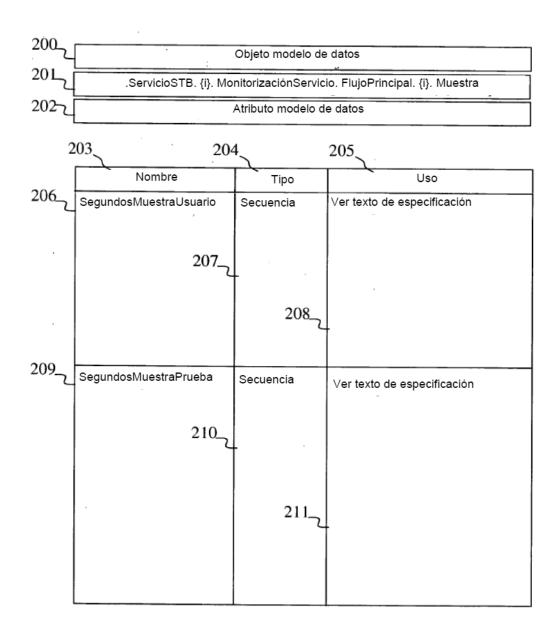


Fig. 2

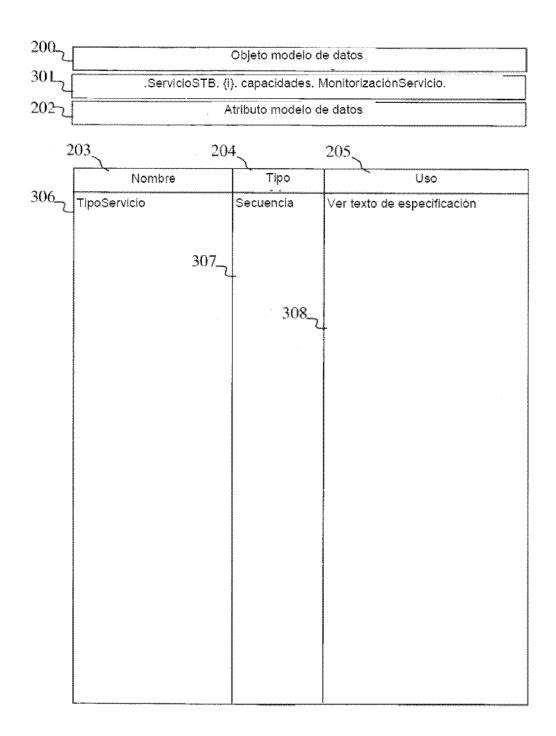


Fig. 3

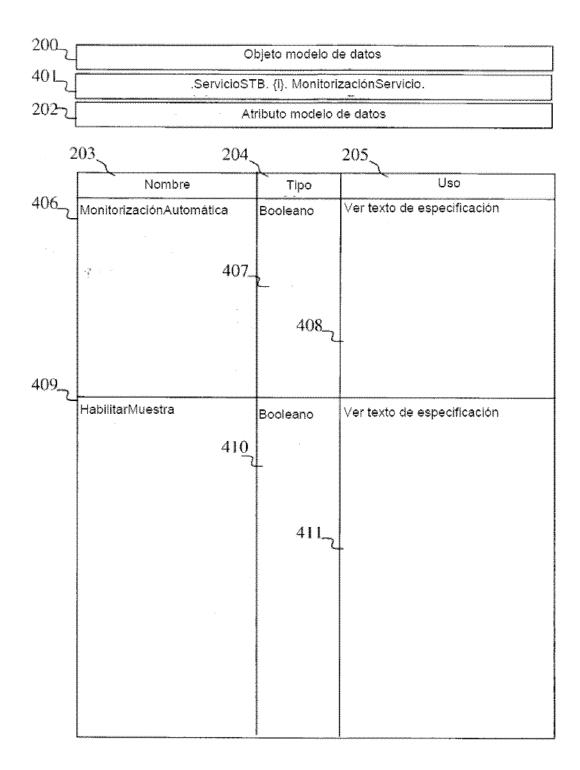


Fig. 4

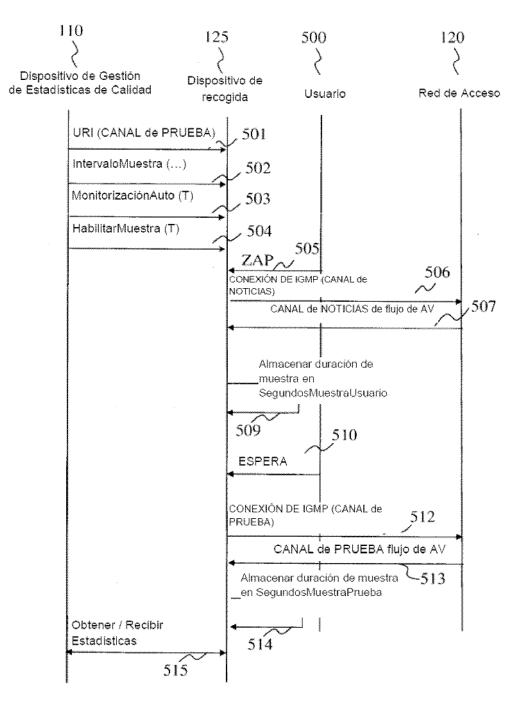


Fig. 5

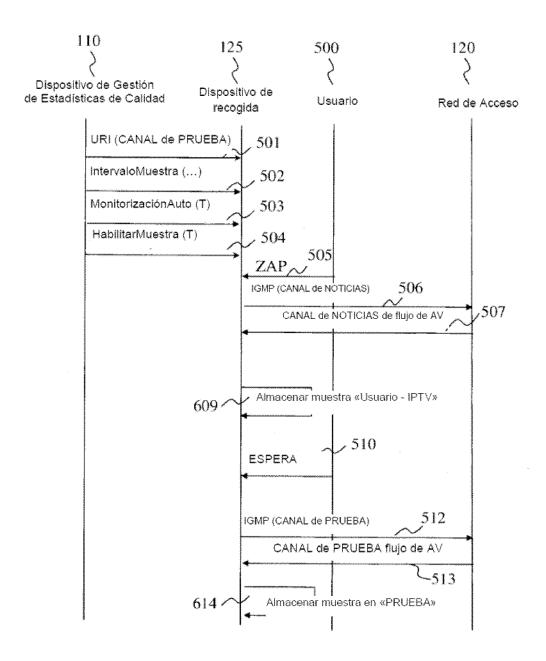


Fig. 6

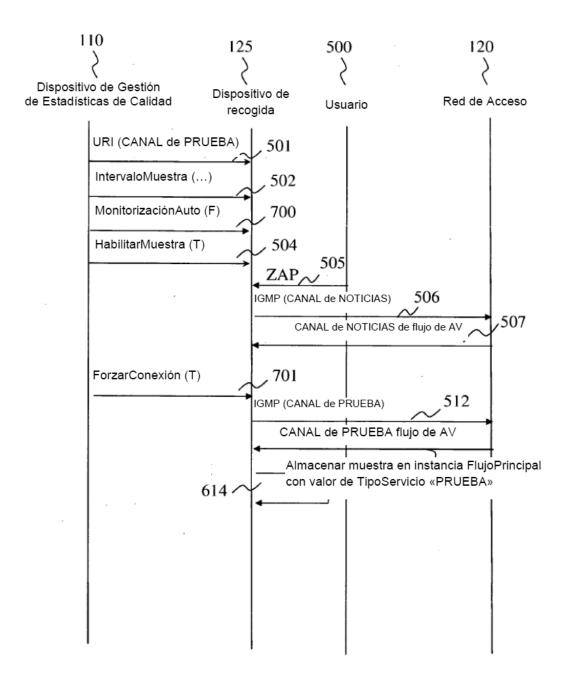


Fig. 7

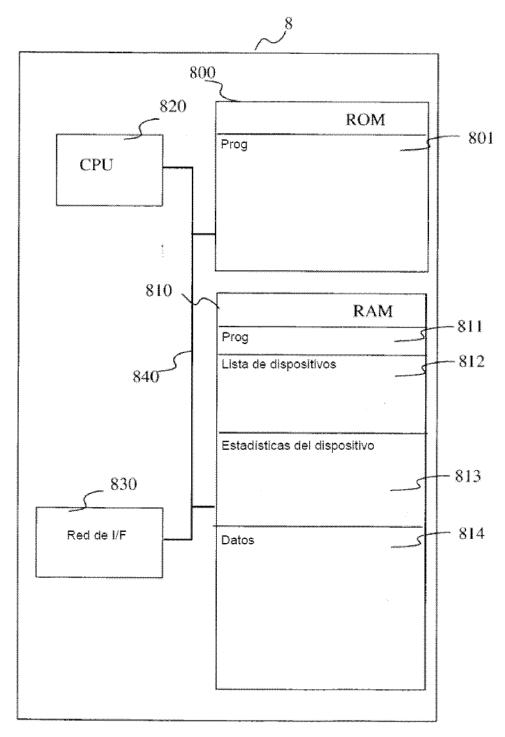


Fig. 8

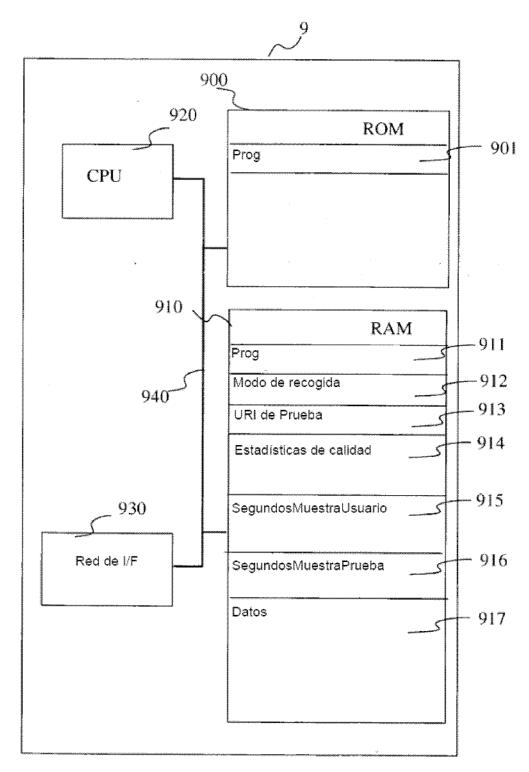


Fig. 9

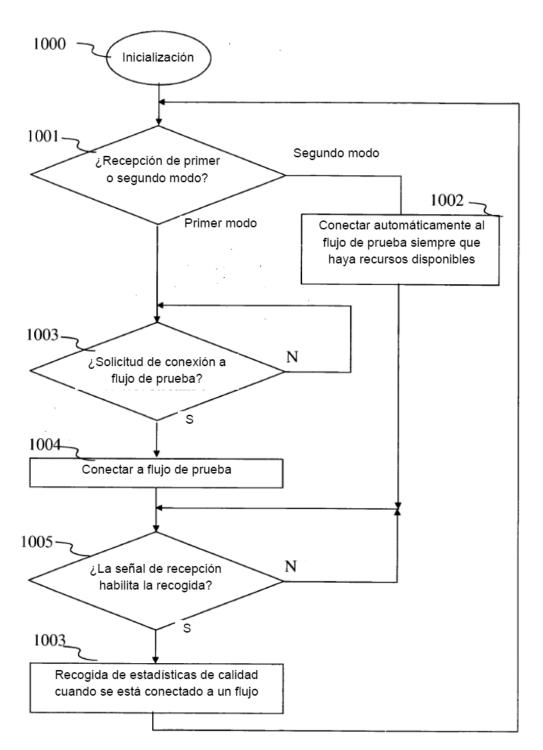
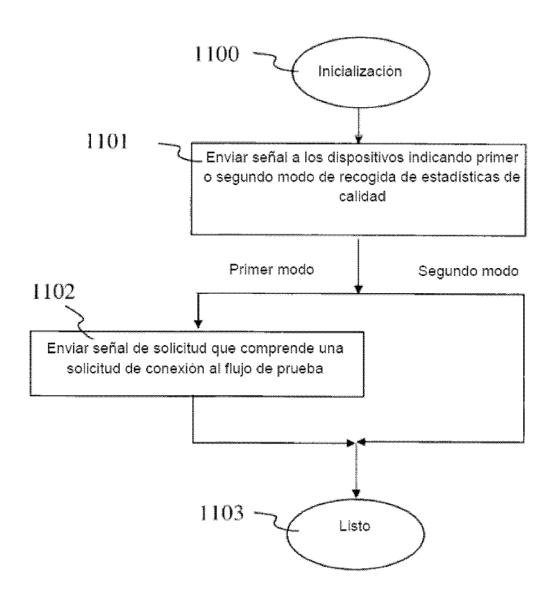



Fig. 10

Fig. 11