

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 439 736

(51) Int. CI.:

C07D 405/12 (2006.01) C07D 405/14 (2006.01) C07D 213/75 (2006.01) A61K 31/5585 (2006.01) A61K 31/4418 (2006.01) A61P 11/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 08.11.2006 E 06837028 (7) (97) Fecha y número de publicación de la concesión europea: 18.09.2013 EP 1945632

(54) Título: Moduladores heterocíclicos de transportadores de casete de unión a ATP

(30) Prioridad:

08.11.2005 US 734506 P 27.12.2005 US 754086 P 22.05.2006 US 802458 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.01.2014

(73) Titular/es:

VERTEX PHARMACEUTICALS INCORPORATED (100.0%)130 WAVERLY STREET CAMBRIDGE, MA 02139-4242, US

(72) Inventor/es:

HADIDA RUAH, SARA; HAMILTON, MATTHEW; MILLER, MARK; **GROOTENHUIS, PETER D. J.;** BEAR, BRIAN; MCCARTHY, JASON y ZHOU, JINGLAN

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Moduladores heterocíclicos de transportadores de casete de unión a ATP

5 Referencia cruzada a solicitudes relacionadas

La presente solicitud reivindica el beneficio de prioridad a tenor de 35 U.S.C. N° 119 de la Solicitud Provisional de Estados Unidos N° 60/734.506, presentada el 8 de noviembre de 2005, Solicitud Provisional de Estados Unidos N° 60/754.086, presentada el 27 de diciembre de 2005, y la Solicitud Provisional de Estados Unidos N° 60/802.458, presentada el 22 de mayo de 2006.

Campo técnico de la invención

La presente invención se refiere a moduladores de transportadores de Casete de Unión a ATP ("ABC") o fragmentos de los mismos, que incluyen al Regulador de la Conductancia Transmembrana de la Fibrosis Quística ("CFTR"), composiciones de los mismos y procedimientos de los mismos. La presente invención también se refiere a dichos moduladores para su uso en el tratamiento de enfermedades mediadas por el transportador de ABC.

Antecedentes de la invención

20

25

10

Los transportadores de ABC son una familia de proteínas transportadoras de membrana que regulan el transporte de una gran diversidad de agentes farmacológicos, fármacos potencialmente tóxicos, y xenobióticos, así como aniones. Los transportadores de ABC son proteínas de membrana homólogas que se unen y usan trifosfato de adenosina celular (ATP) para sus actividades específicas. Algunos de estos transportadores se descubrieron como proteínas de resistencia a múltiples fármacos (tal como la glicoproteína MDR1-P, o la proteína de resistencia a múltiples fármacos, MRP1), que defienden a las células cancerosas malignas frente a agentes quimioterapeúticos. Hasta la fecha, se han identificado 48 Transportadores de ABC y se han agrupado en 7 familias basándose en su identidad de secuencia y en su función.

30 L p

Los transportadores de ABC regulan una diversidad de papeles fisiológicos importantes dentro del organismo y proporcionan defensa frente a compuestos ambientales dañinos. Debido a esto, representan dianas farmacológicas potenciales importantes para el tratamiento de enfermedades asociadas con defectos en el transportador, prevención del transporte de fármacos fuera de la célula diana, e intervención en otras enfermedades en las que la modulación de la actividad del transportador de ABC puede ser beneficiosa.

35

40

Un miembro de la familia de transportadores de ABC normalmente asociado con enfermedades es el canal de aniones mediado por cAMP/ATP, CFTR. CFTR se expresa en una diversidad de tipos celulares, que incluyen células de epitelio secretoras y de absorción, en las que regula el flujo de aniones a través de la membrana, así como la actividad de otros canales iónicos y proteínas. En células epiteliales, el funcionamiento normal de CFTR es crítico para el mantenimiento del transporte de electrolitos por todo el organismo, incluyendo el tejido respiratorio y digestivo. CFTR está compuesto de aproximadamente 1480 aminoácidos que codifican una proteína compuesta por una repetición en tándem de dominios transmembrana, conteniendo cada uno de ellos seis hélices transmembrana y un dominio de unión a nucleótidos. Los dos dominios transmembrana están unidos por un gran dominio regulador (R), polar con múltiples sitios de fosforilación que regulan la actividad del canal y el tránsito celular.

45

50

El gen que codifica CFTR se ha identificado y secuenciado (Véase Gregory, R. J. y col. (1990) Nature 347: 382-386; Rich, D. P. y col. (1990) Nature 347: 358-362), (Riordan, J. R. y col. (1989) Science 245: 1066-1073). Un defecto en este gen causa mutaciones en CFTR que dan como resultado la Fibrosis Quística ("FQ"), la enfermedad genética mortal más común en seres humanos. La Fibrosis Quística afecta a aproximadamente uno de cada 2.500 lactantes en los Estados Unidos. Dentro de la población general de Estados Unidos, hasta 10 millones de personas llevan una sola copia del gen defectuoso sin efectos patológicos evidentes. Por el contrario, los individuos con dos copias del gen asociado a FQ padecen los efectos debilitantes y mortales de la FQ, que incluyen la enfermedad pulmonar crónica

55

60

65

En pacientes con fibrosis quística, las mutaciones en el CFTR expresadas endógenamente en los epitelios respiratorios conducen a una secreción de aniones apicales reducida que causa un desequilibrio en el transporte de iones y fluidos. La disminución resultante en el transporte de aniones contribuye a una acumulación aumentada de mucosidad en el pulmón y las infecciones microbianas acompañantes que, en última instancia, causan la muerte en los pacientes con FQ. Además de la enfermedad respiratoria, los pacientes con FQ padecen por lo general problemas gastrointestinales e insuficiencia pancreática que, si se deja sin tratar, da como resultado la muerte. Además, la mayoría de los hombres con fibrosis quística son infértiles y la fertilidad está disminuida entre las mujeres con fibrosis quística. Al contrario que los graves efectos de dos copias del gen asociado a la FQ, los individuos con una sola copia del gen asociado a la FQ presentan una resistencia aumentada al cólera y a la deshidratación resultante de la diarrea – lo que quizá explica la frecuencia relativamente elevada del gen de la FQ dentro de la población.

El análisis de la secuencia del gen de CFTR de cromosomas de FQ ha puesto de manifiesto una diversidad de mutaciones causantes de enfermedad (Cutting, G. R. y col. (1990) Nature 346: 366-369; Dean, M. y col. (1990) Cell 61: 863: 870; y Kerem, B-S. y col. (1989) Science 245: 1073-1080; Kerem, B-S y col. (1990) Proc. Natl. Acad. Sci. USA 87:8447-8451). Hasta la fecha, se han identificado > 1000 mutaciones causantes de enfermedad en el gen de la FQ (http://www.genet.sickkids.on.ca/cftr/). La mutación más prevalente es una supresión de fenilalanina en la posición 508 de la secuencia de aminoácidos del CFTR, y se denomina comúnmente ΔF508-CFTR. Esta mutación aparece en aproximadamente un 70 % de los casos de fibrosis quística y está asociada con una enfermedad grave.

La supresión del resto 508 en el ΔF508-CFTR impide que la proteína naciente se pliegue correctamente. Esto da como resultado la incapacidad de la proteína mutante para salir del retículo endoplásmico ("ER"), y transitar hacia la membrana plasmática. Como resultado, el número de canales presentes en la membrana es bastante menor del observado en células que expresan CFTR de tipo silvestre. Además del tránsito alterado, la mutación da como resultado una apertura y cierre de canales defectuosa. En conjunto, el número reducido de canales en la membrana y la apertura y cierre defectuosos conducen a un transporte de aniones reducido a través de epitelios que conduce a un transporte defectuoso de iones y fluidos. (Quinton, P. M. (1990), FASEB J. 4: 2709-2727). Sin embargo, los estudios han demostrado que las cantidades reducidas de ΔF508-CFTR en la membrana son funcionales, aunque menos que el CFTR de tipo silvestre. (Dalemans y col. (1991), Nature Lond. 354: 526-528; Denning y col., mencionado anteriormente; Pasyk y Foskett (1995), J. Cell. Biochem. 270: 12347-50). Además del ΔF508-CFTR, otras mutaciones causantes de enfermedad en el CFTR que dan como resultado tránsito, síntesis y/o apertura y cierre de canales defectuosos se podrían regular positiva o negativamente para alterar la secreción de aniones y modificar la progresión de la enfermedad y/o su gravedad.

10

15

20

25

65

Aunque el CFTR transporta una diversidad de moléculas además de aniones, está claro que este papel (el transporte de aniones) representa un elemento en un mecanismo importante de transporte de iones y agua a través del epitelio. Los otros elementos incluyen el canal de Na⁺ epitelial, ENaC, el cotransportador de Na⁺/2Cl⁻K⁺, la bomba de Na⁺-ATPasa y los canales de K⁺ de la membrana basolateral, que son responsables de la absorción de cloruro en la célula.

Estos elementos trabajan juntos para conseguir un transporte direccional a través del epitelio mediante su expresión y localización selectiva dentro de la célula. La absorción de cloruro tiene lugar por la actividad coordinada del ENaC y del CFTR presentes en la membrana apical y la bomba de Na⁺-K⁺-ATPasa y los canales de Cl⁻ expresados en la superficie basolateral de la célula. El transporte activo secundario de cloruro desde el lado luminal conduce a la acumulación de cloruro intracelular, que después puede abandonar pasivamente la célula a través de canales de Cl⁻, dando como resultado un transporte vectorial. La disposición del cotransportador de Na⁺/2Cl⁻/K⁺, la bomba de Na⁺-ATPasa y los canales de K⁺ de la membrana basolateral en la superficie basolateral y del CFTR en el lado luminal coordinan la secreción de cloruro mediante CFTR en el lado luminal. Debido a que el agua probablemente nunca se transporta activamente por sí misma, su flujo a través de los epitelios depende de diminutos gradientes osmóticos transepiteliales generados por el flujo masivo de sodio y cloruro.

Además de la Fibrosis Quística, la modulación de la actividad del CFTR puede ser beneficiosa para otras enfermedades no causadas directamente por mutaciones en el CFTR, tales como enfermedades secretoras y otras enfermedades del plegamiento de proteínas mediadas por el CFTR. Estas incluyen, pero no se limitan a, enfermedad pulmonar obstructiva crónica (EPOC), enfermedad del ojo seco y el Síndrome de Sjögren.

45 La EPOC se caracteriza por una limitación del flujo de aire que es progresiva y no totalmente reversible. La limitación del flujo de aire se debe a una hipersecreción de moco, enfisema y bronquiolitis. Los activadores del CFTR de tipo silvestre o mutante ofrecen un tratamiento potencial de la hipersecreción de moco y del aclaramiento mucociliar alterado que es común en la EPOC. En concreto, el aumento de la secreción de aniones a través del CFTR puede facilitar el transporte de fluidos hacia el líquido de la superficie de las vías respiratorias para hidratar el 50 moco y optimizar la viscosidad del fluido periciliar. Esto conduciría a un aclaramiento mucociliar aumentado y a una reducción de los síntomas asociados con la EPOC. La enfermedad del ojo seco se caracteriza por una disminución en la producción acuosa de lágrimas y perfiles anómalos de lípidos, proteínas y mucina en la película lacrimal. Existen muchas causas de ojo seco, algunas de las cuales incluyen edad, cirugía ocular de Lasik, artritis, medicaciones, quemaduras químicas/térmicas, alergias y enfermedades, tales como fibrosis quística y síndrome de 55 Sjögren. El aumento de la secreción de aniones a través del CFTR aumentaría el transporte de fluidos desde las células endoteliales corneales y glándulas secretoras que rodean el ojo para aumentar la hidratación corneal. Esto ayudaría a aliviar los síntomas asociados con la enfermedad del ojo seco. El síndrome de Sjögren es una enfermedad autoimmune en la que el sistema inmune ataca a las glándulas productoras de humedad por todo el organismo, incluyendo el ojo, boca, piel, tejido respiratorio, hígado, vagina y los intestinos. Los síntomas incluyen 60 sequedad ocular, de boca y vaginal, así como enfermedad pulmonar. La enfermedad también está asociada con artritis reumatoide, lupus sistémico, esclerosis sistémica y polimiositis/dermatomiositis. Se cree que un tránsito de proteínas defectuoso causa la enfermedad, para la que las opciones de tratamiento son limitadas. Los moduladores de la actividad del CFTR pueden hidratar los diversos órganos afectados por la enfermedad y ayudar a elevar los síntomas asociados.

Como se ha analizado anteriormente, se cree que la supresión del resto 508 en el ΔF508-CFTR impide que la

proteína naciente se pliegue correctamente, dando como resultado la incapacidad de esta proteína mutante para salir del RE, y transitar hacia la membrana plasmática. Como resultado, cantidades insuficientes de la proteína madura están presentes en la membrana plasmática y el transporte de cloruro dentro de los tejidos epiteliales se reduce significativamente. De hecho, se ha demostrado que este fenómeno celular de procesamiento del RE defectuoso de transportadores de ABC por la maquinaria del RE es la base subyacente, no sólo para la enfermedad de FQ, sino para una amplia variedad de otras enfermedades aisladas y hereditarias. Las dos formas en las que la maquinaria del RE puede funcionar defectuosamente son por pérdida de acoplamiento con la exportación del RE de las proteínas conduciendo a su degradación, o por la acumulación en el RE de estas proteínas defectuosas/plegadas erróneamente [Aridor M, y col., Nature Med., 5 (7), págs. 745-751 (1999); Shastry, B.S., y col., Neurochem. International, 43, págs. 1-7 (2003); Rutishauser, J., y col., Swiss Med Wkly, 132, págs. 211-222 (2002); 10 Morello, JP y col., TIPS, 21, págs. 466- 469 (2000); Bross P., y col., Human Mut., 14, págs. 186-198 (1999)]. Las enfermedades asociadas con la primera clase de funcionamiento defectuoso del RE son Fibrosis Quística (debida al ΔF508-CFTR plegado erróneamente, tal como se ha analizado anteriormente), Enfisema hereditario (debido a a1antitripsina; variantes no Piz), Hemocromatosis hereditaria, Deficiencias de coagulación-fibrinólisis, tales como Deficiencia de proteína C, Angioedema hereditario de Tipo 1, Deficiencias en el procesamiento de lípidos, tales 15 como Hipercolesterolemia familiar, Quilomicronemia de tipo 1, Abetalipoproteinemia, Enfermedades de almacenamiento lisosómico, tales como enfermedad de células I/Pseudo-Hurler, Mucopolisacaridosis (debida a Enzimas del procesamiento lisosómico). Sandhof/Tav-Sachs (debida a β-Hexosaminidasas). Crigler-Najiar de tipo II (debida a la UDP-glucuronil-siálico-transferasa), Poliendocrinopatía/Hiperinsulinemia, Diabetes mellitus (debida al receptor de Insulina), enanismo de Laron (debido al Receptor de hormona del crecimiento), Deficiencia de 20 mieloperoxidasa, Hipoparatiroidismo primario (debido a la Hormona preproparatiroidea), Melanoma (debido a Tirosinasa). Las enfermedades asociadas con la última clase de funcionamiento defectuoso del RE son la Glucanosis CDG de tipo 1, Enfisema hereditario (debido a la α1-Antitripsina (variante PiZ), Hipertiroidismo congénito, Osteogénesis imperfecta (debida al procolágeno de Tipo I, II, IV), Hipofibrinogenemia hereditaria (debida al Fibrinógeno), deficiencia de ACT (debida a la α1-Antiquimotripsina), Diabetes insípida (DI), DI neurofiseal (debida a 25 la hormona Vasopresina/receptor V2), DI nefrogénica (debida a la Acuaporina II), síndrome de Charcot-Marie Tooth (debido a la Proteína de mielina periférica 22), enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como la enfermedad de Alzheimer (debida a la βAPP y a las presenilinas), enfermedad de Parkinson, Esclerosis lateral amiotrófica, Parálisis supranuclear progresiva, enfermedad de Pick, diversos trastornos neurológicos de la poliglutamina tales como el Huntington. Ataxia espinocerebelar de tipo I, Atrofia muscular espinal y bulbar, Atrofia dentatorrubro palidoluisiana y Distrofia miotónica, así como Encefalopatías espongiformes, tales como la Enfermedad de Creutzfeldt-Jakob hereditaria (debida a un Defecto en el procesamiento de la proteína priónica), enfermedad de Fabry (debida a la α-galactosidasa A lisosómico) y síndrome de Straussler-Scheinker (debido al defecto de procesamiento de Prp).

35

Además de la regulación positiva de la actividad del CFTR, la reducción de la secreción de aniones por moduladores del CFTR puede ser beneficiosa para el tratamiento de diarreas secretoras, en las que el transporte de agua epitelial se aumenta espectacularmente como resultado del transporte de cloruro activado por secretagogos. El mecanismo implica la elevación del AMPc y la estimulación del CFTR.

40

Aunque existen numerosas causas de diarrea, las consecuencias principales de las enfermedades diarreicas, que se producen como resultado de un transporte de cloruro excesivo, son comunes a todas e incluyen deshidratación, acidosis, crecimiento alterado y muerte.

Las diarreas agudas y crónicas representan un problema médico muy importante en muchas áreas del mundo. La diarrea es tanto un factor importante en la malnutrición como la causa principal de muerte (5.000.000 muertes/año) en niños menores de cinco años de edad.

Las diarreas secretoras también son una afección peligrosa en pacientes con el síndrome de inmunodeficiencia adquirida (SIDA) y de enfermedad inflamatoria del intestino (EII) crónica. 16 millones de viajeros a países en vías de desarrollo desde naciones industrializadas desarrollan diarrea cada año, variando la gravedad y el número de casos de diarrea dependiendo del país y del área del viaje.

La diarrea en animales de granja y mascotas tales como vacas, cerdos y caballos, ovejas, cabras, gatos y perros, también conocida como diarrea neonatal, es una causa principal de muerte en estos animales. La diarrea puede ser el resultado de cualquier transición importante, tal como destete o movimiento físico, así como en respuesta a una diversidad de infecciones bacterianas y víricas y generalmente se produce en las primeras pocas horas de la vida del animal.

La bacteria causante de diarrea más común es la E. coli enterotoxigénica (ETEC) que tiene el antígeno de pili K99. Las causas víricas comunes de diarrea incluyen rotavirus y coronavirus. Otros agentes infecciosos incluyen cryptosporidium, giardia lamblia y salmonella, entre otros.

Los síntomas de infección rotaviral incluyen la excreción de heces acuosas, deshidratación y debilidad. Los coronavirus causan una enfermedad más grave en los animales recién nacidos, y tiene una mayor tasa de

mortalidad que la infección rotaviral. A menudo, sin embargo, un animal joven se puede infectar con más de un virus o con una combinación de microorganismos víricos y bacterianos al mismo tiempo. Esto aumenta la gravedad de la enfermedad enormemente.

- 5 Por consiguiente, existe una necesidad de moduladores de una actividad de transportadores de ABC, y composiciones de los mismos, que se puedan usar para modular la actividad del transportador de ABC en la membrana celular de un mamífero.
- Existe una necesidad de procedimientos para tratar enfermedades mediadas por transportadores de ABC usando dichos moduladores de la actividad del transportador de ABC.
 - Existe una necesidad de procedimientos para modular una actividad del transportador de ABC en una membrana celular *ex vivo* de un mamífero.
- Existe una necesidad de moduladores de la actividad del CFTR que se puedan usar para modular la actividad del CFTR en la membrana celular de un mamífero.
 - Existe una necesidad de procedimientos para tratar enfermedades mediadas por CFTR usando dichos moduladores de la actividad del CFTR.
 - Existe una necesidad de procedimientos para modular la actividad del CFTR en una membrana celular *ex vivo* de un mamífero.

Sumario de la invención

20

25

40

45

50

Ahora se ha descubierto que los compuestos de la presente invención, y composiciones farmacéuticamente aceptables de los mismos, son útiles como moduladores de la actividad del transportador de ABC. Estos compuestos tienen la fórmula general (I):

(I)

- o una sal farmacéuticamente aceptable de los mismos, en la que R₁, R₂, R₃, R'₃, R₄, y n son como se describen en el presente documento.
- Cada R₁ es un alifático C₁₋₆ opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático C₃₋₁₀ opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido de 3 a 10 miembros, carboxi, amido, amino, halo, o hidroxi, con la condición de que al menos un R₁ sea un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido, o un heteroarilo opcionalmente sustituido unido a la posición 5 o 6 del anillo de piridilo:
 - Cada R₂ es hidrógeno, metilo, etilo, propilo, butilo;
 - Cada R_3 y R'_3 junto con el átomo de carbono al que están unidos forman un cicloalifático C_{3-7} opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido;
 - Cada R₄ es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido; y
 - Cada n is 1, 2, 3 o 4.

En otro aspecto, la presente invención incluye compuestos de fórmula (l'):

$$R_{2}$$
 R_{3} - R'_{3} R_{4} R_{5} $R_{$

una sal farmacéuticamente aceptable de los mismos, en la que:

uno de G₁ y G₂ es N y el otro de G₁ y G₂ es CH;

Cada R_1 es un alifático C_{1-6} opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático opcionalmente sustituido de 3 a 10 miembros, un heterocicloalifático opcionalmente sustituido de 3 a 10 miembros, carboxi, amido, amino, halo, o hidroxi, la condición de que al menos un R_1 sea un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido unido a la posición 5 o 6 del anillo de piridazina o anillo de pirazina;

Cada R₂ es hidrógeno, metilo, etilo, propilo, butilo;

10

Cada R_3 y R'_3 junto con el átomo de carbono al que están unidos forman un cicloalifático C_{3-7} opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido;

Cada R₄ es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido; y

15

Cada n es 1, 2, 3, o 4.

Estos compuestos y composiciones farmacéuticamente aceptables son útiles para tratar o reducir la gravedad de una diversidad de enfermedades, trastornos o afecciones, que incluyen, pero no se limitan a, fibrosis quística, 20 enfisema hereditario, hemocromatosis hereditaria, deficiencias de coagulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario de Tipo 1, deficiencias en el procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia de Tipo 1, abetalipoproteinemia, enfermedades de almacenamiento lisosómico, tales como enfermedad de células l/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar de tipo II, poliendocrinopatía/hiperinsulinemia, Diabetes Mellitus, enanismo de Laron, deficiencia de 25 mieloperoxidasas, hipoparatiroidismo primario, melanoma, glucanosis CDG de tipo 1, enfisema hereditario, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, Diabetes Insípida (DI), DI neurohipofiseal, DI nefrogénica, síndrome de Charcot-Marie Tooth, enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, trastornos neurológicos graves 30 de poliglutamina tales como Huntington, ataxia espinocerebelar de tipo I, atrofia muscular espinal y bulbar, atrofia dentatorrubro palidoluisiana, y distrofia miotónica, así como encefalopatías espongiformes, tales como enfermedad de Creutzfeldt-Jakob hereditaria, enfermedad de Fabry, síndrome de Gerstmann-Sträussler-Scheinker, EPOC, enfermedad del ojo seco, y síndrome de Sjögren.

El documento WO 2005 075435 A1 se refiere a compuestos de fórmula I como moduladores de los transportadores de ABC o fragmentos de los mismos. La estructura del núcleo de la fórmula I tal como está definida en el documento, comprende un anillo B de fenilo, un anillo A monocíclico y un grupo carboxamida. El documento se refiere, además, a métodos de tratamiento de enfermedades mediadas por transportadores de ABC usando los compuestos de la fórmula I.

40

50

Descripción detallada de la invención

Definiciones

45 Tal como se usan en el presente documento, las siguientes definiciones se aplicarán un menos que se indique de otro modo.

La expresión "transportador de ABC" tal como se usa en el presente documento se refiere un una proteína transportadora de ABC o un fragmento de la misma que comprende al menos un dominio de unión, en el que dicha proteína o fragmento de la misma está presente *in vivo* o *in vitro*. La expresión "dominio de unión" tal como se usa en el presente documento se refiere a un dominio en el transportador de ABC que se puede unir a un modulador. Véase, por ejemplo, Hwang, T. C. y col., J. Gen. Physiol. (1998): 111 (3), 477-90.

El término "CFTR" tal como se usa en el presente documento se refiere a reguladores de la conductancia transmembrana de la fibrosis quística o a una mutación de los mismos capaz de actividad reguladora, que incluye, pero no se limita a, ΔF508 CFTR y G551D CFTR (véase, por ejemplo, http://www.genet.sickkids.on.ca/cftr/, para mutaciones de CFTR).

La expresión "que modula" tal como se usa en el presente documento se refiere un aumento o disminución, por ejemplo de la actividad, mediante una cantidad mensurable. Los compuestos que modulan la actividad del Transportador de ABC, tal como la actividad del CFTR, mediante el aumento de la actividad del Transportador de ABC, por ejemplo, un canal aniónico de CFTR, se denominan agonistas. Los compuestos que modulan la actividad del Transportador de ABC, tal como la actividad del CFTR, mediante la disminución de la actividad del Transportador de ABC, por ejemplo, canal aniónico de CFTR, se denominan antagonistas. Un agonista interactúa con un Transportador de ABC, tal como un canal aniónico de CFTR, para aumentar la capacidad del receptor para transducir una señal intracelular en respuesta un la unión un ligandos endógenos. Un antagonista interactúa con un

Transportador de ABC, tal como CFTR, y compite con el ligando o ligandos o sustrato o sustratos endógenos por el sitio o sitios de unión en el receptor para disminuir la capacidad del receptor para transducir una señal intracelular en respuesta un la unión un ligandos endógenos.

- La expresión "que trata o que reduce la gravedad de una enfermedad mediada por Transportadores de ABC" se refiere tanto un tratamientos de enfermedades que están causadas directamente por las actividades de Transportadores de ABC y/o CFTR como al alivio de síntomas de enfermedades no causadas directamente por las actividades de Transportadores de ABC y/o canales aniónicos de CFTR. Ejemplos de enfermedades cuyos síntomas se pueden ver afectados por la actividad de Transportadores de ABC y/o CFTR incluyen, pero no se limitan un, Fibrosis Quística, Enfisema hereditario, Hemocromatosis hereditaria, Deficiencias de coagulación-fibrinólisis, tales 10 como Deficiencia de proteína C, Angioedema hereditario de Tipo 1, Deficiencias en el procesamiento de lípidos, tales como Hipercolesterolemia familiar, Quilomicronemia de tipo 1, Abetalipoproteinemia, Enfermedades de almacenamiento lisosómico, tales como enfermedad de células I/Pseudo-Hurler, Mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Naijar de tipo II. Poliendocrinopatía/Hiperinsulinemia. Diabetes mellitus, enanismo de Laron, Deficiencia de mieloperoxidasas, Hipoparatiroidismo primario, Melanoma, Glucanosis CDG de tipo 1, Enfisema 15 hereditario, Hipertiroidismo congénito, Osteogénesis imperfecta, Hipofibrinogenemia hereditaria, deficiencia de ACT, Diabetes insípida (DI). DI neurofiseal: DI, síndrome de Charcot-Marie Tooth, enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como la enfermedad de Alzheimer, enfermedad de Parkinson, Esclerosis lateral amiotrófica, Parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la 20 poliglutamina tales como Huntington, Ataxia espinocerebelar de tipo I, Atrofia muscular espinal y bulbar, Atrofia dentatorrubro palidoluisiana, y Distrofia miotónica, así como Encefalopatías espongiformes, tales como Enfermedad de Creutzfeldt-Jakob hereditaria, enfermedad de Fabry, síndrome de Gerstmann-Straussler-Scheinker. EPOC. enfermedad del ojo seco, y síndrome de Sjögren.
- Para fines de la presente invención, los elementos químicos se identifican de acuerdo con la Tabla Periódica de los Elementos, versión CAS, Manual de Química y Física, 75ª Ed. Además, los principios generales de la química orgánica se describen en "Organic Chemistry", Thomas Sorrell, University Science Books, Sausolito: 1999, y "March's Advanced Organic Chemistry", 5ª Ed., Ed.: Smith, M.B. y March, J., John Wiley & Sons, Nueva York: 2001.
- Para fines de la presente invención, los elementos químicos se identifican de acuerdo con la Tabla Periódica de los Elementos, versión CAS, Manual de Química y Física, 75ª Ed. Además, los principios generales de la química orgánica se describen en "Organic Chemistry", Thomas Sorrell, University Science Books, Sausolito: 1999, y "March's Advanced Organic Chemistry", 5ªEd., Ed.: Smith, M.B. y March, J., John Wiley & Sons, Nueva York: 2001.
- Tal como se usa en el presente documento el término "alifático" incluye los términos alquilo, alquenilo, alquinilo, estando cada uno de los cuales opcionalmente sustituido tal como se expone un continuación.
- Tal como se usa en el presente documento, un grupo "alquilo" se refiere a un grupo hidrocarburo alifático saturado que contiene 1-8 átomos de carbono (por ejemplo, 1-6 o 1-4). Un grupo alquilo puede ser lineal o ramificado. 40 Ejemplos de grupos alquilo incluyen, pero no se limitan un, metilo, etilo, propilo, isopropilo, butilo, isobutilo, secbutilo, terc-butilo, n-pentilo, n-heptilo, o 2-etilhexilo. Un grupo alquilo puede estar sustituido (es decir, opcionalmente sustituido) con uno o más sustituyentes tales como halo, cicloalifático [por ejemplo, cicloalquilo o cicloalquenilo], heterocicloalifático [por ejemplo, heterocicloalquilo o heterocicloalquenilo], arilo, heteroarilo, alcoxi, aroílo, heteroaroílo, acilo [por ejemplo, (alifático)carbonilo, (cicloalifático)carbonilo, o (heterocicloalifático)carbonilo], nitro, [por amido (cicloalquilalquil)carbonilamino, 45 ejemplo, arilcarbonilamino, aralquilcarbonilamino, (heterocicloalquil)carbonilamino, (heterocicloalquilalquil)carbonilamino, heteroarilcarbonilamino, heteroaralquilcarbonilamino], amino [por ejemplo, amino alifático, amino cicloalifático, o amino heterocicloalifático], sulfonilo [por ejemplo, sulfonilo alifático], sulfinilo, sulfanilo, sulfoxi, urea, tiourea, sulfamoílo, sulfamida, oxo, carboxi, carbamoílo, cicloalifaticoxi, heterocicloalifaticoxi, ariloxi, heteroariloxi, aralquiloxi, heteroarilalcoxi, alcoxicarbonilo, alquilcarboniloxi, o hidroxi. Sin limitación, algunos ejemplos de alquilos sustituidos incluyen carboxialquilo (tal como 50 HOOC-alquilo, alcoxicarbonilalquilo, y alquilcarboniloxialquilo), cianoalquilo, hidroxialquilo, alcoxialquilo, acilalquilo, hidroxialquilo, aralquilo, (alcoxiaril)alquilo, (sulfonilamino)alquilo (tal como (alquilsulfonilamino)alquilo), aminoalquilo, amidoalquilo, (cicloalifático)alquilo, cianoalquilo, o haloalquilo.
- Tal como se usa en el presente documento, un grupo "alquenilo" se refiere a un grupo de carbono alifático que contiene 2-8 (por ejemplo, 2-6 o 2-4) átomos de carbono y al menos un doble enlace. Al igual que un grupo alqueilo, un grupo alquenilo puede ser lineal o ramificado. Los ejemplos de un grupo alquenilo incluyen, pero no se limitan un, alilo, isoprenilo, 2-butenilo, y 2-hexenilo. Un grupo alquenilo puede estar opcionalmente sustituido con uno o más sustituyentes tales como halo, cicloalifático, heterocicloalifático, arilo, heteroarilo, alcoxi, aroílo, heteroaroílo, acilo [por ejemplo, (cicloalifático)carbonilo, o (heterocicloalifático)carbonilo], nitro, ciano, acilo [por ejemplo, alifáticocarbonilo, cicloalifáticocarbonilo, arilcarbonilamino, aralquilcarbonilamino, (heterocicloalquil)carbonilamino, (heterocicloalquilalquil)carbonilamino, heteroarilcarbonilamino, heteroaralquilcarbonilamino alquilaminocarbonilo, cicloalquilaminocarbonilo, o heteroarilaminocarbonilo, o heteroarilaminocarbonilo, o heteroarilaminocarbonilo, o arilsulfonilo, sulfanilo, sulfanilo, sulfanilo, sulfoni, urea, tiourea, sulfamoílo, sulfamida, oxo, carboxi, carbamoílo, cicloalifáticoxi,

hetexocicloalifáticoxi, ariloxi, heteroariloxi, aralquiloxi, heteroarilalcoxi, alcoxicarbonilo, alquilcarboniloxi, o hidroxi.

Tal como se usa en el presente documento, un grupo "alquinilo" se refiere a un grupo de carbono alifático que contiene 2-8 (por ejemplo, 2-6 o 2-4) átomos de carbono y tiene al menos un triple enlace. Un grupo alquinilo puede ser lineal o ramificado. Los ejemplos de un grupo alquinilo incluyen, pero no se limitan un, propargilo y butinilo. Un grupo alquinilo puede estar opcionalmente sustituido con uno o más sustituyentes tales como aroílo, heteroaroílo, alcoxi, cicloalquiloxi, heterocicloalquiloxi, ariloxi, heteroariloxi, aralquiloxi, nitro, carboxi, ciano, halo, hidroxi, sulfo, mercapto, sulfanilo [por ejemplo, alifáticosulfanilo o cicloalifáticosulfanilo], sulfinilo [por ejemplo, alifáticosulfinilo o cicloalifáticosulfinilo], sulfonilo [por ejemplo, alifáticosulfonilo, alifáticoaminosulfonilo, o cicloalifáticosulfonilo], amido aminocarbonilo. alquilaminocarbonilo, alquilcarbonilamino, cicloalquilaminocarbonilo. eiemplo. heterocicloalquilaminocarbonilo, cicloalquilcarbonilamino. arilaminocarbonilo. arilcarbonilamino. aralquilcarbonilamino, (heterocicloalquil)carbonilamino, (cicloalquilalquil)carbonilamino, heteroaralquilcarbonilamino, heteroarilcarbonilamino o heteroarilaminocarbonilo], urea, tiourea, sulfamoílo, sulfamida, alcoxicarbonilo, alquilcarboniloxi, cicloalifático, heterocicloalifático, arilo, heteroarilo, acilo [por ejemplo, (cicloalifático)carbonilo o (heterocicloalifático)carbonilo], amino [por ejemplo, alifáticoamino], sulfoxi, oxo, carboxi, (cicloalifático)oxi, (heterocicloalifático)oxi, o (heteroaril)alcoxi.

Tal como se usa en el presente documento, un "amido" incluye tanto "aminocarbonilo" como "carbonilamino". Estos términos cuando se usan solos o en conexión con otro grupo se refieren a un grupo amido tal como $N(R^XR^Y)$ -C(O)- o $R^YC(O)$ - $N(R^X)$ - o $N(R^X)$ - o $N(R^X)$ - cuando se usan internamente, en los que R^X y R^Y son como se define un continuación. Ejemplos de grupos amido incluyen alquilamido (tal como alquilcarbonilamino) o alquilcarbonilamino), (heterocicloalifático)amido, (heteroaralquil)amido, (heteroaril)amido, (cicloalquil)alquilamido, o cicloalquilamido.

Tal como se usa en el presente documento, un grupo "amino" se refiere un -NR^XR^Y en el que cada uno de R^X y R^Y es independientemente hidrógeno, alquilo, cicloalifático, (cicloalifático) alifático, arilo, aralifático, heterocicloalifático, (heterocicloalifático) carbonilo, (cicloalifático) carbonilo, (locicloalifático) carbonilo, (cicloalifático) carbonilo, (locicloalifático) carbonil

Tal como se usa en el presente documento, un grupo "arilo" usado sólo o como parte de un resto más grande tal como en "aralquilo", "aralcoxi", o "ariloxialquilo" se refiere un sistemas de anillo monocíclico (por ejemplo, fenilo); bicíclico (por ejemplo, indenilo, naftalenilo, tetrahidronaftilo, tetrahidroindenilo); y tricíclico (por ejemplo, fluorenilo, tetrahidrofluorenilo, o tetrahidroantracenilo, antracenilo) en los que el sistema de anillo monocíclico es aromático o al menos uno de los anillos en un sistema de anillo bicíclico o tricíclico es aromático. Los sistemas de anillo bicíclico y tricíclico incluyen anillos carbocíclicos de 2-3 miembros condensados con benzo. Por ejemplo, un grupo condensado con benzo incluye fenilo condensado con dos o más restos carbocíclicos C48. Un arilo está opcionalmente sustituido con uno o más sustituyentes que incluyen alifático [por ejemplo, alquilo, alquenilo, o alquinilo]; cicloalifático; (cicloalifático) alifático; heterocicloalifático; (heterocicloalifático) alifático; arilo; heteroarilo; alcoxi; (cicloalifático) oxi; (heterocicloalifático)oxi; ariloxi; heteroariloxi; (aralifático)oxi; (heteroaralifático)oxi; aroílo; heteroaroílo; amino; oxo (sobre un anillo carbocíclico no aromático de un arilo bicíclico o tricíclico condensado con benzo); nitro; carboxi; amido; acilo [por ejemplo, carbonilo alifático; (cicloalifático)carbonilo; ((cicloalifático)alifático)carbonilo; (aralifático)carbonilo: (heterocicloalifático)carbonilo: ((heterocicloalifático)alifático)carbonilo: (heteroaralifático)carbonilo]; sulfonilo [por ejemplo, sulfonilo alifático o aminosulfonilo]; sulfinilo [por ejemplo, alifáticosulfinilo o cicloalifático sulfinilo]; sulfanilo [por ejemplo, alifático sulfanilo]; ciano; halo; hidroxi; mercapto; sulfoxi; urea; tiourea; sulfamoílo; sulfamida; o carbamoílo. Como alternativa, un arilo puede estar sin sustituir.

Ejemplos no limitantes de arilos sustituidos incluyen haloarilo [por ejemplo, mono-, di (tal como p,m-dihaloarilo), y (trihalo) arilo]; (carboxi) arilo [por ejemplo, (alcoxicarbonil) arilo, ((aralquil) carboniloxi) arilo, y (alcoxicarbonil) arilo]; (amido) arilo [por ejemplo, (aminocarbonil) arilo, (((alquilamino) alquil) aminocarbonil) arilo, (alquilamino) arilo]; (arilaminocarbonil) arilo, y (((heteroaril) amino) carbonil) arilo]; aminoarilo [por ejemplo, ((alquilsulfonil) amino) arilo o ((dialquil) amino) arilo]; (cianoalquil) arilo; (alcoxi) arilo; (sulfamoil) arilo [por ejemplo, (aminosulfonil) arilo]; (alquilsulfonil) arilo; (ciano) arilo; (hidroxialquil) arilo; ((alcoxi) alquil) arilo; (hidroxi) arilo, ((carboxi) alquil) arilo; (((dialquil) amino) alquil) arilo; ((introalquil) arilo; ((introalquil) arilo; (introalquil) arilo; (introalquil) arilo; (alquilsulfonil) arilo; (alquilsulfonil) arilo; alquilarilo; (trihaloalquil) arilo; p-amino-m-alcoxicarbonilarilo; p-amino-m-cianoarilo; p-halo-m-aminoarilo; o (m-(heterocicloalifático)-o-(alquil)) arilo.

Tal como se usa en el presente documento, un "aralifático" tal como un grupo "aralquilo" se refiere a un grupo alifático (por ejemplo, un grupo alquilo C_{1-4}) que está sustituido con un grupo arilo. "Alifático," "alquilo," y "arilo" se definen en el presente documento. Un ejemplo de un aralifático tal como un grupo aralquilo es bencilo.

Tal como se usa en el presente documento, un grupo "aralquilo" se refiere a un grupo alquilo (por ejemplo, un grupo

65

10

15

20

35

40

45

50

55

alquilo C₁₋₄) que está sustituido con un grupo arilo. Tanto "alquilo" como "arilo" se han definido anteriormente. Un ejemplo de un grupo aralquilo es bencilo. Un aralquilo está opcionalmente sustituido con uno o más sustituyentes tales como alifático [por ejemplo, alquilo, alquenilo, o alquinilo, que incluyen carboxialquilo, hidroxialquilo, o haloalquilo tal como trifluorometilo], cicloalifático [por ejemplo, cicloalquilo o cicloalquenilo], (cicloalquil) alquilo, heterocicloalquilo, (heterocicloalquil) alquilo, arilo, heteroarilo, alcoxi, cicloalquiloxi, heterocicloalquiloxi, ariloxi, heteroariloxi, aralquiloxi, heteroaralquiloxi, aroílo, heteroaroílo, nitro, carboxi, alcoxicarbonilo, alquilcarboniloxi, amido [por ejemplo, aminocarbonilo, alquilcarbonilamino, cicloalquilcarbonilamino, (cicloalquilalquil) carbonilamino, arilcarbonilamino, aralquilcarbonilamino, (heterocicloalquil) carbonilamino, (heteroarilcarbonilamino, o heteroaralquilcarbonilamino), ciano, halo, hidroxi, acilo, mercapto, alquilsulfanilo, sulfoxi, urea, tiourea, sulfamoílo, sulfamida, oxo, o carbamoílo.

10

15

40

45

50

55

60

65

Tal como se usa en el presente documento, un "sistema de anillo bicíclico" incluye 8-12 (por ejemplo, 9, 10, o 11) estructuras de miembros que forman dos anillos, en el que los dos anillos tienen al menos un átomo en común (por ejemplo, 2 átomos en común). Sistemas de anillo bicíclico incluyen bicicloalifáticos (por ejemplo, bicicloalquillo o bicicloalquenilo), bicicloheteroalifáticos, arilos bicíclicos, y heteroarilos bicíclicos.

Tal como se usa en el presente documento, un "cicloalifático" incluye un grupo "cicloalquilo" y un grupo "cicloalquenilo", cada uno de los cuales está opcionalmente sustituido tal como se expone un continuación.

20 Tal como se usa en el presente documento, un grupo "cicloalquilo" se refiere a un anillo mono- o bicíclico (condensado o con puente) carbocíclico saturado de 3-10 (por ejemplo, 5-10) átomos de carbono. Ejemplos de grupos cicloalquilo incluyen ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, adamantilo, norbornilo, cubilo, octahidro-indenilo, decahidro-naftilo, biciclo [3.2.1] octilo, biciclo [2.2.2] octilo, biciclo [3.3.1] nonilo, biciclo [3.3.2] decilo, biciclo [2.2.2] octilo, adamantilo, azacicloalquilo, o ((aminocarbonil)cicloalquil) cicloalquilo. Un grupo 25 "cicloalquenilo", tal como se usa en el presente documento, se refiere a un anillo carbocíclico no aromático de 3-10 (por ejemplo, 4-8) átomos de carbono que tiene uno o más dobles enlaces. Ejemplos de grupos cicloalquenilo incluyen ciclopentenilo, 1,4-ciclohexadienilo, cicloheptenilo, ciclooctenilo, hexahidro-indenilo, octahidro-naftilo, ciclohexenilo, ciclopentenilo, biciclo[2.2.2]octenilo, o biciclo[3.3.1]nonenilo. Un grupo cicloalquilo o cicloalquenilo puede estar opcionalmente sustituido con uno o más sustituyentes tales como alifático [por ejemplo, alquilo, 30 alquenilo, o alquinilo], cicloalifático, (cicloalifático, alifático, heterocicloalifático, (heterocicloalifático, arilo, alcoxi. (cicloalifático)oxi, (heterocicloalifático)oxi, ariloxi, heteroariloxi. (heteroaralifático)oxi, aroílo, heteroaroílo, amino, amido [por ejemplo, (alifático)carbonilamino, (cicloalifático) ((cicloalifático)alifático)carbonilamino. (aril)carbonilamino, carbonilamino. (aralifático)carbonilamino, ((heterocicloalifático)alifático)carbonilamino, (heterocicloalifático)carbonilamino, (heteroaril)carbonilamino, (heteroaralifático)carbonilamino], nitro, carboxi [por ejemplo, HOOC-, alcoxicarbonilo, o alquilcarboniloxi], acilo [por 35 (cicloalifático) (aralifático)carbonilo. carbonilo. ((cicloalifático) alifático)carbonilo. (heterocicloalifático)carbonilo, ((heterocicloalifático)alifático)carbonilo, o (heteroaralifático)carbonilo], ciano, halo, hidroxi, mercapto, sulfonilo [por ejemplo, alquilsulfonilo], sulfinilo [por ejemplo, alquilsulfinilo], sulfanilo [por ejemplo, alquilsulfanilo], sulfoxi, urea, tiourea, sulfamoílo, sulfamida, oxo, o carbamoílo.

Tal como se usa en el presente documento, "resto cíclico" incluye cicloalifático, heterocicloalifático, arilo, o heteroarilo, cada uno de los cuales se ha definido anteriormente.

Tal como se usa en el presente documento, el término "heterocicloalifático" incluye un grupo heterocicloalquilo y un grupo heterocicloalquenilo, cada uno de los cuales está opcionalmente sustituido tal como se expone a continuación.

Tal como se usa en el presente documento, un grupo "heterocicloalquilo" se refiere a una estructura de anillo saturado mono- o bicíclico (condensado o con puente) (por ejemplo, mono- o bicíclico de 5 a 20 miembros) de 3-10 miembros, en la que uno o más de los átomos en el anillo es un heteroátomo (por ejemplo, N, O, S, o combinaciones de los mismos). Ejemplos de un grupo heterocicloalquilo incluyen piperidilo, piperazilo, tetrahidropiranilo, tetrahidrofurilo, 1,4-dioxolanilo, 1,4-ditianilo, 1,3-dioxolanilo, oxazolidilo, isoxazolidilo, morfolinilo, tiomorfolilo, octahidrocromenilo, octahidrobenzofurilo. octahidrotiocromenilo. octahidroindolilo. octahidropirindinilo. decahidroquinolinilo, octahidrobenzo[b]tiofenoílo, 2-oxa-biciclo [2.2.2] octilo, 1-aza-biciclo [2.2.2] octilo, 3-aza-biciclo [3.2.1] octilo, y 2,6-dioxa-triciclo [3.3.1.0^{3.7}] nonilo. Un grupo heterocicloalquilo monocíclico puede estar condensado con un resto fenilo tal como tetrahidroisoquinolina. Un grupo "heterocicloalquenilo", tal como se usa en el presente documento, se refiere a una estructura de anillo no aromático mono- o bicíclico (por ejemplo, mono- o bicíclico de 5 a 10 miembros) que tiene uno o más dobles enlaces, y en la que uno o más de los átomos en el anillo es un heteroátomo (por ejemplo, N, O, o S). Monocíclicos y bicicloheteroalifáticos se numeran de acuerdo con la nomenclatura química convencional.

Un grupo heterocicloalquilo o heterocicloalquenilo puede estar opcionalmente sustituido con uno o más sustituyentes tales como alifático [por ejemplo, alquilo, alquenilo, o alquinilo], cicloalifático, (cicloalifático) alifático, heterocicloalifático, (heterocicloalifático) alifático, arilo, heteroarilo, alcoxi, (cicloalifático) oxi, (heterocicloalifático) oxi, ariloxi, heteroariloxi, (aralifático) oxi, (heteroaralifático) oxi, aroílo, heteroaroílo, amino, amido [por ejemplo, (alifático) carbonilamino, (cicloalifático) carbonilamino, (aralifático) carbonilamino, (aralifático) carbonilamino, (heterocicloalifático) carbonilamino, (heterocicloalifático) carbonilamino, (heteroaril)

carbonilamino, o (heteroaralifático) carbonilamino], nitro, carboxi [por ejemplo, HOOC-, alcoxicarbonilo, o alquilcarboniloxi], acilo [por ejemplo, (cicloalifático) carbonilo, ((cicloalifático) alifático) carbonilo, (aralifático) carbonilo, (heterocicloalifático) carbonilo, ((heterocicloalifático) alifático) carbonilo, o (heteroaralifático) carbonilo], nitro, ciano, halo, hidroxi, mercapto, sulfonilo [por ejemplo, alquilsulfonilo o arilsulfonilo], sulfinilo [por ejemplo, alquilsulfinilo], sulfanilo [por ejemplo, alquilsulfanilo], sulfoxi, urea, tiourea, sulfamoílo, sulfamida, oxo, o carbamoílo.

Un grupo "heteroarilo," tal como se usa en el presente documento, se refiere a un sistema de anillo monocíclico, bicíclico, o tricíclico que tiene de 4 a 15 átomos en el anillo en el que uno o más de los átomos en el anillo es un heteroátomo (por ejemplo, N, O, S, o combinaciones de los mismos) y en el que el sistema de anillo monocíclico es aromático o al menos uno de los anillos en los sistemas de anillo bicíclico o tricíclico es aromático. Un grupo heteroarilo incluye un sistema de anillo condensado con benzo que tiene de 2 a 3 anillos. Por ejemplo, un grupo condensado con benzo incluye grupos benzo condensados con uno o dos restos heterocicloalifáticos de 4 a 8 miembros (por ejemplo, indolizilo, indolio, isoindolilo, 3H-indolilo, indolinilo, benzo[b]tiofenilo, quinolinilo, o isoquinolinilo). Algunos ejemplos de heteroarilo son azetidinilo, piridilo, 1H-indazolilo, furilo, pirrolilo, tienilo, tiazolilo, oxazolilo, imidazolilo, tetrazolilo, benzofurilo, isoquinolinilo, benzotiazolilo, xanteno, tioxanteno, dihidroindol, benzo[1,3]dioxol, benzo[b]furilo, benzo[b]tiofenilo, indazolilo, benzoimidazolilo, benzotiazolilo, purilo, cinnolilo, quinolilo, quinazolilo, cinnolilo, ftalazilo, quinazolilo, quinoxalilo, isoquinolilo, 4Hquinolizilo, benzo-1,2,5-tiadiazolilo, o 1,8-naftiridilo.

10

15

30

35

40

45

55

60

65

20 Sin limitación, heteroarilos monocíclicos incluyen furilo, tiofenilo, 2H-pirrolilo, pirrolilo, oxazolilo, tiazolilo, imidazolilo, pirazolilo, isoxazolilo, isotiazolilo, 1,3,4-tiadiazolilo, 2H-piranilo, 4-H-piranilo, piridilo, piridazilo, pirimidilo, pirazolilo, pirazilo, o 1,3,5-triazilo. Los heteroarilos monocíclicos se numeran de acuerdo con la nomenclatura química convencional.

25 Sin limitación, heteroarilos bicíclicos incluyen indolizilo, indolilo, isoindolilo, 3H-indolilo, indolinilo, benzo[b]furilo, benzo[b]tiofenilo, quinolinilo, isoquinolinilo, indolizilo, isoindolilo, indolilo, benzo [fe] furilo, benzo [fe] tiofenilo, indazolilo, benzimidazilo, benzotiazolilo, purinilo, 4H-quinolizilo, quinolilo, isoquinolilo, cinnolilo, ftalazilo, quinazolilo, quinoxalilo, 1,8-naftiridilo, o pteridilo. Los heteroarilos bicíclicos se numeran de acuerdo con la nomenclatura química convencional.

Un heteroarilo está opcionalmente sustituido con uno o más sustituyentes tales como alifático [por ejemplo, alquilo, alquenilo, o alquinilo]; cicloalifático; (cicloalifático; heterocicloalifático; (heterocicloalifático; arilo; (heterocicloalifático)oxi: alcoxi; (cicloalifático)oxi; ariloxi; heteroariloxi: (aralifático)oxi; (heteroaralifático)oxi; aroílo; heteroaroílo; amino; oxo (sobre un anillo carbocíclico o heterocíclico no aromático de un heteroarilo bicíclico o tricíclico); carboxi; amido; acilo [por ejemplo, carbonilo alifático; (cicloalifático)carbonilo; ((cicloalifático)alifático)carbonilo; (aralifático)carbonilo; (heterocicloalifático)carbonilo; ((heterocicloalifático)carbonilo; o (heteroaralifático)carbonilo]; sulfonilo [por ejemplo, alifáticosulfonilo o aminosulfonilo]; sulfinilo [por ejemplo, alifáticosulfinilo]; sulfanilo [por ejemplo, alifáticosulfanilo]; nitro; ciano; halo; hidroxi; mercapto; sulfoxi; urea; tiourea; sulfamoílo; sulfamida; o carbamoílo. Como alternativa, un heteroarilo puede estar sin sustituir.

Ejemplos no limitantes de heteroarilos sustituidos incluyen (halo)heteroarilo [por ejemplo, mono- y di- (halo) heteroarilo]; (carboxi) heteroarilo [por ejemplo, (alcoxicarbonil) heteroarilo]; cianoheteroarilo; aminoheteroarilo [por ejemplo, ((alquilsulfonil) amino) heteroarilo y ((dialquil) amino) heteroarilo]; (amido) heteroarilo [por ejemplo, aminocarbonilheteroarilo, ((alquilcarbonil) amino) heteroarilo, (((alquil) amino) alquil) aminocarbonil) heteroarilo, (((heteroaril) amino) carbonil) heteroarilo, ((heterocicloalifático) carbonil) heteroarilo, y (alquilcarbonil) amino) heteroarilo]; (cianoalquil) heteroarilo; (alcoxi) heteroarilo; (sulfamoil) heteroarilo [por ejemplo, (aminosulfonil) heteroarilo]; (sulfonil) heteroarilo [por ejemplo, (alquilsulfonil) heteroarilo]; (hidroxialquil) heteroarilo; (alcoxialquil) heteroarilo; (hidroxi) heteroarilo; ((carboxi) alquil) heteroarilo; [((dialquil) amino) alquil] (heterocicloalifático) heteroarilo; (cicloalifático) heteroarilo; (nitroalquil) heteroarilo; (((alquilsulfonil) amino) alquil) heteroarilo; ((alquilsulfonil) alquil) heteroarilo; (cianoalquil) heteroarilo; (acil) heteroarilo [por ejemplo, (alquilcarbonil) 50 heteroarilo]; (alguil) heteroarilo, y (haloalquil) heteroarilo [por ejemplo, trihaloalquilheteroarilo].

Un "heteroaralifático" (tal como un grupo heteroaralquilo) tal como se usa en el presente documento, se refiere a un grupo alifático (por ejemplo, un grupo alquilo C₁₋₄) que está sustituido con un grupo heteroarilo. "Alifático," "alquilo," y "heteroarilo" se han definido anteriormente.

Un grupo "heteroaralquilo", tal como se usa en el presente documento, se refiere a un grupo alquilo (por ejemplo, un grupo alquilo C₁₋₄) que está sustituido con un grupo heteroarilo. Tanto "alquilo" como "heteroarilo" se han definido anteriormente. Un heteroaralquilo está opcionalmente sustituido con uno o más sustituyentes tales como alquilo (que incluyen carboxialquilo, hidroxialquilo, y haloalquilo tal como trifluorometilo), alquenilo, alquinilo, cicloalquilo, (cicloalquil) alquilo, heterocicloalquilo, (heterocicloalquil) alquilo, arilo, heteroarilo, alcoxi, cicloalquiloxi, heterocicloalquiloxi, aralquiloxi, heteroariloxi, aralquiloxi, heteroariloxi, aroílo, heteroaroílo, nitro, carboxi, alkoxicarbonilo, alquilcarboniloxi, aminocarbonilo, alquilcarbonilamino, (cicloalquilalquil) carbonilamino, arilcarbonilamino, aralquilcarbonilamino, (heterocicloalquil) carbonilamino, (heterocicloalquil) carbonilamino, heteroarilcarbonilamino, heteroaralquilcarbonilamino, ciano, halo, hidroxi, acilo, mercapto, alquilsulfanilo, sulfoxi, urea, tiourea, sulfamoílo, sulfamida, oxo, o carbamoílo.

Tal como se usa en el presente documento, "resto cíclico" incluye cicloalquilo, heterocicloalquilo, cicloalquenilo, heterocicloalquenilo, arilo, o heteroarilo, cada uno de los cuales se ha definido anteriormente.

- Tal como se usa en el presente documento, un grupo "acilo" se refiere a un grupo formilo o R^X-C(O)- (tal como alquil-C(O)-, también mencionado como "alquilcarbonilo") en el que R^X y "alquilo" se han definido anteriormente. Acetilo y pivaloílo son ejemplos de grupos acilo.
- Tal como se usa en el presente documento, un "aroílo" o "heteroaroílo" se refiere a un aril-C(O)- o un heteroaril-10 C(O)-. La porción arilo y heteroarilo del aroílo o heteroaroílo está opcionalmente sustituida tal como se ha definido anteriormente.

Tal como se usa en el presente documento, un grupo "alcoxi" se refiere a un grupo alquil-O- en el que "alquil" se ha definido anteriormente.

Tal como se usa en el presente documento, un "carbamoílo" grupo se refiere a un grupo que tiene la estructura -O-CO-NR^XR^Y o -NR^X-CO-OR^Z en la que R^X y R^Y se han definido anteriormente y R^Z puede ser alifático, arilo, aralifático, heteroarilo, o heteroaralifático.

Tal como se usa en el presente documento, un grupo "carboxi" se refiere a -COOH, -COOR^X, -OC(O)H, -OC(O)R^X cuando se usa como un terminal grupo; o -OC(O)- o -C(O)O- cuando se usa como un grupo interno.

Tal como se usa en el presente documento, un grupo "haloalifático" se refiere a un grupo alifático sustituido con 1, 2 o 3 halógenos. Por ejemplo, el término haloalquilo incluye el grupo -CF₃.

Tal como se usa en el presente documento, un grupo "mercapto" se refiere a -SH.

25

30

45

65

Tal como se usa en el presente documento, un grupo "sulfo" se refiere a $-SO_3H$ o $-SO_3R^X$ cuando se usan terminalmente o $-S(O)_3$ - cuando se usa internamente.

Tal como se usa en el presente documento, un grupo "sulfamida" se refiere a la estructura -NR^X-S(O)₂-NR^YR^Z cuando se usa terminalmente y -NR^X-S (O)₂-NR^Y- cuando se usa internamente, en las que R^X, R^Y, y R^Z se han definido anteriormente.

Tal como se usa en el presente documento, un grupo "sulfamoílo" se refiere a la estructura $-S(O)_2-NR^XR^Y$ o $-NR^X-S(O)_2-R^Z$ cuando se usan terminalmente; o $-S(O)_2-NR^X-$ o $-NR^X-S(O)_2-$ cuando se usan internamente, en las que R^X , R^Y , y R^Z se han definido anteriormente.

Tal como se usa en el presente documento un grupo "sulfanilo" se refiere a -S-R^X cuando se usa terminalmente y -S-40 cuando se usa internamente, en el que R^X se ha definido anteriormente. Ejemplos de sulfanilos incluyen alquilsulfanilo.

Tal como se usa en el presente documento un grupo "sulfinilo" se refiere a $-S(O)-R^X$ cuando se usa terminalmente y -S(O)- cuando se usa internamente, en el que R^X se ha definido anteriormente.

Tal como se usa en el presente documento, un grupo "sulfonilo" se refiere a $-S(O)_2-R^X$ cuando se usa terminalmente y $-S(O)_2$ - cuando se usa internamente, en el que R^X se ha definido anteriormente.

Tal como se usa en el presente documento, un grupo "sulfoxi" se refiere a -O-SO-R^X o -SO-O-R^X, cuando se usan terminalmente y -O-S(O)- o -S (O)-O- cuando se usan internamente, en los que R^X se ha definido anteriormente.

Tal como se usa en el presente documento, un grupo "halógeno" o "halo" se refiere a flúor, cloro, bromo o vodo.

Tal como se usa en el presente documento, un "alcoxicarbonilo," que está incluido mediante el término carboxi, usado sólo o en conexión con otro grupo se refiere a un grupo tal como alquil-O-C(O)-.

Tal como se usa en el presente documento, un "alcoxialquilo" se refiere a un grupo alquilo tal como alquil-O-alquil-, en el que alquilo se ha definido anteriormente.

Tal como se usa en el presente documento, un "carbonilo" se refiere a -C(O)-.

Tal como se usa en el presente documento, un "oxo" se refiere a =O.

Tal como se usa en el presente documento, un "aminoalquilo" se refiere a la estructura (RX RY)N-alquil-.

Tal como se usa en el presente documento, un "cianoalquilo" se refiere a la estructura (NC)-alquil-.

Tal como se usa en el presente documento, un grupo "urea" se refiere a la estructura $-NR^X-CO-NR^YR^Z$ y un grupo "tiourea" se refiere a la estructura $-NR^X-CS-NR^YR^Z$ cuando se usan terminalmente y $-NR^X-CO-NR^Y-$ o $-NR^X-CS-NR^Y-$ cuando se usan internamente, en las que R^X , R^Y y R^Z se han definido anteriormente.

Tal como se usa en el presente documento, un grupo "guanidino" se refiere a la estructura - $N=C(N(R^XR^Y))N(R^XR^Y)$ en la que R^X y R^Y se han definido anteriormente.

5

10

20

25

30

35

40

45

50

55

60

65

Tal como se usa en el presente documento, el término grupo "amidino" se refiere a la estructura $-C=(NR^X)N(R^XR^Y)$ en la que R^X y R^Y se han definido anteriormente.

En general, el término "vecinal" se refiere a la colocación de los sustituyentes sobre un grupo que incluye dos o más átomos de carbono, en la que los sustituyentes están unidos a átomos de carbono adyacentes.

En general, el término "geminal" se refiere a la colocación de los sustituyentes sobre un grupo que incluye dos o más átomos de carbono, en la que los sustituyentes están unidos al mismo átomo de carbono.

Los términos "terminalmente" e "internamente" se refieren a la ubicación de un grupo dentro de un sustituyente. Un grupo es terminal cuando está presente en el extremo del sustituyente no unido adicionalmente al resto de la estructura química. Carboxialquilo, es decir, R^XO(O)C-alquilo es un ejemplo de un grupo carboxi usad o terminalmente. Un grupo es interno cuando el grupo está presente en la parte media de un sustituyente o en el extremo del sustituyente unido al resto de la estructura química. Alquilcarboxi (por ejemplo, alquil-C(O)O- o alquil-OC(O)-) y alquilcarboxiarilo (por ejemplo, alquil-C(O)O-aril- o alquil-O(CO)-aril-) son ejemplos de grupos carboxi usad dos internamente.

Tal como se usa en el presente documento, el término grupo "amidino" se refiere a la estructura $-C=(NR^X)N(R^XR^Y)$ en la que R^X y R^Y se han definido anteriormente.

Tal como se usa en el presente documento, "grupo cíclico" incluye sistemas de anillo mono-, bi-, y tricíclico que incluyen cicloalifático; heterocicloalifático, arilo, o heteroarilo, cada uno de los cuales se ha definido anteriormente.

Tal como se usa en el presente documento, un "sistema de anillo bicíclico con puente" se refiere a un sistema de anillo heterocicloalifático bicíclico o sistema de anillo cicloalifático bicíclico en los que los anillos están unidos con puente. Ejemplos sistemas de anillo bicíclico con puente incluyen, pero no se limitan a, adamantanilo, norbornanilo, biciclo [3.2.1] octilo, biciclo [2.2.2] octilo, biciclo [3.3.1] nonilo, biciclo [3.2.3] nonilo, 2-oxa-biciclo [2.2.2] octilo, 1-aza-biciclo [2.2.2] octilo, 3-aza-biciclo [3.2.1] octilo, y 2,6-dioxa-triciclo [3.3.1.03.7] nonilo. Un sistema de anillo bicíclico con puente puede estar opcionalmente sustituido con uno o más sustituyentes tales como alquilo (que incluye carboxialquilo, hidroxialquilo, y haloalquilo tal como trifluorometilo), alquenilo, alquinilo, cicloalquilo, (cicloalquil)alquilo, heterocicloalquilo, (heterocicloalquil) alquilo, arilo, heteroarilo, alcoxi, cicloalquiloxi, heterocicloalquiloxi, ariloxi, heteroariloxi, aralquiloxi, heteroariloxi, aralquiloxi, aralquiloxi, aroílo, heteroaroílo, nitro, carboxi, alcoxicarbonilo, alquilcarboniloxi, aminocarbonilo, alquilcarbonilamino, cicloalquilcarbonilamino, (heterocicloalquil) carbonilamino, (heterocicloalquil) carbonilamino, heteroarilcarbonilamino, heteroaralquilcarbonilamino, ciano, halo, hidroxi, acilo, mercapto, alquilsulfanilo, sulfamida, oxo, o carbamoílo.

Tal como se usa en el presente documento, una "cadena alifática" se refiere a un grupo alifático ramificado o lineal (por ejemplo, grupos alquilo, grupos alquenilo, o grupos alquinilo). Una cadena alifática lineal tiene la estructura - $[CH_2]_{v^-}$, en la que v es 1-6. Una cadena alifática ramificada es una cadena alifática lineal que está sustituida con uno o más grupos alifáticos. Una cadena alifática ramificada tiene la estructura - $[CHQ]_{v^-}$ en la que Q es hidrógeno o un grupo alifático; sin embargo, Q será un grupo alifático en al menos un ejemplo. La expresión cadena alifática incluye cadenas de alquilo, cadenas de alquenilo, y cadenas de alquinilo, en las que alquilo, alquenilo, y alquinilo se han definido anteriormente.

La expresión "opcionalmente sustituido" se usa de forma intercambiable con la expresión "sustituido o sin sustituir." Tal como se describe en el presente documento, los compuestos de la invención pueden estar opcionalmente sustituidos con uno o más sustituyentes, tal como se ha ilustrado por lo general anteriormente, o tal como se hace a modo de ejemplo mediante las clases, subclases, y especies particulares de la invención. Tal como se describe en el presente documento, las variables R₁, R₂, R₃, y R₄, y otras variables contenidas en las mismas fórmulas I incluyen grupos específicos, tales como alquilo y arilo. A menos que se indique de otro modo, cada uno de los grupos específicos para las variables R₁, R₂, R₃, y R₄, y otras variables contenidas en los mismos pueden estar opcionalmente sustituidos con uno o más sustituyentes que se describen en el presente documento. Cada sustituyente de un grupo específico adicionalmente está opcionalmente sustituido con uno a tres de halo, ciano, oxoalcoxi, hidroxi, amino, nitro, arilo, haloalquilo, y alquilo. Por ejemplo, un grupo alquilo puede estar sustituido con alquilsulfanilo y el alquilsulfanilo puede estar opcionalmente sustituido con uno a tres de halo, ciano, oxoalcoxi, hidroxi, amino, nitro, arilo, haloalquilo, y alquilo. Como un ejemplo adicional, la porción cicloalquilo de un (cicloalquil)carbonilamino puede estar opcionalmente sustituida con uno a tres de halo, ciano, alcoxi, hidroxi, nitro,

haloalquilo, y alquilo. Cuando dos grupos alcoxi están unidos al mismo átomo o a átomos adyacentes, los dos grupos alcoxi pueden formar un anillo junto con el átomo o átomos a los que están unidos.

En general, el término "sustituido," tanto si va precedido por el término "opcionalmente" o no, se refiere a la colocación de radicales de hidrógeno en una estructura dada con el radical de un sustituyente especificado. Los sustituyentes específicos se han descrito anteriormente en las definiciones y a continuación en la descripción de compuestos y ejemplos de los mismos. A menos que se indique de otro modo, un grupo opcionalmente sustituido puede tener un sustituyente en cada posición sustituible del grupo, y cuando más de una posición en una estructura dada puede estar sustituida con más de un sustituyente seleccionado entre un grupo especificado, el sustituyente puede ser el mismo o diferente en cada posición. Un sustituyente del anillo, tal como heterocicloalquilo, puede estar unido a otro anillo, tal como un cicloalquilo, para formar un sistema de anillo espiro-bicíclico, por ejemplo, ambos anillos comparten un átomo común. Tal como alguien con experiencia habitual en la materia reconocerá, las combinaciones de sustituyentes concebidos mediante la presente intención son las combinaciones que dan como resultado la formación de compuestos estables químicamente factibles.

El término "hasta", tal como se usa en el presente documento, se refiere a cero o cualquier número entero que es menor o igual que el número que sigue al término. Por ejemplo, "hasta 3" se refiere a uno cualquiera de 0, 1, 2, y 3.

La expresión "estable o químicamente factible," tal como se usa en el presente documento, se refiere a compuestos que no se alteran básicamente cuando se someten las condiciones que permiten su producción, detección, y preferentemente su recuperación, purificación, y uso para uno o más de los fines que se desvelan en el presente documento. En algunas realizaciones, un compuesto estable o un compuesto químicamente factible es uno que básicamente no se altera cuando se mantiene a una temperatura de 40 °C o inferior, en ausencia de humedad u otras condiciones químicamente reactivas, durante al menos una semana.

Tal como se usa en el presente documento, una cantidad eficaz se define como la cantidad necesaria para conferir un efecto terapéutico sobre el paciente tratado, y por lo general se determina basándose en la edad, área superficial, peso, y afección del paciente. La interrelación de dosificaciones para animales y seres humanos (basada en miligramos por metro cuadrado de superficie corporal) se describe en Freireich y col., Cancer Chemother. Rep., 50: 219 (1966). El área de superficie corporal se puede determinar aproximadamente a partir de la altura y del peso del paciente. Véase, por ejemplo, Scientific Tables, Geigy Pharmaceuticals, Ardsley, Nueva York, 537 (1970). Tal como se usa en el presente documento, "paciente" se refiere a un mamífero, que incluye a un ser humano.

A menos que se indique de otro modo, las estructuras representadas en el presente documento también pretenden incluir todas las formas isoméricas (por ejemplo, enantioméricas, diastereoméricas, y geométricas (o conformacionales)) de la estructura; por ejemplo, las configuraciones R y S para cada centro asimétrico, isómeros de doble enlace (Z) y (E), e isómeros conformacionales (Z) y (E). Por lo tanto, los isómeros estereoquímicos individuales así como mezclas enantioméricas, diastereoméricas, y geométricas (o conformacionales) de los presentes compuestos están dentro del alcance de la invención. A menos que se indique de otro modo, todas las formas tautoméricas de los compuestos de la invención están dentro del alcance de la invención. Además, a menos que se indique de otro modo, las estructuras representadas en el presente documento también pretenden incluir compuestos que difieren solamente en la presencia de uno o más átomos enriquecidos isotópicamente. Por ejemplo, compuestos que tienen las estructuras presentes excepto por el reemplazo de hidrógeno por deuterio o tritio, o el reemplazo de un carbono por un carbono enriquecido con ¹³C o ¹⁴C están dentro del alcance de la presente invención. Dichos compuestos son útiles, por ejemplo, como herramientas analíticas o sondas en ensayos biológicos.

Compuestos

10

15

20

25

30

50 Los compuestos de la presente invención son moduladores útiles de transportadores de ABC y son útiles en el tratamiento de enfermedades mediadas por transportadores de ABC.

Realizaciones Específicas

55 A. Sustituyente R₁

60

65

Cada R_1 es independientemente un alifático C_{1-6} opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático de C_{3-10} miembros opcionalmente sustituido, un heterocicloalifático de 3 a 10 miembros opcionalmente sustituido, carboxi [por ejemplo, hidroxicarbonilo] o alcoxicarbonilo], amido [por ejemplo, aminocarbonilo], amino, halo, o hidroxi.

En algunas realizaciones, un R_1 es un alifático C_{1-6} opcionalmente sustituido. En varios ejemplos, un R_1 es un alquilo C_{1-6} opcionalmente sustituido, o un alquinilo C_{2-6} opcionalmente sustituido, o un alquinilo C_{2-6} opcionalmente sustituido. En varios ejemplos, un R_1 es alquilo C_{1-6} , alquenilo C_{2-6} , o alquinilo C_{2-6} .

En varias realizaciones, un R₁ es un arilo o heteroarilo con 1, 2 o 3 sustituyentes. En varios ejemplos, un R₁ es un

arilo o heteroarilo monocíclico. En varias realizaciones, R_1 es un arilo o heteroarilo con 1, 2 o 3 sustituyentes. En varios ejemplos, R_1 es un arilo o heteroarilo monocíclico.

En varias realizaciones, al menos un R_1 es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido y R_1 está unido a la estructura principal en la posición 6 en el anillo de piridina.

En varias realizaciones, al menos un R_1 es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido y R_1 está unido a la estructura principal en la posición 5 en el anillo de piridina.

10 En varias realizaciones, un R₁ es fenilo con hasta 3 sustituyentes. En varias realizaciones, R₁ es fenilo con hasta 3 sustituyentes.

En varias realizaciones, un R_1 es un anillo heteroarilo con hasta 3 sustituyentes. En determinadas realizaciones, un R_1 es un anillo de heteroarilo monocíclico con hasta 3 sustituyentes. En otras realizaciones, un R_1 es un anillo de heteroarilo bicíclico con hasta 3 sustituyentes. En varias realizaciones, R_1 es un anillo heteroarilo con hasta 3 sustituyentes. En determinadas realizaciones, R_1 es un anillo de heteroarilo monocíclico con hasta 3 sustituyentes. En otras realizaciones, R_1 es un anillo de heteroarilo bicíclico con hasta 3 sustituyentes.

15

25

30

40

45

50

En varias realizaciones, un R₁ es carboxi [por ejemplo, hidroxicarbonilo o alcoxicarbonilo]. O, un R₁ es amido [por ejemplo, aminocarbonilo]. O, un R₁ es amino. O, es halo. O, es ciano. O, hidroxilo.

En algunas realizaciones, R₁ es hidrógeno, metilo, etilo, i-propilo, t-butilo, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, alilo, F, Cl, metoxi, etoxi, i-propoxi, t-butoxi, CF₃, OCF₃, CN, hidroxilo, o amino. En varios ejemplos, R₁ es hidrógeno, metilo, metoxi, F, CF₃ u OCF₃. En varios ejemplos, R₁ puede ser hidrógeno. O, R₁ puede ser metilo. O, R₁ puede ser CF₃. O, R₁ puede ser metoxi.

En varias realizaciones, R₁ está sustituido con no más de tres sustituyentes seleccionados entre halo, oxo, o alifático opcionalmente sustituido, cicloalifático, heterocicloalifático, amino [por ejemplo, (alifático) amino], amido [por ejemplo, aminocarbonilo, ((alifático) amino) carbonilo, y ((alifático)₂ amino) carbonilo, carboxi [por ejemplo, alcoxicarbonilo e hidroxicarbonilo], sulfamoílo [por ejemplo, aminosulfonilo, ((alifático)₂ amino) sulfonilo, ((cicloalifático) alifático) aminosulfonilo, y ((cicloalifático) amino) sulfonilo], ciano, alcoxi, arilo, heteroarilo [por ejemplo, heteroarilo monocíclico y bicicloheteroarilo], sulfonilo [por ejemplo, sulfonilo alifático) sulfonilo], sulfinilo [por ejemplo, sulfinilo alifático], aroílo, heteroaroílo, o carbonilo heterocicloalifático.

En varias realizaciones, R₁ está sustituido con halo. Ejemplos de sustituyentes de R₁ incluyen F, Cl, y Br. En varios ejemplos, R₁ está sustituido con F.

En varias realizaciones, R₁ está sustituido con un alifático opcionalmente sustituido. Ejemplos de sustituyentes de R₁ incluyen alcoxialifático opcionalmente sustituido, heterocicloalifático, aminoalquilo, hidroxialquilo, (heterocicloalquil) alifático, alquilsulfonilalifático, alquilsulfonilaminoalifático, alquilcarbonilaminoalifático, alquilcarbonilalifático.

En varias realizaciones, R_1 está sustituido con un amino opcionalmente sustituido. Ejemplos de sustituyentes de R_1 incluyen alifático carbonilamino, alifático amino, arilamino, o alifático sulfonilamino.

En varias realizaciones, R₁ está sustituido con un sulfonilo. Ejemplos de sustituyentes de R₁ incluyen sulfonilo heterocicloalifático, sulfonilo alifático aminosulfonilo, aminosulfonilo, alifático carbonilaminosulfonilo, alcoxialquilheterocicloalquilsulfonilo, alquilheterocicloalquilsulfonilo, alquilaminosulfonilo, cicloalquilaminosulfonilo, (heterocicloalquil) alquilaminosulfonilo, y heterocicloalquilsulfonilo.

En varias realizaciones, R₁ está sustituido con carboxi. Ejemplos de sustituyentes de R₁ incluyen alcoxicarbonilo y hidroxicarbonilo.

En varias realizaciones R₁ está sustituido con amido. Ejemplos de sustituyentes de R₁ incluyen alquilaminocarbonilo, aminocarbonilo, ((alifático)₂ amino) carbonilo, y [((alifático) aminoalifático) amino] carbonilo.

En varias realizaciones, R_1 está sustituido con carbonilo. Ejemplos de sustituyentes de R_1 incluyen arilcarbonilo, carbonilo cicloalifático, carbonilo heterocicloalifático, y heteroarilcarbonilo.

En algunas realizaciones, R₁ es hidrógeno. En algunas realizaciones, R₁ es -Z^AR₅, en el que cada Z^A es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^A están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^A-, -CONR^ANR^A-, -CO₂- -OCO-, -NR^ACO₂-, -O-, -NR^A-CONR^A-, -OCONR^A-, -NR^ANR^A-, -NR^ACO-, -S-, -SO-, -SO₂-, -NR^A-, -SO₂NR^A-, -NR^ASO₂- o -NR^ASO₂NR^A-. Cada R₅ es independientemente R^A, halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃. Cada R^A es independientemente un grupo alifático C₁₋₈, un cicloalifático, un heterocicloalifático,

un arilo, o un heteroarilo, cada uno de los cuales está opcionalmente sustituido con 1, 2 o 3 de R^D. Cada R^D es -

 Z^DR_9 , en el que cada Z^D es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^E-, -CO₂-, -OCO-, -NR^ECO₂-, -O-, NR^ECONR^E-, -NR^ENR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂-, -NR^E-, -SO₂NR^E-, -NR^ESO₂- o -NR^ESO₂NR^E-. Cada R_9 es independientemente R_9^E , halo, -OH, -NH₂, -NO₂, - CN, -CF₃, o -OCF₃. Cada R_9^E es independientemente hidrógeno, un grupo alifático C_{1-8} opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, o un heteroarilo opcionalmente sustituido

En algunas realizaciones, cada R^D es independientemente -Z^DR⁹; en el que cada Z^D puede ser independientemente be enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -O-, - NHC(O)-, -C(O)NR^E-, -SO₂-, -NHSO₂-, -NHC(O)-, -NR^ESO₂-, -SO₂NH-, -SO₂NR^E-, -NH- o - C(O)O-. En algunas realizaciones, una unidad de carbono de Z^D está reemplazada con -O-. O, con -NHC(O)-. O, con -C(O)NR^E-. O, con -SO₂-. O, con -NHSO₂-. O, con -NHC(O)-. O, con -SO-. O, con - NR^ESO₂-. O, con -SO₂NH-. O, con -SO₂NR^E-. O, con -NH-. O, con -C(O)O-.

En algunas realizaciones, R_9 es hidrógeno. En algunas realizaciones, R_9 es independientemente un alifático opcionalmente sustituido. En algunas realizaciones, R_9 es un cicloalifático opcionalmente sustituido. O, es un heterocicloalifático opcionalmente sustituido. O, es un arilo opcionalmente sustituido. O, es un heteroarilo opcionalmente sustituido. O, H o halo.

En algunas realizaciones, un R_1 es arilo o heteroarilo, cada uno opcionalmente sustituido con 1, 2 o 3 de R^D , en el que R^D sea definido anteriormente.

En varias realizaciones, un R₁ es carboxi [por ejemplo, hidroxicarbonilo o alcoxicarbonilo]. O, un R₁ es amido [por ejemplo, aminocarbonilo]. O, un R₁ es amino. O, es halo.

En algunas realizaciones, un R_1 que está unido a la posición 5 o 6 del anillo piridilo es arilo o heteroarilo, cada uno opcionalmente sustituido con 1, 2 o 3 de R^D , en el que R^D se ha definido anteriormente. En algunas realizaciones, el un R_1 unido a la posición 5 o 6 del anillo piridilo es fenilo opcionalmente sustituido con 1, 2 o 3 de R^D , en el que R^D se ha definido anteriormente. En algunas realizaciones, el un R_1 unido a la posición 5 o 6 del anillo piridilo es heteroarilo opcionalmente sustituido con 1, 2 o 3 de R^D . En varias realizaciones, el un R_1 unido a la posición 5 o 6 del anillo piridilo es heteroarilo de 5 o 6 miembros que tiene 1, 2 o 3 heteroátomos seleccionados independientemente entre el grupo que consiste en oxígeno, nitrógeno y azufre. En otras realizaciones, el heteroarilo de 5 o 6 miembros está sustituido con 1 R^D .

En algunas realizaciones, un R_1 unido a la posición 5 o 6 del anillo piridilo es un fenilo sustituido con 1 R^D . En algunas realizaciones, un R_1 unido a la posición 5 o 6 del anillo piridilo es un fenilo sustituido con 2 R^D . En algunas realizaciones, un R_1 unido a la posición 5 o 6 del anillo piridilo es un fenilo sustituido con 3 R^D .

En varias realizaciones, R1 es:

$$W_1$$
 D
 W_1
 D
 W_2
 W_1
 D
 W_1
 D
 W_2
 W_3
 W_4
 D
 W_1
 D

en los que

W₁ es -C(O)-, -SO₂- o -CH₂-;

D es H, hidroxilo, o un grupo opcionalmente sustituido seleccionado entre alifático, cicloalifático, alcoxi, y amino; y R^D se ha definido anteriormente.

En varias realizaciones, W₁ es -C(O)-. O, W₁ es -SO₂-. O, W₁ es -CH₂-.

En varias realizaciones, D es OH. O, D es un alifático C₁₋₆ opcionalmente sustituido o un cicloalifático C₃-C₈ opcionalmente sustituido. O, D es un alcoxi opcionalmente sustituido. O, D es un amino opcionalmente sustituido.

55

50

45

20

30

35

En varios ejemplos, D es

5

10

15

20

25

30

35

40

45

en el que cada uno de A y B es independientemente H, un alifático C_{1-6} opcionalmente sustituido, un cicloalifático C_3 - C_8 opcionalmente sustituido, o

A y B, tomados en conjunto, forman un anillo heterocicloalifático de 3-7 miembros opcionalmente sustituido.

En varias realizaciones, A es H y B es un alifático C₁₋₆ opcionalmente sustituido. En varias realizaciones, B está sustituido con 1, 2 o 3 sustituyentes. O, tanto A como B, son H. Los sustituyentes a modo de ejemplo incluyen oxo, alquilo, hidroxi, hidroxialquilo, alcoxi, alcoxialquilo, dialquilamino, o un grupo opcionalmente sustituido seleccionado entre cicloalifático, heterocicloalifático, arilo, y heteroarilo.

En varias realizaciones, A es H y B es un alifático C₁₋₆ opcionalmente sustituido. O, tanto A como B, son H. Los sustituyentes a modo de ejemplo incluyen oxo, alquilo, hidroxi, hidroxialquilo, alcoxi, alcoxialquilo, y un heterocicloalifático opcionalmente sustituido.

En varias realizaciones, B es alquilo C_{1-6} , opcionalmente sustituido con oxo, alquilo, hidroxi, hidroxialquilo, alcoxi, alcoxialquilo, o un grupo opcionalmente sustituido seleccionado entre cicloalifático, heterocicloalifático, arilo, y heteroarilo. En varias realizaciones, B está sustituido con oxo, alquilo C_{1-6} , hidroxi, hidroxi-alquilo (C_{1-6}) , alcoxi (C_{1-6}) alquilo (C_{1-6}) , cicloalifático C_{3-8} , heterocicloalifático de 3-8 miembros, fenilo, y heteroarilo de 5-10 miembros. En un ejemplo, B es alquilo C_{1-6} sustituido con fenilo opcionalmente sustituido.

En varias realizaciones, A y B, tomados en conjunto, forman un anillo heterocicloalifático de 3-7 miembros opcionalmente sustituido. En varios ejemplos, el anillo heterocicloalifático está opcionalmente sustituido con 1, 2 o 3 sustituyentes. Dichos anillos a modo de ejemplo incluyen pirrolidinilo opcionalmente sustituido, piperidinilo, morfolinilo, y piperazinilo. Los sustituyentes a modo de ejemplo en dichos anillos incluyen halo, oxo, alquilo, hidroxi, hidroxialquilo, alcoxi, alcoxialquilo, acilo (por ejemplo, alquilcarbonilo), amino, amido, y carboxi. En algunas realizaciones, el sustituyentes es halo, oxo, alquilo, hidroxi, hidroxialquilo, alcoxi, alcoxialquilo, amino, amido, o carboxi.

En varias realizaciones, R1 es:

en el que:

W₁ es -C(O)-, -SO₂- o -CH₂-;

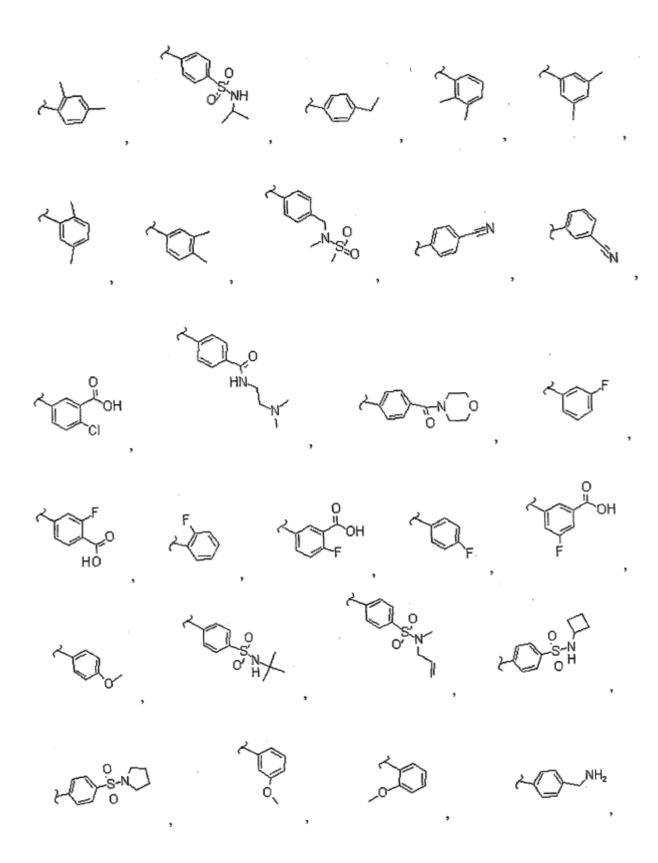
Cada uno de A y B es independientemente H, un alifático C_{1-6} opcionalmente sustituido, un cicloalifático C_3 - C_8 opcionalmente sustituido; o

A y B, tomados en conjunto, forman un anillo heterocicloalifático de 3-7 miembros opcionalmente sustituido.

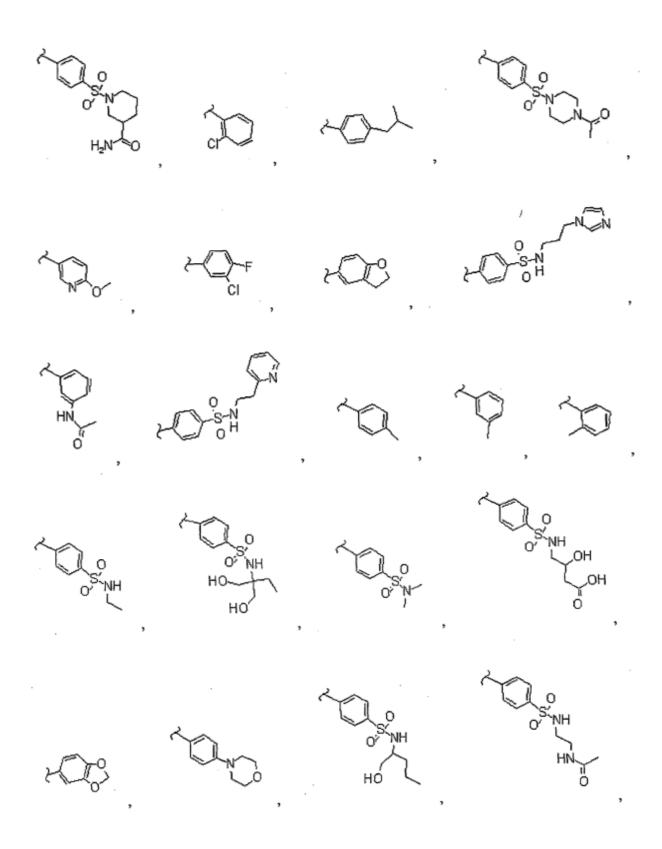
En algunas realizaciones, un R_1 que está unido a la posición 5 o 6 del anillo piridilo es cicloalifático o heterocicloalifático, cada uno opcionalmente sustituido con 1, 2 o 3 de R^D ; en el que R^D es - Z^DR_9 ; en el que cada Z^D es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^ENR^E-, -CO₂-, -OCO-, -NR^ECO₂-, -O-, -NR^ECONR^E-, -OCONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂-, -NR^E-, - SO₂NR^E-, -NR^ESO₂- o -NR^ESO₂NR^E-; cada R_9 es independientemente R^E , halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃; y cada R^E es independientemente hidrógeno, un grupo alifático C_{18} opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heteroarilo opcionalmente sustituido.

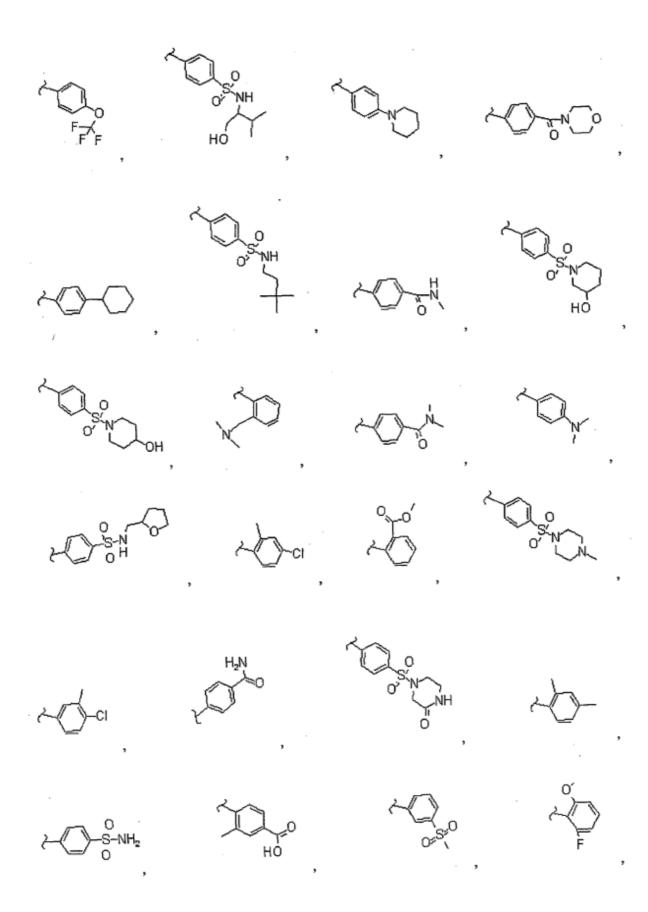
En varios ejemplos, un R_1 que está unido a la posición 5 o 6 del anillo piridilo es un cicloalifático C_3 - C_8 opcionalmente sustituido.

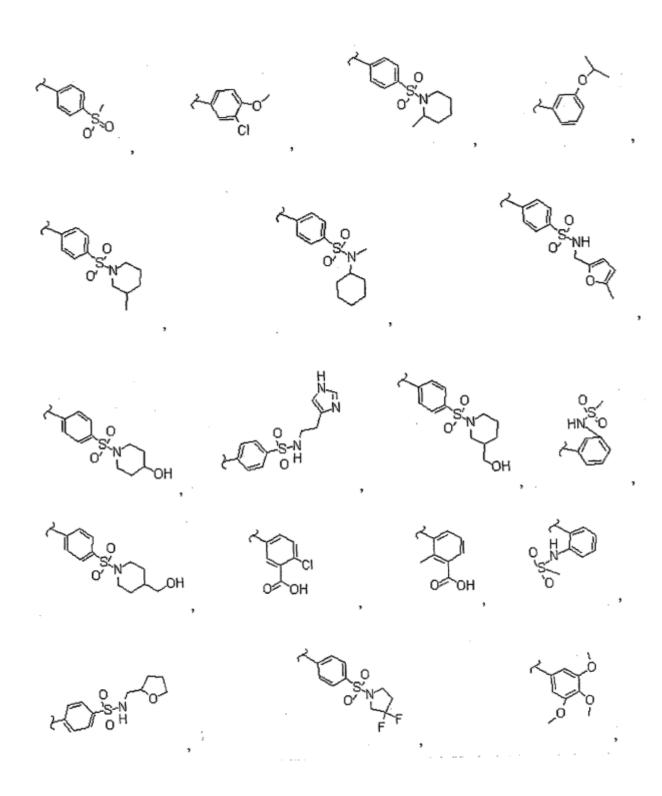
15 En algunas realizaciones, un R₁ que está unido a la posición 5 o 6 del anillo piridilo es un cicloalquilo C₃-C₈ opcionalmente sustituido o un cicloalquenilo C₃-C₈ opcionalmente sustituido.

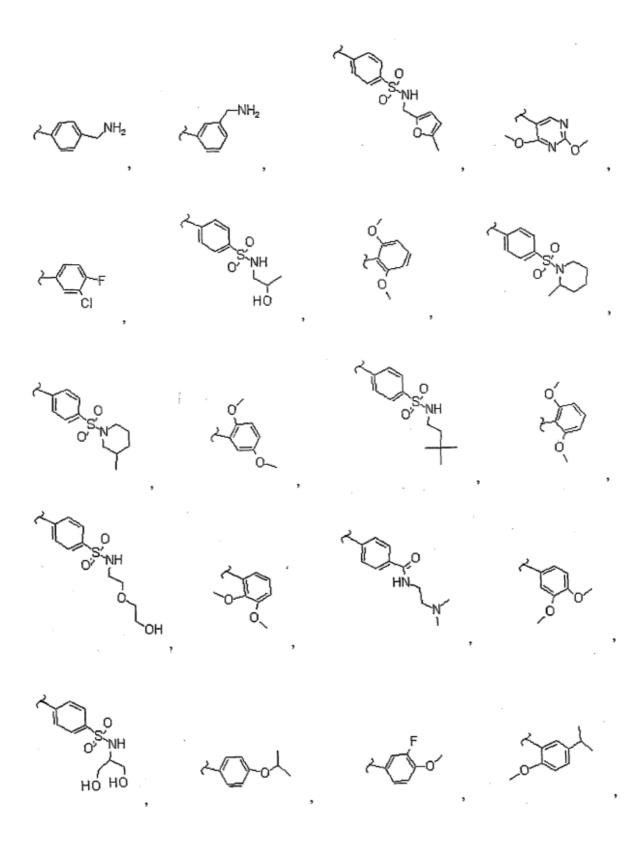

En varias realizaciones, un R_1 que está unido a la posición 5 o 6 del anillo piridilo es cicloalquilo C_3 - C_8 o cicloalquenilo C_3 - C_8 . Ejemplos de cicloalquilo y cicloalquenilo incluyen ciclopropilo, ciclobetilo, ciclopentenilo, ciclohexenilo, y ciclohexenilo.

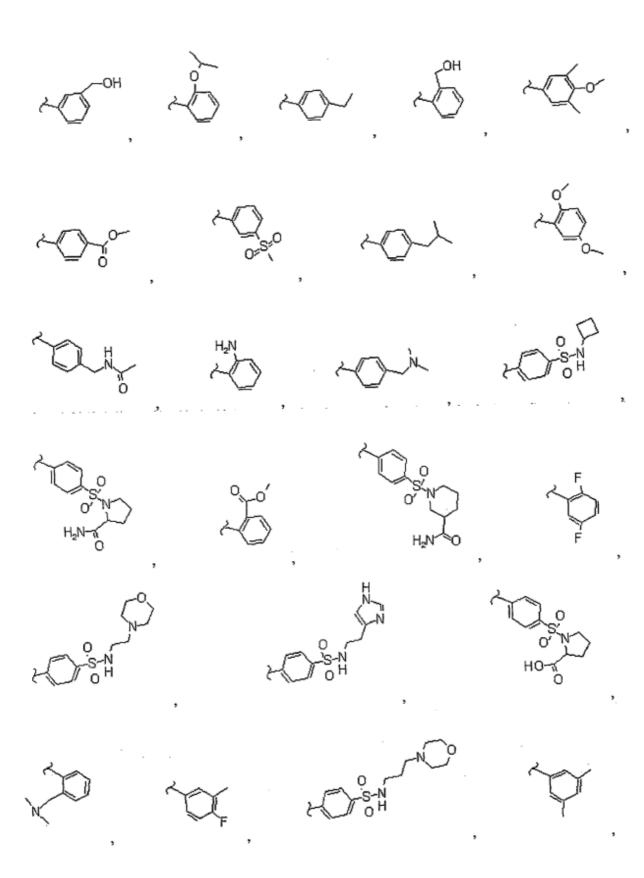

En algunas realizaciones, R1 es:

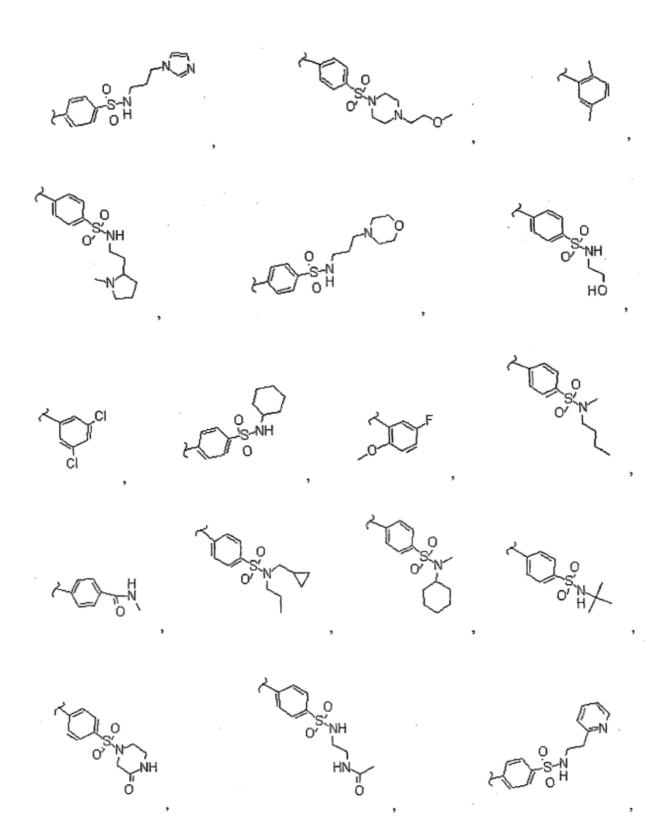

10

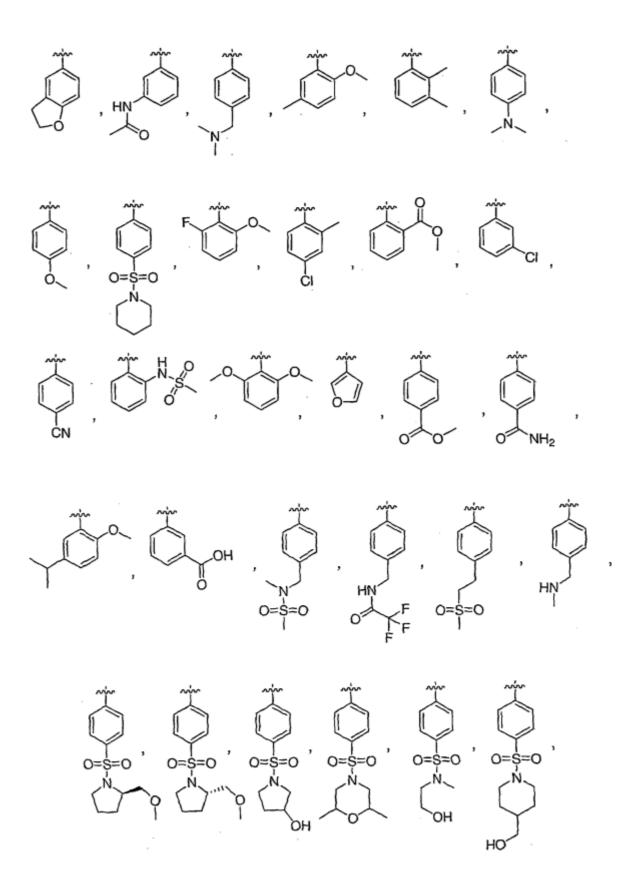

20

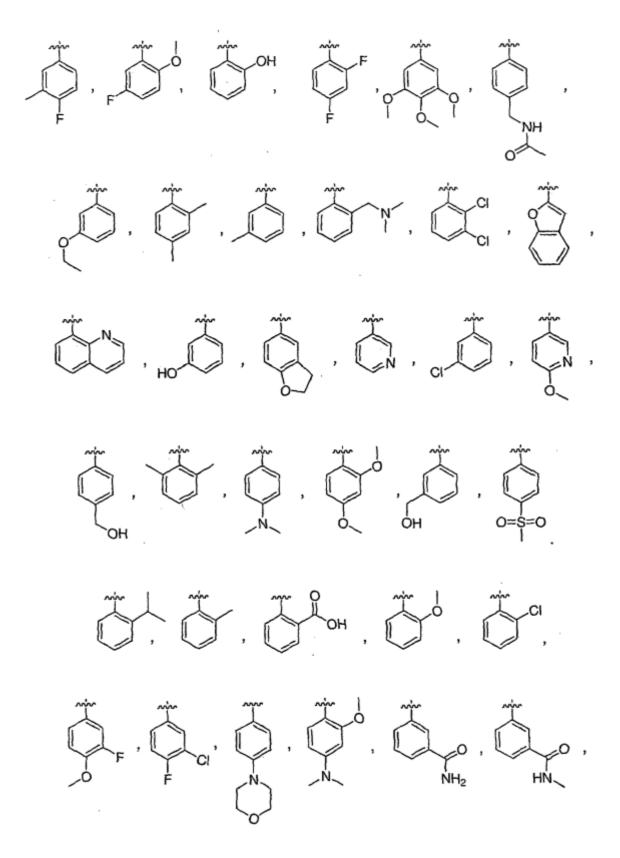

25











B. Sustituyente R₂

5

Cada R₂ puede ser hidrógeno.

R₂ puede ser metilo, etilo, propilo, o butilo.

En varias realizaciones, R2 es hidrógeno.

10 C. Sustituyentes R₃ y R'₃

Cada R_3 y R'_3 junto con el átomo de carbono al que están unidos forman un cicloalifático C_{3-7} o un heterocicloalifático, cada uno de los cuales está opcionalmente sustituido con 1, 2 o 3 sustituyentes.

- En varias realizaciones, R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un cicloalifático C₃₋₇ o un heterocicloalifático C₃₋₇, cada uno de los cuales está opcionalmente sustituido con 1, 2 o 3 de -Z^BR₇, en el que cada Z^B es independientemente un enlace, o una cadena alifática C₁₋₄ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^B están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^B-, -CONR^BNR^B-, -CO₂-, -OCO-, -NR^BCO₂-, -O-, -NR^BCONR^B-, -OCONR^B-, -NR^BNR^B-, NR^BCO-, -S-, -SO-, -SO₂-, -NR^B-, -SO₂NR^B-, -NR^BSO₂- o -NR^BSO₂NR^B-; cada R₇ es independientemente R^B, halo, -OH, -NH₂, -NO₂ -CN, -CF₃, o -OCF₃; y cada R^B es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido, o un heteroarilo opcionalmente sustituido.
- En varias realizaciones, R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un cicloalifático de 3, 4, 5 o 6 miembros que está opcionalmente sustituido con 1, 2 o 3 sustituyentes. En varios ejemplos, R₃, R'₃, y el átomo de carbono al que están unidos forman un grupo ciclopropilo opcionalmente sustituido. En varios ejemplos alternativos, R₃, R'₃, y el átomo de carbono al que están unidos forman un grupo ciclobutilo opcionalmente sustituido. En varios otros ejemplos, R₃, R'₃, y el átomo de carbono al que están unidos forman un grupo ciclopentilo opcionalmente sustituido. En otros ejemplos, R₃, R'₃, y el átomo de carbono al que están unidos forman un grupo ciclohexilo opcionalmente sustituido. En más ejemplos, R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un ciclopropilo sin sustituir.
- En varias realizaciones, R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un heterocicloalifático opcionalmente sustituido de 5, 6, o 7 miembros. En otros ejemplos, R₃, R'₃, y el átomo de carbono al que están unidos forman un grupo tetrahidropiranilo opcionalmente sustituido.

En algunas realizaciones, R_3 y R'_3 junto con el átomo de carbono al que están unidos forman un cicloalifático C_{3-7} sin sustituir o un heterocicloalifático sin sustituir. En varios ejemplos, R_3 y R'_3 junto con el átomo de carbono al que están unidos forman un ciclopropilo sin sustituir, un ciclopentilo sin sustituir, o un ciclohexilo sin sustituir.

5 D. Sustituyente R₄

20

25

35

Cada R₄ es independientemente un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido.

En diversas realizaciones, R₄ es un arilo que tiene de 6 a 10 miembros (por ejemplo, de 7 a 10 miembros) opcionalmente sustituido con 1, 2 o 3 sustituyentes. Ejemplos de R₄ incluyen benceno opcionalmente sustituido, naftaleno, o indeno. O, ejemplos de R₄ pueden ser fenilo opcionalmente sustituido, naftilo opcionalmente sustituido, o indenilo opcionalmente sustituido.

En varias realizaciones, R₄ es un heteroarilo opcionalmente sustituido. Ejemplos de R₄ incluyen heteroarilo monocíclico y bicíclico, tal como un sistema de anillo condensado con benzo en el que el fenilo está condensado con uno o dos grupos heterocicloalifáticos de 4-8 miembros.

En algunas realizaciones, R₄ es un arilo o heteroarilo, cada uno opcionalmente sustituido con 1, 2 o 3 de -Z^CR₈. En algunas realizaciones, R₄ es un arilo opcionalmente sustituido con 1, 2 o 3 de -Z^CR₈. En algunas realizaciones, R₄ es fenilo opcionalmente sustituido con 1, 2 o 3 de -Z^CR₈. O, R₄ es un heteroarilo opcionalmente sustituido con 1, 2 o 3 de -Z^CR₈. Cada Z^C es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^C están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^C-, -CONR^CNR^C-, -CO₂-, -OCO-, -NR^CCO₂-, -O-, -NR^CCONR^C-, -OCONR^C-, -NR^CNR^C--NR^CCO-, -S-, -SO-, -SO₂-, -NR^C-, -SO₂NR^C-, -NR^CSO₂- o -NR^CSO₂NR^C-. Cada R₈ es independientemente R^C, halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃. Cada R^C es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heteroacicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido, o un heteroacilo opcionalmente sustituido.

En algunas realizaciones, dos apariciones de -Z^CR₈, tomadas en conjunto con los carbonos a los que están unidos, forman un anillo saturado, parcialmente saturado, o aromático de 4-8 miembros con hasta 3 átomos en el anillo seleccionados independientemente entre el grupo que consiste en O, NH, NR^C, y S; en el que R^C se define en el presente documento.

En varias realizaciones, R4 es uno que está seleccionado entre

E. Familias de Compuestos a Modo de Ejemplo

10

20

25

30

5 En varias realizaciones, R₁ es un grupo cíclico opcionalmente sustituido que está unido a la estructura principal en la posición 5 o 6 del anillo de piridina.

En varios ejemplos, R_1 es un arilo opcionalmente sustituido que está unido a la posición 5 del anillo de piridina. En otros ejemplos, R_1 es un arilo opcionalmente sustituido que está unido a la posición 6 del anillo de piridina.

En más ejemplos, R₁ es un heteroarilo opcionalmente por que está unido a la posición 5 del anillo de piridina. Aún en otros ejemplos, R₁ es un heteroarilo opcionalmente sustituido que está unido a la posición 6 del anillo de piridina.

En otras realizaciones, R₁ es un cicloalifático opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido que está unido al anillo de piridina en la posición 5 o 6.

En consecuencia, otro aspecto de la presente invención proporciona compuestos de fórmula (II):

(II)

o una sal farmacéuticamente aceptable de los mismos, en la que R₁, R₂, R₃, R'₃, y R₄ se definen en la fórmula I.

En algunas realizaciones, cada R_1 es arilo o heteroarilo opcionalmente sustituido con 1, 2 o 3 de R^D , en el que R^D es $-Z^DR_9$, en el que cada Z^D es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^ENR^E-, -CO₂-, -OCO-, -NR^ECO₂-, -O-, -NR^ECONR^E-, -OCONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, SO₂-, -NR^E-, -SO₂NR^E-, -NR^ESO₂- o -NR^ESO₂NR^E-; cada R_9 es independientemente R_9^E , halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃; cada R_9^E es independientemente hidrógeno, un grupo alifático C_{1-8} opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heteroarilo opcionalmente sustituido.

En alguna realización, cada R_1 es cicloalifático o heterocicloalifático opcionalmente sustituido con 1, 2 o 3 de R^D ; en el que R^D se ha definido anteriormente.

Otro aspecto de la presente invención proporciona compuestos de fórmula (III):

o una sal farmacéuticamente aceptable de los mismos, en la que R₁, R₂, R₃, R'₃, y R₄ se definen en la fórmula I. En algunas realizaciones, cada R₁ es arilo o heteroarilo opcionalmente sustituido con 1, 2 o 3 de R^D, en el que R^D es -Z^DR₉, en el que cada Z^D es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^ENR^E-, -CO₂-, -OCO-, -NR^ECO₂- -O-, -NR^EI CONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂-, - NR^E-, -SO₂NR^E-, -NR^ESO₂- o -NR^ESO₂NR^E-; cada R₉ es independientemente R^E, halo, -OH, -NH₂, - NO₂, -CN, -CF₃, o -OCF₃; cada R^E es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido.

En algunas realizaciones, cada R₁ es cicloalifático o heterocicloalifático opcionalmente sustituido con 1, 2 o 3 de R^D; en el que R^D se ha definido anteriormente.

En otro aspecto, la presente invención incluye compuestos de fórmula (IV):

$$\begin{array}{c|c}
R_2 & R_3 - R_3 \\
\hline
 & N & O \\
\hline
 & N & O \\
\hline
 & R_4 \\
\hline
 & R_7 & O
\end{array}$$
(IV)

20

o una sal farmacéuticamente aceptable de los mismos, en la que R2, R3, R3, y R4 se definen en la fórmula I.

 R^D es $-Z^DR_9$; en el que cada Z^D es independientemente un enlace o una cadena alifática $C_{1\text{-}6}$ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR E -, -CONR E -R, -CO2-, -OCO-, -NR E CO2-, -O-, -NR E CONR E -, -OCONR E -, -NR E -NR E -NR E -, -NR E -

30 R₉ es independientemente R^E, halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃.

Cada R^E es independientemente hidrógeno, un grupo alifático C_{1-8} opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido, o un heteroarilo opcionalmente sustituido.

35

40

En varias realizaciones, Z^D es independientemente un enlace o es una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que una unidad de carbono de Z^D está opcionalmente reemplazada con -SO₂ - CONR^E-, -NR^ESO₂- o -SO₂NR^E-. Por ejemplo, Z^D es una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que una unidad de carbono de Z^D está opcionalmente reemplazada con -SO₂-. En otros ejemplos, R_9 es un heteroarilo opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido. En ejemplos adicionales, R_9 es un heterocicloalifático opcionalmente sustituido que tiene 1-2 átomos de nitrógeno, y R_9 se une directamente a -SO₂- a través de un nitrógeno del anillo.

En otro aspecto, la presente invención incluye compuestos de fórmula V-A o de fórmula V-B:

o una sal farmacéuticamente aceptable de los mismos, en las que:

10

15

25

45

50

5 T es una cadena alifática C₁₋₂ opcionalmente sustituida, en la que cada una de las unidades de carbono está opcionalmente e independientemente reemplazada con -CO-, -CS-, -COCO-, -SO₂- -B(OH)- o -B(O(alquilo C₁₋₆))-;

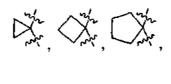
Cada uno de R_1 ' y R_1 " es independientemente un enlace o un alifático C_{1-6} opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático de 3 a 10 miembros opcionalmente sustituido, un heterocicloalifático de 3 a 10 miembros opcionalmente sustituido, carboxi, amido, amino, halo, o hidroxi; R^{D1} está unido al carbono 3" o 4";

cada R^{D1} y R^{D2} es $-Z^DR_9$, en el que cada Z^D es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^E-, -CO₂-, -OCO-, -NR^ECO₂-, -O-, -NR^ECONR^E-, -OCONR^E-, -NR^E-, -NR^E

o R^{D1} y R^{D2}, tomados en conjunto con átomos a los que están unidos, forman un anillo saturado, parcialmente insaturado, o aromático de 3-8 miembros con hasta 3 miembros del anillo seleccionados independientemente entre el grupo que consiste en O, NH, NR^E, y S; y

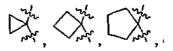
cada R^E es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido, o un heterocirilo opcionalmente sustituido.

En algunas realizaciones, T es un - CH_2 - opcionalmente sustituido. En algunas otras realizaciones, T es un - CH_2 - opcionalmente sustituido.


En algunas realizaciones, T está opcionalmente sustituido con -Z^ER₁₀; en el que cada Z^E es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^E están opcionalmente e independientemente reemplazadas con -CO-, - CS-, -CONR^F-, -CO₂-, -OCO-, -NR^FCO-, -O-, -NR^FCONR^F-, -OCONR^F-, -NR^FNR^F-, -NR^FCO-, -S-, -SO-, -SO₂-, -NR^F-, -SO₂NR^F-, -NR^FSO₂- o -NR^FSO₂NR^F-; R₁₀ es independientemente R^F, halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃; cada R^F es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heteroarilo opcionalmente sustituido. En un ejemplo, Z^E es -O-.

En algunas realizaciones, R_{10} puede ser un alquilo C_{1-6} opcionalmente sustituido, un alquenilo C_{2-6} opcionalmente 40 sustituido, un cicloalifático C_{3-7} opcionalmente sustituido, o un arilo C_{6-10} opcionalmente sustituido. En una realización, R_{10} es metilo, etilo, i-propilo, o t-butilo.

En algunas realizaciones, hasta dos unidades de carbono de T están opcionalmente sustituidas con -CO-, -CS-, -B(OH)- o -B(O(alquilo C_{1-6})-.


En algunas realizaciones, T está seleccionado entre el grupo que consiste en - CH_2 -, - CH_2CH_2 -, - CF_2 -, - $C(CH_3)_2$ -, - C(O)-,

-C(Fenilo)₂-, -B(OH)- y -CH(OEt)-. En algunas realizaciones, T es -CH₂-, -CF₂-, -C(CH₃)₂-,

o -C(Fenilo)₂-. En otras realizaciones, T es -CH₂H₂-, -C(O)-, -B(OH)- y -CH(OEt)-. En varias realizaciones, T es -CH₂-, -CF₂-, -C(CH₃)₂-,

0

10

5

Más preferentemente, T es - CH_2 -, - CF_2 - o - $C(CH_3)_2$ -. En varias realizaciones, T es - CH_2 -. O, T es - CF_2 -. O, T es - CC_2 -. O, T es - CC_2 -. O, T es - CC_2 -.

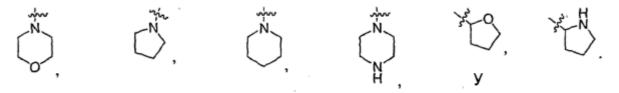
En algunas realizaciones, cada uno de R₁' y R₁" es hidrógeno. En algunas realizaciones, cada uno de R₁' y R₁" es independientemente -Z^AR₅, en el que cada Z^A es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^A están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^A-, -CONR^A-, -CO₂-, -OCO-, -NR^ACO₂-, -O-, -NR^ACONR^A-, -NR^ANR^A-, -NR^ANR^A-, -NR^ANR^A-, -NR^ANR^A-, -NR^ASO₂- o -NR^ASO₂NR^A-. Cada R₅ es independientemente R^A, halo, -OH, -NH₂, -NO₂, -CN, -CF₃, o -OCF₃. Cada R^A es independientemente un grupo opcionalmente sustituido seleccionado entre grupo alifático C₁₋₈, un cicloalifático, un heterocicloalifático, un arilo, y un heteroarilo.

En algunas realizaciones, R₁' está seleccionado entre el grupo que consiste en H, alifático C₁₋₆, halo, CF₃, CHF₂, -O(alifático C₁₋₆), cicloalquilo C3-C5, o heterocicloalquilo C4-C6 que contiene un átomo de oxígeno. En algunas realizaciones, R₁' está seleccionado entre el grupo que consiste en H, metilo, etilo, *i*-propilo, *t*-butilo, F. CI, CF₃, CHF₂, -OCH₃, -OCH₂CH₃, -O-(*i*-propilo), o -O-(*t*-butilo). Más preferentemente, R₁' es H. O, R₁' es metilo. O, etilo. O, CF₃.

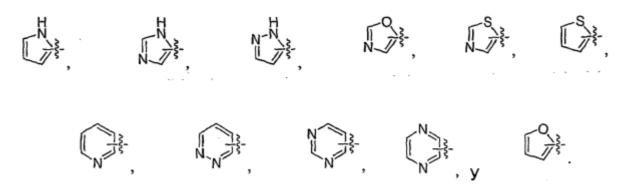
30 En algunas realizaciones, R₁" está seleccionado entre el grupo que consiste en H, alifático C₁₋₆, halo, CF₃, CHF₂, y - O(alifático C₁₋₆). En algunas realizaciones, R₁" está seleccionado entre el grupo que consiste en H, metilo, etilo, *i*- propilo, *t*-butilo, F. CI, CF₃, CHF₂, -OCH₃, - OCH₂CH₃, -O-(*i*-propilo), o -O-(*t*-butilo). Más preferentemente, R₁" es H. O, R₁" es metilo. O, etilo. O, CF₃.

En algunas realizaciones, R^{D1} está unido al carbono 3" o 4", y es -Z^DR₉, en el que cada Z^D es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -COQ₂-, -OCO-, -NR^ECO₂-, -O-, -NR^ECON-R^E-, -OCONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂-, -NR^E-, -SO₂NR^E-, -NR^ESO₂- o - NR^ESO₂NR^E-. Todavía en algunas realizaciones, Z^D es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que una unidad de carbono de Z^D está opcionalmente reemplazada con -CO-, -SO-, -SO₂-, -COO-, -OCO-, -CONR^E-, -NR^ECO-, NR^ECO₂-, -O-, -NR^ESO₂-, o -SO₂NR^E-. En algunas realizaciones, una unidad de carbono de Z^D está opcionalmente reemplazada con -CO-. O, con -SO-. O, con -SO₂-. O, con -COO-. O, con -OCO-. O, con -CONR^E-. O, con -NR^ECO-. O, con -NR^ECO₂-. O, con -OCO-. O, con -OCO-

45


En varias realizaciones, R_9 es hidrógeno, halo, -OH, -NH₂, -CN, -CF₃, - OCF₃, o un grupo opcionalmente sustituido seleccionado entre el grupo que consiste en alifático C_{1-6} , cicloalifático C_{3-8} , heterocicloalifático de 3-8 miembros, arilo C_{6-10} , y heteroarilo de 5-10 miembros. En varios ejemplos, R_9 es hidrógeno, F, CI, -OH, -CN, -CF₃, o -OCF₃. En algunas realizaciones, R_9 es alifático C_{1-6} , cicloalifático C_{3-8} , heterocicloalifático de 3-8 miembros, arilo C_{6-10} , y de

heteroarilo 5-10 miembros, cada uno de los cuales está opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en R^E , oxo, halo, -OH, -NR E R E , -OR E , - COOR E , y - CONR E R E . En varios ejemplos, R_9 está opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en oxo, F, CI, metilo, etilo, *i*-propilo, *t*-butilo, -CH₂OH, -CH


En una realización, R_9 es hidrógeno. En algunas realizaciones, R_9 está seleccionado entre el grupo que consiste en alquilo C_{1-6} lineal o ramificado o alquenilo C_{2-6} lineal o ramificado; en los que dicho alquilo o alquenilo está opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en R^E , oxo, halo, -OH, -NR E R E , -OC E , - COOR E , y -CONR E R E .

En otras realizaciones, R_9 es cicloalifático $C_{3:8}$ opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en R^E , oxo, halo, -OH, - NR^ER^E , - OR^E , - $COOR^E$, y - $CONR^ER^E$. Ejemplos de cicloalifático incluyen, pero no se limitan a, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, y cicloheptilo.

Todavía en otras realizaciones, R₉ es un heterocíclico de 3-8 miembros con 1 o 2 heteroátomos seleccionados independientemente entre el grupo que consiste en O, NH, NR^E, y S; en el que dicho heterocíclico está opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo R^E, oxo, halo, - OH, -NR^ER^E, -OR^E, -COOR^E, y -CONR^ER^E. Ejemplos de heterocíclico de 3-8 miembros incluyen, pero no se limitan a:

Todavía en algunas otras realizaciones, R₉ es un heteroarilo de 5-8 miembros opcionalmente sustituido con uno o dos átomos del anillo seleccionados independientemente entre el grupo que consiste en O, S, y NR^B. Ejemplos de heteroarilo de 5-8 incluyen, pero no se limitan a:

En algunas realizaciones, R^{D1} y R^{D2}, tomados en conjunto con carbonos a los que están unidos, forman un anillo saturado, parcialmente insaturado, o aromático de 4-8 miembros opcionalmente sustituido con 0-2 átomos del anillo seleccionados independientemente entre el grupo que consiste en O, NH, NR^E, y S. Ejemplos de R^{D1} y R^{D2}, tomados en conjunto con los átomos de carbono 3" y 4" que contienen fenilo, incluyen pero no se limitan a:

35

30

10

15

En una realización, la presente invención proporciona compuestos de fórmula VI-A-i o de fórmula VI-A-ii:

en las que T, R^{D1} , R^{D2} , y R_1 ' son como se han definido anteriormente.

En una realización, T es -CH₂-, -CF₂- o -C(CH₃)₂-.

5

10

15

20

25

30

En una realización, R_1' está seleccionado entre el grupo que consiste en H, alifático C_{1-6} , halo, CF_3 , CBF_2 , -O(alifático C_{1-6}), cicloalquilo C_3 - C_5 , o heterocicloalquilo C_4 - C_6 que contiene un átomo de oxígeno. Las realizaciones a modo de ejemplo incluyen H, metilo, etilo, i-propilo, t-butilo, F, Cl, CF_3 , CBF_2 , -OCH $_3$, -OCH $_2$ CH $_3$, -O-(i-propilo), -O-(t-butilo), ciclopropilo, u oxetanilo. Más preferentemente, R_1' es H. O, R_1' es metilo. O, etilo. O, CF_3 . O, oxetanilo.

En una realización, R^{D1} es Z^DR₉, en el que Z^D está seleccionado entre CONH, NHCO, SO₂NH, SO₂N(alquilo C₁₋₆), NHSO₂, CH₂NHSO₂, CH₂NHCO, COO, SO₂, o CO. En una realización, R^{D1} es Z^DR₉, en el que Z^D

ES 2 439 736 T3

está seleccionado entre CONH, SO_2NH $SO_2N(alquilo$ $C_{1-6})$, CH_2NHSO_2 , $CH_2N(CH_3)SO_2$, CH_2NHCO , COO, SO_2 , o CO.

En una realización, Z^D es COO y R_9 es H. En una realización, Z^D es COO y R_9 es un alifático C_{1-6} lineal o ramificado opcionalmente sustituido. En una realización, Z^D es COO y R_9 es un lineal o ramificado alquilo C_{1-6} opcionalmente sustituido. En una realización, Z^D es COO y R_9 es alquilo C_{1-6} . En una realización, Z^D es COO y R_9 es metilo.

En una realización, Z^D es CONH y R_9 es H. En una realización, Z^D es CONH y R_9 es un alifático C_{1-6} lineal o ramificado opcionalmente sustituido. En una realización, Z^D es CONH y R_9 es alquilo C_{1-6} lineal o ramificado. En una realización, Z^D es CONH y R_9 es un alquilo C_{1-6} lineal o ramificado opcionalmente sustituido. En una realización, Z^D es CONH y R_9 es 2-(dimetilamino)-etilo.

En algunas realizaciones, Z^D es CH_2NHCO y R_9 es un alifático C_{1-6} lineal o ramificado opcionalmente sustituido o un alcoxi opcionalmente sustituido. En algunas realizaciones, Z^D es CH_2NHCO y R_9 es alquilo C_{1-6} lineal o ramificado opcionalmente sustituido con halo, oxo, hidroxilo, o un grupo opcionalmente sustituido seleccionado entre alifático, cíclico, arilo, heteroarilo, alcoxi, amino, carboxilo, o carbonilo. En una realización, Z^D es CH_2NHCO y R_9 es metilo. En una realización, Z^D es CH_2NHCO y R_9 es t-butoxi.

En una realización, Z^D es SO₂NH y R₉ es H. En algunas realizaciones, Z^D es SO₂NH y R₉ es un alifático C₁₋₆ lineal o ramificado opcionalmente sustituido. En algunas realizaciones, Z^D es SO₂NH y R₉ es alquilo C₁₋₆ lineal o ramificado opcionalmente sustituido con halo, oxo, hidroxilo, o un grupo opcionalmente sustituido seleccionado entre alifático C₁₋₆, cíclico de 3-8 miembros, arilo C₆₋₁₀, heteroarilo de 5-8 miembros, alcoxi, amino, amido, carboxilo, o carbonilo. En una realización, Z^D es SO₂NH y R₉ es etilo. En una realización, Z^D es SO₂NH y R₉ es etilo. En una realización, Z^D es SO₂NH y R₉ es etilo. En una realización, Z^D es SO₂NH y R₉ es Ch₂CH₂OH. En una realización, Z^D es SO₂NH y R₉ es CH₂CH₂OH. En una realiza

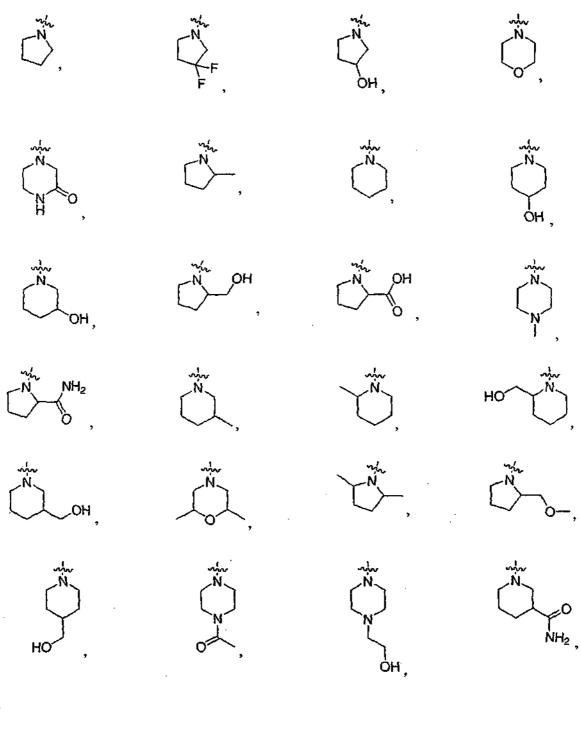
En alguna realización, Z^D es SO_2NH y R_9 es un cicloalifático C_{1-6} opcionalmente sustituido. En varios ejemplos, Z^D es SO_2NH y R_9 es un cicloalquilo C_{1-6} opcionalmente sustituido. En varios ejemplos, Z^D es SO_2NH y R_9 es cicloalquilo C_{1-6} . En una realización, Z^D es SO_2NH y R_9 es ciclobutilo. En una realización, Z^D es SO_2NH y R_9 es ciclohexilo.

En algunas realizaciones, Z^D es $SO_2N(alquilo\ C_{1-6})$ y R_9 es un alifático C_{1-6} lineal o ramificado opcionalmente sustituido. En algunas realizaciones, Z^D es $SO_2N(alquilo\ C_{1-6})$ y R_9 es un alifático C_{1-6} lineal o ramificado opcionalmente sustituido. En algunas realizaciones, Z^D es $SO_2N(alquilo\ C_{1-6})$ y R_9 es un alquilo C_{1-6} lineal o ramificado opcionalmente sustituido o un alquenilo C_{1-6} lineal o ramificado opcionalmente sustituido. En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es metilo. En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es n-butilo. En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es n-butilo. En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es alilo. En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es CH_2CH_2OH . En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es CH_2CH_2OH . En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es CH_2CH_2OH . En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es CH_2CH_2OH . En una realización, Z^D es $SO_2N(CH_3)$ y R_9 es CH_2CH_2OH . En una realización, CD0 es $CD_2N(CH_3)$ 0 es $CD_2N(CD_3)$ 0 es $CD_3N(CD_3)$ 0 e

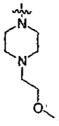
En una realización, Z^D es CH₂NHSO₂ y R₉ es metilo. En una realización, Z^D es CH₂N(CH₃)SO₂ y R₉ es metilo.

En algunas realizaciones, Z^D es SO_2 y R_9 es un alifático C_{1-6} lineal o ramificado opcionalmente sustituido o un heterocíclico de 3-8 miembros opcionalmente sustituido, que tiene 1, 2 o 3 miembros del anillo seleccionados entre el grupo que consiste en nitrógeno, oxígeno, azufre, SO, o SO_2 . En algunas realizaciones, Z^D es SO_2 y R_9 es alquilo C_{1-6} lineal o ramificado o heterocicloalifático de 3-8 miembros cada uno de los cuales está opcionalmente sustituido con 1, 2 o 3 de oxo, halo, hidroxilo, o un grupo opcionalmente sustituido seleccionado entre alifático C_{1-6} , carbonilo, amino, y carboxi. En una realización, Z^D es SO_2 y R_9 es metilo. En algunas realizaciones, Z^D es SO_2 y ejemplos de R_9 incluyen:

65


45

50


55

60

10

у

5

En algunas realizaciones, R^{D2} es H, hidroxilo, halo, alquilo C_{1-6} , alcoxi C_{1-6} , cicloalquilo C_{3-6} , o NH₂. En varios ejemplos, R^{D2} es H, halo, alquilo C_{1-4} , o alcoxi C_{1-4} . Ejemplos de R^{D2} incluyen H, F, Cl, metilo, etilo, and metoxi.

ES 2 439 736 T3

En algunas realizaciones, la presente invención proporciona compuestos de fórmula (l'-A) o de fórmula (l'-B):

5

o una sal farmacéuticamente aceptable de los mismos,

en las que R₁, R₂, R₃, R₃', R₄, y n se han definido anteriormente.

10

En algunas realizaciones, R₁ es un arilo opcionalmente sustituido. En varios ejemplos, R₁ es fenilo opcionalmente sustituido con 1, 2 o 3 de halo, OH, -O(alifático C₁₋₆), amino, alifático C₁₋₆, cicloalifático C₁₋₇, heterocicloalifático de 3-8 miembros, arilo C₆₋₁₀, o heteroarilo de 5-8 miembros. En algunas realizaciones, R₁ es fenilo opcionalmente sustituido con alcoxi, halo, o amino. En una realización, R1 es fenilo. En una realización, R1 es fenilo sustituido con Cl. metoxi. etoxi. o dimetilamino.

15

En algunas realizaciones, R₂ es hidrógeno. En algunas realizaciones, R₂ es alifático C₁₋₆ opcionalmente sustituido.

20

En algunas realizaciones, R₃, R₃', y el átomo de carbono al que están unidos forman un cicloalifático C₃₋₈ opcionalmente sustituido o un heterocicloalifático de 3-8 miembros opcionalmente sustituido. En algunas realizaciones, R₃, R₃', y el átomo de carbono al que están unidos forman un cicloalquilo C₃₋₈ opcionalmente sustituido. En un ejemplo, R₃, R₃', y el átomo de carbono al que están unidos es ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o cicloheptilo, cada uno de los cuales está opcionalmente sustituido. En un ejemplo, R₃, R'₃, y el átomo de carbono al que están unidos es ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o cicloheptilo. En varios ejemplos, R₃, R₃', y el átomo de carbono al que están unidos es ciclopropilo.

25

En algunas realizaciones, R4 es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido. En algunas realizaciones, R4 es un fenilo opcionalmente sustituido. En varias realizaciones, R4 es fenilo condensado con un heterocíclico de 3, 4, 5 o 6 miembros que tiene 1, 2 o 3 miembros del anillo seleccionados entre oxígeno, azufre y nitrógeno. En varias realizaciones, R4 es

30

en el que T se ha definido anteriormente. En varios ejemplos, T es -CH₂-.

35

Realizaciones alternativas de R₁, R₂, R₃, R₃, R₄, y n en la fórmula (I'-A) o en la fórmula (I'-B) son como se ha definido para la fórmula (I), la fórmula (I'), y realizaciones de las mismas.

Compuestos a modo de ejemplo de la presente invención incluyen, pero no se limitan a, los que se ilustran en la Tabla 1 que sigue a continuación.

Tabla 1: Ejemplos de compuestos de la presente invención

	zjempios de compuestos de la prese	
1	2	3
\$0"\ZO;		
. 4	5	6
7	8	9
		HN O
10	11	12
Strato.		

13	14	15
	Perion;	H° TOTO
. 16	17	18
19	20	21
" CO CO A STORY		
22	23	24

25	26	27
	H _N O=S=0	
28	29	30
		HO HO
31	32	33
34	35	36
H T T	H T T T T T T T T T T T T T T T T T T T	

37	38	39
	H _N V	Porton;
40	41	42
QU'IV		
43	44	45
46	47	48

49	50	51
S. C. T. T. C. T.		Porto
52	53	54
	CI NIN I CI S	
55	56	57
~ F	POTTO:	
58	59	60

61	62	63
	NEC CALLACTS	
64 N N N N N N N N N N N N N	65 (1) (1) (1)	66
67	. 68	69
	POTO:	
70	71	. 72

73	74	75
76		78
79	80	. 81
82	83	84

85	86	87
88	89	90
91	92	93
	TO THE TOP	
94	95	96
		- INTO

97	98	99
		102
103	104	105
106	107	108
POTTO:		

109	110	111
	Car H. T.	
112	113	114
. 115	116	117
Silver.		
118	119	120
O == O		~ 10 0 1 1 TO;

121	122	123
124	125	126
		PO"TS
127	128	129
		CI PUNITOS
130	131	132

133	134	135
0 = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		
136	137	138
	"INTO	
139	140	141
142	143	. 144
	CT"TOS	

145	146	147
148	149	150
	my CT TOTO	
151	152	153
- P-3-17-073	ci	
154	155	156
H° H°	SCT TOTO	

157	158	159
CI P		
160	161	162
HWH OHOUSE		H _N 0=s=0
163		

164 .	165	166
	HN N O H	N.S. C.
167	168	169
170	0.\$=0 MH	2. H. O N H S O 172
170	1/1	1/2
MN (N)	NH TON	
173	174	175

176	177	178
H Z C C C C C C C C C C C C C C C C C C	S'N CLINITY SE	CHIP CTO
179	180	181
182	183	184
O=S=O NH MINH O=S=O NH MINH	0:4:0 0:4:0	HAT TO
185	186	187
		N. C. I. S. C. S.

188	189	190
"O T " T T S	is Contracts	"N'S CONTOCOS
191	192	193
	A COC	
194	195	196
	"SETTIVES	NOT THE TOP
197	198	199
Ho HH	N. C.	HO OH NO SHOOL NO SHOOL

200	201	202
HO HIN OSSICO	H _N L _N D H so	
203	204	205
206	207	208
	N. C.	
. 209	210	211
HN TO TO	"No CONTROLS	

212	213	214
		# \$ 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
215	216	217
218	219	220
221	222	223
F + 000		Nº CON Nº CO

224	225	226
		FF AN NOS NO
227	228	229
" THE TOP	0.5±0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
230	231	232
	H T T T	
233	234	235
H _O		

236	237	238
HO HO HO CI		HH COS
239	240	241
R THO THE THE	0.00 M 4 4 0 0.00 M 4 1 0 0.00	
242	243	244
HO THE STATE OF TH		
245	246	247
	S.M. O. M. H. S. O.	"ICTO"

248	249	250
Jinaanse		N. O. M. S. C.
251	252	253
""; TT TT;		g This County County
254	255	256
H. THE CT.	Y°gh Ching Co;	die Chia Cost
257	258	259
		F. C. N. H. X. C.

260	261	262
CH THE TOP OF THE TOP		
263	264	265
	cı Ci	HNH COS
266	267	268
	HN N	H T T T T T T T T T T T T T T T T T T T
269	270	271

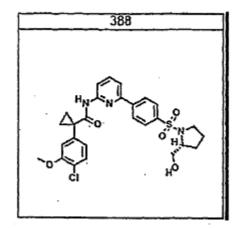
272	273	274
275	276	2/7
	O=S=O NH NH NH	"OD" TOTO
278	279	280
NOT TO TO	a Those Linds	"SETTINGS
281	282	283
HO THE SOL		HILL TO HELLS

284	285	286
HO HN OF SECOLO		
287	288	289
. 290	291	292
293	294	295
		"H" COS

296	297	298
	A CONTROLS	
299	300 .	301
302	303	304
HO THE STATE OF TH		O=S=O HMH
305	306	307
		HO H

308	309	310
311	312	313
314	315	316
H _N L°		HO OH O=S=O NH NH NH NH NH NH NH NH NH NH NH NH NH
317	318	319
NO PORTOR OF THE	A MARCA S	HN OSEO

320	321	322
323	324	325
acito;		O=S=O NH O=S=O
326	327	328
NO CAPE COS		
329	330	331
	X N N N N N N N N N N N N N N N N N N N	OTHE CO.


332	333	334
335	336	337
	H N N N N N N N N N N N N N N N N N N N	
338	339	340
O=S=O YNH		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
341	342	343
- Haran O. H.o.		NS CONTROLS

344	345	346
	Chindra se	
347	348	. 349
	HNH HNH	
350	351	352
HN TONGE		
353	354	355
		45° CONTON

356	357	358
O=S=O HNH	1 11 57	A THE COUNTY OF
359	360	361
362	363	364
SHOP 180°	# 0 # 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O=S=O OH
365	366	367
HNLO HOLDS		

368	369	370
	No. 19 A A A A A A A A A A A A A A A A A A	
371	372	373
HNZO HVZCZS	10 A 2 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3	Ho HNH
374	375	
HN SOLLS	MICHARIA STANDARDARDARDARDARDARDARDARDARDARDARDARDARD	

376	377	378
HO - H N N N N N N N N N N N N N N N N N N	(24) (24) (24) (24) (24) (24) (24) (24)	HN N OS N H
379	380	381
#N (N)	Post Contract	
382	383	384
O H	O H O H	
385	386	387
	HO ON	

389	390	391
8 po	HOROLON HOROS	F F N N N N N N N N N N N N N N N N N N
392	393	394
HOLON HOLONF	CI TON NOT ONE	'
395		397
		# CONTRACTOR
398	399	400
B o F C N T C N F	F T T T T T T T T T T T T T T T T T T T	F F F F F F F F F F F F F F F F F F F

40'1	402	403
HUNITANIA	" SON TONE	F CONTON
404	405	406
wlden pack	" TO TO	
407	408	409
" CLANACISE		
410	411	412
		"PO"FO;

413	414	415
HN N OS HY	HOT CONTRACTOR	
416	417	418
		H. C.
419	420	421
CI TO TO TO THE TOTAL TO THE TOTAL T		" TOTAL
422		
HOL TOTAL		

Esquemas de Síntesis

Los compuestos de la invención se pueden preparar mediante procedimientos conocidos o tal como se ilustra en los ejemplos. En un ejemplo en el que R₁ es arilo o heteroarilo, los compuestos de la invención se pueden preparar tal como se ilustra en el Esquema I.

Esquema I

a) NaOH al 50 %, X-R $_3$ -R $_3$ -Y, BTEAC; X, Y = grupo saliente; b) SOCI $_2$, DMF; c) piridina; d) R $_1$ -B(OR) $_2$, Pd(dppf)CI $_2$, K $_2$ CO $_3$, DMF, H $_2$ O.

Esquema II

$$(Z^{C}R_{B})_{n} \qquad (Z^{C}R_{B})_{n} \qquad (Z^{C}R_{B}$$

a) Pd(PPh3)4, CO, MeOH; b) LiAlH4, THF; c) SOCI2; d) NaCN; e) NBS o NCS, AIBN, CX4 (X = Br o CI).

Esquema III

a) piridina, DCM; b) R₁-B(OR)₂, Pd(dppf)Cl₂, K₂CO₃, DMF, H₂O.

Esquema IV

5

10

15

20

$$\begin{array}{c} R_4 \\ R_3 \\ R_3 \\ R_3 \end{array} \begin{array}{c} a \\ R_2 \\ R_3 \end{array} \begin{array}{c} R_3 \\ R_4 \\ R_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \end{array} \begin{array}{c} N_2 \\ R_4 \\ R_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \end{array} \begin{array}{c} N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_3 \\ N_4 \\ N_4 \\ N_2 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_4 \\ N_4 \\ N_4 \end{array} \begin{array}{c} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_5 \\ N_4 \\ N_5 \\$$

a) piridina, DCM; b) R_1 -B(OR)₂, $Pd(dppf)Cl_2$, K_2CO_3 , DMF, H_2O .

Haciendo referencia al Esquema I, un nitrilo de fórmula i se alquila (etapa a) con un dihalo-alifático en presencia de una base tal como, por ejemplo, hidróxido sódico al 50 % y, opcionalmente, un reactivo de transferencia de fase tal como, por ejemplo, cloruro de benciltrietilamonio (BTEAC), para producir el correspondiente nitrilo alquilado (no se muestra) que en la hidrólisis produce el ácido ii. Los compuestos de fórmula ii se convierten en el cloruro de ácido iii con un reactivo adecuado tal como, por ejemplo, cloruro de tionilo/DMF. La reacción del cloruro de ácido iii con una aminopiridina, en la que X es un halo, de fórmula iv (etapa c) produce la amida de fórmula v. La reacción de la amida v con un derivado del ácido borónico opcionalmente sustituido (etapa d) en presencia de un catalizador tal como, por ejemplo, acetato de paladio o dicloro-[1,1-bis(difenilfosfino)ferroceno] paladio (II) (Pd(dppf)Cl₂), proporciona compuestos de la invención en los que R₁ es arilo, heteroarilo, o cicloalquenilo. Los derivados del ácido borónico vi están disponibles en el mercado o se pueden preparar mediante procedimientos conocidos tales como reacción de un bromuro de arilo con un éster de diborano en presencia de un reactivo de acoplamiento tal como, por ejemplo, acetato de paladio tal como se describe en los ejemplos.

En otro ejemplo en el que un R_1 es arilo y otro R_1 es un alifático, alcoxi, cicloalifático, o heterocicloalifático, compuestos de la invención se pueden preparar tal como se describe en las etapas a, b, y c del Esquema I usando una aminopiridina sustituida apropiadamente tal como

$$R_2HN$$
 N
 N
 N

en la que X es halo y Q es alifático C_{1-6} , arilo, heteroarilo, o cicloalifático de 3 a 10 miembros o heterocicloalifático como un sustituto para la aminopiridina de fórmula iv.

Formulaciones, Administraciones y Usos

5

15

20

25

30

35

40

45

50

Composiciones farmacéuticamente aceptables

10 En consecuencia, en otro aspecto de la presente invención, se proporcionan composiciones farmacéuticas aceptables, en las que estas composiciones comprenden cualquiera de los compuestos tal como se describen en el presente documento, y opcionalmente comprenden un excipiente, adyuvante o vehículo farmacéuticamente aceptables. En determinadas realizaciones, estas composiciones opcionalmente comprenden adicionalmente uno o más agentes terapéuticos adicionales.

También se observará que determinados compuestos de la presente invención puede existir en forma libre para tratamiento, o cuando sea apropiado, en forma de un derivado farmacéuticamente aceptable o un profármaco del mismo. De acuerdo con la presente invención, un derivado o un profármaco farmacéuticamente aceptable incluye, pero no se limita a, sales farmacéuticamente aceptables, sales de de dichos ésteres, o cualquier otro aducto o derivado que después de la administración a un paciente con necesidad es capaz de proporcionar, directa o indirectamente, un compuesto tal como se describe de otro modo en el presente documento, o un metabolito o residuo del mismo.

Tal como se usa en el presente documento, la expresión "sal farmacéuticamente aceptable" se refiere a las sales que, dentro del alcance del criterio médico bien fundado, son adecuadas para uso en contacto con los tejidos de seres humanos y animales inferiores sin toxicidad, irritación, respuesta alérgica excesivas y similares, y están de acuerdo con una relación razonable de beneficio/riesgo. Una "sal farmacéuticamente aceptable" se refiere a cualquier sal no tóxica o sal de un éster de un compuesto de la presente invención que, después de la administración a un receptor, es capaz de proporcionar, directa o indirectamente, un compuesto de la presente invención o un metabolito inhibitoriamente activo por resto del mismo.

Las sales farmacéuticamente aceptables son bien conocidas en la técnica. Por ejemplo, S. M. Berge, y col. describen sales farmacéuticamente aceptables en detalle en J. Pharmaceutical Sciences, 1977, 66, 1-19, que se incorpora en el presente documento por referencia. Las sales farmacéuticamente aceptables de los compuestos de la presente invención incluyen las obtenidos a partir de ácidos y bases inorgánicos y orgánicos adecuados. Ejemplos de sales de adición ácida no tóxicas, farmacéuticamente aceptables son sales de un grupo amino formadas con ácidos inorgánicos, tales como ácido clorhídrico, ácido bromhídrico, ácido fosfórico, ácido sulfúrico y ácido perclórico o con ácidos orgánicos tales como ácido acético, ácido oxálico, ácido maleico, ácido tartárico, ácido cítrico, ácido succínico o ácido malónico o mediante el uso de otros procedimientos usados en la técnica tales como intercambio iónico. Otras sales farmacéuticamente aceptables incluyen sales de adipato, alginato, ascorbato, aspartato, bencenosulfonato, benzoato, bisulfato, borato, butirato, alcanforato, alcanforsulfonato, ciclopentanopropionato, digluconato, dodecilsulfato, etanosulfonato, formiato, fumarato, glucoheptonato, glicerofosfato, gluconato, hemisulfato, heptanoato, hexanoato, yodhidrato, 2-hidroxietanosulfonato, lactobionato, lactato, laurato, lauril sulfato, malato, maleato, malonato, metanosulfonato, 2-naftalenosulfonato, nicotinato, nitrato, oleato, oxalato, palmitato, pamoato, pectinato, persulfato, 3-fenilpropionato, fosfato, picrato, pivalato, propionato, estearato, succinato, sulfato, tartrato, tiocianato, p-toluenosulfonato, undecanoato, valerato, y similares. Las sales derivadas a partir de bases apropiadas incluyen sales de metal alcalino, metal alcalinotérreos, amonio y N⁺ (alquilo C₁₋₄)4. La presente invención también concibe la quaternización de cualquier grupo básico que contiene nitrógeno de los compuestos que se desvelan en el presente documento. Mediante dicha cuaternización se pueden obtener productos solubles en agua o en aceite o dispersables. Sales representativas de metal alcalino o alcalinotérreo incluyen sodio, litio, potasio, calcio, magnesio, y similares. Sales adicionales farmacéuticamente aceptables incluyen, cuando sea apropiado, cationes amonio, cuaternario amonio, y amina no tóxicos formados usando contraiones tales como haluro, hidróxido, carboxilato, sulfato, fosfato, nitrato, sulfonato de alquilo inferior y sulfonato de arilo.

Tal como se ha descrito anteriormente, las composiciones farmacéuticamente aceptables de la presente invención comprenden adicionalmente un excipiente, adyuvante o vehículo farmacéuticamente aceptable que, tal como se usa en el presente documento, incluye todos y cada uno de los disolventes, diluyentes, u otro vehículo líquido, ayudantes de dispersión o suspensión, agentes tensioactivos, agentes isotónicos, agentes espesantes o emulgentes, conservantes, aglutinantes sólidos, lubricantes y similares, tal como se ha adecuado para la forma de dosificación deseada en particular. Remington: The Science and Practice of Pharmacy, 21ª edición, 2005, ed. D.B. Troy, Lippincott Williams & Wilkins, Filadelfia, y Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick y J. C.

Boylan, 1988-1999, Marcel Dekker, Nueva York, los contenidos de cada uno de los cuales se incorpora por referencia en el presente documento, desvelan diversos vehículos usados en la formulación de composiciones farmacéuticamente aceptables y técnicas conocidas para la preparación de las mismas. Excepto en la medida en que cualquier medio de vehículo convencional sea incompatible con los compuestos de la invención, tal como mediante la producción de cualquier efecto biológico no deseado o interactuando de otro modo de una manera perjudicial con cualquier otro componente o componentes de la composición farmacéuticamente aceptable, estando su uso contemplado dentro del alcance de la presente invención. Algunos ejemplos de materiales que pueden servir como vehículos farmacéuticamente aceptables incluyen, pero no se limitan a, intercambiadores iónicos, alúmina, estearato de aluminio, lecitina, proteínas de suero, tal como albúmina de suero humano, sustancias tampón tales como fosfatos, glicina, ácido sódico, o sorbato potásico, mezclas parciales de glicéridos de ácidos grasos vegetales saturados, aqua, sales o electrolitos, tales como sulfato de protamina, hidrogenofosfato disódico, hidrogenofosfato potásico, cloruro sódico, sales de cinc, sílice coloidal, trisilicato de magnesio, polivinil pirrolidona, poliacrilatos, ceras, polímeros de bloque de polietileno-polioxipropileno, lanolina, azúcares tales como lactosa, glucosa y sacarosa; almidones tales como almidón de maíz y almidón de patata; celulosa y sus derivados tales como carboximetil celulosa sódica, etil celulosa y acetato de celulosa; tragacanto en polvo; malta; gelatina; talco; excipientes tales como manteca de cacao y ceras para supositorio; aceites tales como aceite de cacahuete, aceite de semilla de algodón: aceite de cártamo; aceite de sésamo; aceite de oliva; aceite de maíz y aceite de soja; glicoles; tales como propilenglicol o polietilenglicol; ésteres tales como oleato de etilo y laurato de etilo; agar; agentes de tamponamiento tales como hidróxido de magnesio e hidróxido de aluminio; ácido algínico; aqua sin pirógenos; solución salina isotónica; solución de Ringer; alcohol etílico, y soluciones de tampón de fosfato, así como otros lubricantes compatibles no tóxicos tales como lauril sulfato sódico y estearato de magnesio, así como agentes colorantes, agentes de liberación, agentes de revestimiento, agentes edulcorantes, saborizantes y perfumantes, conservantes y antioxidantes también pueden estar presentes en la composición, de acuerdo con el criterio del formulador.

25 Usos de los compuestos y composiciones farmacéuticamente aceptables

10

15

20

30

Además, en otro aspecto adicional, la presente invención proporciona un compuesto de fórmulas (I, II, III, IV, V-A, V-B, I', I'-B, y I'-B) para tratar una afección, enfermedad, o trastorno implicado mediante la actividad del transportador de ABC. En determinadas realizaciones, la presente invención proporciona un procedimiento para tratar una afección, enfermedad, o trastorno implicado mediante una deficiencia en la actividad del transportador de ABC.

En determinadas realizaciones preferentes, la presente invención proporciona un compuesto de fórmulas (I, II, III, IV, V-A, V-B, I', I'-A, y I'-B) para su uso en el tratamiento de Fibrosis quística, Enfisema hereditario. Hemocromatosis hereditaria, Deficiencias de Coagulación-Fibrinólisis, tales como Deficiencia de proteína C, Angioedema hereditario de Tipo 1, Deficiencias de procesamiento de lípidos, tales como Hipercolesterolemia familiar, Quilomicronemia de 35 tipo 1. Abetalipoproteinemia. Enfermedades de almacenamiento lisosómico, tales como enfermedad de células I/Pseudo-Hurler. Mucopolisacaridosis. Sandhof/Tay-Sachs, Crigler-Najjar de Poliendocrinopatía/Hiperinsulinemia, Diabetes mellitus, enanismo de Laron, Deficiencia de mieloperoxidasa, Hipoparatiroidismo primario, Melanoma, Glucanosis CDG de tipo 1, Enfisema hereditario, Hipertiroidismo congénito, 40 Osteogénesis imperfecta, Hipofibrinogenemia hereditaria, deficiencia de ACT, Diabetes insípida (DI), DI neurofiseal, DI nefrogénica, síndrome de Charcot-Marie Tooth, enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como la enfermedad de Alzheimer, enfermedad de Parkinson, Esclerosis lateral amiotrófica, Parálisis supranuclear progresiva, enfermedad de Pick, diversos trastornos neurológicos de la poliglutamina tales como Huntington, Ataxia espinocerebelar de tipo I, Atrofia muscular espinal y bulbar, Atrofia dentatorrubro palidoluisiana y Distrofia miotónica, así como Encefalopatías espongiformes, tales como la 45 Enfermedad de Creutzfeldt-Jakob hereditaria (debida a un defecto en el procesamiento de la proteína priónica), enfermedad de Fabry, enfermedad de Gerstmann-Sträussler-Scheinker, diarrea secretora, enfermedad renal poliquística, enfermedad pulmonar obstructiva crónica (EPOC), enfermedad del ojo seco, y Síndrome de Sjögren.

De acuerdo con una realización preferente alternativa, la presente invención proporciona un compuesto de fórmulas (I, II, III, IV, V-A, V-B, I', I'-A, y I'-B) para su uso en el tratamiento de fibrosis quística que comprende la etapa de administrar a dicho mamífero una composición que comprende la etapa de administrar a dicho mamífero una cantidad eficaz de una composición que comprende.

De acuerdo con la invención una "cantidad eficaz" del compuesto o composición farmacéuticamente aceptable es la cantidad eficaz para tratar o disminuir la gravedad de uno o más de Fibrosis quística, Enfisema hereditario, Hemocromatosis hereditaria, Deficiencias de Coagulación-Fibrinólisis, tales como Deficiencia de proteína C, Angioedema hereditario de Tipo 1, Deficiencias de procesamiento de lípidos, tales como Hipercolesterolemia familiar, Quilomicronemia de tipo 1, Abetalipoproteinemia, Enfermedades de almacenamiento lisosómico, tales como enfermedad de células I/Pseudo-Hurler, Mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar de tipo II, Poliendocrinopatía/Hiperinsulinemia, Diabetes mellitus, enanismo de Laron, Deficiencia de mieloperoxidasa, Hipoparatiroidismo primario, Melanoma, Glucanosis CDG de tipo 1, Enfisema hereditario, Hipertiroidismo congénito, Osteogénesis imperfecta, Hipofibrinogenemia hereditaria, deficiencia de ACT, Diabetes insípida (DI), DI neurofiseal, DI nefrogénica, síndrome de Charcot-Marie Tooth, enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como la enfermedad de Alzheimer, enfermedad de Parkinson, Esclerosis lateral amiotrófica, Parálisis supranuclear progresiva, enfermedad de Pick, diversos trastornos neurológicos de la

poliglutamina tales como Huntington, Ataxia espinocerebelar de tipo I, Atrofia muscular espinal y bulbar, Atrofia dentatorrubro palidoluisiana y Distrofia miotónica, así como Encefalopatías espongiformes, tales como la Enfermedad de Creutzfeldt-Jakob hereditaria, enfermedad de Fabry, enfermedad de Gerstmann-Sträussler-Scheinker, diarrea secretora, enfermedad renal poliquística, enfermedad pulmonar obstructiva crónica (EPOC), enfermedad del ojo seco, y Síndrome de Sjögren.

Los compuestos y composiciones, de acuerdo con la presente invención, se pueden administrar usando cualquier cantidad y cualquier vía de administración eficaz para tratar o disminuir la gravedad de uno o más de Fibrosis quística, Enfisema hereditario, Hemocromatosis hereditaria, Deficiencias de Coagulación-Fibrinólisis, tales como Deficiencia de proteína C, Angioedema hereditario de Tipo 1, Deficiencias de procesamiento de lípidos, tales como 10 Hipercolesterolemia familiar, Quilomicronemia de tipo 1, Abetalipoproteinemia, Enfermedades de almacenamiento lisosómico, tales como enfermedad de células I/Pseudo-Hurler, Mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar de tipo II, Poliendocrinopatía/Hiperinsulinemia, Diabetes mellitus, enanismo de Laron, Deficiencia de mieloperoxidasa, Hipoparatiroidismo primario, Melanoma, Glucanosis CDG de tipo 1, Enfisema hereditario, Hipertiroidismo congénito, Osteogénesis imperfecta, Hipofibrinogenemia hereditaria, deficiencia de ACT, Diabetes 15 insípida (DI), DI neurofiseal, DI nefrogénica, síndrome de Charcot-Marie Tooth, enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como la enfermedad de Alzheimer, enfermedad de Parkinson, Esclerosis lateral amiotrófica, Parálisis supranuclear progresiva, enfermedad de Pick, diversos trastornos neurológicos de la poliglutamina tales como Huntington, Ataxia espinocerebelar de tipo I, Atrofia muscular espinal y bulbar, Atrofia dentatorrubro palidoluisiana y Distrofia miotónica, así como Encefalopatías espongiformes. tales como 20 la Enfermedad de Creutzfeldt-Jakob hereditaria, enfermedad de Fabry, enfermedad de Gerstmann-Sträussler-Scheinker, diarrea secretora, enfermedad renal poliquística, enfermedad pulmonar obstructiva crónica (EPOC), enfermedad del ojo seco, y Síndrome de Sjögren.

La cantidad exacta necesaria variará de sujeto a sujeto, dependiendo de la especie, edad, y afección general del 25 sujeto, la gravedad de la infección, el agente en particular, su modo de administración, y similares. Los compuestos de la invención se formulan preferentemente en formas de dosificación individual para facilitar la administración y la uniformidad de la dosificación. La expresión "forma de dosificación individual", tal como se usa en el presente documento, se refiere a una unidad separada físicamente de agente apropiada para el paciente a tratar. Se 30 entenderá, sin embargo, que el uso diario total de los compuestos y composiciones de la presente invención protegida el médico que prescribe dentro del alcance de juicio médico razonable. El nivel específico de dosis eficaz para cualquier paciente u organismo en particular dependerá de una diversidad de factores que incluyen el trastorno que se está tratando y la gravedad del trastorno; la actividad del compuesto específico usado; la composición específica usada; la edad, peso corporal, salud en general, sexo y dieta del paciente; el tiempo de administración, vía de administración, y tasa de excreción del compuesto específico usado; la duración del tratamiento; fármacos 35 usados en combinación o simultáneos con el compuesto específico usado, y factores similares bien conocidos en las técnicas médicas. El término "paciente", tal como se usa en el presente documento, se refiere a un animal, preferentemente un mamífero, y más preferentemente un ser humano.

Las composiciones farmacéuticamente aceptables de la presente invención se pueden administrar a seres humanos y a otros animales por vía oral, por vía rectal, por vía parenteral, por vía intracisternal, por vía intravaginal, por vía intraperitoneal, por vía tópica (tal como mediante polvos, pomadas, o gotas), por vía bucal, en forma de una pulverización oral o nasal, o similares, dependiendo de la gravedad de la infección que se está tratando. En determinadas realizaciones, los compuestos de la invención se pueden administrar por vía oral o por vía parenteral a niveles de dosificación de aproximadamente 0,01 mg/kg a aproximadamente 50 mg/kg y preferentemente de aproximadamente 1 mg/kg a aproximadamente 25 mg/kg, de peso corporal del sujeto al día, una o más veces al día, para obtener el efecto terapéutico deseado.

50

55

Las formas de dosificación líquida para administración oral incluyen, pero no se limitan a, emulsiones, microemulsiones, soluciones, suspensiones, jarabes y elixires farmacéuticamente aceptables. Además de los compuestos activos, las formas de dosificación líquida pueden contener diluyentes inertes usados habitualmente en la técnica tales como, por ejemplo, agua u otros disolventes, agentes de solubilización y emulgentes tales como alcohol etílico, alcohol isopropílico, carbonato de etilo, acetato de etilo, alcohol de bencilo, benzoato de bencilo, propilenglicol, 1,3-butilenglicol, dimetilformamida, aceites (en particular, aceites de semilla de algodón, cacahuete, maíz, germen, oliva, ricino, y sésamo), glicerol, alcohol tetrahidrofurfurílico, polietilenglicoles y ésteres de ácidos grasos de sorbitán, y mezclas de los mismos. Además de diluyentes inertes, las composiciones orales también pueden incluir adyuvantes tales como agentes humectantes, emulgentes y agentes de suspensión, edulcorantes, saborizantes, y agentes perfumantes.

Las preparaciones inyectables, por ejemplo, suspensiones acuosas u oleaginosas inyectables estériles se pueden formular de acuerdo con la técnica conocida usando agentes dispersantes o humectantes y agentes de suspensión adecuados. La preparación inyectable estéril también puede ser una solución, suspensión o emulsión inyectable estéril en un diluyente o disolvente parenteralmente aceptable no tóxico, por ejemplo, en forma de una solución en 1,3-butanodiol. Entre los vehículos y disolventes aceptables que se pueden usar están agua, solución de Ringer, U.S.P. y solución isotónica de cloruro sódico. Además, convencionalmente se usan aceites fijos, estériles como un medio disolvente o de suspensión. Para este fin, se puede usar cualquier aceite fijo suave incluyendo mono- o

ES 2 439 736 T3

diglicéridos sintéticos. Además, se usan ácidos grasos, tales como ácido oléico, en la preparación de inyectables.

Las formulaciones inyectables se pueden esterilizar, por ejemplo, por filtración a través de un filtro de retención de bacterias, o por incorporación de agentes esterilizantes en forma de composiciones sólidas estériles que se pueden disolver o dispersar en agua estéril u otro medio inyectable estéril antes de su uso.

Para prolongar el efecto de un compuesto de la presente invención, a menudo es deseable ralentizar la absorción del compuesto a partir de inyección subcutánea o intramuscular. Esto se puede conseguir mediante su el uso de una suspensión líquida de material cristalino o amorfo con escasa solubilidad en agua. La tasa de absorción del compuesto depende a continuación de su velocidad de disolución que, a su vez, puede depender del tamaño del cristal y de la forma cristalina. Como alternativa, la absorción retardada de una forma de compuesto administrado por vía parenteral se consigue por disolución o suspensión del compuesto en un vehículo de aceite. Las formas inyectables de liberación prolongada se preparan mediante la formación de matrices microencapsuladas del compuesto en polímeros biodegradables tales como polilactida-poliglicólido. Dependiendo de la relación de compuesto a polímero y de la naturaleza del polímero usado en particular, se puede controlar la velocidad de liberación del compuesto. Ejemplos de otros polímeros biodegradables incluyen poli(ortoésteres) y poli(anhídridos). Las formulaciones inyectables de liberación prolongada también se preparan atrapando el compuesto en liposomas o microemulsiones que son compatibles con los tejidos corporales.

10

15

25

30

35

40

45

50

55

60

20 Las composiciones para administración rectal o vaginal son preferentemente supositorios que se pueden preparar por mezcla de los compuestos de la presente invención con excipientes o vehículos no irritantes adecuados tales como manteca de cacao, polietilenglicol o una cera de supositorio que son sólidos a temperatura ambiente cero líquidos a la temperatura corporal y por lo tanto se funden en el recto o en la cavidad vaginal y liberan el compuesto activo.

Las formas de dosificación sólida para administración oral incluyen cápsulas, comprimidos, píldoras, polvos, y gránulos granules. En dichas formas de dosificación sólida, el compuesto activo se mezcla con al menos un excipiente o vehículo farmacéuticamente aceptable tal como citrato sódico o fosfato dicálcico y/o a) cargas o diluyentes tales como almidones, lactosa, sacarosa, glucosa, manitol, y ácido silícico, a) aglutinantes tales como, por ejemplo, carboximetilcelulosa, alginatos, gelatina, polivinilpirrolidinona, sacarosa, y goma arábiga, c) humectantes tales como glicerol, d) agentes disgregantes tales como agar--agar, carbonato de calcio, almidón de patata o de tapioca, ácido algínico, determinado silicatos, y carbonato sódico, e) agentes retardantes de la disolución tales como parafina, f) aceleradores de la absorción tales como compuestos de amonio cuaternario, g) agentes humectantes tales como, por ejemplo, alcohol cetílico y monoestearato de glicerol, h) absorbentes tales como caolín y arcilla de bentonita, y i) lubricantes tales como talco, estearato de calcio, estearato de magnesio, polietilenglicoles sólidos, lauril sulfato sódico, y mezclas de los mismos. En el caso de cápsulas, comprimidos y píldoras, la forma de dosificación puede comprender agentes de tamponamiento.

Las composiciones sólidas de un tipo similar también se pueden usar como cargas en cápsulas de gelatina rellenas blandas y duras usando dichos excipientes tales como lactosa o azúcar de la leche así como polietilenglicoles de alto peso molecular y similares. Las formas de dosificación sólidas de comprimidos, grageas, cápsulas, píldoras, y gránulos se puede preparar con revestimientos y cubiertas tales como revestimientos entéricos y otros revestimientos bien conocidos en la técnica de la formulación farmacéutica. Pueden contener opcionalmente agentes de opacificidad y también puede ser de una composición de modo que liberen solamente el principio o principios activos, o preferentemente, en una determinada parte del tracto intestinal, opcionalmente, en la forma retardada. Ejemplos de composiciones de inclusión que se pueden usar incluyen sustancias poliméricas y ceras. Las composiciones sólidas de un tipo similar también se pueden usar como cargas en cápsulas de gelatina rellenas blandas y duras usando dichos excipientes tales como lactosa o azúcar de la leche así como polietilenglicoles de alto peso molecular y similares.

Los compuestos activos también pueden estar en forma microencapsulada con uno o más excipientes tal como se ha indicado anteriormente. Las formas de dosificación sólidas de comprimidos, grageas, cápsulas, píldoras, y gránulos se pueden preparar con revestimientos y cubiertas tales como revestimientos entéricos, revestimientos para el control de la liberación y otros revestimientos bien conocidos en la técnica de la formulación farmacéutica. En dichas formas de dosificación sólida, el compuesto activo se puede mezclar con al menos un diluyente inerte tal como sacarosa, lactosa o almidón. Dichas formas de dosificación también pueden comprender, como es una práctica habitual, sustancias adicionales distintas de diluyentes inertes, por ejemplo, lubricantes para formación de comprimidos y otros adyuvantes para formación de comprimidos tales como estearato de magnesio y celulosa microcristalina. En el caso de cápsulas, comprimidos y píldoras, las formas de dosificación también pueden comprender agentes de tamponamiento. Pueden contener opcionalmente agentes de opacificidad y temen pueden ser la composición que libere solamente el principio o principios activos, o preferentemente, en una determinada parte del tracto intestinal, opcionalmente, de una forma retardada. Ejemplos de composiciones de inclusión que se pueden usar incluyen sustancias poliméricas y ceras.

65 Las formas de dosificación para administración tópica o transdérmica de un compuesto de la presente invención incluyen pomadas, pastas, cremas, lociones, geles, polvos, soluciones, pulverizaciones, agentes para inhalación o

parches. El componente activo se mezcla en condiciones estériles con un vehículo farmacéuticamente aceptable al que conservante o tampón necesario tal como sea necesario. Dentro del alcance de la presente invención también se contemplan formulaciones oftálmicas, gotas para los oídos, y gotas oculares. Además, la presente invención contempla el uso de parches transdérmicos, que tiene la ventaja añadida de proporcionar la administración controlada de un compuesto en el organismo. Dichas formas de dosificación se preparan por disolución o dispersión del compuesto en el medio apropiado. También se pueden usar potenciadores de la absorción para aumentar el flujo del compuesto a través de la piel. La velocidad se puede controlar proporcionando una membrana para el control de la velocidad o por dispersión del compuesto en una matriz polimérica o gel.

- Tal como se ha descrito anteriormente en general, los compuestos de la invención son útiles como moduladores de transportadores de ABC. Por lo tanto, sin desear que las ligado a ninguna teoría en particular, los compuestos y composiciones son particularmente útiles para tratar o disminuir la gravedad una enfermedad, afección, o trastorno en los que está implicada la hiperactividad de inactividad de los transportadores de ABC en la enfermedad, afección, o trastorno. Cuando la hiperactividad fue inactividad de un transportador de ABC está implicada en una enfermedad, afección, o trastorno en particular, la enfermedad, afección, o trastorno también se puede denominar "enfermedad, afección o trastorno mediado por transportadores de ABC". Por consiguiente, en otro aspecto, la presente invención proporciona un procedimiento para tratar o disminuir la gravedad de una enfermedad, afección, o trastorno en los que está implicada la hiperactividad o la inactividad de un transportador de ABC en el estado de enfermedad.
- 20 La actividad de un compuesto usado en la presente invención como un modulador de un transportador de ABC se puede someter a ensayo de acuerdo con procedimientos que se describen generalmente en la técnica y en los Ejemplos en el presente documento.
- También se observará que los compuestos y composiciones farmacéuticamente aceptables de la presente invención se pueden usar en terapias de combinación, es decir, los compuestos y composiciones farmacéuticamente aceptables se pueden administrar simultáneamente con, antes de, o posteriormente a, uno u otros procedimientos terapéuticos o médicos deseados más. La combinación de terapias en particular (agentes terapéuticos o procedimientos) causar en un régimen de combinación tendrán en cuenta la compatibilidad de los agentes terapéuticos y/o procedimientos deseados y el efecto terapéutico deseado a conseguir. También se observará que las terapias usadas pueden conseguir un efecto deseado para el mismo trastorno (por ejemplo, un compuesto de la invención se puede administrar simultáneamente con otro agente usado para tratar el mismo trastorno), o pueden conseguir efectos diferentes (por ejemplo, control de cualquier efecto adverso). Tal como se usa en el presente documento, agentes terapéuticos adicionales que se administran normalmente para tratar o prevenir una enfermedad, o afección en particular, se conocen como "apropiados para la enfermedad, o afección, que se está tratando".

La cantidad de agente terapéutico adicional presente en las composiciones de la presente invención no será superior a la cantidad que normalmente se administraría en una composición que comprende ese agente terapéutico como el único agente activo. Preferentemente, la cantidad de agente terapéutico adicional en las composiciones que se desvelan actualmente variará de aproximadamente un 50 % a un 100 % de la cantidad normalmente presente en una composición que comprende ese agente como el único agente terapéuticamente activo.

40

45

50

55

Los compuestos de la presente invención o composiciones farmacéuticamente aceptables de los mismos también se pueden incorporar en composiciones para revestimiento de un dispositivo médico implantable, tal como prótesis, válvulas artificiales, injertos vasculares, endoprótesis vasculares y catéteres. En consecuencia, la presente invención, en otro aspecto, incluye una composición para revestimiento de un dispositivo implantable que comprende un compuesto de la presente invención tal como se ha descrito por lo general anteriormente, y en clases y subclases en el presente documento, y un vehículo adecuado para revestimiento de dicho dispositivo implantable. En otro aspecto más, la presente invención incluye un dispositivo implantable revestido con una composición que comprende un compuesto de la presente invención tal como se ha descrito por lo general anteriormente, y en clases y subclases en el presente documento, y un vehículo adecuado para revestimiento de dicho dispositivo implantable. Los revestimientos adecuados y la preparación general de dispositivos implantables revestidos se describen en las Patentes de Estados Unidos Nº 6.099.562; Nº 5.886.026; y Nº 5.304.121. Por lo general los revestimientos son materiales poliméricos biocompatibles tales como un polímero de hidrogel, polimetildisiloxano, policaprolactona, polietilenglicol, ácido poliláctico, acetato de vinilo y etileno, y mezclas de los mismos. Los revestimientos pueden estar adicionalmente revestidos de forma opcional con un acabado adecuado de fluorosilicona, polisacáridos, polietilenglicol, fosfolípidos o combinaciones de los mismos para impartir características de liberación controlada en la composición.

Otro aspecto de la invención se refiere a la modulación de la actividad del transportador de ABC en una muestra biológica o en un paciente (por ejemplo, *in vitro* o *in vivo*), procedimiento que comprende administrar al paciente, o poner en contacto dicha muestra biológica con un compuesto de fórmula I o una composición que comprende dicho compuesto. La expresión "muestra biológica", tal como se usa en el presente documento, incluye, sin limitación, cultivos celulares o extractos de los mismos; material biopsiado obtenido a partir de un mamífero o extractos del mismo; y sangre, saliva, orina, heces, semen, lágrimas, u otros fluidos corporales o extractos del mismo.

La modulación de la actividad del transportador de ABC en una muestra biológica es útil para una diversidad de fines que son conocidos por un experto en la materia. Ejemplos de dichos fines incluyen, pero no se limitan a, el estudio de transportadores de ABC en fenómenos biológicos y patológicos; y la evaluación comparativa de nuevos moduladores de transportadores de ABC.

En otra realización más, se proporciona un procedimiento para modular la actividad de un canal de aniones *in vitro* o *in vivo*, que comprende la etapa de poner en contacto dicho canal con un compuesto de fórmulas (I, II, III, IV, V-A, V-B, I', I'-A, y I'-B). En realizaciones preferentes, el canal de aniones es un canal de cloruro o un canal de bicarbonato. En otras realizaciones preferentes, el canal de aniones es un canal de cloruro.

De acuerdo con una realización alternativa, en el presente documento se describe un procedimiento para aumentar el número de transportadores de ABC funcionales en una membrana de una célula, que comprende la etapa de poner en contacto dicha célula con un compuesto de fórmula (I, II, III, IV, V-A, V-B, I', I'-A, y I'-B). El término "transportador de ABC funcional" tal como se usa en el presente documento se refiere a un transportador ABC que es capaz de actividad de transporte. En realizaciones preferentes, dicho transportador de ABC funcional es CFTR.

De acuerdo con otra realización preferente, la actividad del transportador de ABC se mide mediante la media del potencial del voltaje transmembrana. Medios para medir el potencial del voltaje a través de una membrana en la muestra biológica pueden usar cualquiera de los procedimientos conocidos en la técnica, tales como ensayo del potencial de membrana óptica otros procedimientos electrofisiológicos.

El ensayo del potencial de membrana óptica usa sensores FRET sensibles al voltaje que se describen en Gonzalez y Tsien (<u>Véase</u>, Gonzalez, J. E. y R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells" Biophys J 69 (4): 1272-80, y Gonzalez, J. E. y R. Y. Tsien (1997) "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer" Chem Biol 4 (4): 269-77) en combinación con instrumentación para medir cambios de fluorescencia tales como el Lector de Sonda de Voltaje/Iones (VIPR) (<u>Véase</u>, Gonzalez, J. E., K. Oades, y col. (1999) "Cell-based assays and instrumentation for screening ion-channel targets" Drug Discov Today 4 (9): 431-439).

Estos ensayos sensibles al voltaje se basan en el cambio en la transferencia de energía por resonancia de fluorescencia (FRET) entre el colorante sensible al voltaje, soluble en la membrana, DiSBAC₂(3), y un fosfolípido fluorescente, CC2-DMPE, que está unido a la hoja más externa de la membrana plasmática y actúa como un dador de FRET. Los cambios en el potencial de membrana (V_m) provocan que el DiSBAC₂(3) cargado negativamente se redistribuya a través de la membrana plasmática y que la cantidad de transferencia de energía desde CC2-DMPE cambie en consecuencia. Los cambios en la emisión de fluorescencia se pueden controlar usando VIPR II, que es un manipulador de líquidos y detector fluorescente integrados diseñado para realizar identificaciones sistemáticas a base de células en placas de microtitulación de 96 o 384 pocillos.

En otro aspecto, la presente invención proporciona un kit para su uso en la medición de la actividad de un transportador de ABC o un fragmento del mismo en una muestra biológica *in vitro* o *in vivo* que comprende (i) una composición que comprende un compuesto de fórmula (I, II, III, IV, V-A, V-B, I', I'-A, y I'-B) o cualquiera de las realizaciones anteriores; e (ii) instrucciones para a.) poner en contacto la composición con la muestra biológica y b.) medir la actividad de dicho transportador de ABC o un fragmento del mismo. En una realización, el kit comprende adicionalmente instrucciones para a.) poner en contacto una composición adicional con la muestra biológica; b.) medir la actividad de dicho transportador de ABC o un fragmento del mismo en presencia de dicho compuesto adicional, y c.) comparar la actividad del transportador de ABC en presencia del compuesto adicional con la densidad del transportador de ABC en presencia de una composición de fórmula (I, II, III, IV, V-A, V-B, I', I'-A, y I'-B). En realizaciones preferentes, el kit se usa para medir la densidad del CFTR.

Preparaciones y Ejemplos

10

15

20

25

40

45

50

Procedimiento General I: Componente Básico de Ácido Carboxílico

$$(R^{X}X)_{X}$$

Hal $(R^{X}X)_{X}$

NaOH_(ac) at 50 % OH

Hal = Cl. Br. I

Cloruro de benciltrietilamonio (0,025 equivalentes) y el compuesto de dihalo apropiado (2,5 equivalentes) se añadieron a fenil acetonitrilo sustituido. La mezcla se calentó a 70 °C y a continuación se añadió lentamente a la mezcla hidróxido sódico al 50 % (10 equivalentes). La reacción se agitó a 70 °C durante 12-24 horas para asegurar la formación completa del resto cicloalquilo y a continuación se calentó a 130 °C durante 24-48 horas para asegurar la conversión completa a partir del nitrilo en el ácido carboxílico. La mezcla de reacción de color marrón

oscuro/negro se diluyó con agua y se extrajo con acetato de etilo y a continuación tres veces con diclorometano cada una para retirar productos secundarios. La solución acuosa básica se acidificó con ácido clorhídrico concentrado a pH menor que uno y el precipitado que se comenzaba a formar a pH 4 se filtró y se lavó con ácido clorhídrico 1 M dos veces. El material sólido se disolvió en diclorometano y se extrajo dos veces con ácido clorhídrico 1 M y una vez con una solución acuosa saturada de cloruro sódico. La solución orgánica se secó sobre sulfato sódico y se evaporó a sequedad para dar el ácido cicloalquilcarboxílico.

A. Ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico

10

15

20

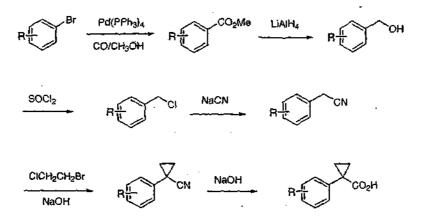
25

30

35

Una mezcla de benzo[1,3]dioxol-5-acetonitrilo (5,10 g, 31,7 mmol), 1-bromo-2-cloro-etano (9,00 ml, 109 mmol) y cloruro de benciltrietilamonio (0,181 g, 0,795 mmol) se calentó a 70 °C y a continuación se añadió lentamente a la mezcla hidróxido sódico acuoso al 50 % (p./p.) (26 ml). La reacción se agitó a 70 °C durante 18 horas y a continuación se calentó a 130 °C durante 24 horas. La mezcla de reacción de color marrón oscuro se diluyó con agua (400 ml) y se extrajo una vez con un volumen igual de acetato de etilo y una vez con un volumen igual de diclorometano. La solución acuosa básica se acidificó con ácido clorhídrico concentrado a pH menor que uno y el precipitado filtrado y se lavó con ácido clorhídrico 1 M. El material sólido se disolvió en diclorometano (400 ml) y se extrajo dos veces con volúmenes iguales de ácido clorhídrico 1 M y una vez con una solución acuosa saturada de cloruro sódico. La solución orgánica se secó sobre sulfato sódico y se evaporó a sequedad para dar un sólido de color blanco a ligeramente blanquecino (5,23 g, 80 %) ESI-MS *mlz* calc. 206,1, encontrado 207,1 (M+1)[†]. Tiempo de retención de 2,37 minutos. RMN ¹H (400 MHz, DMSO-*d*₆) δ 1,07-1,11 (m, 2H), 1,38-1,42 (m, 2H), 5,98 (s, 2H), 6,79 (m, 2H), 6,88 (m, 1H), 12,26 (s, 1H).

Procedimiento General II: Componente Básico de Ácido Carboxílico


(XRX)X Hal (XRX)X NAOH OH

Hall = Cl, Br, I, todas las otras variables son como se han definido en el texto.

Hidróxido sódico (solución acuosa al 50 %, 7,4 equivalentes) se añadió lentamente a una mezcla del fenil acetonitrilo apropiado, cloruro de benciltrietilamonio (1,1 equivalentes), y el compuesto de dihalo apropiado (2,3 equivalentes) a 70 °C. La mezcla se agitó durante una noche a 70 °C y la mezcla de reacción se diluyó con agua (30 ml) y se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron sobre sulfato sódico y se evaporó a sequedad para dar el ciclopropanocarbonitrilo en bruto, que se usó directamente en la siguiente etapa.

El ciclopropanocarbonitrilo en bruto se calentó a reflujo en hidróxido sódico acuoso al 10 % (7,4 equivalentes) durante 2,5 horas. La mezcla de reacción enfriada se lavó con éter (100 ml) y la fase acuosa se acidificó a pH 2 con ácido clorhídrico 2 M. El sólido precipitado se filtró para dar el ácido ciclopropanocarboxílico en forma de un sólido de color blanco.

Procedimiento General III: Componente Básico de Ácido carboxílico

B. Ácido 1-(2,2-Difluoro-benzo[1,3]dioxol-5-il)-ciclopropanocarboxílico

Etapa a: Éster metílico del ácido 2,2-difluoro-benzo[1,3]dioxol-5-carboxílico, una solución de 5-bromo-2,2-difluoro-benzo[1,3]dioxol (11,8 g, 50,0 mmol) y tetraquis(trifenilfosfina)paladio (0) [Pd(PPh₃)₄, 5,78 g, 5,00 mmol] en metanol (20 ml) que contenía acetonitrilo (30 ml) y trietilamina (10 ml) se agitó en una atmósfera de monóxido de carbono (55 PSI (379 kPa)) a 75 °C (temperatura del baño de aceite) durante 15 horas. La mezcla de reacción enfriada se filtró y el filtrado se evaporó a sequedad. El residuo se purificó por cromatografía en columna sobre gel de sílice para dar el éster metílico del ácido 2,2-difluoro-benzo[1,3]dioxol-5-carboxílico en bruto (11,5 g), que se usó directamente en la siguiente etapa.

Etapa b: (2,2-Difluoro-benzo[1,3]dioxol-5-il)-metanol

Éster metílico del ácido 2,2-difluoro-benzo[1,3]dioxol-5-carboxílico en bruto (11,5 g) disuelto en 20 ml de tetrahidrofurano anhidro (THF) se añadió lentamente a una suspensión de hidruro de litio y aluminio (4,10 g, 106 mmol) en THF anhidro (100 ml) a 0 °C. La mezcla se calentó a continuación a temperatura ambiente. Después de ser agitada a temperatura ambiente durante 1 hora, la mezcla de reacción se enfrió a 0 °C y se trató con agua (4,1 g), seguido de hidróxido sódico (solución acuosa al 10 %, 4,1 ml). La suspensión resultante se filtró y se lavó con THF. El filtrado combinado se evaporó a sequedad y el residuo se purificó por cromatografía en columna sobre gel de sílice para dar (2,2-difluoro-benzo[1,3]dioxol-5-il)-metanol (7,2 g, 38 mmol, un 76 % en dos etapas) en forma de un aceite incoloro.

Etapa c: 5-Clorometil-2,2-difluoro-benzo[1,3]dioxol

25

30

45

Cloruro de tionilo (45 g, 38 mmol) se añadió lentamente a una solución de (2,2-difluoro-benzo[1,3]dioxol-5-il)-metanol (7,2 g, 38 mmol) en diclorometano (200 ml) a 0 °C. La mezcla resultante se agitó durante una noche a temperatura ambiente y después se evaporó a sequedad. El residuo se repartió entre una solución acuosa de bicarbonato sódico saturado (100 ml) y diclorometano (100 ml). La fase acuosa separada se extrajo con diclorometano (150 ml) y la fase orgánica se secó sobre sulfato sódico, se filtró, y se evaporó a sequedad para dar 5-clorometil-2,2-difluoro-benzo[1,3]dioxol en bruto (4,4 g) que se usó directamente en la siguiente etapa.

Etapa d: (2,2-Difluoro-benzo[1,3]dioxol-5-il)-acetonitrilo

Una mezcla de 5-clorometil-2,2-difluoro-benzo[1,3]dioxol en bruto (4,4 g) y cianuro sódico (1,36 g, 27,8 mmol) en dimetilsulfóxido (50 ml) se agitó a temperatura ambiente durante una noche. La mezcla de reacción se vertió en hielo y se extrajo con acetato de etilo (300 ml). La fase orgánica se secó sobre sulfato sódico y se evaporó a sequedad para dar (2,2-difluoro-benzo[1,3]dioxol-5-il)-acetonitrilo en bruto (3,3 g) que se usó directamente en la siguiente etapa.

Etapa e: 1-(2,2-Difluoro-benzo[1,3]dioxol-5-il)-ciclopropanocarbonitrilo

Hidróxido sódico (solución acuosa al 50 %, 10 ml) se añadió lentamente a una mezcla de (2,2-difluoro-benzo [1,3]dioxol-5-il)-acetonitrilo en bruto, cloruro de benciltrietilamonio (3,00 g, 15,3 mmol) y 1-bromo-2-cloroetano (4,9 g, 38 mmol) a 70 °C. La mezcla se agitó durante una noche a 70 °C antes de que la mezcla de reacción se diluyera con agua (30 ml) y se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron sobre sulfato sódico y se evaporó a sequedad para dar 1-(2,2-difluoro-benzo[1,3]dioxol-5-il)-ciclopropanocarbonitrilo en bruto, que se usó directamente en la siguiente etapa.

50 Etapa f: Ácido 1-(2,2-difluoro-benzo[1,3]dioxol-5-il)-ciclopropanocarboxílico

1-(2,2-Difluoro-benzo[1,3]dioxol-5-il)-ciclopropanocarbonitrilo (en bruto a partir de la última etapa) se calentó a reflujo en hidróxido sódico acuoso al 10 % (50 ml) durante 2,5 horas. La mezcla de reacción enfriada se lavó con éter (100 ml) y la fase acuosa se acidificó a pH 2 con ácido clorhídrico 2 M. El sólido precipitado se filtró para dar ácido 1-(2,2-difluoro-benzo[1,3]dioxol-5-il)-ciclopropanocarboxílico en forma de un sólido de color blanco (0,15 g, un 1,6 % durante cuatro etapas). ESI-MS m/z calc. 242,2, encontrado 243,3 (M+1) $^+$; RMN 1 H (CDCl₃) δ 7,14-7,04 (m, 2H), 6,98-6,96 (m, 1H), 1,74-1,64 (m, 2H), 1,26-1,08 (**m, 2H)**.

C. 2-(4-Cloro-3-metoxifenil)acetonitrilo

Etapa a: 1-Cloro-2-metoxi-4-metil-benceno

A una solución de 2-cloro-5-metil-fenol (93 g, 0,65 mol) en CH₃CN (700 ml) se añadió CH₃I (111 g, 0,78 mol) y K_2CO_3 (180 g, 1,3 mol). La mezcla se agitó a 25 °C durante una noche. El sólido se retiró por filtración y el filtrado se evaporó *al vacío* para dar 1-cloro-2-metoxi-4-metil-benceno (90 g, 89 %). RMN ¹H (300 MHz, CDCl₃) δ 7,22 (d, J = 7,8 Hz, 1 H), 6,74-6,69 (m, 2 H), 3,88 (s, 3 H), 2,33 (s, 3 H).

Etapa b: 4-Bromometil-1-cloro-2-metoxi-benceno

A una solución de 1-cloro-2-metoxi-4-metil-benceno (50 g, 0,32 mol) en CCl₄ (350 ml) se añadió NBS (57,2 g, 0,32 mol) y AIBN (10 g, 60 mmol). La mezcla se calentó a reflujo durante 3 horas. El disolvente se evaporó *al vacío* y el residuo se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/EtOAc = 20:1) para dar 4-bromometil-1-cloro-2-metoxi-benceno (69 g, 92 %). RMN ¹H (400 MHz, CDCl₃) δ 7,33-7,31 (m, 1 H), 6,95-6,91 (m, 2 H), 4,46 (s, 2 H), 3,92 (s, 3 H).

Etapa c: 2-(4-Cloro-3-metoxifenil)acetonitrilo

A una solución de 4-bromometil-1-cloro-2-metoxi-benceno (68,5 g, 0,29 mol) en C₂H₅OH (90 %, 500 ml) se añadió NaCN (28,5 g, 0,58 mol). La mezcla se agitó a 60 °C durante una noche. Etanol se evaporó y el residuo se disolvió en H₂O. La mezcla se extrajo con acetato de etilo (300 ml x 3). Las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄ y se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/EtOAc 30:1) para dar 2-(4-cloro-3-metoxifenil)acetonitrilo (25 g, 48 %). RMN ¹H (400 MHz, CDCl₃) δ 7,36 (d, *J* = 8 Hz, 1 H), 6,88-6,84 (m, 2 H), 3,92 (s, 3 H), 3,74 (s, 2 H). RMN ¹³C (100 MHz, CDCl₃) δ 155,4, 130,8, 129,7, 122,4, 120,7, 117,5, 111,5, 56,2, 23,5.

D. (4-Cloro-3-hidroxi-fenil)-acetonitrilo

BBr₃ (16,6 g, 66 mmol) se añadió lentamente a una solución de 2-(4-cloro-3-metoxifenil)acetonitrilo (12 g, 66 mmol) en DCM (120 ml) a -78 $^{\circ}$ C en atmósfera de N₂. La temperatura de reacción se aumentó lentamente a temperatura ambiente. La mezcla de reacción se agitó durante una noche y después se vertió en agua con hielo. La fase orgánica se separó y la fase acuosa se extrajo con DCM (40 ml x 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄, se concentró al vacío para dar (4-cloro-3-hidroxi-fenil)-acetonitrilo (9,3 g, 85 %). RMN 1 H (300 MHz, CDCl₃) δ 7,34 (d, J = 8,4 Hz, 1 H), 7,02 (d, J = 2,1 Hz, 1 H), 6,87 (dd, J = 2,1, 8,4 Hz, 1 H), 5,15 (s a, 1H), 3,72 (s, 2 H).

E. Ácido 1-(3-(Hidroximetil)-4-metoxifenil)ciclopropanocarboxílico

50

45

40

10

20

25

Etapa a: Éster metílico del ácido 1-(4-Metoxi-fenil)-ciclopropanocarboxílico. A una solución de ácido 1-(4-metoxi-fenil)-ciclopropanocarboxílico (50,0 g, 0,26 mol) en MeOH (500 ml) se añadió monohidrato del ácido tolueno-4-sulfónico (2,5 g, 13 mmol) a temperatura ambiente. La mezcla de reacción se calentó a reflujo durante 20 horas. MeOH se retiró por evaporación *al vacío* y EtOAc (200 ml) se añadió. La fase orgánica se lavó con NaHCO₃ ac. sat. (100 ml) y salmuera, se secó sobre Na₂SO₄ anhidro y se evaporó *al vacío* para dar el éster metílico del ácido 1-(4-metoxi-fenil)-ciclopropanocarboxílico (53,5 g, 99 %). RMN 1 H (CDCl₃, 400 MHz) δ 7,25-7,27 (m, 2 H), 6,85 (d, J = 8,8 Hz, 2 H), 3,80 (s, 3 H), 3,62 (s, 3 H), 1,58 (m, 2 H), 1,15 (m, 2 H).

Etapa b: Éster metílico del ácido 1-(3-clorometil-4-metoxi-fenil)-ciclopropanocarboxílico

A una solución del éster metílico del ácido 1-(4-metoxi-fenil)-ciclopropanocarboxílico (30,0 g, 146 mmol) y MOMCl (29,1 g, 364 mmol) en CS₂ (300 ml) se añadió TiCl₄ (8,30 g, 43,5 mmol) a 5 °C. La mezcla de reacción se calentó a 30 °C durante 1 día y se vertió en agua con hielo. La mezcla se extrajo con CH₂Cl₂ (150 ml x 3). Los extractos orgánicos combinados se evaporaron *al vacío* para dar el éster metílico del ácido 1-(3-clorometil-4-metoxi-fenil)-ciclopropanocarboxílico en bruto (38,0 g), que se usó en la siguiente etapa sin purificación adicional.

Etapa c: Éster metílico del ácido 1-(3-hidroximetil-4-metoxi-fenil)-ciclopropanocarboxílico

A una suspensión del éster metílico del ácido 1-(3-clorometil-4-metoxi-fenil)-ciclopropanocarboxílico en bruto (20,0 g) en agua (350 ml) se añadió Bu₄NBr (4,0 g) y Na₂CO₃ (90,0 g, 0,85 mol) a temperatura ambiente. La mezcla de reacción se calentó a 65 °C durante una noche. La solución resultante se acidificó con HCl ac. (2 mol/l) y se extrajo con EtOAc (200 ml x 3). La fase orgánica se lavó con salmuera, se secó sobre Na₂SO₄ anhidro y se evaporó *al vacío* para dar el producto en bruto, que se purificó en columna (Éter de Petróleo/EtOAc a 15:1) para dar el éster metílico del ácido 1-(3-hidroximetil-4-metoxi-fenil)-ciclopropanocarboxílico (8,0 g, 39 %). RMN 1 H (CDCl₃, 400 MHz) δ 7,23-7,26 (m, 2 H), 6,83 (d, J = 8,0 Hz, 1 H), 4,67 (s, 2 H), 3,86 (s, 3 H), 3,62 (s, 3 H), 1,58 (c, J = 3,6 Hz, 2 H), 1,14-1,17 (m, 2 H).

30 Etapa d: Éster metílico del ácido 1-[3-(terc-butil-dimetil-silaniloximetil)-4-metoxifenil]ciclopropano-carboxílico

A una solución del éster metílico del ácido 1-(3-hidroximetil-4-metoxi-fenil)-ciclopropanocarboxílico (8,0 g, 34 mmol) en CH_2CI_2 (100 ml) se añadieron imidazol (5,8 g, 85 mmol) y TBSCI (7,6 g, 51 mmol) a temperatura ambiente. La mezcla se agitó durante una noche a temperatura ambiente. La mezcla se lavó con salmuera, se secó sobre Na_2SO_4 anhidro y se evaporó *al vacío* para dar el producto en bruto, que se purificó en columna (Éter de Petróleo/EtOAc a 30:1) para dar el éster metílico del ácido 1-[3-(terc-butil-dimetil-silaniloximetil)-4-metoxi-fenil]-ciclopropanocarboxílico (6,7 g, 56 %). RMN 1 H (CDCl₃, 400 MHz) δ 7,44-7,45 (m, 1 H), 7,19 (dd, J = 2,0, 8,4 Hz, 1 H), 6,76 (d, J = 8,4 Hz, 1 H), 4,75 (s, 2 H), 3,81 (s, 3 H), 3,62 (s, 3 H), 1,57-1,60 (m, 2 H), 1,15-1,18 (m, 2 H), 0,96 (s, 9 H), 0,11 (s, 6 H).

40 Etapa e: Ácido 1-(3-Hidroximetil-4-metoxi-fenil)-ciclopropanocarboxílico

A una solución del éster metílico del ácido 1-[3-(*terc*-butil-dimetil-silaniloximetil)-4-metoxi-fenil]-ciclopropanocarboxílico (6,2 g, 18 mmol) en MeOH (75 ml) se añadió una solución de LiOH.H₂O (1,50 g, 35,7 mmol) en agua (10 ml) a 0 °C. La mezcla de reacción se agitó durante una noche a 40 °C. MeOH se retiró por evaporación *al vacío*. Se añadieron AcOH (1 mol/l, 40 ml) y EtOAc (200 ml). La fase orgánica se separó, se lavó con salmuera, sobre Na₂SO₄ anhidro y se evaporó *al vacío* para proporcionar ácido 1-(3-hidroximetil-4-metoxi-fenil)-ciclopropanocarboxílico (5,3 g).

F. 2-(3-Fluoro-4-metoxifenil)acetonitrilo

50

45

10

15

20

25

35

A una suspensión de t-BuOK (25,3 g, 0,207 mol) en THF (150 ml) se añadió una solución de TosMIC (20,3 g, 0,104 mol) en THF (50 ml) a -78 °C. La mezcla se agitó durante 15 minutos, se trató con una solución de 3-fluoro-4-metoxibenzaldehído (8,00 g, 51,9 mmol) en THF (50 ml) gota a gota, la agitación continuó durante 1,5 horas a -78 °C. A la mezcla de reacción enfriada se añadió metanol (50 ml). La mezcla se calentó a reflujo durante 30 minutos. El disolvente de la mezcla de reacción se retiró para dar un producto en bruto, que se disolvió en agua (200 ml). La fase acuosa se extrajo con EtOAc (100 ml x 3). Las fases orgánicas combinadas se secaron y se evaporó a presión reducida para dar el producto en bruto, que se purificó por cromatografía en columna (Éter de Petróleo/EtOAc a 10:1) para proporcionar 2-(3-fluoro-4-metoxifenil)acetonitrilo (5,0 g, 58 %). RMN ¹H (400 MHz, CDCl₃) δ 7,02-7,05 (m, 2 H), 6,94 (t, *J* = 8,4 Hz, 1 H), 3,88 (s, 3 H), 3,67 (s, 2 H). RMN ¹C (100 MHz, CDCl₃) δ 152,3, 147,5, 123,7, 122,5, 117,7, 115,8, 113,8, 56,3, 22,6.

G. 2-(3-Cloro-4-metoxifenil)acetonitrilo

15

20

25

30

35

40

A una suspensión de t-BuOK (4,8 g, 40 mmol) en THF (30 ml) se añadió una solución de TosMIC (3,9 g, 20 mmol) en THF (10 ml) a -78 $^{\circ}$ C. La mezcla se agitó durante 10 minutos, se trató con una solución de 3-cloro-4-metoxibenzaldehído (1,65 g, 10 mmol) en THF (10 ml) gota a gota, y la agitación continuó durante 1,5 horas a -78 $^{\circ}$ C. A la mezcla de reacción enfriada se añadió metanol (10 ml). La mezcla se calentó a reflujo durante 30 minutos. El disolvente de la mezcla de reacción se retiró para dar un producto en bruto, que se disolvió en agua (20 ml). La fase acuosa se extrajo con EtOAc (20 ml x 3). Las fases orgánicas combinadas se secaron y se evaporó a presión reducida para dar el producto en bruto, que se purificó por cromatografía en columna (Éter de Petróleo/EtOAc a 10:1) para proporcionar 2-(3-cloro-4-metoxifenil)acetonitrilo (1,5 g, 83 %). RMN 1 H (400 MHz, CDCl₃) δ 7,33 (d, J = 2,4 Hz, 1 H), 7,20 (dd, J = 2,4, 8,4 Hz, 1 H), 6,92 (d, J = 8,4 Hz, 1 H), 3,91 (s, 3 H), 3,68 (s, 2 H). RMN 13 C (100 MHz, CDCl₃) δ 154,8, 129,8, 127,3, 123,0, 122,7, 117,60, 112,4, 56,2, 22,4.

H. Ácido 1- (3,3-dimetil-1-2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico

Etapa a: Éster metílico del ácido 1-(4-Hidroxi-fenil)-ciclopropanocarboxílico. A una solución de 1-(4-metoxi-fenil)ciclopropanocarboxilato de metilo (10,0 g, 48,5 mmol) en DCM (80 ml) se añadió EtSH (16 ml) en un baño de agua con hielo. La mezcla se agitó a 0 °C durante 20 min antes de añadir AlCl₃ (19,5 g, 0,15 mmol) lentamente a 0 °C. La mezcla se agitó a 0 °C durante 30 min. La mezcla de reacción se vertió en agua con hielo, la fase orgánica se separó, y la fase acuosa se extrajo con DCM (50 ml x 3). Las fases orgánicas combinadas se lavaron con H₂O y salmuera, se secaron sobre Na₂SO₄ y se evaporó al vacío para dar el éster metílico del ácido 1-(4-hidroxi-fenil)-ciclopropanocarboxílico (8,9 g, 95 %). RMN ¹H (400 MHz, CDCl₃) δ 7,20-7,17 (m, 2 H), 6,75-6,72 (m, 2 H), 5,56 (s, 1 H), 3,63 (s, 3 H), 1,60-1,57 (m, 2 H), 1,17-1,15 (m, 2 H).

Etapa b: Éster metílico del ácido 1-(4-hidroxi-3,5-diyodo-fenil)-ciclopropanocarboxílico

A una solución del éster metílico del ácido 1-(4-hidroxi-fenil)-ciclopropanocarboxílico (8,9 g, 46 mmol) en CH₃CN (80 ml) se añadió NIS (15,6 g, 69 mmol). La mezcla se agitó a temperatura ambiente durante 1 hora. La mezcla de reacción se concentró y el residuo se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/EtOAc a 10:1) para dar el éster metílico del ácido 1-(4-hidroxi-3,5-diyodo-fenil)-ciclopropanocarboxílico (3,5 g, 18 %). RMN ¹H (400 MHz, CDCl₃) δ 7,65 (s, 2 H), 5,71 (s, 1 H), 3,63 (s, 3 H), 1,59-1,56 (m, 2 H), 1,15-1,12 (m, 2H).

Etapa c: Éster metílico del ácido 1-[3,5-diyodo-4-(2-metil-aliloxi)-fenil]-ciclopropanocarboxílico

Una mezcla del éster metílico del ácido 1-(4-hidroxi-3,5-diyodo-fenil)-ciclopropanocarboxílico (3,2 g, 7,2 mmol), 3-cloro-2-metil-propeno (1,0 g, 11 mmol), K₂CO₃ (1,2 g, 8,6 mmol), Nal (0,1 g, 0,7 mmol) en acetona (20 ml) se agitó a 20 °C durante una noche. El sólido se retiró por filtración y el filtrado se concentró *al vacío* para dar el éster metílico del ácido 1-[3,5-diyodo-4-(2-metil-aliloxi)-fenil]-ciclopropano-carboxílico (3,5 g, 97 %). RMN ¹H (300 MHz, CDCl₃) δ 7,75 (s, 2 H), 5,26 (s, 1 H), 5,06 (s, 1 H), 4,38 (s, 2 H), 3,65 (s, 3 H), 1,98 (s, 3H), 1,62-1,58 (m, 2 H), 1,18-1,15 (m, 2 H).
 H).

Etapa d: Éster metílico del ácido 1-(3,3-dimetil-2,3-dihidro-benzofuran-5-il)-ciclopropanocarboxílico

A una solución del éster metílico del ácido 1-[3,5-diyodo-4-(2-metil-aliloxi)-fenil]-ciclopropanocarboxílico (3,5 g, 7,0 mmol) en tolueno (1,5 ml) se añadió Bu₃SnH (2,4 g, 8,4 mmol) y AlBN (0,1 g, 0,7 mmol). La mezcla se calentó a reflujo durante una noche. La mezcla de reacción se concentró *al vacío* y el residuo se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/EtOAc a 20:1) para dar el éster metílico del ácido 1-(3,3-dimetil-2,3-dihidro-benzofuran-5-il)-ciclopropanocarboxílico (1,05 g, 62 %). RMN ¹H (400 MHz, CDCl₃) δ 7,10-7,07 (m, 2 H), 6,71 (d, *J* = 8 Hz, 1 H), 4,23 (s, 2 H), 3,62 (s, 3 H), 1,58-1,54 (m, 2 H), 1,34 (s, 6 H), 2,17-1,12 (m, 2 H).

Etapa e: Ácido 1-(3,3-dimetil-2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico

A una solución del éster metílico del ácido 1-(3,3-dimetil-2,3-dihidro-benzofuran-5-il)-ciclopropanocarboxílico (1 g, 4 mmol) en MeOH (10 ml) se añadió LiOH (0,40 g, 9,5 mmol). La mezcla se agitó a 40 °C durante una noche. HCI (10 %) se añadió lentamente para ajustar el pH a 5. La mezcla resultante se extrajo con acetato de etilo (10 ml x 3). Los extractos se lavaron con salmuera y se secaron sobre Na₂SO₄. El disolvente se retiró *al vacío* y el producto en bruto se purificó por HPLC preparativa para dar ácido 1-(3,3-dimetil-2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico (0,37 g, 41 %). RMN 1 H (400 MHz, CDCl₃) δ 7,11-7,07 (m, 2 H), 6,71 (d, J = 8 Hz, 1 H), 4,23 (s, 2 H), 1,66-1,63 (m, 2 H), 1,32 (s, 6 H), 1,26-1,23 (m, 2 H).

I. 2-(7-Metoxibenzo[d][1,3]dioxol-5-il)acetonitrilo

30

35

45

50

40 Etapa a: 3,4-Dihidroxi-5-metoxibenzoato

A una solución del éster metílico del ácido 3,4,5-trihidroxi-benzoico (50 g, 0,27 mol) y $Na_2B_4O_7$ (50 g) en agua (1000 ml) se añadió Me_2SO_4 (120 ml) y solución acuosa de NaOH (25 %, 200 ml) sucesivamente a temperatura ambiente. La mezcla se agitó a temperatura ambiente durante 6 h antes de enfriarla a 0 °C. La mezcla se acidificó a pH \sim 2 mediante la adición de H_2SO_4 conc. y a continuación se filtró. El filtrado se extrajo con EtOAc (500 ml x 3). Las fases orgánicas combinadas se secaron sobre Na_2SO_4 anhidro y se evaporó a presión reducida para dar 3,4-dihidroxi-5-metoxi-benzoato de metilo (15,3 g, 47 %), que se usó en la siguiente etapa sin purificación adicional.

Etapa b: 7-Metoxibenzo[d][1,3]dioxol-5-carboxilato de metilo

A una solución de 3,4-dihidroxi-5-metoxibenzoato de metilo (15,3 g, 0,078 mol) en acetona (500 ml) se añadió CH_2BrCl (34,4 g, 0,27 mol) y K_2CO_3 (75 g, 0,54 mol) a 80 $^{\circ}C$. La mezcla resultante se calentó a reflujo durante 4 h. La mezcla se enfrió a temperatura ambiente y K_2CO_3 sólido se retiró por filtración. El filtrado se concentró a presión

reducida, y el residuo se disolvió en EtOAc (100 ml). La fase orgánica se lavó con agua, se secó sobre Na_2SO_4 anhidro, y se evaporó a presión reducida para dar el producto en bruto, que se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/Acetato de etilo = 10:1) para proporcionar 7-metoxibenzo[d][1,3]dioxol5-carboxilato de metilo (12,6 g, 80 %). RMN 1H (400 MHz, CDCl3) δ 7,32 (s, 1 H), 7,21 (s, 1 H), 6,05 (s, 2 H), 3,93 (s, 3 H), 3,88 (s, 3 H).

Etapa c: (7-Metoxibenzo[d][1,3]dioxol-5-il)metanol

A una solución de 7-metoxibenzo[d][1,3]dioxol-5-carboxilato de metilo (13,9 g, 0,040 mol) en THF (100 ml) se añadió LiAlH₄ (3,1 g, 0,080 mol) en porciones a temperatura ambiente. La mezcla se agitó durante 3 h a temperatura ambiente. La mezcla de reacción se enfrió a 0 °C y se trató con agua (3,1 g) y NaOH (10 %, 3,1 ml) sucesivamente. La suspensión se retiró por filtración y se lavó con THF. Los filtrados combinados se evaporaron a presión reducida para dar (7-metoxi-benzo[d][1,3]dioxol-5-il)metanol (7,2 g, 52 %). RMN ¹H (400 MHz, CDCl₃) δ 6,55 (s,1H), 6,54 (s, 1H), 5,96 (s, 2 H), 4,57 (s, 2 H), 3,90 (s, 3 H).

Etapa d: 6-(Clorometil)-4-metoxibenzo[d][1,3]dioxol

15

20

30

35

A una solución de SOCl₂ (150 ml) se añadió (7-metoxibenzo[d][1,3]dioxol-5-il)metanol (9,0 g, 54 mmol) en porciones a 0 $^{\circ}$ C. La mezcla se agitó durante 0,5 h. El exceso de SOCl₂ se evaporó a presión reducida para dar el producto en bruto, que se basificó con NaHCO₃ ac. sat. a pH $^{\sim}$ 7 La fase acuosa se extrajo con EtOAc (100 ml x 3). Las fases orgánicas combinadas se secaron sobre Na₂SO₄ anhidro y se evaporó para dar 6-(clorometil)-4-metoxibenzo[d][1,3]dioxol (10,2 g, 94 %), que se usó en la siguiente etapa sin purificación adicional. RMN 1 H (400 MHz, CDCl₃) δ 6,58 (s, 1 H), 6,57 (s, 1 H), 5,98 (s, 2 H), 4,51 (s, 2 H), 3,90 (s, 3 H).

25 Etapa e: 2-(7-Metoxibenzo[d][1,3]dioxol-5-il)acetonitrilo

A una solución de 6-(clorometil)-4-metoxibenzo[d][1,3]dioxol (10,2 g, 40 mmol) en DMSO (100 ml) se añadió NaCN (2,43 g, 50 mmol) a temperatura ambiente. La mezcla se agitó durante 3 h y se vertió en agua (500 ml). La fase acuosa se extrajo con EtOAc (100 ml x 3). Las fases orgánicas combinadas se secaron sobre Na_2SO_4 anhidro y se evaporó para dar el producto en bruto, que se lavó con éter para proporcionar 2-(7-metoxibenzo[d][1,3] dioxol-5-il)acetonitrilo (4,6 g, 45 %). RMN 1 H (400 MHz, CDCl₃) δ 6,49 (s, 2 H), 5,98 (s, 2 H), 3,91 (s, 3 H), 3,65 (s, 2 H). RMN 13 C (400 MHz, CDCl₃) δ 148,9, 143,4, 134,6, 123,4, 117,3, 107,2, 101,8, 101,3, 56,3, 23,1.

J. Ácido 1-(benzofuran-5-il)ciclopropanocarboxílico

MeO OEt HO OEt

OH NaH, DMF

PPA, xileno HO

Etapa a: Ácido 1-[4-(2,2-dietoxi-etoxi)-fenil]-ciclopropanocarboxílico

A una solución agitada del éster metílico del ácido 1-(4-hidroxi-fenil)-ciclopropanocarboxílico (15,0 g, 84,3 mmol) en DMF (50 ml) se añadió hidruro sódico (6,7 g, 170 mmol, 60 % en aceite mineral) a 0 °C. Después de cesar la evolución de hidrógeno, 2-bromo-1,1-dietoxi-etano (16,5 g, 84,3 mmol) se añadió gota a gota a la mezcla de reacción. La reacción se agitó a 160 °C durante 15 horas. La mezcla de reacción se vertió en hielo (100 g) y se extrajo con CH₂Cl₂. Los extractos orgánicos combinados se secaron sobre Na₂SO₄. El disolvente se evaporó *al vacío* para dar ácido 1-[4-(2,2-dietoxi-etoxi)-fenil]-ciclopropanocarboxílico en bruto (10 g), que se usó directamente en la siguiente etapa sin purificación.

Etapa b: Ácido 1-benzofuran-5-il-ciclopropanocarboxílico

A una suspensión de ácido 1-[4-(2,2-dietoxi-etoxi)-fenil]-ciclopropanocarboxílico en bruto (20 g, ~ 65 mmol) en xileno (100 ml) se añadió PPA (22,2 g, 64,9 mmol) a temperatura ambiente. La mezcla se calentó a reflujo (140 °C) durante 1 hora antes de enfriar enfrió a temperatura ambiente y se decanto a partir de PPA. El disolvente se evaporó *al vacío* para obtener el producto en bruto, que se purificó por HPLC preparativa para proporcionar ácido 1-(benzofuran-5-il)ciclopropanocarboxílico (1,5 g, 5 %). RMN ¹H (400 MHz, DMSO-*d_e*) δ 12,25 (s a, 1 H), 7,95 (d, *J* = 2,8 Hz, 1 H), 7,56 (d, *J* = 2,0 Hz, 1 H), 7,47 (d, *J* = 11,6 Hz, 1 H), 7,25 (dd, *J* = 2,4, 11,2 Hz, 1 H), 6,89 (d, *J* = 1,6 Hz, 1 H), 1,47-1,44 (m, 2 H), 1,17-1,14 (m, 2 H).

K. Ácido 1-(2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico

5

A una solución de ácido 1-(benzofuran-5-il)ciclopropanocarboxílico (700 mg, 3,47 mmol) en MeOH (10 ml) se añadió PtO₂ (140 mg, 20 %) a temperatura ambiente. La mezcla de reacción agitada se hidrogenó en atmósfera de hidrógeno (1 atm (101 kPa)) a 10 $^{\circ}$ C durante 3 días. La mezcla de reacción se filtró. El disolvente se evaporó al *vacío* para proporcionar el producto en bruto, que se purificó por HPLC preparativa para dar ácido 1-(2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico (330 mg, 47 %). RMN 1 H (400 MHz, CDCl₃) δ 7,20 (s, 1 H), 7,10 (d, J = 10,8 Hz, 1 H), 6,73 (d, J = 1,2 Hz, 1 H), 4,57 (t, J = 11,6 Hz, 2 H), 3,20 (t, J = 11,6 Hz, 2H), 1,67-1,63 (m, 2 H), 1,25-1,21 (m, 2 H).

L. 2-(2,2-Dimetilbenzo[d][1,3]dioxol-5-il)acetonitrilo

15

10

Etapa a: (3,4-Dihidroxi-fenil)-acetonitrilo

25

20

A una solución de benzo[1,3]dioxol-5-il-acetonitrilo (0,50 g, 3,1 mmol) en CH_2Cl_2 (15 ml) se añadió gota a gota BBr_3 (0,78 g, 3,1 mmol) a - 78 $^{\circ}C$ en atmósfera de N_2 . La mezcla se calentó lentamente a temperatura ambiente y se agitó durante una noche. H_2O (10 ml) se añadió para inactivar la reacción y la fase de CH_2Cl_2 se separó. La fase acuosa se extrajo con CH_2Cl_2 (2 x 7 ml). Los extractos orgánicos combinados se lavaron con salmuera, se secaron sobre Na_2SO_4 y se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/EtOAc a 5:1) para dar (3,4-dihidroxi-fenil)-acetonitrilo (0,25 g, 54 %) en forma de un sólido de color blanco. RMN 1H (DMSO- d_6 , 400 MHz) δ 9,07 (s, 1 H), 8,95 (s, 1 H), 6,68-6,70 (m, 2 H), 6,55 (dd, J = 8,0, 2,0 Hz, 1 H), 3,32 (s, 2 H).

Etapa b: 2-(2,2-Dimetilbenzo[d][1,3]dioxol-5-il)acetonitrilo

35

30

A una solución de (3,4-dihidroxi-fenil)-acetonitrilo (0,2 g, 1,3 mmol) en tolueno (4 ml) se añadió 2,2-dimetoxi-propano (0,28 g, 2,6 mmol) y TsOH (0,010 g, 0,065 mmol). La mezcla se calentó a reflujo durante una noche. La mezcla de reacción se evaporó para retirar el disolvente y el residuo se disolvió en acetato de etilo. La fase orgánica se lavó con solución de NaHCO₃, H₂O y salmuera, y se secó sobre Na₂SO₄. El disolvente se evaporó a presión reducida para dar un residuo, que se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/EtOAc a 10:1) para dar 2-(2,2-dimetilbenzo[d][1,3]dioxol-5-il)acetonitrilo (40 mg, 20 %). RMN ¹H (CDCl₃, 400 MHz) δ 6,68-6,71 (m, 3 H), 3,64 (s, 2 H), 1,67 (s, 6 H).

M. 2-(3-(Benciloxi)-4-clorofenil)acetonitrilo

40

Etapa a: (4-Cloro-3-hidroxi-fenil)acetonitrilo

45

50

BBr₃ (16,6 g, 66 mmol) se añadió lentamente a una solución de 2-(4-cloro-3-metoxifenil)acetonitrilo (12 g, 66 mmol) en DCM (120 ml) a - 78 $^{\circ}$ C en atmósfera de N₂. La temperatura de reacción se aumentó lentamente a temperatura ambiente. La mezcla de reacción se agitó durante una noche y después se vertió en hielo y agua. La fase orgánica se separó, y la fase acuosa se extrajo con DCM (40 ml x 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄, y se concentró *al vacío* para dar (4-cloro-3-hidroxi-fenil)-acetonitrilo (9,3 g, 85 %). RMN 1 H (300 MHz, CDCl₃) δ 7,34 (d, J = 8,4 Hz, 1 H), 7,02 (d, J = 2,1 Hz, 1 H), 6,87 (dd, J = 2,1, 8,4 Hz, 1 H), 5,15 (s a, 1H), 3,72 (s, 2 H).

Etapa b: 2-(3-(Benciloxi)-4-clorofenil)acetonitrilo

A una solución de (4-cloro-3-hidroxi-fenil)acetonitrilo (6,2 g, 37 mmol) en CH_3CN (80 ml) se añadió K_2CO_3 (10,2 g, 74 mmol) y BnBr (7,6 g, 44 mmol). La mezcla se agitó a temperatura ambiente durante una noche. Los sólidos se retiraron por filtración y el filtrado se evaporó *al vacío*. El residuo se purificó por cromatografía en columna sobre gel de sílice (Éter de Petróleo/Acetato de etilo a 50:1) para dar 2-(3-(benciloxi)-4-clorofenil)acetonitrilo (5,6 g, 60 %). RMN 1 H (400 MHz, CDCl₃) δ 7,48-7,32 (m, 6 H), 6,94 (d, J = 2 Hz, 2 H), 6,86 (dd, J = 2,0, 8,4 Hz, 1 H), 5,18 (s, 2 H), 3,71 (s, 2 H).

N. 2-(Quinoxalin-6-il)acetonitrilo

10

15

20

25

30

35

40

45

50

Etapa a: 6-Metilquinoxalina

A una solución de 4-metilbenceno-1,2-diamina (50,0 g, 0,41 mol) en isopropanol (300 ml) se añadió una solución de glioxal (40 % en agua, 65,3 g, 0,45 mol) a temperatura ambiente. La mezcla de reacción se calentó a 80 $^{\circ}$ C durante 2 horas y se evaporó *al vacío* para dar 6-metilquinoxalina (55 g, 93 %), que se usó directamente en la siguiente etapa. RMN 1 H (300 MHz, CDCl₃) δ 8,77 (dd, J = 1,5, 7,2 Hz, 2 H), 7,99 (d, J = 8,7 Hz, 1 H), 7,87 (s, 1 H), 7,60 (dd, J = 1,5, 8,4 Hz, 1 H), 2,59 (s, 3 H).

Etapa b: 6-Bromometilquinoxalina

A una solución de 6-metilquinoxalina (10,0 g, 69,4 mmol) en CCl₄ (80 ml) se añadió NBS (13,5 g, 76,3 mmol) y peróxido de benzoílo (BP, 1,7 g, 6,9 mmol) a temperatura ambiente. La mezcla se calentó a reflujo durante 2 horas. Después de un periodo de refrigeración, la mezcla se evaporó *al vacío* para dar un sólido de color amarillo, que se extrajo con Éter de Petróleo (50 ml x 5). Los extractos se concentraron *al vacío*. Los extractos orgánicos se combinaron y se concentraron para dar 6-bromometilquinoxalina en bruto (12,0 g), que se usó directamente en la siguiente etapa. RMN ¹H (300 MHz, CDCl₃) δ 8,85-8,87 (m, 2 H), 8,10-8,13 (m, 2 H), 7,82 (dd, J = 2,1, 8,7 Hz, 1H), 4,70 (s, 2 H).

Etapa c: 2-(Quinoxalin-6-il)acetonitrilo

A una solución de 6-bromometilquinoxalina en bruto (36,0 g) en etanol al 95 % (200 ml) se añadió NaCN (30,9 g, 0,63 mol) a temperatura ambiente. La mezcla se calentó a 50 °C durante 3 horas y después se concentró *al vacío*. Se añadieron agua (100 ml) y acetato de etilo (100 ml). La fase orgánica se separó y la fase acuosa se extrajo con acetato de etilo. Los extractos orgánicos combinados se lavaron con salmuera, se secaron sobre Na₂SO₄ y se concentró *al vacío*. El residuo se purificó en columna sobre gel de sílice (Éter de Petróleo/EtOAc a 10:1) para dar 2-(quinoxalin-6-il) acetonitrilo (7,9 g, 23 % en dos etapas). RMN ¹H (300 MHz, CDCl₃) δ 8,88-8,90 (m, 2 H), 8,12-8,18 (m, 2 H), 7,74 (dd, J = 2,1,8,7 Hz, 1 H), 4,02 (s, 2 H). MS (ESI) m/z (M+H)⁺ 170,0.

O. 2-(Quinolin-6-il)acetonitrilo

Etapa a: 6-Bromometilquinolina

A una solución de 6-metilquinolina (2,15 g, 15,0 mmol) en CCl₄ (30 ml) se añadió NBS (2,92 g, 16,5 mmol) y peróxido de benzoílo (BP, 0,36 g, 1,5 mmol) a temperatura ambiente. La mezcla se calentó a reflujo durante 2 horas. Después de un periodo de refrigeración, la mezcla se evaporó *al vacío* para dar un sólido de color amarillo, que se extrajo con Éter de Petróleo (30 ml x 5). Los extractos se concentraron *al vacío* para dar 6-bromometilquinolina en

bruto (1,8 g), que se usó directamente en la siguiente etapa.

Etapa b: 2-(Quinolin-6-il)acetonitrilo

A una solución de 6-bromometilquinolina en bruto (1,8 g) en etanol al 95 % (30 ml) se añadió NaCN (2,0 g, 40,8 mmol) a temperatura ambiente. La mezcla se calentó a 50 °C durante 3 horas y después se concentró *al vacío*. Se añadió agua (50 ml) y acetato de etilo (50 ml). La fase orgánica se separó y la fase acuosa se extrajo con acetato de etilo. Los extractos orgánicos combinados se lavaron con salmuera, se secaron sobre Na₂SO4 y se concentró *al vacío*. El producto combinado en bruto se purificó en columna (Éter de Petróleo /EtOAc a 5:1) para dar 2-(quinolin-6-il)acetonitrilo (0,25 g, 8 % en dos etapas). RMN ¹H (300 MHz, CDCl₃) δ 8,95 (dd, J = 1,5, 4,2 Hz, 1 H), 8,12-8,19 (m, 2 H), 7,85 (s, 1 H), 7,62 (dd, J = 2,1, 8,7 Hz, 1 H), 7,46 (c, J = 4,2 Hz, 1 H), 3,96 (s, 2 H). MS (ESI) m/e (M+H)⁺ 169,0.

P. 2-(2,3-Dihidrobenzo[b][1,4]dioxin-6-il)acetonitrilo

Etapa a: Éster etílico del ácido 2,3-dihidro-benzo[1,4]dioxino-6-carboxílico

A una suspensión de Cs₂CO₃ (270 g, 1,49 mol) en DMF (1000 ml) se añadieron éster etílico del ácido 3,4-dihidroxibenzoico (54,6 g, 0,3 mol) y 1,2-dibromoetano (54,3 g, 0,29 mol) a temperatura ambiente. La mezcla resultante se agitó a 80 °C durante una noche y después se vertió en agua con hielo. La mezcla se extrajo con EtOAc (200 ml x 3). Las fases orgánicas combinadas se lavaron con agua (200 ml x 3) y salmuera (100 ml), se secó sobre Na₂SO₄ y se concentró a sequedad. El residuo se purificó por columna (Éter de Petróleo/Acetato de Etilo a 50:1) sobre gel de sílice para obtener el éster etílico del ácido 2,3-dihidro-benzo[1,4]dioxino-6-carboxílico (18 g, 29 %). RMN ¹H (300 MHz, CDCl₃) δ 7,53 (dd, J = 1,8, 7,2 Hz, 2 H), 6,84-6,87 (m, 1 H), 4,22-4,34 (m, 6 H), 1,35 (t, J = 7,2 Hz, 3 H).

Etapa b: (2,3-Dihidro-benzo[1,4]dioxin-6-il)-metanol

A una suspensión de LAH (2,8 g, 74 mmol) en THF (20 ml) se añadió gota a gota una solución de éster etílico del ácido 2,3-dihidro-benzo[1,4]dioxino-6-carboxílico (15 g, 72 mmol) en THF (10 ml) a 0 °C en atmósfera de N₂. La mezcla se agitó a temperatura ambiente durante 1 h y a continuación se inactivó cuidadosamente con adición de agua (2,8 ml) y NaOH (10 %, 28 ml) con refrigeración. El sólido precipitado se retiró por filtración y el filtrado se evaporó a sequedad para obtener (2,3-dihidro-benzo[1,4]dioxin-6-il)-metanol (10,6 g). RMN ¹H (300 MHz, DMSO-d₆)
δ 6,73-6,78 (m, 3 H), 5,02 (t, J = 5,7 Hz, 1 H), 4,34 (d, J = 6,0 Hz, 2 H), 4,17-4,20 (m, 4 H).

Etapa c: 6-Clorometil-2,3-dihidro-benzo[1,4]dioxino

Una mezcla de (2,3-dihidro-benzo[1,4]dioxin-6-il)metanol (10,6 g) en SOCl₂ (10 ml) se agitó a temperatura ambiente durante 10 min y después se vertió en agua con hielo. La fase orgánica se separó y la fase acuosa se extrajo con diclorometano (50 ml x 3). Las fases orgánicas combinadas se lavaron con NaHCO₃ (solución sat), agua y salmuera, se secó sobre Na₂SO₄ y se concentró a sequedad para obtener 6-clorometil-2,3-dihidro-benzo[1,4]dioxino (12 g, 88 % en dos etapas), que se usó directamente en la siguiente etapa.

45 Etapa d: 2-(2,3-Dihidrobenzo[b][1,4]dioxin-6-il)acetonitrilo

Una mezcla de 6-clorometil-2,3-dihidro-benzo[1,4]dioxino (12,5 g, 67,7 mmol) y NaCN (4,30 g, 87,8 mmol) en DMSO (50 ml) se agitó a ta durante 1 h. La mezcla se vertió en agua (150 ml) y a continuación se extrajo con diclorometano (50 ml x 4). Las fases orgánicas combinadas se lavaron con agua (50 ml x 2) y salmuera (50 ml), se secó sobre Na₂SO₄ y se concentró a sequedad. El residuo se purificó por columna (Éter de Petróleo/Acetato de Etilo a 50:1) sobre gel de sílice para obtener 2-(2,3-dihidrobenzo[b][1,4]dioxin-6-il)acetonitrilo en forma de un aceite de color amarillo (10,2 g, 86 %). RMN ¹H (300 MHz, CDCl₃) δ 6,78-6,86 (m, 3 H), 4,25 (s, 4 H), 3,63 (s, 2 H).

$\label{eq:quantum-decomposition} \textbf{Q. 2-} (2,2,4,4-\textbf{Tetrafluoro-}4\textbf{H-benzo[d][1,3]} \\ \textbf{dioxin-6-il)} \\ \textbf{acetonitrilo}$

55

50

15

20

25

$$F = \frac{Pd(PPh_{3})_{4}}{CO/CH_{3}OH} F = \frac{E}{F} = \frac{CO_{2}Me}{CO_{2}Me} = \frac{E}{F} = \frac{CN}{F} = \frac{$$

Etapa a: Éster metílico del ácido 2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino-6-carboxílico

5 Una suspensión de 6-bromo-2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino (4,75 g, 16,6 mmol) y Pd(PPh₃)₄ (950 mg, 8,23 mmol) en MeOH (20 ml), MeCN (30 ml) y Et₃N (10 ml) se agitó en atmósfera de monóxido de carbono (379 KPa) a 75 °C (temperatura del baño de aceite) durante una noche. La mezcla de reacción enfriada se filtró y el filtrado se concentró. El residuo se purificó en columna sobre gel de sílice (Éter de Petróleo) para dar el éster metílico del ácido 2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino-6-carboxílico (3,75 g, 85 %). RMN ¹H (CDCl₃, 300 MHz) δ 8,34 (s, 1 H), 8,26 (dd, J = 2,1, 8,7 Hz, 1 H), 7,22 (d, J = 8,7 Hz, 1 H), 3,96 (s, 3 H).

Etapa b: (2,2,4,4-Tetrafluoro-4H-benzo[1,3]dioxin-6-il)metanol

A una suspensión de LAH (2,14 g, 56,4 mmol) en THF seco (200 ml) se añadió gota a gota una solución de éster metílico del ácido 2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino-6-carboxílico (7,50 g, 28,2 mmol) en THF seco (50 ml) a 0 °C. Después de agitar a 0 °C durante 1 h, la mezcla de reacción se trató con agua (2,14 g) y NaOH al 10 % (2,14 ml). La suspensión se filtró y se lavó con THF. Los filtrados combinados se evaporaron a sequedad para dar el (2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxin-6-il)-metanol en bruto (6,5 g), que se usó directamente en la siguiente etapa. RMN ¹H (CDCl₃, 300 MHz) δ 7,64 (s, 1 H), 7,57-7,60 (m, 1 H), 7,58 (d, J = 8,7 Hz, 1 H), 4,75 (s, 2 H).

Etapa c: 6-Clorometil-2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino

Una mezcla de (2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxin-6-il)-metanol (6,5 g) en cloruro de tionilo (75 ml) se calentó a reflujo durante una noche. La mezcla resultante se concentró al vacío. El residuo se basificó con NaHCO₃ acuoso saturado. La fase acuosa se extrajo con diclorometano, (50 ml x 3). Las fases orgánicas combinadas se secaron sobre Na₂SO₄, se filtró, y se concentró a presión reducida para dar 6-clorometil-2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino (6,2 g), que se usó directamente en la siguiente etapa. RMN 1 H (CDCl₃, 300 MHz) δ 7,65 (s, 1 H), 7,61 (dd, J = 2,1, 8,7 Hz, 1 H), 7,15 (d, J = 8,4 Hz, 1 H), 4,60 (s, 2 H).

30 Etapa d: (2,2,4,4-Tetrafluoro-4H-benzo[1,3]dioxin-6-il)-acetonitrilo

Una mezcla de 6-clorometil-2,2,4,4-tetrafluoro-4H-benzo[1,3]dioxino (6,2 g) y NaCN (2,07 g, 42,3 mmol) en DMSO (50 ml) se agitó a temperatura ambiente durante 2 h. La mezcla de reacción se vertió en hielo y se extrajo con EtOAc (50 ml x 3). Las fases orgánicas combinadas se secaron sobre Na₂SO₄ anhidro, y se evaporó para dar un producto en bruto, que se purificó en columna sobre gel de sílice (Éter de Petróleo/EtOAc a 10:1) para dar (2,2-difluoro-benzo[1,3]dioxol-5-il)-acetonitrilo (4,5 g, 68 % durante 3 etapas). RMN ¹H (CDCl₃, 300 MHz) δ 7,57-7,60 (m, 2 H), 7,20 (d, J = 8,7 Hz, 1 H), 3.82 (s, 2 H).

R. 2-(4H-Benzo[d][1,3]dioxin-7-il)acetonitrilo

Etapa a: (3-Hidroxifenil)acetonitrilo

20

25

35

40

A una solución de (3-metoxifenil)acetonitrilo (150 g, 1,03 mol) en CH₂Cl₂ (1000 ml) se añadió BBr₃ (774 g, 3,09 mol) gota a gota a -70 °C. La mezcla se agitó y se calentó a temperatura ambiente lentamente. Se añadió agua (300 ml) a 0 °C. La mezcla resultante se extrajo con CH₂Cl₂. Las fases orgánicas combinadas se secaron sobre Na₂SO₄ anhidro, se filtró, y se evaporó al vacío. El residuo en bruto se purificó en columna (Éter de Petróleo/EtOAc a 10:1) para dar (3-hidroxifenil)acetonitrilo (75,0 g, 55 %). RMN ¹H (CDCl₃, 300 MHz) δ 7,18-7,24 (m, 1 H), 6,79-6,84 (m, 3 H), 3,69 (s, 2 H).

Etapa b: 2-(4H-Benzo[d][1,3]dioxin-7-il)acetonitrilo

A una solución de (3-hidroxifenil)acetonitrilo (75,0 g, 0,56 mol) en tolueno (750 ml) se añadió paraformaldehído (84,0 g, 2,80 mol) y monohidrato de ácido tolueno-4-sulfónico (10,7 g, 56,0 mmol) a temperatura ambiente. La mezcla de reacción se calentó a reflujo durante 40 minutos. El tolueno se retiró por evaporación. Se añadieron agua (150 ml) y acetato de etilo (150 ml). La fase orgánica se separó y la fase acuosa se extrajo con acetato de etilo. Los extractos orgánicos combinados se lavaron con salmuera, se secaron sobre Na_2SO_4 anhidro y se evaporó al vacío. El residuo se separó por HPLC preparativa para dar 2-(4H-benzo[d][1,3]dioxin-7-il)acetonitrilo (4,7 g, 5 %). RMN 1 H (300 MHz, CDCl₃) δ 6,85-6,98 (m, 3 H), 5,25 (d, J = 3,0 Hz, 2 H), 4,89 (s, 2 H), 3,69 (s, 2 H).

S. 2-(4H-Benzo[d][1,3]dioxin-6-il)acetonitrilo

10

15

20

25

30

35

A una solución de (4-hidroxifenil)acetonitrilo (17,3 g, 0,13 mol) en tolueno (350 ml) se añadieron paraformaldehído (39,0 g, 0,43 mmol) y monohidrato de ácido tolueno-4-sulfónico (2,5 g, 13 mmol) a temperatura ambiente. La mezcla de reacción se calentó a reflujo durante 1 hora. El tolueno se retiró por evaporación. Se añadieron (150 ml) y acetato de etilo (150 ml). La fase orgánica se separó y la fase acuosa se extrajo con acetato de etilo. Los extractos orgánicos combinados se lavaron con salmuera, se secaron sobre Na₂SO₄ y se evaporó al vacío. El residuo se separó por HPLC preparativa para dar 2-(4H-benzo[d][1,3]dioxin-6-il)acetonitrilo (7,35 g, 32 %). RMN ¹H (400 MHz, CDCl₃) δ 7,07-7,11 (m, 1 H), 6,95-6,95 (m, 1 H), 6,88 (d, J = 11,6 Hz, 1 H), 5,24 (s, 2 H), 4.89 (s, 2 H), 3,67 (s, 2 H).

T. 2-(3-Benciloxi)-4-metoxifenil)acetonitrilo

A una suspensión de t-BuOK (20,15 g, 0,165 mol) en THF (250 ml) se añadió una solución de TosMIC (16,1 g, 82,6 mmol) en THF (100 ml) a -78 °C. La mezcla se agitó durante 15 minutos, se trató con una solución de 3-benciloxi-4-metoxi-benzaldehído (10,0 g, 51,9 mmol) en THF (50 ml) gota a gota, y la agitación continuó durante 1,5 horas a -78 °C. Se añadió metanol (50 ml) a la mezcla de reacción enfriada. La mezcla se calentó a reflujo durante 30 minutos. El disolvente de la mezcla de reacción se retiró para dar un producto en bruto, que se disolvió en agua (300 ml). La fase acuosa se extrajo con EtOAc (100 ml x 3). Las fases orgánicas combinadas se secaron y se evaporó a presión reducida para dar el producto en bruto, que se purificó por cromatografía en columna (Éter de Petróleo/EtOAc a 10:1) para proporcionar 2-(3-(Benciloxi)-4-metoxifenil)acetonitrilo (5,0 g, 48 %). RMN ¹H (300 MHz, CDCl₃) δ 7,48-7,33 (m, 5 H), 6,89-6,86 (m, 3 H), 5,17 (s, 2 H), 3,90 (s, 3 H), 3,66 (s, 2 H). RMN ¹³C (75 MHz, CDCl₃) δ 149,6, 148,6, 136,8, 128,8, 128,8, 128,2, 127,5, 127,5, 122,1, 120,9, 118,2, 113,8, 112,2, 71,2, 56,2, 23,3.

La siguiente Tabla 2 contiene una lista de componentes básicos de ácido carboxílico que estuvieron disponibles en el mercado, o que se prepararon mediante uno de los procedimientos que se ha descrito anteriormente:

Tabla 2: Componentes básicos de ácido carboxílico.

Compuesto	Nombre		
A-1	ácido 1-benzo[1,3]dioxol-5-ilciclopropano-1-carboxílico		
A-2	ácido 1-(2,2-difluorobenzo[1,3]dioxol-5-il)ciclopropano-1-carboxílico		
A-3	ácido 1-(3,4-dimetoxifenil)ciclopropano-1-carboxílico		
A-4	ácido 1-(3-metoxifenil)ciclopropano-1-carboxílico		
A-5	ácido 1-(2-metoxifenil)ciclopropano-1-carboxílico		
A-6	ácido 1-[4-(trifluorometoxi)fenil]ciclopropano-1-carboxílico		
A-8	ácido tetrahidro-4-(4-metoxifenil)-2 <i>H</i> -piran-4-carboxílico		

Compuesto	Nombre	
A-9	ácido 1-fenilciclopropano-1-carboxílico	
A-10	ácido 1-(4-metoxifenil)ciclopropano-1-carboxílico	
A-11	ácido 1-(4-clorofenil)ciclopropano-1-carboxílico	
A-13	ácido 1-fenilciclopentanocarboxílico	
A-14	ácido 1-fenilciclohexanocarboxílico	
A-15	ácido 1-(4-metoxifenil)ciclopentanocarboxílico	
A-16	ácido 1-(4-metoxifenil)ciclohexanocarboxílico	
A-17	ácido 1-(4-clorofenil)ciclohexanocarboxílico	
A-18	ácido 1-(2,3-dihidrobenzo[b][1,4]dioxin-6-il)ciclopropanocarboxílico	
A-19	ácido 1-(4H-benzo[d][1,3]dioxin-7-il)ciclopropanocarboxílico	
A-20	ácido 1-(2,2,4,4-tetrafluoro-4H-benzo[d][1,3]dioxin-6-il)ciclopropanocarboxílico	
A-21	ácido 1-(4H-benzo[d][1,3]dioxin-6-il)ciclopropanocarboxílico	
A-22	ácido 1-(quinoxalin-6-il)ciclopropanocarboxílico	
A-23	ácido 1-(quinolin-6-il)ciclopropanocarboxílico	
A-24	ácido 1-(4-clorofenil)ciclopentanocarboxílico	
A-25	ácido 1-(benzofuran-5-il)ciclopropanocarboxílico	
A-26	ácido 1-(4-cloro-3-metoxifenil)ciclopropanocarboxílico	
A-27	ácido 1-(3-(hidroximetil)-4-metoxifenil)ciclopropanocarboxílico	
A-28	ácido 1-(2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico	
A-29	ácido 1-(3-fluoro-4-metoxifenil)ciclopropanocarboxílico	
A-30	ácido 1-(3-cloro-4-metoxifenil)ciclopropanocarboxílico	
A-31	ácido 1-(3-hidroxi-4-metoxifenil)ciclopropanocarboxílico	
A-32	ácido 1-(4-hidroxi-3-metoxifenil)ciclopropanocarboxílico	
A-33	ácido 1-(2,2-dimetilbenzo[d][1,3]dioxol-5-il)ciclopropanocarboxílico	
A-34	ácido 1-(3,3-dimetil-2,3-dihidrobenzofuran-5-il)ciclopropanocarboxílico	
A-35	ácido 1-(7-metoxibenzo[d][1,3]dioxol-5-il)ciclopropanocarboxílico	
A-36	ácido 1-(4-cloro-3-hidroxifenil)ciclopropanocarboxílico	
A-37	ácido 1-(4-metoxi-3-metilfenil)ciclopropanocarboxílico	
A-38	ácido 1-(3-(benciloxi)-4-clorofenil)ciclopropanocarboxílico	
A-45	ácido 1-(4-metoxi-3-(metoximetil)fenil)ciclopropanocarboxílico	

U. 6-Cloro-5-metilpiridin-2-amina

Etapa a: 2,2-Dimetil-N-(5-metil-piridin-2-il)-propionamida

A una solución agitada de 5-metilpiridin-2-amina (200 g, 1,85 mol) en CH₂Cl₂ anhidro (1000 ml) se añadió gota a gota una solución de Et₃N (513 ml, 3,70 mol) y cloruro de 2,2-dimetil-propionilo (274 ml, 2,22 mol) a 0 °C en atmósfera de N₂. El baño de hielo se retiró y se continuó con la agitación a temperatura ambiente durante 2 horas. La reacción se vertió en hielo (2000 g). La fase orgánica se separó y la fase acuosa restante se extrajo con CH₂Cl₂ (3 x). Los extractos orgánicos combinados se secaron sobre Na₂SO₄ y se evaporó para proporcionar 2,2-dimetil-*N*-(5-metil-piridin-2-il)-propionamida (350 g), que se usó en la siguiente etapa sin purificación adicional. RMN ¹H (400 MHz, CDCl₃) δ 8,12 (d, *J* = 8,4 Hz, 1 H), 8,06 (d, *J* = 1,2 Hz, 1 H), 7,96 (s, 1 H), 7,49 (dd, *J* = 1,6, 8,4 Hz, 1 H), 2,27 (s, 1 H), 1,30 (s, 9 H).

Etapa b: 2,2-Dimetil-N-(5-metil-1-oxi-piridin-2-il)-propionamida

A una solución agitada de 2,2-dimetil-*N*-(5-metil-piridin-2-il)-propionamida (100 g, 0,52 mol) en AcOH (500 ml) se añadió gota a gota una solución de H₂O₂ al 30 % (80 ml, 2,6 mol) a temperatura ambiente. La mezcla se agitó a 80 °C durante 12 horas. La mezcla de reacción se evaporó al vacío para obtener 2,2-dimetil-*N*-(5-metil-1-oxi-piridin-2-il)-propionamida (80 g, pureza de un 85 %). RMN ¹H (400 MHz, CDCl₃) δ 10,26 (s a, 1 H), 8,33 (d, *J* = 8,4 Hz, 1 H), 8,12 (s, 1 H), 7,17 (dd, *J* = 0,8, 8,8 Hz, 1 H), 2,28 (s, 1 H), 1,34 (s, 9 H).

Etapa c: N-(6-Cloro-5-metil-piridin-2-il)-2,2-dimetil-propionamida

A una solución agitada de 2,2-dimetil-N-(5-metil-l-oxi-piridin-2-il)-propionamida (10 g, 48 mmol) en CH₂Cl₂ anhidro (50 ml) se añadió Et₃N (60 ml, 240 mmol) a temperatura ambiente. Después de su agitación durante 30 min, POCl₃ (20 ml) se añadió gota a gota a la mezcla de reacción. La reacción se agitó a 50 °C durante 15 horas. La mezcla de reacción se vertió en hielo (200 g). La fase orgánica se separó y la fase acuosa restante se extrajo con CH₂Cl₂ (3 x). Los extractos orgánicos combinados se secaron sobre Na₂SO₄. El disolvente se evaporó *al vacío* para obtener el producto en bruto, que se purificó por cromatografía (Éter de Petróleo/EtOAc a 100:1) para proporcionar N-(6-cloro-5-metil-piridin-2-il)- 2,2-dimetil-propionamida (0,5 g, 5 %). RMN ¹H (400 MHz, CDCl₃) δ 8,09 (d, J = 8,0 Hz, 1 H), 7,94 (s a, 1 H), 7,55 (d, J = 8,4 Hz, 1 H), 2,33 (s, 1 H), 1,30 (s, 9 H).

Etapa d: 6-Cloro-5-metil-piridin-2-ilamina

20

25

30

40

A *N*-(6-cloro-5-metil-piridin-2-il)-2,2-dimetil-propionamida (4,00 g, 17,7 mmol) se añadió HCl 6 N (20 ml) a temperatura ambiente. La mezcla se agitó a 80 °C durante 12 horas. La mezcla de reacción se basificó con adición gota a gota de NaHCO₃ sat. a pH 8-9, y a continuación la mezcla se extrajo con CH₂Cl₂ (3 x). Las fases orgánicas se secaron sobre Na₂SO₄ y se evaporó *al vacío* para obtener la 6-cloro-5-metil-piridin-2-ilamina (900 mg, 36 %). RMN ¹H (400 MHz, CDCl₃) δ 7,28 (d, *J* = 8,0 Hz, 1 H), 6,35 (d, *J* = 8,0 Hz, 1 H), 4,39 (s a, 2 H), 2,22 (s, 3 H). MS (ESI) m/z: 143 (M+H⁺).

V. 6-Cloro-5-(trifluorometil)piridin-2-amina

2,6-Dicloro-3-(trifluorometil)piridina (5,00 g, 23,2 mmol) y amoníaco acuoso al 28 % (150 ml) se colocaron en un autoclave de 250 ml. La mezcla se calentó a 93 °C durante 21 h. La reacción se enfrió a ta y se extrajo con EtOAc (100 ml x 3). Los extractos orgánicos combinados se secaron sobre Na₂SO₄ anhidro y se evaporó al vacío para dar el producto en bruto, que se purificó por cromatografía en columna sobre gel de sílice (EtOAc al 2-20 % en éter de petróleo como eluyente) para dar 6-cloro-5-(trifluorometil)piridin-2-amina (2,1 g, rendimiento de un 46 %). RMN ¹H
(400 MHz, DMSO-d₆) δ 7,69 (d, J = 8,4 Hz, 1 H), 7,13 (s a, 2 H), 6,43 (d, J = 8,4 Hz, 1 H). MS (ESI) m/z (M + H)⁺ 197,2.

Procedimiento General IV: Reacciones de Acoplamiento

Hal = CI, Br, I, todas las demás variables. El anillo A es el anillo formado por $R_3 y R_3'$. X = C o N

Un equivalente del ácido carboxílico apropiado se puso en un matraz secado en horno en atmósfera de nitrógeno. Se añadieron cloruro de tionilo (3 equivalentes) y una cantidad catalítica de *N,N*-dimetilformamida y la solución se dejó en agitación a 60 °C durante 30 minutos. El exceso de cloruro de tionilo se retiró al vacío y el sólido resultante se suspendió en una cantidad mínima de piridina anhidra. Esta solución se añadió lentamente a una solución agitada de un equivalente al aminoheterociclo apropiado disuelto en una cantidad mínima de piridina anhidra. La mezcla resultante se dejó en agitación durante 15 horas a 110 °C. La mezcla se evaporó a sequedad, se suspendió en diclorometano, y después se extrajo tres veces con NaOH 1 N. La fase orgánica se secó a continuación sobre sulfato sódico, se evaporó a sequedad, y a continuación se purificó por cromatografía en columna.

W. 1-(Benzo[d][1,3]dioxol-5-il)-N-(5-bromopiridin-2-il)ciclopropano-carboxamida (B-1)

10

15

20

25

30

35

40

Ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico (2,38 g, 11,5 mmol) se colocó en un matraz secado en horno en atmósfera de nitrógeno. Se añadieron cloruro de tionilo (2,5 ml) y N,N-dimetilformamida (0,3 ml) y la solución se dejó en agitación durante 30 minutos a 60 °C. El exceso de cloruro de tionilo se retiró al vacío y el sólido resultante se suspendió en 7 ml de piridina anhidra. A continuación esta solución se añadió lentamente a una solución de 5-bromo-piridin-2-ilamina (2,00 g, 11,6 mmol) suspendida en 10 ml de piridina anhidra. La mezcla resultante se dejó en agitación durante 15 horas a 110 °C. A continuación la mezcla se evaporó a sequedad, se suspendió en 100 ml de diclorometano, y se lavó con tres porciones de 25 ml de NaOH 1 N. La fase orgánica se secó sobre sulfato sódico, se evaporó casi hasta sequedad, a continuación se purificó por cromatografía en columna sobre gel de sílice usando diclorometano como eluyente para producir el producto puro (3,4 g, 83 %) ESI-MS m/z calc. 361,2, encontrado 362,1 $(M+1)^+$; Tiempo de retención 3,40 minutos. RMN 1 H (400 MHz, DMSO- d_6) δ 1,06-1,21 (m, 2H), 1,44-1,51 (m, 2H), 6,07 (s, 2H), 6,93-7,02 (m, 2H), 7,10 (d, J = 1,6 Hz, 1H), 8,02 (d, J = 1,6 Hz, 2H) 8,34 (s, 1H), 8,45 (s, 1H).

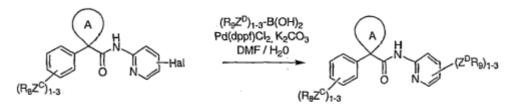
1-(Benzo[d][1,3]dioxol-6-il)-N-(6-bromopiridin-2-il)ciclopropano-carboxamida (B-2)

Ácido (1-Benzo[1,3]dioxol-5-il-ciclopropanocarboxílico (1,2 g, 5,8 mmol) se colocó en un matraz secado en horno en atmósfera de nitrógeno. Se añadieron cloruro de tionilo (2,5 ml) y N, N-dimetilformamida (0,3 ml) y la solución se dejó en agitación a 60 °C durante 30 minutos. El exceso de cloruro de tionilo se retiró al vacío y el sólido resultante se suspendió en 5 ml de piridina anhidra. A continuación esta solución se añadió lentamente a una solución de 6-bromopiridin-2-amina (1,0 g, 5,8 mmol) suspendida en 10 ml de piridina anhidra. La mezcla resultante se dejó en agitación durante 15 horas a 110 °C. A continuación la mezcla se evaporó a sequedad, se suspendió en 50 ml de diclorometano, y se lavó con tres porciones de 20 ml de NaOH 1 N. La fase orgánica se secó sobre sulfato sódico, se evaporó casi hasta sequedad, y a continuación se purificó por cromatografía en columna sobre gel de sílice usando diclorometano que contenía trietilamina al 2,5 % como eluyente para producir el producto puro. ESI-MS m/z calc. 361,2, encontrado 362,1 (M+1) $^+$; Tiempo de retención 3,43 minutos. RMN 1 H (400 MHz, DMSO- d_6) δ 1,10-1,17 (m, 2H), 1,42-1,55 (m, 2H), 6,06 (s, 2H), 6,92-7,02 (m, 2H), 7,09 (d, J = 1,6 Hz, 1H), 7,33 (d, J = 7,6 Hz, 1H), 7,73 (t, J = 8,0 Hz, 1H), 8,04 (d, J = 8,2 Hz, 1H), 8,78 (s, 1H).

Los compuestos en la siguiente Tabla 3 se prepararon de manera análoga a la que se ha descrito anteriormente:

ES 2 439 736 T3

Tabla 3: Compuestos a modo de ejemplo sintetizados de acuerdo con las Preparaciones W y X.


Compuesto	Nombre	Tiempo de Retención (min)	(M+1) ⁺	RMN ¹ H (400 MHz, DMSO-d ₆)
B-3	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (5-bromo-6-metilpiridin-2-il) ciclopropanocarboxamida	3,58	375,3	RMN 1 H (400 MHz, DMSO- d_{6}) δ 8,39 (s, 1H), 7,95 (d, J = 8,7 Hz, 1H), 7,83 (d, J = 8,8 Hz, 1H), 7,10 (d, J = 1,6 Hz, 1H), 7,01 - 6,94 (m, 2H), 6,06 (s, 2H), 2,41 (s, 3H), 1,48 - 1,46 (m, 2H), 1,14 -1,10 (m, 2H)
B-4	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (6-cloro-5-metilpiridin-2-il) ciclopropanocarboxamida	2,90	331,0	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 8,64 (s, 1H), 7,94-7,91 (m, 1H), 7,79-7,77 (m, 1H), 7,09 (m, 1H), 7,00-6,88 (m, 2H), 6,06 (s, 2H), 2,25 (s, 3H), 1,47-1,44 (m, 2H), 1,13-1,10 (m, 2H)
B-5	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (5-bromo-4-metilpiridin-2- il)ciclopropanocarboxamida	3,85	375,1	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 8,36 (s, 1H), 8,30 (s, 1H), 8,05 (s, 1H), 7,09 (d, J = 1,6 Hz, 1H), 7,01 -6,95 (m, 2H), 6,07 (s, 2H), 2,35 (s, 3H), 1,49 - 1,45 (m, 2H), 1,16 -1,13 (m, 2H)
B-6	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (5-bromo-3,4-dimetilpiridin-2- il)ciclopropanocarboxamida	3,25	389,3	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 8,82 (s, 1H), 8,35 (s, 1H), 7,01 (m, 1H), 6,96-6,89 (m, 2H), 6,02 (s, 2H), 2,35 (s, 3H), 2,05 (s, 3H), 1,40-1,38 (m, 2H), 1,08-1,05 (m,2H)
B-7	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (5-bromo-3-metilpiridin-2-il) ciclopropanocarboxamida	2,91	375,1	
B-8	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (6-cloropiridazin-3-il) ciclopropanocarboxamida	2,88	318,3	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 1,15-1,19 (m, 2H), 1,48-1,52 (m, 2H), 6,05 (s, 2H), 6,93-7,01 (m, 2H), 7,09 (d, <i>J</i> = 1,7 Hz, 1H), 7,88 (d, <i>J</i> = 9,4 Hz, 1H), 8,31 (d, <i>J</i> = 9,4 Hz, 1H), 9,46 (s, 1H)
B-9	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (5-bromopirazin-2-il) ciclopropanocarboxamida	3,20	318,3	RMN 1 H (400 MHz, DMSO- d_{6}) δ 1,13-1,18 (m, 2H), 1,47-1,51 (m, 2H), 6,04 (s, 2H), 6,90-6,99 (m, 2H), 7,06 (d, J = 1,6 Hz, 1H), , 8,47 (s, 1H), 9,21 (s, 1H), 9,45 (s, 1H)
B-10	1-(Benzo[d][1,3]dioxol-5-il)- <i>N</i> - (6-cloropirazin-2-il) ciclopropanocarboxamida	3,45	362,1	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 1,12-1,23 (m, 2H), 1,41-1,58 (m, 2H), 6,04 (s, 2H), 6,90-7,00 (m, 2H), 7,07 (d, <i>J</i> = 1,6 Hz, 1H), 8,55 (s, 1H), 8,99-9,21 (m, 2H)

Compuesto	Nombre	Tiempo de Retención (min)	(M+1) ⁺	RMN ¹ H (400 MHz, DMSO-d ₆)
B-11	N-(6-bromopiridin-2-il)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-il)ciclopropanocarboxamida	2,12	397,3	RMN ¹ H (400 MHz, DMSO- <i>d₆</i>) δ 9,46 (s, 1H), 8,01-7,99 (m, 1H), 7,75-7,71 (m, 1H), 7,54 (m, 1H), 7,41-7,39 (m, 1H), 7,36-7,30 (m, 2H), 1,52-1,49 (m, 2H), 1,20-1,17 (m, 2H)
B-12	N-(6-cloro-5-metilpiridin-2-il)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-il) ciclopropanocarboxamida	2,18	367,1	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 9,30 (s, 1H), 7,89-7,87 (m, 1H), 7,78-7,76 (m, 1H), 7,53 (m, 1H), 7,41-7,39 (m, 1H), 7,33-7,30 (m, 1H), 2,26 (s, 3H), 1,51-1,49 (m, 2H), 1,18-1,16 (m, 2H)
B-13	N-(6-cloro-5- (trifluorometil)piridin-2-il)-1-(2,2- difluorobenzo[d][1,3]dioxol-5- il)ciclopropanocarboxamida	1,98	421,1	RMN ¹ H (400 MHz, DMSO- <i>d</i> ₆) δ 10,09 (s, 1H), 8,29 (m, 1H), 8,16 (m, 1H), 7,53 (m, 1H), 7,41-7,38 (m, 1H), 7,34-7,29 (m, 1H), 1,56-1,53 (m, 2H), 1,24-1,22 (m, 2H)

Procedimiento General V: Compuestos de Fórmula I

5

10

Hal = Cl, Br, l. El anillo A es el anillo formado por R_3 y R_3'

El haluro de arilo apropiado (1 equivalente) se disolvió en 1 ml de *N,N*-dimetilformamida (DMF) en un tubo de reacción. Se añadieron el ácido borónico apropiado (1,3 equivalentes), 0,1 ml de una solución acuosa de carbonato potásico 2 M (2 equivalentes), y una cantidad catalítica de Pd(dppf)Cl₂ (0,09 equivalentes) y la mezcla de reacción se calentó a 80 °C durante tres horas o a 150 °C durante 5 min en el microondas. El material resultante se enfrió a temperatura ambiente, se filtró, y se purificó por cromatografía líquida preparativa en fase inversa.

Y. [5-(2,4-Dimetoxi-fenil)-piridin-2-il]-amida del ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico

La (5-bromo-piridin-2-il)-amida del ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico (36,1 mg, 0,10 mmol) se disolvió en 1 ml de *N,N*-dimetilformamida en un tubo de reacción. Se añadieron ácido 2,4-dimetoxibencenoborónico (24 mg, 0,13 mmol), 0,1 ml de una solución acuosa de carbonato potásico 2 M, y una cantidad catalítica de Pd(dppf)Cl₂ (6,6 mg, 0,0090 mmol) y la mezcla de reacción se calentó a 80 °C durante tres horas. El material resultante se enfrió a temperatura ambiente, se filtró, y se purificó por cromatografía líquida preparativa en fase inversa para producir el producto puro en forma de una sal del ácido trifluoroacético. ESI-MS *m/z* calc. 418,2, encontrado 419,0 (M+1)⁺. Tiempo de retención 3,18 minutos. RMN ¹H (400 MHz, CD₃CN) δ 1,25-1,29 (m, 2H), 1,63-1,67 (m, 2H), 3,83 (s, 3H), 3,86 (s, 3H), 6,04 (s, 2H), 6,64-6,68 (m, 2H), 6,92 (d, *J* = 8,4 Hz, 1H), 7,03-7,06 (m, 2H), 7,30 (d, *J* = 8,3 Hz, 1H), 7,96 (d, *J* = 8,9 Hz, 1H), 8,14 (dd, *J* = 8,9, 2,3 Hz, 1H), 8,38 (d, *J* = 2,2 Hz, 1H), 8,65 (s, 1H).

Z. [6-(4-Dimetilamino-fenil)-piridin-2-il]-amida del ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico

La (6-bromo-piridin-2-il)-amida del ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico (36 mg, 0,10 mmol) se disolvió en 1 ml de N,N-dimetilformamida en un tubo de reacción. Se añadieron ácido 4-(dimetilamino)fenilborónico (21 mg, 0,13 mmol), 0,1 ml de una solución acuosa de carbonato potásico 2 M, y (Pd(dppf)Cl₂ (6,6 mg, 0,0090 mmol) y la mezcla de reacción se calentó a 80 °C durante tres horas. El material resultante se enfrió a temperatura ambiente, se filtró, y se purificó por cromatografía líquida en fase inversa para producir el producto puro en forma de una sal del ácido trifluoroacético. ESI-MS m/z calc. 401,2, encontrado 402,5 (M+1)⁺. Tiempo de retención 2,96 minutos. RMN ¹H (400 MHz, CD₃CN) δ 1,23-1,27 (m, 2H), 1,62-1,66 (m, 2H), 3,04 (s, 6H), 6,06 (s, 2H), 6,88-6,90 (m, 2H), 6,93-6,96 (m, 1H), 7,05-7,07 (m, 2H), 7,53-7,56 (m, 1H), 7,77-7,81 (m, 3H), 7,84-7,89 (m, 1H), 8,34 (s, 1H). Los siguientes esquemas se usaron para preparar ésteres borónicos adicionales que no estaban disponibles en el mercado:

AA. 1-Metil-4-[4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)fenil]-sulfonilpiperazina

20 Etapa a: 1-(4-Bromofenilsulfonil)-4-metilpiperazina

15

25

30

35

40

Una solución de cloruro de 4-bromobenceno-1-sulfonilo (256 mg, 1,00 mmol) en 1 ml de diclorometano se añadió lentamente a un vial (40 ml) que contenía 5 ml de una solución saturada acuosa de bicarbonato sódico, diclorometano (5 ml) y 1-metilpiperazina (100 mg, 1,00 mmol). La reacción se agitó a temperatura ambiente durante una noche. Las fases se separaron y la fase orgánica se secó sobre sulfato de magnesio. La evaporación del disolvente a presión reducida proporcionó el producto requerido, que se usó en la siguiente etapa sin purificación adicional. ESI-MS m/z calc. 318,0, encontrado 318,9 $(M+1)^+$. Tiempo de retención de 1,30 minutos. RMN 1 H (300 MHz, CDCl₃) δ 7,65 (d, J = 8,7 Hz, 2H), 7,58 (d, J = 8,7 Hz, 2H), 3,03 (t, J = 4,2 Hz, 4H), 2,48 (t, J = 4,2 Hz, 4H), 2,26 (s, 3H).

Etapa b: 1-Metil-4-[4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)fenil]sulfonil-piperazina

Un matraz de fondo redondo de 50 ml se cargó con 1-(4-bromofenil-sulfonil)-4-metilpiperazina (110 mg, 0,350 mmol), bis-(pinacolato)-diboro (93 mg, 0,37 mmol), acetato de paladio (6 mg, 0,02 mmol) y acetato potásico (103 mg, 1,05 mmol) en *N,N*-dimetilformamida (6 ml). La mezcla se desgasificó suavemente mediante burbujeo de argón a través de la solución durante 30 minutos a temperatura ambiente. Después, la mezcla se calentó a 80 °C en atmósfera de argón hasta que la reacción se completó (4 horas). El producto deseado, 1-metil-4-[4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)fenil]-sulfonil-piperazina, y el producto de bi-arilo, 4-(4-metilpiperazin-1-ilsulfonil)-fenil-fenilsulfonil-4-metilpiperazina, se obtuvieron en una relación de 1:2 tal como lo indicaba el análisis por LC/MS. La mezcla se usó sin purificación adicional.

BB. 4,4,5,5-Tetrametil-2-(4-(2-(metilsulfonil)etil)fenil)-1,3,2-dioxaborolano

Etapa a: 4-Bromofenetil-4-metilbencenosulfonato

A un matraz de fondo redondo de 50 ml se añadió alcohol de p-bromofenetilo (1,0 g, 4,9 mmol), seguido de la adición de piridina (15 ml). A esta solución transparente se añadió, en atmósfera de argón, cloruro de p-toluenosulfonilo (TsCl) (1,4 g, 7,5 mmol) en forma de un sólido. La mezcla de reacción se purgó con Argón y se agitó a temperatura ambiente durante 18 horas. La mezcla en bruto se trató con HCl 1 N (20 ml) y se extrajo con acetato de etilo (5 x 25 ml). Las fracciones orgánicas se secaron sobre Na₂SO₄, se filtró, y se concentró para producir 4-bromofenetil-4-metilbencenosulfonato (0,60 g, 35 %) en forma de un líquido de color amarillento. RMN ¹H (Acetona-d₆, 300 MHz) δ 7,64 (d, J = 8,4 Hz, 2H), 7,40-7,37 (d, J = 8,7 Hz, 4H), 7,09 (d, J = 8,5 Hz, 2H), 4,25 (t, J = 6,9 Hz, 2H), 2,92 (t, J = 6,3 Hz, 2H), 2,45 (s, 3H).

Etapa b: (4-Bromofenetil)(metil)sulfano

15

20

25

30

35

A un matraz de fondo redondo de 20 ml se añadieron 4-metilbencenosulfonato de 4-bromofenetilo (0,354 g, 0,996 mmol) y CH₃SNa (0,10 g, 1,5 mmol), seguido de la adición de THF (1,5 ml) y *N*-metil-2-pirrolidinona (1,0 ml). La mezcla se agitó a temperatura ambiente durante 48 horas, y a continuación se trató con una solución acuosa saturada de bicarbonato sódico (10 ml). La mezcla se extrajo con acetato de etilo (4 x 10 ml), se secó sobre Na₂SO₄, se filtró, y se concentró para producir (4-bromofenetil)(metil)sulfano (0,30 g en bruto) en forma de un aceite tricolor amarillento. RMN 1 H (CDCl₃, 300 MHz) δ 7,40 (d, J = 8,4 Hz, 2H), 7,06 (d, J = 8,4 Hz, 2H), 2,89-2,81 (m, 2H), 2,74-2,69 (m, 2H), 2,10 (s, 3H).

Etapa c: 1-Bromo-4-(2-metilsulfonil)-etilbenceno

A un matraz de fondo redondo de 20 ml se añadieron (4-bromofenetil)-(metil)sulfano (0,311 g, 1,34 mmol) y Oxone (3,1 g, 0,020 mol), seguido de la adición de una mezcla de acetona/agua a 1:1 (10 ml). La mezcla se agitó vigorosamente a temperatura ambiente durante 20 horas, antes de su concentración. La mezcla acuosa se extrajo con acetato de etilo (3 x 15 ml) y diclorometano (3 x 10 ml). Las fracciones orgánicas se combinaron, se secaron con Na_2SO_4 , se filtró, y se concentró para producir un semisólido de color blanco. La purificación del material en bruto por cromatografía ultrarrápida proporcionó 1-bromo-4-(2-metilsulfonil)-etilbenceno (0,283 g, 80 %). RMN 1 H (DMSO- d_6 , 300 MHz) δ 7,49 (d, J = 8,4 Hz, 2H), 7,25 (d, J = 8,7 Hz, 2H), 3,43 (m, 2H), 2,99 (m, 2H), 2,97 (s, 3H).

Etapa d: 4,4,5,5-Tetrametil-2-(4-(2-(metilsulfonil)etil)-fenil)-1,3,2-dioxaborolano

El 4,4,5,5-tetrametil-2-(4-(2-(metilsulfonil)etil)fenil)-1,3,2-dioxaborolano se preparó de la misma manera tal como se ha descrito anteriormente para 1-metil-4-[4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)fenil]sulfonil-piperazina, Preparación AA.

40 CC. Metil(4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)bencil)carbamato de terc-butilo

Etapa a: terc-Butil-4-bromobencilcarbamato

Clorhidrato de *p*-bromobencilamina disponible en el mercado (1 g, 4 mmol) se trató con NaOH ac. al 10 % (5 ml). A la solución transparente se añadió (Boc)₂O (1,1 g, 4,9 mmol) disuelto en dioxano (10 ml). La mezcla se agitó vigorosamente a temperatura ambiente durante 18 horas. El residuo resultante se concentró, se suspendió en agua (20 ml), se extrajo con acetato de etilo (4 x 20 ml), se secó sobre Na₂SO₄, se filtró, y se concentró para producir tercbutil-4-bromobencilcarbamato (1,23 g, 96 %) en forma de un sólido de color blanco. RMN ¹H (300 MHz, DMSO-*d*₆) δ 7,48 (d, *J* = 8,4 Hz, 2H), 7,40 (t, *J* = 6 Hz, 1H), 7,17 (d, *J* = 8,4 Hz, 2H), 4,07 (d, *J* = 6,3 Hz, 2H), 1,38 (s, 9H).

Etapa b: terc-Butil-4-bromobencil(metil)carbamato

En un vial de 60 ml, el *terc*-butil-4-bromobencilcarbamato (1,25 g, 4,37 mmol) se disolvió en DMF (12 ml). A esta solución se añadió Ag₂O (4,0 g, 17 mmol) seguido de la adición de CH₃I (0,68 ml, 11 mmol). La mezcla se agitó a 50 ^QC durante 18 horas. La mezcla de reacción se filtró a través de un lecho de celite y el celite se lavó con metanol (2 x 20 ml) y diclorometano (2 x 20 ml). El filtrado se concentró para retirar la mayor parte de la DMF. El residuo se trató con agua (50 ml) y se formó una emulsión de color blanco. Esta mezcla se extrajo con acetato de etilo (4 x 25 ml), se secó sobre Na₂SO₄, y el disolvente se evaporó para producir *terc*-butil-4-bromobencil(metil)carbamato (1,3 g, 98 %) en forma de un aceite de color amarillo. RMN ¹H (300 MHz, DMSO-d₆) δ 7,53 (d, *J* = 8,1 Hz, 2H), 7,15 (d, *J* = 8,4 Hz, 2H), 4,32 (s, 2H), 2,74 (s, 3H), 1,38 (s, 9H).

Etapa c: 4-(4,4,5,5-Tetrametil-1,3,2-dioxaborolan-2-il)bencilmetilcarbamato de terc-butilo

- La reacción de acoplamiento se consiguió de la misma manera tal como se ha descrito anteriormente para la 1-metil-4-[4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)fenil]sulfonil-piperazina, Preparación AA. El grupo protector Boc se retiró después de la reacción de acoplamiento mediante tratamiento de la mezcla de reacción en bruto con 0,5 ml de HCl 1 N en éter dietílico durante 18 horas antes de la purificación por HPLC.
- 30 Ejemplos adicionales de la invención se prepararon siguiendo el procedimiento anterior sin cambios significativos pero usando los ácidos aril borónicos que se proporcionan en la Tabla 4.

Tabla 4: (Compuestos ad	dicionales	a modo d	de ejemplo	o de fórmula I	

Nº del Compuesto	Amina	Ácido Borónico
1	B-2	ácido [2-(dimetilaminometil)fenil]borónico
2	B-2	ácido [4-(1-piperidil)fenil]borónico
3	B-2	ácido (3,4-diclorofenil)borónico
4	B-2	ácido (4-morfolinosulfonilfenil)borónico
5	B-2	ácido (3-cloro-4-metoxi-fenil)borónico
6	B-2	ácido (6-metoxi-3-piridil)borónico
7	B-2	ácido (4-dimetilaminofenil)borónico
8	B-2	ácido (4-morfolinofenil)borónico
9	B-2	ácido [4-(acetilaminometil)fenil]borónico
10	B-2	ácido (2-hidroxifenil)borónico

Nº del Compuesto	Amina	Ácido Borónico
11	B-1	ácido 2-dihidroxiboranilbenzoico
12	B-1	ácido (6-metoxi-3-piridil)borónico
14	B-2	ácido (2,4-dimetilfenil)borónico
15	B-2	ácido [3-(hidroximetil)fenil]borónico
16	B-2	ácido 3-dihidroxiboranilbenzoico
17	B-2	ácido (3-etoxifenil)borónico
18	B-2	ácido (3,4-dimetilfenil)borónico
19	B-1	ácido [4-(hidroximetil)fenil]borónico
20	B-1	ácido 3-piridilborónico
21	B-2	ácido (4-etilfenil)borónico
23	B-2	4,4,5,5-tetrametil-2-(4-(2-(metilsulfonil)etil)fenil)-1,3,2-dioxaborolano
24	B-1	ácido benzo[1,3]dioxol-5-ilborónico
25	B-2	ácido (3-clorofenil)borónico
26	B-2	ácido (3-metilsulfonilaminofenil)borónico
27	B-2	ácido (3,5-diclorofenil)borónico
28	B-2	ácido (3-metoxifenil)borónico
29	B-1	ácido (3-hidroxifenil)borónico
31	B-2	ácido fenilborónico
32	B-2	ácido (2,5-difluorofenil)borónico
33	B-8	ácido fenilborónico
36	B-2	ácido (2-metilsulfonilaminofenil)borónico
37	B-1	ácido 1H-indol-5-ilborónico
38	B-2	2,2,2-trifluoro-N (4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2- il)bencil)acetamida
39	B-2	ácido (2-clorofenil)borónico
40	B-1	ácido m-tolilborónico
41	B-2	ácido (2,4-dimetoxipirimidin-5-il)borónico
42	B-2	ácido (4-metoxicarbonilfenil)borónico
43	B-2	4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)bencilmetilcarbamato de <i>terc</i> -butilo ^(a)
44	B-2	ácido (4-etoxifenil)borónico
45	B-2	ácido (3-metilsulfonilfenil)borónico
46	B-2	ácido (4-fluoro-3-metil-fenil)borónico
47	B-2	ácido (4-cianofenil)borónico
48	B-1	ácido (2,5-dimetoxifenil)borónico
49	B-1	ácido (4-metilsulfonilfenil)borónico
50	B-1	ácido ciclopent-1-enilborónico
51	B-2	ácido o-tolilborónico
52	B-1	ácido (2,6-dimetilfenil)borónico

Nº del Compuesto	Amina	Ácido Borónico
53	B-8	ácido 2-clorofenilborónico
54	B-2	ácido (2,5-dimetoxifenil)borónico
55	B-2	ácido (2-fluoro-3-metoxi-fenil)borónico
56	B-2	ácido (2-metoxifenil)borónico
57	B-9	ácido fenilborónico
58	B-2	ácido (4-isopropoxifenil)borónico
59	B-2	ácido (4-carbamoilfenil)borónico
60	B-2	ácido (3,5-dimetilfenil)borónico
61	B-2	ácido (4-isobutilfenil)borónico
62	B-1	ácido (4-cianofenil)borónico
63	B-10	ácido fenilborónico
64	B-2	N-etil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-bencenosulfonamida
65	B-1	ácido 2,3-dihidrobenzofuran-5-ilborónico
66	B-2	ácido (4-clorofenil)borónico
67	B-2	ácido (4-cloro-3-metil-fenil)borónico
68	B-2	ácido (2-fluorofenil)borónico
69	B-2	ácido benzo[1,3]dioxol-5-ilborónico
70	B-2	ácido (4-morfolinocarbonilfenil)borónico
71	B-1	ácido ciclohex-1-enilborónico
72	B-2	ácido (3,4,5-trimetoxifenil)borónico
73	B-2	ácido [4-(dimetilaminometil)fenil]borónico
74	B-2	ácido m-tolilborónico
77	B-2	ácido (3-cianofenil)borónico
78	B-2	ácido [3-(terc-butoxicarbonilaminometil)fenil]borónico (a)
79	B-2	ácido (4-metilsulfonilfenil)borónico
80	B-1	ácido p-tolilborónico
81	B-2	ácido (2,4-dimetoxifenil)borónico
82	B-2	ácido (2-metoxicarbonilfenil)borónico
83	B-2	ácido (2,4-difluorofenil)borónico
84	B-2	ácido (4-isopropilfenil)borónico
85	B-2	ácido [4-(2-dimetilaminoetilcarbamoil)fenil]borónico
86	B-1	ácido (2,4-dimetoxifenil)borónico
87	B-1	ácido benzofuran-2-ilborónico
88	B-2	ácido 2,3-dihidrobenzofuran-5-ilborónico
89	B-2	ácido (3-fluoro-4-metoxi-fenil)borónico
91	B-1	ácido (3-cianofenil)borónico
92	B-1	ácido (4-dimetilaminofenil)borónico
93	B-2	ácido (2,6-dimetoxifenil)borónico
	B-2	ácido (2-metoxi-5-metil-fenil)borónico

Nº del Compuesto	Amina	Ácido Borónico
95	B-2	ácido (3-acetilaminofenil)borónico
96	B-1	ácido (2,4-dimetoxipirimidin-5-il)borónico
97	B-2	ácido (5-fluoro-2-metoxi-fenil)borónico
98	B-1	ácido [3-(hidroximetil)fenil]borónico
99	B-1	ácido (2-metoxifenil)borónico
100	B-2	ácido (2,4,6-trimetilfenil)borónico
101	B-2	ácido [4-(dimetilcarbamoil)fenil]borónico
102	B-2	ácido [4-(terc-butoxicarbonilaminometil)fenil]borónico ^(a)
104	B-1	ácido (2-clorofenil)borónico
105	B-1	ácido (3-acetilaminofenil)borónico
106	B-2	ácido (2-etoxifenil)borónico
107	B-2	ácido 3-furilborónico
108	B-2	ácido [2-(hidroximetil)fenil]borónico
110	B-9	ácido 2-clorofenilborónico
111	B-2	ácido (2-fluoro-6-metoxi-fenil)borónico
112	B-2	ácido (2-etoxi-5-metil-fenil)borónico
113	B-2	ácido 1H-indol-5-ilborónico
114	B-1	ácido (3-cloro-4-piridil)borónico
115	B-2	ácido ciclohex-1-enilborónico
116	B-1	ácido o-tolilborónico
119	B-2	ácido (2-aminofenil)borónico
120	B-2	ácido (4-metoxi-3,5-dimetil-fenil)borónico
121	B-2	ácido (4-metoxifenil)borónico
122	B-2	ácido (2-propoxifenil)borónico
123	B-2	ácido (2-isopropoxifenil)borónico
124	B-2	ácido (2,3-diclorofenil)borónico
126	B-2	ácido (2,3-dimetilfenil)borónico
127	B-2	ácido (4-fluorofenil)borónico
128	B-1	ácido (3-metoxifenil)borónico
129	B-2	ácido (4-cloro-2-metil-fenil)borónico
130	B-1	ácido (2,6-dimetoxifenil)borónico
131	B-2	ácido (5-isopropil-2-metoxi-fenil)borónico
132	B-2	ácido (3-isopropoxifenil)borónico
134	B-2	ácido 4-dihidroxiboranilbenzoico
135	B-2	ácido (4-dimetilamino-2-metoxi-fenil)borónico
136	B-2	ácido (4-metilsulfinilfenil)borónico
137	B-2	ácido [4-(metilcarbamoil)fenil]borónico
138	B-1	ácido 8-quinolilborónico

Nº del Compuesto	Amina	Ácido Borónico
139	B-2	ácido ciclopent-1-enilborónico
140	B-2	ácido p-tolilborónico
142	B-8	ácido 2-metoxifenilborónico
143	B-2	ácido (2,5-dimetilfenil)borónico
144	B-1	ácido (3,4-dimetoxifenil)borónico
145	B-1	ácido (3-clorofenil)borónico
146	B-2	ácido [4-(morfolinometil)fenil]borónico
147	B-10	ácido 4-(dimetilamino)fenilborónico
148	B-2	ácido [4-(metilsulfamoil)fenil]borónico
149	B-1	ácido 4-dihidroxiboranilbenzoico
150	B-1	ácido fenilborónico
151	B-2	ácido (2,3-difluorofenil)borónico
152	B-1	ácido (4-clorofenil)borónico
153	B-9	ácido 2-metoxifenilborónico
154	B-2	ácido 3-dihidroxiboranilbenzoico
155	B-10	ácido 2-metoxifenilborónico
157	B-2	ácido (3-cloro-4-fluoro-fenil)borónico
158	B-2	ácido (2,3-dimetoxifenil)borónico
159	B-2	ácido [4-(terc-butoxicarbonilaminometil)fenil]borónico
160	B-2	ácido (4-sulfamoilfenil)borónico
161	B-2	ácido (3,4-dimetoxifenil)borónico
162	B-2	ácido [4-(metilsulfonilaminometil)fenil]borónico
166	B-1	ácido 4-(<i>N,N</i> dimetilsulfamoil)fenilborónico
167	B-6	ácido 2-isopropilfenilborónico
171	B-6	ácido 4-(metilcarbamoil)fenilborónico
173	B-2	ácido 3-fluorofenilborónico
174	B-6	ácido 3-(<i>N,N</i> -dimetilsulfamoil)fenilborónico
179	B-6	ácido 4-(N-metilsulfamoil)fenilborónico
181	B-1	ácido 3-((terc-butoxicarbonilamino)metil)fenilborónico
185	B-3	ácido 3-metoxifenilborónico
186	B-6	ácido 2-clorofenilborónico
187	B-7	ácido 3-(dimetilcarbamoil)fenilborónico
188	B-6	ácido 3-(hidroximetil)fenilborónico
189	B-1	ácido 3-(<i>N,N</i> -dimetilsulfamoil)fenilborónico
190	B-1	ácido 4-sulfamoilfenilborónico
191	B-1	ácido 2-isopropilfenilborónico
193	B-5	ácido 3-sulfamoilfenilborónico
194	B-3	ácido 4-isopropilfenilborónico

Nº del Compuesto	Amina	Ácido Borónico
195	B-3	ácido 3-(N,N-dimetilsulfamoil)fenilborónico
196	B-7	ácido 4-(metilcarbamoil)fenilborónico
198	B-3	ácido 3-(dimetilcarbamoil)fenilborónico
204	B-5	ácido 3-(dimetilcarbamoil)fenilborónico
206	B-3	ácido 4-clorofenilborónico
207	B-1	ácido 4-(N-metilsulfamoil)fenilborónico
209	B-1	ácido 3-(metilcarbamoil)fenilborónico
210	B-3	ácido 4-sulfamoilfenilborónico
213	B-5	ácido 3-isopropilfenilborónico
215	B-7	ácido 4-metoxifenilborónico
216	B-6	ácido 3-clorofenilborónico
217	B-7	ácido m-tolilborónico
219	B-5	ácido 4-(hidroximetil)fenilborónico
222	B-6	ácido m-tolilborónico
224	B-5	ácido 2-clorofenilborónico
225	B-1	ácido 3-isopropilfenilborónico
227	B-6	ácido 4-(hidroximetil)fenilborónico
229	B-7	ácido 3-clorofenilborónico
230	B-6	ácido o-tolilborónico
231	B-1	ácido 2-(hidroximetil)fenilborónico
235	B-3	ácido 3-isopropilfenilborónico
238	B-5	ácido 3-carbamoilfenilborónico
241	B-2	ácido 4-(<i>N</i> , <i>N</i> -dimetilsulfamoil)fenilborónico
243	B-7	ácido 2-metoxifenilborónico
247	B-6	ácido 3-(dimetilcarbamoil)fenilborónico
251	B-3	ácido 3-sulfamoilfenilborónico
252	B-1	ácido 4-metoxifenilborónico
254	B-3	ácido 4-(N-metilsulfamoil)fenilborónico
255	B-1	ácido 4-((terc-butoxicarbonilamino)metil)fenilborónico
257	B-5	ácido 4-clorofenilborónico
258	B-3	ácido 3-(metilcarbamoil)fenilborónico
260	B-3	ácido 2-(hidroximetil)fenilborónico
263	B-4	ácido 4-(hidroximetil)fenilborónico
264	B-7	ácido 4-clorofenilborónico
265	B-6	ácido 4-carbamoilfenilborónico
266	B-5	ácido 3-metoxifenilborónico
269	B-7	ácido fenilborónico
272	B-3	ácido 4-metoxifenilborónico

Nº del Compuesto	Amina	Ácido Borónico
274	B-6	ácido 2-(hidroximetil)fenilborónico
277	B-3	ácido 4-(hidroximetil)fenilborónico
278	B-3	ácido 3-(metilcarbamoil)fenilborónico
280	B-3	ácido 4-(<i>N,N</i> -dimetilsulfamoil)fenilborónico
283	B-3	ácido 4-carbamoilfenilborónico
286	B-1	ácido 4-(metilcarbamoil)fenilborónico
287	B-2	ácido 4-(trifluorometoxi)fenilborónico
288	B-5	ácido 4-(N-metilsulfamoil)fenilborónico
289	B-3	ácido fenilborónico
290	B-6	ácido 4-isopropilfenilborónico
291	B-3	ácido 3-(hidroximetil)fenilborónico
293	B-6	ácido 3-metoxifenilborónico
294	B-7	ácido 2-(hidroximetil)fenilborónico
295	B-3	ácido 3-carbamoilfenilborónico
296	B-5	ácido m-tolilborónico
297	B-1	ácido 4-(dimetilcarbamoil)fenilborónico
298	B-3	ácido 2-metoxifenilborónico
299	B-7	ácido p-tolilborónico
300	B-3	ácido o-tolilborónico
301	B-5	ácido 2-(hidroximetil)fenilborónico
303	B-6	ácido 2-metoxifenilborónico
305	B-6	ácido 3-isopropilfenilborónico
308	B-7	ácido 4-isopropilfenilborónico
309	B-3	ácido 4-(dimetilcarbamoil)fenilborónico
310	B-5	ácido 4-(metilcarbamoil)fenilborónico
313	B-7	ácido o-tolilborónico
314	B-7	ácido 3-(metilcarbamoil)fenilborónico
315	B-3	ácido p-tolilborónico
320	B-1	ácido 3-(dimetilcarbamoil)fenilborónico
321	B-5	ácido 4-sulfamoilfenilborónico
322	B-6	ácido fenilborónico
323	B-5	ácido o-tolilborónico
324	B-3	ácido 4-((terc-butoxicarbonilamino)metil)fenilborónico ^(a)
326	B-5	ácido 4-(dimetilcarbamoil)fenilborónico
327	B-5	ácido 2-metoxifenilborónico
328	B-1	ácido 4-isopropilfenilborónico
329	B-5	ácido 2-isopropilfenilborónico
331	B-3	ácido m-tolilborónico

Nº del Compuesto	Amina	Ácido Borónico
333	B-6	ácido 4-metoxifenilborónico
334	B-5	ácido 4-metoxifenilborónico
337	B-6	ácido p-tolilborónico
343	B-5	ácido 4-(N,N-dimetilsulfamoil)fenilborónico
346	B-3	ácido 2-isopropilfenilborónico
348	B-6	ácido 4-((<i>terc</i> -butoxicarbonilamino)metil)fenilborónico ^(a)
349	B-1	ácido 3-sulfamoilfenilborónico
350	B-3	ácido 3-((terc-butoxicarbonilamino)metil)fenilborónico (a)
351	B-5	ácido fenilborónico
352	B-7	ácido 2-isopropilfenilborónico
353	B-6	ácido 4-clorofenilborónico
354	B-7	ácido 2-clorofenilborónico
355	B-5	ácido 3-(<i>N</i> , <i>N</i> -dimetilsulfamoil)fenilborónico
356	B-7	ácido 3-sulfamoilfenilborónico
357	B-7	ácido 4-(N-metilsulfamoil)fenilborónico
359	B-1	ácido 4-carbamoilfenilborónico
361	B-3	ácido 3-clorofenilborónico
365	B-1	ácido 3-carbamoilfenilborónico
367	B-7	ácido 3-(hidroximetil)fenilborónico
368	B-4	ácido 4-(dimetilcarbamoil)fenilborónico
370	B-5	ácido 3-(hidroximetil)fenilborónico
371	B-5	ácido 3-(metilcarbamoil)fenilborónico
374	B-6	ácido 4-sulfamoilfenilborónico
375	B-5	ácido 4-carbamoilfenilborónico
389	B-12	ácido 2-metil-3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
390	B-11	ácido 3-metoxi-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
391	B-13	ácido 4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
392	B-11	ácido 3-metil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
393	B-12	ácido 2-cloro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
394	B-12	ácido 3-metoxi-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
395	B-2	ácido 4-ciclohexilfenilborónico
396	B-12	ácido 3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
397	B-11	ácido 3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
398	B-12	ácido 3-fluoro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
399	B-13	ácido 2-metoxi-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
400	B-13	ácido 3-fluoro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
401	B-11	ácido 2-metil-3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
402	B-12	ácido 2-metoxi-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
-		1 , , , , , , , , , , , , , , , , , , ,

Nº del Compuesto	Amina	Ácido Borónico
403	B-11	ácido 2-fluoro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
404	B-11	ácido 2-metoxi-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
405	B-12	ácido 2-fluoro-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
406	B-13	ácido 2-fluoro-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
407	B-11	ácido 4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
408	B-13	ácido 2-fluoro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
410	B-2	4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)anilina
411	B-13	ácido 3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
412	B-2	ácido 2-metoxipiridin-3-ilborónico
414	B-11	ácido 3-fluoro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
415	B-13	ácido 3-metil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
417	B-12	ácido 2-fluoro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
418	B-4	ácido 3-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
419	B-11	ácido 2-cloro-5-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
420	B-2	ácido 4-(hidroximetil)fenilborónico
421	B-11	ácido 2-fluoro-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico
422	B-12	ácido 3-metil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)benzoico

⁽a) El grupo protector Boc se retiró después de la reacción de acoplamiento por tratamiento de la mezcla de reacción en bruto con 0,5 ml de HCl 1 N en éter dietílico durante 18 horas antes de la purificación por HPLC.

Los ejemplos adicionales de la invención se pueden preparar por modificación de compuestos intermedios tal como se ha ilustrado anteriormente.

5 Derivatización de Compuestos Después de Acoplamiento:

DD. 1-(Benzo[d][1,3]dioxol-5-il)-*N*-(6-(4-(2-metilpirrolidin-1-ilsulfonil)fenil)piridin-2-il) ciclopropanocarboxamida

Etapa a: Ácido 4-(4,4'-dimetoxibenzhidril)-tiofenil borónico

10

25

4,4'-Dimetoxibenzhidrol (2,7 g, 11 mmol) y ácido 4-mercaptofenilborónico (1,54 g, 10 mmol) se disolvieron en 20 ml de AcOH y se calentó a 60 °C durante 1 h. El disolvente se evaporó y el residuo se secó a alto vacío. Este material se usó sin purificación adicional.

Etapa b: 6-(4-(Bis(4-metoxifenil)metiltio)fenil)piridin-2-amina y ácido 4-(4,4'-Dimetoxibenzhidril)-tiofenil borónico (10 mmol) y 2-amino-6-bromopiridina (1,73 g, 10 mmol) se disolvieron en MeCN (40 ml) seguido de la adición de Pd(PPh₃)₄ (-50 mg) y K₂CO₃ ac. (1 M, 22 ml). La mezcla de reacción se calentó en porciones en un horno microondas (160 °C, 400 segundos). Los productos se distribuyeron entre acetato de etilo y agua. La fase orgánica se lavó con agua y salmuera y se secó sobre MgSO₄. La evaporación de los compuestos volátiles produjo un aceite que se usó sin purificación en la siguiente etapa. ESI-MS m/z calc. 428,0, encontrado 429,1 (M+1).

15 Etapa c: 1-(Benzo[d][1,3]dioxol-5-il)-*N*-(6-(4-(bis(4-metoxifenil)metiltio)fenil)-piridin-2-il)ciclopropanocarboxamida

6-[(4,4'-Dimetoxibenzhidril)-4-tiofenil]piridin-2-ilamina (~10 mmol) y ácido 1-benzo[1,3]dioxol-5-il-ciclopropanocarboxílico (2,28 g, 11 mmol) se disolvieron en cloroformo (25 ml) seguido de la adición de TCPH (4,1 g, 12 mmol) y DIEA (5 ml, 30 mmol). La mezcla de reacción se calentó a 65 °C durante 48 h antes de retirar los compuestos volátiles a presión reducida. El residuo se transfirió a un embudo de decantación y se distribuyó entre agua (200 ml) y acetato de etilo (150 ml). La fase orgánica se lavó con NaHCO₃ al 5 % (2 x 150 ml), agua (1 x 150 ml) y salmuera (1 x 150 ml) y se secó sobre MgSO₄. La evaporación del disolvente produjo 1-(benzo[d][1,3]dioxol-5-il)-*N*-(6-(4-(bis(4-metoxifenil)-metiltio)fenil)piridin-2-il)ciclopropanocarboxamida en bruto en forma del aceite de color pálido. ESI-MS m/z calc. 616,0, encontrado 617,0 (M+1) (pureza por HPLC ~85 %, UV 254 nm).

Etapa d: Ácido 4-(6-(1-(benzo[d][1,3]dioxol-5-il)ciclopropano-carboxamido)piridin-2-il)bencenosulfónico

1-(Benzo[d][1,3]dioxol-5-il)-*N*-(6-(4-(bis(4-metoxifenil)metiltio)-fenil)piridin-2-il)ciclopropanocarboxamida (~8,5 mmol) se disolvió en AcOH (75 ml) seguido de la adición de H₂O₂ al 30 % (10 ml). Se añadió peróxido de hidrógeno

adicional (10 ml) 2 h más tarde. La mezcla de reacción se agitó a 35-45 °C durante una noche (~90 % de conversión, HPLC). El volumen de la mezcla de reacción se redujo a un tercio por evaporación (temperatura del baño inferior a 40 °C). La mezcla de reacción se cargó directamente en una columna para RP HPLC preparativa (C-18) y se purificó. Las fracciones con ácido 4-(6-(1-(benzo[d][1,3]dioxol-5-il)ciclopropanocarboxamido)piridin-2-il)bencenosulfónico se recogieron y se evaporó (1,9 g, 43 %, cal. basado en el ácido 4-mercaptofenilborónico). ESI-MS m/z calc. 438,0, encontrado 438,9 (M+1).

Etapa e: Cloruro de 4-(6-(1-(benzo[d][1,3]dioxol-5-il)ciclopropano-carboxamido)piridin-2-il)benceno-1-sulfonilo

Ácido 4-(6-(1-(Benzo[d][1,3]dioxol-5-il)ciclopropanocarboxamido)piridin-2-il)bencenosulfónico (1,9 g, 4,3 mmol) se disolvió en POCl₃ (30 ml) seguido de la adición de SOCl₂ (3 ml) y DMF (100 μl). La mezcla de reacción se calentó a 70-80 °C durante 15 min. Los compuestos volátiles se evaporaron y a continuación se volvió a evaporar con cloroformo-tolueno. El aceite residual de color marrón se diluyó con cloroformo (22 ml) y se usó para la sulfonilación inmediatamente. ESI-MS m/z calc. 456,0, encontrado 457,1 (M+1).

Etapa f: 1-(Benzo[d][1,3]dioxol-5-il)-N-(6-(4-(2-metilpirrolidin-1-ilsulfonil)fenil)piridin-2-il)ciclopropanocarboxamida

15

20

Cloruro de 4-(6-(1-(benzo[d][1,3]dioxol-5-il)ciclopropanocarboxamido)piridin-2-il)benceno-1-sulfonilo ($\sim 35~\mu$ mol, solución de 400 μ l en cloroformo) se trató con 2-metilpirrolidina seguido de la adición de DIEA (100 μ l). La mezcla de reacción se mantuvo a temperatura ambiente durante 1 h, se concentró, a continuación se diluyó con DMSO (400 μ l). La solución resultante se sometió a purificación por HPLC. Los paquetes que contenían el material deseado se combinaron y se concentraron en centrífuga de vacío a 40 °C para proporcionar la sal trifluoroacética del material diana (ESI-MS m/z calc. 505,0, encontrado 505,9 (M+1), tiempo de retención de 4,06 min). RMN 1 H (250 MHz, DMSO- d_6) δ 1,15 (m. 2H), δ 1,22 (d, 3H, J = 6,3 Hz), δ 1,41-1,47 (m, 2H), δ 1,51 (m, 2H), δ 1,52-1,59 (m, 2H), δ 3,12 (m, 1H), δ 3,33 (m, 1H), δ 3,64 (m, 1H), δ 6,07 (s, 2H), δ 6,96-7,06 (m, 2H), δ 7,13 (d, 1H, J = 1,3 Hz), δ 7,78 (d, 1H, J = 8,2 Hz), δ 7,88 (d, 2H, J = 8,5 Hz), δ 7,94 (t, 1H, J = 8,2 Hz), δ 8,08 (d, 1H, J = 8,2 Hz), δ 8,16 (d, 2H, J = 8,5 Hz), δ 8,53 (s, 1H).

Los compuestos en la siguiente tabla se sintetizaron tal como se ha descrito anteriormente usando aminas disponibles en el mercado. Los ejemplos adicionales de la invención se prepararon siguiendo el procedimiento anterior sin cambios significativos pero usando aminas que se proporciona en la Tabla 5.

Tabla 5: Compuestos adicionales a modo de ejemplo de fórmula I.

Nº de Compuesto	Amina
13	1-metilpiperazina
22	2,6-dimetilmorfolina
30	piperidin-3-ilmetanol
34	2-(metilamino)etanol
35	(R)-pirrolidin-2-ilmetanol
75	2-(pirrolidin-1-il)etanamina
76	pirrolidina
90	piperidina
103	(tetrahidrofurano-2-il)metanamina
109	piperidin-4-ol
117	2-metilpropan-2-amina
118	ciclopentanamina
125	(S)-2-(metoximetil)pirrolidina
133	(R)-2-(metoximetil)pirrolidina
141	piperidin-4-ilmetanol
156	N-metilpropanamina
163	pirrolidin-3-ol
168	2-(2-aminoetoxi)etanol
172	2-morfolinoetanamina

Nº de Compuesto	Amina
175	furan-2-ilmetanamina
176	piperidin-3-ol
178	2-(1-metilpirrolidin-2-il)etanamina
180	3-metilpiperidina
182	(S)-pirrolidina-2-carboxamida
184	(R)-1-aminopropan-2-ol
197	2-aminopropano-1,3-diol
199	2-amino-2-etilpropano-1,3-diol
203	N^1, N^1 -dimetiletano-1,2-diamina
205	(R)-2-amino-3-metilbutan-1-ol
208	ciclohexanamina
212	piperazin-2-ona
232	2-aminoetanol
233	piperidin-2-ilmetanol
234	2-(piperazin-1-il)etanol
244	N-(ciclopropilmetil)propan-1-amina
249	3-morfolinopropan-1-amina
261	1-(piperazin-1-il)etanona
267	2-(1H-imidazol-4-il)etanamina
268	(R)-2-aminopropan-1-ol
270	2-metilpiperidina
273	2-(piridin-2-il)etanamina
275	3,3-difluoropirrolidina
276	2-amino-2-metilpropan-1-ol
285	3-(1H-imidazol-1-il)propan-1-amina
304	piperidina-3-carboxamida
306	ciclobutanamina
307	(S)-3-aminopropano-1,2-diol
311	N-metilciclohexanamina
312	N-metilprop-2-en-1-amina
316	2-amino-2-metilpropano-1,3-diol
325	(5-metilfuran-2-il)metanamina
330	3,3-dimetilbutan-1-amina
332	2-metilpirrolidina
335	2,5-dimetilpirrolidina
336	(R)-2-aminobutan-1-ol
338	propan-2-amina
339	N-metilbutan-1-amina
342	ácido 4-amino-3-hidroxibutanoico

Nº de Compuesto	Amina
344	3-(metilamino)propano-1,2-diol
347	N-(2-aminoetil)acetamida
360	1-aminobutan-2-ol
364	ácido (S)-pirrolidina-2-carboxílico
366	1-(2-metoxietil)piperazina
373	(R)-2-aminopentan-1-ol

EE. 1-Benzo[1,3]dioxol-5-il-*N*-[6-[4-[(metil-metilsulfonil-amino)metil]fenil]-2-piridil]-ciclopropano-1-carboxamida (Compuesto № 292)

A la amina de partida (semisólido de color marrón, 0,100 g, ~ 0,2 mmol, obtenido por tratamiento del periodo correspondiente de t-butiloxicarbonilo por tratamiento con HCl 1 N en éter) se añadió dicloroetano (DCE) (1,5 ml), seguido de la adición de piridina (0,063 ml, 0,78 mmol) y cloruro de metansulfonilo (0,03 ml, 0,4 mmol). La mezcla se agitó a 65 °C durante 3 horas. Después de este tiempo, el análisis por LC/MS mostró una conversión de un - 50 % en el producto deseado. Se añadieron dos equivalentes adicionales equivalentes de piridina y 1,5 equivalentes de cloruro de metansulfonilo se añadieron y la reacción se agitó durante 2 horas. El residuo se concentró y se purificó por HPLC para producir 1-benzo[1,3]dioxol-5-il-*N*-[6-[4-[(metil-metilsulfonil-amino)metil]fenil]-2-piridil]-ciclopropano-l-carboxamida (0,020 g, rendimiento de un 21 %) en forma de un sólido de color blanco. ESI-MS *m/z* calc. 479,2, encontrado 480,1 (M+1)⁺.

FF. (R)-1-(3-hidroxi-4-metoxifenil)-N-(6-(4-(2-(hidroximetil)-pirrolidin-1-ilsulfonil)fenil)piridin-2-il)ciclopropanocarboxamida

(*R*)-1-(3-(Benciloxi)-4-metoxifenil)-*N*-(6-(4-(2-(hidroximetil)pirrolidin-1-ilsulfonil)fenil)piridin-2-il) ciclopropanocarboxamida (28 mg, 0,046 mmol) se disolvió en etanol (3 ml). Se añadió paladio sobre carbón vegetal (10 %, 20 mg) y la reacción se agitó durante una noche en 1 atm de hidrógeno. El catalizador se retiró por filtración y el producto se aisló por cromatografía sobre gel de sílice (EtOAc al 50-80 % en hexano) para proporcionar (*R*)-1-(3-hidroxi-4-metoxifenil)-N-(6-(4-(2-(hidroximetil)pirrolidin-1-ilsulfonil)fenil)piridin-2-il)ciclopropanocarboxamida (8 mg, 34 %). ESI-MS m/z calc. 523,4, encontrado 524,3 (M+1)⁺. Tiempo de retención de 3,17 minutos.

2-Amino-5-fenilpiridina (CAS [33421-40-8]) es C-1.

5

10

15

20

25

30

GG. Clorhidrato de (R)-(1-(4-(6-aminopiridin-2-il)fenilsulfonil)pirrolidin-2-il) metanol (C-2)

Etapa a: (R)-(1-(4-Bromofenilsulfonil)pirrolidin-2-il)metanol

A una mezcla de NaHCO₃ ac. sat (44 g, 0,53 mol), CH₂Cl₂ (400 ml) y pirrolidinon-2-il-metanol (53 g, 0,53 mol) se añadió una solución de cloruro de 4-bromo-bencenosulfonilo (127 g, 0,50 mol) en CH₂Cl₂ (100 ml). La reacción se agitó a 20 °C durante una noche. La fase orgánica se separó y se secó sobre Na₂SO₄. La evaporación del disolvente a presión reducida proporciona (*R*)-(1-(4-bromofenilsulfonil)pirrolidin-2-il)metanol (145 g, en bruto), que se usó en la siguiente etapa sin purificación adicional. RMN ¹H (CDCl₃, 300 MHz) δ 7,66-7,73 (m, 4 H), 3,59-3,71 (m, 3 H), 3,43-3,51 (m, 1 H), 3,18-3,26 (m, 1 H), 1,680-1,88 (m, 3 H), 1,45-1,53 (m, 1 H).

Etapa b: (R)-1-(4-Bromo-bencenosulfonil)-2-(terc-butil-dimetil-silaniloximetil) pirrolidina

A una solución de [1-(4-bromo-bencenosulfonil)-pirrolidin-2-il]-metanol (50,0 g, 0,16 mol) y 1H-imidazol (21,3 g, 0,31 mol) en CH₂Cl₂ (500 ml) se añadió *terc*-butilclorodimetilsilano (35,5 g, 0,24 mol) en porciones. Después de la adición, la mezcla se agitó durante 1 hora a temperatura ambiente. La reacción se interrumpió con agua (200 ml) y la fase acuosa separada se extrajo con CH₂Cl₂ (100 ml x 3). Las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄ y se evaporó *al vacío* para dar 1-(4-bromo-bencenosulfonil)-2-(*terc*-butildimetilsilaniloximetil)pirrolidina (68,0 g, 99 %). RMN ¹H (300 MHz, CDCl₃) δ 7,63-7,71 (m, 4 H), 3,77-3,81 (m, 1 H), 3,51-3,63 (m, 2 H), 3,37-3,43 (m, 1 H), 3,02-3,07 (m, 1 H), 1,77-1,91 (m, 2 H), 1,49-1,57 (m, 2 H), 0,87 (s, 9 H), 0,06 (d, J = 1,8 Hz, 6 H).

Etapa c: Ácido (R)-4-(2-((terc-butildimetilsililoxi)metil)pirrolidin-1-ilsulfonil) fenilborónico

A una solución de 1-(4-bromo-bencenosulfonil)-2-(*terc*-butil-dimetil-silaniloximetil)pirrolidina (12,9 g, 29,7 mmol) y B(OⁱPr)₃ (8,4 g, 45 mmol) en THF seco (100 ml) se añadió gota a gota *n*-BuLi (2,5 M en hexano, 29,7 ml) a -70 °C. Después de la adición, la mezcla se calentó lentamente a -10 °C y se trató con HCl (1 M, 50 ml). La fase orgánica se separó y la fase acuosa se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron sobre Na₂SO₄ y se evaporó *al vacío*. Los extractos orgánicos se combinaron para dar ácido (*R*)-4-(2-((*terc*-butildimetilsililoxi)metil) pirrolidin-1-ilsulfonil)fenilborónico en bruto (15,0 g), que se usó directamente en la siguiente etapa.

Etapa d: Éster *terc*-butílico del ácido (6-{4-[2-(*terc*-butil-dimetil-silaniloximetil)-pirrolidina-1-sulfonil] fenil}piridin-2-il)carbámico

35 A una solución del éster terc-butílico del ácido (6-bromo-piridin-2-il)carbámico (24,6 g, 90,0 mmol) en DMF (250 ml)

se añadieron ácido (R)-4-(2-((terc-butildimetilsililoxi)-metil) pirrolidin-1-ilsulfonil)fenilborónico (45,0 g), Pd(PPh₃)₄ (10,4 g, 9,0 mmol), carbonato potásico (18,6 g, 135 mol) y agua (200 ml). La mezcla resultante se desgasificó mediante burbujeo suavemente de argón a través de la solución durante 5 minutos a 20 °C. Después, la mezcla de reacción se calentó a 80 °C durante una noche. DMF se retiró *al vacío*. Al residuo se añadió EtOAc (300 ml). La mezcla se filtró a través de una capa de gel de sílice, que se lavó con EtOAc (50 ml x 3). Los extractos orgánicos combinados se evaporaron *al vacío*. El residuo en bruto se purificó en columna (Éter de Petróleo/EtOAc a 20:1) para dar el éster terc-butílico del ácido (6-{4-[2-(terc-butil-dimetil-silaniloximetil)pirrolidina-1-sulfonil]fenil}piridin-2-il)carbámico (22,2 g, 45 % durante 2 etapas). RMN ¹H (300 MHz, CDCl₃) δ 8,09 (d, J = 8,4 Hz, 2 H), 7,88-7,96 (m, 3 H), 8,09 (t, J = 7,8 Hz, 1 H), 7,43-7,46 (m, 1 H), 7,38 (s, 1 H), 3,83-3,88 (m, 1 H), 3,64-3,67 (m, 1 H), 3,53-3,59 (m, 1 H), 3,41-3,47 (m, 1 H), 3,08-3,16 (m, 1 H), 1,82-1,91 (m, 2 H), 1,67-1,69 (m, 1 H), 1,53-1,56 (m, 10 H), 0,89 (s, 9 H), 0,08 (d, J = 2,4 Hz, 6 H).

Etapa e: Éster terc-butílico del ácido {6-[4-(2-hidroximetil-pirrolidina-1-sulfonil)-fenil]piridin-2-il carbámico

Una solución de éster terc-butílico del ácido (6-{4-[2-(*terc*-butil-dimetil-silaniloximetil)-pirrolidina-1-sulfonil]fenil}-piridin-2-il) carbámico en bruto (22,2 g, 40,5 mmol) y TBAF (21,2 g, 81,0 mmol) en DCM (300 ml) se agitó a temperatura ambiente durante una noche. La mezcla se lavó con salmuera (100 ml x 3), se secó sobre Na₂SO₄ y se evaporó *al vacío* para dar el éster terc-butílico del ácido {6-[4-(2-hidroximetil-pirrolidina-1-sulfonil)-fenil]piridin-2-il}carbámico (15,0 g, 86 %), que se usó directamente en la siguiente etapa.

Etapa f: Clorhidrato de (R)-(1-(4-(6-aminopiridin-2-il)fenilsulfonil)-pirrolidin-2-il) metanol (C-2)

Una solución de éster *terc*-butílico del ácido {6-[4-(2-hidroximetil-pirrolidina-1-sulfonil)-fenil]piridin-2-il}carbámico (15,0 g, 34,6 mmol) en HCl/MeOH (50 ml, 2 M) se calentó a reflujo durante 2 h. Después de enfriar a temperatura ambiente, la mezcla de reacción se evaporó *al vacío* y se lavó con EtOAc para dar clorhidrato de (R)-(1-(4-(6-aminopiridin-2-il)fenil-sulfonil)pirrolidin-2-il) metanol (C-2; 11,0 g, 86 %). RMN 1 H (300 MHz, DMSO- d_6) δ 8,18 (d, J = 8,7 Hz, 2 H), 7,93-7,99 (m, 3 H), 7,31 (d, J = 7,2 Hz, 1 H), 7,03 (d, J = 8,7 Hz, 1 H), 3,53-3,57 (m, 2 H), 3,29-35 (m, 2 H), 3,05-3,13 (m, 1 H), 1,77-1,78 (m, 2 H), 1,40-1,45 (m, 2 H). MS (ESI) m/z (M+H) $^+$ 334,2.

HH. N-(4-(6-Aminopiridin-2-il)bencil)metanosulfonamida (C-3)

10

30

35

40

45

Etapa a: Éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il]carbámico

Una mezcla de ácido 4-cianobencenoborónico (7,35 g, 50 mmol), éster terc-butílico del ácido (6-bromo-piridin-2-il)carbámico (13,8 g, 50 mmol), Pd(Ph₃P)₄ (5,8 g, 0,15 mmol) y K₂CO₃ (10,4 g, 75 mmol) en DMF/H₂O (1:1, 250 ml) se agitó en atmósfera de argón a 80 $^{\circ}$ C durante una noche. DMF se retiró por evaporación a presión reducida y el residuo se disolvió en EtOAc (200 ml). La mezcla se lavó con agua y salmuera, se secó sobre Na₂SO₄, y se concentró a sequedad. El residuo se purificó en columna (Éter de Petróleo/EtOAc a 50:1) sobre gel de sílice para dar el éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il] carbámico (7,0 g, 60 %). RMN 1 H (300 MHz, CDCl₃) δ 8.02-8.07 (m, 2 H), 7,95 (d, J = 8,4 Hz, 1 H), 7,71-7,79 (m, 3 H), 7,37-7,44 (m, 2 H), 1,53 (s, 9 H).

Etapa b: Éster terc-butílico del ácido [6-(4-aminometil-fenil)-piridin-2-il]-carbámico

Una suspensión del éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il]carbámico (7,0 g, 24 mmol), Ni Raney (1,0 g) en EtOH (500 ml) y NH₃.H₂O (10 ml) se hidrogenó en atmósfera de H₂ (345 KPa.) a 50 $^{\circ}$ C durante 6 h. El catalizador se retiró por filtración y el filtrado se concentró a sequedad para dar el éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il]carbámico (7,0 g, 24 mmol), Ni Raney (1,0 g) en EtOH (500 ml) y NH₃.H₂O (10 ml) se hidrogenó en atmósfera de H₂ (345 KPa.) a 50 $^{\circ}$ C durante 6 h. El catalizador se retiró por filtración y el filtrado se concentró a sequedad para dar el éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il]carbámico (7,0 g, 24 mmol), Ni Raney (1,0 g) en EtOH (500 ml) y NH₃.H₂O (10 ml) se hidrogenó en atmósfera de H₂ (345 KPa.) a 50 $^{\circ}$ C durante 6 h. El catalizador se retiró por filtración y el filtrado se concentró a sequedad para dar el éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il]carbámico (7,0 g, 24 mmol), Ni Raney (1,0 g) en EtOH (500 ml) y NH₃.H₂O (10 ml) se hidrogenó en atmósfera de H₂ (345 KPa.) a 50 $^{\circ}$ C durante 6 h. El catalizador se retiró por filtración y el filtrado se concentró a sequedad para dar el éster terc-butílico del ácido [6-(4-ciano-fenil)-piridin-2-il]carbámico (1,0 g) en EtOH (1,0 g) en E

aminometil-fenil)-piridin-2-il]-carbámico, que se usó directamente en la siguiente etapa. RMN 1 H (300 MHz, CDCl₃) δ 7,83-7,92 (m, 3H), 7,70 (t, J = 7,8 Hz, 1 H), 7,33-7,40 (m, 4 H), 3,92 (s a, 2 H), 1,53 (s, 9 H).

Etapa c: Éster terc-butílico del ácido {6-[4-(metanosulfonilamino-metil)-fenil]-piridin-2-il}carbámico

A una solución del éster *terc*-butílico del ácido [6-(4-aminometil-fenil)-piridin-2-il]-carbámico (5,7 g 19 mmol) y Et₃N (2,88 g, 29 mmol) en diclorometano (50 ml) se añadió gota a gota MsCl (2,7 g, 19 mmol) a 0 °C. La mezcla de reacción se agitó a esta temperatura durante 30 min, y a continuación se lavó con agua y salmuera, se secó sobre Na₂SO₄ y se concentró a sequedad. El residuo se recristalizó con DCM/Éter de Petróleo (1:3) para dar el éster *terc*-butílico del ácido {6-[4-(metanosulfonilamino-metil)-fenil]-piridin-2-il}carbámico (4,0 g, 44 % en dos etapas). RMN ¹H (300 MHz, CDCl₃) δ 7,90-7,97 (m, 3 H), 7,75 (t, *J* = 8,4, 8,4 Hz, 1 H), 7,54-7,59 (m, 1 H), 7,38-7,44 (m, 3 H), 4,73 (a,1 H), 4,37 (d, *J* = 6,0 Hz, 2 H), 2,90 (s, 3 H), 1,54 (s, 9 H).

Etapa d: N-(4-(6-Aminopiridin-2-il)bencil)metano-sulfonamida (C-3)

5

10

15

20

25

30

35

40

Una mezcla del éster *terc*-butílico del ácido $\{6-[4-(metanosulfonilamino-metil)-fenil]-piridin-2-il\}$ carbámico (11 g, 29 mmol) en HCl/MeOH (4 M, 300 ml) se agitó a temperatura ambiente durante una noche. La mezcla se concentró a sequedad. El residuo se filtró y se lavó con éter para dar $N-(4-(6-aminopiridin-2-il)bencil)metano sulfonamida (C-3) (7,6 g, 80 %) RMN <math>^1$ H (300 MHz, DMSO-d₆) δ 14,05 (s a, 1 H), 8,24 (s a, 2 H), 7,91-7,98 (m, 3 H), 7,70 (t, J = 6,0 Hz, 1 H), 7,53 (d, J = 8,1 Hz, 2 H), 7,22 (d, J = 6,9 Hz, 1 H), 6,96 (d, J = 9 Hz, 1 H), 4,23 (d, J = 5,7 Hz, 2 H), 2,89 (s, 3 H). MS (ESI) m/z (M+H) $^+$: 278,0.

II. Clorhidrato de 4-(6-aminopiridin-2-il)-N-metilbencenosulfonamida (C-4)

Etapa a: 4-Bromo-N-metil-bencenosulfonamida

A una mezcla de NaHCO₃ ac. sat (42 g, 0,5 mol), CH₂Cl₂ (400 ml) y metilamina (51,7 g, 0,5 mol, 30 % en metanol) se añadió una solución de cloruro de 4-bromo-bencenosulfonilo (127 g, 0,5 mol) en CH₂Cl₂ (100 ml). La reacción se agitó a 20 $^{\circ}$ C durante una noche. La fase orgánica se separó y se secó sobre Na₂SO₄. La evaporación del disolvente a presión reducida proporcionó la 4-bromo-*N*-metil-bencenosulfonamida (121 g, en bruto), que se usó en la siguiente etapa sin purificación adicional. RMN 1 H (CDCl₃, 300 MHz) δ 7,64-7,74 (m, 4 H), 4,62-4,78 (m, 1 H), 2,65 (d, J = 5,4 Hz, 3 H).

Etapa b: Ácido 4-(N-metilsulfamoil)fenilborónico

A una solución de 4-bromo-*N*-metil-benceno sulfonamida (24,9 g, 0,1 mol) y B(O^lPr)₃ (28,2 g, 0,15 mol) en THF (200 ml) se añadió n-BuLi (100 ml, 0,25 mol) a -70 °C. La mezcla se calentó lentamente a 0 °C, a continuación se añadió una solución de HCl al 10 % hasta pH 3~4 La mezcla resultante se extrajo con EtOAc. La fase orgánica se secó sobre Na₂SO₄, y se evaporó a presión reducida para dar ácido 4-(*N*-metilsulfamoil)fenilborónico (22,5 g, 96 %), que se usó en la siguiente etapa sin purificación adicional. RMN ¹H (DMSO- d_6 , 300 MHz) δ 8,29 (s, 2 H), 7,92 (d, J = 8,1 Hz, 2 H), 7,69 (d, J = 8,4 Hz, 2 H), 2,36 (d, J = 5,1 Hz, 3 H).

45 Etapa c: 6-(4-(*N*-Metilsulfamoil)fenil)piridin-2-ilcarbamato *de terc*-butilo

A una solución de ácido 4-(N-metilsulfamoil)fenilborónico (17,2 g, 0,08 mol) y éster *terc*-butílico del ácido (6-bromo-piridin-2-il)carbámico (21,9 g, 0,08 mol) en DMF (125 ml) y H₂O (125 ml) se añadieron Pd(PPh₃)₄ (9,2 g, 0,008 mol) y K₂CO₃ (16,6 g, 0,12 mol). La mezcla resultante se desgasificó mediante burbujeo suavemente en atmósfera de

argón a través de la solución durante 5 minutos a 20 $^{\circ}$ C. A continuación, la mezcla de reacción se calentó a 80 $^{\circ}$ C durante 16 h. La mezcla se evaporó a presión reducida, a continuación se vertió en H₂O, y se extrajo con EtOAc. La fase orgánica se secó sobre Na₂SO₄, y se evaporó a presión reducida para dar 6-(4-(*N*-metilsulfamoil)fenil)piridin-2-ilcarbamato de *terc*-butilo (21 g, 58 %), que se usó en la siguiente etapa sin purificación adicional.

Etapa d: Clorhidrato de 4-(6-aminopiridin-2-il)-N-metilbencenosulfonamida

5

10

A una solución de 6-(4-(*N*-metilsulfamoil)fenil)piridin-2-ilcarbamato de *terc*-butilo (8,5 g, 23,4 mmol) en MeOH (10 ml) se añadió HCl/MeOH (2 M, 50 ml) a temperatura ambiente. La suspensión se agitó a temperatura ambiente durante una noche. El producto sólido se recogió por filtración, se lavó con MeOH, y se secó para dar clorhidrato de 4-(6-aminopiridin-2-il)-*N*-metilbencenosulfonamida (5,0 g, 71 %). RMN 1 H (300 Hz, DMSO- d_6) δ 8,12 (d, J = 8,4 Hz, 2 H), 7,91-7,96 (m, 3 H), 7,58-7,66 (m, 1 H), 7,31-7,53 (m, 1 H), 7,27 (d, J = 6,6, 1 H), 6,97 (d, J = 9,0,1 H), 2,43 (d, J = 4,8 Hz, 3 H). MS (ESI) m/z (M+H) $^+$ 264,0.

15 Los compuestos en la siguiente tabla se sintetizaron como se ha descrito anteriormente usando los ácidos carboxílicos y aminas disponibles en el mercado o que se han descrito anteriormente.

Tabla 6: Compuestos adicionales a modo de ejemplo de fórmula I

Nº de Compuesto	s adicionales a modo de d Ácido carboxílico	ejempio de formula i Amina
164	A-9	C-1
165	A-3	C-2
169	A-17	C-3
170	A-3	C-4
177	A-2	C-3
183	A-13	C-4
192	A-8	C-2
200	A-14	C-2
201	A-4	C-3
202	A-15	C-2
211	A-15	C-3
214	A-6	C-2
218	A-2	C-4
220	A-4	C-2
221	A-10	C-2
223	A-17	C-4
226	A-20	C-2
228	A-10	C-3
236	A-24	C-2
237	A-11	C-3
239	A-23	C-2
240	A-11	C-4
242	A-13	C-2
245	A-15	C-4
246	A-8	C-3
248	A-13	C-3
250	A-16	C-4
253	A-22	C-2

Nº de Compuesto	Ácido carboxílico	Amina
256	A-2	C-2
259	A-24	C-4
262	A-10	C-4
271	A-14	C-4
279	A-19	C-2
281	A-16	C-2
282	A-8	C-4
284	A-17	C-2
302	A-5	C-2
317	A-10	C-1
318	A-21	C-2
319	A-6	C-4
340	A-11	C-2
341	A-5	C-3
345	A-9	C-3
358	A-18	C-2
362	A-16	C-3
363	A-5	C-4
369	A-9	C-4
372	A-9	C-2
376	A-35	C-2
377	A-32	C-2
378	A-27	C-2
379	A-36	C-2
380	A-34	C-2
381	A-29	C-2
382	A-28	C-2
383	A-25	C-2
384	A-30	C-2
385	A-33	C-2
386	A-31	C-2
387	A-37	C-2
388	A-26	C-2
409	A-38	C-2
413	A-45	C-2

Los datos físicos para los ejemplos de la invención se proporcionan en la Tabla 7. Los compuestos adicionales a modo de ejemplo 164-388, tal como se muestran en la Tabla 1, también se pueden preparar usando materiales de partida y procedimientos apropiados a modo de ejemplo para los compuestos que se han descrito anteriormente. Tabla 7: Datos físicos para compuestos a modo de ejemplo.

Nº de Compuesto LCMS [M+H] ⁺ TR por LCMS RN 1 416,3 2,39 2 442,5 2,7	RMN
2 442,5 2,7	
3 427,1 4,1	
4 508,3 3,43	
5 423,3 3,72	
6 390,1 3,57	
7 402,5 2,96 2H	RMN 1 H (400 MHz, CD $_{3}$ CN) δ 1,21-1,29 (m, 2H), 1,62-1,68 (m, H), 3,05 (s, 6H), 6,06 (s, 2H), 6,86-6,97 (m, 3H), 7,04-7,08 (m, H), 7,53-7,55 (m, 1H), 7,76-7,82 (m, 3H), 7,86 (t, J = 8,0 Hz, H), 8,34 (s a, 1H)
8 444,5 3,09	
9 430,5 2,84	
10 375,3 3,39	
11 403,5 2,83	
12 390 3,14	
14 520,2 1,38	
15 387,3 3,71	
16 389,3 2,9	
17 403,5 3,33	
18 403,5 3,75	
19 387,1 3,76	
20 389 2,79 1,6 7,0 7,5	RMN 1 H (400 MHz, CD $_{3}$ CN/ DMSO- d_{6}) δ 1,15-1,23 (m, 2H), 1,56-,61 (m, 2H), 4,60 (s, 2H), 6,05 (s, 2H), 6,94 (d, J = 8,3 Hz, 1H), ,05-7,09 (m, 2H), 7,44 (d, J = 8,2 Hz, 2H), 7,57-7,62 (m, 2H), ,92 (s, 1H), 8,00 (dd, J = 2,5, 8,6 Hz, 1H), 8,17 (d, J = 8,6 Hz, H), 8,48 (d, J = 1,8 Hz, 1H)
21 360 2,18	
22 387,3 3,77	
23 535,2 2,81	
24 464,1 2,35 J = 2H	RMN 1 H (DMSO- d_{6} , 300 MHz) δ 8,40(s, 1H), 7,96 (d, J = 8,4 Hz, H), 7,86 (m, 2H), 7,82 (m, 1H), 7,62 (d, J = 7,8 Hz, 1H), 7,36 (d, = 7,8 Hz, 1H), 7,11 (d, J = 2,1 Hz, 1H), 7,00 (m, 2H), 6,05 (s, H), 3,42 (m, 2H, solapamiento con agua), 3,03 (m, J = 5,4 Hz, H), 2,98 (t, 1H), 1,49 (m, 2H), 1,14 (m, 2H).
25 403 3,29 1,5 7,1	RMN 1 H (400 MHz, CD $_{3}$ CN/ DMSO- d_{6}) δ 1,14-1,17 (m, 2H), 1,52-,55 (m, 2H), 6,01 (s, 2H), 6,03 (s, 2H), 6,89-6,96 (m, 2H), 7,01-,12 (m, 3H), 7,15 (d, J = 1,8 Hz, 1H), 7,93 (dd, J = 8,7, 2,5 Hz, H), 8,05-8,11 (m, 2H), 8,39-8,41 (m, 1H)
26 393 3,88	
27 452,1 3,11	
28 427,1 4,19	*
29 388,9 3,58	
30 375,3 2,95	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
31	535,2	2,42	
32	359,1	3,48	
33	394,9	3,77	
34	360,3	2,96	
35	495,1	2,24	RMN 1 H (300 MHz, CDCl ₃) δ 8,22 (d, J = 8,7 Hz, 1H), 7,98 (m, 3H), 7,80 (m, 3H), 7,45 (d, J = 7,5 Hz, 1H), 6,99 (dd, J = 8,1, 1,8 Hz, 2H), 6,95 (d, J = 1,5 Hz, 1H), 6,86 (d, J = 8,1 Hz, 1H), 6,02 (s, 2H), 3,77 (t, J = 5,1 Hz, 2H), 3,17 (m, J = 5,1 Hz, 2H), 2,85 (s, 3H), 1,70 (c, J = 3,6 Hz, 2H), 1,19 (c, J = 3,6 Hz, 2H).
36	521,2	2,36	RMN 1H (300 MHz, DMSO-d6) δ 8,51 (s, 1H), 8,15 (d, J = 9,0 Hz, 2H), 8,06 (d, J = 8,4 Hz, 1H), 7,92 (t, J = 7,8 Hz, 1H), 7,88 (d, J = 8,1 Hz, 2H), 7,76 (d, J = 7,5 Hz, 1H), 7,11 (d, J = 1,2 Hz, 1H), 7,03 (dd, J = 7,8, 1,8 Hz, 1H), 6,97 (d, J = 7,8 Hz, 1H), 6,06 (s, 2H), 3,55 (m, 2H, solapamiento con agua), 3,15 (m, 2H), 3,07 (m, 1H), 1,77 (m, 2H), 1,50 (dd, J = 7,2, 4,5 Hz, 2H), 1,43 (m, 2H), 1,15 (dd, J = 6,9, 3,9 Hz, 2H).
37	452,3	3,38	
38	398	3,02	
39	483,1	2,58	RMN 1 H (DMSO-d ₆ , 300 MHz) δ 10,01 (t, J = 6,0 Hz, 1H), 8,39 (s, 1H), 7,97 (d, J = 7,8 Hz, 1H), 7,89 (d, J = 8,4 Hz, 1H), 7,83 (d, J = 7,8 Hz, 1H), 7,62 (d, J = 6,9 Hz, 1H), 7,33 (d, J = 8,4 Hz, 2H), 7,11 (d, J = 2,1 Hz, 1H), 7,03 (d, J = 1,5 Hz, 1H), 6,99 (dd, 7,8 Hz, 2H), 6,05 (s, 2H), 4,41 (d, J = 6 Hz, 2H), 1,48 (m, 2H), 1,14 (m, 2H).
40	393,1	3,89	
41	373,1	3,57	
42	421,1	3,33	
43	417,3	3,62	
44	401,2	1,26	
45	403,5	3,25	
46	437,3	3,19	
47	391,1	3,82	
48	384,3	3,74	
49	419,3	3,27	
50	437	3,02	
51	349	3,33	
52	373,1	3,58	RMN 1 H (400 MHz, CD $_3$ CN) δ 1,17-1,20 (m, 2H), 1,58-1,61 (m, 2H), 2,24 (s, 3H), 6,01 (s, 2H), 6,90 (d, J = 8,4 Hz, 1H), 7,04-7,06 (m, 2H), 7,16 (dd, J = 7,5, 0,8 Hz, 1H), 7,23-7,33 (m, 4H), 7,79-7,89 (m, 2H), 8,10 (dd, J = 8,3, 0,8 Hz, 1H)
53	387	3,62	
54	394,1	3,06	
55	419,3	2,92	
56	407,5	3,55	
57	388,9	2,91	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
58	360,2	3,74	
59	417,3	3,64	
60	402,5	3,07	
61	387,1	3,84	
62	415,3	4,1	
63	384	3,35	
64	360,3	3,58	
65	465,1	2,47	RMN 1 H (300 MHz, CDCl ₃) δ 8,19 (d, J = 8,1 Hz, 1H), 7,97 (d, J = 8,4 Hz, 2H), 7,92 (s, 1H), 7,89 (d, J = 8,4 Hz, 2H), 7,76 (t, J = 7,5 Hz, 1H), 7,44 (d, J = 7,5 Hz, 1H), 6,99 (m, 1H), 6,95 (s a, 1H), 6,86 (d, J = 8,1 Hz, 1H), 6,02 (s, 2H), 4,37 (t, J = 5,7 Hz, 1H), 3,02 (m, 2H), 1,70 (c, J = 3,9 Hz, 2H), 1,17 (c, J = 3,6 Hz, 2H), 1,11 (t, J = 7,2 Hz, 3H).
66	401	3,24	
67	393	3,88	
68	407,5	4,04	
69	377,1	3,26	
70	403,5	3,69	
71	472,3	3,02	
72	363	3,38	
73	449,3	3,4	
74	416,3	2,43	
75	373,1	3,69	
76	534,2	1,36	
77	491,2	2,7	
78	384,3	3,72	
79	388,3	2,32	
80	437,3	3,42	
81	373	3,51	RMN 1 H (400 MHz, CD $_{3}$ CN/ DMSO- d_{6}) δ 1,07-1,27 (m, 2H), 1,50-1,67 (m, 2H), 2,36 (s, 3H), 6,10 (s, 2H), 6,92 (d, J = 7,9 Hz, 1H), 7,01-7,09 (m, 2H), 7,28 (d, J = 7,9 Hz, 2H), 7,50 (d, J = 8,2 Hz, 2H), 7,93-8,00 (m, 2H), 8,15 (d, J = 9,3 Hz, 1H), 8,44 (d, J = 2,5 Hz, 1H)
82	419	2,71	RMN 1 H (400 MHz, CD $_3$ CN) δ 1,29-1,32 (m, 2H), 1,68-1,71 (m, 2H), 3,90 (s, 3H), 3,99 (s, 3H), 6,04 (s, 2H), 6,70-6,72 (m, 2H), 6,93 (d, J = 8,4 Hz, 1H), 7,03-7,05 (m, 2H), 7,59 (d, J = 8,2 Hz, 1H), 7,73 (t, J = 7,6 Hz, 2H), 8,01 (t, J = 8,1 Hz, 1H), 8,72 (s a, 1H)
83	417,3	3,41	
84	394,9	3,74	
85	401,3	3,97	
86	473,5	2,69	
87	419,1	3,18	RMN 1 H (400 MHz, CD $_{3}$ CN) δ 1,25-1,31 (m, 2H), 1,62-1,69 (m, 2H), 3,84 (s, 3H), 3,86 (s, 3H), 6,04 (s, 2H), 6,62-6,70 (m, 2H),

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
			6,92 (d, J = 8,4 Hz, 1H), 7,00-7,08 (m, 2H), 7,30 (d, J = 8,3 Hz, 1H), 7,96 (d, J = 8,9 Hz, 1H), 8,14 (dd, J = 8,9, 2,3 Hz, 1H), 8,38 (d, J = 2,2 Hz, 1H), 8,65 (s a, 1H)
88	399	3,83	
89	401,3	3,62	
90	407,3	3,59	
91	505,2	2,88	
92	384	3,36	RMN 1 H (400 MHz, CD $_{3}$ CN) δ 1,27-1,30 (m, 2H), 1,65-1,67 (m, 2H), 6,05 (s, 2H), 6,93 (d, J = 8,4 Hz, 1H), 7,04-7,09 (m, 2H), 7,67 (t, J = 7,7 Hz, 1H), 7,79-7,81 (m, 1H), 7,91-7,94 (m, 1H), 8,02-8,08 (m, 2H), 8,23 (dd, J = 8,9, 2,5 Hz, 1H), 8,50 (d, J = 1,9 Hz, 1H), 8,58 (s a, 1H)
93	402	2,73	RMN 1 H (400 MHz, CD $_{3}$ CN) δ 1,16-1,24 (m, 2H), 1,57-1,62 (m, 2H), 6,05 (s, 2H), 6,95 (d, J = 7,6 Hz, 1H), 7,05-7,09 (m, 2H), 7,71-7,75 (m, 2H), 7,95 (s a, 1H), 8,04-8,10 (m, 3H), 8,22 (d, J = 8,7 Hz, 1H), 8,54 (d, J = 2,5 Hz, 1H)
94	419,3	2,8	
95	403,3	2,98	
97	416,5	3,22	
98	421	3	
99	407,1	3,32	
100	389	2,83	RMN 1 H (400 MHz, CD $_3$ CN) δ 1,21-1,26 (m, 2H), 1,60-1,65 (m, 2H), 4,65 (s, 2H), 6,03 (s, 2H), 6,89-6,94 (m, 1H), 7,02-7,08 (m, 2H), 7,36-7,62 (m, 3H), 8,12 (s, 2H), 8,36 (s a, 1H), 8,45-8,47 (m, 1H)
101	388,9	3,27	RMN 1 H (400 MHz, CD $_3$ CN) δ 1,22-1,24 (m, 2H), 1,61-1,63 (m, 2H), 3,82 (s, 3H), 6,04 (s, 2H), 6,92 (d, J = 8,4 Hz, 1H), 7,04-7,12 (m, 4H), 7,34 (dd, J = 7,6, 1,7 Hz, 1H), 7,38-7,43 (m, 1H), 8,03 (dd, J = 8,7, 2,3 Hz, 1H), 8,10 (dd, J = 8,7, 0,7 Hz, 1H), 8,27 (s a, 1H), 8,37-8,39 (m, 1H)
102	401,3	3,77	
103	430,5	3,04	
104	388,3	2,32	
105	521,2	2,46	
106	393	3,63	
107	416	2,84	RMN 1 H (400 MHz, CD ₃ CN/ DMSO- d_6) δ 1,13-1,22 (m, 2H), 1,53-1,64 (m, 2H), 2,07 (s, 3H), 6,08 (s, 2H), 6,90-6,95 (m, 1H), 7,01-7,09 (m, 2H), 7,28 (d, J = 8,8 Hz, 1H), 7,37 (t, J = 7,9 Hz, 1H), 7,61 (d, J = 8,8 Hz, 1H), 7,84 (d, J = 1,6 Hz, 1H), 7,95 (dd, J = 2,5, 8,7 Hz, 1H), 8,03 (s a, 1H), 8,16 (d, J = 8,7 Hz, 1H), 8,42 (d, J = 2,4 Hz, 1H), 9,64 (s, 1H)
108	403,3	3,07	
109	349,1	3,29	
110	389,2	3,15	
111	521,2	2,27	
112	394	3,82	
113	407,5	3,3	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
114	417,1	3,17	
115	398,1	3,22	
116	394	3,1	RMN 1 H (400 MHz, CD $_{3}$ CN) δ 1,18-1,26 (m, 2H), 1,59-1,64 (m, 2H), 6,05 (s, 2H), 6,95 (d, J = 8,4 Hz, 1H), 7,06-7,11 (m, 2H), 7,40 (d, J = 4,9 Hz, 1H), 7,92-7,96 (m, 2H), 8,26 (d, J = 9,3 Hz, 1H), 8,36 (d, J = 1,7 Hz, 1H), 8,56 (d, J = 5,0 Hz, 1H), 8,70 (s, 1H)
117	363,3	3,48	
118	374,3	3,54	
119	494,3	3,59	
120	505,2	2,9	
121	374,3	2,55	
122	417,3	3,63	
123	389,3	3,47	
124	417,1	3,29	
125	417,3	3,08	
126	427,3	3,89	
127	535,2	2,76	
128	386,9	3,67	
129	377,1	3,67	
130	389,1	3,4	RMN 1H (400 MHz, CD ₃ CN) δ 1,22-1,24 (m, 2H), 1,61-1,63 (m, 2H), 3,86 (s, 3H), 6,05 (s, 2H), 6,93 (d, J = 8,4 Hz, 1H), 6,97-7,00 (m, 1H), 7,05-7,08 (m, 2H), 7,16-7,21 (m, 2H), 7,41 (t, J = 8,0 Hz, 1H), 8,07-8,17 (m, 3H), 8,48-8,48 (m, 1H)
131	407,3	3,49	
132	419	3,09	RMN 1 H (400 MHz, CD $_{3}$ CN) δ 1,17-1,25 (m, 2H), 1,57-1,64 (m, 2H), 3,72 (s, 6H), 6,04 (s, 2H), 6,74 (d, J = 8,4 Hz, 2H), 6,93 (d, J = 8,4 Hz, 1H), 7,05-7,08 (m, 2H), 7,35 (t, J = 8,4 Hz, 1H), 7,75 (d, J = 10,5 Hz, 1H), 8,07-8,14 (m, 3H)
133	431,3	3,27	
135	417,3	3,81	
136	535,2	2,75	
137	403,5	3,35	
138	432,5	2,76	RMN 1 H (400 MHz, CD $_3$ CN) δ 1,30-1,35 (m, 2H), 1,69-1,74 (m, 2H), 3,09 (s, 6H), 4,05 (s, 3H), 6,04 (s, 2H), 6,38 (d, J = 2,4 Hz, 1H), 6,50 (dd, J = 9,0, 2,4 Hz, 1H), 6,93 (d, J = 8,4 Hz, 1H), 7,03-7,06 (m, 2H), 7,31 (d, J = 7,7 Hz, 1H), 7,71 (d, J = 8,8 Hz, 2H), 7,97 (t, J = 8,3 Hz, 1H)
139	421,1	2,71	
140	416,5	2,92	
141	410	2,83	RMN 1 H (400 MHz, CD ₃ CN) δ 1,28-1,37 (m, 2H), 1,66-1,73 (m, 2H), 6,05 (s, 2H), 6,91-6,97 (m, 1H), 7,05-7,09 (m, 2H), 7,69-7,74 (m, 1H), 7,82 (t, J = 7,7 Hz, 1H), 7,93 (d, J = 7,2 Hz, 1H), 8,04 (d, J = 8,8 Hz, 1H), 8,15 (d, J = 8,2 Hz, 1H), 8,37 (d, J = 8,8 Hz, 1H), 8,58-8,65 (m, 2H), 8,82 (s a, 1H), 8,94 (d, J = 6,2 Hz, 1H)

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
142	349,3	3,33	
143	373,1	3,68	
144	535,2	2,33	
145	390,3	3,4	
146	386,9	3,72	
147	419,1	3,13	RMN 1 H (400 MHz, CD ₃ CN) δ 1,23-1,26 (m, 2H), 1,62-1,64 (m, 2H), 3,86 (s, 3H), 3,89 (s, 3H), 6,04 (s, 2H), 6,93 (d, J = 8,4 Hz, 1H), 7,03-7,07 (m, 3H), 7,17-7,19 (m, 2H), 8,06-8,15 (m, 2H), 8,38 (s a, 1H), 8,45-8,46 (m, 1H)
148	393,1	3,72	RMN 1 H (400 MHz, CD ₃ CN) δ 1,20-1,27 (m, 2H), 1,58-1,67 (m, 2H), 6,05 (s, 2H), 6,94 (d, J = 8,4 Hz, 1H), 7,05-7,09 (m, 2H), 7,41-7,50 (m, 2H), 7,55-7,59 (m, 1H), 7,66-7,69 (m, 1H), 8,07 (d, J = 11,2 Hz, 1H), 8,11 (s a, 1H), 8,16 (d, J = 8,8 Hz, 1H), 8,48 (d, J = 1,9 Hz, 1H)
149	458,5	2,42	
150	403,5	3,04	
151	452,3	3,44	RMN 1 H (400 MHz, MeOD) δ 1,30-1,36 (m, 2H), 1,71-1,77 (m, 2H), 2,58 (s, 3H), 6,04 (s, 2H), 6,93 (dd, J = 0,8, 7,5 Hz, 1H), 7,04-7,08 (m, 2H), 7,86 (dd, J = 0,8, 7,7 Hz, 1H), 8,00-8,02 (m, 2H), 8,08-8,12 (m, 3H), 8,19-8,23 (m, 1H)
152	403	2,97	
153	359,1	3,36	RMN 1 H (400 MHz, CD ₃ CN) δ 1,24-1,26 (m, 2H), 1,62-1,65 (m, 2H), 6,05 (s, 2H), 6,93 (d, J = 8,4 Hz, 1H), 7,05-7,08 (m, 2H), 7,42-7,46 (m, 1H), 7,49-7,53 (m, 2H), 7,63-7,66 (m, 2H), 8,10-8,16 (m, 2H), 8,33 (s a, 1H), 8,48-8,48 (m, 1H)
154	395,1	3,34	
155	393	3,7	
156	390,2	3,7	
157	403,5	3,33	
158	390,2	3,58	
159	493,2	2,85	
160	411,3	3,94	
161	419,1	3,2	
162	488,1	3,62	
163	438,1	3	
164	314,1	3,38	
165	538,5	3,28	
166	466,1	2,9	
167	429,3	2,95	
168	526,3	3,189189	
169	498,3	3,7	
170	468,3	3,27	
171	444,5	2,24	
172	551,1	2,849824	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
173	377	3,7	
174	493,9	2,69	
175	517,9	3,423179	
176	522,3	3,49262	
177	502,1	3,43	
178	549,1	2,906129	
179	480,1	2,51	
180	520,3	4,295395	
181	488,2	3,07	
182	535,1	3,267469	
183	436,3	3,62	
184	496,3	3,265482	
185	403,5	2,88	
186	420,9	2,86	
187	444,3	2,39	
188	417,3	2,24	
189	466,1	2,88	
190	438,1	2,39	
191	401,1	3,44	
192	552,3	3,18	
193	452,3	2,55	
194	415	4	
195	479,1	1,08	
196	430,5	2,34	
197	512,3	2,961206	
198	444,5	2,75	RMN 1 H (400 MHz, DMSO- d_{6}) δ 1,11-1,19 (m, 2H), 1,46-1,52 (m, 2H), 2,31 (s, 3H), 2,94 (s, 3H), 2,99 (s, 3H), 6,08 (s, 2H), 6,97-7,05 (m, 2H), 7,13 (d, J = 1,6 Hz, 1H), 7,35 (t, J = 1,5 Hz, 1H), 7,41 (t, J = 7,8 Hz, 2H), 7,51 (t, J = 7,6 Hz, 1H), 7,68 (d, J = 8,4 Hz, 1H), 7,97 (d, J = 8,4 Hz, 1H), 8,34 (s, 1H)
199	540,3	3,18	
200	520,3	3,79	
201	452,3	3,22	
202	536,5	3,63	
203	509,1	2,82	
204	444,5	2,5	
205	524,3	3,48	
206	407,5	3,6	
207	452,1	2,62	
208	520,3	4,06	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
209	416,1	2,3	
210	452,3	2,8	RMN 1 H (400 MHz, DMSO- d_{6}) δ 1,11-1,19 (m, 2H), 1,47-1,52 (m, 2H), 2,31 (s, 6,08 (s, 2H), 6,96-7,07 (m, 2H), 7,13 (d, J = 1,6 Hz, 1H), 7,43 (s, 1H), 7,57 (d, J = 8,1 Hz, 2H), 7,69 (d, J = 8,5 Hz, 2H), 7,89 (d, J = 8,2 Hz, 2H), 7,99 (d, J = 8,4 Hz, 1H), 8,38 (s, 1H)
211	480,3	3,33	
212	521,1	3,23	
213	415,3	3,4	
214	562,3	3,71	
215	403,3	2,67	
216	421,1	2,91	
217	387,1	2,89	
218	488,3	3,73	
219	403,7	2,43	
220	508,5	3,46	
221	508,3	3,46	
222	401,1	2,76	
223	484,5	3,95	
224	407,5	3,23	
225	401,2	3,49	
226	608,3	3,58	
227	417,1	2,24	
228	452,3	3,21	
229	407,1	3,08	
230	401,3	2,68	
231	389,1	2,36	
232	481,9	3,155919	
233	535,9	3,58	
234	551,1	2,90	
235	415,3	3,71	RMN 1 H (400 MHz, DMSO- d_{6}) δ 1,12-1,17 (m, 2H), 1,23 (d, J = 6,9 Hz, 6H), 1,47-1,51 (m, 2H), 2,30 (s, 3H), 2,92 (septuplete, J = 6,9 Hz, 1H), 6,08 (s, 2H), 6,97-7,05 (m, 2H), 7,12-7,17 (m, 2H), 7,20-7,22 (m, 1H), 7,24-7,26 (m, 1H), 7,36 (t, J = 7,6 Hz, 1H), 7,65 (d, J = 8,4 Hz, 1H), 7,95 (d, J = 8,4 Hz, 1H), 8,32 (s, 1H)
236	540,3	3,85	
237	456,5	3,35	
238	416,5	2,35	
239	529,3	2,29	
240	442,3	3,57	
241	466,3	3,5	
242	506,3	3,67	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
243	403,3	2,69	
244	534,3	3,93	
245	466,3	3,6	
246	496,3	2,9	
247	458,5	2,3	
248	450,3	3,01	
249	565,2	2,89	
250	480,5	3,74	
251	452,1	1,07	
252	389,1	2,82	
253	530,3	2,8	
254	466,1	1,06	
255	488,2	3,05	
256	558,3	3,46	
257	407,5	3,27	
258	430,5	2,66	RMN 1 H (400 MHz, DMSO- d_{6}) δ 1,12-1,18 (m, 2H), 1,47-1,54 (m, 2H), 2,30 (s, 3H), 2,79 (d, J = 4,5 Hz, 3H), 6,08 (s, 2H), 6,96-7,07 (m, 2H), 7,13 (d, J = 1,6 Hz, 1H), 7,48-7,57 (m, 2H), 7,70 (d, J = 8,4 Hz, 1H), 7,78 (d, J = 1,5 Hz, 1H), 7,84 (dt, J = 7,3, 1,7 Hz, 1H), 7,98 (d, J = 8,4 Hz, 1H), 8,36 (s, 1H), 8,50-8,51 (m, 1H)
259	470,3	3,82	
260	403,1	2,27	
261	549,1	3,39	
262	438,1	3,43	
263	403,3	2,8	
264	407,1	3,04	
265	430,5	2,18	
266	403,3	2,96	
267	531,9	2,81	
268	496,3	3,24	
269	373,5	2,76	
270	520,3	4,21	
271	450,3	3,77	
272	403,2	1,09	
273	543,1	2,89	
274	417,3	2,26	
275	527,9	3,91	
276	510,3	3,37	
277	403,1	2,2	
278	430,5	2,68	RMN ¹ H (400 MHz, DMSO- d_6) δ 1,12-1,19 (m, 2H), 1,47-1,51 (m, 2H), 2,31 (s, 3H), 2,80 (d, J = 4,5 Hz, 3H), 6,08 (s, 2H), 6,97-7,05

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
			(m, 2H), 7,13 (d, J = 1,6 Hz, 1H), 7,45 (d, J = 8,4 Hz, 2H), 7,68 (d, J = 8,4 Hz, 1H), 7,90 (d, J = 8,5 Hz, 2H), 7,97 (d, J = 8,3 Hz, 1H), 8,35 (s, 1H), 8,50 (c, J = 4,5 Hz, 1H)
279	536,5	3,19	
280	480,3	3,25	
281	550,5	3,78	
282	482,5	3,15	
283	416,3	2,58	
284	554,3	3,99	
285	546,3	2,87	
286	416,1	2,29	
287	443	4,02	
288	466,3	2,76	
289	373,1	2,84	
290	429,3	3	
291	403,1	2,24	
292	479,2	2,49	
293	417,3	2,65	
294	403,5	2,39	
295	416,3	2,61	RMN 1 H (400 MHz, DMSO- d_{6}) δ 1,14-1,18 (m, 2H), 1,46-1,54 (m, 2H), 2,31 (s, 3H), 6,08 (s, 2H), 6,97-7,05 (m, 2H), 7,13 (d, J = 1,6 Hz, 1H), 7,44 (s, 1H), 7,49-7,56 (m, 2H), 7,72 (d, J = 8,4 Hz, 1H), 7,83-7,85 (m, 1H), 7,87-7,91 (m, 1H), 7,99 (d, J = 8,4 Hz, 1H), 8,05 (s, 1H), 8,39 (s, 1H)
296	387,1	3,09	
297	430,2	2,38	
298	403,2	2,72	
299	387,3	2,86	
300	387,3	3,03	
301	403,5	2,44	
302	508,3	3,45	
303	417,3	2,58	
304	549,1	3,35	
305	429,5	3,01	
306	492,3	3,81	
307	512,3	2,97	
308	415,3	2,85	
309	444,5	2,75	
310	430,5	2,41	
311	534,3	3,92	
312	492,3	3,99	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
313	387,3	2,84	
314	430,5	2,37	
315	387	1,12	
316	526,3	3,08	
317	344,2	3,35	
318	536,5	3,17	
319	492,3	3,69	
320	430,2	2,38	
321	452,3	2,55	
322	387,1	2,6	
323	387,1	3,01	
324	402,5	2,14	
325	531,9	3,83	
326	444,5	2,5	
327	403,3	2,83	
328	401,1	3,48	
329	415,3	3,36	
330	522,3	4,14	
331	387,1	3,01	
332	505,9	4,06	
333	417,1	2,58	
334	403,5	2,92	
335	520,3	4,22	
336	510,3	3,36	
337	401,1	2,73	
338	479,9	3,44	
339	508,3	3,83	
340	512,5	3,6	
341	452,3	3,15	
342	540,3	3,07	
343	480,3	3	
344	526,3	3,15	
345	422,1	3,21	
346	415	4,05	
347	523,1	3,10	
348	416,3	1,87	
349	438,1	2,4	
350	402,5	2,18	
351	373,1	3,08	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
352	415,7	3,13	
353	420,9	2,9	
354	407,3	3,03	
355	480,3	2,96	
356	452,3	2,47	
357	466,3	2,63	
358	536,5	3,26	
359	402,1	2,2	
360	510,3	3,42	
361	407	3,11	
362	494,5	3,45	
363	438,1	3,42	
364	535,9	3,44	
365	402,1	2,21	
366	565,2	3,01	
367	403,5	2,36	
368	444,5	2,97	
369	408,5	3,43	
370	403,3	2,45	
371	430,5	2,43	
372	478,3	3,47	
373	524,3	3,50	
374	466,3	2,35	
375	416,5	2,36	
376	552,3	3,42	
377	524,5	3,17	
378	538,5	3,07	
379	528,3	3,33	
380	548,3	3,75	
381	526,3	3,46	
382	520,5	3,48	
383	518,1	3,55	
384	542,3	3,59	
385	550,5	3,69	
386	524,3	3,15	
387	522,5	3,78	
388	542,2	3,6	
389	467,3	1,93	
390	469,3	1,99	

Nº de Compuesto	LCMS [M+H] ⁺	TR por LCMS	RMN
391	507,5	2,12	
392	453,5	1,99	
393	487,3	2,03	
394	483,5	1,92	
395	44-1,3	4,33	
396	453,3	1,93	
397	439,5	1,94	
398	471,3	2	
399	537,5	2,1	
400	525,3	2,19	
401	453,5	1,96	
402	483,3	1,87	
403	457,5	1,99	
404	469,5	1,95	
405	471,3	1,98	
406	525,3	2,15	
407	439,4	1,97	
408	525,1	2,14	
409	618,7	3,99	
410	374,5	2,46	
411	507,5	2,14	
412	390,1	3,09	
413	552,3	4,04	
414	457,5	2,06	
415	521,5	2,14	
416	319	3,32	
417	471,3	1,96	
418	417,3	1,75	
419	473,3	2,04	
420	389,3	2,94	
421	457,5	1,99	
422	467,3	1,96	

Ensayos

5

Ensayos para Detectar y Medir Propiedades de Corrección de ΔF508-CFTR de Compuestos

JJ. Procedimientos ópticos de potencial de membrana para someter a ensayo propiedades de modulación de Δ F508-CFTR de compuestos

El ensayo óptico del potencial de membrana usó sensores FRET sensibles al voltaje que se describen en Gonzalez y Tsien (Véase Gonzalez, J. E. y R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells" Biophys J 69 (4): 1272-80, y Gonzalez, J. E. y R. Y. Tsien (1997) "Improved indicators of cell membrane

potential that use fluorescence resonance energy transfer" Chem Biol 4 (4): 269-77) en combinación con instrumentación para medir cambios de fluorescencia tales como el Lector de Sonda de Voltaje/Iones (VIPR) (Véase, Gonzalez, J. E., K. Oades, y col. (1999) "Cell-based assays and instrumentation for screening ion-channel targets" Drug Discov Today 4 (9): 431-439).

5

10

20

25

Estos ensayos sensibles al voltaje se basan en el cambio en la transferencia de energía por resonancia de fluorescencia (FRET) entre el colorante sensible al voltaje, soluble en la membrana, DiSBAC $_2$ (3), y un fosfolípido fluorescente, CC2-DMPE, que está unido a la laminilla más externa de la membrana plasmática y actúa como un dador de FRET. Los cambios en el potencial de membrana (V_m) provocan que el DiSBAC $_2$ (3) cargado negativamente se redistribuya a través de la membrana plasmática y que la cantidad de transferencia de energía del CC2-DMPE cambie en consecuencia. Los cambios en la emisión de fluorescencia se pueden controlar usando VIPR $^{\text{TM}}$ II, que es un manipulador de líquidos y detector fluorescente integrados diseñados para realizar identificaciones sistemáticas basadas en células en placas de microtitulación de 96 o 384 pocillos.

15 1. Identificación de Compuestos de Corrección

Para identificar moléculas pequeñas que corrigen el efecto del tránsito asociado con □F508-CFTR; se desarrolló un formato de ensayo de HTS de adición única. Las células se incubaron en medios sin suero durante 16 horas a 37 °C en presencia o ausencia (control negativo) de compuesto de ensayo. Como control positivo, células sembradas en placas de 384 pocillos se incubaron durante 16 horas a 27 °C para ΔF508-CFTR de "corrección de temperatura". Las células se aclararon posteriormente 3X con solución de Krebs Ringers y se cargaron con los colorantes sensibles al voltaje. Para activar ΔF508-CFTR, se añadieron forskolina 10 μM y el potenciador de CFTR, genisteína (20 μM), junto con medio sin Cl⁻ a cada pocillo. La adición de medio sin Cl⁻ promovió el flujo de Cl⁻ como respuesta a la activación de ΔF508-CFTR y la despolarización de la membrana resultante se controló ópticamente usando los colorantes de sensor de voltaje a base de FRET.

2. Identificación de Compuestos Potenciadores

Para identificar potenciadores de ΔF508-CFTR, se desarrolló un formato de ensayo de HTS de adición doble.

Durante la primera adición, se añadió a cada pocillo un medio sin Cl⁻ con o sin compuesto de ensayo. Después de 22 segundos, una segunda adición de medio sin Cl⁻ que contenía forskolina 2 - 10 μM se añadió para activar ΔF508-CFTR. La concentración de Cl⁻ extracelular después de ambas adiciones fue 28 mM, que promovió el flujo de Cl⁻ como respuesta a la activación de ΔF508-CFTR y la despolarización de la membrana resultante se controló ópticamente usando los colorantes de sensor de voltaje a base de FRET.

35

3. Soluciones de Baño

Solución № 1: (en mM) NaCl 160, KC 14,5, CaCl₂ 2, MgCl₂ 1, HEPES 10, pH 7,4 con NaOH.

40 Solución de baño sin cloruro: Las sales de cloruro en la Solución de Baño № 1 están sustituidas con sales de gluconato.

CC2-DMPE: Preparado como una solución de reserva 10 mM en DMSO y almacenado a -20 ºC.

45 DiSBAC₂(3): Preparado como una solución de reserva 10 mM en DMSO y almacenado a -20 °C.

4. Cultivo Celular

Fibroblastos de ratón NIH3T3 que expresan de forma estable ΔF508-CFTR se usan para medidas ópticas del potencial de membrana. Las células se mantienen a 37 °C en CO₂ al 5 % y una humedad de un 90 % en medio de Eagle modificado con Dulbecco complementado con glutamina 2 mM, suero bovino fetal al 10 %, 1 X NEAA, β-ME, 1 X pen/estrep, y HEPES 25 mM en matraces para cultivo de 175 cm². Para todos los ensayos ópticos, las células se sembraron a 30.000/pocillo en placas revestidas con matrigel de 384 pocillos y se cultivaron durante 2 horas a 37 °C antes de su cultivo a 27 °C durante 24 horas para el ensayo de potenciador. Para los ensayos de corrección, las células se cultivan a 27 °C o 37 °C con y sin compuestos durante 16 - 24 horas.

Ensayos Electrofisiológicos para someter a ensayo las propiedades de modulación de ΔF508-CFTR de compuestos

1. Ensayo de Cámara de Ussing

60

65

Se realizaron experimentos de cámara de ussing en células epiteliales polarizadas que expresaban ΔF508-CFTR para caracterizar adicionalmente los moduladores de ΔF508-CFTR identificados en los ensayos ópticos. Las células epiteliales FRT^{ΔF508-CFTR} cultivadas en insertos de cultivo celular de Costar Snapwell se montaron en una cámara de Ussing (Physiologic Instruments, Inc., San Diego, CA), y las monocapas se cortocircuitaron continuamente usando un Sistema de pinzamiento de Voltaje (Departamento de Bioingeniería, Universidad de Iowa, IA, y, Physiologic Instruments, Inc., San Diego, CA). La resistencia transepitelial se midió mediante la aplicación de un pulso de 2 mV.

En estas condiciones, los epitelios de FRT demostraron resistencias de 4 $K\Omega/cm^2$ o superiores. Las soluciones se mantuvieron a 27 9 C y se burbujeó con aire. El potencial de compensación del electrodo y la resistencia de fluido se corrigieron usando un inserto sin células. En estas condiciones, la corriente refleja el flujo de Cl⁻ a través de los Δ F508-CFTR expresados en la membrana apical. La I_{SC} se adquirió digitalmente usando una superficie de contacto MP100A-CE y software AcqKnowledge (v3.2.6; BIOPAC Systems, Santa Barbara, CA).

2: Identificación de Compuestos de Corrección

El protocolo típico usaba un gradiente de concentración de Cl de membrana basolateral a apical. Para establecer este gradiente, se usó solución de Ringer normal en la membrana basolateral, mientras que el NaCl apical se reemplazó con gluconato sódico equimolar (valorado a pH 7,4 con NaOH) para dar un gradiente de concentración de Cl grande a través del epitelio. Todos los experimentos se realizaron con monocapas intactas. Para activar totalmente los Δ F508-CFTR, se aplicaron forskolina (10 μ M) y el inhibidor de PDE, IBMX (100 μ M), seguido de la adición del potenciador de CFTR, genisteína (50 μ M).

Tal como se observa en otros tipos celulares, la incubación a baja temperaturas de células FRT que expresan de forma estable Δ F508-CFTR aumenta la densidad funcional de CFTR en la membrana plasmática. Para determinar la actividad de los compuestos de corrección, las células se incubaron con 10 μ M del compuesto de ensayo durante 24 horas a 37 $^{\circ}$ C y se lavaron posteriormente 3X antes del registro. La I_{SC} mediada por cAMP y genisteína en células tratadas con compuesto se normalizó a los controles de 27 $^{\circ}$ C y 37 $^{\circ}$ C y se expresó como actividad en porcentaje. La incubación previa de las células con el compuesto de corrección aumentó significativamente la I_{SC} mediada por cAMP y genisteína en comparación con los controles de 37 $^{\circ}$ C.

3. Identificación de Compuestos Potenciadores

El protocolo típico usaba un gradiente de concentración de Cl⁻ de membrana basolateral a apical. Para establecer este gradiente se usó se usó solución de Ringer normal en la membrana basolateral y se permeabilizó con nistatina (360 μg/ml), mientras que el NaCl apical se reemplazó con gluconato sódico equimolar (valorado a pH 7,4 con NaOH) para dar un gradiente de concentración de Cl⁻ grande a través del epitelio. Todos los experimentos se realizaron 30 min después de la permeabilización con nistatina. Forskolina (10 μM) y todos los compuestos de ensayo se añadieron a ambos lados de los insertos del cultivo celular. La eficacia de los supuestos potenciadores de ΔF508-CFTR se comparó con los del potenciador conocido, genisteína.

4. Soluciones

10

15

20

25

30

35

Solución basolateral (en mM): NaCl (135), CaCl₂ (1,2), MgCl₂ (1,2), K₂HPO₄ (2,4), KHPO₄ (0,6), ácido N-2-hidroxietilpiperazina-N'-2-etanosulfónico (HEPES) (10), y dextrosa (10). La solución

se valoró a pH 7,4 con NaOH.

40 Solución apical (en mM): Iquales que la solución basolateral con NaCl reemplazado con Gluconato Na (135).

5. Cultivo Celular

Células epiteliales de rata Fisher (FRT) que expresaban ΔF508-CFTR (FRT^{ΔF508-CFTR}) se usaron para experimentos de cámara de Ussing para los supuestos moduladores de ΔF508-CFTR identificados a partir de nuestros ensayos ópticos. Las células se cultivaron en insertos de cultivo celular de Costar Snapwell y se cultivaron durante cinco días a 37 °C y con CO₂ al 5 % en medio F-12 de Ham modificado con Coon complementado con suelo bovino fetal al 5 %, 100 U/ml de penicilina, y 100 μg/ml de estreptomicina. Antes del uso para la caracterización de la actividad del potenciador de los compuestos, las células se incubaron a 27 °C durante 16 - 48 horas para corregir los ΔF508-CFTR. Para determinar la actividad de los compuestos de correcciones, las células se incubaron a 27 °C con y sin los compuestos durante 24 horas.

6. Registros de células enteras

La corriente macroscópica de ΔF508-CFTR (I_{ΔF508}) en células NIH3T3 corregidas con temperatura y compuesto de ensayo que expresaban de forma estable ΔF508-CFTR se controlaron usando el registro de células enteras de parche perforado. En resumen, los registros del ensayo de fijación de voltaje de I_{ΔF508} se realizaron a temperatura ambiente usando un amplificador de pinzamiento zonal Axopatch 200B (Axon Instruments Inc., Foster City, CA). Todos los registros se adquirieron a una frecuencia de muestreo de 10 kHz y se filtraron a paso bajo a 1 kHz. Las pipetas tenían una resistencia de 5 - 6 MΩ cuando se llenaron con la solución intracelular. En estas condiciones de registro, el potencial de inversión calculado para Cl⁻ (E_{Cl}) a temperatura ambiente fue -28 mV. Todos los registros tenían una resistencia de sellado > 20 GΩ y una resistencia en serie < 15 MΩ. La generación de pulsos, adquisición de datos, y análisis se realizaron usando un PC equipado con una superficie de contacto Digidata 1320 A/D en conjunto con Clampex 8 (Axon Instruments Inc.). El baño contenía < 250 μl de solución salina y se perfundió continuamente a una velocidad de 2 ml/min usando un sistema de perfusión impulsado por la gravedad.

7. Identificación de Compuestos de Corrección

Para determinar la actividad de los compuestos de corrección para aumentar la densidad de los Δ F508-CFTR funcionales en la membrana plasmática, nosotros usamos las técnicas de registro de parche perforado que se han descrito anteriormente para medir la densidad de la corriente después de tratamiento de 24 horas con los compuestos de corrección. Para activar totalmente los Δ F508-CFTR, se añadieron a las células forskolina 10 μ M y genisteína 20 μ M. En nuestras condiciones de registro, la densidad de corriente después de incubación de 24 horas a 27 $^{\circ}$ C fue mayor que la observada después de la incubación de 24 horas a 37 $^{\circ}$ C. Estos resultados son consistentes con los efectos conocidos de la incubación a baja temperatura sobre la densidad los Δ F508-CFTR en la membrana plasmática. Para determinar los efectos de los compuestos de corrección sobre la densidad de corriente de CFTR, las células se incubaron con 10 μ M del compuesto de ensayo durante 24 horas a 37 $^{\circ}$ C y la densidad de la corriente se comparó con la de los controles a 27 $^{\circ}$ C y 37 $^{\circ}$ C (% de actividad). Antes del registro, las células se lavaron 3X con medio de registro extracelular para retirar cualquier compuesto de ensayo remanente. La incubación previa con 10 μ M de compuestos de corrección aumentó significativamente la corriente dependiente de cAMP y genisteína en comparación con los controles a 37 $^{\circ}$ C.

8. Identificación de Compuestos Potenciadores

La capacidad de los potenciadores de ΔF508-CFTR para aumentar la corriente macroscópica de Cl de Δ F508-CFTR (I_{ΔF508}) en células NIH3T3 que expresaban de forma estable ΔF508-CFTR también se investigó usando técnicas de registro de parche perforado. Los potenciadores identificados a partir de los ensayos ópticos evocaron un aumento dependiente de la dosis en I_{ΔF508} con potencia y eficacia similar observada en los ensayos ópticos. En todas las células examinadas, el potencial de inversión antes y durante la aplicación del potenciador era de aproximadamente -30 mV, que es el E_{Cl} calculado (-28 mV).

9. Soluciones

10

15

20

25

30

35

40

45

65

Solución intracelular (en mM): aspartato de Cs (90), CsCl (50), MgCl₂ (1), HEPES (10), y 240 μg/ml de

anfotericina-B (pH se ajustó a 7,35 con CsOH).

Solución extracelular (en mM): N-metil-D-glucarnina (NMDG)-Cl (150), MgCl₂ (2), CaCl₂ (2), HEPES (10) (pH se

ajustó a 7,35 con HCl).

10. Cultivo Celular

Fibroblastos de ratón NIH3T3 que expresaban de forma estable Δ F508-CFTR se usan para los registros de células enteras. Las células se mantienen a 37 $^{\circ}$ C en CO₂ al 5 $^{\circ}$ 6 y una humedad de un 90 $^{\circ}$ 6 en medio de Eagle complementado con Dulbecco con glutamina 2 mM, suelo bovino fetal al 10 $^{\circ}$ 6, 1 X NEAA, $^{\circ}$ 7-ME, 1 X pen/estrep, y HEPES 25 mM en matraces para cultivo de 175 cm². Para los registros de células enteras, se sembraron 2.500 – 5.000 células en cubreobjetos de vidrio revestidos con poli-L-lisina y se cultivaron durante 24 - 48 horas a 27 $^{\circ}$ C antes de usarlos para someter a ensayo la actividad de los potenciadores; y se incubó con o sin el compuesto de corrección a 37 $^{\circ}$ C para medir la actividad de los correctores.

11. Registros de canal único

Las actividades de canal único de AF508-CFTR corregidos por temperatura expresados de forma estable en células NIH3T3 y actividades de los compuestos del potenciador se observaron usando parches de membrana extirpada de dentro a fuera. En resumen, se realizaron registros de fijación de voltaje de la actividad de un canal único a temperatura ambiente con un amplificador de pinzamiento zonal Axopatch 200B (Axon Instruments Inc.). Todos los registros se adquirieron a una frecuencia de muestreo de 10 kHz y de paso bajo filtrada a 400 Hz. Las pipetas de 50 parche se fabricaron a partir de vidrio de Corning Kovar Sealing Nº 7052 (World Precision Instruments, Inc., Sarasota, FL) y tenían una resistencia de 5 - 8 MΩ cuando se llenaron con la solución extracelular. El ΔF508-CFTR se activó después de la escisión, por adición de Mg-ATP 1 mM, y 75 nM de la proteína quinasa dependiente de cAMP, subunidad catalítica (PKA; Promega Corp. Madison, WI). Después de que se estabilizara la actividad del canal, el parche se perfundió usando un sistema de microperfusión impulsado por la gravedad. El flujo de entrada se puso adyacente al parche, dando como resultado intercambio total de la solución en 1 - 2 segundos. Para mantener la actividad de ΔF508-CFTR durante la perfusión rápida, el inhibidor de F no específico de fosfatasa (NaF 10 mM) se añadió a la solución de baño. En estas condiciones de registro, la actividad del canal permaneció constante durante toda la duración del registro de parche (hasta 60 min). Las corrientes producidas por la carga positiva 60 pasando de las soluciones intra a extracelulares (aniones moviéndose en la dirección opuesta) se muestran como corrientes positivas. El potencial de la pipeta (V_p) se mantuvo a 80 mV.

La actividad del canal se analizó para parches de membrana que contenían < 2 canales activos. El número máximo de aperturas simultáneas determinó el número de canales activos durante el transcurso de un experimento. Para determinar la amplitud de la corriente de canal único, los datos registrados a partir de 120 segundos de la actividad

de Δ F508-CFTR se filtraron "fuera de línea" a 100 Hz y a continuación se usaron para construir listo a más de amplitud de todos los puntos que se ajustaron con funciones multigaussianas usando el software Bio-Patch Analysis (Bio-Logic Comp. Francia). La corriente microscópica total y la probabilidad abierta (P_0) se determinaron a partir de 120 segundos de actividad del canal. La P_0 se determinó usando el software Bio-Patch o a partir de la relación P_0 = I/i(N), en la que I = corriente media, I = amplitud de la corriente de canal único, y I = número de canales activos en el parche.

12. Soluciones

10 Solución extracelular (en mM): NMDG (150), ácido aspártico (150), CaCl₂ (5), MgCl₂ (2), y HEPES (10) (pH se

ajustó a 7,35 con base Tris).

Solución intracelular (en mM): NMDG-CI (150), MgCl₂ (2), EGTA (5), TES (10), y base Tris (14) (pH se ajustó a

7,35 con HCI).

15

20

13. Cultivo Celular

Fibroblastos de ratón NIH3T3 que expresaban de forma estable Δ F508-CFTR se usan para registros de pinzamiento zonal de membrana escindida. Las células se mantienen a 37 $^{\circ}$ C en CO₂ al 5 $^{\circ}$ 8 y una humedad de un 90 $^{\circ}$ 8 medio de Eagle modificado con Dulbecco complementado con glutamina 2 mM, suelo bovino fetal al 10 $^{\circ}$ 8, 1 X NEAA, $^{\circ}$ 9–ME, 1 X pen/estrep, y HEPES 25 mM en matraces para cultivo de 175 cm². Para registros de canal único, se sembraron 2.500 – 5.000 células sobre cubreobjetos de vidrio revestidos con poli-L-lisina y se cultivaron durante 24 - 48 horas a 27 $^{\circ}$ C antes de su uso.

25 Los compuestos a modo de ejemplo de la Tabla 1 tienen una actividad con un intervalo de aproximadamente 100 nM y 20 μM tal como se mide usando los ensayos que se han descrito anteriormente en el presente documento. Se encuentra que los compuestos a modo de ejemplo de la Tabla 1 son suficientemente eficaces tal como se mide usando los ensayos que se han descrito anteriormente en el presente documento.

30 OTRAS REALIZACIONES

Se debe entender que mientras que la invención se ha descrito en conjunto con la descripción detallada de la misma, la descripción precedente pretende ilustrar y no limitar el alcance de la invención, que se define por el alcance de las reivindicaciones adjuntas.

35

REIVINDICACIONES

1. Un compuesto de fórmula (I):

o una sal farmacéuticamente aceptable del mismo,

en la que:

10

15

20

25

30

5

Cada R_1 es un alifático C_{1-6} opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático C_{3-10} opcionalmente sustituido, un heterocicloalifático de 3 a 10 miembros opcionalmente sustituido, carboxi, amido, amino, halo o hidroxi, con la condición de que al menos un R_1 sea un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido o un heteroarilo opcionalmente sustituido unido a la posición 5 o 6 del anillo de piridilo;

Cada R₂ es hidrógeno, metilo, etilo, propilo, butilo;

Cada R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un cicloalifático C₃₋₇ opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido:

Cada R_4 es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido; y Cada n es 1, 2, 3 o 4.

- 2. El compuesto de acuerdo con la reivindicación 1, en el que un R_1 que está unido a la posición 5 o 6 del anillo de piridilo es arilo o heteroarilo, cada uno opcionalmente sustituido con 1, 2 o 3 de R^D ; en el que R^D es $-Z^DR_9$; en el que cada Z^D es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^ENR^E-, -CO₂- -OCO-, -NR^ECO₂-, -O-, -NR^ECONR^E-, -OCONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂- -NR^E-, -SO₂NR^E-, -NR^ESO₂- o -NR^ESO₂NR^E-; cada R_9 es independientemente R^E , halo, -OH, -NH₂, -NO₂, -CN, -CF₃ o -OCF₃; y cada R^E es independientemente hidrógeno, un grupo alifático C_{1-8} opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heteroarilo opcionalmente sustituido.
- 3. El compuesto de acuerdo con la reivindicación 2, en el que el un R_1 unido a la posición 5 o 6 del anillo de piridilo es fenilo opcionalmente sustituido con 1 R^D , en el que R^D es $-Z^DR_9$; cada Z^D es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -O-, NHC(O)-, -C(O)NR^E-, -SO₂-, -NHSO₂-, -NHC(O)-, -NR^ESO₂-, -SO₂NH-, -SO₂NR^E-, -NH- o C(O)O-.
- 4. El compuesto de acuerdo con la reivindicación 2, en el que un R₁ unido a la posición 5 o 6 del anillo de piridilo es un heteroarilo de 5 o 6 miembros que tiene 1, 2 o 3 heteroátomos seleccionados entre el grupo que consiste en oxígeno, nitrógeno y azufre, en el que el heteroarilo está sustituido con 1 de R^D, en el que R^D es -Z^DR₉; cada Z^D es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -O-, -NHC(O)-, -C(O)NR^E-, -SO₂-, -NHSO₂-, -NHC(O)-, -NR^ESO₂-, -SO₂NH-, -SO₂NR^E-, -NH- o -C(O)O-.

5. El compuesto de acuerdo con la reivindicación 4, en el que R_9 es independientemente un alifático opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido, H o halo.

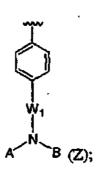
50 6. El compuesto de acuerdo con la reivindicación 1, en el que R₁ que está unido a la posición 5 o 6 del anillo de piridilo es:

en el que

10

5 W_1 es -C(O)-, -SO₂- o -CH₂-;

D es H, hidroxilo o un grupo opcionalmente sustituido, seleccionado entre alifático, cicloalifático, alcoxi y amino; y R^D se ha definido anteriormente.


7. El compuesto de acuerdo con la reivindicación 6, D es

-}-N A;

en el que cada uno de A y B es independientemente H, un alifático C_{1-6} opcionalmente sustituido, un cicloalifático opcionalmente sustituido C_3 - C_8 , o

15 A y B, tomados en conjunto, forman un anillo heterocicloalifático de 3-7 miembros opcionalmente sustituido.

8. El compuesto de acuerdo con la reivindicación 1, en el que R_1 que está unido a la posición 5 o 6 del anillo de piridilo es:

20

25

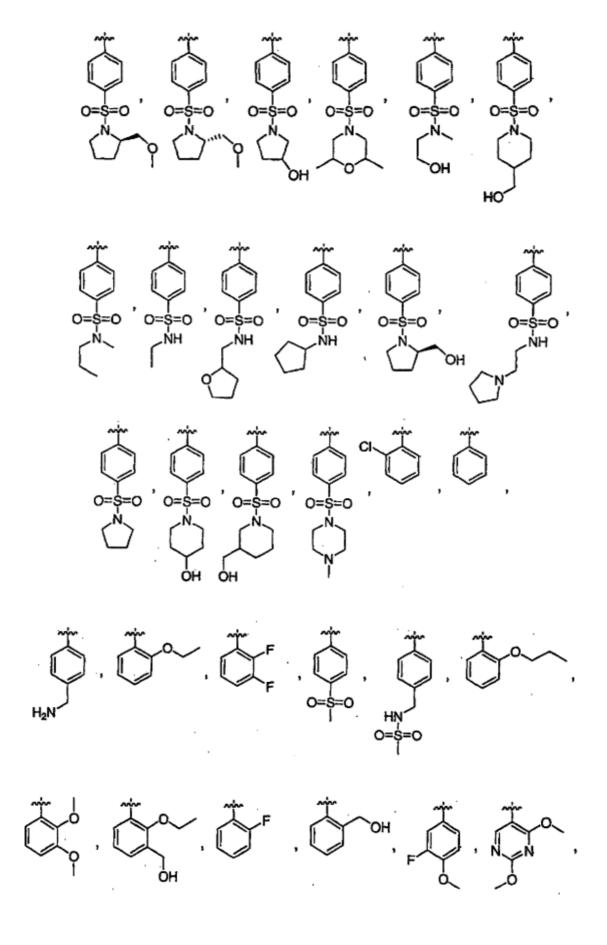
30

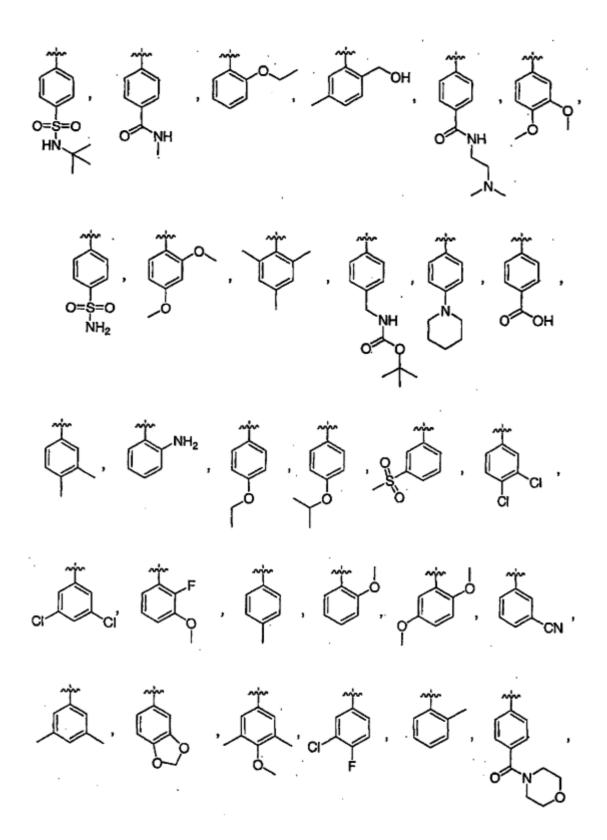
en el que:

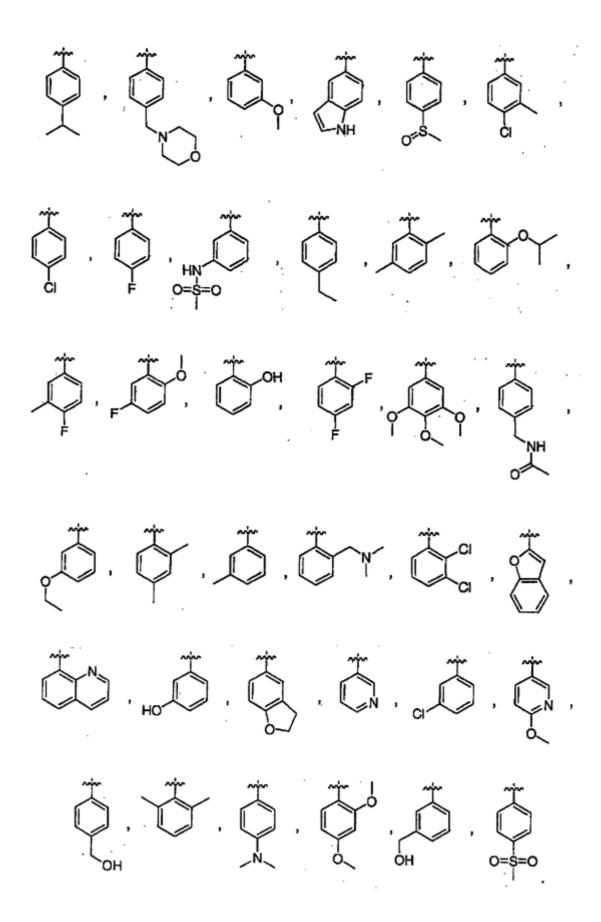
 W_1 es -C(O)-, -SO₂- o -CH₂-;

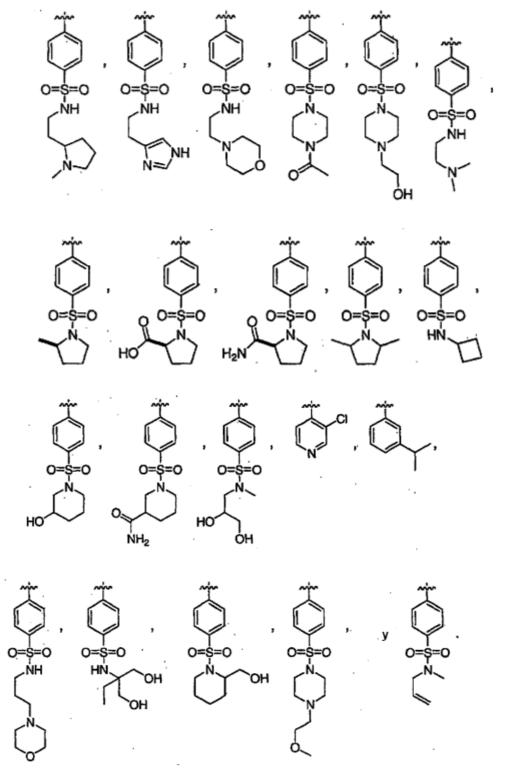
Cada uno de A y B es independientemente H, un alifático C₁₋₆ opcionalmente sustituido, un cicloalifático C₃-C₈ opcionalmente sustituido; o

A y B, tomados en conjunto, forman un anillo heterocicloalifático de 3-7 miembros opcionalmente sustituido.

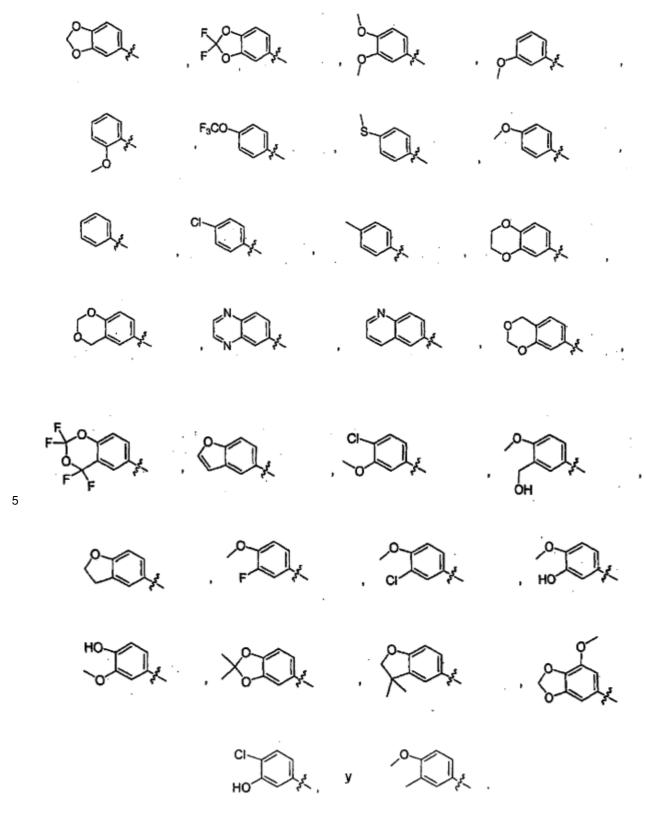

- 9. El compuesto de acuerdo con la reivindicación 7, en el que A es H y B es alifático C₁₋₆ opcionalmente sustituido con 1, 2 o 3 de halo, oxo, alquilo, hidroxi, hidroxialquilo, alcoxialquilo y un heterocicloalifático opcionalmente sustituido.
- 10. El compuesto de acuerdo con la reivindicación 1, en el que un R₁ que está unido a la posición 5 o 6 del anillo de piridilo es cicloalifático, o un R₁ que está unido a la posición 5 o 6 del anillo de piridilo es heterocicloalifático, cada uno opcionalmente sustituido con 1, 2 o 3 de R^D; en el que R^D es -Z^DR₉; en el que cada Z^D es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CON-R^ENR^E-, -CO₂-, -OCO-, -NR^ECO₂-, -O-, -NR^ECONR^E-, -OCONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂-, -NR^E-, -SO₂NR^E-, -


 NR^ESO_2 - o - $NR^ESO_2NR^E$ -; cada R_9 es independientemente R^E , halo, -OH, - NH_2 , - NO_2 , -CN, - CF_3 o - OCF_3 ; y cada R^E es independientemente hidrógeno, un grupo alifático C_{1-8} opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido.


11. El compuesto de acuerdo con la reivindicación 1, en el que el un R₁ unido a la posición 5 o 6 del anillo de piridilo está seleccionado entre el grupo que consiste en


10

5



12. El compuesto de acuerdo con la reivindicación 1, en el que R₄ es un arilo, o R₄ es heteroarilo opcionalmente sustituido con 1, 2 o 3 de -Z^CR₈, en el que cada Z^C es independientemente un enlace o una cadena alifática C₁₋₆ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^C están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^C-, -CONR^CNR^C-, -CO₂-, -OCO-, -NR^CCO₂-, -O-, -NR^CCONR^C-, -OCONR^C-, -NR^CNR^C-, -NR^CNR^C-, -NR^CCO-, -S-, -SO-, -SO₂-, -NR^C-, -SO₂NR^C-, -NR^CSO₂- o -NR^CSO₂NR^C-; cada R₈ es independientemente R^C, halo, -OH, -NH₂, NO₂, - CN, o -OCF₃; y cada R^C es independientemente un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido.

13. El compuesto de acuerdo con la reivindicación 12, en el que R_4 es uno seleccionado entre

14. El compuesto de acuerdo con la reivindicación 1, en el que dicho compuesto tiene la fórmula (IV):

10

(IV)

o una sal farmacéuticamente aceptable del mismo, en la que

 R^{D} es $-Z^{D}R_{9}$, en el que cada Z^{D} es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^E-, -CONR^ENR^E-, -CO₂-, -OCO-, -NR^ECO₂-, -O-, -NR^ECONR^E-, -OCONR^E-, -NR^ENR^E-, -NR^ECO-, -S-, -SO-, -SO₂-, -NR^E-, -SO₂NR^E-, -NR^ESO₂- o -NR^ESO₂NR^E-; R₉ es independientemente R^E, halo, -OH, -NH₂, -NO₂, -CN, -CF₃ o -OCF₃;

Cada R^E es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático 10 opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido;

R₂ es hidrógeno, metilo, etilo, propilo, butilo;

15

35

40

R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un cicloalifático C₃₋₇, o un heterocicloalifático C₃₋₇, cada uno de los cuales está opcionalmente sustituido con 1, 2, 3 de -ZBR7, en el que cada ZB es independientemente un enlace o una cadena alifática C₁₋₄ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^B están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONRB-, -CONRBNRB-, -CO₂-, -OCO-, -NRBCO₂-, -O-, -NRBCO₂-, -OCO-, -NRBCO₂-, -OCO-, -NRBCO₂-, -NRBCO

Cada R₇ es independientemente R^B, halo, -OH, -NH₂, -NO₂, -CN, -CF₃ o -OCF₃; Cada R^B es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático 20 opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido:

Cada R₄ es un arilo o heteroarilo, cada uno de los cuales está opcionalmente sustituido con 1, 2 o 3 de -Z^CR₈, en el que cada Z^{C} es independientemente un enlace o una cadena alifática C_{1-6} ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^{C} están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR^C-, -CONR^CNR^C-, -CO2-, -OCO-, -NR^CCO2-, -O-, -NR^CCONR^C-, -OCONR^C-, -NR^CNR^C-, -NR^CCO-, -S-, -SO-, -SO2-, -NR^C-, -NR^C-, -NR^CSO2- O-NR^CSO2- O-NR^CSO2- O-NR^C-, -OCONR^C-, -OCONR^C

Cada R₈ es independientemente R^C, halo, -OH, -NH₂, -NO₂, -CN, -CF₃ o -OCF₃; y

Cada R^C es independientemente un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente 30 sustituido, un heterocicloalifático opcionalmente sustituido, un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido.

15. El compuesto de acuerdo con la reivindicación 14, en el que R₉ es un heterocicloalifático opcionalmente sustituido que tiene 1 o 2 átomos de nitrógeno y R₉ se une directamente a -SO₂- a través de un nitrógeno del anillo.

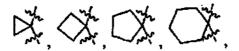
16. El compuesto de acuerdo con la reivindicación 1, en el que dicho compuesto tiene la fórmula V-A o la fórmula V-B:

V-B

o una sal farmacéuticamente aceptable del mismo,

en las que:

T es una cadena alifática C_{1-2} opcionalmente sustituida, en la que cada una de las unidades de carbono está opcionalmente and independientemente reemplazada con -CO-, -CS-, -COCO-, -SO₂-, -B(OH)- o -B(O(alquilo $C_{1-6})$)-;


Cada uno de R₁' y R₁" es un alifático C₁₋₆ opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático de 3 a 10 miembros opcionalmente sustituido, un heterocicloalifático de 3 a 10 miembros opcionalmente sustituido, carboxi, amido, amino, halo o hidroxi;

 R^{D1} está unido al carbono número 3" o 4"; cada R^{D1} y R^{D2} es $-Z^DR_9$, en el que cada Z^D es independientemente un enlace o una cadena alifática $C_{1\text{-}6}$ ramificada o lineal opcionalmente sustituida en la que hasta dos unidades de carbono de Z^D están opcionalmente e independientemente reemplazadas con -CO-, -CS-, -CONR E -, -CONR E -, -CO2-, -OCO-, -NR E CO2-, -O-, -NR E CONR E -, -OCONR E -, -NR E -, -NR E -CO-, -S-, -SO-, -SO2-, -NR E -, - NR E -, -NR E -SO2- o -NR E -SO2-NR E -, -

R₉ es independientemente R^E, halo, -OH, -NH₂, -NO₂, -CN, -CF₃ o -OCF₃;

o R^{D1} y Ř^{D2}, tomados en conjunto, con átomos a los que están unidos, forman un anillo saturado, parcialmente insaturado, o aromático de 3-8 miembros con hasta 3 miembros del anillo seleccionados independientemente entre el grupo que consiste en O, NH, NR^E y S; y cada R^E es independientemente hidrógeno, un grupo alifático C₁₋₈ opcionalmente sustituido, un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido o un heteroarilo opcionalmente sustituido.

- 17. El compuesto de acuerdo con la reivindicación 16, en el que T está opcionalmente sustituido con F, Cl, alquilo C_{1-6} , cicloalquilo C_{3-8} , fenilo, naftilo, -O-(alquilo C_{1-6}), -O-(cicloalquilo C_{3-8}), -O-fenilo o espiroalifático C_{3-8} .
- 18. El compuesto de acuerdo con la reivindicación 16, en el que T está seleccionado entre el grupo que consiste en CH₂-, -CH₂CH₂-, -CF₂-, -C(CH₃)₂-, -C(O)-,

30 -C(fenilo)₂-, - B(OH)- y -CH(OEt)-.

5

10

35

- 19. El compuesto de acuerdo con la reivindicación 16, en el que R^{D1} es $-Z^DR_9$, en el que R_9 es halo, -OH, $-NH_2$, -CN, $-CF_3$, $-OCF_3$, o R_9 es un grupo opcionalmente sustituido seleccionado entre el grupo que consiste en alifático C_{1-6} , cicloalifático C_{3-8} , heterocicloalifático de 3-8 miembros, arilo C_{6-10} o heteroarilo de 5-10 miembros.
- 20. El compuesto de acuerdo con la reivindicación 19, en el que R_9 está opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en oxo, F, Cl, metilo, etilo, *i*-propilo, *t*-butilo, -CH₂OH, -CH₂OH, -C(O)OH, -C(O)NH₂, -CH₂O(alquilo C_{1-6}), -CH₂CH₂O(alquilo C_{1-6}) y -C(O)(alquilo C_{1-6}).
- 21. El compuesto de acuerdo con la reivindicación 19, en el que R⁹ está opcionalmente sustituido con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en F, Cl, metilo, etilo, *i*-propilo, *t*-butilo, -CH₂OH, -CH₂OH, -C(O)OH, -C(O)NH₂, -CH₂O(alquilo C₁₋₆), -CH₂CH₂O(alquilo C₁₋₆) y -C(O)(alquilo C₁₋₆).
- 22. El compuesto de acuerdo con la reivindicación 16, en el que R^{D1} y R^{D2}, tomados en conjunto con carbonos a los que están unidos, forman un anillo saturado, parcialmente insaturado o aromático de 3-8 miembros opcionalmente sustituido con 0-2 átomos en el anillo seleccionados independientemente entre el grupo que consiste en O, NH, NR^E y S.
- 23. El compuesto de acuerdo con la reivindicación 22, en el que R^{D1} y R^{D2}, tomados en conjunto con fenilo que contiene los átomos 3" y 4" de carbono, están opcionalmente sustituidos con 1 o 2 sustituyentes seleccionados independientemente entre el grupo que consiste en R^E, oxo, halo, -OH, -NR^ER^E, -OR^E, -COOR^E y CONR^ER^E.
 - 24. Un compuesto de fórmula (I'):

$$R_{2}$$
 R_{3} R_{3} R_{4} R_{4} R_{1} R_{1} R_{6} R_{1} R_{2} R_{3} R_{4} R_{4} R_{4} R_{1} R_{2} R_{3} R_{4}

o una sal farmacéuticamente aceptable del mismo,

5 en la que:

10

15

25

uno de G_1 y G_2 es N y el otro de G_1 y G_2 es CH;

Cada R_1 es un alifático C_{1-6} opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático de 3 a 10 miembros opcionalmente sustituido, un heterocicloalifático de 3 a 10 miembros opcionalmente sustituido, carboxi, amido, amino, halo o hidroxi, con la condición de que al menos un R_1 sea un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido unido a la posición 5 o 6 del anillo de piridizina o anillo de pirazina;

Cada R₂ es hidrógeno, metilo, etilo, propilo, butilo;

Cada R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un cicloalifático C₃₋₇ opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido;

Cada R₄ es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido; y Cada n es 1, 2, 3 o 4.

25. El compuesto de acuerdo con la reivindicación 24, en donde el compuesto tiene la fórmula (l'-A) o la fórmula (l'-B).

o una sal farmacéuticamente aceptable del mismo, en las que $R_1,\,R_2,\,R_3,\,R_3,\,R_4,\,y$ n se han definido anteriormente.

26. Un compuesto de acuerdo con una cualquiera de las reivindicaciones 1-24, en el que el compuesto está seleccionado entre

1	2	3
Porto:		
4	5	6
	ci ()	
7	8	9
		H N O O O O O O O O O O O O O O O O O O
10	11	12
	T, TTT?	

13	14	15
	POTT.	
16	17	18
HO HO O		
19	20	21
"O C L L L L C C S		
22	23	24
	0=\$=0	

25	26	27
	H _N N 0=s=0	
28	29	30
	HO NY TY TO	HO HO HO
31	32	33
		N.N. B. C.S.
34	35	36
H V V V V V V V V V V V V V V V V V V V	H N O H	

37	38	39
	H N O O O O O O O O O O O O O O O O O O	
40	41	42
43	44	45
		THY COS
46	47	48
	= N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

49	50	51
S. C. T. T. T. C. S.		QuilV
52	53	54
	CI H CI O	
55	56	57
58	59	60
	H N N N N N N N N N N N N N N N N N N N	

61	62	63
	NECT NECTS	
64	65	66
H N N N N N N N N N N N N N N N N N N N		
67	68	69
70	71	72

73	74	75
76	NZC NZC NZC	78 HNH
79 H 🗸	80	81
82	83	84
	F () " \ () \	

85	86	87
88	89	90
91	92	93
	" CO" " TO"	
94	95	96

97	98	99
100	101	102
		H, N, H
103	104	105
O=S=O NH		~~"H
106	107	108
POTIZOS		

109	110	111
HO HO	CINT H TOO	F CONTRACTOR OF THE PROPERTY O
112	113	114
115	116	117
		H V V V V V V V V V V V V V V V V V V V
118	119	120
O = S = O	H T T S	

121	122	123
124	125	126
a \$1 (7" T (7);	0=\$=0 N H N O N	POTZO:
127	128	129
130	131	132

133	134	135
0=s=0 N 0	137	138
	H _N Co	130 NNH NNH NNH NNH NNH NNH NNH NNH NNH NN
139	140	141
		O = S = O
142	143	144

145	146	147
CI CI		
148	149	150
O=S=O NH	my Childs	
151	152	153
FFCT FCTS	cr CT "FTCT"	
154	155	156
H° HO		

157	158	159
CI P		
160	161	162
O=S=O H-N-H		H _N 0=s=0
163	,	

164	165	166
# N N N N N N N N N N N N N N N N N N N	H _N S H	N.S. C.
167	168	169
	HO SHOW HO	S. M. O. N. N. N. S. C.
170	171	172
H _N N O H	NH NH	
173	174	175
		H T C C C C C C C C C C C C C C C C C C

176	177	178
H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	S H C N H Z C S F	O = S = O
179	180	181
H'S CONTRACTOR		HN +
182	183	184
O = S = O O H H	O=S=O	OH H H H H H H H H H H H H H H H H H H
185	186	187
		N COS

188	189	190
HO TON TOTO	-N's ON TOO	HR'S CONTRACTOR
191	192	193
	+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HN 5° TON BY CT.
194	195	196
	M's CONTROLLS	HOT TOS
197	198	199
HONNH HONNH		HO OH

200	201	202
HO HN OFFICE	HN N D H O	HO THE STATE OF TH
203	204	205
NH NH	TO TO	O=S=O HO HNH
206	207	208
ci Ci Ti Ti Ti Ti	N.S. C.	→
209	210	211
HNT.	TITOS	O. S. O.

212	213	214
		P
215	216	217
	CI CI TON TON	
218	219	220
N S S S S S S S S S S S S S S S S S S S	HO STAN TOO	10 To 00 To
221	222	223
5 (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		H. S. C.

224	225	226
CI N N N N N N N N N N N N N N N N N N N		FF SHIN OS ON SON
227	228	229
HO THE TOP		HN HO
230	231	232
	H T T C C C C C C C C C C C C C C C C C	H N N N N N N N N N N N N N N N N N N N
233	234	235
Ho N		

236	237	238
HO THE OF THE PARTY OF THE PART	CI DINING 80	H _M H _O
239	240	241
	NH O	O = S = O
242	243	244
HO HO N N N N N N N N N N N N N N N N N		H V O
245	246	247
**************************************	SH CHINASO	"I THE TOP

248	249	250
Sin None		H.S. C. M. H.S. C.
251	252	253
"", s" T" "T" T" T		g Hos Cul
254	255	256
H. O. T. H. T. C.	×°511.00°	CN-SO CN-BY CTOXF
257	258	259
ci Ci Ni i V	H _N L°	PH O D D CI

260	261	262
TNY TY TO		PH OCAL PHANTER OF A CONTRACT
263	264	265
	ci () N i ()	HWH TOO
266	267	268
	HN NO	O=S=O H
269	270	271
		DE SE

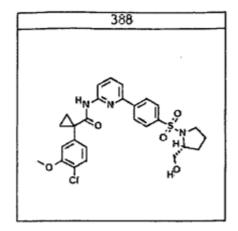
272	273	274
		" Thirth
275	276	27.7
	N O O O O O O O O O O O O O O O O O O O	" The last of the
278	279	280
	A SHOW WINDS	N'S CITY OF THE STORY
281	282	283
F () () () () () () () () () (N. C. M. M. S. C.	"" TO THE TOO

284	295	286
HO THE SECOND TO SECOND THE SECON	O-S-O O-S-O	TO THE TOP
287	288	289
	N°S CT N°S CT?	
290	291	292
	H TO TO	HN O
293	294	295
	H T T C C C C C C C C C C C C C C C C C	HNT OF THE STATE O

296	297	298
CT. T.		
299	300	301
		OH HANDERS
302	303	304
HO. THE NO.		O=S=O HNH
305	306	307
	H Z C C C C C C C C C C C C C C C C C C	HO H

308	309	310
311	312	313
314	315	316
HNZ.		HOOH O=Q-H O
317	318	319
H N N	A THOSE OF WIND HIS CO.	HN CO STORY OF THE PARTY OF THE

320	. 321	322
	THIS CONTRACTS	
323	324	325
		N N N N N N N N N N N N N N N N N N N
326	327	328
-Ny CONTROLS		YOU'S
329	330	331
	S = S = S = S = S = S = S = S = S = S =	


332	333	334
335	336	337
0=9=0 N	OH OH OH OH OH OH OH OH OH OH	
338	339	340
O=S=O NH	0=\$=0	E C C E C C E C C E C C E C C E C C E
341	342	343
HN N O H OF	Ozs=O NH P	NS CONTRACTO

344	345	346
HO H	OXIN COM	
347	348	349
HA CO	HNH NH	HN 50 (1) HV
350	351	352
353	354	355
CI THE TOP		N.S. CONTRACTOR

356	357	358
O=S=O HNH	H'S CONTRACTOR	A SOLUTION TO SOLU
359	360	361
	OH OH	
362	363	364
S. M. J. M. J. P. J. O.	PH OF	HAND OF H
365	366	367
HNTO NY HITCO		

368	369	370
	75.5.0 0.5.5.0 0.5.5.0 0.5.5.0 0.5.5.0 0.5.5.0 0.5.5.0 0.5.5.0 0.5.5.0	
371	372	373
HN CO	E C E C E C E C E C E C E C E C E C E C	Ho HNH
374	375	
HN SO THE RESERVE OF THE PARTY	"HATTING TO S	

376	377	378
HO HO NH NH	0.4 0.5.5.0 1.5.0	HN N S N H
379	380	381
Ho CI HO CI		HN N P P P
382	383	384
0=\$=0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O=S=O N O H	CI ON H
385	386	387
0=s=0 N H O H	HO ON	HN CN CON H

389	390	391
ä o	PONTOSF	FXF H
392	393	394
HOLLONE TO SEE		
395		397
		"Y" TYY
398	399	400
F N T X X F	F F O O H	F F F F F F F F F F F F F F F F F F F

401	402	403
"JON" TON	#1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FUNITARE
404	405	406
" TON TONE	но F	F C T T T
407	408	409
" TON TON	HO F	The state of the s
410	411	412
HNH	F F N T T X F	

413	414	415
- SON	HOJ CONF	F F H T F F F F F F F F F F F F F F F F
416	417	418
	F CONTRACTOR F	
419	420	421
CI C		Holden Holde
422		
Hollow F		

27. Una composición farmacéutica que comprende:

5

- (i) un compuesto de acuerdo con una cualquiera de las reivindicaciones 1-26; y
 - (ii) un vehículo farmacéuticamente aceptable,

y adicionalmente comprende opcionalmente un agente mucolítico, un broncodilatador, un antibiótico, un agente antiinfeccioso, un agente antiinflamatorio, un modulador de CFTR o un agente nutricional.

28. Un procedimiento de modulación de la actividad del transportador de ABC *in vitro* que comprende la etapa de poner en contacto dicho transportador de ABC con un compuesto de fórmula (I) o de fórmula (I'):

en las que:

10

15

20

25

30

35

40

45

5

uno de G₁ y G₂ es un nitrógeno, y el otro es un carbono;

cada R_1 es un alifático \tilde{C}_{1-6} opcionalmente sustituido, un arilo opcionalmente sustituido, un heteroarilo opcionalmente sustituido, un cicloalifático C_{3-10} opcionalmente sustituido, un heterocicloalifático de 3 a 10 miembros opcionalmente sustituido, carboxi, amido, amino, halo o hidroxi, con la condición de que al menos un R_1 sea un cicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido, un heterocicloalifático opcionalmente sustituido o un heteroarilo opcionalmente sustituido unido a la posición 5 o 6 del anillo de piridilo, piridazina o pirazina;

cada R₂ es hidrógeno, metilo, etilo, propilo, butilo;

cada R₃ y R'₃ junto con el átomo de carbono al que están unidos forman un cicloalifático C₃₋₇ opcionalmente sustituido o un heterocicloalifático opcionalmente sustituido;

cada R_4 es un arilo opcionalmente sustituido o un heteroarilo opcionalmente sustituido; y cada n es 1-4.

- 29. El compuesto de fórmula I o de fórmula I' de acuerdo con una cualquiera de las reivindicaciones 1-26 o la composición de la reivindicación 27 para su uso en el tratamiento o la disminución de la gravedad de una enfermedad en un paciente, en donde dicha enfermedad está seleccionada entre fibrosis quística, enfisema hereditario, hemocromatosis hereditaria, deficiencias de coagulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario de Tipo 1, deficiencias en el procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia de Tipo 1, abetalipoproteinemia, enfermedades de almacenamiento lisosómico, tales como enfermedad de células l/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar tipo II, poliendocrinopatía/hiperinsulinemia, diabetes mellitus, enanismo de Laron, deficiencia de mieloperoxidasas, hipoparatiroidismo primario, melanoma, glucanosis CDG de tipo 1, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, diabetes insípida (DI), DI neurohipofiseal, DI nefrogénica, síndrome de Charcot-Marie Tooth, enfermedad de Perlizaeus-Merzbacher, enfermedades neurodegenerativas tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, trastornos neurológicos graves de poliglutamina tales como Huntington, ataxia espinocerebelar de tipo I, atrofia muscular espinal y bulbar, atrofia dentatorrubro palidoluisiana y distrofia miotónica, así como encefalopatías espongiformes, tales como enfermedad de Creutzfeldt-Jakob hereditaria, (debida a un defecto en el procesamiento de la proteína priónica), enfermedad de Fabry, síndrome de Gerstmann-Sträussler-Scheinker, EPOC, enfermedad del ojo seco o síndrome de Sjögren.
 - 30. El compuesto o la composición para uso de la reivindicación 29 para tratar o disminuir la gravedad de la fibrosis quística en un paciente, en donde el paciente tiene un gen defectuoso que produce la deleción de la fenil alanina en la posición 508 de la secuencia de aminoácidos reguladora de la conducta transmembrana de la fibrosis quística.
 - 31. El compuesto o composición para uso de la reivindicación 30, en el que el paciente tiene dos copias del gen defectuoso.
- 32. Un kit para usar en la medida de la actividad de un transportador de ABC o un fragmento del mismo en una muestra biológica *in vitro* o *in vivo*, que comprende:
 - (i) un compuesto de fórmula (I) o de fórmula (I') de acuerdo con una cualquiera de las reivindicaciones 1-26; e
 - (ii) instrucciones para:

55

- a) poner en contacto la composición con la muestra biológica; y
- b) medir la actividad de dicho transportador de ABC o de un fragmento del mismo.

ES 2 439 736 T3

- 33. El kit de acuerdo con la reivindicación 32, que comprende adicionalmente instrucciones para
 - a) poner en contacto una composición adicional con la muestra biológica;

5

- b) medir la actividad de dicho transportador de ABC o un fragmento del mismo en presencia de dicho compuesto adicional, y
- c) comparar la actividad del transportador de ABC en presencia del compuesto adicional con la densidad del transportador de ABC en presencia de una composición de fórmula (I) o de fórmula (I').
- 10 34. El kit de acuerdo con la reivindicación 33 en donde el kit se usa para medir la densidad de CFTR.